| 1 | /////////////////////////////////////////////////////////////////////////////// |
| 2 | // Name: src/common/matrix.cpp |
| 3 | // Purpose: wxTransformMatrix class |
| 4 | // Author: Chris Breeze, Julian Smart |
| 5 | // Modified by: Klaas Holwerda |
| 6 | // Created: 01/02/97 |
| 7 | // RCS-ID: $Id$ |
| 8 | // Copyright: (c) Julian Smart |
| 9 | // Licence: wxWindows licence |
| 10 | /////////////////////////////////////////////////////////////////////////////// |
| 11 | |
| 12 | // Note: this is intended to be used in wxDC at some point to replace |
| 13 | // the current system of scaling/translation. It is not yet used. |
| 14 | |
| 15 | // For compilers that support precompilation, includes "wx.h". |
| 16 | #include "wx/wxprec.h" |
| 17 | |
| 18 | #ifdef __BORLANDC__ |
| 19 | #pragma hdrstop |
| 20 | #endif |
| 21 | |
| 22 | #include "wx/matrix.h" |
| 23 | |
| 24 | #ifndef WX_PRECOMP |
| 25 | #include "wx/math.h" |
| 26 | #endif |
| 27 | |
| 28 | static const double pi = M_PI; |
| 29 | |
| 30 | wxTransformMatrix::wxTransformMatrix(void) |
| 31 | { |
| 32 | m_isIdentity = false; |
| 33 | |
| 34 | Identity(); |
| 35 | } |
| 36 | |
| 37 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) |
| 38 | : wxObject() |
| 39 | { |
| 40 | (*this) = mat; |
| 41 | } |
| 42 | |
| 43 | double wxTransformMatrix::GetValue(int col, int row) const |
| 44 | { |
| 45 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 46 | return 0.0; |
| 47 | |
| 48 | return m_matrix[col][row]; |
| 49 | } |
| 50 | |
| 51 | void wxTransformMatrix::SetValue(int col, int row, double value) |
| 52 | { |
| 53 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 54 | return; |
| 55 | |
| 56 | m_matrix[col][row] = value; |
| 57 | m_isIdentity = IsIdentity1(); |
| 58 | } |
| 59 | |
| 60 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) |
| 61 | { |
| 62 | int i, j; |
| 63 | for (i = 0; i < 3; i++) |
| 64 | { |
| 65 | for (j = 0; j < 3; j++) |
| 66 | { |
| 67 | m_matrix[i][j] = mat.m_matrix[i][j]; |
| 68 | } |
| 69 | } |
| 70 | m_isIdentity = mat.m_isIdentity; |
| 71 | } |
| 72 | |
| 73 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const |
| 74 | { |
| 75 | if (m_isIdentity && mat.m_isIdentity) |
| 76 | return true; |
| 77 | |
| 78 | int i, j; |
| 79 | for (i = 0; i < 3; i++) |
| 80 | { |
| 81 | for (j = 0; j < 3; j++) |
| 82 | { |
| 83 | if ( !wxIsSameDouble(m_matrix[i][j], mat.m_matrix[i][j]) ) |
| 84 | return false; |
| 85 | } |
| 86 | } |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const |
| 91 | { |
| 92 | return (! ((*this) == mat)); |
| 93 | } |
| 94 | |
| 95 | double& wxTransformMatrix::operator()(int col, int row) |
| 96 | { |
| 97 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 98 | return m_matrix[0][0]; |
| 99 | |
| 100 | return m_matrix[col][row]; |
| 101 | } |
| 102 | |
| 103 | double wxTransformMatrix::operator()(int col, int row) const |
| 104 | { |
| 105 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 106 | return 0.0; |
| 107 | |
| 108 | return m_matrix[col][row]; |
| 109 | } |
| 110 | |
| 111 | // Invert matrix |
| 112 | bool wxTransformMatrix::Invert(void) |
| 113 | { |
| 114 | double inverseMatrix[3][3]; |
| 115 | |
| 116 | // calculate the adjoint |
| 117 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); |
| 118 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); |
| 119 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); |
| 120 | |
| 121 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); |
| 122 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); |
| 123 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); |
| 124 | |
| 125 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); |
| 126 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); |
| 127 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); |
| 128 | |
| 129 | // now divide by the determinant |
| 130 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; |
| 131 | if ( wxIsNullDouble(det) ) |
| 132 | return false; |
| 133 | |
| 134 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; |
| 135 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; |
| 136 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; |
| 137 | |
| 138 | for (int i = 0; i < 3; i++) |
| 139 | { |
| 140 | for (int j = 0; j < 3; j++) |
| 141 | { |
| 142 | m_matrix[i][j] = inverseMatrix[i][j]; |
| 143 | } |
| 144 | } |
| 145 | m_isIdentity = IsIdentity1(); |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | // Make into identity matrix |
| 150 | bool wxTransformMatrix::Identity(void) |
| 151 | { |
| 152 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; |
| 153 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; |
| 154 | m_isIdentity = true; |
| 155 | |
| 156 | return true; |
| 157 | } |
| 158 | |
| 159 | // Scale by scale (isotropic scaling i.e. the same in x and y): |
| 160 | // | scale 0 0 | |
| 161 | // matrix' = | 0 scale 0 | x matrix |
| 162 | // | 0 0 scale | |
| 163 | // |
| 164 | bool wxTransformMatrix::Scale(double scale) |
| 165 | { |
| 166 | int i, j; |
| 167 | for (i = 0; i < 3; i++) |
| 168 | { |
| 169 | for (j = 0; j < 3; j++) |
| 170 | { |
| 171 | m_matrix[i][j] *= scale; |
| 172 | } |
| 173 | } |
| 174 | m_isIdentity = IsIdentity1(); |
| 175 | |
| 176 | return true; |
| 177 | } |
| 178 | |
| 179 | |
| 180 | // scale a matrix in 2D |
| 181 | // |
| 182 | // xs 0 xc(1-xs) |
| 183 | // 0 ys yc(1-ys) |
| 184 | // 0 0 1 |
| 185 | // |
| 186 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) |
| 187 | { |
| 188 | double r00,r10,r20,r01,r11,r21; |
| 189 | |
| 190 | if (m_isIdentity) |
| 191 | { |
| 192 | double tx = xc*(1-xs); |
| 193 | double ty = yc*(1-ys); |
| 194 | r00 = xs; |
| 195 | r10 = 0; |
| 196 | r20 = tx; |
| 197 | r01 = 0; |
| 198 | r11 = ys; |
| 199 | r21 = ty; |
| 200 | } |
| 201 | else if ( !wxIsNullDouble(xc) || !wxIsNullDouble(yc) ) |
| 202 | { |
| 203 | double tx = xc*(1-xs); |
| 204 | double ty = yc*(1-ys); |
| 205 | r00 = xs * m_matrix[0][0]; |
| 206 | r10 = xs * m_matrix[1][0]; |
| 207 | r20 = xs * m_matrix[2][0] + tx; |
| 208 | r01 = ys * m_matrix[0][1]; |
| 209 | r11 = ys * m_matrix[1][1]; |
| 210 | r21 = ys * m_matrix[2][1] + ty; |
| 211 | } |
| 212 | else |
| 213 | { |
| 214 | r00 = xs * m_matrix[0][0]; |
| 215 | r10 = xs * m_matrix[1][0]; |
| 216 | r20 = xs * m_matrix[2][0]; |
| 217 | r01 = ys * m_matrix[0][1]; |
| 218 | r11 = ys * m_matrix[1][1]; |
| 219 | r21 = ys * m_matrix[2][1]; |
| 220 | } |
| 221 | |
| 222 | m_matrix[0][0] = r00; |
| 223 | m_matrix[1][0] = r10; |
| 224 | m_matrix[2][0] = r20; |
| 225 | m_matrix[0][1] = r01; |
| 226 | m_matrix[1][1] = r11; |
| 227 | m_matrix[2][1] = r21; |
| 228 | |
| 229 | /* or like this |
| 230 | // first translate to origin O |
| 231 | (*this).Translate(-x_cen, -y_cen); |
| 232 | |
| 233 | // now do the scaling |
| 234 | wxTransformMatrix scale; |
| 235 | scale.m_matrix[0][0] = x_fac; |
| 236 | scale.m_matrix[1][1] = y_fac; |
| 237 | scale.m_isIdentity = IsIdentity1(); |
| 238 | |
| 239 | *this = scale * (*this); |
| 240 | |
| 241 | // translate back from origin to x_cen, y_cen |
| 242 | (*this).Translate(x_cen, y_cen); |
| 243 | */ |
| 244 | |
| 245 | m_isIdentity = IsIdentity1(); |
| 246 | |
| 247 | return *this; |
| 248 | } |
| 249 | |
| 250 | |
| 251 | // mirror a matrix in x, y |
| 252 | // |
| 253 | // -1 0 0 Y-mirror |
| 254 | // 0 -1 0 X-mirror |
| 255 | // 0 0 -1 Z-mirror |
| 256 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) |
| 257 | { |
| 258 | wxTransformMatrix temp; |
| 259 | if (x) |
| 260 | { |
| 261 | temp.m_matrix[1][1] = -1; |
| 262 | temp.m_isIdentity=false; |
| 263 | } |
| 264 | if (y) |
| 265 | { |
| 266 | temp.m_matrix[0][0] = -1; |
| 267 | temp.m_isIdentity=false; |
| 268 | } |
| 269 | |
| 270 | *this = temp * (*this); |
| 271 | m_isIdentity = IsIdentity1(); |
| 272 | return *this; |
| 273 | } |
| 274 | |
| 275 | // Translate by dx, dy: |
| 276 | // | 1 0 dx | |
| 277 | // matrix' = | 0 1 dy | x matrix |
| 278 | // | 0 0 1 | |
| 279 | // |
| 280 | bool wxTransformMatrix::Translate(double dx, double dy) |
| 281 | { |
| 282 | int i; |
| 283 | for (i = 0; i < 3; i++) |
| 284 | m_matrix[i][0] += dx * m_matrix[i][2]; |
| 285 | for (i = 0; i < 3; i++) |
| 286 | m_matrix[i][1] += dy * m_matrix[i][2]; |
| 287 | |
| 288 | m_isIdentity = IsIdentity1(); |
| 289 | |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | // Rotate clockwise by the given number of degrees: |
| 294 | // | cos sin 0 | |
| 295 | // matrix' = | -sin cos 0 | x matrix |
| 296 | // | 0 0 1 | |
| 297 | bool wxTransformMatrix::Rotate(double degrees) |
| 298 | { |
| 299 | Rotate(-degrees,0,0); |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | // counter clockwise rotate around a point |
| 304 | // |
| 305 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) |
| 306 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) |
| 307 | // 0 0 1 |
| 308 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) |
| 309 | { |
| 310 | double angle = degrees * pi / 180.0; |
| 311 | double c = cos(angle); |
| 312 | double s = sin(angle); |
| 313 | double r00,r10,r20,r01,r11,r21; |
| 314 | |
| 315 | if (m_isIdentity) |
| 316 | { |
| 317 | double tx = x*(1-c)+y*s; |
| 318 | double ty = y*(1-c)-x*s; |
| 319 | r00 = c ; |
| 320 | r10 = -s; |
| 321 | r20 = tx; |
| 322 | r01 = s; |
| 323 | r11 = c; |
| 324 | r21 = ty; |
| 325 | } |
| 326 | else if ( !wxIsNullDouble(x) || !wxIsNullDouble(y) ) |
| 327 | { |
| 328 | double tx = x*(1-c)+y*s; |
| 329 | double ty = y*(1-c)-x*s; |
| 330 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; |
| 331 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; |
| 332 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; |
| 333 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; |
| 334 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; |
| 335 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; |
| 336 | } |
| 337 | else |
| 338 | { |
| 339 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; |
| 340 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; |
| 341 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; |
| 342 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; |
| 343 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; |
| 344 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; |
| 345 | } |
| 346 | |
| 347 | m_matrix[0][0] = r00; |
| 348 | m_matrix[1][0] = r10; |
| 349 | m_matrix[2][0] = r20; |
| 350 | m_matrix[0][1] = r01; |
| 351 | m_matrix[1][1] = r11; |
| 352 | m_matrix[2][1] = r21; |
| 353 | |
| 354 | /* or like this |
| 355 | wxTransformMatrix rotate; |
| 356 | rotate.m_matrix[2][0] = tx; |
| 357 | rotate.m_matrix[2][1] = ty; |
| 358 | |
| 359 | rotate.m_matrix[0][0] = c; |
| 360 | rotate.m_matrix[0][1] = s; |
| 361 | |
| 362 | rotate.m_matrix[1][0] = -s; |
| 363 | rotate.m_matrix[1][1] = c; |
| 364 | |
| 365 | rotate.m_isIdentity=false; |
| 366 | *this = rotate * (*this); |
| 367 | */ |
| 368 | m_isIdentity = IsIdentity1(); |
| 369 | |
| 370 | return *this; |
| 371 | } |
| 372 | |
| 373 | // Transform a point from logical to device coordinates |
| 374 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const |
| 375 | { |
| 376 | if (IsIdentity()) |
| 377 | { |
| 378 | tx = x; ty = y; return true; |
| 379 | } |
| 380 | |
| 381 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; |
| 382 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; |
| 383 | |
| 384 | return true; |
| 385 | } |
| 386 | |
| 387 | // Transform a point from device to logical coordinates. |
| 388 | |
| 389 | // Example of use: |
| 390 | // wxTransformMatrix mat = dc.GetTransformation(); |
| 391 | // mat.Invert(); |
| 392 | // mat.InverseTransformPoint(x, y, x1, y1); |
| 393 | // OR (shorthand:) |
| 394 | // dc.LogicalToDevice(x, y, x1, y1); |
| 395 | // The latter is slightly less efficient if we're doing several |
| 396 | // conversions, since the matrix is inverted several times. |
| 397 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const |
| 398 | { |
| 399 | if (IsIdentity()) |
| 400 | { |
| 401 | tx = x; |
| 402 | ty = y; |
| 403 | return true; |
| 404 | } |
| 405 | |
| 406 | const double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; |
| 407 | if ( wxIsNullDouble(z) ) |
| 408 | return false; |
| 409 | |
| 410 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; |
| 411 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) |
| 416 | { |
| 417 | for (int i = 0; i < 3; i++) |
| 418 | for (int j = 0; j < 3; j++) |
| 419 | m_matrix[i][j]*= t; |
| 420 | m_isIdentity = IsIdentity1(); |
| 421 | return *this; |
| 422 | } |
| 423 | |
| 424 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) |
| 425 | { |
| 426 | for (int i = 0; i < 3; i++) |
| 427 | for (int j = 0; j < 3; j++) |
| 428 | m_matrix[i][j]/= t; |
| 429 | m_isIdentity = IsIdentity1(); |
| 430 | return *this; |
| 431 | } |
| 432 | |
| 433 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) |
| 434 | { |
| 435 | for (int i = 0; i < 3; i++) |
| 436 | for (int j = 0; j < 3; j++) |
| 437 | m_matrix[i][j] += mat.m_matrix[i][j]; |
| 438 | m_isIdentity = IsIdentity1(); |
| 439 | return *this; |
| 440 | } |
| 441 | |
| 442 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) |
| 443 | { |
| 444 | for (int i = 0; i < 3; i++) |
| 445 | for (int j = 0; j < 3; j++) |
| 446 | m_matrix[i][j] -= mat.m_matrix[i][j]; |
| 447 | m_isIdentity = IsIdentity1(); |
| 448 | return *this; |
| 449 | } |
| 450 | |
| 451 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) |
| 452 | { |
| 453 | |
| 454 | if (mat.m_isIdentity) |
| 455 | return *this; |
| 456 | if (m_isIdentity) |
| 457 | { |
| 458 | *this = mat; |
| 459 | return *this; |
| 460 | } |
| 461 | else |
| 462 | { |
| 463 | wxTransformMatrix result; |
| 464 | for (int i = 0; i < 3; i++) |
| 465 | { |
| 466 | for (int j = 0; j < 3; j++) |
| 467 | { |
| 468 | double sum = 0; |
| 469 | for (int k = 0; k < 3; k++) |
| 470 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; |
| 471 | result.m_matrix[j][i] = sum; |
| 472 | } |
| 473 | } |
| 474 | *this = result; |
| 475 | } |
| 476 | |
| 477 | m_isIdentity = IsIdentity1(); |
| 478 | return *this; |
| 479 | } |
| 480 | |
| 481 | |
| 482 | // constant operators |
| 483 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const |
| 484 | { |
| 485 | wxTransformMatrix result = *this; |
| 486 | result *= t; |
| 487 | result.m_isIdentity = result.IsIdentity1(); |
| 488 | return result; |
| 489 | } |
| 490 | |
| 491 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const |
| 492 | { |
| 493 | wxTransformMatrix result = *this; |
| 494 | // wxASSERT(t!=0); |
| 495 | result /= t; |
| 496 | result.m_isIdentity = result.IsIdentity1(); |
| 497 | return result; |
| 498 | } |
| 499 | |
| 500 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const |
| 501 | { |
| 502 | wxTransformMatrix result = *this; |
| 503 | result += m; |
| 504 | result.m_isIdentity = result.IsIdentity1(); |
| 505 | return result; |
| 506 | } |
| 507 | |
| 508 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const |
| 509 | { |
| 510 | wxTransformMatrix result = *this; |
| 511 | result -= m; |
| 512 | result.m_isIdentity = result.IsIdentity1(); |
| 513 | return result; |
| 514 | } |
| 515 | |
| 516 | |
| 517 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const |
| 518 | { |
| 519 | wxTransformMatrix result = *this; |
| 520 | result *= m; |
| 521 | result.m_isIdentity = result.IsIdentity1(); |
| 522 | return result; |
| 523 | } |
| 524 | |
| 525 | |
| 526 | wxTransformMatrix wxTransformMatrix::operator-() const |
| 527 | { |
| 528 | wxTransformMatrix result = *this; |
| 529 | for (int i = 0; i < 3; i++) |
| 530 | for (int j = 0; j < 3; j++) |
| 531 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); |
| 532 | result.m_isIdentity = result.IsIdentity1(); |
| 533 | return result; |
| 534 | } |
| 535 | |
| 536 | static double CheckInt(double getal) |
| 537 | { |
| 538 | // check if the number is very close to an integer |
| 539 | if ( (ceil(getal) - getal) < 0.0001) |
| 540 | return ceil(getal); |
| 541 | |
| 542 | else if ( (getal - floor(getal)) < 0.0001) |
| 543 | return floor(getal); |
| 544 | |
| 545 | return getal; |
| 546 | |
| 547 | } |
| 548 | |
| 549 | double wxTransformMatrix::Get_scaleX() |
| 550 | { |
| 551 | double scale_factor; |
| 552 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); |
| 553 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) |
| 554 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); |
| 555 | else |
| 556 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! |
| 557 | |
| 558 | scale_factor = CheckInt(scale_factor); |
| 559 | if (scale_factor < 0) |
| 560 | scale_factor = -scale_factor; |
| 561 | |
| 562 | return scale_factor; |
| 563 | } |
| 564 | |
| 565 | double wxTransformMatrix::Get_scaleY() |
| 566 | { |
| 567 | double scale_factor; |
| 568 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); |
| 569 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) |
| 570 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); |
| 571 | else |
| 572 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! |
| 573 | |
| 574 | scale_factor = CheckInt(scale_factor); |
| 575 | if (scale_factor < 0) |
| 576 | |
| 577 | scale_factor = -scale_factor; |
| 578 | |
| 579 | return scale_factor; |
| 580 | |
| 581 | } |
| 582 | |
| 583 | double wxTransformMatrix::GetRotation() |
| 584 | { |
| 585 | double temp1 = GetValue(0,0); // for angle calculation |
| 586 | double temp2 = GetValue(0,1); // |
| 587 | |
| 588 | // Rotation |
| 589 | double rot_angle = atan2(temp2,temp1)*180/pi; |
| 590 | |
| 591 | rot_angle = CheckInt(rot_angle); |
| 592 | return rot_angle; |
| 593 | } |
| 594 | |
| 595 | void wxTransformMatrix::SetRotation(double rotation) |
| 596 | { |
| 597 | double x=GetValue(2,0); |
| 598 | double y=GetValue(2,1); |
| 599 | Rotate(-GetRotation(), x, y); |
| 600 | Rotate(rotation, x, y); |
| 601 | } |