Commit | Line | Data |
---|---|---|
c801d85f KB |
1 | ///////////////////////////////////////////////////////////////////////////// |
2 | // Name: matrix.cpp | |
3 | // Purpose: wxTransformMatrix class | |
4 | // Author: Chris Breeze, Julian Smart | |
5 | // Modified by: | |
6 | // Created: 01/02/97 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Julian Smart and Markus Holzem | |
9 | // Licence: wxWindows licence | |
10 | ///////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | #ifdef __GNUG__ | |
13 | #pragma implementation "matrix.h" | |
14 | #endif | |
15 | ||
16 | // Note: this is intended to be used in wxDC at some point to replace | |
17 | // the current system of scaling/translation. It is not yet used. | |
18 | ||
19 | // For compilers that support precompilation, includes "wx.h". | |
20 | #include "wx/wxprec.h" | |
21 | ||
22 | #ifdef __BORLANDC__ | |
23 | #pragma hdrstop | |
24 | #endif | |
25 | ||
26 | #ifndef WX_PRECOMP | |
27 | #include "wx/defs.h" | |
28 | #endif | |
29 | ||
30 | #include "wx/matrix.h" | |
31 | #include <math.h> | |
32 | ||
33 | const double pi = 3.1415926535; | |
34 | ||
35 | wxTransformMatrix::wxTransformMatrix(void) | |
36 | { | |
37 | m_isIdentity = FALSE; | |
38 | ||
39 | Identity(); | |
40 | } | |
41 | ||
42 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
43 | { | |
44 | (*this) = mat; | |
45 | } | |
46 | ||
47 | double wxTransformMatrix::GetValue(int row, int col) const | |
48 | { | |
49 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
50 | return 0.0; | |
51 | ||
52 | return m_matrix[row][col]; | |
53 | } | |
54 | ||
55 | void wxTransformMatrix::SetValue(int row, int col, double value) | |
56 | { | |
57 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
58 | return; | |
59 | ||
60 | m_matrix[row][col] = value; | |
61 | } | |
62 | ||
63 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
64 | { | |
65 | int i, j; | |
66 | for (i = 0; i < 3; i++) | |
67 | { | |
68 | for (j = 0; j < 3; j++) | |
69 | { | |
70 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
71 | } | |
72 | } | |
73 | m_isIdentity = mat.m_isIdentity; | |
74 | } | |
75 | ||
76 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) | |
77 | { | |
78 | int i, j; | |
79 | for (i = 0; i < 3; i++) | |
80 | { | |
81 | for (j = 0; j < 3; j++) | |
82 | { | |
83 | if (m_matrix[i][j] != mat.m_matrix[i][j]) | |
84 | return FALSE; | |
85 | } | |
86 | } | |
87 | return TRUE; | |
88 | } | |
89 | ||
90 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) | |
91 | { | |
92 | return (! ((*this) == mat)); | |
93 | } | |
94 | ||
95 | double& wxTransformMatrix::operator()(int row, int col) | |
96 | { | |
97 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
98 | return m_matrix[0][0]; | |
99 | ||
100 | return m_matrix[row][col]; | |
101 | } | |
102 | ||
103 | double wxTransformMatrix::operator()(int row, int col) const | |
104 | { | |
105 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
106 | return 0.0; | |
107 | ||
108 | return m_matrix[row][col]; | |
109 | } | |
110 | ||
111 | // Invert matrix | |
112 | bool wxTransformMatrix::Invert(void) | |
113 | { | |
114 | double inverseMatrix[3][3]; | |
115 | ||
116 | // calculate the adjoint | |
117 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
118 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
119 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
120 | ||
121 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
122 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
123 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
124 | ||
125 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
126 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
127 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
128 | ||
129 | // now divide by the determinant | |
130 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
131 | if (det != 0.0) | |
132 | { | |
133 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
134 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
135 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
136 | ||
137 | int i, j; | |
138 | for (i = 0; i < 3; i++) | |
139 | { | |
140 | for (j = 0; j < 3; j++) | |
141 | { | |
142 | m_matrix[i][j] = inverseMatrix[i][j]; | |
143 | } | |
144 | } | |
145 | m_isIdentity = IsIdentity1(); | |
146 | return TRUE; | |
147 | } | |
148 | else | |
149 | { | |
150 | return FALSE; | |
151 | } | |
152 | } | |
153 | ||
154 | // Make into identity matrix | |
155 | bool wxTransformMatrix::Identity(void) | |
156 | { | |
157 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
158 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
159 | m_isIdentity = TRUE; | |
160 | ||
161 | return TRUE; | |
162 | } | |
163 | ||
164 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
165 | // | scale 0 0 | | |
166 | // matrix' = | 0 scale 0 | x matrix | |
167 | // | 0 0 scale | | |
168 | // | |
169 | bool wxTransformMatrix::Scale(double scale) | |
170 | { | |
171 | int i, j; | |
172 | for (i = 0; i < 3; i++) | |
173 | { | |
174 | for (j = 0; j < 3; j++) | |
175 | { | |
176 | m_matrix[i][j] *= scale; | |
177 | } | |
178 | } | |
179 | m_isIdentity = IsIdentity1(); | |
180 | ||
181 | return TRUE; | |
182 | } | |
183 | ||
184 | // Translate by dx, dy: | |
185 | // | 1 0 dx | | |
186 | // matrix' = | 0 1 dy | x matrix | |
187 | // | 0 0 1 | | |
188 | // | |
189 | bool wxTransformMatrix::Translate(double dx, double dy) | |
190 | { | |
191 | int i; | |
192 | for (i = 0; i < 3; i++) | |
193 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
194 | for (i = 0; i < 3; i++) | |
195 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
196 | ||
197 | m_isIdentity = IsIdentity1(); | |
198 | ||
199 | return TRUE; | |
200 | } | |
201 | ||
202 | // Rotate by the given number of degrees: | |
203 | // | cos sin 0 | | |
204 | // matrix' = | -sin cos 0 | x matrix | |
205 | // | 0 0 1 | | |
206 | // | |
207 | bool wxTransformMatrix::Rotate(double degrees) | |
208 | { | |
209 | double angle = degrees * pi / 180.0; | |
210 | double s = sin(angle); | |
211 | double c = cos(angle); | |
212 | ||
213 | m_matrix[0][0] = c * m_matrix[0][0] + s * m_matrix[0][1]; | |
214 | m_matrix[1][0] = c * m_matrix[1][0] + s * m_matrix[1][1]; | |
215 | m_matrix[2][0] = c * m_matrix[2][0] + s * m_matrix[2][1]; | |
216 | m_matrix[0][2] = c * m_matrix[0][1] - s * m_matrix[0][0]; | |
217 | m_matrix[1][2] = c * m_matrix[1][1] - s * m_matrix[1][0]; | |
218 | m_matrix[2][2] = c * m_matrix[2][1] - s * m_matrix[2][0]; | |
219 | ||
220 | m_isIdentity = IsIdentity1(); | |
221 | ||
222 | return TRUE; | |
223 | } | |
224 | ||
225 | // Transform a point from logical to device coordinates | |
226 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
227 | { | |
228 | if (IsIdentity()) | |
229 | { | |
230 | tx = x; ty = y; return TRUE; | |
231 | } | |
232 | ||
233 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
234 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
235 | ||
236 | return TRUE; | |
237 | } | |
238 | ||
239 | // Transform a point from device to logical coordinates. | |
240 | ||
241 | // Example of use: | |
242 | // wxTransformMatrix mat = dc.GetTransformation(); | |
243 | // mat.Invert(); | |
244 | // mat.InverseTransformPoint(x, y, x1, y1); | |
245 | // OR (shorthand:) | |
246 | // dc.LogicalToDevice(x, y, x1, y1); | |
247 | // The latter is slightly less efficient if we're doing several | |
248 | // conversions, since the matrix is inverted several times. | |
249 | ||
250 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
251 | { | |
252 | if (IsIdentity()) | |
253 | { | |
254 | tx = x; ty = y; return TRUE; | |
255 | } | |
256 | ||
257 | double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
258 | if (z == 0.0) | |
259 | { | |
260 | // z = 0.0000001; | |
261 | return FALSE; | |
262 | } | |
263 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
264 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
265 | return TRUE; | |
266 | } | |
267 |