X-Git-Url: https://git.saurik.com/bison.git/blobdiff_plain/643a5994714b21dfde1a44a52ccffd0a300e5131..efea623135d500d3d264f9710983d75435defde7:/src/LR0.c diff --git a/src/LR0.c b/src/LR0.c index 318055c2..efe9589a 100644 --- a/src/LR0.c +++ b/src/LR0.c @@ -24,7 +24,9 @@ #include "system.h" #include "bitset.h" +#include "quotearg.h" #include "symtab.h" +#include "gram.h" #include "getargs.h" #include "reader.h" #include "gram.h" @@ -50,14 +52,14 @@ static state_t *this_state = NULL; static state_t *last_state = NULL; static int nshifts; -static short *shift_symbol = NULL; +static symbol_number_t *shift_symbol = NULL; static short *redset = NULL; static short *shiftset = NULL; -static short **kernel_base = NULL; +static item_number_t **kernel_base = NULL; static int *kernel_size = NULL; -static short *kernel_items = NULL; +static item_number_t *kernel_items = NULL; /* hash table for states, to recognize equivalent ones. */ @@ -69,7 +71,7 @@ static void allocate_itemsets (void) { int i, r; - short *rhsp; + item_number_t *rhsp; /* Count the number of occurrences of all the symbols in RITEMS. Note that useless productions (hence useless nonterminals) are @@ -91,9 +93,9 @@ allocate_itemsets (void) appears as an item, which is symbol_count[symbol]. We allocate that much space for each symbol. */ - kernel_base = XCALLOC (short *, nsyms); + kernel_base = XCALLOC (item_number_t *, nsyms); if (count) - kernel_items = XCALLOC (short, count); + kernel_items = XCALLOC (item_number_t, count); count = 0; for (i = 0; i < nsyms; i++) @@ -115,7 +117,7 @@ allocate_storage (void) shiftset = XCALLOC (short, nsyms); redset = XCALLOC (short, nrules + 1); state_hash = XCALLOC (state_t *, STATE_HASH_SIZE); - shift_symbol = XCALLOC (short, nsyms); + shift_symbol = XCALLOC (symbol_number_t, nsyms); } @@ -159,21 +161,20 @@ new_itemsets (void) nshifts = 0; - for (i = 0; i < nitemset; ++i) - { - int symbol = ritem[itemset[i]]; - if (symbol >= 0) - { - if (!kernel_size[symbol]) - { - shift_symbol[nshifts] = symbol; - nshifts++; - } - - kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1; - kernel_size[symbol]++; - } - } + for (i = 0; i < nritemset; ++i) + if (ritem[itemset[i]] >= 0) + { + symbol_number_t symbol + = item_number_as_symbol_number (ritem[itemset[i]]); + if (!kernel_size[symbol]) + { + shift_symbol[nshifts] = symbol; + nshifts++; + } + + kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1; + kernel_size[symbol]++; + } } @@ -184,23 +185,25 @@ new_itemsets (void) `-----------------------------------------------------------------*/ static state_t * -new_state (int symbol) +new_state (symbol_number_t symbol, size_t core_size, item_number_t *core) { state_t *p; if (trace_flag) fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n", - nstates, symbol, symbols[symbol]->tag); + nstates, symbol, quotearg_style (escape_quoting_style, + symbols[symbol]->tag)); - if (nstates >= MAXSHORT) - fatal (_("too many states (max %d)"), MAXSHORT); + if (nstates >= SHRT_MAX) + fatal (_("too many states (max %d)"), SHRT_MAX); - p = STATE_ALLOC (kernel_size[symbol]); + p = STATE_ALLOC (core_size); p->accessing_symbol = symbol; p->number = nstates; - p->nitems = kernel_size[symbol]; + p->solved_conflicts = NULL; - shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]); + p->nitems = core_size; + memcpy (p->items, core, core_size * sizeof (core[0])); /* If this is the eoftoken, and this is not the initial state, then this is the final state. */ @@ -226,21 +229,22 @@ new_state (int symbol) `--------------------------------------------------------------*/ static int -get_state (int symbol) +get_state (symbol_number_t symbol, size_t core_size, item_number_t *core) { int key; - int i; + size_t i; state_t *sp; if (trace_flag) fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n", - this_state->number, symbol, symbols[symbol]->tag); + this_state->number, symbol, quotearg_style (escape_quoting_style, + symbols[symbol]->tag)); /* Add up the target state's active item numbers to get a hash key. */ key = 0; - for (i = 0; i < kernel_size[symbol]; ++i) - key += kernel_base[symbol][i]; + for (i = 0; i < core_size; ++i) + key += core[i]; key = key % STATE_HASH_SIZE; sp = state_hash[key]; @@ -249,11 +253,11 @@ get_state (int symbol) int found = 0; while (!found) { - if (sp->nitems == kernel_size[symbol]) + if (sp->nitems == core_size) { found = 1; - for (i = 0; i < kernel_size[symbol]; ++i) - if (kernel_base[symbol][i] != sp->items[i]) + for (i = 0; i < core_size; ++i) + if (core[i] != sp->items[i]) found = 0; } @@ -265,7 +269,7 @@ get_state (int symbol) } else /* bucket exhausted and no match */ { - sp = sp->link = new_state (symbol); + sp = sp->link = new_state (symbol, core_size, core); found = 1; } } @@ -273,7 +277,7 @@ get_state (int symbol) } else /* bucket is empty */ { - state_hash[key] = sp = new_state (symbol); + state_hash[key] = sp = new_state (symbol, core_size, core); } if (trace_flag) @@ -294,7 +298,7 @@ append_states (void) { int i; int j; - int symbol; + symbol_number_t symbol; if (trace_flag) fprintf (stderr, "Entering append_states, state = %d\n", @@ -315,7 +319,11 @@ append_states (void) } for (i = 0; i < nshifts; i++) - shiftset[i] = get_state (shift_symbol[i]); + { + symbol = shift_symbol[i]; + shiftset[i] = get_state (symbol, + kernel_size[symbol], kernel_base[symbol]); + } } @@ -325,7 +333,7 @@ new_states (void) /* The 0 at the lhs is the index of the item of this initial rule. */ kernel_base[0][0] = 0; kernel_size[0] = 1; - this_state = new_state (0); + this_state = new_state (0, kernel_size[0], kernel_base[0]); } @@ -337,7 +345,7 @@ static void save_shifts (void) { shifts *p = shifts_new (nshifts); - shortcpy (p->shifts, shiftset, nshifts); + memcpy (p->shifts, shiftset, nshifts * sizeof (shiftset[0])); this_state->shifts = p; } @@ -360,7 +368,7 @@ save_reductions (void) return; /* Find and count the active items that represent ends of rules. */ - for (i = 0; i < nitemset; ++i) + for (i = 0; i < nritemset; ++i) { int item = ritem[itemset[i]]; if (item < 0) @@ -369,7 +377,7 @@ save_reductions (void) /* Make a reductions structure and copy the data into it. */ this_state->reductions = reductions_new (count); - shortcpy (this_state->reductions->rules, redset, count); + memcpy (this_state->reductions->rules, redset, count * sizeof (redset[0])); } @@ -416,7 +424,8 @@ generate_states (void) if (trace_flag) fprintf (stderr, "Processing state %d (reached by %s)\n", this_state->number, - symbols[this_state->accessing_symbol]->tag); + quotearg_style (escape_quoting_style, + symbols[this_state->accessing_symbol]->tag)); /* Set up ruleset and itemset for the transitions out of this state. ruleset gets a 1 bit for each rule that could reduce now. itemset gets a vector of all the items that could be