]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jdphuff.c | |
3 | * | |
4 | * Copyright (C) 1995-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains Huffman entropy decoding routines for progressive JPEG. | |
9 | * | |
10 | * Much of the complexity here has to do with supporting input suspension. | |
11 | * If the data source module demands suspension, we want to be able to back | |
12 | * up to the start of the current MCU. To do this, we copy state variables | |
13 | * into local working storage, and update them back to the permanent | |
14 | * storage only upon successful completion of an MCU. | |
15 | */ | |
16 | ||
17 | #define JPEG_INTERNALS | |
18 | #include "jinclude.h" | |
19 | #include "jpeglib.h" | |
20 | #include "jdhuff.h" /* Declarations shared with jdhuff.c */ | |
21 | ||
22 | ||
23 | #ifdef D_PROGRESSIVE_SUPPORTED | |
24 | ||
25 | /* | |
26 | * Expanded entropy decoder object for progressive Huffman decoding. | |
27 | * | |
28 | * The savable_state subrecord contains fields that change within an MCU, | |
29 | * but must not be updated permanently until we complete the MCU. | |
30 | */ | |
31 | ||
32 | typedef struct { | |
33 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ | |
34 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
35 | } savable_state; | |
36 | ||
37 | /* This macro is to work around compilers with missing or broken | |
38 | * structure assignment. You'll need to fix this code if you have | |
39 | * such a compiler and you change MAX_COMPS_IN_SCAN. | |
40 | */ | |
41 | ||
42 | #ifndef NO_STRUCT_ASSIGN | |
43 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) | |
44 | #else | |
45 | #if MAX_COMPS_IN_SCAN == 4 | |
46 | #define ASSIGN_STATE(dest,src) \ | |
47 | ((dest).EOBRUN = (src).EOBRUN, \ | |
48 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ | |
49 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ | |
50 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ | |
51 | (dest).last_dc_val[3] = (src).last_dc_val[3]) | |
52 | #endif | |
53 | #endif | |
54 | ||
55 | ||
56 | typedef struct { | |
57 | struct jpeg_entropy_decoder pub; /* public fields */ | |
58 | ||
59 | /* These fields are loaded into local variables at start of each MCU. | |
60 | * In case of suspension, we exit WITHOUT updating them. | |
61 | */ | |
62 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ | |
63 | savable_state saved; /* Other state at start of MCU */ | |
64 | ||
65 | /* These fields are NOT loaded into local working state. */ | |
66 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
67 | ||
68 | /* Pointers to derived tables (these workspaces have image lifespan) */ | |
69 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | |
70 | ||
71 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ | |
72 | } phuff_entropy_decoder; | |
73 | ||
74 | typedef phuff_entropy_decoder * phuff_entropy_ptr; | |
75 | ||
76 | /* Forward declarations */ | |
77 | METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, | |
78 | JBLOCKROW *MCU_data)); | |
79 | METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, | |
80 | JBLOCKROW *MCU_data)); | |
81 | METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, | |
82 | JBLOCKROW *MCU_data)); | |
83 | METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, | |
84 | JBLOCKROW *MCU_data)); | |
85 | ||
86 | ||
87 | /* | |
88 | * Initialize for a Huffman-compressed scan. | |
89 | */ | |
90 | ||
91 | METHODDEF(void) | |
92 | start_pass_phuff_decoder (j_decompress_ptr cinfo) | |
93 | { | |
94 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
95 | boolean is_DC_band, bad; | |
96 | int ci, coefi, tbl; | |
97 | int *coef_bit_ptr; | |
98 | jpeg_component_info * compptr; | |
99 | ||
100 | is_DC_band = (cinfo->Ss == 0); | |
101 | ||
102 | /* Validate scan parameters */ | |
103 | bad = FALSE; | |
104 | if (is_DC_band) { | |
105 | if (cinfo->Se != 0) | |
106 | bad = TRUE; | |
107 | } else { | |
108 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ | |
109 | if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) | |
110 | bad = TRUE; | |
111 | /* AC scans may have only one component */ | |
112 | if (cinfo->comps_in_scan != 1) | |
113 | bad = TRUE; | |
114 | } | |
115 | if (cinfo->Ah != 0) { | |
116 | /* Successive approximation refinement scan: must have Al = Ah-1. */ | |
117 | if (cinfo->Al != cinfo->Ah-1) | |
118 | bad = TRUE; | |
119 | } | |
120 | if (cinfo->Al > 13) /* need not check for < 0 */ | |
121 | bad = TRUE; | |
122 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, | |
123 | * but the spec doesn't say so, and we try to be liberal about what we | |
124 | * accept. Note: large Al values could result in out-of-range DC | |
125 | * coefficients during early scans, leading to bizarre displays due to | |
126 | * overflows in the IDCT math. But we won't crash. | |
127 | */ | |
128 | if (bad) | |
129 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | |
130 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | |
131 | /* Update progression status, and verify that scan order is legal. | |
132 | * Note that inter-scan inconsistencies are treated as warnings | |
133 | * not fatal errors ... not clear if this is right way to behave. | |
134 | */ | |
135 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
136 | int cindex = cinfo->cur_comp_info[ci]->component_index; | |
137 | coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | |
138 | if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | |
139 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | |
140 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | |
141 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | |
142 | if (cinfo->Ah != expected) | |
143 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | |
144 | coef_bit_ptr[coefi] = cinfo->Al; | |
145 | } | |
146 | } | |
147 | ||
148 | /* Select MCU decoding routine */ | |
149 | if (cinfo->Ah == 0) { | |
150 | if (is_DC_band) | |
151 | entropy->pub.decode_mcu = decode_mcu_DC_first; | |
152 | else | |
153 | entropy->pub.decode_mcu = decode_mcu_AC_first; | |
154 | } else { | |
155 | if (is_DC_band) | |
156 | entropy->pub.decode_mcu = decode_mcu_DC_refine; | |
157 | else | |
158 | entropy->pub.decode_mcu = decode_mcu_AC_refine; | |
159 | } | |
160 | ||
161 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
162 | compptr = cinfo->cur_comp_info[ci]; | |
163 | /* Make sure requested tables are present, and compute derived tables. | |
164 | * We may build same derived table more than once, but it's not expensive. | |
165 | */ | |
166 | if (is_DC_band) { | |
167 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ | |
168 | tbl = compptr->dc_tbl_no; | |
169 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | |
170 | & entropy->derived_tbls[tbl]); | |
171 | } | |
172 | } else { | |
173 | tbl = compptr->ac_tbl_no; | |
174 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | |
175 | & entropy->derived_tbls[tbl]); | |
176 | /* remember the single active table */ | |
177 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; | |
178 | } | |
179 | /* Initialize DC predictions to 0 */ | |
180 | entropy->saved.last_dc_val[ci] = 0; | |
181 | } | |
182 | ||
183 | /* Initialize bitread state variables */ | |
184 | entropy->bitstate.bits_left = 0; | |
185 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | |
186 | entropy->pub.insufficient_data = FALSE; | |
187 | ||
188 | /* Initialize private state variables */ | |
189 | entropy->saved.EOBRUN = 0; | |
190 | ||
191 | /* Initialize restart counter */ | |
192 | entropy->restarts_to_go = cinfo->restart_interval; | |
193 | } | |
194 | ||
195 | ||
196 | /* | |
197 | * Figure F.12: extend sign bit. | |
198 | * On some machines, a shift and add will be faster than a table lookup. | |
199 | */ | |
200 | ||
201 | #ifdef AVOID_TABLES | |
202 | ||
203 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) | |
204 | ||
205 | #else | |
206 | ||
207 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) | |
208 | ||
209 | static const int extend_test[16] = /* entry n is 2**(n-1) */ | |
210 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | |
211 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; | |
212 | ||
213 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ | |
214 | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, | |
215 | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, | |
216 | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, | |
217 | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; | |
218 | ||
219 | #endif /* AVOID_TABLES */ | |
220 | ||
221 | ||
222 | /* | |
223 | * Check for a restart marker & resynchronize decoder. | |
224 | * Returns FALSE if must suspend. | |
225 | */ | |
226 | ||
227 | LOCAL(boolean) | |
228 | process_restart (j_decompress_ptr cinfo) | |
229 | { | |
230 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
231 | int ci; | |
232 | ||
233 | /* Throw away any unused bits remaining in bit buffer; */ | |
234 | /* include any full bytes in next_marker's count of discarded bytes */ | |
235 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | |
236 | entropy->bitstate.bits_left = 0; | |
237 | ||
238 | /* Advance past the RSTn marker */ | |
239 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) | |
240 | return FALSE; | |
241 | ||
242 | /* Re-initialize DC predictions to 0 */ | |
243 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) | |
244 | entropy->saved.last_dc_val[ci] = 0; | |
245 | /* Re-init EOB run count, too */ | |
246 | entropy->saved.EOBRUN = 0; | |
247 | ||
248 | /* Reset restart counter */ | |
249 | entropy->restarts_to_go = cinfo->restart_interval; | |
250 | ||
251 | /* Reset out-of-data flag, unless read_restart_marker left us smack up | |
252 | * against a marker. In that case we will end up treating the next data | |
253 | * segment as empty, and we can avoid producing bogus output pixels by | |
254 | * leaving the flag set. | |
255 | */ | |
256 | if (cinfo->unread_marker == 0) | |
257 | entropy->pub.insufficient_data = FALSE; | |
258 | ||
259 | return TRUE; | |
260 | } | |
261 | ||
262 | ||
263 | /* | |
264 | * Huffman MCU decoding. | |
265 | * Each of these routines decodes and returns one MCU's worth of | |
266 | * Huffman-compressed coefficients. | |
267 | * The coefficients are reordered from zigzag order into natural array order, | |
268 | * but are not dequantized. | |
269 | * | |
270 | * The i'th block of the MCU is stored into the block pointed to by | |
271 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | |
272 | * | |
273 | * We return FALSE if data source requested suspension. In that case no | |
274 | * changes have been made to permanent state. (Exception: some output | |
275 | * coefficients may already have been assigned. This is harmless for | |
276 | * spectral selection, since we'll just re-assign them on the next call. | |
277 | * Successive approximation AC refinement has to be more careful, however.) | |
278 | */ | |
279 | ||
280 | /* | |
281 | * MCU decoding for DC initial scan (either spectral selection, | |
282 | * or first pass of successive approximation). | |
283 | */ | |
284 | ||
285 | METHODDEF(boolean) | |
286 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
287 | { | |
288 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
289 | int Al = cinfo->Al; | |
290 | register int s, r; | |
291 | int blkn, ci; | |
292 | JBLOCKROW block; | |
293 | BITREAD_STATE_VARS; | |
294 | savable_state state; | |
295 | d_derived_tbl * tbl; | |
296 | jpeg_component_info * compptr; | |
297 | ||
298 | /* Process restart marker if needed; may have to suspend */ | |
299 | if (cinfo->restart_interval) { | |
300 | if (entropy->restarts_to_go == 0) | |
301 | if (! process_restart(cinfo)) | |
302 | return FALSE; | |
303 | } | |
304 | ||
305 | /* If we've run out of data, just leave the MCU set to zeroes. | |
306 | * This way, we return uniform gray for the remainder of the segment. | |
307 | */ | |
308 | if (! entropy->pub.insufficient_data) { | |
309 | ||
310 | /* Load up working state */ | |
311 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
312 | ASSIGN_STATE(state, entropy->saved); | |
313 | ||
314 | /* Outer loop handles each block in the MCU */ | |
315 | ||
316 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
317 | block = MCU_data[blkn]; | |
318 | ci = cinfo->MCU_membership[blkn]; | |
319 | compptr = cinfo->cur_comp_info[ci]; | |
320 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; | |
321 | ||
322 | /* Decode a single block's worth of coefficients */ | |
323 | ||
324 | /* Section F.2.2.1: decode the DC coefficient difference */ | |
325 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); | |
326 | if (s) { | |
327 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
328 | r = GET_BITS(s); | |
329 | s = HUFF_EXTEND(r, s); | |
330 | } | |
331 | ||
332 | /* Convert DC difference to actual value, update last_dc_val */ | |
333 | s += state.last_dc_val[ci]; | |
334 | state.last_dc_val[ci] = s; | |
335 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ | |
336 | (*block)[0] = (JCOEF) (s << Al); | |
337 | } | |
338 | ||
339 | /* Completed MCU, so update state */ | |
340 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
341 | ASSIGN_STATE(entropy->saved, state); | |
342 | } | |
343 | ||
344 | /* Account for restart interval (no-op if not using restarts) */ | |
345 | entropy->restarts_to_go--; | |
346 | ||
347 | return TRUE; | |
348 | } | |
349 | ||
350 | ||
351 | /* | |
352 | * MCU decoding for AC initial scan (either spectral selection, | |
353 | * or first pass of successive approximation). | |
354 | */ | |
355 | ||
356 | METHODDEF(boolean) | |
357 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
358 | { | |
359 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
360 | int Se = cinfo->Se; | |
361 | int Al = cinfo->Al; | |
362 | register int s, k, r; | |
363 | unsigned int EOBRUN; | |
364 | JBLOCKROW block; | |
365 | BITREAD_STATE_VARS; | |
366 | d_derived_tbl * tbl; | |
367 | ||
368 | /* Process restart marker if needed; may have to suspend */ | |
369 | if (cinfo->restart_interval) { | |
370 | if (entropy->restarts_to_go == 0) | |
371 | if (! process_restart(cinfo)) | |
372 | return FALSE; | |
373 | } | |
374 | ||
375 | /* If we've run out of data, just leave the MCU set to zeroes. | |
376 | * This way, we return uniform gray for the remainder of the segment. | |
377 | */ | |
378 | if (! entropy->pub.insufficient_data) { | |
379 | ||
380 | /* Load up working state. | |
381 | * We can avoid loading/saving bitread state if in an EOB run. | |
382 | */ | |
383 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | |
384 | ||
385 | /* There is always only one block per MCU */ | |
386 | ||
387 | if (EOBRUN > 0) /* if it's a band of zeroes... */ | |
388 | EOBRUN--; /* ...process it now (we do nothing) */ | |
389 | else { | |
390 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
391 | block = MCU_data[0]; | |
392 | tbl = entropy->ac_derived_tbl; | |
393 | ||
394 | for (k = cinfo->Ss; k <= Se; k++) { | |
395 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); | |
396 | r = s >> 4; | |
397 | s &= 15; | |
398 | if (s) { | |
399 | k += r; | |
400 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
401 | r = GET_BITS(s); | |
402 | s = HUFF_EXTEND(r, s); | |
403 | /* Scale and output coefficient in natural (dezigzagged) order */ | |
404 | (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); | |
405 | } else { | |
406 | if (r == 15) { /* ZRL */ | |
407 | k += 15; /* skip 15 zeroes in band */ | |
408 | } else { /* EOBr, run length is 2^r + appended bits */ | |
409 | EOBRUN = 1 << r; | |
410 | if (r) { /* EOBr, r > 0 */ | |
411 | CHECK_BIT_BUFFER(br_state, r, return FALSE); | |
412 | r = GET_BITS(r); | |
413 | EOBRUN += r; | |
414 | } | |
415 | EOBRUN--; /* this band is processed at this moment */ | |
416 | break; /* force end-of-band */ | |
417 | } | |
418 | } | |
419 | } | |
420 | ||
421 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
422 | } | |
423 | ||
424 | /* Completed MCU, so update state */ | |
425 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | |
426 | } | |
427 | ||
428 | /* Account for restart interval (no-op if not using restarts) */ | |
429 | entropy->restarts_to_go--; | |
430 | ||
431 | return TRUE; | |
432 | } | |
433 | ||
434 | ||
435 | /* | |
436 | * MCU decoding for DC successive approximation refinement scan. | |
437 | * Note: we assume such scans can be multi-component, although the spec | |
438 | * is not very clear on the point. | |
439 | */ | |
440 | ||
441 | METHODDEF(boolean) | |
442 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
443 | { | |
444 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
445 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
446 | int blkn; | |
447 | JBLOCKROW block; | |
448 | BITREAD_STATE_VARS; | |
449 | ||
450 | /* Process restart marker if needed; may have to suspend */ | |
451 | if (cinfo->restart_interval) { | |
452 | if (entropy->restarts_to_go == 0) | |
453 | if (! process_restart(cinfo)) | |
454 | return FALSE; | |
455 | } | |
456 | ||
457 | /* Not worth the cycles to check insufficient_data here, | |
458 | * since we will not change the data anyway if we read zeroes. | |
459 | */ | |
460 | ||
461 | /* Load up working state */ | |
462 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
463 | ||
464 | /* Outer loop handles each block in the MCU */ | |
465 | ||
466 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
467 | block = MCU_data[blkn]; | |
468 | ||
469 | /* Encoded data is simply the next bit of the two's-complement DC value */ | |
470 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); | |
471 | if (GET_BITS(1)) | |
472 | (*block)[0] |= p1; | |
473 | /* Note: since we use |=, repeating the assignment later is safe */ | |
474 | } | |
475 | ||
476 | /* Completed MCU, so update state */ | |
477 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
478 | ||
479 | /* Account for restart interval (no-op if not using restarts) */ | |
480 | entropy->restarts_to_go--; | |
481 | ||
482 | return TRUE; | |
483 | } | |
484 | ||
485 | ||
486 | /* | |
487 | * MCU decoding for AC successive approximation refinement scan. | |
488 | */ | |
489 | ||
490 | METHODDEF(boolean) | |
491 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
492 | { | |
493 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
494 | int Se = cinfo->Se; | |
495 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
496 | int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ | |
497 | register int s, k, r; | |
498 | unsigned int EOBRUN; | |
499 | JBLOCKROW block; | |
500 | JCOEFPTR thiscoef; | |
501 | BITREAD_STATE_VARS; | |
502 | d_derived_tbl * tbl; | |
503 | int num_newnz; | |
504 | int newnz_pos[DCTSIZE2]; | |
505 | ||
506 | /* Process restart marker if needed; may have to suspend */ | |
507 | if (cinfo->restart_interval) { | |
508 | if (entropy->restarts_to_go == 0) | |
509 | if (! process_restart(cinfo)) | |
510 | return FALSE; | |
511 | } | |
512 | ||
513 | /* If we've run out of data, don't modify the MCU. | |
514 | */ | |
515 | if (! entropy->pub.insufficient_data) { | |
516 | ||
517 | /* Load up working state */ | |
518 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
519 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | |
520 | ||
521 | /* There is always only one block per MCU */ | |
522 | block = MCU_data[0]; | |
523 | tbl = entropy->ac_derived_tbl; | |
524 | ||
525 | /* If we are forced to suspend, we must undo the assignments to any newly | |
526 | * nonzero coefficients in the block, because otherwise we'd get confused | |
527 | * next time about which coefficients were already nonzero. | |
528 | * But we need not undo addition of bits to already-nonzero coefficients; | |
529 | * instead, we can test the current bit to see if we already did it. | |
530 | */ | |
531 | num_newnz = 0; | |
532 | ||
533 | /* initialize coefficient loop counter to start of band */ | |
534 | k = cinfo->Ss; | |
535 | ||
536 | if (EOBRUN == 0) { | |
537 | for (; k <= Se; k++) { | |
538 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); | |
539 | r = s >> 4; | |
540 | s &= 15; | |
541 | if (s) { | |
542 | if (s != 1) /* size of new coef should always be 1 */ | |
543 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); | |
544 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
545 | if (GET_BITS(1)) | |
546 | s = p1; /* newly nonzero coef is positive */ | |
547 | else | |
548 | s = m1; /* newly nonzero coef is negative */ | |
549 | } else { | |
550 | if (r != 15) { | |
551 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ | |
552 | if (r) { | |
553 | CHECK_BIT_BUFFER(br_state, r, goto undoit); | |
554 | r = GET_BITS(r); | |
555 | EOBRUN += r; | |
556 | } | |
557 | break; /* rest of block is handled by EOB logic */ | |
558 | } | |
559 | /* note s = 0 for processing ZRL */ | |
560 | } | |
561 | /* Advance over already-nonzero coefs and r still-zero coefs, | |
562 | * appending correction bits to the nonzeroes. A correction bit is 1 | |
563 | * if the absolute value of the coefficient must be increased. | |
564 | */ | |
565 | do { | |
566 | thiscoef = *block + jpeg_natural_order[k]; | |
567 | if (*thiscoef != 0) { | |
568 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
569 | if (GET_BITS(1)) { | |
570 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ | |
571 | if (*thiscoef >= 0) | |
572 | *thiscoef += p1; | |
573 | else | |
574 | *thiscoef += m1; | |
575 | } | |
576 | } | |
577 | } else { | |
578 | if (--r < 0) | |
579 | break; /* reached target zero coefficient */ | |
580 | } | |
581 | k++; | |
582 | } while (k <= Se); | |
583 | if (s) { | |
584 | int pos = jpeg_natural_order[k]; | |
585 | /* Output newly nonzero coefficient */ | |
586 | (*block)[pos] = (JCOEF) s; | |
587 | /* Remember its position in case we have to suspend */ | |
588 | newnz_pos[num_newnz++] = pos; | |
589 | } | |
590 | } | |
591 | } | |
592 | ||
593 | if (EOBRUN > 0) { | |
594 | /* Scan any remaining coefficient positions after the end-of-band | |
595 | * (the last newly nonzero coefficient, if any). Append a correction | |
596 | * bit to each already-nonzero coefficient. A correction bit is 1 | |
597 | * if the absolute value of the coefficient must be increased. | |
598 | */ | |
599 | for (; k <= Se; k++) { | |
600 | thiscoef = *block + jpeg_natural_order[k]; | |
601 | if (*thiscoef != 0) { | |
602 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
603 | if (GET_BITS(1)) { | |
604 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ | |
605 | if (*thiscoef >= 0) | |
606 | *thiscoef += p1; | |
607 | else | |
608 | *thiscoef += m1; | |
609 | } | |
610 | } | |
611 | } | |
612 | } | |
613 | /* Count one block completed in EOB run */ | |
614 | EOBRUN--; | |
615 | } | |
616 | ||
617 | /* Completed MCU, so update state */ | |
618 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
619 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | |
620 | } | |
621 | ||
622 | /* Account for restart interval (no-op if not using restarts) */ | |
623 | entropy->restarts_to_go--; | |
624 | ||
625 | return TRUE; | |
626 | ||
627 | undoit: | |
628 | /* Re-zero any output coefficients that we made newly nonzero */ | |
629 | while (num_newnz > 0) | |
630 | (*block)[newnz_pos[--num_newnz]] = 0; | |
631 | ||
632 | return FALSE; | |
633 | } | |
634 | ||
635 | ||
636 | /* | |
637 | * Module initialization routine for progressive Huffman entropy decoding. | |
638 | */ | |
639 | ||
640 | GLOBAL(void) | |
641 | jinit_phuff_decoder (j_decompress_ptr cinfo) | |
642 | { | |
643 | phuff_entropy_ptr entropy; | |
644 | int *coef_bit_ptr; | |
645 | int ci, i; | |
646 | ||
647 | entropy = (phuff_entropy_ptr) | |
648 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
649 | SIZEOF(phuff_entropy_decoder)); | |
650 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | |
651 | entropy->pub.start_pass = start_pass_phuff_decoder; | |
652 | ||
653 | /* Mark derived tables unallocated */ | |
654 | for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
655 | entropy->derived_tbls[i] = NULL; | |
656 | } | |
657 | ||
658 | /* Create progression status table */ | |
659 | cinfo->coef_bits = (int (*)[DCTSIZE2]) | |
660 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
661 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); | |
662 | coef_bit_ptr = & cinfo->coef_bits[0][0]; | |
663 | for (ci = 0; ci < cinfo->num_components; ci++) | |
664 | for (i = 0; i < DCTSIZE2; i++) | |
665 | *coef_bit_ptr++ = -1; | |
666 | } | |
667 | ||
668 | #endif /* D_PROGRESSIVE_SUPPORTED */ |