]> git.saurik.com Git - wxWidgets.git/blame_incremental - wxPython/wxSWIG/Modules/python.cxx
the Russian translations were somehow corrupted, fixed
[wxWidgets.git] / wxPython / wxSWIG / Modules / python.cxx
... / ...
CommitLineData
1/*******************************************************************************
2 * Simplified Wrapper and Interface Generator (SWIG)
3 *
4 * Author : David Beazley
5 *
6 * Department of Computer Science
7 * University of Chicago
8 * 1100 E 58th Street
9 * Chicago, IL 60637
10 * beazley@cs.uchicago.edu
11 *
12 * Please read the file LICENSE for the copyright and terms by which SWIG
13 * can be used and distributed.
14 *******************************************************************************/
15
16/**********************************************************************
17 * $Header$
18 *
19 * python.cxx
20 *
21 * Python module.
22 **************************************************************************/
23
24
25#include "swig.h"
26#include "python.h"
27
28// Structures for managing doc strings
29
30struct DocString {
31 DocEntry *de;
32 char *name;
33 DocString *next;
34};
35
36static int doc_index = 0;
37static DocString *doc_strings = 0;
38
39static char *usage = "\
40Python Options (available with -python)\n\
41 -docstring - Produce docstrings (only applies to shadow classes)\n\
42 -globals name - Set name used to access C global variable ('cvar' by default).\n\
43 -module name - Set module name\n\
44 -keyword - Use keyword arguments\n\
45 -shadow - Generate shadow classes. \n\n";
46
47static String pragma_include;
48
49// ---------------------------------------------------------------------
50// PYTHON::parse_args(int argc, char *argv[])
51//
52// ---------------------------------------------------------------------
53
54void PYTHON::parse_args(int argc, char *argv[]) {
55
56 int i = 1;
57
58 sprintf(LibDir,"%s",path);
59
60 docstring = 0;
61
62 // Look for additional command line options.
63 for (i = 1; i < argc; i++) {
64 if (argv[i]) {
65 if(strcmp(argv[i],"-module") == 0) {
66 if (argv[i+1]) {
67 module = new char[strlen(argv[i+1])+2];
68 strcpy(module, argv[i+1]);
69 mark_arg(i);
70 mark_arg(i+1);
71 i+=1;
72 } else {
73 arg_error();
74 }
75 } else if (strcmp(argv[i],"-globals") == 0) {
76 if (argv[i+1]) {
77 global_name = new char[strlen(argv[i+1])+1];
78 strcpy(global_name, argv[i+1]);
79 mark_arg(i);
80 mark_arg(i+1);
81 i++;
82 } else {
83 arg_error();
84 }
85 } else if (strcmp(argv[i],"-shadow") == 0) {
86 shadow = 1;
87 mark_arg(i);
88 } else if (strcmp(argv[i],"-docstring") == 0) {
89 docstring = 1;
90 mark_arg(i);
91 } else if (strcmp(argv[i],"-keyword") == 0) {
92 use_kw = 1;
93 mark_arg(i);
94 } else if (strcmp(argv[i],"-help") == 0) {
95 fputs(usage,stderr);
96 }
97 }
98 }
99 // Create a symbol for this language
100 add_symbol("SWIGPYTHON",0,0);
101
102 // Set name of typemaps
103
104 typemap_lang = "python";
105
106}
107
108// ---------------------------------------------------------------------
109// PYTHON::parse()
110//
111// Parse the interface file
112// ---------------------------------------------------------------------
113
114void
115PYTHON::parse() {
116
117 printf("Generating wrappers for Python\n");
118 headers();
119
120 // Run the SWIG parser
121
122 yyparse();
123}
124
125// ---------------------------------------------------------------------
126// PYTHON::set_module(char *mod_name, char **mod_list)
127//
128// Sets the module name.
129// Does nothing if it's already set (so it can be overridden as a command
130// line option).
131//
132//----------------------------------------------------------------------
133
134void PYTHON::set_module(char *mod_name, char **mod_list) {
135 int i;
136
137 // If an "import" method has been set and we're in shadow class mode,
138 // output a python command to load the module
139
140 if (import_file) {
141 if (!(strcmp(import_file,input_file+strlen(input_file)-strlen(import_file)))) {
142 if (shadow) {
143 fprintf(f_shadow,"\nfrom %s import *\n", mod_name);
144 }
145 delete import_file;
146 import_file = 0;
147 }
148 }
149
150 if (module) return;
151
152 module = new char[strlen(mod_name)+1];
153 strcpy(module,mod_name);
154
155 // If there was a mod_list specified, make this incredible hack
156 if (mod_list) {
157 modinit << "#define SWIGMODINIT ";
158 modextern << "#ifdef __cplusplus\n"
159 << "extern \"C\" {\n"
160 << "#endif\n";
161 i = 0;
162 while(mod_list[i]) {
163 modinit << "swig_add_module(\"" << mod_list[i] << "\",init"
164 << mod_list[i] << "); \\\n";
165
166 modextern << "extern void init" << mod_list[i] << "();\n";
167 i++;
168 }
169 modextern << "#ifdef __cplusplus\n"
170 << "}\n"
171 << "#endif\n";
172 modinit << "/* End of extern module initialization */\n";
173
174 }
175}
176
177// ---------------------------------------------------------------------
178// PYTHON::set_init(char *iname)
179//
180// Sets the initialization function name.
181// Does nothing if it's already set
182//
183//----------------------------------------------------------------------
184
185void PYTHON::set_init(char *iname) {
186 set_module(iname,0);
187}
188
189
190// ---------------------------------------------------------------------
191// PYTHON::import(char *filename)
192//
193// Imports a SWIG module as a separate file.
194//----------------------------------------------------------------------
195
196void PYTHON::import(char *filename) {
197 if (import_file) delete import_file;
198 import_file = copy_string(filename);
199}
200
201// ----------------------------------------------------------------------
202// PYTHON::add_method(char *name, char *function)
203//
204// Add some symbols to the methods table
205// ----------------------------------------------------------------------
206
207void PYTHON::add_method(char *name, char *function) {
208
209 Method *n;
210
211 n = new Method;
212 n->name = new char[strlen(name)+1];
213 strcpy(n->name,name);
214 n->function = new char[strlen(function)+1];
215 strcpy(n->function, function);
216
217 n->next = head;
218 head = n;
219}
220
221// ---------------------------------------------------------------------
222// PYTHON::print_methods()
223//
224// Prints out the method array.
225// ---------------------------------------------------------------------
226
227void PYTHON::print_methods() {
228
229 Method *n;
230
231 fprintf(f_wrappers,"static PyMethodDef %sMethods[] = {\n", module);
232 n = head;
233 while (n) {
234 if (!use_kw) {
235 fprintf(f_wrappers,"\t { \"%s\", %s, METH_VARARGS },\n", n->name, n->function);
236 } else {
237 fprintf(f_wrappers,"\t { \"%s\", (PyCFunction) %s, METH_VARARGS | METH_KEYWORDS },\n", n->name, n->function);
238 }
239 n = n->next;
240 }
241 fprintf(f_wrappers,"\t { NULL, NULL }\n");
242 fprintf(f_wrappers,"};\n");
243 fprintf(f_wrappers,"#ifdef __cplusplus\n");
244 fprintf(f_wrappers,"}\n");
245 fprintf(f_wrappers,"#endif\n");
246}
247
248// ---------------------------------------------------------------------
249// char *PYTHON::add_docstring(DocEntry *de)
250//
251// Adds a documentation entry to the doc-string generator. Returns a
252// unique character symbol that will be used to fill in the doc-string
253// at a later time.
254// ---------------------------------------------------------------------
255
256char *PYTHON::add_docstring(DocEntry *de) {
257 DocString *s;
258 String str;
259
260 str = "@doc";
261 str << doc_index << "@";
262
263 s = new DocString();
264 s->de = de;
265 s->name = copy_string(str);
266 s->next = doc_strings;
267 doc_strings = s;
268 doc_index++;
269 return s->name;
270}
271
272// ---------------------------------------------------------------------
273// PYTHON::headers(void)
274//
275// ----------------------------------------------------------------------
276
277void PYTHON::headers(void)
278{
279
280 emit_banner(f_header);
281
282 fprintf(f_header,"/* Implementation : PYTHON */\n\n");
283 fprintf(f_header,"#define SWIGPYTHON\n");
284
285 if (!NoInclude) {
286 if (insert_file("python.swg", f_header) == -1) {
287 fprintf(stderr,"SWIG : Fatal error. Unable to locate python.swg. (Possible installation problem).\n");
288 SWIG_exit(1);
289 }
290 } else {
291 if (insert_file("pyexp.swg", f_header) == -1) {
292 fprintf(stderr,"SWIG : Fatal error. Unable to locate pyexp.swg. (Possible installation problem).\n");
293 SWIG_exit(1);
294 }
295 }
296}
297
298
299// --------------------------------------------------------------------
300// PYTHON::initialize(void)
301//
302// This function outputs the starting code for a function to initialize
303// your interface. It is only called once by the parser.
304//
305// ---------------------------------------------------------------------
306
307void PYTHON::initialize(void)
308{
309
310 char filen[256];
311 char *temp;
312 char *oldmodule = 0;
313
314 if (!module) {
315 module = "swig";
316 fprintf(stderr,"SWIG : *** Warning. No module name specified.\n");
317 }
318
319 // If shadow classing is enabled, we're going to change the module
320 // name to "modulec"
321
322 if (shadow) {
323 temp = new char[strlen(module)+2];
324 sprintf(temp,"%sc",module);
325 oldmodule = module;
326 module = temp;
327 }
328 /* Initialize the C code for the module */
329 initialize_cmodule();
330 /* Create a shadow file (if enabled).*/
331 if (shadow) {
332 sprintf(filen,"%s%s.py", output_dir, oldmodule);
333 if ((f_shadow = fopen(filen,"w")) == 0) {
334 fprintf(stderr,"Unable to open %s\n", filen);
335 SWIG_exit(0);
336 }
337 fprintf(f_shadow,"# This file was created automatically by SWIG.\n");
338 fprintf(f_shadow,"import %s\n", module);
339 }
340
341 // Dump out external module declarations
342
343 if (strlen(modinit.get()) > 0) {
344 fprintf(f_header,"%s\n",modinit.get());
345 }
346 if (strlen(modextern.get()) > 0) {
347 fprintf(f_header,"%s\n",modextern.get());
348 }
349 fprintf(f_wrappers,"#ifdef __cplusplus\n");
350 fprintf(f_wrappers,"extern \"C\" {\n");
351 fprintf(f_wrappers,"#endif\n");
352}
353
354// ---------------------------------------------------------------------
355// PYTHON::initialize_cmodule(void)
356//
357// Initializes the C module.
358//
359// ---------------------------------------------------------------------
360void PYTHON::initialize_cmodule(void)
361{
362 int i;
363 fprintf(f_header,"#define SWIG_init init%s\n\n", module);
364 fprintf(f_header,"#define SWIG_name \"%s\"\n", module);
365
366 // Output the start of the init function.
367 // Modify this to use the proper return type and arguments used
368 // by the target Language
369
370 fprintf(f_init,"static PyObject *SWIG_globals;\n");
371
372 fprintf(f_init,"#ifdef __cplusplus\n");
373 fprintf(f_init,"extern \"C\" \n");
374 fprintf(f_init,"#endif\n");
375
376 fprintf(f_init,"SWIGEXPORT(void) init%s() {\n",module);
377 fprintf(f_init,"\t PyObject *m, *d;\n");
378
379 if (InitNames) {
380 i = 0;
381 while (InitNames[i]) {
382 fprintf(f_init,"\t %s();\n", InitNames[i]);
383 i++;
384 }
385 }
386 fprintf(f_init,"\t SWIG_globals = SWIG_newvarlink();\n");
387 fprintf(f_init,"\t m = Py_InitModule(\"%s\", %sMethods);\n", module, module);
388 fprintf(f_init,"\t d = PyModule_GetDict(m);\n");
389}
390
391
392// ---------------------------------------------------------------------
393// PYTHON::close(void)
394//
395// Called when the end of the interface file is reached. Closes the
396// initialization function and performs cleanup as necessary.
397// ---------------------------------------------------------------------
398
399void PYTHON::close(void)
400{
401
402 print_methods();
403 close_cmodule();
404 if ((doc_entry) && (module)){
405 String temp;
406 temp << "Python Module : ";
407 if (shadow) {
408 module[strlen(module)-1] = 0;
409 }
410 temp << module;
411 doc_entry->cinfo << temp;
412 }
413 if (shadow) {
414 String fullshadow;
415 fullshadow << classes
416 << "\n\n#-------------- FUNCTION WRAPPERS ------------------\n\n"
417 << func
418 << "\n\n#-------------- VARIABLE WRAPPERS ------------------\n\n"
419 << vars;
420
421 if (strlen(pragma_include) > 0) {
422 fullshadow << "\n\n#-------------- USER INCLUDE -----------------------\n\n"
423 << pragma_include;
424 }
425
426 // Go through all of the docstrings and replace the docstrings
427
428 DocString *s;
429 s = doc_strings;
430 while (s) {
431 fullshadow.replace(s->name, s->de->text);
432 s = s->next;
433 }
434 /*
435 fprintf(f_shadow,"\n\n#-------------- FUNCTION WRAPPERS ------------------\n\n");
436 fprintf(f_shadow,"%s",func.get());
437 fprintf(f_shadow,"\n\n#-------------- VARIABLE WRAPPERS ------------------\n\n");
438 fprintf(f_shadow,"%s",vars.get());
439 if (strlen(pragma_include) > 0) {
440 fprintf(f_shadow,"\n\n#-------------- USER INCLUDE -----------------------\n\n");
441 fprintf(f_shadow,"%s",pragma_include.get());
442 }
443 */
444 fprintf(f_shadow, "%s", fullshadow.get());
445 fclose(f_shadow);
446 }
447}
448
449// --------------------------------------------------------------------
450// PYTHON::close_cmodule(void)
451//
452// Called to cleanup the C module code
453// --------------------------------------------------------------------
454void PYTHON::close_cmodule(void)
455{
456 emit_ptr_equivalence(f_init);
457 fprintf(f_init,"}\n");
458}
459
460// ----------------------------------------------------------------------
461// PYTHON::get_pointer(char *iname, char *srcname, char *src, char *target,
462// DataType *t, WrapperFunction &f, char *ret)
463//
464// Emits code to get a pointer and do type checking.
465// iname = name of the function/method (used for error messages)
466// srcname = Name of source (used for error message reporting).
467// src = name of variable where source string is located.
468// dest = name of variable where pointer value is stored.
469// t = Expected datatype of the parameter
470// f = Wrapper function object being used to generate code.
471// ret = return code upon failure.
472//
473// Note : pointers are stored as strings so you first need to get
474// a string and then call _swig_get_hex() to extract a point.
475//
476// This module is pretty ugly, but type checking is kind of nasty
477// anyways.
478// ----------------------------------------------------------------------
479
480void
481PYTHON::get_pointer(char *iname, char *srcname, char *src, char *dest,
482 DataType *t, String &f, char *ret)
483{
484
485 // Now get the pointer value from the string and save in dest
486
487 f << tab4 << "if (" << src << ") {\n"
488 << tab8 << "if (" << src << " == Py_None) { " << dest << " = NULL; }\n"
489 << tab8 << "else if (SWIG_GetPtrObj(" << src << ",(void **) &" << dest << ",";
490
491 // If we're passing a void pointer, we give the pointer conversion a NULL
492 // pointer, otherwise pass in the expected type.
493
494 if (t->type == T_VOID) f << "(char *) 0 )) {\n";
495 else
496 f << "\"" << t->print_mangle() << "\")) {\n";
497
498 // This part handles the type checking according to three different
499 // levels. 0 = no checking, 1 = warning message, 2 = strict.
500
501 switch(TypeStrict) {
502 case 0: // No type checking
503 f << tab8 << "}\n";
504 break;
505
506 case 1: // Warning message only
507
508 // Change this part to how you want to handle a type-mismatch warning.
509 // By default, it will just print to stderr.
510
511 f << tab8 << tab4 << "fprintf(stderr,\"Warning : type mismatch in " << srcname
512 << " of " << iname << ". Expected " << t->print_mangle()
513 << ", received %s\\n\"," << src << ");\n"
514 << tab8 << "}\n";
515
516 break;
517 case 2: // Super strict mode.
518
519 // Change this part to return an error.
520
521 f << tab8 << tab4 << "PyErr_SetString(PyExc_TypeError,\"Type error in " << srcname
522 << " of " << iname << ". Expected " << t->print_mangle() << ".\");\n"
523 << tab8 << "return " << ret << ";\n"
524 << tab8 << "}\n";
525 break;
526
527 default :
528 fprintf(stderr,"SWIG Error. Unknown strictness level\n");
529 break;
530 }
531 f << tab4 << "}\n";
532}
533
534// ----------------------------------------------------------------------
535// PYTHON::emit_function_header()
536//
537// Return the code to be used as a function header
538// ----------------------------------------------------------------------
539void PYTHON::emit_function_header(WrapperFunction &emit_to, char *wname)
540{
541 if (!use_kw) {
542 emit_to.def << "static PyObject *" << wname
543 << "(PyObject *self, PyObject *args) {";
544 } else {
545 emit_to.def << "static PyObject *" << wname
546 << "(PyObject *self, PyObject *args, PyObject *kwargs) {";
547 }
548 emit_to.code << tab4 << "self = self;\n";
549}
550
551// ----------------------------------------------------------------------
552// PYTHON::convert_self()
553//
554// Called during the function generation process, to determine what to
555// use as the "self" variable during the call. Derived classes may emit code
556// to convert the real self pointer into a usable pointer.
557//
558// Returns the name of the variable to use as the self pointer
559// ----------------------------------------------------------------------
560char *PYTHON::convert_self(WrapperFunction &)
561{
562 // Default behaviour is no translation
563 return "";
564}
565
566// ----------------------------------------------------------------------
567// PYTHON::make_funcname_wrapper()
568//
569// Called to create a name for a wrapper function
570// ----------------------------------------------------------------------
571char *PYTHON::make_funcname_wrapper(char *fnName)
572{
573 return name_wrapper(fnName,"");
574}
575
576// ----------------------------------------------------------------------
577// PYTHON::create_command(char *cname, char *iname)
578//
579// Create a new command in the interpreter. Used for C++ inheritance
580// stuff.
581// ----------------------------------------------------------------------
582
583void PYTHON::create_command(char *cname, char *iname) {
584
585 // Create the name of the wrapper function
586
587 char *wname = name_wrapper(cname,"");
588
589 // Now register the function with the interpreter.
590
591 add_method(iname, wname);
592
593}
594
595// ----------------------------------------------------------------------
596// PYTHON::create_function(char *name, char *iname, DataType *d,
597// ParmList *l)
598//
599// This function creates a wrapper function and registers it with the
600// interpreter.
601//
602// Inputs :
603// name = actual name of the function that's being wrapped
604// iname = name of the function in the interpreter (may be different)
605// d = Return datatype of the functions.
606// l = A linked list containing function parameter information.
607//
608// ----------------------------------------------------------------------
609
610void PYTHON::create_function(char *name, char *iname, DataType *d, ParmList *l)
611{
612 Parm *p;
613 int pcount,i,j;
614 String wname, self_name, call_name;
615 char source[64], target[64], temp[256], argnum[20];
616 char *usage = 0;
617 WrapperFunction f;
618 String parse_args;
619 String arglist;
620 String get_pointers;
621 String cleanup, outarg;
622 String check;
623 String build;
624 String kwargs;
625
626 int have_build = 0;
627 char *tm;
628 int numopt = 0;
629
630 have_output = 0;
631
632 // Make a valid name for this function. This removes special symbols
633 // that would cause problems in the C compiler.
634
635 wname = make_funcname_wrapper(iname);
636
637 // Now emit the function declaration for the wrapper function. You
638 // should modify this to return the appropriate types and use the
639 // appropriate parameters.
640
641 emit_function_header(f, wname);
642
643 f.add_local("PyObject *","_resultobj");
644
645 // Get the function usage string for later use
646
647 usage = usage_func(iname,d,l);
648
649 // Write code to extract function parameters.
650 // This is done in one pass, but we need to construct three independent
651 // pieces.
652 // 1. Python format string such as "iis"
653 // 2. The actual arguments to put values into
654 // 3. Pointer conversion code.
655 //
656 // If there is a type mapping, we will extract the Python argument
657 // as a raw PyObject and let the user deal with it.
658 //
659
660 pcount = emit_args(d, l, f);
661 if (!use_kw) {
662 parse_args << tab4 << "if(!PyArg_ParseTuple(args,\"";
663 } else {
664 parse_args << tab4 << "if(!PyArg_ParseTupleAndKeywords(args,kwargs,\"";
665 arglist << ",_kwnames";
666 }
667
668 i = 0;
669 j = 0;
670 numopt = l->numopt(); // Get number of optional arguments
671 if (numopt) have_defarg = 1;
672 p = l->get_first();
673
674 kwargs << "{ ";
675 while (p != 0) {
676
677 // Generate source and target strings
678 sprintf(source,"_obj%d",i);
679 sprintf(target,"_arg%d",i);
680 sprintf(argnum,"%d",j+1);
681
682 // Only consider this argument if it's not ignored
683
684 if (!p->ignore) {
685 arglist << ",";
686 // Add an optional argument separator if needed
687
688 if (j == pcount-numopt) {
689 parse_args << "|";
690 }
691
692 if (strlen(p->name)) {
693 kwargs << "\"" << p->name << "\",";
694 } else {
695 kwargs << "\"arg" << j+1 << "\",";
696 // kwargs << "\"\",";
697 }
698
699 // Look for input typemap
700
701 if ((tm = typemap_lookup("in","python",p->t,p->name,source,target,&f))) {
702 parse_args << "O"; // Grab the argument as a raw PyObject
703 f.add_local("PyObject *",source,"0");
704 arglist << "&" << source;
705 if (i >= (pcount-numopt))
706 get_pointers << tab4 << "if (" << source << ")\n";
707 get_pointers << tm << "\n";
708 get_pointers.replace("$argnum", argnum);
709 get_pointers.replace("$arg",source);
710 } else {
711
712 // Check if this parameter is a pointer. If not, we'll get values
713
714 if (!p->t->is_pointer) {
715 // Extract a parameter by "value"
716
717 switch(p->t->type) {
718
719 // Handle integers here. Usually this can be done as a single
720 // case if you appropriate cast things. However, if you have
721 // special cases, you'll need to add more code.
722
723 case T_INT : case T_UINT: case T_SINT:
724 parse_args << "i";
725 break;
726 case T_SHORT: case T_USHORT: case T_SSHORT:
727 parse_args << "h";
728 break;
729 case T_LONG : case T_ULONG: case T_SLONG :
730 parse_args << "l";
731 break;
732 case T_SCHAR : case T_UCHAR :
733 parse_args << "b";
734 break;
735 case T_CHAR:
736 parse_args << "c";
737 break;
738 case T_FLOAT :
739 parse_args << "f";
740 break;
741 case T_DOUBLE:
742 parse_args << "d";
743 break;
744
745 case T_BOOL:
746 {
747 String tempb;
748 String tempval;
749 if (p->defvalue) {
750 tempval << "(int) " << p->defvalue;
751 }
752 tempb << "tempbool" << i;
753 parse_args << "i";
754 if (!p->defvalue)
755 f.add_local("int",tempb.get());
756 else
757 f.add_local("int",tempb.get(),tempval.get());
758 get_pointers << tab4 << target << " = " << p->t->print_cast() << " " << tempb << ";\n";
759 arglist << "&" << tempb;
760 }
761 break;
762
763 // Void.. Do nothing.
764
765 case T_VOID :
766 break;
767
768 // User defined. This is usually invalid. No way to pass a
769 // complex type by "value". We'll just pass into the unsupported
770 // datatype case.
771
772 case T_USER:
773
774 // Unsupported data type
775
776 default :
777 fprintf(stderr,"%s : Line %d. Unable to use type %s as a function argument.\n",input_file, line_number, p->t->print_type());
778 break;
779 }
780
781 // Emit code for parameter list
782
783 if ((p->t->type != T_VOID) && (p->t->type != T_BOOL))
784 arglist << "&_arg" << i;
785
786 } else {
787
788 // Is some other kind of variable.
789
790 if ((p->t->type == T_CHAR) && (p->t->is_pointer == 1)) {
791 parse_args << "s";
792 arglist << "&_arg" << i;
793 } else {
794
795 // Have some sort of pointer variable. Create a temporary local
796 // variable for the string and read the pointer value into it.
797
798 parse_args << "O";
799 sprintf(source,"_argo%d", i);
800 sprintf(target,"_arg%d", i);
801 sprintf(temp,"argument %d",i+1);
802
803 f.add_local("PyObject *", source,"0");
804 arglist << "&" << source;
805 get_pointer(iname, temp, source, target, p->t, get_pointers, "NULL");
806 }
807 }
808 }
809 j++;
810 }
811 // Check if there was any constraint code
812 if ((tm = typemap_lookup("check","python",p->t,p->name,source,target))) {
813 check << tm << "\n";
814 check.replace("$argnum", argnum);
815 }
816 // Check if there was any cleanup code
817 if ((tm = typemap_lookup("freearg","python",p->t,p->name,target,source))) {
818 cleanup << tm << "\n";
819 cleanup.replace("$argnum", argnum);
820 cleanup.replace("$arg",source);
821 }
822 if ((tm = typemap_lookup("argout","python",p->t,p->name,target,"_resultobj"))) {
823 outarg << tm << "\n";
824 outarg.replace("$argnum", argnum);
825 outarg.replace("$arg",source);
826 have_output++;
827 }
828 if ((tm = typemap_lookup("build","python",p->t,p->name,source,target))) {
829 build << tm << "\n";
830 have_build = 1;
831 }
832 p = l->get_next();
833 i++;
834 }
835
836 kwargs << " NULL }";
837 if (use_kw) {
838 f.locals << tab4 << "char *_kwnames[] = " << kwargs << ";\n";
839 }
840
841 parse_args << ":" << iname << "\""; // No additional arguments
842 parse_args << arglist << ")) \n"
843 << tab8 << "return NULL;\n";
844
845 self_name = convert_self(f);
846
847 /* Now slap the whole first part of the wrapper function together */
848
849 f.code << parse_args << get_pointers << check;
850
851
852 // Special handling for build values
853
854 if (have_build) {
855 char temp1[256];
856 char temp2[256];
857 l->sub_parmnames(build); // Replace all parameter names
858 for (i = 0; i < l->nparms; i++) {
859 p = l->get(i);
860 if (strlen(p->name) > 0) {
861 sprintf(temp1,"_in_%s", p->name);
862 } else {
863 sprintf(temp1,"_in_arg%d", i);
864 }
865 sprintf(temp2,"_obj%d",i);
866 build.replaceid(temp1,temp2);
867 }
868 f.code << build;
869 }
870
871 // This function emits code to call the real function. Assuming you read
872 // the parameters in correctly, this will work.
873
874 call_name = "";
875 call_name << self_name << name;
876 emit_func_call(call_name,d,l,f);
877
878 // Now emit code to return the functions return value (if any).
879 // If there was a result, it was saved in _result.
880 // If the function is a void type, don't do anything.
881
882 if ((strncmp(name, "new_", 4) != 0) && // don't use the out typemap for constructors
883 (tm = typemap_lookup("out","python",d,iname,"_result","_resultobj"))) {
884 // Yep. Use it instead of the default
885 f.code << tm << "\n";
886 } else {
887
888 if ((d->type != T_VOID) || (d->is_pointer)) {
889 // Now have return value, figure out what to do with it.
890
891 if (!d->is_pointer) {
892
893 // Function returns a "value"
894
895 switch(d->type) {
896
897 // Return an integer type
898
899 case T_INT: case T_SINT: case T_UINT: case T_BOOL:
900 f.code << tab4 << "_resultobj = Py_BuildValue(\"i\",_result);\n";
901 break;
902 case T_SHORT: case T_SSHORT: case T_USHORT:
903 f.code << tab4 << "_resultobj = Py_BuildValue(\"h\",_result);\n";
904 break;
905 case T_LONG : case T_SLONG : case T_ULONG:
906 f.code << tab4 << "_resultobj = Py_BuildValue(\"l\",_result);\n";
907 break;
908 case T_SCHAR: case T_UCHAR :
909 f.code << tab4 << "_resultobj = Py_BuildValue(\"b\",_result);\n";
910 break;
911
912 // Return a floating point value
913
914 case T_DOUBLE :
915 f.code << tab4 << "_resultobj = Py_BuildValue(\"d\",_result);\n";
916 break;
917 case T_FLOAT :
918 f.code << tab4 << "_resultobj = Py_BuildValue(\"f\",_result);\n";
919 break;
920
921 // Return a single ASCII value. Usually we need to convert
922 // it to a NULL-terminate string and return that instead.
923
924 case T_CHAR :
925 f.code << tab4 << "_resultobj = Py_BuildValue(\"c\",_result);\n";
926 break;
927
928 case T_USER :
929
930 // Return something by value
931 // We're living dangerously here, but life is short...play hard
932
933 // Oops. Need another local variable
934 f.add_local("char","_ptemp[128]");
935
936 d->is_pointer++;
937 f.code << tab4 << "SWIG_MakePtr(_ptemp, (void *) _result,\""
938 << d->print_mangle() << "\");\n";
939 d->is_pointer--;
940 // Return a character string containing our pointer.
941
942 f.code << tab4 << "_resultobj = Py_BuildValue(\"s\",_ptemp);\n";
943 break;
944 default :
945 fprintf(stderr,"%s: Line %d. Unable to use return type %s in function %s.\n", input_file, line_number, d->print_type(), name);
946 break;
947 }
948 } else {
949
950 // Return type is a pointer. We'll see if it's a char * and return
951 // a string. Otherwise, we'll convert it into a SWIG pointer and return
952 // that.
953
954 if ((d->type == T_CHAR) && (d->is_pointer == 1)) {
955
956 // Return a character string
957 f.code << tab4 << "_resultobj = Py_BuildValue(\"s\", _result);\n";
958
959 // If declared as a new object, free the result
960
961 } else {
962
963 // Build a SWIG pointer.
964 f.add_local("char","_ptemp[128]");
965 f.code << tab4 << "if (_result) {\n"
966 << tab8 << "SWIG_MakePtr(_ptemp, (char *) _result,\""
967 << d->print_mangle() << "\");\n";
968
969 // Return a character string containing our pointer.
970 f.code << tab8 << "_resultobj = Py_BuildValue(\"s\",_ptemp);\n";
971 f.code << tab4 << "} else {\n"
972 << tab8 << "Py_INCREF(Py_None);\n"
973 << tab8 << "_resultobj = Py_None;\n"
974 << tab4 << "}\n";
975 }
976 }
977 } else {
978 // no return value and no output args
979 //if (!have_output) {
980 f.code << tab4 << "Py_INCREF(Py_None);\n";
981 f.code << tab4 << "_resultobj = Py_None;\n";
982 //}
983 }
984 }
985
986 // Check to see if there were any output arguments, if so we're going to
987 // create a Python list object out of the current result
988
989 f.code << outarg;
990
991 // If there was any other cleanup needed, do that
992
993 f.code << cleanup;
994
995 // Look to see if there is any newfree cleanup code
996
997 if (NewObject) {
998 if ((tm = typemap_lookup("newfree","python",d,iname,"_result",""))) {
999 f.code << tm << "\n";
1000 }
1001 }
1002
1003 // See if there is any argument cleanup code
1004
1005 if ((tm = typemap_lookup("ret","python",d,iname,"_result",""))) {
1006 // Yep. Use it instead of the default
1007 f.code << tm << "\n";
1008 }
1009
1010 f.code << tab4 << "return _resultobj;\n";
1011 f.code << "}\n";
1012
1013 // Substitute the cleanup code
1014 f.code.replace("$cleanup",cleanup);
1015
1016 // Substitute the function name
1017 f.code.replace("$name",iname);
1018
1019 // Dump the function out
1020 f.print(f_wrappers);
1021
1022 // Now register the function with the interpreter.
1023
1024 add_method(iname, wname);
1025
1026 // Create a documentation entry for this
1027
1028 if (doc_entry) {
1029 static DocEntry *last_doc_entry = 0;
1030 doc_entry->usage << usage;
1031 if (last_doc_entry != doc_entry) {
1032 doc_entry->cinfo << "returns " << d->print_type();
1033 last_doc_entry = doc_entry;
1034 }
1035 }
1036
1037 // ---------------------------------------------------------------------------
1038 // Create a shadow for this function (if enabled and not in a member function)
1039 // ---------------------------------------------------------------------------
1040
1041 if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
1042 String translate;
1043
1044 int need_wrapper = 0;
1045 int munge_return = 0;
1046 int have_optional = 0;
1047
1048 // Check return code for modification
1049 if ((hash.lookup(d->name)) && (d->is_pointer <=1)) {
1050 need_wrapper = 1;
1051 munge_return = 1;
1052 }
1053
1054 if (docstring && doc_entry)
1055 need_wrapper = 1;
1056
1057 // If no modification is needed. We're just going to play some
1058 // symbol table games instead
1059
1060 if (!need_wrapper) {
1061 func << iname << " = " << module << "." << iname << "\n\n";
1062 } else {
1063 func << "def " << iname << "(*_args, **_kwargs):\n";
1064
1065 // Create a docstring for this
1066 if (docstring && doc_entry) {
1067 func << tab4 << "\"\"\"" << add_docstring(doc_entry) << "\"\"\"\n";
1068 }
1069
1070 func << tab4 << "val = apply(" << module << "." << iname << ",_args,_kwargs)\n";
1071
1072 if (munge_return) {
1073 // If the output of this object has been remapped in any way, we're
1074 // going to return it as a bare object.
1075
1076 if (!typemap_check("out",typemap_lang,d,iname)) {
1077
1078 // If there are output arguments, we are going to return the value
1079 // unchanged. Otherwise, emit some shadow class conversion code.
1080
1081 if (!have_output) {
1082 func << tab4 << "if val: val = " << (char *) hash.lookup(d->name) << "Ptr(val)";
1083 if (((hash.lookup(d->name)) && (d->is_pointer < 1)) ||
1084 ((hash.lookup(d->name)) && (d->is_pointer == 1) && NewObject))
1085 func << "; val.thisown = 1\n";
1086 else
1087 func << "\n";
1088 } else {
1089 // Does nothing--returns the value unmolested
1090 }
1091 }
1092 }
1093 func << tab4 << "return val\n\n";
1094 }
1095 }
1096}
1097
1098// -----------------------------------------------------------------------
1099// PYTHON::link_variable(char *name, char *iname, DataType *d)
1100//
1101// Input variables:
1102// name = the real name of the variable being linked
1103// iname = Name of the variable in the interpreter (may be different)
1104// d = Datatype of the variable.
1105//
1106// This creates a pair of functions for evaluating/setting the value
1107// of a variable. These are then added to the special SWIG global
1108// variable type.
1109// -----------------------------------------------------------------------
1110
1111void PYTHON::link_variable(char *name, char *iname, DataType *t) {
1112
1113 char *wname;
1114 static int have_globals = 0;
1115 char *tm;
1116
1117 WrapperFunction getf, setf;
1118
1119 // If this is our first call, add the globals variable to the
1120 // Python dictionary.
1121
1122 if (!have_globals) {
1123 fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", SWIG_globals);\n",global_name);
1124 have_globals=1;
1125 if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
1126 vars << global_name << " = " << module << "." << global_name << "\n";
1127 }
1128 }
1129 // First make a sanitized version of the function name (in case it's some
1130 // funky C++ thing).
1131
1132 wname = name_wrapper(name,"");
1133
1134 // ---------------------------------------------------------------------
1135 // Create a function for setting the value of the variable
1136 // ---------------------------------------------------------------------
1137
1138 setf.def << "static int " << wname << "_set(PyObject *val) {";
1139 if (!(Status & STAT_READONLY)) {
1140 if ((tm = typemap_lookup("varin","python",t,name,"val",name))) {
1141 setf.code << tm << "\n";
1142 setf.code.replace("$name",iname);
1143 } else {
1144 if ((t->type != T_VOID) || (t->is_pointer)) {
1145 if (!t->is_pointer) {
1146
1147 // Have a real value here
1148
1149 switch(t->type) {
1150 case T_INT: case T_SHORT: case T_LONG :
1151 case T_UINT: case T_USHORT: case T_ULONG:
1152 case T_SINT: case T_SSHORT: case T_SLONG:
1153 case T_SCHAR: case T_UCHAR: case T_BOOL:
1154 // Get an integer value
1155 setf.add_local(t->print_type(), "tval");
1156 setf.code << tab4 << "tval = " << t->print_cast() << "PyInt_AsLong(val);\n"
1157 << tab4 << "if (PyErr_Occurred()) {\n"
1158 << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
1159 << iname << "'(" << t->print_type() << ")\");\n"
1160 << tab8 << "return 1; \n"
1161 << tab4 << "}\n"
1162 << tab4 << name << " = tval;\n";
1163 break;
1164
1165 case T_FLOAT: case T_DOUBLE:
1166 // Get a floating point value
1167 setf.add_local(t->print_type(), "tval");
1168 setf.code << tab4 << "tval = " << t->print_cast() << "PyFloat_AsDouble(val);\n"
1169 << tab4 << "if (PyErr_Occurred()) {\n"
1170 << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
1171 << iname << "'(" << t->print_type() << ")\");\n"
1172 << tab8 << "return 1; \n"
1173 << tab4 << "}\n"
1174 << tab4 << name << " = tval;\n";
1175 break;
1176
1177 // A single ascii character
1178
1179 case T_CHAR:
1180 setf.add_local("char *", "tval");
1181 setf.code << tab4 << "tval = (char *) PyString_AsString(val);\n"
1182 << tab4 << "if (PyErr_Occurred()) {\n"
1183 << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
1184 << iname << "'(" << t->print_type() << ")\");\n"
1185 << tab8 << "return 1; \n"
1186 << tab4 << "}\n"
1187 << tab4 << name << " = *tval;\n";
1188 break;
1189 case T_USER:
1190 t->is_pointer++;
1191 setf.add_local(t->print_type(),"temp");
1192 get_pointer(iname,"value","val","temp",t,setf.code,"1");
1193 setf.code << tab4 << name << " = *temp;\n";
1194 t->is_pointer--;
1195 break;
1196 default:
1197 fprintf(stderr,"%s : Line %d. Unable to link with type %s.\n", input_file, line_number, t->print_type());
1198 }
1199 } else {
1200
1201 // Parse a pointer value
1202
1203 if ((t->type == T_CHAR) && (t->is_pointer == 1)) {
1204 setf.add_local("char *", "tval");
1205 setf.code << tab4 << "tval = (char *) PyString_AsString(val);\n"
1206 << tab4 << "if (PyErr_Occurred()) {\n"
1207 << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
1208 << iname << "'(" << t->print_type() << ")\");\n"
1209 << tab8 << "return 1; \n"
1210 << tab4 << "}\n";
1211
1212 if (CPlusPlus) {
1213 setf.code << tab4 << "if (" << name << ") delete [] " << name << ";\n"
1214 << tab4 << name << " = new char[strlen(tval)+1];\n"
1215 << tab4 << "strcpy((char *)" << name << ",tval);\n";
1216 } else {
1217 setf.code << tab4 << "if (" << name << ") free(" << name << ");\n"
1218 << tab4 << name << " = (char *) malloc(strlen(tval)+1);\n"
1219 << tab4 << "strcpy((char *)" << name << ",tval);\n";
1220 }
1221 } else {
1222
1223 // Is a generic pointer value.
1224
1225 setf.add_local(t->print_type(),"temp");
1226 get_pointer(iname,"value","val","temp",t,setf.code,"1");
1227 setf.code << tab4 << name << " = temp;\n";
1228 }
1229 }
1230 }
1231 }
1232 setf.code << tab4 << "return 0;\n";
1233 } else {
1234 // Is a readonly variable. Issue an error
1235 setf.code << tab4 << "PyErr_SetString(PyExc_TypeError,\"Variable " << iname
1236 << " is read-only.\");\n"
1237 << tab4 << "return 1;\n";
1238 }
1239
1240 setf.code << "}\n";
1241
1242 // Dump out function for setting value
1243
1244 setf.print(f_wrappers);
1245
1246 // ----------------------------------------------------------------
1247 // Create a function for getting the value of a variable
1248 // ----------------------------------------------------------------
1249
1250 getf.def << "static PyObject *" << wname << "_get() {";
1251 getf.add_local("PyObject *","pyobj");
1252 if ((tm = typemap_lookup("varout","python",t,name,name,"pyobj"))) {
1253 getf.code << tm << "\n";
1254 getf.code.replace("$name",iname);
1255 } else if ((tm = typemap_lookup("out","python",t,name,name,"pyobj"))) {
1256 getf.code << tm << "\n";
1257 getf.code.replace("$name",iname);
1258 } else {
1259 if ((t->type != T_VOID) || (t->is_pointer)) {
1260 if (!t->is_pointer) {
1261
1262 /* Is a normal datatype */
1263 switch(t->type) {
1264 case T_INT: case T_SINT: case T_UINT:
1265 case T_SHORT: case T_SSHORT: case T_USHORT:
1266 case T_LONG: case T_SLONG: case T_ULONG:
1267 case T_SCHAR: case T_UCHAR: case T_BOOL:
1268 getf.code << tab4 << "pyobj = PyInt_FromLong((long) " << name << ");\n";
1269 break;
1270 case T_FLOAT: case T_DOUBLE:
1271 getf.code << tab4 << "pyobj = PyFloat_FromDouble((double) " << name << ");\n";
1272 break;
1273 case T_CHAR:
1274 getf.add_local("char","ptemp[2]");
1275 getf.code << tab4 << "ptemp[0] = " << name << ";\n"
1276 << tab4 << "ptemp[1] = 0;\n"
1277 << tab4 << "pyobj = PyString_FromString(ptemp);\n";
1278 break;
1279 case T_USER:
1280 // Hack this into a pointer
1281 getf.add_local("char", "ptemp[128]");
1282 t->is_pointer++;
1283 getf.code << tab4 << "SWIG_MakePtr(ptemp,(char *) &" << name
1284 << "," << quote << t->print_mangle() << quote << ");\n"
1285 << tab4 << "pyobj = PyString_FromString(ptemp);\n";
1286 t->is_pointer--;
1287 break;
1288 default:
1289 fprintf(stderr,"Unable to link with type %s\n", t->print_type());
1290 break;
1291 }
1292 } else {
1293
1294 // Is some sort of pointer value
1295 if ((t->type == T_CHAR) && (t->is_pointer == 1)) {
1296 getf.code << tab4 << "if (" << name << ")\n"
1297 << tab8 << "pyobj = PyString_FromString(" << name << ");\n"
1298 << tab4 << "else pyobj = PyString_FromString(\"(NULL)\");\n";
1299 } else {
1300 getf.add_local("char","ptemp[128]");
1301 getf.code << tab4 << "SWIG_MakePtr(ptemp, (char *) " << name << ",\""
1302 << t->print_mangle() << "\");\n"
1303 << tab4 << "pyobj = PyString_FromString(ptemp);\n";
1304 }
1305 }
1306 }
1307 }
1308
1309 getf.code << tab4 << "return pyobj;\n"
1310 << "}\n";
1311
1312 getf.print(f_wrappers);
1313
1314 // Now add this to the variable linking mechanism
1315
1316 fprintf(f_init,"\t SWIG_addvarlink(SWIG_globals,\"%s\",%s_get, %s_set);\n", iname, wname, wname);
1317
1318
1319 // Fill in the documentation entry
1320
1321 if (doc_entry) {
1322 doc_entry->usage << usage_var(iname, t);
1323 doc_entry->cinfo << "Global : " << t->print_type() << " " << name;
1324 }
1325
1326 // ----------------------------------------------------------
1327 // Output a shadow variable. (If applicable and possible)
1328 // ----------------------------------------------------------
1329 if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
1330 if ((hash.lookup(t->name)) && (t->is_pointer <= 1)) {
1331 vars << iname << " = " << (char *) hash.lookup(t->name) << "Ptr(" << module << "." << global_name
1332 << "." << iname << ")\n";
1333 }
1334 }
1335}
1336
1337// -----------------------------------------------------------------------
1338// PYTHON::declare_const(char *name, char *iname, DataType *type, char *value)
1339//
1340// Makes a constant as defined with #define. Constants are added to the
1341// module's dictionary and are **NOT** guaranteed to be read-only,
1342// sorry.
1343//
1344// ------------------------------------------------------------------------
1345
1346void PYTHON::declare_const(char *name, char *, DataType *type, char *value) {
1347
1348 char *tm;
1349
1350 // Make a static python object
1351
1352 if ((tm = typemap_lookup("const","python",type,name,value,name))) {
1353 fprintf(f_init,"%s\n",tm);
1354 } else {
1355
1356 if ((type->type == T_USER) && (!type->is_pointer)) {
1357 fprintf(stderr,"%s : Line %d. Unsupported constant value.\n", input_file, line_number);
1358 return;
1359 }
1360
1361 if (type->is_pointer == 0) {
1362 switch(type->type) {
1363 case T_INT:case T_SINT: case T_UINT: case T_BOOL:
1364 case T_SHORT: case T_SSHORT: case T_USHORT:
1365 case T_LONG: case T_SLONG: case T_ULONG:
1366 case T_SCHAR: case T_UCHAR:
1367 fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyInt_FromLong((long) %s));\n",name,value);
1368 break;
1369 case T_DOUBLE:
1370 case T_FLOAT:
1371 fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyFloat_FromDouble((double) %s));\n",name,value);
1372 break;
1373 case T_CHAR :
1374 fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyString_FromString(\"%s\"));\n",name,value);
1375 break;
1376 default:
1377 fprintf(stderr,"%s : Line %d. Unsupported constant value.\n", input_file, line_number);
1378 break;
1379 }
1380 } else {
1381 if ((type->type == T_CHAR) && (type->is_pointer == 1)) {
1382 fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyString_FromString(\"%s\"));\n",name,value);
1383 } else {
1384 // A funky user-defined type. We're going to munge it into a string pointer value
1385 fprintf(f_init,"\t {\n");
1386 fprintf(f_init,"\t\t char %s_char[%d];\n", name, (int) strlen(type->print_mangle()) + 20);
1387 fprintf(f_init,"\t\t SWIG_MakePtr(%s_char, (void *) (%s),\"%s\");\n",
1388 name, value, type->print_mangle());
1389 fprintf(f_init,"\t\t PyDict_SetItemString(d,\"%s\", PyString_FromString(%s_char));\n",name,name);
1390 fprintf(f_init,"\t }\n");
1391 }
1392 }
1393 }
1394 if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
1395 vars << name << " = " << module << "." << name << "\n";
1396 }
1397 if (doc_entry) {
1398 doc_entry->usage = "";
1399 doc_entry->usage << usage_const(name,type,value);
1400 doc_entry->cinfo = "";
1401 doc_entry->cinfo << "Constant: " << type->print_type();
1402 }
1403}
1404
1405// ----------------------------------------------------------------------
1406// PYTHON::usage_var(char *iname, DataType *t)
1407//
1408// This function produces a string indicating how to use a variable.
1409// It is called by the documentation system to produce syntactically
1410// correct documentation entires.
1411//
1412// s is a pointer to a character pointer. You should create
1413// a string and set this pointer to point to it.
1414// ----------------------------------------------------------------------
1415
1416char *PYTHON::usage_var(char *iname, DataType *) {
1417
1418 static String temp;
1419
1420 temp = "";
1421 temp << global_name << "." << iname;
1422
1423 // Create result. Don't modify this
1424
1425 return temp.get();
1426}
1427
1428// ---------------------------------------------------------------------------
1429// PYTHON::usage_func(char *iname, DataType *t, ParmList *l)
1430//
1431// Produces a string indicating how to call a function in the target
1432// language.
1433//
1434// ---------------------------------------------------------------------------
1435
1436char *PYTHON::usage_func(char *iname, DataType *, ParmList *l) {
1437
1438 static String temp;
1439 Parm *p;
1440 int i;
1441
1442 temp = "";
1443 temp << iname << "(";
1444
1445 // Now go through and print parameters
1446 // You probably don't need to change this
1447
1448 i = 0;
1449 p = l->get_first();
1450 while (p != 0) {
1451 if (!p->ignore) {
1452 i++;
1453 /* If parameter has been named, use that. Otherwise, just print a type */
1454
1455 if ((p->t->type != T_VOID) || (p->t->is_pointer)) {
1456 if (strlen(p->name) > 0) {
1457 temp << p->name;
1458 } else {
1459 temp << p->t->print_type();
1460 }
1461 }
1462 p = l->get_next();
1463 if (p != 0) {
1464 if (!p->ignore)
1465 temp << ",";
1466 }
1467 } else {
1468 p = l->get_next();
1469 if (p) {
1470 if ((!p->ignore) && (i > 0))
1471 temp << ",";
1472 }
1473 }
1474 }
1475
1476 temp << ")";
1477
1478 // Create result. Don't change this
1479
1480 return temp.get();
1481
1482}
1483
1484
1485// ----------------------------------------------------------------------
1486// PYTHON::usage_const(char *iname, DataType *type, char *value)
1487//
1488// Produces a string for a constant. Really about the same as
1489// usage_var() except we'll indicate the value of the constant.
1490// ----------------------------------------------------------------------
1491
1492char *PYTHON::usage_const(char *iname, DataType *, char *value) {
1493
1494 static String temp;
1495 temp = "";
1496 temp << iname << " = " << value;
1497
1498 return temp.get();
1499}
1500
1501// -----------------------------------------------------------------------
1502// PYTHON::add_native(char *name, char *funcname)
1503//
1504// Add a native module name to the methods list.
1505// -----------------------------------------------------------------------
1506
1507void PYTHON::add_native(char *name, char *funcname) {
1508 add_method(name, funcname);
1509 if (shadow) {
1510 func << name << " = " << module << "." << name << "\n\n";
1511 }
1512}
1513
1514// -----------------------------------------------------------------------
1515// PYTHON::cpp_class_decl(char *name, char *rename, char *type)
1516//
1517// Treatment of an empty class definition. Used to handle
1518// shadow classes across modules.
1519// -----------------------------------------------------------------------
1520
1521void PYTHON::cpp_class_decl(char *name, char *rename, char *type) {
1522 char temp[256];
1523 if (shadow) {
1524 hash.add(name,copy_string(rename));
1525 // Add full name of datatype to the hash table
1526 if (strlen(type) > 0) {
1527 sprintf(temp,"%s %s", type, name);
1528 hash.add(temp,copy_string(rename));
1529 }
1530 }
1531}
1532
1533// -----------------------------------------------------------------------
1534// PYTHON::pragma(char *name, char *type)
1535//
1536// Pragma directive. Used to do various python specific things
1537// -----------------------------------------------------------------------
1538
1539void PYTHON::pragma(char *lang, char *cmd, char *value) {
1540
1541 if (strcmp(lang,"python") == 0) {
1542 if (strcmp(cmd,"CODE") == 0) {
1543 if (shadow) {
1544 fprintf(f_shadow,"%s\n",value);
1545 }
1546 } else if (strcmp(cmd,"code") == 0) {
1547 if (shadow) {
1548 fprintf(f_shadow,"%s\n",value);
1549 }
1550 } else if (strcmp(cmd,"include") == 0) {
1551 if (shadow) {
1552 if (value) {
1553 if (get_file(value,pragma_include) == -1) {
1554 fprintf(stderr,"%s : Line %d. Unable to locate file %s\n", input_file, line_number, value);
1555 }
1556 }
1557 }
1558 } else {
1559 fprintf(stderr,"%s : Line %d. Unrecognized pragma.\n", input_file, line_number);
1560 }
1561 }
1562}
1563
1564
1565struct PyPragma {
1566 PyPragma(char *method, char *text) : m_method(method), m_text(text), next(0) { }
1567 ~PyPragma() { if (next) delete next; }
1568 String m_method;
1569 String m_text;
1570 PyPragma *next;
1571};
1572
1573static PyPragma *pragmas = 0;
1574
1575// -----------------------------------------------------------------------------
1576// PYTHON::cpp_pragma(Pragma *plist)
1577//
1578// Handle C++ pragmas
1579// -----------------------------------------------------------------------------
1580
1581void PYTHON::cpp_pragma(Pragma *plist) {
1582 PyPragma *pyp1 = 0, *pyp2 = 0;
1583 if (pragmas) {
1584 delete pragmas;
1585 pragmas = 0;
1586 }
1587 while (plist) {
1588 if (strcmp(plist->lang,"python") == 0) {
1589 if (strcmp(plist->name,"addtomethod") == 0) {
1590 // parse value, expected to be in the form "methodName:line"
1591 String temp = plist->value;
1592 char* txtptr = strchr(temp.get(), ':');
1593 if (txtptr) {
1594 // add name and line to a list in current_class
1595 *txtptr = 0;
1596 txtptr++;
1597 pyp1 = new PyPragma(temp,txtptr);
1598 if (pyp2) {
1599 pyp2->next = pyp1;
1600 pyp2 = pyp1;
1601 } else {
1602 pragmas = pyp1;
1603 pyp2 = pragmas;
1604 }
1605 } else {
1606 fprintf(stderr,"%s : Line %d. Malformed addtomethod pragma. Should be \"methodName:text\"\n",
1607 plist->filename.get(),plist->lineno);
1608 }
1609 } else if (strcmp(plist->name, "addtoclass") == 0) {
1610 pyp1 = new PyPragma("__class__",plist->value);
1611 if (pyp2) {
1612 pyp2->next = pyp1;
1613 pyp2 = pyp1;
1614 } else {
1615 pragmas = pyp1;
1616 pyp2 = pragmas;
1617 }
1618 }
1619 }
1620 plist = plist->next;
1621 }
1622}
1623
1624// --------------------------------------------------------------------------------
1625// PYTHON::emitAddPragmas(String& output, char* name, char* spacing);
1626//
1627// Search the current class pragma for any text belonging to name.
1628// Append the text properly spaced to the output string.
1629// --------------------------------------------------------------------------------
1630
1631void PYTHON::emitAddPragmas(String& output, char* name, char* spacing)
1632{
1633 PyPragma *p = pragmas;
1634 while (p) {
1635 if (strcmp(p->m_method,name) == 0) {
1636 output << spacing << p->m_text << "\n";
1637 }
1638 p = p->next;
1639 }
1640}