| 1 | /* |
| 2 | ------------------------------------------------------------------------------- |
| 3 | lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| 4 | |
| 5 | These are functions for producing 32-bit hashes for hash table lookup. |
| 6 | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
| 7 | are externally useful functions. Routines to test the hash are included |
| 8 | if SELF_TEST is defined. You can use this free for any purpose. It's in |
| 9 | the public domain. It has no warranty. |
| 10 | |
| 11 | You probably want to use hashlittle(). hashlittle() and hashbig() |
| 12 | hash byte arrays. hashlittle() is is faster than hashbig() on |
| 13 | little-endian machines. Intel and AMD are little-endian machines. |
| 14 | On second thought, you probably want hashlittle2(), which is identical to |
| 15 | hashlittle() except it returns two 32-bit hashes for the price of one. |
| 16 | You could implement hashbig2() if you wanted but I haven't bothered here. |
| 17 | |
| 18 | If you want to find a hash of, say, exactly 7 integers, do |
| 19 | a = i1; b = i2; c = i3; |
| 20 | mix(a,b,c); |
| 21 | a += i4; b += i5; c += i6; |
| 22 | mix(a,b,c); |
| 23 | a += i7; |
| 24 | final(a,b,c); |
| 25 | then use c as the hash value. If you have a variable length array of |
| 26 | 4-byte integers to hash, use hashword(). If you have a byte array (like |
| 27 | a character string), use hashlittle(). If you have several byte arrays, or |
| 28 | a mix of things, see the comments above hashlittle(). |
| 29 | |
| 30 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| 31 | then mix those integers. This is fast (you can do a lot more thorough |
| 32 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| 33 | on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| 34 | ------------------------------------------------------------------------------- |
| 35 | */ |
| 36 | #define VALGRIND |
| 37 | |
| 38 | #include <stdio.h> /* defines printf for tests */ |
| 39 | #include <time.h> /* defines time_t for timings in the test */ |
| 40 | #include <stdint.h> /* defines uint32_t etc */ |
| 41 | #include <sys/param.h> /* attempt to define endianness */ |
| 42 | #ifdef linux |
| 43 | # include <endian.h> /* attempt to define endianness */ |
| 44 | #endif |
| 45 | |
| 46 | /* |
| 47 | * My best guess at if you are big-endian or little-endian. This may |
| 48 | * need adjustment. |
| 49 | */ |
| 50 | #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
| 51 | __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
| 52 | (defined(i386) || defined(__i386__) || defined(__i486__) || \ |
| 53 | defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) |
| 54 | # define HASH_LITTLE_ENDIAN 1 |
| 55 | # define HASH_BIG_ENDIAN 0 |
| 56 | #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
| 57 | __BYTE_ORDER == __BIG_ENDIAN) || \ |
| 58 | (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
| 59 | # define HASH_LITTLE_ENDIAN 0 |
| 60 | # define HASH_BIG_ENDIAN 1 |
| 61 | #else |
| 62 | # define HASH_LITTLE_ENDIAN 0 |
| 63 | # define HASH_BIG_ENDIAN 0 |
| 64 | #endif |
| 65 | |
| 66 | #define hashsize(n) ((uint32_t)1<<(n)) |
| 67 | #define hashmask(n) (hashsize(n)-1) |
| 68 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
| 69 | |
| 70 | /* |
| 71 | ------------------------------------------------------------------------------- |
| 72 | mix -- mix 3 32-bit values reversibly. |
| 73 | |
| 74 | This is reversible, so any information in (a,b,c) before mix() is |
| 75 | still in (a,b,c) after mix(). |
| 76 | |
| 77 | If four pairs of (a,b,c) inputs are run through mix(), or through |
| 78 | mix() in reverse, there are at least 32 bits of the output that |
| 79 | are sometimes the same for one pair and different for another pair. |
| 80 | This was tested for: |
| 81 | * pairs that differed by one bit, by two bits, in any combination |
| 82 | of top bits of (a,b,c), or in any combination of bottom bits of |
| 83 | (a,b,c). |
| 84 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 85 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 86 | is commonly produced by subtraction) look like a single 1-bit |
| 87 | difference. |
| 88 | * the base values were pseudorandom, all zero but one bit set, or |
| 89 | all zero plus a counter that starts at zero. |
| 90 | |
| 91 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
| 92 | satisfy this are |
| 93 | 4 6 8 16 19 4 |
| 94 | 9 15 3 18 27 15 |
| 95 | 14 9 3 7 17 3 |
| 96 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| 97 | for "differ" defined as + with a one-bit base and a two-bit delta. I |
| 98 | used http://burtleburtle.net/bob/hash/avalanche.html to choose |
| 99 | the operations, constants, and arrangements of the variables. |
| 100 | |
| 101 | This does not achieve avalanche. There are input bits of (a,b,c) |
| 102 | that fail to affect some output bits of (a,b,c), especially of a. The |
| 103 | most thoroughly mixed value is c, but it doesn't really even achieve |
| 104 | avalanche in c. |
| 105 | |
| 106 | This allows some parallelism. Read-after-writes are good at doubling |
| 107 | the number of bits affected, so the goal of mixing pulls in the opposite |
| 108 | direction as the goal of parallelism. I did what I could. Rotates |
| 109 | seem to cost as much as shifts on every machine I could lay my hands |
| 110 | on, and rotates are much kinder to the top and bottom bits, so I used |
| 111 | rotates. |
| 112 | ------------------------------------------------------------------------------- |
| 113 | */ |
| 114 | #define mix(a,b,c) \ |
| 115 | { \ |
| 116 | a -= c; a ^= rot(c, 4); c += b; \ |
| 117 | b -= a; b ^= rot(a, 6); a += c; \ |
| 118 | c -= b; c ^= rot(b, 8); b += a; \ |
| 119 | a -= c; a ^= rot(c,16); c += b; \ |
| 120 | b -= a; b ^= rot(a,19); a += c; \ |
| 121 | c -= b; c ^= rot(b, 4); b += a; \ |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | ------------------------------------------------------------------------------- |
| 126 | final -- final mixing of 3 32-bit values (a,b,c) into c |
| 127 | |
| 128 | Pairs of (a,b,c) values differing in only a few bits will usually |
| 129 | produce values of c that look totally different. This was tested for |
| 130 | * pairs that differed by one bit, by two bits, in any combination |
| 131 | of top bits of (a,b,c), or in any combination of bottom bits of |
| 132 | (a,b,c). |
| 133 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 134 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 135 | is commonly produced by subtraction) look like a single 1-bit |
| 136 | difference. |
| 137 | * the base values were pseudorandom, all zero but one bit set, or |
| 138 | all zero plus a counter that starts at zero. |
| 139 | |
| 140 | These constants passed: |
| 141 | 14 11 25 16 4 14 24 |
| 142 | 12 14 25 16 4 14 24 |
| 143 | and these came close: |
| 144 | 4 8 15 26 3 22 24 |
| 145 | 10 8 15 26 3 22 24 |
| 146 | 11 8 15 26 3 22 24 |
| 147 | ------------------------------------------------------------------------------- |
| 148 | */ |
| 149 | #define final(a,b,c) \ |
| 150 | { \ |
| 151 | c ^= b; c -= rot(b,14); \ |
| 152 | a ^= c; a -= rot(c,11); \ |
| 153 | b ^= a; b -= rot(a,25); \ |
| 154 | c ^= b; c -= rot(b,16); \ |
| 155 | a ^= c; a -= rot(c,4); \ |
| 156 | b ^= a; b -= rot(a,14); \ |
| 157 | c ^= b; c -= rot(b,24); \ |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | -------------------------------------------------------------------- |
| 162 | This works on all machines. To be useful, it requires |
| 163 | -- that the key be an array of uint32_t's, and |
| 164 | -- that the length be the number of uint32_t's in the key |
| 165 | |
| 166 | The function hashword() is identical to hashlittle() on little-endian |
| 167 | machines, and identical to hashbig() on big-endian machines, |
| 168 | except that the length has to be measured in uint32_ts rather than in |
| 169 | bytes. hashlittle() is more complicated than hashword() only because |
| 170 | hashlittle() has to dance around fitting the key bytes into registers. |
| 171 | -------------------------------------------------------------------- |
| 172 | */ |
| 173 | uint32_t hashword( |
| 174 | const uint32_t *k, /* the key, an array of uint32_t values */ |
| 175 | size_t length, /* the length of the key, in uint32_ts */ |
| 176 | uint32_t initval) /* the previous hash, or an arbitrary value */ |
| 177 | { |
| 178 | uint32_t a,b,c; |
| 179 | |
| 180 | /* Set up the internal state */ |
| 181 | a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; |
| 182 | |
| 183 | /*------------------------------------------------- handle most of the key */ |
| 184 | while (length > 3) |
| 185 | { |
| 186 | a += k[0]; |
| 187 | b += k[1]; |
| 188 | c += k[2]; |
| 189 | mix(a,b,c); |
| 190 | length -= 3; |
| 191 | k += 3; |
| 192 | } |
| 193 | |
| 194 | /*------------------------------------------- handle the last 3 uint32_t's */ |
| 195 | switch(length) /* all the case statements fall through */ |
| 196 | { |
| 197 | case 3 : c+=k[2]; |
| 198 | case 2 : b+=k[1]; |
| 199 | case 1 : a+=k[0]; |
| 200 | final(a,b,c); |
| 201 | case 0: /* case 0: nothing left to add */ |
| 202 | break; |
| 203 | } |
| 204 | /*------------------------------------------------------ report the result */ |
| 205 | return c; |
| 206 | } |
| 207 | |
| 208 | |
| 209 | /* |
| 210 | -------------------------------------------------------------------- |
| 211 | hashword2() -- same as hashword(), but take two seeds and return two |
| 212 | 32-bit values. pc and pb must both be nonnull, and *pc and *pb must |
| 213 | both be initialized with seeds. If you pass in (*pb)==0, the output |
| 214 | (*pc) will be the same as the return value from hashword(). |
| 215 | -------------------------------------------------------------------- |
| 216 | */ |
| 217 | void hashword2 ( |
| 218 | const uint32_t *k, /* the key, an array of uint32_t values */ |
| 219 | size_t length, /* the length of the key, in uint32_ts */ |
| 220 | uint32_t *pc, /* IN: seed OUT: primary hash value */ |
| 221 | uint32_t *pb) /* IN: more seed OUT: secondary hash value */ |
| 222 | { |
| 223 | uint32_t a,b,c; |
| 224 | |
| 225 | /* Set up the internal state */ |
| 226 | a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; |
| 227 | c += *pb; |
| 228 | |
| 229 | /*------------------------------------------------- handle most of the key */ |
| 230 | while (length > 3) |
| 231 | { |
| 232 | a += k[0]; |
| 233 | b += k[1]; |
| 234 | c += k[2]; |
| 235 | mix(a,b,c); |
| 236 | length -= 3; |
| 237 | k += 3; |
| 238 | } |
| 239 | |
| 240 | /*------------------------------------------- handle the last 3 uint32_t's */ |
| 241 | switch(length) /* all the case statements fall through */ |
| 242 | { |
| 243 | case 3 : c+=k[2]; |
| 244 | case 2 : b+=k[1]; |
| 245 | case 1 : a+=k[0]; |
| 246 | final(a,b,c); |
| 247 | case 0: /* case 0: nothing left to add */ |
| 248 | break; |
| 249 | } |
| 250 | /*------------------------------------------------------ report the result */ |
| 251 | *pc=c; *pb=b; |
| 252 | } |
| 253 | |
| 254 | |
| 255 | /* |
| 256 | ------------------------------------------------------------------------------- |
| 257 | hashlittle() -- hash a variable-length key into a 32-bit value |
| 258 | k : the key (the unaligned variable-length array of bytes) |
| 259 | length : the length of the key, counting by bytes |
| 260 | initval : can be any 4-byte value |
| 261 | Returns a 32-bit value. Every bit of the key affects every bit of |
| 262 | the return value. Two keys differing by one or two bits will have |
| 263 | totally different hash values. |
| 264 | |
| 265 | The best hash table sizes are powers of 2. There is no need to do |
| 266 | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| 267 | use a bitmask. For example, if you need only 10 bits, do |
| 268 | h = (h & hashmask(10)); |
| 269 | In which case, the hash table should have hashsize(10) elements. |
| 270 | |
| 271 | If you are hashing n strings (uint8_t **)k, do it like this: |
| 272 | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
| 273 | |
| 274 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
| 275 | code any way you wish, private, educational, or commercial. It's free. |
| 276 | |
| 277 | Use for hash table lookup, or anything where one collision in 2^^32 is |
| 278 | acceptable. Do NOT use for cryptographic purposes. |
| 279 | ------------------------------------------------------------------------------- |
| 280 | */ |
| 281 | |
| 282 | uint32_t hashlittle( const void *key, size_t length, uint32_t initval) |
| 283 | { |
| 284 | uint32_t a,b,c; /* internal state */ |
| 285 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
| 286 | |
| 287 | /* Set up the internal state */ |
| 288 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| 289 | |
| 290 | u.ptr = key; |
| 291 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| 292 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 293 | const uint8_t *k8; |
| 294 | |
| 295 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 296 | while (length > 12) |
| 297 | { |
| 298 | a += k[0]; |
| 299 | b += k[1]; |
| 300 | c += k[2]; |
| 301 | mix(a,b,c); |
| 302 | length -= 12; |
| 303 | k += 3; |
| 304 | } |
| 305 | |
| 306 | /*----------------------------- handle the last (probably partial) block */ |
| 307 | /* |
| 308 | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| 309 | * then masks off the part it's not allowed to read. Because the |
| 310 | * string is aligned, the masked-off tail is in the same word as the |
| 311 | * rest of the string. Every machine with memory protection I've seen |
| 312 | * does it on word boundaries, so is OK with this. But VALGRIND will |
| 313 | * still catch it and complain. The masking trick does make the hash |
| 314 | * noticably faster for short strings (like English words). |
| 315 | */ |
| 316 | #ifndef VALGRIND |
| 317 | |
| 318 | switch(length) |
| 319 | { |
| 320 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 321 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| 322 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| 323 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| 324 | case 8 : b+=k[1]; a+=k[0]; break; |
| 325 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| 326 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| 327 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| 328 | case 4 : a+=k[0]; break; |
| 329 | case 3 : a+=k[0]&0xffffff; break; |
| 330 | case 2 : a+=k[0]&0xffff; break; |
| 331 | case 1 : a+=k[0]&0xff; break; |
| 332 | case 0 : return c; /* zero length strings require no mixing */ |
| 333 | } |
| 334 | |
| 335 | #else /* make valgrind happy */ |
| 336 | |
| 337 | k8 = (const uint8_t *)k; |
| 338 | switch(length) |
| 339 | { |
| 340 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 341 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 342 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| 343 | case 9 : c+=k8[8]; /* fall through */ |
| 344 | case 8 : b+=k[1]; a+=k[0]; break; |
| 345 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 346 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| 347 | case 5 : b+=k8[4]; /* fall through */ |
| 348 | case 4 : a+=k[0]; break; |
| 349 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 350 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| 351 | case 1 : a+=k8[0]; break; |
| 352 | case 0 : return c; |
| 353 | } |
| 354 | |
| 355 | #endif /* !valgrind */ |
| 356 | |
| 357 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| 358 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| 359 | const uint8_t *k8; |
| 360 | |
| 361 | /*--------------- all but last block: aligned reads and different mixing */ |
| 362 | while (length > 12) |
| 363 | { |
| 364 | a += k[0] + (((uint32_t)k[1])<<16); |
| 365 | b += k[2] + (((uint32_t)k[3])<<16); |
| 366 | c += k[4] + (((uint32_t)k[5])<<16); |
| 367 | mix(a,b,c); |
| 368 | length -= 12; |
| 369 | k += 6; |
| 370 | } |
| 371 | |
| 372 | /*----------------------------- handle the last (probably partial) block */ |
| 373 | k8 = (const uint8_t *)k; |
| 374 | switch(length) |
| 375 | { |
| 376 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
| 377 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 378 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 379 | break; |
| 380 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 381 | case 10: c+=k[4]; |
| 382 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 383 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 384 | break; |
| 385 | case 9 : c+=k8[8]; /* fall through */ |
| 386 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
| 387 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 388 | break; |
| 389 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 390 | case 6 : b+=k[2]; |
| 391 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 392 | break; |
| 393 | case 5 : b+=k8[4]; /* fall through */ |
| 394 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
| 395 | break; |
| 396 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 397 | case 2 : a+=k[0]; |
| 398 | break; |
| 399 | case 1 : a+=k8[0]; |
| 400 | break; |
| 401 | case 0 : return c; /* zero length requires no mixing */ |
| 402 | } |
| 403 | |
| 404 | } else { /* need to read the key one byte at a time */ |
| 405 | const uint8_t *k = (const uint8_t *)key; |
| 406 | |
| 407 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| 408 | while (length > 12) |
| 409 | { |
| 410 | a += k[0]; |
| 411 | a += ((uint32_t)k[1])<<8; |
| 412 | a += ((uint32_t)k[2])<<16; |
| 413 | a += ((uint32_t)k[3])<<24; |
| 414 | b += k[4]; |
| 415 | b += ((uint32_t)k[5])<<8; |
| 416 | b += ((uint32_t)k[6])<<16; |
| 417 | b += ((uint32_t)k[7])<<24; |
| 418 | c += k[8]; |
| 419 | c += ((uint32_t)k[9])<<8; |
| 420 | c += ((uint32_t)k[10])<<16; |
| 421 | c += ((uint32_t)k[11])<<24; |
| 422 | mix(a,b,c); |
| 423 | length -= 12; |
| 424 | k += 12; |
| 425 | } |
| 426 | |
| 427 | /*-------------------------------- last block: affect all 32 bits of (c) */ |
| 428 | switch(length) /* all the case statements fall through */ |
| 429 | { |
| 430 | case 12: c+=((uint32_t)k[11])<<24; |
| 431 | case 11: c+=((uint32_t)k[10])<<16; |
| 432 | case 10: c+=((uint32_t)k[9])<<8; |
| 433 | case 9 : c+=k[8]; |
| 434 | case 8 : b+=((uint32_t)k[7])<<24; |
| 435 | case 7 : b+=((uint32_t)k[6])<<16; |
| 436 | case 6 : b+=((uint32_t)k[5])<<8; |
| 437 | case 5 : b+=k[4]; |
| 438 | case 4 : a+=((uint32_t)k[3])<<24; |
| 439 | case 3 : a+=((uint32_t)k[2])<<16; |
| 440 | case 2 : a+=((uint32_t)k[1])<<8; |
| 441 | case 1 : a+=k[0]; |
| 442 | break; |
| 443 | case 0 : return c; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | final(a,b,c); |
| 448 | return c; |
| 449 | } |
| 450 | |
| 451 | |
| 452 | /* |
| 453 | * hashlittle2: return 2 32-bit hash values |
| 454 | * |
| 455 | * This is identical to hashlittle(), except it returns two 32-bit hash |
| 456 | * values instead of just one. This is good enough for hash table |
| 457 | * lookup with 2^^64 buckets, or if you want a second hash if you're not |
| 458 | * happy with the first, or if you want a probably-unique 64-bit ID for |
| 459 | * the key. *pc is better mixed than *pb, so use *pc first. If you want |
| 460 | * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". |
| 461 | */ |
| 462 | void hashlittle2( |
| 463 | const void *key, /* the key to hash */ |
| 464 | size_t length, /* length of the key */ |
| 465 | uint32_t *pc, /* IN: primary initval, OUT: primary hash */ |
| 466 | uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ |
| 467 | { |
| 468 | uint32_t a,b,c; /* internal state */ |
| 469 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
| 470 | |
| 471 | /* Set up the internal state */ |
| 472 | a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; |
| 473 | c += *pb; |
| 474 | |
| 475 | u.ptr = key; |
| 476 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| 477 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 478 | const uint8_t *k8; |
| 479 | |
| 480 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 481 | while (length > 12) |
| 482 | { |
| 483 | a += k[0]; |
| 484 | b += k[1]; |
| 485 | c += k[2]; |
| 486 | mix(a,b,c); |
| 487 | length -= 12; |
| 488 | k += 3; |
| 489 | } |
| 490 | |
| 491 | /*----------------------------- handle the last (probably partial) block */ |
| 492 | /* |
| 493 | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| 494 | * then masks off the part it's not allowed to read. Because the |
| 495 | * string is aligned, the masked-off tail is in the same word as the |
| 496 | * rest of the string. Every machine with memory protection I've seen |
| 497 | * does it on word boundaries, so is OK with this. But VALGRIND will |
| 498 | * still catch it and complain. The masking trick does make the hash |
| 499 | * noticably faster for short strings (like English words). |
| 500 | */ |
| 501 | #ifndef VALGRIND |
| 502 | |
| 503 | switch(length) |
| 504 | { |
| 505 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 506 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| 507 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| 508 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| 509 | case 8 : b+=k[1]; a+=k[0]; break; |
| 510 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| 511 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| 512 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| 513 | case 4 : a+=k[0]; break; |
| 514 | case 3 : a+=k[0]&0xffffff; break; |
| 515 | case 2 : a+=k[0]&0xffff; break; |
| 516 | case 1 : a+=k[0]&0xff; break; |
| 517 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
| 518 | } |
| 519 | |
| 520 | #else /* make valgrind happy */ |
| 521 | |
| 522 | k8 = (const uint8_t *)k; |
| 523 | switch(length) |
| 524 | { |
| 525 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 526 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 527 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| 528 | case 9 : c+=k8[8]; /* fall through */ |
| 529 | case 8 : b+=k[1]; a+=k[0]; break; |
| 530 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 531 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| 532 | case 5 : b+=k8[4]; /* fall through */ |
| 533 | case 4 : a+=k[0]; break; |
| 534 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 535 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| 536 | case 1 : a+=k8[0]; break; |
| 537 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
| 538 | } |
| 539 | |
| 540 | #endif /* !valgrind */ |
| 541 | |
| 542 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| 543 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| 544 | const uint8_t *k8; |
| 545 | |
| 546 | /*--------------- all but last block: aligned reads and different mixing */ |
| 547 | while (length > 12) |
| 548 | { |
| 549 | a += k[0] + (((uint32_t)k[1])<<16); |
| 550 | b += k[2] + (((uint32_t)k[3])<<16); |
| 551 | c += k[4] + (((uint32_t)k[5])<<16); |
| 552 | mix(a,b,c); |
| 553 | length -= 12; |
| 554 | k += 6; |
| 555 | } |
| 556 | |
| 557 | /*----------------------------- handle the last (probably partial) block */ |
| 558 | k8 = (const uint8_t *)k; |
| 559 | switch(length) |
| 560 | { |
| 561 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
| 562 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 563 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 564 | break; |
| 565 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 566 | case 10: c+=k[4]; |
| 567 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 568 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 569 | break; |
| 570 | case 9 : c+=k8[8]; /* fall through */ |
| 571 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
| 572 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 573 | break; |
| 574 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 575 | case 6 : b+=k[2]; |
| 576 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 577 | break; |
| 578 | case 5 : b+=k8[4]; /* fall through */ |
| 579 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
| 580 | break; |
| 581 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 582 | case 2 : a+=k[0]; |
| 583 | break; |
| 584 | case 1 : a+=k8[0]; |
| 585 | break; |
| 586 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
| 587 | } |
| 588 | |
| 589 | } else { /* need to read the key one byte at a time */ |
| 590 | const uint8_t *k = (const uint8_t *)key; |
| 591 | |
| 592 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| 593 | while (length > 12) |
| 594 | { |
| 595 | a += k[0]; |
| 596 | a += ((uint32_t)k[1])<<8; |
| 597 | a += ((uint32_t)k[2])<<16; |
| 598 | a += ((uint32_t)k[3])<<24; |
| 599 | b += k[4]; |
| 600 | b += ((uint32_t)k[5])<<8; |
| 601 | b += ((uint32_t)k[6])<<16; |
| 602 | b += ((uint32_t)k[7])<<24; |
| 603 | c += k[8]; |
| 604 | c += ((uint32_t)k[9])<<8; |
| 605 | c += ((uint32_t)k[10])<<16; |
| 606 | c += ((uint32_t)k[11])<<24; |
| 607 | mix(a,b,c); |
| 608 | length -= 12; |
| 609 | k += 12; |
| 610 | } |
| 611 | |
| 612 | /*-------------------------------- last block: affect all 32 bits of (c) */ |
| 613 | switch(length) /* all the case statements fall through */ |
| 614 | { |
| 615 | case 12: c+=((uint32_t)k[11])<<24; |
| 616 | case 11: c+=((uint32_t)k[10])<<16; |
| 617 | case 10: c+=((uint32_t)k[9])<<8; |
| 618 | case 9 : c+=k[8]; |
| 619 | case 8 : b+=((uint32_t)k[7])<<24; |
| 620 | case 7 : b+=((uint32_t)k[6])<<16; |
| 621 | case 6 : b+=((uint32_t)k[5])<<8; |
| 622 | case 5 : b+=k[4]; |
| 623 | case 4 : a+=((uint32_t)k[3])<<24; |
| 624 | case 3 : a+=((uint32_t)k[2])<<16; |
| 625 | case 2 : a+=((uint32_t)k[1])<<8; |
| 626 | case 1 : a+=k[0]; |
| 627 | break; |
| 628 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | final(a,b,c); |
| 633 | *pc=c; *pb=b; |
| 634 | } |
| 635 | |
| 636 | |
| 637 | |
| 638 | /* |
| 639 | * hashbig(): |
| 640 | * This is the same as hashword() on big-endian machines. It is different |
| 641 | * from hashlittle() on all machines. hashbig() takes advantage of |
| 642 | * big-endian byte ordering. |
| 643 | */ |
| 644 | uint32_t hashbig( const void *key, size_t length, uint32_t initval) |
| 645 | { |
| 646 | uint32_t a,b,c; |
| 647 | union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ |
| 648 | |
| 649 | /* Set up the internal state */ |
| 650 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| 651 | |
| 652 | u.ptr = key; |
| 653 | if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { |
| 654 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 655 | const uint8_t *k8; |
| 656 | |
| 657 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 658 | while (length > 12) |
| 659 | { |
| 660 | a += k[0]; |
| 661 | b += k[1]; |
| 662 | c += k[2]; |
| 663 | mix(a,b,c); |
| 664 | length -= 12; |
| 665 | k += 3; |
| 666 | } |
| 667 | |
| 668 | /*----------------------------- handle the last (probably partial) block */ |
| 669 | /* |
| 670 | * "k[2]<<8" actually reads beyond the end of the string, but |
| 671 | * then shifts out the part it's not allowed to read. Because the |
| 672 | * string is aligned, the illegal read is in the same word as the |
| 673 | * rest of the string. Every machine with memory protection I've seen |
| 674 | * does it on word boundaries, so is OK with this. But VALGRIND will |
| 675 | * still catch it and complain. The masking trick does make the hash |
| 676 | * noticably faster for short strings (like English words). |
| 677 | */ |
| 678 | #ifndef VALGRIND |
| 679 | |
| 680 | switch(length) |
| 681 | { |
| 682 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 683 | case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; |
| 684 | case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; |
| 685 | case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; |
| 686 | case 8 : b+=k[1]; a+=k[0]; break; |
| 687 | case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; |
| 688 | case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; |
| 689 | case 5 : b+=k[1]&0xff000000; a+=k[0]; break; |
| 690 | case 4 : a+=k[0]; break; |
| 691 | case 3 : a+=k[0]&0xffffff00; break; |
| 692 | case 2 : a+=k[0]&0xffff0000; break; |
| 693 | case 1 : a+=k[0]&0xff000000; break; |
| 694 | case 0 : return c; /* zero length strings require no mixing */ |
| 695 | } |
| 696 | |
| 697 | #else /* make valgrind happy */ |
| 698 | |
| 699 | k8 = (const uint8_t *)k; |
| 700 | switch(length) /* all the case statements fall through */ |
| 701 | { |
| 702 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 703 | case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ |
| 704 | case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ |
| 705 | case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ |
| 706 | case 8 : b+=k[1]; a+=k[0]; break; |
| 707 | case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ |
| 708 | case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ |
| 709 | case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ |
| 710 | case 4 : a+=k[0]; break; |
| 711 | case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ |
| 712 | case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ |
| 713 | case 1 : a+=((uint32_t)k8[0])<<24; break; |
| 714 | case 0 : return c; |
| 715 | } |
| 716 | |
| 717 | #endif /* !VALGRIND */ |
| 718 | |
| 719 | } else { /* need to read the key one byte at a time */ |
| 720 | const uint8_t *k = (const uint8_t *)key; |
| 721 | |
| 722 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| 723 | while (length > 12) |
| 724 | { |
| 725 | a += ((uint32_t)k[0])<<24; |
| 726 | a += ((uint32_t)k[1])<<16; |
| 727 | a += ((uint32_t)k[2])<<8; |
| 728 | a += ((uint32_t)k[3]); |
| 729 | b += ((uint32_t)k[4])<<24; |
| 730 | b += ((uint32_t)k[5])<<16; |
| 731 | b += ((uint32_t)k[6])<<8; |
| 732 | b += ((uint32_t)k[7]); |
| 733 | c += ((uint32_t)k[8])<<24; |
| 734 | c += ((uint32_t)k[9])<<16; |
| 735 | c += ((uint32_t)k[10])<<8; |
| 736 | c += ((uint32_t)k[11]); |
| 737 | mix(a,b,c); |
| 738 | length -= 12; |
| 739 | k += 12; |
| 740 | } |
| 741 | |
| 742 | /*-------------------------------- last block: affect all 32 bits of (c) */ |
| 743 | switch(length) /* all the case statements fall through */ |
| 744 | { |
| 745 | case 12: c+=k[11]; |
| 746 | case 11: c+=((uint32_t)k[10])<<8; |
| 747 | case 10: c+=((uint32_t)k[9])<<16; |
| 748 | case 9 : c+=((uint32_t)k[8])<<24; |
| 749 | case 8 : b+=k[7]; |
| 750 | case 7 : b+=((uint32_t)k[6])<<8; |
| 751 | case 6 : b+=((uint32_t)k[5])<<16; |
| 752 | case 5 : b+=((uint32_t)k[4])<<24; |
| 753 | case 4 : a+=k[3]; |
| 754 | case 3 : a+=((uint32_t)k[2])<<8; |
| 755 | case 2 : a+=((uint32_t)k[1])<<16; |
| 756 | case 1 : a+=((uint32_t)k[0])<<24; |
| 757 | break; |
| 758 | case 0 : return c; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | final(a,b,c); |
| 763 | return c; |
| 764 | } |
| 765 | |
| 766 | |
| 767 | #ifdef SELF_TEST |
| 768 | |
| 769 | /* used for timings */ |
| 770 | void driver1() |
| 771 | { |
| 772 | uint8_t buf[256]; |
| 773 | uint32_t i; |
| 774 | uint32_t h=0; |
| 775 | time_t a,z; |
| 776 | |
| 777 | time(&a); |
| 778 | for (i=0; i<256; ++i) buf[i] = 'x'; |
| 779 | for (i=0; i<1; ++i) |
| 780 | { |
| 781 | h = hashlittle(&buf[0],1,h); |
| 782 | } |
| 783 | time(&z); |
| 784 | if (z-a > 0) printf("time %d %.8x\n", z-a, h); |
| 785 | } |
| 786 | |
| 787 | /* check that every input bit changes every output bit half the time */ |
| 788 | #define HASHSTATE 1 |
| 789 | #define HASHLEN 1 |
| 790 | #define MAXPAIR 60 |
| 791 | #define MAXLEN 70 |
| 792 | void driver2() |
| 793 | { |
| 794 | uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; |
| 795 | uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; |
| 796 | uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; |
| 797 | uint32_t x[HASHSTATE],y[HASHSTATE]; |
| 798 | uint32_t hlen; |
| 799 | |
| 800 | printf("No more than %d trials should ever be needed \n",MAXPAIR/2); |
| 801 | for (hlen=0; hlen < MAXLEN; ++hlen) |
| 802 | { |
| 803 | z=0; |
| 804 | for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ |
| 805 | { |
| 806 | for (j=0; j<8; ++j) /*------------------------ for each input bit, */ |
| 807 | { |
| 808 | for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */ |
| 809 | { |
| 810 | for (l=0; l<HASHSTATE; ++l) |
| 811 | e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); |
| 812 | |
| 813 | /*---- check that every output bit is affected by that input bit */ |
| 814 | for (k=0; k<MAXPAIR; k+=2) |
| 815 | { |
| 816 | uint32_t finished=1; |
| 817 | /* keys have one bit different */ |
| 818 | for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} |
| 819 | /* have a and b be two keys differing in only one bit */ |
| 820 | a[i] ^= (k<<j); |
| 821 | a[i] ^= (k>>(8-j)); |
| 822 | c[0] = hashlittle(a, hlen, m); |
| 823 | b[i] ^= ((k+1)<<j); |
| 824 | b[i] ^= ((k+1)>>(8-j)); |
| 825 | d[0] = hashlittle(b, hlen, m); |
| 826 | /* check every bit is 1, 0, set, and not set at least once */ |
| 827 | for (l=0; l<HASHSTATE; ++l) |
| 828 | { |
| 829 | e[l] &= (c[l]^d[l]); |
| 830 | f[l] &= ~(c[l]^d[l]); |
| 831 | g[l] &= c[l]; |
| 832 | h[l] &= ~c[l]; |
| 833 | x[l] &= d[l]; |
| 834 | y[l] &= ~d[l]; |
| 835 | if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; |
| 836 | } |
| 837 | if (finished) break; |
| 838 | } |
| 839 | if (k>z) z=k; |
| 840 | if (k==MAXPAIR) |
| 841 | { |
| 842 | printf("Some bit didn't change: "); |
| 843 | printf("%.8x %.8x %.8x %.8x %.8x %.8x ", |
| 844 | e[0],f[0],g[0],h[0],x[0],y[0]); |
| 845 | printf("i %d j %d m %d len %d\n", i, j, m, hlen); |
| 846 | } |
| 847 | if (z==MAXPAIR) goto done; |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | done: |
| 852 | if (z < MAXPAIR) |
| 853 | { |
| 854 | printf("Mix success %2d bytes %2d initvals ",i,m); |
| 855 | printf("required %d trials\n", z/2); |
| 856 | } |
| 857 | } |
| 858 | printf("\n"); |
| 859 | } |
| 860 | |
| 861 | /* Check for reading beyond the end of the buffer and alignment problems */ |
| 862 | void driver3() |
| 863 | { |
| 864 | uint8_t buf[MAXLEN+20], *b; |
| 865 | uint32_t len; |
| 866 | uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; |
| 867 | uint32_t h; |
| 868 | uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; |
| 869 | uint32_t i; |
| 870 | uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; |
| 871 | uint32_t j; |
| 872 | uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; |
| 873 | uint32_t ref,x,y; |
| 874 | uint8_t *p; |
| 875 | |
| 876 | printf("Endianness. These lines should all be the same (for values filled in):\n"); |
| 877 | printf("%.8x %.8x %.8x\n", |
| 878 | hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), |
| 879 | hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), |
| 880 | hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); |
| 881 | p = q; |
| 882 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| 883 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
| 884 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
| 885 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
| 886 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
| 887 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
| 888 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
| 889 | p = &qq[1]; |
| 890 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| 891 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
| 892 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
| 893 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
| 894 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
| 895 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
| 896 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
| 897 | p = &qqq[2]; |
| 898 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| 899 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
| 900 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
| 901 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
| 902 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
| 903 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
| 904 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
| 905 | p = &qqqq[3]; |
| 906 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| 907 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
| 908 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
| 909 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
| 910 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
| 911 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
| 912 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
| 913 | printf("\n"); |
| 914 | |
| 915 | /* check that hashlittle2 and hashlittle produce the same results */ |
| 916 | i=47; j=0; |
| 917 | hashlittle2(q, sizeof(q), &i, &j); |
| 918 | if (hashlittle(q, sizeof(q), 47) != i) |
| 919 | printf("hashlittle2 and hashlittle mismatch\n"); |
| 920 | |
| 921 | /* check that hashword2 and hashword produce the same results */ |
| 922 | len = 0xdeadbeef; |
| 923 | i=47, j=0; |
| 924 | hashword2(&len, 1, &i, &j); |
| 925 | if (hashword(&len, 1, 47) != i) |
| 926 | printf("hashword2 and hashword mismatch %x %x\n", |
| 927 | i, hashword(&len, 1, 47)); |
| 928 | |
| 929 | /* check hashlittle doesn't read before or after the ends of the string */ |
| 930 | for (h=0, b=buf+1; h<8; ++h, ++b) |
| 931 | { |
| 932 | for (i=0; i<MAXLEN; ++i) |
| 933 | { |
| 934 | len = i; |
| 935 | for (j=0; j<i; ++j) *(b+j)=0; |
| 936 | |
| 937 | /* these should all be equal */ |
| 938 | ref = hashlittle(b, len, (uint32_t)1); |
| 939 | *(b+i)=(uint8_t)~0; |
| 940 | *(b-1)=(uint8_t)~0; |
| 941 | x = hashlittle(b, len, (uint32_t)1); |
| 942 | y = hashlittle(b, len, (uint32_t)1); |
| 943 | if ((ref != x) || (ref != y)) |
| 944 | { |
| 945 | printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, |
| 946 | h, i); |
| 947 | } |
| 948 | } |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | /* check for problems with nulls */ |
| 953 | void driver4() |
| 954 | { |
| 955 | uint8_t buf[1]; |
| 956 | uint32_t h,i,state[HASHSTATE]; |
| 957 | |
| 958 | |
| 959 | buf[0] = ~0; |
| 960 | for (i=0; i<HASHSTATE; ++i) state[i] = 1; |
| 961 | printf("These should all be different\n"); |
| 962 | for (i=0, h=0; i<8; ++i) |
| 963 | { |
| 964 | h = hashlittle(buf, 0, h); |
| 965 | printf("%2ld 0-byte strings, hash is %.8x\n", i, h); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | void driver5() |
| 970 | { |
| 971 | uint32_t b,c; |
| 972 | b=0, c=0, hashlittle2("", 0, &c, &b); |
| 973 | printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */ |
| 974 | b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b); |
| 975 | printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */ |
| 976 | b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b); |
| 977 | printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */ |
| 978 | b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); |
| 979 | printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */ |
| 980 | b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); |
| 981 | printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */ |
| 982 | b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b); |
| 983 | printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */ |
| 984 | c = hashlittle("Four score and seven years ago", 30, 0); |
| 985 | printf("hash is %.8lx\n", c); /* 17770551 */ |
| 986 | c = hashlittle("Four score and seven years ago", 30, 1); |
| 987 | printf("hash is %.8lx\n", c); /* cd628161 */ |
| 988 | } |
| 989 | |
| 990 | |
| 991 | int main() |
| 992 | { |
| 993 | driver1(); /* test that the key is hashed: used for timings */ |
| 994 | driver2(); /* test that whole key is hashed thoroughly */ |
| 995 | driver3(); /* test that nothing but the key is hashed */ |
| 996 | driver4(); /* test hashing multiple buffers (all buffers are null) */ |
| 997 | driver5(); /* test the hash against known vectors */ |
| 998 | return 1; |
| 999 | } |
| 1000 | |
| 1001 | #endif /* SELF_TEST */ |