Commit | Line | Data |
---|---|---|
e1929140 RR |
1 | /* |
2 | * jfdctfst.c | |
3 | * | |
4 | * Copyright (C) 1994-1996, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains a fast, not so accurate integer implementation of the | |
9 | * forward DCT (Discrete Cosine Transform). | |
10 | * | |
11 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |
12 | * on each column. Direct algorithms are also available, but they are | |
13 | * much more complex and seem not to be any faster when reduced to code. | |
14 | * | |
15 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
16 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
17 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
18 | * JPEG textbook (see REFERENCES section in file README). The following code | |
19 | * is based directly on figure 4-8 in P&M. | |
20 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
21 | * possible to arrange the computation so that many of the multiplies are | |
22 | * simple scalings of the final outputs. These multiplies can then be | |
23 | * folded into the multiplications or divisions by the JPEG quantization | |
24 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
25 | * to be done in the DCT itself. | |
26 | * The primary disadvantage of this method is that with fixed-point math, | |
27 | * accuracy is lost due to imprecise representation of the scaled | |
28 | * quantization values. The smaller the quantization table entry, the less | |
29 | * precise the scaled value, so this implementation does worse with high- | |
30 | * quality-setting files than with low-quality ones. | |
31 | */ | |
32 | ||
33 | #define JPEG_INTERNALS | |
34 | #include "jinclude.h" | |
35 | #include "jpeglib.h" | |
36 | #include "jdct.h" /* Private declarations for DCT subsystem */ | |
37 | ||
38 | #ifdef DCT_IFAST_SUPPORTED | |
39 | ||
40 | ||
41 | /* | |
42 | * This module is specialized to the case DCTSIZE = 8. | |
43 | */ | |
44 | ||
45 | #if DCTSIZE != 8 | |
46 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
47 | #endif | |
48 | ||
49 | ||
50 | /* Scaling decisions are generally the same as in the LL&M algorithm; | |
51 | * see jfdctint.c for more details. However, we choose to descale | |
52 | * (right shift) multiplication products as soon as they are formed, | |
53 | * rather than carrying additional fractional bits into subsequent additions. | |
54 | * This compromises accuracy slightly, but it lets us save a few shifts. | |
55 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | |
56 | * everywhere except in the multiplications proper; this saves a good deal | |
57 | * of work on 16-bit-int machines. | |
58 | * | |
59 | * Again to save a few shifts, the intermediate results between pass 1 and | |
60 | * pass 2 are not upscaled, but are represented only to integral precision. | |
61 | * | |
62 | * A final compromise is to represent the multiplicative constants to only | |
63 | * 8 fractional bits, rather than 13. This saves some shifting work on some | |
64 | * machines, and may also reduce the cost of multiplication (since there | |
65 | * are fewer one-bits in the constants). | |
66 | */ | |
67 | ||
68 | #define CONST_BITS 8 | |
69 | ||
70 | ||
71 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
72 | * causing a lot of useless floating-point operations at run time. | |
73 | * To get around this we use the following pre-calculated constants. | |
74 | * If you change CONST_BITS you may want to add appropriate values. | |
75 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
76 | */ | |
77 | ||
78 | #if CONST_BITS == 8 | |
39c2d6bd VZ |
79 | #define FIX_0_382683433 ((JPEG_INT32) 98) /* FIX(0.382683433) */ |
80 | #define FIX_0_541196100 ((JPEG_INT32) 139) /* FIX(0.541196100) */ | |
81 | #define FIX_0_707106781 ((JPEG_INT32) 181) /* FIX(0.707106781) */ | |
82 | #define FIX_1_306562965 ((JPEG_INT32) 334) /* FIX(1.306562965) */ | |
e1929140 RR |
83 | #else |
84 | #define FIX_0_382683433 FIX(0.382683433) | |
85 | #define FIX_0_541196100 FIX(0.541196100) | |
86 | #define FIX_0_707106781 FIX(0.707106781) | |
87 | #define FIX_1_306562965 FIX(1.306562965) | |
88 | #endif | |
89 | ||
90 | ||
91 | /* We can gain a little more speed, with a further compromise in accuracy, | |
92 | * by omitting the addition in a descaling shift. This yields an incorrectly | |
93 | * rounded result half the time... | |
94 | */ | |
95 | ||
96 | #ifndef USE_ACCURATE_ROUNDING | |
97 | #undef DESCALE | |
98 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) | |
99 | #endif | |
100 | ||
101 | ||
102 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately | |
103 | * descale to yield a DCTELEM result. | |
104 | */ | |
105 | ||
106 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | |
107 | ||
108 | ||
109 | /* | |
110 | * Perform the forward DCT on one block of samples. | |
111 | */ | |
112 | ||
113 | GLOBAL(void) | |
114 | jpeg_fdct_ifast (DCTELEM * data) | |
115 | { | |
116 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
117 | DCTELEM tmp10, tmp11, tmp12, tmp13; | |
118 | DCTELEM z1, z2, z3, z4, z5, z11, z13; | |
119 | DCTELEM *dataptr; | |
120 | int ctr; | |
121 | SHIFT_TEMPS | |
122 | ||
123 | /* Pass 1: process rows. */ | |
124 | ||
125 | dataptr = data; | |
126 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
127 | tmp0 = dataptr[0] + dataptr[7]; | |
128 | tmp7 = dataptr[0] - dataptr[7]; | |
129 | tmp1 = dataptr[1] + dataptr[6]; | |
130 | tmp6 = dataptr[1] - dataptr[6]; | |
131 | tmp2 = dataptr[2] + dataptr[5]; | |
132 | tmp5 = dataptr[2] - dataptr[5]; | |
133 | tmp3 = dataptr[3] + dataptr[4]; | |
134 | tmp4 = dataptr[3] - dataptr[4]; | |
135 | ||
136 | /* Even part */ | |
137 | ||
138 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
139 | tmp13 = tmp0 - tmp3; | |
140 | tmp11 = tmp1 + tmp2; | |
141 | tmp12 = tmp1 - tmp2; | |
142 | ||
143 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ | |
144 | dataptr[4] = tmp10 - tmp11; | |
145 | ||
146 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
147 | dataptr[2] = tmp13 + z1; /* phase 5 */ | |
148 | dataptr[6] = tmp13 - z1; | |
149 | ||
150 | /* Odd part */ | |
151 | ||
152 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
153 | tmp11 = tmp5 + tmp6; | |
154 | tmp12 = tmp6 + tmp7; | |
155 | ||
156 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
157 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
158 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
159 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
160 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
161 | ||
162 | z11 = tmp7 + z3; /* phase 5 */ | |
163 | z13 = tmp7 - z3; | |
164 | ||
165 | dataptr[5] = z13 + z2; /* phase 6 */ | |
166 | dataptr[3] = z13 - z2; | |
167 | dataptr[1] = z11 + z4; | |
168 | dataptr[7] = z11 - z4; | |
169 | ||
170 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
171 | } | |
172 | ||
173 | /* Pass 2: process columns. */ | |
174 | ||
175 | dataptr = data; | |
176 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
177 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
178 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
179 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
180 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
181 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
182 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
183 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
184 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
185 | ||
186 | /* Even part */ | |
187 | ||
188 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
189 | tmp13 = tmp0 - tmp3; | |
190 | tmp11 = tmp1 + tmp2; | |
191 | tmp12 = tmp1 - tmp2; | |
192 | ||
193 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |
194 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
195 | ||
196 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
197 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |
198 | dataptr[DCTSIZE*6] = tmp13 - z1; | |
199 | ||
200 | /* Odd part */ | |
201 | ||
202 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
203 | tmp11 = tmp5 + tmp6; | |
204 | tmp12 = tmp6 + tmp7; | |
205 | ||
206 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
207 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
208 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
209 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
210 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
211 | ||
212 | z11 = tmp7 + z3; /* phase 5 */ | |
213 | z13 = tmp7 - z3; | |
214 | ||
215 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |
216 | dataptr[DCTSIZE*3] = z13 - z2; | |
217 | dataptr[DCTSIZE*1] = z11 + z4; | |
218 | dataptr[DCTSIZE*7] = z11 - z4; | |
219 | ||
220 | dataptr++; /* advance pointer to next column */ | |
221 | } | |
222 | } | |
223 | ||
224 | #endif /* DCT_IFAST_SUPPORTED */ |