X-Git-Url: https://git.saurik.com/redis.git/blobdiff_plain/924aa408b99837036b679bd3895f836af6bc763f..8bca8773b4e2542f9537b8403764867aa76273a5:/doc/FAQ.html
diff --git a/doc/FAQ.html b/doc/FAQ.html
index d87bebc3..6d0246dc 100644
--- a/doc/FAQ.html
+++ b/doc/FAQ.html
@@ -16,7 +16,7 @@
-
Memcachedb is basically memcached done persistent. Redis is a different evolution
+ = Why I need Redis if there is already memcachedb, Tokyo Cabinet, ...? =
Memcachedb is basically memcached done persistent. Redis is a different evolution
path in the key-value DBs, the idea is that the main advantages of key-value DBs
are retained even without a so severe loss of comfort of plain key-value DBs.
So Redis offers more features:
- Keys can store different data types, not just strings. Notably Lists and Sets. For example if you want to use Redis as a log storage system for different computers every computer can just
RPUSH data to the computer_ID key
. Don't want to save more than 1000 log lines per computer? Just issue a LTRIM computer_ID 0 999
command to trim the list after every push.
@@ -61,6 +61,7 @@ memory and you have a clear picture of what happens. So this means to
have 10 times the I/O between memory and disk than otherwise needed.
This may happen and it's prefectly ok. Redis objects are small C structures allocated and freed a lot of times. This costs a lot of CPU so instead of being freed, released objects are taken into a free list and reused when needed. This memory is taken exactly by this free objects ready to be reused.
With modern operating systems malloc() returning NULL is not common, usually the server will start swapping and Redis performances will be disastrous so you'll know it's time to use more Redis servers or get more RAM.
The INFO command (work in progress in this days) will report the amount of memory Redis is using so you can write scripts that monitor your Redis servers checking for critical conditions.
You can also use the "maxmemory" option in the config file to put a limit to the memory Redis can use. If this limit is reached Redis will start to reply with an error to write commands (but will continue to accept read-only commands).
Just an example on normal hardware: It takes about 45 seconds to restore a 2 GB database on a fairly standard system, no RAID. This can give you some kind of feeling about the order of magnitude of the time needed to load data when you restart the server.
Short answer:
echo 1 > /proc/sys/vm/overcommit_memory
:)
And now the long one:
Redis background saving schema relies on the copy-on-write semantic of fork in modern operating systems: Redis forks (creates a child process) that is an exact copy of the parent. The child process dumps the DB on disk and finally exits. In theory the child should use as much memory as the parent being a copy, but actually thanks to the copy-on-write semantic implemented by most modern operating systems the parent and child process will
share the common memory pages. A page will be duplicated only when it changes in the child or in the parent. Since in theory all the pages may change while the child process is saving, Linux can't tell in advance how much memory the child will take, so if the
overcommit_memory
setting is set to zero fork will fail unless there is as much free RAM as required to really duplicate all the parent memory pages, with the result that if you have a Redis dataset of 3 GB and just 2 GB of free memory it will fail.
Setting
overcommit_memory
to 1 says Linux to relax and perform the fork in a more optimistic allocation fashion, and this is indeed what you want for Redis.
Yes, redis background saving process is always fork(2)ed when the server is outside of the execution of a command, so every command reported to be atomic in RAM is also atomic from the point of view of the disk snapshot.
Simply start multiple instances of Redis in different ports in the same box and threat them as different servers! Given that Redis is a distributed database anyway in order to scale you need to think in terms of multiple computational units. At some point a single box may not be enough anyway.
In general key-value databases are very scalable because of the property that different keys can stay on different servers independently.
In Redis there are client libraries such Redis-rb (the Ruby client) that are able to handle multiple servers automatically using
consistent hashing. We are going to implement consistent hashing in all the other major client libraries. If you use a different language you can implement it yourself otherwise just hash the key before to SET / GET it from a given server. For example imagine to have N Redis servers, server-0, server-1, ..., server-N. You want to store the key "foo", what's the right server where to put "foo" in order to distribute keys evenly among different servers? Just perform the
crc = CRC32("foo"), then
servernum =
crc % N (the rest of the division for N). This will give a number between 0 and N-1 for every key. Connect to this server and store the key. The same for gets.
This is a basic way of performing key partitioning, consistent hashing is much better and this is why after Redis 1.0 will be released we'll try to implement this in every widely used client library starting from Python and PHP (Ruby already implements this support).
With
SORT BY you need that all the
weight keys are in the same Redis instance of the list/set you are trying to sort. In order to make this possible we developed a concept called
key tags. A key tag is a special pattern inside a key that, if preset, is the only part of the key hashed in order to select the server for this key. For example in order to hash the key "foo" I simply perform the CRC32 checksum of the whole string, but if this key has a pattern in the form of the characters {...} I only hash this substring. So for example for the key "foo{bared}" the key hashing code will simply perform the CRC32 of "bared". This way using key tags you can ensure that related keys will be stored on the same Redis instance just using the same key tag for all this keys. Redis-rb already implements key tags.
In theory Redis can handle up to 2
32 keys, and was tested in practice to handle at least 150 million of keys per instance. We are working in order to experiment with larger values.
Every list, set, and ordered set, can hold 232 elements.
Actually Redis internals are ready to allow up to 2
64 elements but the current disk dump format don't support this, and there is a lot time to fix this issues in the future as currently even with 128 GB of RAM it's impossible to reach 232 elements.
Redis means two things:
- it's a joke on the word Redistribute (instead to use just a Relational DB redistribute your workload among Redis servers)
- it means REmote DIctionary Server
In order to scale
LLOOGG. But after I got the basic server working I liked the idea to share the work with other guys, and Redis was turned into an open source project.
+