]>
Commit | Line | Data |
---|---|---|
1 | /* $Header$ */ | |
2 | ||
3 | /* | |
4 | * Copyright (c) 1988-1997 Sam Leffler | |
5 | * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
6 | * | |
7 | * Permission to use, copy, modify, distribute, and sell this software and | |
8 | * its documentation for any purpose is hereby granted without fee, provided | |
9 | * that (i) the above copyright notices and this permission notice appear in | |
10 | * all copies of the software and related documentation, and (ii) the names of | |
11 | * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
12 | * publicity relating to the software without the specific, prior written | |
13 | * permission of Sam Leffler and Silicon Graphics. | |
14 | * | |
15 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
16 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
17 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
18 | * | |
19 | * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
20 | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
21 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
22 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
23 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
24 | * OF THIS SOFTWARE. | |
25 | */ | |
26 | ||
27 | #include "tiffiop.h" | |
28 | #ifdef LZW_SUPPORT | |
29 | /* | |
30 | * TIFF Library. | |
31 | * Rev 5.0 Lempel-Ziv & Welch Compression Support | |
32 | * | |
33 | * This code is derived from the compress program whose code is | |
34 | * derived from software contributed to Berkeley by James A. Woods, | |
35 | * derived from original work by Spencer Thomas and Joseph Orost. | |
36 | * | |
37 | * The original Berkeley copyright notice appears below in its entirety. | |
38 | */ | |
39 | #include "tif_predict.h" | |
40 | ||
41 | #include <assert.h> | |
42 | #include <stdio.h> | |
43 | ||
44 | /* | |
45 | * NB: The 5.0 spec describes a different algorithm than Aldus | |
46 | * implements. Specifically, Aldus does code length transitions | |
47 | * one code earlier than should be done (for real LZW). | |
48 | * Earlier versions of this library implemented the correct | |
49 | * LZW algorithm, but emitted codes in a bit order opposite | |
50 | * to the TIFF spec. Thus, to maintain compatibility w/ Aldus | |
51 | * we interpret MSB-LSB ordered codes to be images written w/ | |
52 | * old versions of this library, but otherwise adhere to the | |
53 | * Aldus "off by one" algorithm. | |
54 | * | |
55 | * Future revisions to the TIFF spec are expected to "clarify this issue". | |
56 | */ | |
57 | #define LZW_COMPAT /* include backwards compatibility code */ | |
58 | /* | |
59 | * Each strip of data is supposed to be terminated by a CODE_EOI. | |
60 | * If the following #define is included, the decoder will also | |
61 | * check for end-of-strip w/o seeing this code. This makes the | |
62 | * library more robust, but also slower. | |
63 | */ | |
64 | #define LZW_CHECKEOS /* include checks for strips w/o EOI code */ | |
65 | ||
66 | #define MAXCODE(n) ((1L<<(n))-1) | |
67 | /* | |
68 | * The TIFF spec specifies that encoded bit | |
69 | * strings range from 9 to 12 bits. | |
70 | */ | |
71 | #define BITS_MIN 9 /* start with 9 bits */ | |
72 | #define BITS_MAX 12 /* max of 12 bit strings */ | |
73 | /* predefined codes */ | |
74 | #define CODE_CLEAR 256 /* code to clear string table */ | |
75 | #define CODE_EOI 257 /* end-of-information code */ | |
76 | #define CODE_FIRST 258 /* first free code entry */ | |
77 | #define CODE_MAX MAXCODE(BITS_MAX) | |
78 | #define HSIZE 9001L /* 91% occupancy */ | |
79 | #define HSHIFT (13-8) | |
80 | #ifdef LZW_COMPAT | |
81 | /* NB: +1024 is for compatibility with old files */ | |
82 | #define CSIZE (MAXCODE(BITS_MAX)+1024L) | |
83 | #else | |
84 | #define CSIZE (MAXCODE(BITS_MAX)+1L) | |
85 | #endif | |
86 | ||
87 | /* | |
88 | * State block for each open TIFF file using LZW | |
89 | * compression/decompression. Note that the predictor | |
90 | * state block must be first in this data structure. | |
91 | */ | |
92 | typedef struct { | |
93 | TIFFPredictorState predict; /* predictor super class */ | |
94 | ||
95 | u_short nbits; /* # of bits/code */ | |
96 | u_short maxcode; /* maximum code for lzw_nbits */ | |
97 | u_short free_ent; /* next free entry in hash table */ | |
98 | long nextdata; /* next bits of i/o */ | |
99 | long nextbits; /* # of valid bits in lzw_nextdata */ | |
100 | } LZWBaseState; | |
101 | ||
102 | #define lzw_nbits base.nbits | |
103 | #define lzw_maxcode base.maxcode | |
104 | #define lzw_free_ent base.free_ent | |
105 | #define lzw_nextdata base.nextdata | |
106 | #define lzw_nextbits base.nextbits | |
107 | ||
108 | /* | |
109 | * Decoding-specific state. | |
110 | */ | |
111 | typedef struct code_ent { | |
112 | struct code_ent *next; | |
113 | u_short length; /* string len, including this token */ | |
114 | u_char value; /* data value */ | |
115 | u_char firstchar; /* first token of string */ | |
116 | } code_t; | |
117 | ||
118 | typedef int (*decodeFunc)(TIFF*, tidata_t, tsize_t, tsample_t); | |
119 | ||
120 | typedef struct { | |
121 | LZWBaseState base; | |
122 | long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */ | |
123 | long dec_restart; /* restart count */ | |
124 | #ifdef LZW_CHECKEOS | |
125 | long dec_bitsleft; /* available bits in raw data */ | |
126 | #endif | |
127 | decodeFunc dec_decode; /* regular or backwards compatible */ | |
128 | code_t* dec_codep; /* current recognized code */ | |
129 | code_t* dec_oldcodep; /* previously recognized code */ | |
130 | code_t* dec_free_entp; /* next free entry */ | |
131 | code_t* dec_maxcodep; /* max available entry */ | |
132 | code_t* dec_codetab; /* kept separate for small machines */ | |
133 | } LZWDecodeState; | |
134 | ||
135 | /* | |
136 | * Encoding-specific state. | |
137 | */ | |
138 | typedef uint16 hcode_t; /* codes fit in 16 bits */ | |
139 | typedef struct { | |
140 | long hash; | |
141 | hcode_t code; | |
142 | } hash_t; | |
143 | ||
144 | typedef struct { | |
145 | LZWBaseState base; | |
146 | int enc_oldcode; /* last code encountered */ | |
147 | long enc_checkpoint; /* point at which to clear table */ | |
148 | #define CHECK_GAP 10000 /* enc_ratio check interval */ | |
149 | long enc_ratio; /* current compression ratio */ | |
150 | long enc_incount; /* (input) data bytes encoded */ | |
151 | long enc_outcount; /* encoded (output) bytes */ | |
152 | tidata_t enc_rawlimit; /* bound on tif_rawdata buffer */ | |
153 | hash_t* enc_hashtab; /* kept separate for small machines */ | |
154 | } LZWEncodeState; | |
155 | ||
156 | #define LZWState(tif) ((LZWBaseState*) (tif)->tif_data) | |
157 | #define DecoderState(tif) ((LZWDecodeState*) LZWState(tif)) | |
158 | #define EncoderState(tif) ((LZWEncodeState*) LZWState(tif)) | |
159 | ||
160 | static int LZWDecode(TIFF*, tidata_t, tsize_t, tsample_t); | |
161 | #ifdef LZW_COMPAT | |
162 | static int LZWDecodeCompat(TIFF*, tidata_t, tsize_t, tsample_t); | |
163 | #endif | |
164 | static void cl_hash(LZWEncodeState*); | |
165 | ||
166 | /* | |
167 | * LZW Decoder. | |
168 | */ | |
169 | ||
170 | #ifdef LZW_CHECKEOS | |
171 | /* | |
172 | * This check shouldn't be necessary because each | |
173 | * strip is suppose to be terminated with CODE_EOI. | |
174 | */ | |
175 | #define NextCode(_tif, _sp, _bp, _code, _get) { \ | |
176 | if ((_sp)->dec_bitsleft < nbits) { \ | |
177 | TIFFWarning(_tif->tif_name, \ | |
178 | "LZWDecode: Strip %d not terminated with EOI code", \ | |
179 | _tif->tif_curstrip); \ | |
180 | _code = CODE_EOI; \ | |
181 | } else { \ | |
182 | _get(_sp,_bp,_code); \ | |
183 | (_sp)->dec_bitsleft -= nbits; \ | |
184 | } \ | |
185 | } | |
186 | #else | |
187 | #define NextCode(tif, sp, bp, code, get) get(sp, bp, code) | |
188 | #endif | |
189 | ||
190 | static int | |
191 | LZWSetupDecode(TIFF* tif) | |
192 | { | |
193 | LZWDecodeState* sp = DecoderState(tif); | |
194 | static const char module[] = " LZWSetupDecode"; | |
195 | int code; | |
196 | ||
197 | assert(sp != NULL); | |
198 | if (sp->dec_codetab == NULL) { | |
199 | sp->dec_codetab = (code_t*)_TIFFmalloc(CSIZE*sizeof (code_t)); | |
200 | if (sp->dec_codetab == NULL) { | |
201 | TIFFError(module, "No space for LZW code table"); | |
202 | return (0); | |
203 | } | |
204 | /* | |
205 | * Pre-load the table. | |
206 | */ | |
207 | for (code = 255; code >= 0; code--) { | |
208 | sp->dec_codetab[code].value = code; | |
209 | sp->dec_codetab[code].firstchar = code; | |
210 | sp->dec_codetab[code].length = 1; | |
211 | sp->dec_codetab[code].next = NULL; | |
212 | } | |
213 | } | |
214 | return (1); | |
215 | } | |
216 | ||
217 | /* | |
218 | * Setup state for decoding a strip. | |
219 | */ | |
220 | static int | |
221 | LZWPreDecode(TIFF* tif, tsample_t s) | |
222 | { | |
223 | LZWDecodeState *sp = DecoderState(tif); | |
224 | ||
225 | (void) s; | |
226 | assert(sp != NULL); | |
227 | /* | |
228 | * Check for old bit-reversed codes. | |
229 | */ | |
230 | if (tif->tif_rawdata[0] == 0 && (tif->tif_rawdata[1] & 0x1)) { | |
231 | #ifdef LZW_COMPAT | |
232 | if (!sp->dec_decode) { | |
233 | TIFFWarning(tif->tif_name, | |
234 | "Old-style LZW codes, convert file"); | |
235 | /* | |
236 | * Override default decoding methods with | |
237 | * ones that deal with the old coding. | |
238 | * Otherwise the predictor versions set | |
239 | * above will call the compatibility routines | |
240 | * through the dec_decode method. | |
241 | */ | |
242 | tif->tif_decoderow = LZWDecodeCompat; | |
243 | tif->tif_decodestrip = LZWDecodeCompat; | |
244 | tif->tif_decodetile = LZWDecodeCompat; | |
245 | /* | |
246 | * If doing horizontal differencing, must | |
247 | * re-setup the predictor logic since we | |
248 | * switched the basic decoder methods... | |
249 | */ | |
250 | (*tif->tif_setupdecode)(tif); | |
251 | sp->dec_decode = LZWDecodeCompat; | |
252 | } | |
253 | sp->lzw_maxcode = MAXCODE(BITS_MIN); | |
254 | #else /* !LZW_COMPAT */ | |
255 | if (!sp->dec_decode) { | |
256 | TIFFError(tif->tif_name, | |
257 | "Old-style LZW codes not supported"); | |
258 | sp->dec_decode = LZWDecode; | |
259 | } | |
260 | return (0); | |
261 | #endif/* !LZW_COMPAT */ | |
262 | } else { | |
263 | sp->lzw_maxcode = MAXCODE(BITS_MIN)-1; | |
264 | sp->dec_decode = LZWDecode; | |
265 | } | |
266 | sp->lzw_nbits = BITS_MIN; | |
267 | sp->lzw_nextbits = 0; | |
268 | sp->lzw_nextdata = 0; | |
269 | ||
270 | sp->dec_restart = 0; | |
271 | sp->dec_nbitsmask = MAXCODE(BITS_MIN); | |
272 | #ifdef LZW_CHECKEOS | |
273 | sp->dec_bitsleft = tif->tif_rawcc << 3; | |
274 | #endif | |
275 | sp->dec_free_entp = sp->dec_codetab + CODE_FIRST; | |
276 | /* | |
277 | * Zero entries that are not yet filled in. We do | |
278 | * this to guard against bogus input data that causes | |
279 | * us to index into undefined entries. If you can | |
280 | * come up with a way to safely bounds-check input codes | |
281 | * while decoding then you can remove this operation. | |
282 | */ | |
283 | _TIFFmemset(sp->dec_free_entp, 0, (CSIZE-CODE_FIRST)*sizeof (code_t)); | |
284 | sp->dec_oldcodep = &sp->dec_codetab[-1]; | |
285 | sp->dec_maxcodep = &sp->dec_codetab[sp->dec_nbitsmask-1]; | |
286 | return (1); | |
287 | } | |
288 | ||
289 | /* | |
290 | * Decode a "hunk of data". | |
291 | */ | |
292 | #define GetNextCode(sp, bp, code) { \ | |
293 | nextdata = (nextdata<<8) | *(bp)++; \ | |
294 | nextbits += 8; \ | |
295 | if (nextbits < nbits) { \ | |
296 | nextdata = (nextdata<<8) | *(bp)++; \ | |
297 | nextbits += 8; \ | |
298 | } \ | |
299 | code = (hcode_t)((nextdata >> (nextbits-nbits)) & nbitsmask); \ | |
300 | nextbits -= nbits; \ | |
301 | } | |
302 | ||
303 | static void | |
304 | codeLoop(TIFF* tif) | |
305 | { | |
306 | TIFFError(tif->tif_name, | |
307 | "LZWDecode: Bogus encoding, loop in the code table; scanline %d", | |
308 | tif->tif_row); | |
309 | } | |
310 | ||
311 | static int | |
312 | LZWDecode(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s) | |
313 | { | |
314 | LZWDecodeState *sp = DecoderState(tif); | |
315 | char *op = (char*) op0; | |
316 | long occ = (long) occ0; | |
317 | char *tp; | |
318 | u_char *bp; | |
319 | hcode_t code; | |
320 | int len; | |
321 | long nbits, nextbits, nextdata, nbitsmask; | |
322 | code_t *codep, *free_entp, *maxcodep, *oldcodep; | |
323 | ||
324 | (void) s; | |
325 | assert(sp != NULL); | |
326 | /* | |
327 | * Restart interrupted output operation. | |
328 | */ | |
329 | if (sp->dec_restart) { | |
330 | long residue; | |
331 | ||
332 | codep = sp->dec_codep; | |
333 | residue = codep->length - sp->dec_restart; | |
334 | if (residue > occ) { | |
335 | /* | |
336 | * Residue from previous decode is sufficient | |
337 | * to satisfy decode request. Skip to the | |
338 | * start of the decoded string, place decoded | |
339 | * values in the output buffer, and return. | |
340 | */ | |
341 | sp->dec_restart += occ; | |
342 | do { | |
343 | codep = codep->next; | |
344 | } while (--residue > occ && codep); | |
345 | if (codep) { | |
346 | tp = op + occ; | |
347 | do { | |
348 | *--tp = codep->value; | |
349 | codep = codep->next; | |
350 | } while (--occ && codep); | |
351 | } | |
352 | return (1); | |
353 | } | |
354 | /* | |
355 | * Residue satisfies only part of the decode request. | |
356 | */ | |
357 | op += residue, occ -= residue; | |
358 | tp = op; | |
359 | do { | |
360 | int t; | |
361 | --tp; | |
362 | t = codep->value; | |
363 | codep = codep->next; | |
364 | *tp = t; | |
365 | } while (--residue && codep); | |
366 | sp->dec_restart = 0; | |
367 | } | |
368 | ||
369 | bp = (u_char *)tif->tif_rawcp; | |
370 | nbits = sp->lzw_nbits; | |
371 | nextdata = sp->lzw_nextdata; | |
372 | nextbits = sp->lzw_nextbits; | |
373 | nbitsmask = sp->dec_nbitsmask; | |
374 | oldcodep = sp->dec_oldcodep; | |
375 | free_entp = sp->dec_free_entp; | |
376 | maxcodep = sp->dec_maxcodep; | |
377 | ||
378 | while (occ > 0) { | |
379 | NextCode(tif, sp, bp, code, GetNextCode); | |
380 | if (code == CODE_EOI) | |
381 | break; | |
382 | if (code == CODE_CLEAR) { | |
383 | free_entp = sp->dec_codetab + CODE_FIRST; | |
384 | nbits = BITS_MIN; | |
385 | nbitsmask = MAXCODE(BITS_MIN); | |
386 | maxcodep = sp->dec_codetab + nbitsmask-1; | |
387 | NextCode(tif, sp, bp, code, GetNextCode); | |
388 | if (code == CODE_EOI) | |
389 | break; | |
390 | *op++ = code, occ--; | |
391 | oldcodep = sp->dec_codetab + code; | |
392 | continue; | |
393 | } | |
394 | codep = sp->dec_codetab + code; | |
395 | ||
396 | /* | |
397 | * Add the new entry to the code table. | |
398 | */ | |
399 | assert(&sp->dec_codetab[0] <= free_entp && free_entp < &sp->dec_codetab[CSIZE]); | |
400 | free_entp->next = oldcodep; | |
401 | free_entp->firstchar = free_entp->next->firstchar; | |
402 | free_entp->length = free_entp->next->length+1; | |
403 | free_entp->value = (codep < free_entp) ? | |
404 | codep->firstchar : free_entp->firstchar; | |
405 | if (++free_entp > maxcodep) { | |
406 | if (++nbits > BITS_MAX) /* should not happen */ | |
407 | nbits = BITS_MAX; | |
408 | nbitsmask = MAXCODE(nbits); | |
409 | maxcodep = sp->dec_codetab + nbitsmask-1; | |
410 | } | |
411 | oldcodep = codep; | |
412 | if (code >= 256) { | |
413 | /* | |
414 | * Code maps to a string, copy string | |
415 | * value to output (written in reverse). | |
416 | */ | |
417 | if (codep->length > occ) { | |
418 | /* | |
419 | * String is too long for decode buffer, | |
420 | * locate portion that will fit, copy to | |
421 | * the decode buffer, and setup restart | |
422 | * logic for the next decoding call. | |
423 | */ | |
424 | sp->dec_codep = codep; | |
425 | do { | |
426 | codep = codep->next; | |
427 | } while (codep && codep->length > occ); | |
428 | if (codep) { | |
429 | sp->dec_restart = occ; | |
430 | tp = op + occ; | |
431 | do { | |
432 | *--tp = codep->value; | |
433 | codep = codep->next; | |
434 | } while (--occ && codep); | |
435 | if (codep) | |
436 | codeLoop(tif); | |
437 | } | |
438 | break; | |
439 | } | |
440 | len = codep->length; | |
441 | tp = op + len; | |
442 | do { | |
443 | int t; | |
444 | --tp; | |
445 | t = codep->value; | |
446 | codep = codep->next; | |
447 | *tp = t; | |
448 | } while (codep && tp > op); | |
449 | if (codep) { | |
450 | codeLoop(tif); | |
451 | break; | |
452 | } | |
453 | op += len, occ -= len; | |
454 | } else | |
455 | *op++ = code, occ--; | |
456 | } | |
457 | ||
458 | tif->tif_rawcp = (tidata_t) bp; | |
459 | sp->lzw_nbits = (u_short) nbits; | |
460 | sp->lzw_nextdata = nextdata; | |
461 | sp->lzw_nextbits = nextbits; | |
462 | sp->dec_nbitsmask = nbitsmask; | |
463 | sp->dec_oldcodep = oldcodep; | |
464 | sp->dec_free_entp = free_entp; | |
465 | sp->dec_maxcodep = maxcodep; | |
466 | ||
467 | if (occ > 0) { | |
468 | TIFFError(tif->tif_name, | |
469 | "LZWDecode: Not enough data at scanline %d (short %d bytes)", | |
470 | tif->tif_row, occ); | |
471 | return (0); | |
472 | } | |
473 | return (1); | |
474 | } | |
475 | ||
476 | #ifdef LZW_COMPAT | |
477 | /* | |
478 | * Decode a "hunk of data" for old images. | |
479 | */ | |
480 | #define GetNextCodeCompat(sp, bp, code) { \ | |
481 | nextdata |= (u_long) *(bp)++ << nextbits; \ | |
482 | nextbits += 8; \ | |
483 | if (nextbits < nbits) { \ | |
484 | nextdata |= (u_long) *(bp)++ << nextbits; \ | |
485 | nextbits += 8; \ | |
486 | } \ | |
487 | code = (hcode_t)(nextdata & nbitsmask); \ | |
488 | nextdata >>= nbits; \ | |
489 | nextbits -= nbits; \ | |
490 | } | |
491 | ||
492 | static int | |
493 | LZWDecodeCompat(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s) | |
494 | { | |
495 | LZWDecodeState *sp = DecoderState(tif); | |
496 | char *op = (char*) op0; | |
497 | long occ = (long) occ0; | |
498 | char *tp; | |
499 | u_char *bp; | |
500 | int code, nbits; | |
501 | long nextbits, nextdata, nbitsmask; | |
502 | code_t *codep, *free_entp, *maxcodep, *oldcodep; | |
503 | ||
504 | (void) s; | |
505 | assert(sp != NULL); | |
506 | /* | |
507 | * Restart interrupted output operation. | |
508 | */ | |
509 | if (sp->dec_restart) { | |
510 | long residue; | |
511 | ||
512 | codep = sp->dec_codep; | |
513 | residue = codep->length - sp->dec_restart; | |
514 | if (residue > occ) { | |
515 | /* | |
516 | * Residue from previous decode is sufficient | |
517 | * to satisfy decode request. Skip to the | |
518 | * start of the decoded string, place decoded | |
519 | * values in the output buffer, and return. | |
520 | */ | |
521 | sp->dec_restart += occ; | |
522 | do { | |
523 | codep = codep->next; | |
524 | } while (--residue > occ); | |
525 | tp = op + occ; | |
526 | do { | |
527 | *--tp = codep->value; | |
528 | codep = codep->next; | |
529 | } while (--occ); | |
530 | return (1); | |
531 | } | |
532 | /* | |
533 | * Residue satisfies only part of the decode request. | |
534 | */ | |
535 | op += residue, occ -= residue; | |
536 | tp = op; | |
537 | do { | |
538 | *--tp = codep->value; | |
539 | codep = codep->next; | |
540 | } while (--residue); | |
541 | sp->dec_restart = 0; | |
542 | } | |
543 | ||
544 | bp = (u_char *)tif->tif_rawcp; | |
545 | nbits = sp->lzw_nbits; | |
546 | nextdata = sp->lzw_nextdata; | |
547 | nextbits = sp->lzw_nextbits; | |
548 | nbitsmask = sp->dec_nbitsmask; | |
549 | oldcodep = sp->dec_oldcodep; | |
550 | free_entp = sp->dec_free_entp; | |
551 | maxcodep = sp->dec_maxcodep; | |
552 | ||
553 | while (occ > 0) { | |
554 | NextCode(tif, sp, bp, code, GetNextCodeCompat); | |
555 | if (code == CODE_EOI) | |
556 | break; | |
557 | if (code == CODE_CLEAR) { | |
558 | free_entp = sp->dec_codetab + CODE_FIRST; | |
559 | nbits = BITS_MIN; | |
560 | nbitsmask = MAXCODE(BITS_MIN); | |
561 | maxcodep = sp->dec_codetab + nbitsmask; | |
562 | NextCode(tif, sp, bp, code, GetNextCodeCompat); | |
563 | if (code == CODE_EOI) | |
564 | break; | |
565 | *op++ = code, occ--; | |
566 | oldcodep = sp->dec_codetab + code; | |
567 | continue; | |
568 | } | |
569 | codep = sp->dec_codetab + code; | |
570 | ||
571 | /* | |
572 | * Add the new entry to the code table. | |
573 | */ | |
574 | assert(&sp->dec_codetab[0] <= free_entp && free_entp < &sp->dec_codetab[CSIZE]); | |
575 | free_entp->next = oldcodep; | |
576 | free_entp->firstchar = free_entp->next->firstchar; | |
577 | free_entp->length = free_entp->next->length+1; | |
578 | free_entp->value = (codep < free_entp) ? | |
579 | codep->firstchar : free_entp->firstchar; | |
580 | if (++free_entp > maxcodep) { | |
581 | if (++nbits > BITS_MAX) /* should not happen */ | |
582 | nbits = BITS_MAX; | |
583 | nbitsmask = MAXCODE(nbits); | |
584 | maxcodep = sp->dec_codetab + nbitsmask; | |
585 | } | |
586 | oldcodep = codep; | |
587 | if (code >= 256) { | |
588 | /* | |
589 | * Code maps to a string, copy string | |
590 | * value to output (written in reverse). | |
591 | */ | |
592 | if (codep->length > occ) { | |
593 | /* | |
594 | * String is too long for decode buffer, | |
595 | * locate portion that will fit, copy to | |
596 | * the decode buffer, and setup restart | |
597 | * logic for the next decoding call. | |
598 | */ | |
599 | sp->dec_codep = codep; | |
600 | do { | |
601 | codep = codep->next; | |
602 | } while (codep->length > occ); | |
603 | sp->dec_restart = occ; | |
604 | tp = op + occ; | |
605 | do { | |
606 | *--tp = codep->value; | |
607 | codep = codep->next; | |
608 | } while (--occ); | |
609 | break; | |
610 | } | |
611 | op += codep->length, occ -= codep->length; | |
612 | tp = op; | |
613 | do { | |
614 | *--tp = codep->value; | |
615 | } while( (codep = codep->next) != NULL); | |
616 | } else | |
617 | *op++ = code, occ--; | |
618 | } | |
619 | ||
620 | tif->tif_rawcp = (tidata_t) bp; | |
621 | sp->lzw_nbits = nbits; | |
622 | sp->lzw_nextdata = nextdata; | |
623 | sp->lzw_nextbits = nextbits; | |
624 | sp->dec_nbitsmask = nbitsmask; | |
625 | sp->dec_oldcodep = oldcodep; | |
626 | sp->dec_free_entp = free_entp; | |
627 | sp->dec_maxcodep = maxcodep; | |
628 | ||
629 | if (occ > 0) { | |
630 | TIFFError(tif->tif_name, | |
631 | "LZWDecodeCompat: Not enough data at scanline %d (short %d bytes)", | |
632 | tif->tif_row, occ); | |
633 | return (0); | |
634 | } | |
635 | return (1); | |
636 | } | |
637 | #endif /* LZW_COMPAT */ | |
638 | ||
639 | /* | |
640 | * LZW Encoding. | |
641 | */ | |
642 | ||
643 | static int | |
644 | LZWSetupEncode(TIFF* tif) | |
645 | { | |
646 | LZWEncodeState* sp = EncoderState(tif); | |
647 | static const char module[] = "LZWSetupEncode"; | |
648 | ||
649 | assert(sp != NULL); | |
650 | sp->enc_hashtab = (hash_t*) _TIFFmalloc(HSIZE*sizeof (hash_t)); | |
651 | if (sp->enc_hashtab == NULL) { | |
652 | TIFFError(module, "No space for LZW hash table"); | |
653 | return (0); | |
654 | } | |
655 | return (1); | |
656 | } | |
657 | ||
658 | /* | |
659 | * Reset encoding state at the start of a strip. | |
660 | */ | |
661 | static int | |
662 | LZWPreEncode(TIFF* tif, tsample_t s) | |
663 | { | |
664 | LZWEncodeState *sp = EncoderState(tif); | |
665 | ||
666 | (void) s; | |
667 | assert(sp != NULL); | |
668 | sp->lzw_nbits = BITS_MIN; | |
669 | sp->lzw_maxcode = MAXCODE(BITS_MIN); | |
670 | sp->lzw_free_ent = CODE_FIRST; | |
671 | sp->lzw_nextbits = 0; | |
672 | sp->lzw_nextdata = 0; | |
673 | sp->enc_checkpoint = CHECK_GAP; | |
674 | sp->enc_ratio = 0; | |
675 | sp->enc_incount = 0; | |
676 | sp->enc_outcount = 0; | |
677 | /* | |
678 | * The 4 here insures there is space for 2 max-sized | |
679 | * codes in LZWEncode and LZWPostDecode. | |
680 | */ | |
681 | sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize-1 - 4; | |
682 | cl_hash(sp); /* clear hash table */ | |
683 | sp->enc_oldcode = (hcode_t) -1; /* generates CODE_CLEAR in LZWEncode */ | |
684 | return (1); | |
685 | } | |
686 | ||
687 | #define CALCRATIO(sp, rat) { \ | |
688 | if (incount > 0x007fffff) { /* NB: shift will overflow */\ | |
689 | rat = outcount >> 8; \ | |
690 | rat = (rat == 0 ? 0x7fffffff : incount/rat); \ | |
691 | } else \ | |
692 | rat = (incount<<8) / outcount; \ | |
693 | } | |
694 | #define PutNextCode(op, c) { \ | |
695 | nextdata = (nextdata << nbits) | c; \ | |
696 | nextbits += nbits; \ | |
697 | *op++ = (u_char)(nextdata >> (nextbits-8)); \ | |
698 | nextbits -= 8; \ | |
699 | if (nextbits >= 8) { \ | |
700 | *op++ = (u_char)(nextdata >> (nextbits-8)); \ | |
701 | nextbits -= 8; \ | |
702 | } \ | |
703 | outcount += nbits; \ | |
704 | } | |
705 | ||
706 | /* | |
707 | * Encode a chunk of pixels. | |
708 | * | |
709 | * Uses an open addressing double hashing (no chaining) on the | |
710 | * prefix code/next character combination. We do a variant of | |
711 | * Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's | |
712 | * relatively-prime secondary probe. Here, the modular division | |
713 | * first probe is gives way to a faster exclusive-or manipulation. | |
714 | * Also do block compression with an adaptive reset, whereby the | |
715 | * code table is cleared when the compression ratio decreases, | |
716 | * but after the table fills. The variable-length output codes | |
717 | * are re-sized at this point, and a CODE_CLEAR is generated | |
718 | * for the decoder. | |
719 | */ | |
720 | static int | |
721 | LZWEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
722 | { | |
723 | register LZWEncodeState *sp = EncoderState(tif); | |
724 | register long fcode; | |
725 | register hash_t *hp; | |
726 | register int h, c; | |
727 | hcode_t ent; | |
728 | long disp; | |
729 | long incount, outcount, checkpoint; | |
730 | long nextdata, nextbits; | |
731 | int free_ent, maxcode, nbits; | |
732 | tidata_t op, limit; | |
733 | ||
734 | (void) s; | |
735 | if (sp == NULL) | |
736 | return (0); | |
737 | /* | |
738 | * Load local state. | |
739 | */ | |
740 | incount = sp->enc_incount; | |
741 | outcount = sp->enc_outcount; | |
742 | checkpoint = sp->enc_checkpoint; | |
743 | nextdata = sp->lzw_nextdata; | |
744 | nextbits = sp->lzw_nextbits; | |
745 | free_ent = sp->lzw_free_ent; | |
746 | maxcode = sp->lzw_maxcode; | |
747 | nbits = sp->lzw_nbits; | |
748 | op = tif->tif_rawcp; | |
749 | limit = sp->enc_rawlimit; | |
750 | ent = sp->enc_oldcode; | |
751 | ||
752 | if (ent == (hcode_t) -1 && cc > 0) { | |
753 | /* | |
754 | * NB: This is safe because it can only happen | |
755 | * at the start of a strip where we know there | |
756 | * is space in the data buffer. | |
757 | */ | |
758 | PutNextCode(op, CODE_CLEAR); | |
759 | ent = *bp++; cc--; incount++; | |
760 | } | |
761 | while (cc > 0) { | |
762 | c = *bp++; cc--; incount++; | |
763 | fcode = ((long)c << BITS_MAX) + ent; | |
764 | h = (c << HSHIFT) ^ ent; /* xor hashing */ | |
765 | #ifdef _WINDOWS | |
766 | /* | |
767 | * Check hash index for an overflow. | |
768 | */ | |
769 | if (h >= HSIZE) | |
770 | h -= HSIZE; | |
771 | #endif | |
772 | hp = &sp->enc_hashtab[h]; | |
773 | if (hp->hash == fcode) { | |
774 | ent = hp->code; | |
775 | continue; | |
776 | } | |
777 | if (hp->hash >= 0) { | |
778 | /* | |
779 | * Primary hash failed, check secondary hash. | |
780 | */ | |
781 | disp = HSIZE - h; | |
782 | if (h == 0) | |
783 | disp = 1; | |
784 | do { | |
785 | /* | |
786 | * Avoid pointer arithmetic 'cuz of | |
787 | * wraparound problems with segments. | |
788 | */ | |
789 | if ((h -= disp) < 0) | |
790 | h += HSIZE; | |
791 | hp = &sp->enc_hashtab[h]; | |
792 | if (hp->hash == fcode) { | |
793 | ent = hp->code; | |
794 | goto hit; | |
795 | } | |
796 | } while (hp->hash >= 0); | |
797 | } | |
798 | /* | |
799 | * New entry, emit code and add to table. | |
800 | */ | |
801 | /* | |
802 | * Verify there is space in the buffer for the code | |
803 | * and any potential Clear code that might be emitted | |
804 | * below. The value of limit is setup so that there | |
805 | * are at least 4 bytes free--room for 2 codes. | |
806 | */ | |
807 | if (op > limit) { | |
808 | tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata); | |
809 | TIFFFlushData1(tif); | |
810 | op = tif->tif_rawdata; | |
811 | } | |
812 | PutNextCode(op, ent); | |
813 | ent = c; | |
814 | hp->code = free_ent++; | |
815 | hp->hash = fcode; | |
816 | if (free_ent == CODE_MAX-1) { | |
817 | /* table is full, emit clear code and reset */ | |
818 | cl_hash(sp); | |
819 | sp->enc_ratio = 0; | |
820 | incount = 0; | |
821 | outcount = 0; | |
822 | free_ent = CODE_FIRST; | |
823 | PutNextCode(op, CODE_CLEAR); | |
824 | nbits = BITS_MIN; | |
825 | maxcode = MAXCODE(BITS_MIN); | |
826 | } else { | |
827 | /* | |
828 | * If the next entry is going to be too big for | |
829 | * the code size, then increase it, if possible. | |
830 | */ | |
831 | if (free_ent > maxcode) { | |
832 | nbits++; | |
833 | assert(nbits <= BITS_MAX); | |
834 | maxcode = (int) MAXCODE(nbits); | |
835 | } else if (incount >= checkpoint) { | |
836 | long rat; | |
837 | /* | |
838 | * Check compression ratio and, if things seem | |
839 | * to be slipping, clear the hash table and | |
840 | * reset state. The compression ratio is a | |
841 | * 24+8-bit fractional number. | |
842 | */ | |
843 | checkpoint = incount+CHECK_GAP; | |
844 | CALCRATIO(sp, rat); | |
845 | if (rat <= sp->enc_ratio) { | |
846 | cl_hash(sp); | |
847 | sp->enc_ratio = 0; | |
848 | incount = 0; | |
849 | outcount = 0; | |
850 | free_ent = CODE_FIRST; | |
851 | PutNextCode(op, CODE_CLEAR); | |
852 | nbits = BITS_MIN; | |
853 | maxcode = MAXCODE(BITS_MIN); | |
854 | } else | |
855 | sp->enc_ratio = rat; | |
856 | } | |
857 | } | |
858 | hit: | |
859 | ; | |
860 | } | |
861 | ||
862 | /* | |
863 | * Restore global state. | |
864 | */ | |
865 | sp->enc_incount = incount; | |
866 | sp->enc_outcount = outcount; | |
867 | sp->enc_checkpoint = checkpoint; | |
868 | sp->enc_oldcode = ent; | |
869 | sp->lzw_nextdata = nextdata; | |
870 | sp->lzw_nextbits = nextbits; | |
871 | sp->lzw_free_ent = free_ent; | |
872 | sp->lzw_maxcode = maxcode; | |
873 | sp->lzw_nbits = nbits; | |
874 | tif->tif_rawcp = op; | |
875 | return (1); | |
876 | } | |
877 | ||
878 | /* | |
879 | * Finish off an encoded strip by flushing the last | |
880 | * string and tacking on an End Of Information code. | |
881 | */ | |
882 | static int | |
883 | LZWPostEncode(TIFF* tif) | |
884 | { | |
885 | register LZWEncodeState *sp = EncoderState(tif); | |
886 | tidata_t op = tif->tif_rawcp; | |
887 | long nextbits = sp->lzw_nextbits; | |
888 | long nextdata = sp->lzw_nextdata; | |
889 | long outcount = sp->enc_outcount; | |
890 | int nbits = sp->lzw_nbits; | |
891 | ||
892 | if (op > sp->enc_rawlimit) { | |
893 | tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata); | |
894 | TIFFFlushData1(tif); | |
895 | op = tif->tif_rawdata; | |
896 | } | |
897 | if (sp->enc_oldcode != (hcode_t) -1) { | |
898 | PutNextCode(op, sp->enc_oldcode); | |
899 | sp->enc_oldcode = (hcode_t) -1; | |
900 | } | |
901 | PutNextCode(op, CODE_EOI); | |
902 | if (nextbits > 0) | |
903 | *op++ = (u_char)(nextdata << (8-nextbits)); | |
904 | tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata); | |
905 | return (1); | |
906 | } | |
907 | ||
908 | /* | |
909 | * Reset encoding hash table. | |
910 | */ | |
911 | static void | |
912 | cl_hash(LZWEncodeState* sp) | |
913 | { | |
914 | register hash_t *hp = &sp->enc_hashtab[HSIZE-1]; | |
915 | register long i = HSIZE-8; | |
916 | ||
917 | do { | |
918 | i -= 8; | |
919 | hp[-7].hash = -1; | |
920 | hp[-6].hash = -1; | |
921 | hp[-5].hash = -1; | |
922 | hp[-4].hash = -1; | |
923 | hp[-3].hash = -1; | |
924 | hp[-2].hash = -1; | |
925 | hp[-1].hash = -1; | |
926 | hp[ 0].hash = -1; | |
927 | hp -= 8; | |
928 | } while (i >= 0); | |
929 | for (i += 8; i > 0; i--, hp--) | |
930 | hp->hash = -1; | |
931 | } | |
932 | ||
933 | static void | |
934 | LZWCleanup(TIFF* tif) | |
935 | { | |
936 | if (tif->tif_data) { | |
937 | if (tif->tif_mode == O_RDONLY) { | |
938 | if (DecoderState(tif)->dec_codetab) | |
939 | _TIFFfree(DecoderState(tif)->dec_codetab); | |
940 | } else { | |
941 | if (EncoderState(tif)->enc_hashtab) | |
942 | _TIFFfree(EncoderState(tif)->enc_hashtab); | |
943 | } | |
944 | _TIFFfree(tif->tif_data); | |
945 | tif->tif_data = NULL; | |
946 | } | |
947 | } | |
948 | ||
949 | int | |
950 | TIFFInitLZW(TIFF* tif, int scheme) | |
951 | { | |
952 | assert(scheme == COMPRESSION_LZW); | |
953 | /* | |
954 | * Allocate state block so tag methods have storage to record values. | |
955 | */ | |
956 | if (tif->tif_mode == O_RDONLY) { | |
957 | tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LZWDecodeState)); | |
958 | if (tif->tif_data == NULL) | |
959 | goto bad; | |
960 | DecoderState(tif)->dec_codetab = NULL; | |
961 | DecoderState(tif)->dec_decode = NULL; | |
962 | } else { | |
963 | tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LZWEncodeState)); | |
964 | if (tif->tif_data == NULL) | |
965 | goto bad; | |
966 | EncoderState(tif)->enc_hashtab = NULL; | |
967 | } | |
968 | /* | |
969 | * Install codec methods. | |
970 | */ | |
971 | tif->tif_setupdecode = LZWSetupDecode; | |
972 | tif->tif_predecode = LZWPreDecode; | |
973 | tif->tif_decoderow = LZWDecode; | |
974 | tif->tif_decodestrip = LZWDecode; | |
975 | tif->tif_decodetile = LZWDecode; | |
976 | tif->tif_setupencode = LZWSetupEncode; | |
977 | tif->tif_preencode = LZWPreEncode; | |
978 | tif->tif_postencode = LZWPostEncode; | |
979 | tif->tif_encoderow = LZWEncode; | |
980 | tif->tif_encodestrip = LZWEncode; | |
981 | tif->tif_encodetile = LZWEncode; | |
982 | tif->tif_cleanup = LZWCleanup; | |
983 | /* | |
984 | * Setup predictor setup. | |
985 | */ | |
986 | (void) TIFFPredictorInit(tif); | |
987 | return (1); | |
988 | bad: | |
989 | TIFFError("TIFFInitLZW", "No space for LZW state block"); | |
990 | return (0); | |
991 | } | |
992 | ||
993 | /* | |
994 | * Copyright (c) 1985, 1986 The Regents of the University of California. | |
995 | * All rights reserved. | |
996 | * | |
997 | * This code is derived from software contributed to Berkeley by | |
998 | * James A. Woods, derived from original work by Spencer Thomas | |
999 | * and Joseph Orost. | |
1000 | * | |
1001 | * Redistribution and use in source and binary forms are permitted | |
1002 | * provided that the above copyright notice and this paragraph are | |
1003 | * duplicated in all such forms and that any documentation, | |
1004 | * advertising materials, and other materials related to such | |
1005 | * distribution and use acknowledge that the software was developed | |
1006 | * by the University of California, Berkeley. The name of the | |
1007 | * University may not be used to endorse or promote products derived | |
1008 | * from this software without specific prior written permission. | |
1009 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR | |
1010 | * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED | |
1011 | * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. | |
1012 | */ | |
1013 | #endif /* LZW_SUPPORT */ |