| 1 | /* |
| 2 | * This source code is a product of Sun Microsystems, Inc. and is provided |
| 3 | * for unrestricted use. Users may copy or modify this source code without |
| 4 | * charge. |
| 5 | * |
| 6 | * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING |
| 7 | * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR |
| 8 | * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. |
| 9 | * |
| 10 | * Sun source code is provided with no support and without any obligation on |
| 11 | * the part of Sun Microsystems, Inc. to assist in its use, correction, |
| 12 | * modification or enhancement. |
| 13 | * |
| 14 | * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE |
| 15 | * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE |
| 16 | * OR ANY PART THEREOF. |
| 17 | * |
| 18 | * In no event will Sun Microsystems, Inc. be liable for any lost revenue |
| 19 | * or profits or other special, indirect and consequential damages, even if |
| 20 | * Sun has been advised of the possibility of such damages. |
| 21 | * |
| 22 | * Sun Microsystems, Inc. |
| 23 | * 2550 Garcia Avenue |
| 24 | * Mountain View, California 94043 |
| 25 | */ |
| 26 | |
| 27 | /* |
| 28 | * g72x.c |
| 29 | * |
| 30 | * Common routines for G.721 and G.723 conversions. |
| 31 | */ |
| 32 | |
| 33 | #include "wx/wxprec.h" |
| 34 | #include <stdlib.h> |
| 35 | #include "wx/mmedia/internal/g72x.h" |
| 36 | |
| 37 | static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, |
| 38 | 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000}; |
| 39 | |
| 40 | /* |
| 41 | * quan() |
| 42 | * |
| 43 | * quantizes the input val against the table of size short integers. |
| 44 | * It returns i if table[i - 1] <= val < table[i]. |
| 45 | * |
| 46 | * Using linear search for simple coding. |
| 47 | */ |
| 48 | static int |
| 49 | quan( |
| 50 | int val, |
| 51 | short *table, |
| 52 | int size) |
| 53 | { |
| 54 | int i; |
| 55 | |
| 56 | for (i = 0; i < size; i++) |
| 57 | if (val < *table++) |
| 58 | break; |
| 59 | return (i); |
| 60 | } |
| 61 | |
| 62 | static char quan2_tab[65536]; |
| 63 | static short base2_tab[65536]; |
| 64 | static int init_tabs_done = 0; |
| 65 | |
| 66 | inline char quan2 (unsigned short val) |
| 67 | { |
| 68 | return quan2_tab[val]; |
| 69 | } |
| 70 | |
| 71 | inline short base2 (unsigned short val) |
| 72 | { |
| 73 | return base2_tab[val]; |
| 74 | } |
| 75 | |
| 76 | static void init_quan2_tab (void) |
| 77 | { |
| 78 | long i; |
| 79 | |
| 80 | for (i = 0; i < 65536; i++) { |
| 81 | quan2_tab[i] = quan (i, power2, 15); |
| 82 | }; |
| 83 | } |
| 84 | |
| 85 | static void init_base2_tab (void) |
| 86 | { |
| 87 | long i; |
| 88 | short exp; |
| 89 | |
| 90 | for (i = 0; i < 65536; i++) { |
| 91 | exp = quan2 (short (i)); |
| 92 | base2_tab[i] = short ((exp << 6) + ((i << 6) >> exp)); |
| 93 | }; |
| 94 | } |
| 95 | |
| 96 | static void init_tabs (void) |
| 97 | { |
| 98 | if (init_tabs_done) return; |
| 99 | |
| 100 | init_quan2_tab(); |
| 101 | init_base2_tab(); |
| 102 | |
| 103 | init_tabs_done = 1; |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * fmult() |
| 108 | * |
| 109 | * returns the integer product of the 14-bit integer "an" and |
| 110 | * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". |
| 111 | */ |
| 112 | static int |
| 113 | fmult( |
| 114 | int an, |
| 115 | int srn) |
| 116 | { |
| 117 | short anmag, anexp, anmant; |
| 118 | short wanexp, wanmant; |
| 119 | short retval; |
| 120 | |
| 121 | anmag = (an > 0) ? an : ((-an) & 0x1FFF); |
| 122 | anexp = quan2(anmag) - 6; |
| 123 | anmant = (anmag == 0) ? 32 : |
| 124 | (anexp >= 0) ? anmag >> anexp : anmag << -anexp; |
| 125 | wanexp = anexp + ((srn >> 6) & 0xF) - 13; |
| 126 | |
| 127 | wanmant = (anmant * (srn & 077) + 0x30) >> 4; |
| 128 | retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : |
| 129 | (wanmant >> -wanexp); |
| 130 | |
| 131 | return (((an ^ srn) < 0) ? -retval : retval); |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * g72x_init_state() |
| 136 | * |
| 137 | * This routine initializes and/or resets the g72x_state structure |
| 138 | * pointed to by 'state_ptr'. |
| 139 | * All the initial state values are specified in the CCITT G.721 document. |
| 140 | */ |
| 141 | void |
| 142 | g72x_init_state( |
| 143 | struct g72x_state *state_ptr) |
| 144 | { |
| 145 | int cnta; |
| 146 | |
| 147 | init_tabs (); |
| 148 | |
| 149 | state_ptr->yl = 34816; |
| 150 | state_ptr->yu = 544; |
| 151 | state_ptr->dms = 0; |
| 152 | state_ptr->dml = 0; |
| 153 | state_ptr->ap = 0; |
| 154 | for (cnta = 0; cnta < 2; cnta++) { |
| 155 | state_ptr->a[cnta] = 0; |
| 156 | state_ptr->pk[cnta] = 0; |
| 157 | state_ptr->sr[cnta] = 32; |
| 158 | } |
| 159 | for (cnta = 0; cnta < 6; cnta++) { |
| 160 | state_ptr->b[cnta] = 0; |
| 161 | state_ptr->dq[cnta] = 32; |
| 162 | } |
| 163 | state_ptr->td = 0; |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * predictor_zero() |
| 168 | * |
| 169 | * computes the estimated signal from 6-zero predictor. |
| 170 | * |
| 171 | */ |
| 172 | int |
| 173 | predictor_zero( |
| 174 | struct g72x_state *state_ptr) |
| 175 | { |
| 176 | int i; |
| 177 | int sezi; |
| 178 | |
| 179 | sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]); |
| 180 | for (i = 1; i < 6; i++) /* ACCUM */ |
| 181 | sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]); |
| 182 | return (sezi); |
| 183 | } |
| 184 | /* |
| 185 | * predictor_pole() |
| 186 | * |
| 187 | * computes the estimated signal from 2-pole predictor. |
| 188 | * |
| 189 | */ |
| 190 | int |
| 191 | predictor_pole( |
| 192 | struct g72x_state *state_ptr) |
| 193 | { |
| 194 | return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) + |
| 195 | fmult(state_ptr->a[0] >> 2, state_ptr->sr[0])); |
| 196 | } |
| 197 | /* |
| 198 | * step_size() |
| 199 | * |
| 200 | * computes the quantization step size of the adaptive quantizer. |
| 201 | * |
| 202 | */ |
| 203 | int |
| 204 | step_size( |
| 205 | struct g72x_state *state_ptr) |
| 206 | { |
| 207 | int y; |
| 208 | int dif; |
| 209 | int al; |
| 210 | |
| 211 | if (state_ptr->ap >= 256) |
| 212 | return (state_ptr->yu); |
| 213 | else { |
| 214 | y = state_ptr->yl >> 6; |
| 215 | dif = state_ptr->yu - y; |
| 216 | al = state_ptr->ap >> 2; |
| 217 | if (dif > 0) |
| 218 | y += (dif * al) >> 6; |
| 219 | else if (dif < 0) |
| 220 | y += (dif * al + 0x3F) >> 6; |
| 221 | return (y); |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * quantize() |
| 227 | * |
| 228 | * Given a raw sample, 'd', of the difference signal and a |
| 229 | * quantization step size scale factor, 'y', this routine returns the |
| 230 | * ADPCM codeword to which that sample gets quantized. The step |
| 231 | * size scale factor division operation is done in the log base 2 domain |
| 232 | * as a subtraction. |
| 233 | */ |
| 234 | int |
| 235 | quantize( |
| 236 | int d, /* Raw difference signal sample */ |
| 237 | int y, /* Step size multiplier */ |
| 238 | short *table, /* quantization table */ |
| 239 | int size) /* table size of short integers */ |
| 240 | { |
| 241 | short dqm; /* Magnitude of 'd' */ |
| 242 | short exp; /* Integer part of base 2 log of 'd' */ |
| 243 | short mant; /* Fractional part of base 2 log */ |
| 244 | short dl; /* Log of magnitude of 'd' */ |
| 245 | short dln; /* Step size scale factor normalized log */ |
| 246 | int i; |
| 247 | |
| 248 | /* |
| 249 | * LOG |
| 250 | * |
| 251 | * Compute base 2 log of 'd', and store in 'dl'. |
| 252 | */ |
| 253 | dqm = abs(d); |
| 254 | exp = quan2(dqm >> 1); |
| 255 | mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */ |
| 256 | dl = (exp << 7) + mant; |
| 257 | |
| 258 | /* |
| 259 | * SUBTB |
| 260 | * |
| 261 | * "Divide" by step size multiplier. |
| 262 | */ |
| 263 | dln = dl - (y >> 2); |
| 264 | |
| 265 | /* |
| 266 | * QUAN |
| 267 | * |
| 268 | * Obtain codword i for 'd'. |
| 269 | */ |
| 270 | i = quan(dln, table, size); |
| 271 | if (d < 0) /* take 1's complement of i */ |
| 272 | return ((size << 1) + 1 - i); |
| 273 | else if (i == 0) /* take 1's complement of 0 */ |
| 274 | return ((size << 1) + 1); /* new in 1988 */ |
| 275 | else |
| 276 | return (i); |
| 277 | } |
| 278 | /* |
| 279 | * reconstruct() |
| 280 | * |
| 281 | * Returns reconstructed difference signal 'dq' obtained from |
| 282 | * codeword 'i' and quantization step size scale factor 'y'. |
| 283 | * Multiplication is performed in log base 2 domain as addition. |
| 284 | */ |
| 285 | int |
| 286 | reconstruct( |
| 287 | int sign, /* 0 for non-negative value */ |
| 288 | int dqln, /* G.72x codeword */ |
| 289 | int y) /* Step size multiplier */ |
| 290 | { |
| 291 | short dql; /* Log of 'dq' magnitude */ |
| 292 | short dex; /* Integer part of log */ |
| 293 | short dqt; |
| 294 | short dq; /* Reconstructed difference signal sample */ |
| 295 | |
| 296 | dql = dqln + (y >> 2); /* ADDA */ |
| 297 | |
| 298 | if (dql < 0) { |
| 299 | return ((sign) ? -0x8000 : 0); |
| 300 | } else { /* ANTILOG */ |
| 301 | dex = (dql >> 7) & 15; |
| 302 | dqt = 128 + (dql & 127); |
| 303 | dq = (dqt << 7) >> (14 - dex); |
| 304 | return ((sign) ? (dq - 0x8000) : dq); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | |
| 309 | /* |
| 310 | * update() |
| 311 | * |
| 312 | * updates the state variables for each output code |
| 313 | */ |
| 314 | void |
| 315 | update( |
| 316 | int code_size, /* distinguish 723_40 with others */ |
| 317 | int y, /* quantizer step size */ |
| 318 | int wi, /* scale factor multiplier */ |
| 319 | int fi, /* for long/short term energies */ |
| 320 | int dq, /* quantized prediction difference */ |
| 321 | int sr, /* reconstructed signal */ |
| 322 | int dqsez, /* difference from 2-pole predictor */ |
| 323 | struct g72x_state *state_ptr) /* coder state pointer */ |
| 324 | { |
| 325 | int cnt; |
| 326 | short mag; /* Adaptive predictor, FLOAT A */ |
| 327 | short a2p; /* LIMC */ |
| 328 | short a1ul; /* UPA1 */ |
| 329 | short pks1; /* UPA2 */ |
| 330 | short fa1; |
| 331 | char tr; /* tone/transition detector */ |
| 332 | short ylint, thr2, dqthr; |
| 333 | short ylfrac, thr1; |
| 334 | short pk0; |
| 335 | |
| 336 | pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */ |
| 337 | |
| 338 | mag = dq & 0x7FFF; /* prediction difference magnitude */ |
| 339 | /* TRANS */ |
| 340 | ylint = short (state_ptr->yl >> 15); /* exponent part of yl */ |
| 341 | ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */ |
| 342 | thr1 = (32 + ylfrac) << ylint; /* threshold */ |
| 343 | thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */ |
| 344 | dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */ |
| 345 | if (state_ptr->td == 0) /* signal supposed voice */ |
| 346 | tr = 0; |
| 347 | else if (mag <= dqthr) /* supposed data, but small mag */ |
| 348 | tr = 0; /* treated as voice */ |
| 349 | else /* signal is data (modem) */ |
| 350 | tr = 1; |
| 351 | |
| 352 | /* |
| 353 | * Quantizer scale factor adaptation. |
| 354 | */ |
| 355 | |
| 356 | /* FUNCTW & FILTD & DELAY */ |
| 357 | /* update non-steady state step size multiplier */ |
| 358 | state_ptr->yu = y + ((wi - y) >> 5); |
| 359 | |
| 360 | /* LIMB */ |
| 361 | if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */ |
| 362 | state_ptr->yu = 544; |
| 363 | else if (state_ptr->yu > 5120) |
| 364 | state_ptr->yu = 5120; |
| 365 | |
| 366 | /* FILTE & DELAY */ |
| 367 | /* update steady state step size multiplier */ |
| 368 | state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6); |
| 369 | |
| 370 | /* |
| 371 | * Adaptive predictor coefficients. |
| 372 | */ |
| 373 | if (tr == 1) { /* reset a's and b's for modem signal */ |
| 374 | state_ptr->a[0] = 0; |
| 375 | state_ptr->a[1] = 0; |
| 376 | state_ptr->b[0] = 0; |
| 377 | state_ptr->b[1] = 0; |
| 378 | state_ptr->b[2] = 0; |
| 379 | state_ptr->b[3] = 0; |
| 380 | state_ptr->b[4] = 0; |
| 381 | state_ptr->b[5] = 0; |
| 382 | |
| 383 | a2p = 0; /* eliminate Compiler Warnings */ |
| 384 | } else { /* update a's and b's */ |
| 385 | pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */ |
| 386 | |
| 387 | /* update predictor pole a[1] */ |
| 388 | a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7); |
| 389 | if (dqsez != 0) { |
| 390 | fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0]; |
| 391 | if (fa1 < -8191) /* a2p = function of fa1 */ |
| 392 | a2p -= 0x100; |
| 393 | else if (fa1 > 8191) |
| 394 | a2p += 0xFF; |
| 395 | else |
| 396 | a2p += fa1 >> 5; |
| 397 | |
| 398 | if (pk0 ^ state_ptr->pk[1]) |
| 399 | /* LIMC */ |
| 400 | if (a2p <= -12160) |
| 401 | a2p = -12288; |
| 402 | else if (a2p >= 12416) |
| 403 | a2p = 12288; |
| 404 | else |
| 405 | a2p -= 0x80; |
| 406 | else if (a2p <= -12416) |
| 407 | a2p = -12288; |
| 408 | else if (a2p >= 12160) |
| 409 | a2p = 12288; |
| 410 | else |
| 411 | a2p += 0x80; |
| 412 | } |
| 413 | |
| 414 | /* TRIGB & DELAY */ |
| 415 | state_ptr->a[1] = a2p; |
| 416 | |
| 417 | /* UPA1 */ |
| 418 | /* update predictor pole a[0] */ |
| 419 | state_ptr->a[0] -= state_ptr->a[0] >> 8; |
| 420 | if (dqsez != 0) |
| 421 | if (pks1 == 0) |
| 422 | state_ptr->a[0] += 192; |
| 423 | else |
| 424 | state_ptr->a[0] -= 192; |
| 425 | |
| 426 | /* LIMD */ |
| 427 | a1ul = 15360 - a2p; |
| 428 | if (state_ptr->a[0] < -a1ul) |
| 429 | state_ptr->a[0] = -a1ul; |
| 430 | else if (state_ptr->a[0] > a1ul) |
| 431 | state_ptr->a[0] = a1ul; |
| 432 | |
| 433 | /* UPB : update predictor zeros b[6] */ |
| 434 | for (cnt = 0; cnt < 6; cnt++) { |
| 435 | if (code_size == 5) /* for 40Kbps G.723 */ |
| 436 | state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9; |
| 437 | else /* for G.721 and 24Kbps G.723 */ |
| 438 | state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8; |
| 439 | if (dq & 0x7FFF) { /* XOR */ |
| 440 | if ((dq ^ state_ptr->dq[cnt]) >= 0) |
| 441 | state_ptr->b[cnt] += 128; |
| 442 | else |
| 443 | state_ptr->b[cnt] -= 128; |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | for (cnt = 5; cnt > 0; cnt--) |
| 449 | state_ptr->dq[cnt] = state_ptr->dq[cnt-1]; |
| 450 | /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */ |
| 451 | if (mag == 0) { |
| 452 | state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20; |
| 453 | } else { |
| 454 | state_ptr->dq[0] = (dq >= 0) ? |
| 455 | base2 (mag) : base2 (mag) - 0x400; |
| 456 | } |
| 457 | |
| 458 | state_ptr->sr[1] = state_ptr->sr[0]; |
| 459 | /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ |
| 460 | if (sr == 0) { |
| 461 | state_ptr->sr[0] = 0x20; |
| 462 | } else if (sr > 0) { |
| 463 | state_ptr->sr[0] = base2(sr); |
| 464 | } else if (sr > -32768) { |
| 465 | mag = -sr; |
| 466 | state_ptr->sr[0] = base2(mag) - 0x400; |
| 467 | } else |
| 468 | state_ptr->sr[0] = short (0xFC20); |
| 469 | |
| 470 | /* DELAY A */ |
| 471 | state_ptr->pk[1] = state_ptr->pk[0]; |
| 472 | state_ptr->pk[0] = pk0; |
| 473 | |
| 474 | /* TONE */ |
| 475 | if (tr == 1) /* this sample has been treated as data */ |
| 476 | state_ptr->td = 0; /* next one will be treated as voice */ |
| 477 | else if (a2p < -11776) /* small sample-to-sample correlation */ |
| 478 | state_ptr->td = 1; /* signal may be data */ |
| 479 | else /* signal is voice */ |
| 480 | state_ptr->td = 0; |
| 481 | |
| 482 | /* |
| 483 | * Adaptation speed control. |
| 484 | */ |
| 485 | state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */ |
| 486 | state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */ |
| 487 | |
| 488 | if (tr == 1) |
| 489 | state_ptr->ap = 256; |
| 490 | else if (y < 1536) /* SUBTC */ |
| 491 | state_ptr->ap += (0x200 - state_ptr->ap) >> 4; |
| 492 | else if (state_ptr->td == 1) |
| 493 | state_ptr->ap += (0x200 - state_ptr->ap) >> 4; |
| 494 | else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= |
| 495 | (state_ptr->dml >> 3)) |
| 496 | state_ptr->ap += (0x200 - state_ptr->ap) >> 4; |
| 497 | else |
| 498 | state_ptr->ap += (-state_ptr->ap) >> 4; |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * tandem_adjust(sr, se, y, i, sign) |
| 503 | * |
| 504 | * At the end of ADPCM decoding, it simulates an encoder which may be receiving |
| 505 | * the output of this decoder as a tandem process. If the output of the |
| 506 | * simulated encoder differs from the input to this decoder, the decoder output |
| 507 | * is adjusted by one level of A-law or u-law codes. |
| 508 | * |
| 509 | * Input: |
| 510 | * sr decoder output linear PCM sample, |
| 511 | * se predictor estimate sample, |
| 512 | * y quantizer step size, |
| 513 | * i decoder input code, |
| 514 | * sign sign bit of code i |
| 515 | * |
| 516 | * Return: |
| 517 | * adjusted A-law or u-law compressed sample. |
| 518 | */ |
| 519 | int |
| 520 | tandem_adjust_alaw( |
| 521 | int sr, /* decoder output linear PCM sample */ |
| 522 | int se, /* predictor estimate sample */ |
| 523 | int y, /* quantizer step size */ |
| 524 | int i, /* decoder input code */ |
| 525 | int sign, |
| 526 | short *qtab) |
| 527 | { |
| 528 | unsigned char sp; /* A-law compressed 8-bit code */ |
| 529 | short dx; /* prediction error */ |
| 530 | char id; /* quantized prediction error */ |
| 531 | int sd; /* adjusted A-law decoded sample value */ |
| 532 | int im; /* biased magnitude of i */ |
| 533 | int imx; /* biased magnitude of id */ |
| 534 | |
| 535 | if (sr <= -32768) |
| 536 | sr = -1; |
| 537 | sp = linear2alaw((sr >> 1) << 3); /* short to A-law compression */ |
| 538 | dx = (alaw2linear(sp) >> 2) - se; /* 16-bit prediction error */ |
| 539 | id = quantize(dx, y, qtab, sign - 1); |
| 540 | |
| 541 | if (id == i) { /* no adjustment on sp */ |
| 542 | return (sp); |
| 543 | } else { /* sp adjustment needed */ |
| 544 | /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */ |
| 545 | im = i ^ sign; /* 2's complement to biased unsigned */ |
| 546 | imx = id ^ sign; |
| 547 | |
| 548 | if (imx > im) { /* sp adjusted to next lower value */ |
| 549 | if (sp & 0x80) { |
| 550 | sd = (sp == 0xD5) ? 0x55 : |
| 551 | ((sp ^ 0x55) - 1) ^ 0x55; |
| 552 | } else { |
| 553 | sd = (sp == 0x2A) ? 0x2A : |
| 554 | ((sp ^ 0x55) + 1) ^ 0x55; |
| 555 | } |
| 556 | } else { /* sp adjusted to next higher value */ |
| 557 | if (sp & 0x80) |
| 558 | sd = (sp == 0xAA) ? 0xAA : |
| 559 | ((sp ^ 0x55) + 1) ^ 0x55; |
| 560 | else |
| 561 | sd = (sp == 0x55) ? 0xD5 : |
| 562 | ((sp ^ 0x55) - 1) ^ 0x55; |
| 563 | } |
| 564 | return (sd); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | int |
| 569 | tandem_adjust_ulaw( |
| 570 | int sr, /* decoder output linear PCM sample */ |
| 571 | int se, /* predictor estimate sample */ |
| 572 | int y, /* quantizer step size */ |
| 573 | int i, /* decoder input code */ |
| 574 | int sign, |
| 575 | short *qtab) |
| 576 | { |
| 577 | unsigned char sp; /* u-law compressed 8-bit code */ |
| 578 | short dx; /* prediction error */ |
| 579 | char id; /* quantized prediction error */ |
| 580 | int sd; /* adjusted u-law decoded sample value */ |
| 581 | int im; /* biased magnitude of i */ |
| 582 | int imx; /* biased magnitude of id */ |
| 583 | |
| 584 | if (sr <= -32768) |
| 585 | sr = 0; |
| 586 | sp = linear2ulaw(sr << 2); /* short to u-law compression */ |
| 587 | dx = (ulaw2linear(sp) >> 2) - se; /* 16-bit prediction error */ |
| 588 | id = quantize(dx, y, qtab, sign - 1); |
| 589 | if (id == i) { |
| 590 | return (sp); |
| 591 | } else { |
| 592 | /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */ |
| 593 | im = i ^ sign; /* 2's complement to biased unsigned */ |
| 594 | imx = id ^ sign; |
| 595 | if (imx > im) { /* sp adjusted to next lower value */ |
| 596 | if (sp & 0x80) |
| 597 | sd = (sp == 0xFF) ? 0x7E : sp + 1; |
| 598 | else |
| 599 | sd = (sp == 0) ? 0 : sp - 1; |
| 600 | |
| 601 | } else { /* sp adjusted to next higher value */ |
| 602 | if (sp & 0x80) |
| 603 | sd = (sp == 0x80) ? 0x80 : sp - 1; |
| 604 | else |
| 605 | sd = (sp == 0x7F) ? 0xFE : sp + 1; |
| 606 | } |
| 607 | return (sd); |
| 608 | } |
| 609 | } |