| 1 | /* |
| 2 | * re_*comp and friends - compile REs |
| 3 | * This file #includes several others (see the bottom). |
| 4 | * |
| 5 | * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. |
| 6 | * |
| 7 | * Development of this software was funded, in part, by Cray Research Inc., |
| 8 | * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics |
| 9 | * Corporation, none of whom are responsible for the results. The author |
| 10 | * thanks all of them. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms -- with or without |
| 13 | * modification -- are permitted for any purpose, provided that |
| 14 | * redistributions in source form retain this entire copyright notice and |
| 15 | * indicate the origin and nature of any modifications. |
| 16 | * |
| 17 | * I'd appreciate being given credit for this package in the documentation |
| 18 | * of software which uses it, but that is not a requirement. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| 21 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
| 22 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
| 23 | * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 26 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 27 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 28 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 29 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | * $Header: /projects/cvsroot/pgsql-server/src/backend/regex/regcomp.c,v 1.38 2003/08/08 21:41:56 momjian Exp $ |
| 32 | * |
| 33 | */ |
| 34 | |
| 35 | #include "regguts.h" |
| 36 | |
| 37 | /* |
| 38 | * forward declarations, up here so forward datatypes etc. are defined early |
| 39 | */ |
| 40 | /* === regcomp.c === */ |
| 41 | static void moresubs(struct vars *, int); |
| 42 | static int freev(struct vars *, int); |
| 43 | static void makesearch(struct vars *, struct nfa *); |
| 44 | static struct subre *parse(struct vars *, int, int, struct state *, struct state *); |
| 45 | static struct subre *parsebranch(struct vars *, int, int, struct state *, struct state *, int); |
| 46 | static void parseqatom(struct vars *, int, int, struct state *, struct state *, struct subre *); |
| 47 | static void nonword(struct vars *, int, struct state *, struct state *); |
| 48 | static void word(struct vars *, int, struct state *, struct state *); |
| 49 | static int scannum(struct vars *); |
| 50 | static void repeat(struct vars *, struct state *, struct state *, int, int); |
| 51 | static void bracket(struct vars *, struct state *, struct state *); |
| 52 | static void cbracket(struct vars *, struct state *, struct state *); |
| 53 | static void brackpart(struct vars *, struct state *, struct state *); |
| 54 | static chr *scanplain(struct vars *); |
| 55 | static void leaders(struct vars *, struct cvec *); |
| 56 | static void onechr(struct vars *, chr, struct state *, struct state *); |
| 57 | static void dovec(struct vars *, struct cvec *, struct state *, struct state *); |
| 58 | static celt nextleader(struct vars *, chr, chr); |
| 59 | static void wordchrs(struct vars *); |
| 60 | static struct subre *subre(struct vars *, int, int, struct state *, struct state *); |
| 61 | static void freesubre(struct vars *, struct subre *); |
| 62 | static void freesrnode(struct vars *, struct subre *); |
| 63 | static void optst(struct vars *, struct subre *); |
| 64 | static int numst(struct subre *, int); |
| 65 | static void markst(struct subre *); |
| 66 | static void cleanst(struct vars *); |
| 67 | static long nfatree(struct vars *, struct subre *, FILE *); |
| 68 | static long nfanode(struct vars *, struct subre *, FILE *); |
| 69 | static int newlacon(struct vars *, struct state *, struct state *, int); |
| 70 | static void freelacons(struct subre *, int); |
| 71 | static void rfree(regex_t *); |
| 72 | |
| 73 | #ifdef REG_DEBUG |
| 74 | static void dump(regex_t *, FILE *); |
| 75 | static void dumpst(struct subre *, FILE *, int); |
| 76 | static void stdump(struct subre *, FILE *, int); |
| 77 | static char *stid(struct subre *, char *, size_t); |
| 78 | #endif |
| 79 | /* === regc_lex.c === */ |
| 80 | static void lexstart(struct vars *); |
| 81 | static void prefixes(struct vars *); |
| 82 | static void lexnest(struct vars *, chr *, chr *); |
| 83 | static void lexword(struct vars *); |
| 84 | static int next(struct vars *); |
| 85 | static int lexescape(struct vars *); |
| 86 | static chr lexdigits(struct vars *, int, int, int); |
| 87 | static int brenext(struct vars *, chr); |
| 88 | static void skip(struct vars *); |
| 89 | static chr newline(void); |
| 90 | static chr chrnamed(struct vars *, chr *, chr *, chr); |
| 91 | |
| 92 | /* === regc_color.c === */ |
| 93 | static void initcm(struct vars *, struct colormap *); |
| 94 | static void freecm(struct colormap *); |
| 95 | static void cmtreefree(struct colormap *, union tree *, int); |
| 96 | static color setcolor(struct colormap *, chr, pcolor); |
| 97 | static color maxcolor(struct colormap *); |
| 98 | static color newcolor(struct colormap *); |
| 99 | static void freecolor(struct colormap *, pcolor); |
| 100 | static color pseudocolor(struct colormap *); |
| 101 | static color subcolor(struct colormap *, chr c); |
| 102 | static color newsub(struct colormap *, pcolor); |
| 103 | static void subrange(struct vars *, chr, chr, struct state *, struct state *); |
| 104 | static void subblock(struct vars *, chr, struct state *, struct state *); |
| 105 | static void okcolors(struct nfa *, struct colormap *); |
| 106 | static void colorchain(struct colormap *, struct arc *); |
| 107 | static void uncolorchain(struct colormap *, struct arc *); |
| 108 | static int singleton(struct colormap *, chr c); |
| 109 | static void rainbow(struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *); |
| 110 | static void colorcomplement(struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *); |
| 111 | |
| 112 | #ifdef REG_DEBUG |
| 113 | static void dumpcolors(struct colormap *, FILE *); |
| 114 | static void fillcheck(struct colormap *, union tree *, int, FILE *); |
| 115 | static void dumpchr(chr, FILE *); |
| 116 | #endif |
| 117 | /* === regc_nfa.c === */ |
| 118 | static struct nfa *newnfa(struct vars *, struct colormap *, struct nfa *); |
| 119 | static void freenfa(struct nfa *); |
| 120 | static struct state *newstate(struct nfa *); |
| 121 | static struct state *newfstate(struct nfa *, int flag); |
| 122 | static void dropstate(struct nfa *, struct state *); |
| 123 | static void freestate(struct nfa *, struct state *); |
| 124 | static void destroystate(struct nfa *, struct state *); |
| 125 | static void newarc(struct nfa *, int, pcolor, struct state *, struct state *); |
| 126 | static struct arc *allocarc(struct nfa *, struct state *); |
| 127 | static void freearc(struct nfa *, struct arc *); |
| 128 | static struct arc *findarc(struct state *, int, pcolor); |
| 129 | static void cparc(struct nfa *, struct arc *, struct state *, struct state *); |
| 130 | static void moveins(struct nfa *, struct state *, struct state *); |
| 131 | static void copyins(struct nfa *, struct state *, struct state *); |
| 132 | static void moveouts(struct nfa *, struct state *, struct state *); |
| 133 | static void copyouts(struct nfa *, struct state *, struct state *); |
| 134 | static void cloneouts(struct nfa *, struct state *, struct state *, struct state *, int); |
| 135 | static void delsub(struct nfa *, struct state *, struct state *); |
| 136 | static void deltraverse(struct nfa *, struct state *, struct state *); |
| 137 | static void dupnfa(struct nfa *, struct state *, struct state *, struct state *, struct state *); |
| 138 | static void duptraverse(struct nfa *, struct state *, struct state *); |
| 139 | static void cleartraverse(struct nfa *, struct state *); |
| 140 | static void specialcolors(struct nfa *); |
| 141 | static long optimize(struct nfa *, FILE *); |
| 142 | static void pullback(struct nfa *, FILE *); |
| 143 | static int pull(struct nfa *, struct arc *); |
| 144 | static void pushfwd(struct nfa *, FILE *); |
| 145 | static int push(struct nfa *, struct arc *); |
| 146 | |
| 147 | #define INCOMPATIBLE 1 /* destroys arc */ |
| 148 | #define SATISFIED 2 /* constraint satisfied */ |
| 149 | #define COMPATIBLE 3 /* compatible but not satisfied yet */ |
| 150 | static int combine(struct arc *, struct arc *); |
| 151 | static void fixempties(struct nfa *, FILE *); |
| 152 | static int unempty(struct nfa *, struct arc *); |
| 153 | static void cleanup(struct nfa *); |
| 154 | static void markreachable(struct nfa *, struct state *, struct state *, struct state *); |
| 155 | static void markcanreach(struct nfa *, struct state *, struct state *, struct state *); |
| 156 | static long analyze(struct nfa *); |
| 157 | static void compact(struct nfa *, struct cnfa *); |
| 158 | static void carcsort(struct carc *, struct carc *); |
| 159 | static void freecnfa(struct cnfa *); |
| 160 | static void dumpnfa(struct nfa *, FILE *); |
| 161 | |
| 162 | #ifdef REG_DEBUG |
| 163 | static void dumpstate(struct state *, FILE *); |
| 164 | static void dumparcs(struct state *, FILE *); |
| 165 | static int dumprarcs(struct arc *, struct state *, FILE *, int); |
| 166 | static void dumparc(struct arc *, struct state *, FILE *); |
| 167 | static void dumpcnfa(struct cnfa *, FILE *); |
| 168 | static void dumpcstate(int, struct carc *, struct cnfa *, FILE *); |
| 169 | #endif |
| 170 | /* === regc_cvec.c === */ |
| 171 | static struct cvec *newcvec(int, int, int); |
| 172 | static struct cvec *clearcvec(struct cvec *); |
| 173 | static void addchr(struct cvec *, chr); |
| 174 | static void addrange(struct cvec *, chr, chr); |
| 175 | static void addmcce(struct cvec *, chr *, chr *); |
| 176 | static int haschr(struct cvec *, chr); |
| 177 | static struct cvec *getcvec(struct vars *, int, int, int); |
| 178 | static void freecvec(struct cvec *); |
| 179 | |
| 180 | /* === regc_locale.c === */ |
| 181 | static int wx_isdigit(wx_wchar c); |
| 182 | static int wx_isalpha(wx_wchar c); |
| 183 | static int wx_isalnum(wx_wchar c); |
| 184 | static int wx_isupper(wx_wchar c); |
| 185 | static int wx_islower(wx_wchar c); |
| 186 | static int wx_isgraph(wx_wchar c); |
| 187 | static int wx_ispunct(wx_wchar c); |
| 188 | static int wx_isspace(wx_wchar c); |
| 189 | static wx_wchar wx_toupper(wx_wchar c); |
| 190 | static wx_wchar wx_tolower(wx_wchar c); |
| 191 | static int nmcces(struct vars *); |
| 192 | static int nleaders(struct vars *); |
| 193 | static struct cvec *allmcces(struct vars *, struct cvec *); |
| 194 | static celt element(struct vars *, chr *, chr *); |
| 195 | static struct cvec *range(struct vars *, celt, celt, int); |
| 196 | static int before(celt, celt); |
| 197 | static struct cvec *eclass(struct vars *, celt, int); |
| 198 | static struct cvec *cclass(struct vars *, chr *, chr *, int); |
| 199 | static struct cvec *allcases(struct vars *, chr); |
| 200 | static int cmp(const chr *, const chr *, size_t); |
| 201 | static int casecmp(const chr *, const chr *, size_t); |
| 202 | |
| 203 | |
| 204 | /* internal variables, bundled for easy passing around */ |
| 205 | struct vars |
| 206 | { |
| 207 | regex_t *re; |
| 208 | chr *now; /* scan pointer into string */ |
| 209 | chr *stop; /* end of string */ |
| 210 | chr *savenow; /* saved now and stop for "subroutine |
| 211 | * call" */ |
| 212 | chr *savestop; |
| 213 | int err; /* error code (0 if none) */ |
| 214 | int cflags; /* copy of compile flags */ |
| 215 | int lasttype; /* type of previous token */ |
| 216 | int nexttype; /* type of next token */ |
| 217 | chr nextvalue; /* value (if any) of next token */ |
| 218 | int lexcon; /* lexical context type (see lex.c) */ |
| 219 | int nsubexp; /* subexpression count */ |
| 220 | struct subre **subs; /* subRE pointer vector */ |
| 221 | size_t nsubs; /* length of vector */ |
| 222 | struct subre *sub10[10]; /* initial vector, enough for most */ |
| 223 | struct nfa *nfa; /* the NFA */ |
| 224 | struct colormap *cm; /* character color map */ |
| 225 | color nlcolor; /* color of newline */ |
| 226 | struct state *wordchrs; /* state in nfa holding word-char outarcs */ |
| 227 | struct subre *tree; /* subexpression tree */ |
| 228 | struct subre *treechain; /* all tree nodes allocated */ |
| 229 | struct subre *treefree; /* any free tree nodes */ |
| 230 | int ntree; /* number of tree nodes */ |
| 231 | struct cvec *cv; /* interface cvec */ |
| 232 | struct cvec *cv2; /* utility cvec */ |
| 233 | struct cvec *mcces; /* collating-element information */ |
| 234 | #define ISCELEADER(v,c) (v->mcces != NULL && haschr(v->mcces, (c))) |
| 235 | struct state *mccepbegin; /* in nfa, start of MCCE prototypes */ |
| 236 | struct state *mccepend; /* in nfa, end of MCCE prototypes */ |
| 237 | struct subre *lacons; /* lookahead-constraint vector */ |
| 238 | int nlacons; /* size of lacons */ |
| 239 | }; |
| 240 | |
| 241 | /* parsing macros; most know that `v' is the struct vars pointer */ |
| 242 | #define NEXT() (next(v)) /* advance by one token */ |
| 243 | #define SEE(t) (v->nexttype == (t)) /* is next token this? */ |
| 244 | #define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */ |
| 245 | #define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */ |
| 246 | #define ISERR() VISERR(v) |
| 247 | #define VERR(vv,e) ((vv)->nexttype = EOS, ((vv)->err) ? (vv)->err :\ |
| 248 | ((vv)->err = (e))) |
| 249 | #define ERR(e) VERR(v, e) /* record an error */ |
| 250 | #define NOERR() {if (ISERR()) return;} /* if error seen, return */ |
| 251 | #define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */ |
| 252 | #define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */ |
| 253 | #define INSIST(c, e) ((c) ? 0 : ERR(e)) /* if condition false, |
| 254 | * error */ |
| 255 | #define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */ |
| 256 | #define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y) |
| 257 | |
| 258 | /* token type codes, some also used as NFA arc types */ |
| 259 | #define EMPTY 'n' /* no token present */ |
| 260 | #define EOS 'e' /* end of string */ |
| 261 | #define PLAIN 'p' /* ordinary character */ |
| 262 | #define DIGIT 'd' /* digit (in bound) */ |
| 263 | #define BACKREF 'b' /* back reference */ |
| 264 | #define COLLEL 'I' /* start of [. */ |
| 265 | #define ECLASS 'E' /* start of [= */ |
| 266 | #define CCLASS 'C' /* start of [: */ |
| 267 | #define END 'X' /* end of [. [= [: */ |
| 268 | #define RANGE 'R' /* - within [] which might be range delim. */ |
| 269 | #define LACON 'L' /* lookahead constraint subRE */ |
| 270 | #define AHEAD 'a' /* color-lookahead arc */ |
| 271 | #define BEHIND 'r' /* color-lookbehind arc */ |
| 272 | #define WBDRY 'w' /* word boundary constraint */ |
| 273 | #define NWBDRY 'W' /* non-word-boundary constraint */ |
| 274 | #define SBEGIN 'A' /* beginning of string (even if not BOL) */ |
| 275 | #define SEND 'Z' /* end of string (even if not EOL) */ |
| 276 | #define PREFER 'P' /* length preference */ |
| 277 | |
| 278 | /* is an arc colored, and hence on a color chain? */ |
| 279 | #define COLORED(a) ((a)->type == PLAIN || (a)->type == AHEAD || \ |
| 280 | (a)->type == BEHIND) |
| 281 | |
| 282 | |
| 283 | |
| 284 | /* static function list */ |
| 285 | static struct fns functions = { |
| 286 | rfree, /* regfree insides */ |
| 287 | }; |
| 288 | |
| 289 | |
| 290 | |
| 291 | /* |
| 292 | * regcomp - compile regular expression |
| 293 | */ |
| 294 | int |
| 295 | regcomp(regex_t *re, |
| 296 | const chr *string, |
| 297 | int flags) |
| 298 | { |
| 299 | |
| 300 | size_t nLen = 0; |
| 301 | chr* s2 = (chr*) string; |
| 302 | |
| 303 | if (string && *string) |
| 304 | { |
| 305 | while(*++s2); |
| 306 | } |
| 307 | |
| 308 | nLen = ((s2 - string) / sizeof(chr)); |
| 309 | |
| 310 | return wx_regcomp(re, string, nLen, flags); |
| 311 | } |
| 312 | int |
| 313 | wx_regcomp(regex_t *re, |
| 314 | const chr *string, |
| 315 | size_t len, |
| 316 | int flags) |
| 317 | { |
| 318 | struct vars var; |
| 319 | struct vars *v = &var; |
| 320 | struct guts *g; |
| 321 | int i; |
| 322 | size_t j; |
| 323 | |
| 324 | #ifdef REG_DEBUG |
| 325 | FILE *debug = (flags & REG_PROGRESS) ? stdout : (FILE *) NULL; |
| 326 | |
| 327 | #else |
| 328 | FILE *debug = (FILE *) NULL; |
| 329 | #endif |
| 330 | |
| 331 | #define CNOERR() { if (ISERR()) return freev(v, v->err); } |
| 332 | |
| 333 | /* sanity checks */ |
| 334 | |
| 335 | if (re == NULL || string == NULL) |
| 336 | return REG_INVARG; |
| 337 | if ((flags & REG_QUOTE) && |
| 338 | (flags & (REG_ADVANCED | REG_EXPANDED | REG_NEWLINE))) |
| 339 | return REG_INVARG; |
| 340 | if (!(flags & REG_EXTENDED) && (flags & REG_ADVF)) |
| 341 | return REG_INVARG; |
| 342 | |
| 343 | /* initial setup (after which freev() is callable) */ |
| 344 | v->re = re; |
| 345 | v->now = (chr *) string; |
| 346 | v->stop = v->now + len; |
| 347 | v->savenow = v->savestop = NULL; |
| 348 | v->err = 0; |
| 349 | v->cflags = flags; |
| 350 | v->nsubexp = 0; |
| 351 | v->subs = v->sub10; |
| 352 | v->nsubs = 10; |
| 353 | for (j = 0; j < v->nsubs; j++) |
| 354 | v->subs[j] = NULL; |
| 355 | v->nfa = NULL; |
| 356 | v->cm = NULL; |
| 357 | v->nlcolor = COLORLESS; |
| 358 | v->wordchrs = NULL; |
| 359 | v->tree = NULL; |
| 360 | v->treechain = NULL; |
| 361 | v->treefree = NULL; |
| 362 | v->cv = NULL; |
| 363 | v->cv2 = NULL; |
| 364 | v->mcces = NULL; |
| 365 | v->lacons = NULL; |
| 366 | v->nlacons = 0; |
| 367 | re->re_magic = REMAGIC; |
| 368 | re->re_info = 0; /* bits get set during parse */ |
| 369 | re->re_csize = sizeof(chr); |
| 370 | re->re_guts = NULL; |
| 371 | re->re_fns = VS(&functions); |
| 372 | |
| 373 | /* more complex setup, malloced things */ |
| 374 | re->re_guts = VS(MALLOC(sizeof(struct guts))); |
| 375 | if (re->re_guts == NULL) |
| 376 | return freev(v, REG_ESPACE); |
| 377 | g = (struct guts *) re->re_guts; |
| 378 | g->tree = NULL; |
| 379 | initcm(v, &g->cmap); |
| 380 | v->cm = &g->cmap; |
| 381 | g->lacons = NULL; |
| 382 | g->nlacons = 0; |
| 383 | ZAPCNFA(g->search); |
| 384 | v->nfa = newnfa(v, v->cm, (struct nfa *) NULL); |
| 385 | CNOERR(); |
| 386 | v->cv = newcvec(100, 20, 10); |
| 387 | if (v->cv == NULL) |
| 388 | return freev(v, REG_ESPACE); |
| 389 | i = nmcces(v); |
| 390 | if (i > 0) |
| 391 | { |
| 392 | v->mcces = newcvec(nleaders(v), 0, i); |
| 393 | CNOERR(); |
| 394 | v->mcces = allmcces(v, v->mcces); |
| 395 | leaders(v, v->mcces); |
| 396 | addmcce(v->mcces, (chr *) NULL, (chr *) NULL); /* dummy */ |
| 397 | } |
| 398 | CNOERR(); |
| 399 | |
| 400 | /* parsing */ |
| 401 | lexstart(v); /* also handles prefixes */ |
| 402 | if ((v->cflags & REG_NLSTOP) || (v->cflags & REG_NLANCH)) |
| 403 | { |
| 404 | /* assign newline a unique color */ |
| 405 | v->nlcolor = subcolor(v->cm, newline()); |
| 406 | okcolors(v->nfa, v->cm); |
| 407 | } |
| 408 | CNOERR(); |
| 409 | v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final); |
| 410 | assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */ |
| 411 | CNOERR(); |
| 412 | assert(v->tree != NULL); |
| 413 | |
| 414 | /* finish setup of nfa and its subre tree */ |
| 415 | specialcolors(v->nfa); |
| 416 | CNOERR(); |
| 417 | #ifdef REG_DEBUG |
| 418 | if (debug != NULL) |
| 419 | { |
| 420 | fprintf(debug, "\n\n\n========= RAW ==========\n"); |
| 421 | dumpnfa(v->nfa, debug); |
| 422 | dumpst(v->tree, debug, 1); |
| 423 | } |
| 424 | #endif |
| 425 | optst(v, v->tree); |
| 426 | v->ntree = numst(v->tree, 1); |
| 427 | markst(v->tree); |
| 428 | cleanst(v); |
| 429 | #ifdef REG_DEBUG |
| 430 | if (debug != NULL) |
| 431 | { |
| 432 | fprintf(debug, "\n\n\n========= TREE FIXED ==========\n"); |
| 433 | dumpst(v->tree, debug, 1); |
| 434 | } |
| 435 | #endif |
| 436 | |
| 437 | /* build compacted NFAs for tree and lacons */ |
| 438 | re->re_info |= nfatree(v, v->tree, debug); |
| 439 | CNOERR(); |
| 440 | assert(v->nlacons == 0 || v->lacons != NULL); |
| 441 | for (i = 1; i < v->nlacons; i++) |
| 442 | { |
| 443 | #ifdef REG_DEBUG |
| 444 | if (debug != NULL) |
| 445 | fprintf(debug, "\n\n\n========= LA%d ==========\n", i); |
| 446 | #endif |
| 447 | nfanode(v, &v->lacons[i], debug); |
| 448 | } |
| 449 | CNOERR(); |
| 450 | if (v->tree->flags & SHORTER) |
| 451 | NOTE(REG_USHORTEST); |
| 452 | |
| 453 | /* build compacted NFAs for tree, lacons, fast search */ |
| 454 | #ifdef REG_DEBUG |
| 455 | if (debug != NULL) |
| 456 | fprintf(debug, "\n\n\n========= SEARCH ==========\n"); |
| 457 | #endif |
| 458 | /* can sacrifice main NFA now, so use it as work area */ |
| 459 | (DISCARD) optimize(v->nfa, debug); |
| 460 | CNOERR(); |
| 461 | makesearch(v, v->nfa); |
| 462 | CNOERR(); |
| 463 | compact(v->nfa, &g->search); |
| 464 | CNOERR(); |
| 465 | |
| 466 | /* looks okay, package it up */ |
| 467 | re->re_nsub = v->nsubexp; |
| 468 | v->re = NULL; /* freev no longer frees re */ |
| 469 | g->magic = GUTSMAGIC; |
| 470 | g->cflags = v->cflags; |
| 471 | g->info = re->re_info; |
| 472 | g->nsub = re->re_nsub; |
| 473 | g->tree = v->tree; |
| 474 | v->tree = NULL; |
| 475 | g->ntree = v->ntree; |
| 476 | g->compare = (v->cflags & REG_ICASE) ? casecmp : cmp; |
| 477 | g->lacons = v->lacons; |
| 478 | v->lacons = NULL; |
| 479 | g->nlacons = v->nlacons; |
| 480 | |
| 481 | #ifdef REG_DEBUG |
| 482 | if (flags & REG_DUMP) |
| 483 | dump(re, stdout); |
| 484 | #endif |
| 485 | |
| 486 | assert(v->err == 0); |
| 487 | return freev(v, 0); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * moresubs - enlarge subRE vector |
| 492 | */ |
| 493 | static void |
| 494 | moresubs(struct vars * v, |
| 495 | int wanted) /* want enough room for this one */ |
| 496 | { |
| 497 | struct subre **p; |
| 498 | size_t n; |
| 499 | |
| 500 | assert(wanted > 0 && (size_t) wanted >= v->nsubs); |
| 501 | n = (size_t) wanted *3 / 2 + 1; |
| 502 | |
| 503 | if (v->subs == v->sub10) |
| 504 | { |
| 505 | p = (struct subre **) MALLOC(n * sizeof(struct subre *)); |
| 506 | if (p != NULL) |
| 507 | memcpy(VS(p), VS(v->subs), |
| 508 | v->nsubs * sizeof(struct subre *)); |
| 509 | } |
| 510 | else |
| 511 | p = (struct subre **) REALLOC(v->subs, n * sizeof(struct subre *)); |
| 512 | if (p == NULL) |
| 513 | { |
| 514 | ERR(REG_ESPACE); |
| 515 | return; |
| 516 | } |
| 517 | v->subs = p; |
| 518 | for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++) |
| 519 | *p = NULL; |
| 520 | assert(v->nsubs == n); |
| 521 | assert((size_t) wanted < v->nsubs); |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * freev - free vars struct's substructures where necessary |
| 526 | * |
| 527 | * Optionally does error-number setting, and always returns error code |
| 528 | * (if any), to make error-handling code terser. |
| 529 | */ |
| 530 | static int |
| 531 | freev(struct vars * v, |
| 532 | int err) |
| 533 | { |
| 534 | if (v->re != NULL) |
| 535 | rfree(v->re); |
| 536 | if (v->subs != v->sub10) |
| 537 | FREE(v->subs); |
| 538 | if (v->nfa != NULL) |
| 539 | freenfa(v->nfa); |
| 540 | if (v->tree != NULL) |
| 541 | freesubre(v, v->tree); |
| 542 | if (v->treechain != NULL) |
| 543 | cleanst(v); |
| 544 | if (v->cv != NULL) |
| 545 | freecvec(v->cv); |
| 546 | if (v->cv2 != NULL) |
| 547 | freecvec(v->cv2); |
| 548 | if (v->mcces != NULL) |
| 549 | freecvec(v->mcces); |
| 550 | if (v->lacons != NULL) |
| 551 | freelacons(v->lacons, v->nlacons); |
| 552 | ERR(err); /* nop if err==0 */ |
| 553 | |
| 554 | return v->err; |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * makesearch - turn an NFA into a search NFA (implicit prepend of .*?) |
| 559 | * NFA must have been optimize()d already. |
| 560 | */ |
| 561 | static void |
| 562 | makesearch(struct vars * v, |
| 563 | struct nfa * nfa) |
| 564 | { |
| 565 | struct arc *a; |
| 566 | struct arc *b; |
| 567 | struct state *pre = nfa->pre; |
| 568 | struct state *s; |
| 569 | struct state *s2; |
| 570 | struct state *slist; |
| 571 | |
| 572 | /* no loops are needed if it's anchored */ |
| 573 | for (a = pre->outs; a != NULL; a = a->outchain) |
| 574 | { |
| 575 | assert(a->type == PLAIN); |
| 576 | if (a->co != nfa->bos[0] && a->co != nfa->bos[1]) |
| 577 | break; |
| 578 | } |
| 579 | if (a != NULL) |
| 580 | { |
| 581 | /* add implicit .* in front */ |
| 582 | rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre); |
| 583 | |
| 584 | /* and ^* and \A* too -- not always necessary, but harmless */ |
| 585 | newarc(nfa, PLAIN, nfa->bos[0], pre, pre); |
| 586 | newarc(nfa, PLAIN, nfa->bos[1], pre, pre); |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * Now here's the subtle part. Because many REs have no lookback |
| 591 | * constraints, often knowing when you were in the pre state tells you |
| 592 | * little; it's the next state(s) that are informative. But some of |
| 593 | * them may have other inarcs, i.e. it may be possible to make actual |
| 594 | * progress and then return to one of them. We must de-optimize such |
| 595 | * cases, splitting each such state into progress and no-progress |
| 596 | * states. |
| 597 | */ |
| 598 | |
| 599 | /* first, make a list of the states */ |
| 600 | slist = NULL; |
| 601 | for (a = pre->outs; a != NULL; a = a->outchain) |
| 602 | { |
| 603 | s = a->to; |
| 604 | for (b = s->ins; b != NULL; b = b->inchain) |
| 605 | if (b->from != pre) |
| 606 | break; |
| 607 | if (b != NULL) |
| 608 | { /* must be split */ |
| 609 | s->tmp = slist; |
| 610 | slist = s; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | /* do the splits */ |
| 615 | for (s = slist; s != NULL; s = s2) |
| 616 | { |
| 617 | s2 = newstate(nfa); |
| 618 | copyouts(nfa, s, s2); |
| 619 | for (a = s->ins; a != NULL; a = b) |
| 620 | { |
| 621 | b = a->inchain; |
| 622 | if (a->from != pre) |
| 623 | { |
| 624 | cparc(nfa, a, a->from, s2); |
| 625 | freearc(nfa, a); |
| 626 | } |
| 627 | } |
| 628 | s2 = s->tmp; |
| 629 | s->tmp = NULL; /* clean up while we're at it */ |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * parse - parse an RE |
| 635 | * |
| 636 | * This is actually just the top level, which parses a bunch of branches |
| 637 | * tied together with '|'. They appear in the tree as the left children |
| 638 | * of a chain of '|' subres. |
| 639 | */ |
| 640 | static struct subre * |
| 641 | parse(struct vars * v, |
| 642 | int stopper, /* EOS or ')' */ |
| 643 | int type, /* LACON (lookahead subRE) or PLAIN */ |
| 644 | struct state * init, /* initial state */ |
| 645 | struct state * final) /* final state */ |
| 646 | { |
| 647 | struct state *left; /* scaffolding for branch */ |
| 648 | struct state *right; |
| 649 | struct subre *branches; /* top level */ |
| 650 | struct subre *branch; /* current branch */ |
| 651 | struct subre *t; /* temporary */ |
| 652 | int firstbranch; /* is this the first branch? */ |
| 653 | |
| 654 | assert(stopper == ')' || stopper == EOS); |
| 655 | |
| 656 | branches = subre(v, '|', LONGER, init, final); |
| 657 | NOERRN(); |
| 658 | branch = branches; |
| 659 | firstbranch = 1; |
| 660 | do |
| 661 | { /* a branch */ |
| 662 | if (!firstbranch) |
| 663 | { |
| 664 | /* need a place to hang it */ |
| 665 | branch->right = subre(v, '|', LONGER, init, final); |
| 666 | NOERRN(); |
| 667 | branch = branch->right; |
| 668 | } |
| 669 | firstbranch = 0; |
| 670 | left = newstate(v->nfa); |
| 671 | right = newstate(v->nfa); |
| 672 | NOERRN(); |
| 673 | EMPTYARC(init, left); |
| 674 | EMPTYARC(right, final); |
| 675 | NOERRN(); |
| 676 | branch->left = parsebranch(v, stopper, type, left, right, 0); |
| 677 | NOERRN(); |
| 678 | branch->flags |= UP(branch->flags | branch->left->flags); |
| 679 | if ((branch->flags & ~branches->flags) != 0) /* new flags */ |
| 680 | for (t = branches; t != branch; t = t->right) |
| 681 | t->flags |= branch->flags; |
| 682 | } while (EAT('|')); |
| 683 | assert(SEE(stopper) || SEE(EOS)); |
| 684 | |
| 685 | if (!SEE(stopper)) |
| 686 | { |
| 687 | assert(stopper == ')' && SEE(EOS)); |
| 688 | ERR(REG_EPAREN); |
| 689 | } |
| 690 | |
| 691 | /* optimize out simple cases */ |
| 692 | if (branch == branches) |
| 693 | { /* only one branch */ |
| 694 | assert(branch->right == NULL); |
| 695 | t = branch->left; |
| 696 | branch->left = NULL; |
| 697 | freesubre(v, branches); |
| 698 | branches = t; |
| 699 | } |
| 700 | else if (!MESSY(branches->flags)) |
| 701 | { /* no interesting innards */ |
| 702 | freesubre(v, branches->left); |
| 703 | branches->left = NULL; |
| 704 | freesubre(v, branches->right); |
| 705 | branches->right = NULL; |
| 706 | branches->op = '='; |
| 707 | } |
| 708 | |
| 709 | return branches; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * parsebranch - parse one branch of an RE |
| 714 | * |
| 715 | * This mostly manages concatenation, working closely with parseqatom(). |
| 716 | * Concatenated things are bundled up as much as possible, with separate |
| 717 | * ',' nodes introduced only when necessary due to substructure. |
| 718 | */ |
| 719 | static struct subre * |
| 720 | parsebranch(struct vars * v, |
| 721 | int stopper, /* EOS or ')' */ |
| 722 | int type, /* LACON (lookahead subRE) or PLAIN */ |
| 723 | struct state * left, /* leftmost state */ |
| 724 | struct state * right, /* rightmost state */ |
| 725 | int partial) /* is this only part of a branch? */ |
| 726 | { |
| 727 | struct state *lp; /* left end of current construct */ |
| 728 | int seencontent; /* is there anything in this branch yet? */ |
| 729 | struct subre *t; |
| 730 | |
| 731 | lp = left; |
| 732 | seencontent = 0; |
| 733 | t = subre(v, '=', 0, left, right); /* op '=' is tentative */ |
| 734 | NOERRN(); |
| 735 | while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) |
| 736 | { |
| 737 | if (seencontent) |
| 738 | { /* implicit concat operator */ |
| 739 | lp = newstate(v->nfa); |
| 740 | NOERRN(); |
| 741 | moveins(v->nfa, right, lp); |
| 742 | } |
| 743 | seencontent = 1; |
| 744 | |
| 745 | /* NB, recursion in parseqatom() may swallow rest of branch */ |
| 746 | parseqatom(v, stopper, type, lp, right, t); |
| 747 | } |
| 748 | |
| 749 | if (!seencontent) |
| 750 | { /* empty branch */ |
| 751 | if (!partial) |
| 752 | NOTE(REG_UUNSPEC); |
| 753 | assert(lp == left); |
| 754 | EMPTYARC(left, right); |
| 755 | } |
| 756 | |
| 757 | return t; |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * parseqatom - parse one quantified atom or constraint of an RE |
| 762 | * |
| 763 | * The bookkeeping near the end cooperates very closely with parsebranch(); |
| 764 | * in particular, it contains a recursion that can involve parsing the rest |
| 765 | * of the branch, making this function's name somewhat inaccurate. |
| 766 | */ |
| 767 | static void |
| 768 | parseqatom(struct vars * v, |
| 769 | int stopper, /* EOS or ')' */ |
| 770 | int type, /* LACON (lookahead subRE) or PLAIN */ |
| 771 | struct state * lp, /* left state to hang it on */ |
| 772 | struct state * rp, /* right state to hang it on */ |
| 773 | struct subre * top) /* subtree top */ |
| 774 | { |
| 775 | struct state *s; /* temporaries for new states */ |
| 776 | struct state *s2; |
| 777 | |
| 778 | #define ARCV(t, val) newarc(v->nfa, t, val, lp, rp) |
| 779 | int m, |
| 780 | n; |
| 781 | struct subre *atom; /* atom's subtree */ |
| 782 | struct subre *t; |
| 783 | int cap; /* capturing parens? */ |
| 784 | int pos; /* positive lookahead? */ |
| 785 | int subno; /* capturing-parens or backref number */ |
| 786 | int atomtype; |
| 787 | int qprefer; /* quantifier short/long preference */ |
| 788 | int f; |
| 789 | struct subre **atomp; /* where the pointer to atom is */ |
| 790 | |
| 791 | /* initial bookkeeping */ |
| 792 | atom = NULL; |
| 793 | assert(lp->nouts == 0); /* must string new code */ |
| 794 | assert(rp->nins == 0); /* between lp and rp */ |
| 795 | subno = 0; /* just to shut lint up */ |
| 796 | |
| 797 | /* an atom or constraint... */ |
| 798 | atomtype = v->nexttype; |
| 799 | switch (atomtype) |
| 800 | { |
| 801 | /* first, constraints, which end by returning */ |
| 802 | case '^': |
| 803 | ARCV('^', 1); |
| 804 | if (v->cflags & REG_NLANCH) |
| 805 | ARCV(BEHIND, v->nlcolor); |
| 806 | NEXT(); |
| 807 | return; |
| 808 | break; |
| 809 | case '$': |
| 810 | ARCV('$', 1); |
| 811 | if (v->cflags & REG_NLANCH) |
| 812 | ARCV(AHEAD, v->nlcolor); |
| 813 | NEXT(); |
| 814 | return; |
| 815 | break; |
| 816 | case SBEGIN: |
| 817 | ARCV('^', 1); /* BOL */ |
| 818 | ARCV('^', 0); /* or BOS */ |
| 819 | NEXT(); |
| 820 | return; |
| 821 | break; |
| 822 | case SEND: |
| 823 | ARCV('$', 1); /* EOL */ |
| 824 | ARCV('$', 0); /* or EOS */ |
| 825 | NEXT(); |
| 826 | return; |
| 827 | break; |
| 828 | case '<': |
| 829 | wordchrs(v); /* does NEXT() */ |
| 830 | s = newstate(v->nfa); |
| 831 | NOERR(); |
| 832 | nonword(v, BEHIND, lp, s); |
| 833 | word(v, AHEAD, s, rp); |
| 834 | return; |
| 835 | break; |
| 836 | case '>': |
| 837 | wordchrs(v); /* does NEXT() */ |
| 838 | s = newstate(v->nfa); |
| 839 | NOERR(); |
| 840 | word(v, BEHIND, lp, s); |
| 841 | nonword(v, AHEAD, s, rp); |
| 842 | return; |
| 843 | break; |
| 844 | case WBDRY: |
| 845 | wordchrs(v); /* does NEXT() */ |
| 846 | s = newstate(v->nfa); |
| 847 | NOERR(); |
| 848 | nonword(v, BEHIND, lp, s); |
| 849 | word(v, AHEAD, s, rp); |
| 850 | s = newstate(v->nfa); |
| 851 | NOERR(); |
| 852 | word(v, BEHIND, lp, s); |
| 853 | nonword(v, AHEAD, s, rp); |
| 854 | return; |
| 855 | break; |
| 856 | case NWBDRY: |
| 857 | wordchrs(v); /* does NEXT() */ |
| 858 | s = newstate(v->nfa); |
| 859 | NOERR(); |
| 860 | word(v, BEHIND, lp, s); |
| 861 | word(v, AHEAD, s, rp); |
| 862 | s = newstate(v->nfa); |
| 863 | NOERR(); |
| 864 | nonword(v, BEHIND, lp, s); |
| 865 | nonword(v, AHEAD, s, rp); |
| 866 | return; |
| 867 | break; |
| 868 | case LACON: /* lookahead constraint */ |
| 869 | pos = v->nextvalue; |
| 870 | NEXT(); |
| 871 | s = newstate(v->nfa); |
| 872 | s2 = newstate(v->nfa); |
| 873 | NOERR(); |
| 874 | t = parse(v, ')', LACON, s, s2); |
| 875 | freesubre(v, t); /* internal structure irrelevant */ |
| 876 | assert(SEE(')') || ISERR()); |
| 877 | NEXT(); |
| 878 | n = newlacon(v, s, s2, pos); |
| 879 | NOERR(); |
| 880 | ARCV(LACON, n); |
| 881 | return; |
| 882 | break; |
| 883 | /* then errors, to get them out of the way */ |
| 884 | case '*': |
| 885 | case '+': |
| 886 | case '?': |
| 887 | case '{': |
| 888 | ERR(REG_BADRPT); |
| 889 | return; |
| 890 | break; |
| 891 | default: |
| 892 | ERR(REG_ASSERT); |
| 893 | return; |
| 894 | break; |
| 895 | /* then plain characters, and minor variants on that theme */ |
| 896 | case ')': /* unbalanced paren */ |
| 897 | if ((v->cflags & REG_ADVANCED) != REG_EXTENDED) |
| 898 | { |
| 899 | ERR(REG_EPAREN); |
| 900 | return; |
| 901 | } |
| 902 | /* legal in EREs due to specification botch */ |
| 903 | NOTE(REG_UPBOTCH); |
| 904 | /* fallthrough into case PLAIN */ |
| 905 | case PLAIN: |
| 906 | onechr(v, v->nextvalue, lp, rp); |
| 907 | okcolors(v->nfa, v->cm); |
| 908 | NOERR(); |
| 909 | NEXT(); |
| 910 | break; |
| 911 | case '[': |
| 912 | if (v->nextvalue == 1) |
| 913 | bracket(v, lp, rp); |
| 914 | else |
| 915 | cbracket(v, lp, rp); |
| 916 | assert(SEE(']') || ISERR()); |
| 917 | NEXT(); |
| 918 | break; |
| 919 | case '.': |
| 920 | rainbow(v->nfa, v->cm, PLAIN, |
| 921 | (v->cflags & REG_NLSTOP) ? v->nlcolor : COLORLESS, |
| 922 | lp, rp); |
| 923 | NEXT(); |
| 924 | break; |
| 925 | /* and finally the ugly stuff */ |
| 926 | case '(': /* value flags as capturing or non */ |
| 927 | cap = (type == LACON) ? 0 : v->nextvalue; |
| 928 | if (cap) |
| 929 | { |
| 930 | v->nsubexp++; |
| 931 | subno = v->nsubexp; |
| 932 | if ((size_t) subno >= v->nsubs) |
| 933 | moresubs(v, subno); |
| 934 | assert((size_t) subno < v->nsubs); |
| 935 | } |
| 936 | else |
| 937 | atomtype = PLAIN; /* something that's not '(' */ |
| 938 | NEXT(); |
| 939 | /* need new endpoints because tree will contain pointers */ |
| 940 | s = newstate(v->nfa); |
| 941 | s2 = newstate(v->nfa); |
| 942 | NOERR(); |
| 943 | EMPTYARC(lp, s); |
| 944 | EMPTYARC(s2, rp); |
| 945 | NOERR(); |
| 946 | atom = parse(v, ')', PLAIN, s, s2); |
| 947 | assert(SEE(')') || ISERR()); |
| 948 | NEXT(); |
| 949 | NOERR(); |
| 950 | if (cap) |
| 951 | { |
| 952 | v->subs[subno] = atom; |
| 953 | t = subre(v, '(', atom->flags | CAP, lp, rp); |
| 954 | NOERR(); |
| 955 | t->subno = subno; |
| 956 | t->left = atom; |
| 957 | atom = t; |
| 958 | } |
| 959 | /* postpone everything else pending possible {0} */ |
| 960 | break; |
| 961 | case BACKREF: /* the Feature From The Black Lagoon */ |
| 962 | INSIST(type != LACON, REG_ESUBREG); |
| 963 | INSIST(v->nextvalue < v->nsubs, REG_ESUBREG); |
| 964 | INSIST(v->subs[v->nextvalue] != NULL, REG_ESUBREG); |
| 965 | NOERR(); |
| 966 | assert(v->nextvalue > 0); |
| 967 | atom = subre(v, 'b', BACKR, lp, rp); |
| 968 | subno = v->nextvalue; |
| 969 | atom->subno = subno; |
| 970 | EMPTYARC(lp, rp); /* temporarily, so there's something */ |
| 971 | NEXT(); |
| 972 | break; |
| 973 | } |
| 974 | |
| 975 | /* ...and an atom may be followed by a quantifier */ |
| 976 | switch (v->nexttype) |
| 977 | { |
| 978 | case '*': |
| 979 | m = 0; |
| 980 | n = INFINITY; |
| 981 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 982 | NEXT(); |
| 983 | break; |
| 984 | case '+': |
| 985 | m = 1; |
| 986 | n = INFINITY; |
| 987 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 988 | NEXT(); |
| 989 | break; |
| 990 | case '?': |
| 991 | m = 0; |
| 992 | n = 1; |
| 993 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 994 | NEXT(); |
| 995 | break; |
| 996 | case '{': |
| 997 | NEXT(); |
| 998 | m = scannum(v); |
| 999 | if (EAT(',')) |
| 1000 | { |
| 1001 | if (SEE(DIGIT)) |
| 1002 | n = scannum(v); |
| 1003 | else |
| 1004 | n = INFINITY; |
| 1005 | if (m > n) |
| 1006 | { |
| 1007 | ERR(REG_BADBR); |
| 1008 | return; |
| 1009 | } |
| 1010 | /* {m,n} exercises preference, even if it's {m,m} */ |
| 1011 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 1012 | } |
| 1013 | else |
| 1014 | { |
| 1015 | n = m; |
| 1016 | /* {m} passes operand's preference through */ |
| 1017 | qprefer = 0; |
| 1018 | } |
| 1019 | if (!SEE('}')) |
| 1020 | { /* catches errors too */ |
| 1021 | ERR(REG_BADBR); |
| 1022 | return; |
| 1023 | } |
| 1024 | NEXT(); |
| 1025 | break; |
| 1026 | default: /* no quantifier */ |
| 1027 | m = n = 1; |
| 1028 | qprefer = 0; |
| 1029 | break; |
| 1030 | } |
| 1031 | |
| 1032 | /* annoying special case: {0} or {0,0} cancels everything */ |
| 1033 | if (m == 0 && n == 0) |
| 1034 | { |
| 1035 | if (atom != NULL) |
| 1036 | freesubre(v, atom); |
| 1037 | if (atomtype == '(') |
| 1038 | v->subs[subno] = NULL; |
| 1039 | delsub(v->nfa, lp, rp); |
| 1040 | EMPTYARC(lp, rp); |
| 1041 | return; |
| 1042 | } |
| 1043 | |
| 1044 | /* if not a messy case, avoid hard part */ |
| 1045 | assert(!MESSY(top->flags)); |
| 1046 | f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0); |
| 1047 | if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) |
| 1048 | { |
| 1049 | if (!(m == 1 && n == 1)) |
| 1050 | repeat(v, lp, rp, m, n); |
| 1051 | if (atom != NULL) |
| 1052 | freesubre(v, atom); |
| 1053 | top->flags = f; |
| 1054 | return; |
| 1055 | } |
| 1056 | |
| 1057 | /* |
| 1058 | * hard part: something messy That is, capturing parens, back |
| 1059 | * reference, short/long clash, or an atom with substructure |
| 1060 | * containing one of those. |
| 1061 | */ |
| 1062 | |
| 1063 | /* now we'll need a subre for the contents even if they're boring */ |
| 1064 | if (atom == NULL) |
| 1065 | { |
| 1066 | atom = subre(v, '=', 0, lp, rp); |
| 1067 | NOERR(); |
| 1068 | } |
| 1069 | |
| 1070 | /* |
| 1071 | * prepare a general-purpose state skeleton |
| 1072 | * |
| 1073 | * ---> [s] ---prefix---> [begin] ---atom---> [end] ----rest---> [rp] / / |
| 1074 | * [lp] ----> [s2] ----bypass--------------------- |
| 1075 | * |
| 1076 | * where bypass is an empty, and prefix is some repetitions of atom |
| 1077 | */ |
| 1078 | s = newstate(v->nfa); /* first, new endpoints for the atom */ |
| 1079 | s2 = newstate(v->nfa); |
| 1080 | NOERR(); |
| 1081 | moveouts(v->nfa, lp, s); |
| 1082 | moveins(v->nfa, rp, s2); |
| 1083 | NOERR(); |
| 1084 | atom->begin = s; |
| 1085 | atom->end = s2; |
| 1086 | s = newstate(v->nfa); /* and spots for prefix and bypass */ |
| 1087 | s2 = newstate(v->nfa); |
| 1088 | NOERR(); |
| 1089 | EMPTYARC(lp, s); |
| 1090 | EMPTYARC(lp, s2); |
| 1091 | NOERR(); |
| 1092 | |
| 1093 | /* break remaining subRE into x{...} and what follows */ |
| 1094 | t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp); |
| 1095 | t->left = atom; |
| 1096 | atomp = &t->left; |
| 1097 | /* here we should recurse... but we must postpone that to the end */ |
| 1098 | |
| 1099 | /* split top into prefix and remaining */ |
| 1100 | assert(top->op == '=' && top->left == NULL && top->right == NULL); |
| 1101 | top->left = subre(v, '=', top->flags, top->begin, lp); |
| 1102 | top->op = '.'; |
| 1103 | top->right = t; |
| 1104 | |
| 1105 | /* if it's a backref, now is the time to replicate the subNFA */ |
| 1106 | if (atomtype == BACKREF) |
| 1107 | { |
| 1108 | assert(atom->begin->nouts == 1); /* just the EMPTY */ |
| 1109 | delsub(v->nfa, atom->begin, atom->end); |
| 1110 | assert(v->subs[subno] != NULL); |
| 1111 | /* and here's why the recursion got postponed: it must */ |
| 1112 | /* wait until the skeleton is filled in, because it may */ |
| 1113 | /* hit a backref that wants to copy the filled-in skeleton */ |
| 1114 | dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end, |
| 1115 | atom->begin, atom->end); |
| 1116 | NOERR(); |
| 1117 | } |
| 1118 | |
| 1119 | /* it's quantifier time; first, turn x{0,...} into x{1,...}|empty */ |
| 1120 | if (m == 0) |
| 1121 | { |
| 1122 | EMPTYARC(s2, atom->end); /* the bypass */ |
| 1123 | assert(PREF(qprefer) != 0); |
| 1124 | f = COMBINE(qprefer, atom->flags); |
| 1125 | t = subre(v, '|', f, lp, atom->end); |
| 1126 | NOERR(); |
| 1127 | t->left = atom; |
| 1128 | t->right = subre(v, '|', PREF(f), s2, atom->end); |
| 1129 | NOERR(); |
| 1130 | t->right->left = subre(v, '=', 0, s2, atom->end); |
| 1131 | NOERR(); |
| 1132 | *atomp = t; |
| 1133 | atomp = &t->left; |
| 1134 | m = 1; |
| 1135 | } |
| 1136 | |
| 1137 | /* deal with the rest of the quantifier */ |
| 1138 | if (atomtype == BACKREF) |
| 1139 | { |
| 1140 | /* special case: backrefs have internal quantifiers */ |
| 1141 | EMPTYARC(s, atom->begin); /* empty prefix */ |
| 1142 | /* just stuff everything into atom */ |
| 1143 | repeat(v, atom->begin, atom->end, m, n); |
| 1144 | atom->min = (short) m; |
| 1145 | atom->max = (short) n; |
| 1146 | atom->flags |= COMBINE(qprefer, atom->flags); |
| 1147 | } |
| 1148 | else if (m == 1 && n == 1) |
| 1149 | { |
| 1150 | /* no/vacuous quantifier: done */ |
| 1151 | EMPTYARC(s, atom->begin); /* empty prefix */ |
| 1152 | } |
| 1153 | else |
| 1154 | { |
| 1155 | /* turn x{m,n} into x{m-1,n-1}x, with capturing */ |
| 1156 | /* parens in only second x */ |
| 1157 | dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin); |
| 1158 | assert(m >= 1 && m != INFINITY && n >= 1); |
| 1159 | repeat(v, s, atom->begin, m - 1, (n == INFINITY) ? n : n - 1); |
| 1160 | f = COMBINE(qprefer, atom->flags); |
| 1161 | t = subre(v, '.', f, s, atom->end); /* prefix and atom */ |
| 1162 | NOERR(); |
| 1163 | t->left = subre(v, '=', PREF(f), s, atom->begin); |
| 1164 | NOERR(); |
| 1165 | t->right = atom; |
| 1166 | *atomp = t; |
| 1167 | } |
| 1168 | |
| 1169 | /* and finally, look after that postponed recursion */ |
| 1170 | t = top->right; |
| 1171 | if (!(SEE('|') || SEE(stopper) || SEE(EOS))) |
| 1172 | t->right = parsebranch(v, stopper, type, atom->end, rp, 1); |
| 1173 | else |
| 1174 | { |
| 1175 | EMPTYARC(atom->end, rp); |
| 1176 | t->right = subre(v, '=', 0, atom->end, rp); |
| 1177 | } |
| 1178 | assert(SEE('|') || SEE(stopper) || SEE(EOS)); |
| 1179 | t->flags |= COMBINE(t->flags, t->right->flags); |
| 1180 | top->flags |= COMBINE(top->flags, t->flags); |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * nonword - generate arcs for non-word-character ahead or behind |
| 1185 | */ |
| 1186 | static void |
| 1187 | nonword(struct vars * v, |
| 1188 | int dir, /* AHEAD or BEHIND */ |
| 1189 | struct state * lp, |
| 1190 | struct state * rp) |
| 1191 | { |
| 1192 | int anchor = (dir == AHEAD) ? '$' : '^'; |
| 1193 | |
| 1194 | assert(dir == AHEAD || dir == BEHIND); |
| 1195 | newarc(v->nfa, anchor, 1, lp, rp); |
| 1196 | newarc(v->nfa, anchor, 0, lp, rp); |
| 1197 | colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp); |
| 1198 | /* (no need for special attention to \n) */ |
| 1199 | } |
| 1200 | |
| 1201 | /* |
| 1202 | * word - generate arcs for word character ahead or behind |
| 1203 | */ |
| 1204 | static void |
| 1205 | word(struct vars * v, |
| 1206 | int dir, /* AHEAD or BEHIND */ |
| 1207 | struct state * lp, |
| 1208 | struct state * rp) |
| 1209 | { |
| 1210 | assert(dir == AHEAD || dir == BEHIND); |
| 1211 | cloneouts(v->nfa, v->wordchrs, lp, rp, dir); |
| 1212 | /* (no need for special attention to \n) */ |
| 1213 | } |
| 1214 | |
| 1215 | /* |
| 1216 | * scannum - scan a number |
| 1217 | */ |
| 1218 | static int /* value, <= DUPMAX */ |
| 1219 | scannum(struct vars * v) |
| 1220 | { |
| 1221 | int n = 0; |
| 1222 | |
| 1223 | while (SEE(DIGIT) && n < DUPMAX) |
| 1224 | { |
| 1225 | n = n * 10 + v->nextvalue; |
| 1226 | NEXT(); |
| 1227 | } |
| 1228 | if (SEE(DIGIT) || n > DUPMAX) |
| 1229 | { |
| 1230 | ERR(REG_BADBR); |
| 1231 | return 0; |
| 1232 | } |
| 1233 | return n; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * repeat - replicate subNFA for quantifiers |
| 1238 | * |
| 1239 | * The duplication sequences used here are chosen carefully so that any |
| 1240 | * pointers starting out pointing into the subexpression end up pointing into |
| 1241 | * the last occurrence. (Note that it may not be strung between the same |
| 1242 | * left and right end states, however!) This used to be important for the |
| 1243 | * subRE tree, although the important bits are now handled by the in-line |
| 1244 | * code in parse(), and when this is called, it doesn't matter any more. |
| 1245 | */ |
| 1246 | static void |
| 1247 | repeat(struct vars * v, |
| 1248 | struct state * lp, |
| 1249 | struct state * rp, |
| 1250 | int m, |
| 1251 | int n) |
| 1252 | { |
| 1253 | #define SOME 2 |
| 1254 | #define INF 3 |
| 1255 | #define PAIR(x, y) ((x)*4 + (y)) |
| 1256 | #define REDUCE(x) ( ((x) == INFINITY) ? INF : (((x) > 1) ? SOME : (x)) ) |
| 1257 | const int rm = REDUCE(m); |
| 1258 | const int rn = REDUCE(n); |
| 1259 | struct state *s; |
| 1260 | struct state *s2; |
| 1261 | |
| 1262 | switch (PAIR(rm, rn)) |
| 1263 | { |
| 1264 | case PAIR(0, 0): /* empty string */ |
| 1265 | delsub(v->nfa, lp, rp); |
| 1266 | EMPTYARC(lp, rp); |
| 1267 | break; |
| 1268 | case PAIR(0, 1): /* do as x| */ |
| 1269 | EMPTYARC(lp, rp); |
| 1270 | break; |
| 1271 | case PAIR(0, SOME): /* do as x{1,n}| */ |
| 1272 | repeat(v, lp, rp, 1, n); |
| 1273 | NOERR(); |
| 1274 | EMPTYARC(lp, rp); |
| 1275 | break; |
| 1276 | case PAIR(0, INF): /* loop x around */ |
| 1277 | s = newstate(v->nfa); |
| 1278 | NOERR(); |
| 1279 | moveouts(v->nfa, lp, s); |
| 1280 | moveins(v->nfa, rp, s); |
| 1281 | EMPTYARC(lp, s); |
| 1282 | EMPTYARC(s, rp); |
| 1283 | break; |
| 1284 | case PAIR(1, 1): /* no action required */ |
| 1285 | break; |
| 1286 | case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */ |
| 1287 | s = newstate(v->nfa); |
| 1288 | NOERR(); |
| 1289 | moveouts(v->nfa, lp, s); |
| 1290 | dupnfa(v->nfa, s, rp, lp, s); |
| 1291 | NOERR(); |
| 1292 | repeat(v, lp, s, 1, n - 1); |
| 1293 | NOERR(); |
| 1294 | EMPTYARC(lp, s); |
| 1295 | break; |
| 1296 | case PAIR(1, INF): /* add loopback arc */ |
| 1297 | s = newstate(v->nfa); |
| 1298 | s2 = newstate(v->nfa); |
| 1299 | NOERR(); |
| 1300 | moveouts(v->nfa, lp, s); |
| 1301 | moveins(v->nfa, rp, s2); |
| 1302 | EMPTYARC(lp, s); |
| 1303 | EMPTYARC(s2, rp); |
| 1304 | EMPTYARC(s2, s); |
| 1305 | break; |
| 1306 | case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */ |
| 1307 | s = newstate(v->nfa); |
| 1308 | NOERR(); |
| 1309 | moveouts(v->nfa, lp, s); |
| 1310 | dupnfa(v->nfa, s, rp, lp, s); |
| 1311 | NOERR(); |
| 1312 | repeat(v, lp, s, m - 1, n - 1); |
| 1313 | break; |
| 1314 | case PAIR(SOME, INF): /* do as x{m-1,}x */ |
| 1315 | s = newstate(v->nfa); |
| 1316 | NOERR(); |
| 1317 | moveouts(v->nfa, lp, s); |
| 1318 | dupnfa(v->nfa, s, rp, lp, s); |
| 1319 | NOERR(); |
| 1320 | repeat(v, lp, s, m - 1, n); |
| 1321 | break; |
| 1322 | default: |
| 1323 | ERR(REG_ASSERT); |
| 1324 | break; |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * bracket - handle non-complemented bracket expression |
| 1330 | * Also called from cbracket for complemented bracket expressions. |
| 1331 | */ |
| 1332 | static void |
| 1333 | bracket(struct vars * v, |
| 1334 | struct state * lp, |
| 1335 | struct state * rp) |
| 1336 | { |
| 1337 | assert(SEE('[')); |
| 1338 | NEXT(); |
| 1339 | while (!SEE(']') && !SEE(EOS)) |
| 1340 | brackpart(v, lp, rp); |
| 1341 | assert(SEE(']') || ISERR()); |
| 1342 | okcolors(v->nfa, v->cm); |
| 1343 | } |
| 1344 | |
| 1345 | /* |
| 1346 | * cbracket - handle complemented bracket expression |
| 1347 | * We do it by calling bracket() with dummy endpoints, and then complementing |
| 1348 | * the result. The alternative would be to invoke rainbow(), and then delete |
| 1349 | * arcs as the b.e. is seen... but that gets messy. |
| 1350 | */ |
| 1351 | static void |
| 1352 | cbracket(struct vars * v, |
| 1353 | struct state * lp, |
| 1354 | struct state * rp) |
| 1355 | { |
| 1356 | struct state *left = newstate(v->nfa); |
| 1357 | struct state *right = newstate(v->nfa); |
| 1358 | struct state *s; |
| 1359 | struct arc *a; /* arc from lp */ |
| 1360 | struct arc *ba; /* arc from left, from bracket() */ |
| 1361 | struct arc *pa; /* MCCE-prototype arc */ |
| 1362 | color co; |
| 1363 | chr *p; |
| 1364 | int i; |
| 1365 | |
| 1366 | NOERR(); |
| 1367 | bracket(v, left, right); |
| 1368 | if (v->cflags & REG_NLSTOP) |
| 1369 | newarc(v->nfa, PLAIN, v->nlcolor, left, right); |
| 1370 | NOERR(); |
| 1371 | |
| 1372 | assert(lp->nouts == 0); /* all outarcs will be ours */ |
| 1373 | |
| 1374 | /* easy part of complementing */ |
| 1375 | colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp); |
| 1376 | NOERR(); |
| 1377 | if (v->mcces == NULL) |
| 1378 | { /* no MCCEs -- we're done */ |
| 1379 | dropstate(v->nfa, left); |
| 1380 | assert(right->nins == 0); |
| 1381 | freestate(v->nfa, right); |
| 1382 | return; |
| 1383 | } |
| 1384 | |
| 1385 | /* but complementing gets messy in the presence of MCCEs... */ |
| 1386 | NOTE(REG_ULOCALE); |
| 1387 | for (p = v->mcces->chrs, i = v->mcces->nchrs; i > 0; p++, i--) |
| 1388 | { |
| 1389 | co = GETCOLOR(v->cm, *p); |
| 1390 | a = findarc(lp, PLAIN, co); |
| 1391 | ba = findarc(left, PLAIN, co); |
| 1392 | if (ba == NULL) |
| 1393 | { |
| 1394 | assert(a != NULL); |
| 1395 | freearc(v->nfa, a); |
| 1396 | } |
| 1397 | else |
| 1398 | assert(a == NULL); |
| 1399 | s = newstate(v->nfa); |
| 1400 | NOERR(); |
| 1401 | newarc(v->nfa, PLAIN, co, lp, s); |
| 1402 | NOERR(); |
| 1403 | pa = findarc(v->mccepbegin, PLAIN, co); |
| 1404 | assert(pa != NULL); |
| 1405 | if (ba == NULL) |
| 1406 | { /* easy case, need all of them */ |
| 1407 | cloneouts(v->nfa, pa->to, s, rp, PLAIN); |
| 1408 | newarc(v->nfa, '$', 1, s, rp); |
| 1409 | newarc(v->nfa, '$', 0, s, rp); |
| 1410 | colorcomplement(v->nfa, v->cm, AHEAD, pa->to, s, rp); |
| 1411 | } |
| 1412 | else |
| 1413 | { /* must be selective */ |
| 1414 | if (findarc(ba->to, '$', 1) == NULL) |
| 1415 | { |
| 1416 | newarc(v->nfa, '$', 1, s, rp); |
| 1417 | newarc(v->nfa, '$', 0, s, rp); |
| 1418 | colorcomplement(v->nfa, v->cm, AHEAD, pa->to, |
| 1419 | s, rp); |
| 1420 | } |
| 1421 | for (pa = pa->to->outs; pa != NULL; pa = pa->outchain) |
| 1422 | if (findarc(ba->to, PLAIN, pa->co) == NULL) |
| 1423 | newarc(v->nfa, PLAIN, pa->co, s, rp); |
| 1424 | if (s->nouts == 0) /* limit of selectivity: none */ |
| 1425 | dropstate(v->nfa, s); /* frees arc too */ |
| 1426 | } |
| 1427 | NOERR(); |
| 1428 | } |
| 1429 | |
| 1430 | delsub(v->nfa, left, right); |
| 1431 | assert(left->nouts == 0); |
| 1432 | freestate(v->nfa, left); |
| 1433 | assert(right->nins == 0); |
| 1434 | freestate(v->nfa, right); |
| 1435 | } |
| 1436 | |
| 1437 | /* |
| 1438 | * brackpart - handle one item (or range) within a bracket expression |
| 1439 | */ |
| 1440 | static void |
| 1441 | brackpart(struct vars * v, |
| 1442 | struct state * lp, |
| 1443 | struct state * rp) |
| 1444 | { |
| 1445 | celt startc; |
| 1446 | celt endc; |
| 1447 | struct cvec *cv; |
| 1448 | chr *startp; |
| 1449 | chr *endp; |
| 1450 | chr c[1]; |
| 1451 | |
| 1452 | /* parse something, get rid of special cases, take shortcuts */ |
| 1453 | switch (v->nexttype) |
| 1454 | { |
| 1455 | case RANGE: /* a-b-c or other botch */ |
| 1456 | ERR(REG_ERANGE); |
| 1457 | return; |
| 1458 | break; |
| 1459 | case PLAIN: |
| 1460 | c[0] = v->nextvalue; |
| 1461 | NEXT(); |
| 1462 | /* shortcut for ordinary chr (not range, not MCCE leader) */ |
| 1463 | if (!SEE(RANGE) && !ISCELEADER(v, c[0])) |
| 1464 | { |
| 1465 | onechr(v, c[0], lp, rp); |
| 1466 | return; |
| 1467 | } |
| 1468 | startc = element(v, c, c + 1); |
| 1469 | NOERR(); |
| 1470 | break; |
| 1471 | case COLLEL: |
| 1472 | startp = v->now; |
| 1473 | endp = scanplain(v); |
| 1474 | INSIST(startp < endp, REG_ECOLLATE); |
| 1475 | NOERR(); |
| 1476 | startc = element(v, startp, endp); |
| 1477 | NOERR(); |
| 1478 | break; |
| 1479 | case ECLASS: |
| 1480 | startp = v->now; |
| 1481 | endp = scanplain(v); |
| 1482 | INSIST(startp < endp, REG_ECOLLATE); |
| 1483 | NOERR(); |
| 1484 | startc = element(v, startp, endp); |
| 1485 | NOERR(); |
| 1486 | cv = eclass(v, startc, (v->cflags & REG_ICASE)); |
| 1487 | NOERR(); |
| 1488 | dovec(v, cv, lp, rp); |
| 1489 | return; |
| 1490 | break; |
| 1491 | case CCLASS: |
| 1492 | startp = v->now; |
| 1493 | endp = scanplain(v); |
| 1494 | INSIST(startp < endp, REG_ECTYPE); |
| 1495 | NOERR(); |
| 1496 | cv = cclass(v, startp, endp, (v->cflags & REG_ICASE)); |
| 1497 | NOERR(); |
| 1498 | dovec(v, cv, lp, rp); |
| 1499 | return; |
| 1500 | break; |
| 1501 | default: |
| 1502 | ERR(REG_ASSERT); |
| 1503 | return; |
| 1504 | break; |
| 1505 | } |
| 1506 | |
| 1507 | if (SEE(RANGE)) |
| 1508 | { |
| 1509 | NEXT(); |
| 1510 | switch (v->nexttype) |
| 1511 | { |
| 1512 | case PLAIN: |
| 1513 | case RANGE: |
| 1514 | c[0] = v->nextvalue; |
| 1515 | NEXT(); |
| 1516 | endc = element(v, c, c + 1); |
| 1517 | NOERR(); |
| 1518 | break; |
| 1519 | case COLLEL: |
| 1520 | startp = v->now; |
| 1521 | endp = scanplain(v); |
| 1522 | INSIST(startp < endp, REG_ECOLLATE); |
| 1523 | NOERR(); |
| 1524 | endc = element(v, startp, endp); |
| 1525 | NOERR(); |
| 1526 | break; |
| 1527 | default: |
| 1528 | ERR(REG_ERANGE); |
| 1529 | return; |
| 1530 | break; |
| 1531 | } |
| 1532 | } |
| 1533 | else |
| 1534 | endc = startc; |
| 1535 | |
| 1536 | /* |
| 1537 | * Ranges are unportable. Actually, standard C does guarantee that |
| 1538 | * digits are contiguous, but making that an exception is just too |
| 1539 | * complicated. |
| 1540 | */ |
| 1541 | if (startc != endc) |
| 1542 | NOTE(REG_UUNPORT); |
| 1543 | cv = range(v, startc, endc, (v->cflags & REG_ICASE)); |
| 1544 | NOERR(); |
| 1545 | dovec(v, cv, lp, rp); |
| 1546 | } |
| 1547 | |
| 1548 | /* |
| 1549 | * scanplain - scan PLAIN contents of [. etc. |
| 1550 | * |
| 1551 | * Certain bits of trickery in lex.c know that this code does not try |
| 1552 | * to look past the final bracket of the [. etc. |
| 1553 | */ |
| 1554 | static chr * /* just after end of sequence */ |
| 1555 | scanplain(struct vars * v) |
| 1556 | { |
| 1557 | chr *endp; |
| 1558 | |
| 1559 | assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS)); |
| 1560 | NEXT(); |
| 1561 | |
| 1562 | endp = v->now; |
| 1563 | while (SEE(PLAIN)) |
| 1564 | { |
| 1565 | endp = v->now; |
| 1566 | NEXT(); |
| 1567 | } |
| 1568 | |
| 1569 | assert(SEE(END) || ISERR()); |
| 1570 | NEXT(); |
| 1571 | |
| 1572 | return endp; |
| 1573 | } |
| 1574 | |
| 1575 | /* |
| 1576 | * leaders - process a cvec of collating elements to also include leaders |
| 1577 | * Also gives all characters involved their own colors, which is almost |
| 1578 | * certainly necessary, and sets up little disconnected subNFA. |
| 1579 | */ |
| 1580 | static void |
| 1581 | leaders(struct vars * v, |
| 1582 | struct cvec * cv) |
| 1583 | { |
| 1584 | int mcce; |
| 1585 | chr *p; |
| 1586 | chr leader; |
| 1587 | struct state *s; |
| 1588 | struct arc *a; |
| 1589 | |
| 1590 | v->mccepbegin = newstate(v->nfa); |
| 1591 | v->mccepend = newstate(v->nfa); |
| 1592 | NOERR(); |
| 1593 | |
| 1594 | for (mcce = 0; mcce < cv->nmcces; mcce++) |
| 1595 | { |
| 1596 | p = cv->mcces[mcce]; |
| 1597 | leader = *p; |
| 1598 | if (!haschr(cv, leader)) |
| 1599 | { |
| 1600 | addchr(cv, leader); |
| 1601 | s = newstate(v->nfa); |
| 1602 | newarc(v->nfa, PLAIN, subcolor(v->cm, leader), |
| 1603 | v->mccepbegin, s); |
| 1604 | okcolors(v->nfa, v->cm); |
| 1605 | } |
| 1606 | else |
| 1607 | { |
| 1608 | a = findarc(v->mccepbegin, PLAIN, |
| 1609 | GETCOLOR(v->cm, leader)); |
| 1610 | assert(a != NULL); |
| 1611 | s = a->to; |
| 1612 | assert(s != v->mccepend); |
| 1613 | } |
| 1614 | p++; |
| 1615 | assert(*p != 0 && *(p + 1) == 0); /* only 2-char MCCEs for |
| 1616 | * now */ |
| 1617 | newarc(v->nfa, PLAIN, subcolor(v->cm, *p), s, v->mccepend); |
| 1618 | okcolors(v->nfa, v->cm); |
| 1619 | } |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * onechr - fill in arcs for a plain character, and possible case complements |
| 1624 | * This is mostly a shortcut for efficient handling of the common case. |
| 1625 | */ |
| 1626 | static void |
| 1627 | onechr(struct vars * v, |
| 1628 | chr c, |
| 1629 | struct state * lp, |
| 1630 | struct state * rp) |
| 1631 | { |
| 1632 | if (!(v->cflags & REG_ICASE)) |
| 1633 | { |
| 1634 | newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp); |
| 1635 | return; |
| 1636 | } |
| 1637 | |
| 1638 | /* rats, need general case anyway... */ |
| 1639 | dovec(v, allcases(v, c), lp, rp); |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * dovec - fill in arcs for each element of a cvec |
| 1644 | * This one has to handle the messy cases, like MCCEs and MCCE leaders. |
| 1645 | */ |
| 1646 | static void |
| 1647 | dovec(struct vars * v, |
| 1648 | struct cvec * cv, |
| 1649 | struct state * lp, |
| 1650 | struct state * rp) |
| 1651 | { |
| 1652 | chr ch, |
| 1653 | from, |
| 1654 | to; |
| 1655 | celt ce; |
| 1656 | chr *p; |
| 1657 | int i; |
| 1658 | color co; |
| 1659 | struct cvec *leads; |
| 1660 | struct arc *a; |
| 1661 | struct arc *pa; /* arc in prototype */ |
| 1662 | struct state *s; |
| 1663 | struct state *ps; /* state in prototype */ |
| 1664 | |
| 1665 | /* need a place to store leaders, if any */ |
| 1666 | if (nmcces(v) > 0) |
| 1667 | { |
| 1668 | assert(v->mcces != NULL); |
| 1669 | if (v->cv2 == NULL || v->cv2->nchrs < v->mcces->nchrs) |
| 1670 | { |
| 1671 | if (v->cv2 != NULL) |
| 1672 | free(v->cv2); |
| 1673 | v->cv2 = newcvec(v->mcces->nchrs, 0, v->mcces->nmcces); |
| 1674 | NOERR(); |
| 1675 | leads = v->cv2; |
| 1676 | } |
| 1677 | else |
| 1678 | leads = clearcvec(v->cv2); |
| 1679 | } |
| 1680 | else |
| 1681 | leads = NULL; |
| 1682 | |
| 1683 | /* first, get the ordinary characters out of the way */ |
| 1684 | for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) |
| 1685 | { |
| 1686 | ch = *p; |
| 1687 | if (!ISCELEADER(v, ch)) |
| 1688 | newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp); |
| 1689 | else |
| 1690 | { |
| 1691 | assert(singleton(v->cm, ch)); |
| 1692 | assert(leads != NULL); |
| 1693 | if (!haschr(leads, ch)) |
| 1694 | addchr(leads, ch); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | /* and the ranges */ |
| 1699 | for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) |
| 1700 | { |
| 1701 | from = *p; |
| 1702 | to = *(p + 1); |
| 1703 | while (from <= to && (ce = nextleader(v, from, to)) != NOCELT) |
| 1704 | { |
| 1705 | if (from < ce) |
| 1706 | subrange(v, from, ce - 1, lp, rp); |
| 1707 | assert(singleton(v->cm, ce)); |
| 1708 | assert(leads != NULL); |
| 1709 | if (!haschr(leads, ce)) |
| 1710 | addchr(leads, ce); |
| 1711 | from = ce + 1; |
| 1712 | } |
| 1713 | if (from <= to) |
| 1714 | subrange(v, from, to, lp, rp); |
| 1715 | } |
| 1716 | |
| 1717 | if ((leads == NULL || leads->nchrs == 0) && cv->nmcces == 0) |
| 1718 | return; |
| 1719 | |
| 1720 | /* deal with the MCCE leaders */ |
| 1721 | NOTE(REG_ULOCALE); |
| 1722 | for (p = leads->chrs, i = leads->nchrs; i > 0; p++, i--) |
| 1723 | { |
| 1724 | co = GETCOLOR(v->cm, *p); |
| 1725 | a = findarc(lp, PLAIN, co); |
| 1726 | if (a != NULL) |
| 1727 | s = a->to; |
| 1728 | else |
| 1729 | { |
| 1730 | s = newstate(v->nfa); |
| 1731 | NOERR(); |
| 1732 | newarc(v->nfa, PLAIN, co, lp, s); |
| 1733 | NOERR(); |
| 1734 | } |
| 1735 | pa = findarc(v->mccepbegin, PLAIN, co); |
| 1736 | assert(pa != NULL); |
| 1737 | ps = pa->to; |
| 1738 | newarc(v->nfa, '$', 1, s, rp); |
| 1739 | newarc(v->nfa, '$', 0, s, rp); |
| 1740 | colorcomplement(v->nfa, v->cm, AHEAD, ps, s, rp); |
| 1741 | NOERR(); |
| 1742 | } |
| 1743 | |
| 1744 | /* and the MCCEs */ |
| 1745 | for (i = 0; i < cv->nmcces; i++) |
| 1746 | { |
| 1747 | p = cv->mcces[i]; |
| 1748 | assert(singleton(v->cm, *p)); |
| 1749 | if (!singleton(v->cm, *p)) |
| 1750 | { |
| 1751 | ERR(REG_ASSERT); |
| 1752 | return; |
| 1753 | } |
| 1754 | ch = *p++; |
| 1755 | co = GETCOLOR(v->cm, ch); |
| 1756 | a = findarc(lp, PLAIN, co); |
| 1757 | if (a != NULL) |
| 1758 | s = a->to; |
| 1759 | else |
| 1760 | { |
| 1761 | s = newstate(v->nfa); |
| 1762 | NOERR(); |
| 1763 | newarc(v->nfa, PLAIN, co, lp, s); |
| 1764 | NOERR(); |
| 1765 | } |
| 1766 | assert(*p != 0); /* at least two chars */ |
| 1767 | assert(singleton(v->cm, *p)); |
| 1768 | ch = *p++; |
| 1769 | co = GETCOLOR(v->cm, ch); |
| 1770 | assert(*p == 0); /* and only two, for now */ |
| 1771 | newarc(v->nfa, PLAIN, co, s, rp); |
| 1772 | NOERR(); |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | /* |
| 1777 | * nextleader - find next MCCE leader within range |
| 1778 | */ |
| 1779 | static celt /* NOCELT means none */ |
| 1780 | nextleader(struct vars * v, |
| 1781 | chr from, |
| 1782 | chr to) |
| 1783 | { |
| 1784 | int i; |
| 1785 | chr *p; |
| 1786 | chr ch; |
| 1787 | celt it = NOCELT; |
| 1788 | |
| 1789 | if (v->mcces == NULL) |
| 1790 | return it; |
| 1791 | |
| 1792 | for (i = v->mcces->nchrs, p = v->mcces->chrs; i > 0; i--, p++) |
| 1793 | { |
| 1794 | ch = *p; |
| 1795 | if (from <= ch && ch <= to) |
| 1796 | if (it == NOCELT || ch < it) |
| 1797 | it = ch; |
| 1798 | } |
| 1799 | return it; |
| 1800 | } |
| 1801 | |
| 1802 | /* |
| 1803 | * wordchrs - set up word-chr list for word-boundary stuff, if needed |
| 1804 | * |
| 1805 | * The list is kept as a bunch of arcs between two dummy states; it's |
| 1806 | * disposed of by the unreachable-states sweep in NFA optimization. |
| 1807 | * Does NEXT(). Must not be called from any unusual lexical context. |
| 1808 | * This should be reconciled with the \w etc. handling in lex.c, and |
| 1809 | * should be cleaned up to reduce dependencies on input scanning. |
| 1810 | */ |
| 1811 | static void |
| 1812 | wordchrs(struct vars * v) |
| 1813 | { |
| 1814 | struct state *left; |
| 1815 | struct state *right; |
| 1816 | |
| 1817 | if (v->wordchrs != NULL) |
| 1818 | { |
| 1819 | NEXT(); /* for consistency */ |
| 1820 | return; |
| 1821 | } |
| 1822 | |
| 1823 | left = newstate(v->nfa); |
| 1824 | right = newstate(v->nfa); |
| 1825 | NOERR(); |
| 1826 | /* fine point: implemented with [::], and lexer will set REG_ULOCALE */ |
| 1827 | lexword(v); |
| 1828 | NEXT(); |
| 1829 | assert(v->savenow != NULL && SEE('[')); |
| 1830 | bracket(v, left, right); |
| 1831 | assert((v->savenow != NULL && SEE(']')) || ISERR()); |
| 1832 | NEXT(); |
| 1833 | NOERR(); |
| 1834 | v->wordchrs = left; |
| 1835 | } |
| 1836 | |
| 1837 | /* |
| 1838 | * subre - allocate a subre |
| 1839 | */ |
| 1840 | static struct subre * |
| 1841 | subre(struct vars * v, |
| 1842 | int op, |
| 1843 | int flags, |
| 1844 | struct state * begin, |
| 1845 | struct state * end) |
| 1846 | { |
| 1847 | struct subre *ret; |
| 1848 | |
| 1849 | ret = v->treefree; |
| 1850 | if (ret != NULL) |
| 1851 | v->treefree = ret->left; |
| 1852 | else |
| 1853 | { |
| 1854 | ret = (struct subre *) MALLOC(sizeof(struct subre)); |
| 1855 | if (ret == NULL) |
| 1856 | { |
| 1857 | ERR(REG_ESPACE); |
| 1858 | return NULL; |
| 1859 | } |
| 1860 | ret->chain = v->treechain; |
| 1861 | v->treechain = ret; |
| 1862 | } |
| 1863 | |
| 1864 | assert(strchr("|.b(=", op) != NULL); |
| 1865 | |
| 1866 | ret->op = op; |
| 1867 | ret->flags = flags; |
| 1868 | ret->retry = 0; |
| 1869 | ret->subno = 0; |
| 1870 | ret->min = ret->max = 1; |
| 1871 | ret->left = NULL; |
| 1872 | ret->right = NULL; |
| 1873 | ret->begin = begin; |
| 1874 | ret->end = end; |
| 1875 | ZAPCNFA(ret->cnfa); |
| 1876 | |
| 1877 | return ret; |
| 1878 | } |
| 1879 | |
| 1880 | /* |
| 1881 | * freesubre - free a subRE subtree |
| 1882 | */ |
| 1883 | static void |
| 1884 | freesubre(struct vars * v, /* might be NULL */ |
| 1885 | struct subre * sr) |
| 1886 | { |
| 1887 | if (sr == NULL) |
| 1888 | return; |
| 1889 | |
| 1890 | if (sr->left != NULL) |
| 1891 | freesubre(v, sr->left); |
| 1892 | if (sr->right != NULL) |
| 1893 | freesubre(v, sr->right); |
| 1894 | |
| 1895 | freesrnode(v, sr); |
| 1896 | } |
| 1897 | |
| 1898 | /* |
| 1899 | * freesrnode - free one node in a subRE subtree |
| 1900 | */ |
| 1901 | static void |
| 1902 | freesrnode(struct vars * v, /* might be NULL */ |
| 1903 | struct subre * sr) |
| 1904 | { |
| 1905 | if (sr == NULL) |
| 1906 | return; |
| 1907 | |
| 1908 | if (!NULLCNFA(sr->cnfa)) |
| 1909 | freecnfa(&sr->cnfa); |
| 1910 | sr->flags = 0; |
| 1911 | |
| 1912 | if (v != NULL) |
| 1913 | { |
| 1914 | sr->left = v->treefree; |
| 1915 | v->treefree = sr; |
| 1916 | } |
| 1917 | else |
| 1918 | FREE(sr); |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * optst - optimize a subRE subtree |
| 1923 | */ |
| 1924 | static void |
| 1925 | optst(struct vars * v, |
| 1926 | struct subre * t) |
| 1927 | { |
| 1928 | if (t == NULL) |
| 1929 | return; |
| 1930 | |
| 1931 | /* recurse through children */ |
| 1932 | if (t->left != NULL) |
| 1933 | optst(v, t->left); |
| 1934 | if (t->right != NULL) |
| 1935 | optst(v, t->right); |
| 1936 | } |
| 1937 | |
| 1938 | /* |
| 1939 | * numst - number tree nodes (assigning retry indexes) |
| 1940 | */ |
| 1941 | static int /* next number */ |
| 1942 | numst(struct subre * t, |
| 1943 | int start) /* starting point for subtree numbers */ |
| 1944 | { |
| 1945 | int i; |
| 1946 | |
| 1947 | assert(t != NULL); |
| 1948 | |
| 1949 | i = start; |
| 1950 | t->retry = (short) i++; |
| 1951 | if (t->left != NULL) |
| 1952 | i = numst(t->left, i); |
| 1953 | if (t->right != NULL) |
| 1954 | i = numst(t->right, i); |
| 1955 | return i; |
| 1956 | } |
| 1957 | |
| 1958 | /* |
| 1959 | * markst - mark tree nodes as INUSE |
| 1960 | */ |
| 1961 | static void |
| 1962 | markst(struct subre * t) |
| 1963 | { |
| 1964 | assert(t != NULL); |
| 1965 | |
| 1966 | t->flags |= INUSE; |
| 1967 | if (t->left != NULL) |
| 1968 | markst(t->left); |
| 1969 | if (t->right != NULL) |
| 1970 | markst(t->right); |
| 1971 | } |
| 1972 | |
| 1973 | /* |
| 1974 | * cleanst - free any tree nodes not marked INUSE |
| 1975 | */ |
| 1976 | static void |
| 1977 | cleanst(struct vars * v) |
| 1978 | { |
| 1979 | struct subre *t; |
| 1980 | struct subre *next; |
| 1981 | |
| 1982 | for (t = v->treechain; t != NULL; t = next) |
| 1983 | { |
| 1984 | next = t->chain; |
| 1985 | if (!(t->flags & INUSE)) |
| 1986 | FREE(t); |
| 1987 | } |
| 1988 | v->treechain = NULL; |
| 1989 | v->treefree = NULL; /* just on general principles */ |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * nfatree - turn a subRE subtree into a tree of compacted NFAs |
| 1994 | */ |
| 1995 | static long /* optimize results from top node */ |
| 1996 | nfatree(struct vars * v, |
| 1997 | struct subre * t, |
| 1998 | FILE *f) /* for debug output */ |
| 1999 | { |
| 2000 | assert(t != NULL && t->begin != NULL); |
| 2001 | |
| 2002 | if (t->left != NULL) |
| 2003 | (DISCARD) nfatree(v, t->left, f); |
| 2004 | if (t->right != NULL) |
| 2005 | (DISCARD) nfatree(v, t->right, f); |
| 2006 | |
| 2007 | return nfanode(v, t, f); |
| 2008 | } |
| 2009 | |
| 2010 | /* |
| 2011 | * nfanode - do one NFA for nfatree |
| 2012 | */ |
| 2013 | static long /* optimize results */ |
| 2014 | nfanode(struct vars * v, |
| 2015 | struct subre * t, |
| 2016 | FILE *f) /* for debug output */ |
| 2017 | { |
| 2018 | struct nfa *nfa; |
| 2019 | long ret = 0; |
| 2020 | |
| 2021 | assert(t->begin != NULL); |
| 2022 | |
| 2023 | #ifdef REG_DEBUG |
| 2024 | if (f != NULL) |
| 2025 | { |
| 2026 | char idbuf[50]; |
| 2027 | |
| 2028 | fprintf(f, "\n\n\n========= TREE NODE %s ==========\n", |
| 2029 | stid(t, idbuf, sizeof(idbuf))); |
| 2030 | } |
| 2031 | #endif |
| 2032 | nfa = newnfa(v, v->cm, v->nfa); |
| 2033 | NOERRZ(); |
| 2034 | dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final); |
| 2035 | if (!ISERR()) |
| 2036 | { |
| 2037 | specialcolors(nfa); |
| 2038 | ret = optimize(nfa, f); |
| 2039 | } |
| 2040 | if (!ISERR()) |
| 2041 | compact(nfa, &t->cnfa); |
| 2042 | |
| 2043 | freenfa(nfa); |
| 2044 | return ret; |
| 2045 | } |
| 2046 | |
| 2047 | /* |
| 2048 | * newlacon - allocate a lookahead-constraint subRE |
| 2049 | */ |
| 2050 | static int /* lacon number */ |
| 2051 | newlacon(struct vars * v, |
| 2052 | struct state * begin, |
| 2053 | struct state * end, |
| 2054 | int pos) |
| 2055 | { |
| 2056 | int n; |
| 2057 | struct subre *sub; |
| 2058 | |
| 2059 | if (v->nlacons == 0) |
| 2060 | { |
| 2061 | v->lacons = (struct subre *) MALLOC(2 * sizeof(struct subre)); |
| 2062 | n = 1; /* skip 0th */ |
| 2063 | v->nlacons = 2; |
| 2064 | } |
| 2065 | else |
| 2066 | { |
| 2067 | v->lacons = (struct subre *) REALLOC(v->lacons, |
| 2068 | (v->nlacons + 1) * sizeof(struct subre)); |
| 2069 | n = v->nlacons++; |
| 2070 | } |
| 2071 | if (v->lacons == NULL) |
| 2072 | { |
| 2073 | ERR(REG_ESPACE); |
| 2074 | return 0; |
| 2075 | } |
| 2076 | sub = &v->lacons[n]; |
| 2077 | sub->begin = begin; |
| 2078 | sub->end = end; |
| 2079 | sub->subno = pos; |
| 2080 | ZAPCNFA(sub->cnfa); |
| 2081 | return n; |
| 2082 | } |
| 2083 | |
| 2084 | /* |
| 2085 | * freelacons - free lookahead-constraint subRE vector |
| 2086 | */ |
| 2087 | static void |
| 2088 | freelacons(struct subre * subs, |
| 2089 | int n) |
| 2090 | { |
| 2091 | struct subre *sub; |
| 2092 | int i; |
| 2093 | |
| 2094 | assert(n > 0); |
| 2095 | for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */ |
| 2096 | if (!NULLCNFA(sub->cnfa)) |
| 2097 | freecnfa(&sub->cnfa); |
| 2098 | FREE(subs); |
| 2099 | } |
| 2100 | |
| 2101 | /* |
| 2102 | * rfree - free a whole RE (insides of regfree) |
| 2103 | */ |
| 2104 | static void |
| 2105 | rfree(regex_t *re) |
| 2106 | { |
| 2107 | struct guts *g; |
| 2108 | |
| 2109 | if (re == NULL || re->re_magic != REMAGIC) |
| 2110 | return; |
| 2111 | |
| 2112 | re->re_magic = 0; /* invalidate RE */ |
| 2113 | g = (struct guts *) re->re_guts; |
| 2114 | re->re_guts = NULL; |
| 2115 | re->re_fns = NULL; |
| 2116 | g->magic = 0; |
| 2117 | freecm(&g->cmap); |
| 2118 | if (g->tree != NULL) |
| 2119 | freesubre((struct vars *) NULL, g->tree); |
| 2120 | if (g->lacons != NULL) |
| 2121 | freelacons(g->lacons, g->nlacons); |
| 2122 | if (!NULLCNFA(g->search)) |
| 2123 | freecnfa(&g->search); |
| 2124 | FREE(g); |
| 2125 | } |
| 2126 | |
| 2127 | #ifdef REG_DEBUG |
| 2128 | |
| 2129 | /* |
| 2130 | * dump - dump an RE in human-readable form |
| 2131 | */ |
| 2132 | static void |
| 2133 | dump(regex_t *re, |
| 2134 | FILE *f) |
| 2135 | { |
| 2136 | struct guts *g; |
| 2137 | int i; |
| 2138 | |
| 2139 | if (re->re_magic != REMAGIC) |
| 2140 | fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic, |
| 2141 | REMAGIC); |
| 2142 | if (re->re_guts == NULL) |
| 2143 | { |
| 2144 | fprintf(f, "NULL guts!!!\n"); |
| 2145 | return; |
| 2146 | } |
| 2147 | g = (struct guts *) re->re_guts; |
| 2148 | if (g->magic != GUTSMAGIC) |
| 2149 | fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic, |
| 2150 | GUTSMAGIC); |
| 2151 | |
| 2152 | fprintf(f, "\n\n\n========= DUMP ==========\n"); |
| 2153 | fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n", |
| 2154 | re->re_nsub, re->re_info, re->re_csize, g->ntree); |
| 2155 | |
| 2156 | dumpcolors(&g->cmap, f); |
| 2157 | if (!NULLCNFA(g->search)) |
| 2158 | { |
| 2159 | printf("\nsearch:\n"); |
| 2160 | dumpcnfa(&g->search, f); |
| 2161 | } |
| 2162 | for (i = 1; i < g->nlacons; i++) |
| 2163 | { |
| 2164 | fprintf(f, "\nla%d (%s):\n", i, |
| 2165 | (g->lacons[i].subno) ? "positive" : "negative"); |
| 2166 | dumpcnfa(&g->lacons[i].cnfa, f); |
| 2167 | } |
| 2168 | fprintf(f, "\n"); |
| 2169 | dumpst(g->tree, f, 0); |
| 2170 | } |
| 2171 | |
| 2172 | /* |
| 2173 | * dumpst - dump a subRE tree |
| 2174 | */ |
| 2175 | static void |
| 2176 | dumpst(struct subre * t, |
| 2177 | FILE *f, |
| 2178 | int nfapresent) /* is the original NFA still around? */ |
| 2179 | { |
| 2180 | if (t == NULL) |
| 2181 | fprintf(f, "null tree\n"); |
| 2182 | else |
| 2183 | stdump(t, f, nfapresent); |
| 2184 | fflush(f); |
| 2185 | } |
| 2186 | |
| 2187 | /* |
| 2188 | * stdump - recursive guts of dumpst |
| 2189 | */ |
| 2190 | static void |
| 2191 | stdump(struct subre * t, |
| 2192 | FILE *f, |
| 2193 | int nfapresent) /* is the original NFA still around? */ |
| 2194 | { |
| 2195 | char idbuf[50]; |
| 2196 | |
| 2197 | fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op); |
| 2198 | if (t->flags & LONGER) |
| 2199 | fprintf(f, " longest"); |
| 2200 | if (t->flags & SHORTER) |
| 2201 | fprintf(f, " shortest"); |
| 2202 | if (t->flags & MIXED) |
| 2203 | fprintf(f, " hasmixed"); |
| 2204 | if (t->flags & CAP) |
| 2205 | fprintf(f, " hascapture"); |
| 2206 | if (t->flags & BACKR) |
| 2207 | fprintf(f, " hasbackref"); |
| 2208 | if (!(t->flags & INUSE)) |
| 2209 | fprintf(f, " UNUSED"); |
| 2210 | if (t->subno != 0) |
| 2211 | fprintf(f, " (#%d)", t->subno); |
| 2212 | if (t->min != 1 || t->max != 1) |
| 2213 | { |
| 2214 | fprintf(f, " {%d,", t->min); |
| 2215 | if (t->max != INFINITY) |
| 2216 | fprintf(f, "%d", t->max); |
| 2217 | fprintf(f, "}"); |
| 2218 | } |
| 2219 | if (nfapresent) |
| 2220 | fprintf(f, " %ld-%ld", (long) t->begin->no, (long) t->end->no); |
| 2221 | if (t->left != NULL) |
| 2222 | fprintf(f, " L:%s", stid(t->left, idbuf, sizeof(idbuf))); |
| 2223 | if (t->right != NULL) |
| 2224 | fprintf(f, " R:%s", stid(t->right, idbuf, sizeof(idbuf))); |
| 2225 | if (!NULLCNFA(t->cnfa)) |
| 2226 | { |
| 2227 | fprintf(f, "\n"); |
| 2228 | dumpcnfa(&t->cnfa, f); |
| 2229 | fprintf(f, "\n"); |
| 2230 | } |
| 2231 | if (t->left != NULL) |
| 2232 | stdump(t->left, f, nfapresent); |
| 2233 | if (t->right != NULL) |
| 2234 | stdump(t->right, f, nfapresent); |
| 2235 | } |
| 2236 | |
| 2237 | /* |
| 2238 | * stid - identify a subtree node for dumping |
| 2239 | */ |
| 2240 | static char * /* points to buf or constant string */ |
| 2241 | stid(struct subre * t, |
| 2242 | char *buf, |
| 2243 | size_t bufsize) |
| 2244 | { |
| 2245 | /* big enough for hex int or decimal t->retry? */ |
| 2246 | if (bufsize < sizeof(int) * 2 + 3 || bufsize < sizeof(t->retry) * 3 + 1) |
| 2247 | return "unable"; |
| 2248 | if (t->retry != 0) |
| 2249 | sprintf(buf, "%d", t->retry); |
| 2250 | else |
| 2251 | sprintf(buf, "0x%x", (int) t); /* may lose bits, that's okay */ |
| 2252 | return buf; |
| 2253 | } |
| 2254 | #endif /* REG_DEBUG */ |
| 2255 | |
| 2256 | |
| 2257 | #include "regc_lex.c" |
| 2258 | #include "regc_color.c" |
| 2259 | #include "regc_nfa.c" |
| 2260 | #include "regc_cvec.c" |
| 2261 | #include "regc_locale.c" |