]>
Commit | Line | Data |
---|---|---|
e1929140 RR |
1 | /* |
2 | * jdcoefct.c | |
3 | * | |
4 | * Copyright (C) 1994-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains the coefficient buffer controller for decompression. | |
9 | * This controller is the top level of the JPEG decompressor proper. | |
10 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. | |
11 | * | |
12 | * In buffered-image mode, this controller is the interface between | |
13 | * input-oriented processing and output-oriented processing. | |
14 | * Also, the input side (only) is used when reading a file for transcoding. | |
15 | */ | |
16 | ||
17 | #define JPEG_INTERNALS | |
18 | #include "jinclude.h" | |
19 | #include "jpeglib.h" | |
20 | ||
21 | /* Block smoothing is only applicable for progressive JPEG, so: */ | |
22 | #ifndef D_PROGRESSIVE_SUPPORTED | |
23 | #undef BLOCK_SMOOTHING_SUPPORTED | |
24 | #endif | |
25 | ||
26 | /* Private buffer controller object */ | |
27 | ||
28 | typedef struct { | |
29 | struct jpeg_d_coef_controller pub; /* public fields */ | |
30 | ||
31 | /* These variables keep track of the current location of the input side. */ | |
32 | /* cinfo->input_iMCU_row is also used for this. */ | |
33 | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ | |
34 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |
35 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |
36 | ||
37 | /* The output side's location is represented by cinfo->output_iMCU_row. */ | |
38 | ||
39 | /* In single-pass modes, it's sufficient to buffer just one MCU. | |
40 | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, | |
41 | * and let the entropy decoder write into that workspace each time. | |
42 | * (On 80x86, the workspace is FAR even though it's not really very big; | |
43 | * this is to keep the module interfaces unchanged when a large coefficient | |
44 | * buffer is necessary.) | |
45 | * In multi-pass modes, this array points to the current MCU's blocks | |
46 | * within the virtual arrays; it is used only by the input side. | |
47 | */ | |
48 | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; | |
49 | ||
50 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
51 | /* In multi-pass modes, we need a virtual block array for each component. */ | |
52 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |
53 | #endif | |
54 | ||
55 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
56 | /* When doing block smoothing, we latch coefficient Al values here */ | |
57 | int * coef_bits_latch; | |
58 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ | |
59 | #endif | |
60 | } my_coef_controller; | |
61 | ||
62 | typedef my_coef_controller * my_coef_ptr; | |
63 | ||
64 | /* Forward declarations */ | |
65 | METHODDEF(int) decompress_onepass | |
66 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |
67 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
68 | METHODDEF(int) decompress_data | |
69 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |
70 | #endif | |
71 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
72 | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); | |
73 | METHODDEF(int) decompress_smooth_data | |
74 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |
75 | #endif | |
76 | ||
77 | ||
78 | LOCAL(void) | |
79 | start_iMCU_row (j_decompress_ptr cinfo) | |
80 | /* Reset within-iMCU-row counters for a new row (input side) */ | |
81 | { | |
82 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
83 | ||
84 | /* In an interleaved scan, an MCU row is the same as an iMCU row. | |
85 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |
86 | * But at the bottom of the image, process only what's left. | |
87 | */ | |
88 | if (cinfo->comps_in_scan > 1) { | |
89 | coef->MCU_rows_per_iMCU_row = 1; | |
90 | } else { | |
91 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) | |
92 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |
93 | else | |
94 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |
95 | } | |
96 | ||
97 | coef->MCU_ctr = 0; | |
98 | coef->MCU_vert_offset = 0; | |
99 | } | |
100 | ||
101 | ||
102 | /* | |
103 | * Initialize for an input processing pass. | |
104 | */ | |
105 | ||
106 | METHODDEF(void) | |
107 | start_input_pass (j_decompress_ptr cinfo) | |
108 | { | |
109 | cinfo->input_iMCU_row = 0; | |
110 | start_iMCU_row(cinfo); | |
111 | } | |
112 | ||
113 | ||
114 | /* | |
115 | * Initialize for an output processing pass. | |
116 | */ | |
117 | ||
118 | METHODDEF(void) | |
119 | start_output_pass (j_decompress_ptr cinfo) | |
120 | { | |
121 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
122 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
123 | ||
124 | /* If multipass, check to see whether to use block smoothing on this pass */ | |
125 | if (coef->pub.coef_arrays != NULL) { | |
126 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) | |
127 | coef->pub.decompress_data = decompress_smooth_data; | |
128 | else | |
129 | coef->pub.decompress_data = decompress_data; | |
130 | } | |
131 | #endif | |
132 | cinfo->output_iMCU_row = 0; | |
133 | } | |
134 | ||
135 | ||
136 | /* | |
137 | * Decompress and return some data in the single-pass case. | |
138 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | |
139 | * Input and output must run in lockstep since we have only a one-MCU buffer. | |
140 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |
141 | * | |
142 | * NB: output_buf contains a plane for each component in image, | |
143 | * which we index according to the component's SOF position. | |
144 | */ | |
145 | ||
146 | METHODDEF(int) | |
147 | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |
148 | { | |
149 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
150 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
151 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |
152 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
153 | int blkn, ci, xindex, yindex, yoffset, useful_width; | |
154 | JSAMPARRAY output_ptr; | |
155 | JDIMENSION start_col, output_col; | |
156 | jpeg_component_info *compptr; | |
157 | inverse_DCT_method_ptr inverse_DCT; | |
158 | ||
159 | /* Loop to process as much as one whole iMCU row */ | |
160 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
161 | yoffset++) { | |
162 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | |
163 | MCU_col_num++) { | |
164 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ | |
165 | jzero_far((void FAR *) coef->MCU_buffer[0], | |
166 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); | |
167 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | |
168 | /* Suspension forced; update state counters and exit */ | |
169 | coef->MCU_vert_offset = yoffset; | |
170 | coef->MCU_ctr = MCU_col_num; | |
171 | return JPEG_SUSPENDED; | |
172 | } | |
173 | /* Determine where data should go in output_buf and do the IDCT thing. | |
174 | * We skip dummy blocks at the right and bottom edges (but blkn gets | |
175 | * incremented past them!). Note the inner loop relies on having | |
176 | * allocated the MCU_buffer[] blocks sequentially. | |
177 | */ | |
178 | blkn = 0; /* index of current DCT block within MCU */ | |
179 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
180 | compptr = cinfo->cur_comp_info[ci]; | |
181 | /* Don't bother to IDCT an uninteresting component. */ | |
182 | if (! compptr->component_needed) { | |
183 | blkn += compptr->MCU_blocks; | |
184 | continue; | |
185 | } | |
186 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; | |
187 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |
188 | : compptr->last_col_width; | |
189 | output_ptr = output_buf[compptr->component_index] + | |
190 | yoffset * compptr->DCT_scaled_size; | |
191 | start_col = MCU_col_num * compptr->MCU_sample_width; | |
192 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
193 | if (cinfo->input_iMCU_row < last_iMCU_row || | |
194 | yoffset+yindex < compptr->last_row_height) { | |
195 | output_col = start_col; | |
196 | for (xindex = 0; xindex < useful_width; xindex++) { | |
197 | (*inverse_DCT) (cinfo, compptr, | |
198 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex], | |
199 | output_ptr, output_col); | |
200 | output_col += compptr->DCT_scaled_size; | |
201 | } | |
202 | } | |
203 | blkn += compptr->MCU_width; | |
204 | output_ptr += compptr->DCT_scaled_size; | |
205 | } | |
206 | } | |
207 | } | |
208 | /* Completed an MCU row, but perhaps not an iMCU row */ | |
209 | coef->MCU_ctr = 0; | |
210 | } | |
211 | /* Completed the iMCU row, advance counters for next one */ | |
212 | cinfo->output_iMCU_row++; | |
213 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | |
214 | start_iMCU_row(cinfo); | |
215 | return JPEG_ROW_COMPLETED; | |
216 | } | |
217 | /* Completed the scan */ | |
218 | (*cinfo->inputctl->finish_input_pass) (cinfo); | |
219 | return JPEG_SCAN_COMPLETED; | |
220 | } | |
221 | ||
222 | ||
223 | /* | |
224 | * Dummy consume-input routine for single-pass operation. | |
225 | */ | |
226 | ||
227 | METHODDEF(int) | |
228 | dummy_consume_data (j_decompress_ptr cinfo) | |
229 | { | |
230 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ | |
231 | } | |
232 | ||
233 | ||
234 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
235 | ||
236 | /* | |
237 | * Consume input data and store it in the full-image coefficient buffer. | |
238 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | |
239 | * ie, v_samp_factor block rows for each component in the scan. | |
240 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |
241 | */ | |
242 | ||
243 | METHODDEF(int) | |
244 | consume_data (j_decompress_ptr cinfo) | |
245 | { | |
246 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
247 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
248 | int blkn, ci, xindex, yindex, yoffset; | |
249 | JDIMENSION start_col; | |
250 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |
251 | JBLOCKROW buffer_ptr; | |
252 | jpeg_component_info *compptr; | |
253 | ||
254 | /* Align the virtual buffers for the components used in this scan. */ | |
255 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
256 | compptr = cinfo->cur_comp_info[ci]; | |
257 | buffer[ci] = (*cinfo->mem->access_virt_barray) | |
258 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |
259 | cinfo->input_iMCU_row * compptr->v_samp_factor, | |
260 | (JDIMENSION) compptr->v_samp_factor, TRUE); | |
261 | /* Note: entropy decoder expects buffer to be zeroed, | |
262 | * but this is handled automatically by the memory manager | |
263 | * because we requested a pre-zeroed array. | |
264 | */ | |
265 | } | |
266 | ||
267 | /* Loop to process one whole iMCU row */ | |
268 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
269 | yoffset++) { | |
270 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | |
271 | MCU_col_num++) { | |
272 | /* Construct list of pointers to DCT blocks belonging to this MCU */ | |
273 | blkn = 0; /* index of current DCT block within MCU */ | |
274 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
275 | compptr = cinfo->cur_comp_info[ci]; | |
276 | start_col = MCU_col_num * compptr->MCU_width; | |
277 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
278 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |
279 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |
280 | coef->MCU_buffer[blkn++] = buffer_ptr++; | |
281 | } | |
282 | } | |
283 | } | |
284 | /* Try to fetch the MCU. */ | |
285 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | |
286 | /* Suspension forced; update state counters and exit */ | |
287 | coef->MCU_vert_offset = yoffset; | |
288 | coef->MCU_ctr = MCU_col_num; | |
289 | return JPEG_SUSPENDED; | |
290 | } | |
291 | } | |
292 | /* Completed an MCU row, but perhaps not an iMCU row */ | |
293 | coef->MCU_ctr = 0; | |
294 | } | |
295 | /* Completed the iMCU row, advance counters for next one */ | |
296 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | |
297 | start_iMCU_row(cinfo); | |
298 | return JPEG_ROW_COMPLETED; | |
299 | } | |
300 | /* Completed the scan */ | |
301 | (*cinfo->inputctl->finish_input_pass) (cinfo); | |
302 | return JPEG_SCAN_COMPLETED; | |
303 | } | |
304 | ||
305 | ||
306 | /* | |
307 | * Decompress and return some data in the multi-pass case. | |
308 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | |
309 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |
310 | * | |
311 | * NB: output_buf contains a plane for each component in image. | |
312 | */ | |
313 | ||
314 | METHODDEF(int) | |
315 | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |
316 | { | |
317 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
318 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
319 | JDIMENSION block_num; | |
320 | int ci, block_row, block_rows; | |
321 | JBLOCKARRAY buffer; | |
322 | JBLOCKROW buffer_ptr; | |
323 | JSAMPARRAY output_ptr; | |
324 | JDIMENSION output_col; | |
325 | jpeg_component_info *compptr; | |
326 | inverse_DCT_method_ptr inverse_DCT; | |
327 | ||
328 | /* Force some input to be done if we are getting ahead of the input. */ | |
329 | while (cinfo->input_scan_number < cinfo->output_scan_number || | |
330 | (cinfo->input_scan_number == cinfo->output_scan_number && | |
331 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | |
332 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | |
333 | return JPEG_SUSPENDED; | |
334 | } | |
335 | ||
336 | /* OK, output from the virtual arrays. */ | |
337 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
338 | ci++, compptr++) { | |
339 | /* Don't bother to IDCT an uninteresting component. */ | |
340 | if (! compptr->component_needed) | |
341 | continue; | |
342 | /* Align the virtual buffer for this component. */ | |
343 | buffer = (*cinfo->mem->access_virt_barray) | |
344 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
345 | cinfo->output_iMCU_row * compptr->v_samp_factor, | |
346 | (JDIMENSION) compptr->v_samp_factor, FALSE); | |
347 | /* Count non-dummy DCT block rows in this iMCU row. */ | |
348 | if (cinfo->output_iMCU_row < last_iMCU_row) | |
349 | block_rows = compptr->v_samp_factor; | |
350 | else { | |
351 | /* NB: can't use last_row_height here; it is input-side-dependent! */ | |
352 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
353 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
354 | } | |
355 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; | |
356 | output_ptr = output_buf[ci]; | |
357 | /* Loop over all DCT blocks to be processed. */ | |
358 | for (block_row = 0; block_row < block_rows; block_row++) { | |
359 | buffer_ptr = buffer[block_row]; | |
360 | output_col = 0; | |
361 | for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { | |
362 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, | |
363 | output_ptr, output_col); | |
364 | buffer_ptr++; | |
365 | output_col += compptr->DCT_scaled_size; | |
366 | } | |
367 | output_ptr += compptr->DCT_scaled_size; | |
368 | } | |
369 | } | |
370 | ||
371 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | |
372 | return JPEG_ROW_COMPLETED; | |
373 | return JPEG_SCAN_COMPLETED; | |
374 | } | |
375 | ||
376 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
377 | ||
378 | ||
379 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
380 | ||
381 | /* | |
382 | * This code applies interblock smoothing as described by section K.8 | |
383 | * of the JPEG standard: the first 5 AC coefficients are estimated from | |
384 | * the DC values of a DCT block and its 8 neighboring blocks. | |
385 | * We apply smoothing only for progressive JPEG decoding, and only if | |
386 | * the coefficients it can estimate are not yet known to full precision. | |
387 | */ | |
388 | ||
389 | /* Natural-order array positions of the first 5 zigzag-order coefficients */ | |
390 | #define Q01_POS 1 | |
391 | #define Q10_POS 8 | |
392 | #define Q20_POS 16 | |
393 | #define Q11_POS 9 | |
394 | #define Q02_POS 2 | |
395 | ||
396 | /* | |
397 | * Determine whether block smoothing is applicable and safe. | |
398 | * We also latch the current states of the coef_bits[] entries for the | |
399 | * AC coefficients; otherwise, if the input side of the decompressor | |
400 | * advances into a new scan, we might think the coefficients are known | |
401 | * more accurately than they really are. | |
402 | */ | |
403 | ||
404 | LOCAL(boolean) | |
405 | smoothing_ok (j_decompress_ptr cinfo) | |
406 | { | |
407 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
408 | boolean smoothing_useful = FALSE; | |
409 | int ci, coefi; | |
410 | jpeg_component_info *compptr; | |
411 | JQUANT_TBL * qtable; | |
412 | int * coef_bits; | |
413 | int * coef_bits_latch; | |
414 | ||
415 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) | |
416 | return FALSE; | |
417 | ||
418 | /* Allocate latch area if not already done */ | |
419 | if (coef->coef_bits_latch == NULL) | |
420 | coef->coef_bits_latch = (int *) | |
421 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
422 | cinfo->num_components * | |
423 | (SAVED_COEFS * SIZEOF(int))); | |
424 | coef_bits_latch = coef->coef_bits_latch; | |
425 | ||
426 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
427 | ci++, compptr++) { | |
428 | /* All components' quantization values must already be latched. */ | |
429 | if ((qtable = compptr->quant_table) == NULL) | |
430 | return FALSE; | |
431 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ | |
432 | if (qtable->quantval[0] == 0 || | |
433 | qtable->quantval[Q01_POS] == 0 || | |
434 | qtable->quantval[Q10_POS] == 0 || | |
435 | qtable->quantval[Q20_POS] == 0 || | |
436 | qtable->quantval[Q11_POS] == 0 || | |
437 | qtable->quantval[Q02_POS] == 0) | |
438 | return FALSE; | |
439 | /* DC values must be at least partly known for all components. */ | |
440 | coef_bits = cinfo->coef_bits[ci]; | |
441 | if (coef_bits[0] < 0) | |
442 | return FALSE; | |
443 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ | |
444 | for (coefi = 1; coefi <= 5; coefi++) { | |
445 | coef_bits_latch[coefi] = coef_bits[coefi]; | |
446 | if (coef_bits[coefi] != 0) | |
447 | smoothing_useful = TRUE; | |
448 | } | |
449 | coef_bits_latch += SAVED_COEFS; | |
450 | } | |
451 | ||
452 | return smoothing_useful; | |
453 | } | |
454 | ||
455 | ||
456 | /* | |
457 | * Variant of decompress_data for use when doing block smoothing. | |
458 | */ | |
459 | ||
460 | METHODDEF(int) | |
461 | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |
462 | { | |
463 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
464 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
465 | JDIMENSION block_num, last_block_column; | |
466 | int ci, block_row, block_rows, access_rows; | |
467 | JBLOCKARRAY buffer; | |
468 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; | |
469 | JSAMPARRAY output_ptr; | |
470 | JDIMENSION output_col; | |
471 | jpeg_component_info *compptr; | |
472 | inverse_DCT_method_ptr inverse_DCT; | |
473 | boolean first_row, last_row; | |
474 | JBLOCK workspace; | |
475 | int *coef_bits; | |
476 | JQUANT_TBL *quanttbl; | |
477 | INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; | |
478 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; | |
479 | int Al, pred; | |
480 | ||
481 | /* Force some input to be done if we are getting ahead of the input. */ | |
482 | while (cinfo->input_scan_number <= cinfo->output_scan_number && | |
483 | ! cinfo->inputctl->eoi_reached) { | |
484 | if (cinfo->input_scan_number == cinfo->output_scan_number) { | |
485 | /* If input is working on current scan, we ordinarily want it to | |
486 | * have completed the current row. But if input scan is DC, | |
487 | * we want it to keep one row ahead so that next block row's DC | |
488 | * values are up to date. | |
489 | */ | |
490 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; | |
491 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) | |
492 | break; | |
493 | } | |
494 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | |
495 | return JPEG_SUSPENDED; | |
496 | } | |
497 | ||
498 | /* OK, output from the virtual arrays. */ | |
499 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
500 | ci++, compptr++) { | |
501 | /* Don't bother to IDCT an uninteresting component. */ | |
502 | if (! compptr->component_needed) | |
503 | continue; | |
504 | /* Count non-dummy DCT block rows in this iMCU row. */ | |
505 | if (cinfo->output_iMCU_row < last_iMCU_row) { | |
506 | block_rows = compptr->v_samp_factor; | |
507 | access_rows = block_rows * 2; /* this and next iMCU row */ | |
508 | last_row = FALSE; | |
509 | } else { | |
510 | /* NB: can't use last_row_height here; it is input-side-dependent! */ | |
511 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
512 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
513 | access_rows = block_rows; /* this iMCU row only */ | |
514 | last_row = TRUE; | |
515 | } | |
516 | /* Align the virtual buffer for this component. */ | |
517 | if (cinfo->output_iMCU_row > 0) { | |
518 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ | |
519 | buffer = (*cinfo->mem->access_virt_barray) | |
520 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
521 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, | |
522 | (JDIMENSION) access_rows, FALSE); | |
523 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ | |
524 | first_row = FALSE; | |
525 | } else { | |
526 | buffer = (*cinfo->mem->access_virt_barray) | |
527 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
528 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); | |
529 | first_row = TRUE; | |
530 | } | |
531 | /* Fetch component-dependent info */ | |
532 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); | |
533 | quanttbl = compptr->quant_table; | |
534 | Q00 = quanttbl->quantval[0]; | |
535 | Q01 = quanttbl->quantval[Q01_POS]; | |
536 | Q10 = quanttbl->quantval[Q10_POS]; | |
537 | Q20 = quanttbl->quantval[Q20_POS]; | |
538 | Q11 = quanttbl->quantval[Q11_POS]; | |
539 | Q02 = quanttbl->quantval[Q02_POS]; | |
540 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; | |
541 | output_ptr = output_buf[ci]; | |
542 | /* Loop over all DCT blocks to be processed. */ | |
543 | for (block_row = 0; block_row < block_rows; block_row++) { | |
544 | buffer_ptr = buffer[block_row]; | |
545 | if (first_row && block_row == 0) | |
546 | prev_block_row = buffer_ptr; | |
547 | else | |
548 | prev_block_row = buffer[block_row-1]; | |
549 | if (last_row && block_row == block_rows-1) | |
550 | next_block_row = buffer_ptr; | |
551 | else | |
552 | next_block_row = buffer[block_row+1]; | |
553 | /* We fetch the surrounding DC values using a sliding-register approach. | |
554 | * Initialize all nine here so as to do the right thing on narrow pics. | |
555 | */ | |
556 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; | |
557 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; | |
558 | DC7 = DC8 = DC9 = (int) next_block_row[0][0]; | |
559 | output_col = 0; | |
560 | last_block_column = compptr->width_in_blocks - 1; | |
561 | for (block_num = 0; block_num <= last_block_column; block_num++) { | |
562 | /* Fetch current DCT block into workspace so we can modify it. */ | |
563 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); | |
564 | /* Update DC values */ | |
565 | if (block_num < last_block_column) { | |
566 | DC3 = (int) prev_block_row[1][0]; | |
567 | DC6 = (int) buffer_ptr[1][0]; | |
568 | DC9 = (int) next_block_row[1][0]; | |
569 | } | |
570 | /* Compute coefficient estimates per K.8. | |
571 | * An estimate is applied only if coefficient is still zero, | |
572 | * and is not known to be fully accurate. | |
573 | */ | |
574 | /* AC01 */ | |
575 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { | |
576 | num = 36 * Q00 * (DC4 - DC6); | |
577 | if (num >= 0) { | |
578 | pred = (int) (((Q01<<7) + num) / (Q01<<8)); | |
579 | if (Al > 0 && pred >= (1<<Al)) | |
580 | pred = (1<<Al)-1; | |
581 | } else { | |
582 | pred = (int) (((Q01<<7) - num) / (Q01<<8)); | |
583 | if (Al > 0 && pred >= (1<<Al)) | |
584 | pred = (1<<Al)-1; | |
585 | pred = -pred; | |
586 | } | |
587 | workspace[1] = (JCOEF) pred; | |
588 | } | |
589 | /* AC10 */ | |
590 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { | |
591 | num = 36 * Q00 * (DC2 - DC8); | |
592 | if (num >= 0) { | |
593 | pred = (int) (((Q10<<7) + num) / (Q10<<8)); | |
594 | if (Al > 0 && pred >= (1<<Al)) | |
595 | pred = (1<<Al)-1; | |
596 | } else { | |
597 | pred = (int) (((Q10<<7) - num) / (Q10<<8)); | |
598 | if (Al > 0 && pred >= (1<<Al)) | |
599 | pred = (1<<Al)-1; | |
600 | pred = -pred; | |
601 | } | |
602 | workspace[8] = (JCOEF) pred; | |
603 | } | |
604 | /* AC20 */ | |
605 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { | |
606 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5); | |
607 | if (num >= 0) { | |
608 | pred = (int) (((Q20<<7) + num) / (Q20<<8)); | |
609 | if (Al > 0 && pred >= (1<<Al)) | |
610 | pred = (1<<Al)-1; | |
611 | } else { | |
612 | pred = (int) (((Q20<<7) - num) / (Q20<<8)); | |
613 | if (Al > 0 && pred >= (1<<Al)) | |
614 | pred = (1<<Al)-1; | |
615 | pred = -pred; | |
616 | } | |
617 | workspace[16] = (JCOEF) pred; | |
618 | } | |
619 | /* AC11 */ | |
620 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { | |
621 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); | |
622 | if (num >= 0) { | |
623 | pred = (int) (((Q11<<7) + num) / (Q11<<8)); | |
624 | if (Al > 0 && pred >= (1<<Al)) | |
625 | pred = (1<<Al)-1; | |
626 | } else { | |
627 | pred = (int) (((Q11<<7) - num) / (Q11<<8)); | |
628 | if (Al > 0 && pred >= (1<<Al)) | |
629 | pred = (1<<Al)-1; | |
630 | pred = -pred; | |
631 | } | |
632 | workspace[9] = (JCOEF) pred; | |
633 | } | |
634 | /* AC02 */ | |
635 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { | |
636 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5); | |
637 | if (num >= 0) { | |
638 | pred = (int) (((Q02<<7) + num) / (Q02<<8)); | |
639 | if (Al > 0 && pred >= (1<<Al)) | |
640 | pred = (1<<Al)-1; | |
641 | } else { | |
642 | pred = (int) (((Q02<<7) - num) / (Q02<<8)); | |
643 | if (Al > 0 && pred >= (1<<Al)) | |
644 | pred = (1<<Al)-1; | |
645 | pred = -pred; | |
646 | } | |
647 | workspace[2] = (JCOEF) pred; | |
648 | } | |
649 | /* OK, do the IDCT */ | |
650 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, | |
651 | output_ptr, output_col); | |
652 | /* Advance for next column */ | |
653 | DC1 = DC2; DC2 = DC3; | |
654 | DC4 = DC5; DC5 = DC6; | |
655 | DC7 = DC8; DC8 = DC9; | |
656 | buffer_ptr++, prev_block_row++, next_block_row++; | |
657 | output_col += compptr->DCT_scaled_size; | |
658 | } | |
659 | output_ptr += compptr->DCT_scaled_size; | |
660 | } | |
661 | } | |
662 | ||
663 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | |
664 | return JPEG_ROW_COMPLETED; | |
665 | return JPEG_SCAN_COMPLETED; | |
666 | } | |
667 | ||
668 | #endif /* BLOCK_SMOOTHING_SUPPORTED */ | |
669 | ||
670 | ||
671 | /* | |
672 | * Initialize coefficient buffer controller. | |
673 | */ | |
674 | ||
675 | GLOBAL(void) | |
676 | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | |
677 | { | |
678 | my_coef_ptr coef; | |
679 | ||
680 | coef = (my_coef_ptr) | |
681 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
682 | SIZEOF(my_coef_controller)); | |
683 | cinfo->coef = (struct jpeg_d_coef_controller *) coef; | |
684 | coef->pub.start_input_pass = start_input_pass; | |
685 | coef->pub.start_output_pass = start_output_pass; | |
686 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
687 | coef->coef_bits_latch = NULL; | |
688 | #endif | |
689 | ||
690 | /* Create the coefficient buffer. */ | |
691 | if (need_full_buffer) { | |
692 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
693 | /* Allocate a full-image virtual array for each component, */ | |
694 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ | |
695 | /* Note we ask for a pre-zeroed array. */ | |
696 | int ci, access_rows; | |
697 | jpeg_component_info *compptr; | |
698 | ||
699 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
700 | ci++, compptr++) { | |
701 | access_rows = compptr->v_samp_factor; | |
702 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
703 | /* If block smoothing could be used, need a bigger window */ | |
704 | if (cinfo->progressive_mode) | |
705 | access_rows *= 3; | |
706 | #endif | |
707 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |
708 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, | |
709 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, | |
710 | (long) compptr->h_samp_factor), | |
711 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, | |
712 | (long) compptr->v_samp_factor), | |
713 | (JDIMENSION) access_rows); | |
714 | } | |
715 | coef->pub.consume_data = consume_data; | |
716 | coef->pub.decompress_data = decompress_data; | |
717 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ | |
718 | #else | |
719 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
720 | #endif | |
721 | } else { | |
722 | /* We only need a single-MCU buffer. */ | |
723 | JBLOCKROW buffer; | |
724 | int i; | |
725 | ||
726 | buffer = (JBLOCKROW) | |
727 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
728 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |
729 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | |
730 | coef->MCU_buffer[i] = buffer + i; | |
731 | } | |
732 | coef->pub.consume_data = dummy_consume_data; | |
733 | coef->pub.decompress_data = decompress_onepass; | |
734 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ | |
735 | } | |
736 | } |