X-Git-Url: https://git.saurik.com/bison.git/blobdiff_plain/262aa8dd5934143c2403150c98fce44c32747930..56100c60da8ba5d852bbfbbe69666309039f87ab:/doc/bison.texinfo?ds=sidebyside diff --git a/doc/bison.texinfo b/doc/bison.texinfo index 16b8685a..907c3308 100644 --- a/doc/bison.texinfo +++ b/doc/bison.texinfo @@ -36,30 +36,31 @@ @copying -This manual is for GNU Bison (version @value{VERSION}, @value{UPDATED}), -the GNU parser generator. +This manual is for @acronym{GNU} Bison (version @value{VERSION}, +@value{UPDATED}), the @acronym{GNU} parser generator. Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. @quotation Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.1 or -any later version published by the Free Software Foundation; with no -Invariant Sections, with the Front-Cover texts being ``A GNU Manual,'' -and with the Back-Cover Texts as in (a) below. A copy of the -license is included in the section entitled ``GNU Free Documentation -License.'' - -(a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify -this GNU Manual, like GNU software. Copies published by the Free -Software Foundation raise funds for GNU development.'' +under the terms of the @acronym{GNU} Free Documentation License, +Version 1.1 or any later version published by the Free Software +Foundation; with no Invariant Sections, with the Front-Cover texts +being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in +(a) below. A copy of the license is included in the section entitled +``@acronym{GNU} Free Documentation License.'' + +(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy +and modify this @acronym{GNU} Manual, like @acronym{GNU} software. +Copies published by the Free Software Foundation raise funds for +@acronym{GNU} development.'' @end quotation @end copying @dircategory GNU programming tools @direntry -* bison: (bison). GNU parser generator (yacc replacement). +* bison: (bison). @acronym{GNU} parser generator (Yacc replacement). @end direntry @ifset shorttitlepage-enabled @@ -67,7 +68,7 @@ Software Foundation raise funds for GNU development.'' @end ifset @titlepage @title Bison -@subtitle The YACC-compatible Parser Generator +@subtitle The Yacc-compatible Parser Generator @subtitle @value{UPDATED}, Bison Version @value{VERSION} @author by Charles Donnelly and Richard Stallman @@ -80,7 +81,7 @@ Published by the Free Software Foundation @* 59 Temple Place, Suite 330 @* Boston, MA 02111-1307 USA @* Printed copies are available from the Free Software Foundation.@* -ISBN 1-882114-44-2 +@acronym{ISBN} 1-882114-44-2 @sp 2 Cover art by Etienne Suvasa. @end titlepage @@ -96,7 +97,7 @@ Cover art by Etienne Suvasa. @menu * Introduction:: * Conditions:: -* Copying:: The GNU General Public License says +* Copying:: The @acronym{GNU} General Public License says how you can copy and share Bison Tutorial sections: @@ -114,6 +115,7 @@ Reference sections: * Invocation:: How to run Bison (to produce the parser source file). * Table of Symbols:: All the keywords of the Bison language are explained. * Glossary:: Basic concepts are explained. +* FAQ:: Frequently Asked Questions * Copying This Manual:: License for copying this manual. * Index:: Cross-references to the text. @@ -264,9 +266,13 @@ Understanding or Debugging Your Parser Invoking Bison * Bison Options:: All the options described in detail, - in alphabetical order by short options. + in alphabetical order by short options. * Option Cross Key:: Alphabetical list of long options. -* VMS Invocation:: Bison command syntax on VMS. +* VMS Invocation:: Bison command syntax on @acronym{VMS}. + +Frequently Asked Questions + +* Parser Stack Overflow:: Breaking the Stack Limits Copying This Manual @@ -280,7 +286,7 @@ Copying This Manual @cindex introduction @dfn{Bison} is a general-purpose parser generator that converts a -grammar description for an LALR(1) context-free grammar into a C +grammar description for an @acronym{LALR}(1) context-free grammar into a C program to parse that grammar. Once you are proficient with Bison, you may use it to develop a wide range of language parsers, from those used in simple desk calculators to complex programming languages. @@ -306,10 +312,11 @@ This edition corresponds to version @value{VERSION} of Bison. As of Bison version 1.24, we have changed the distribution terms for @code{yyparse} to permit using Bison's output in nonfree programs when -Bison is generating C code for LALR(1) parsers. Formerly, these +Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these parsers could be used only in programs that were free software. -The other GNU programming tools, such as the GNU C compiler, have never +The other @acronym{GNU} programming tools, such as the @acronym{GNU} C +compiler, have never had such a requirement. They could always be used for nonfree software. The reason Bison was different was not due to a special policy decision; it resulted from applying the usual General Public @@ -319,7 +326,8 @@ The output of the Bison utility---the Bison parser file---contains a verbatim copy of a sizable piece of Bison, which is the code for the @code{yyparse} function. (The actions from your grammar are inserted into this function at one point, but the rest of the function is not -changed.) When we applied the GPL terms to the code for @code{yyparse}, +changed.) When we applied the @acronym{GPL} terms to the code for +@code{yyparse}, the effect was to restrict the use of Bison output to free software. We didn't change the terms because of sympathy for people who want to @@ -327,10 +335,11 @@ make software proprietary. @strong{Software should be free.} But we concluded that limiting Bison's use to free software was doing little to encourage people to make other software free. So we decided to make the practical conditions for using Bison match the practical conditions for -using the other GNU tools. +using the other @acronym{GNU} tools. This exception applies only when Bison is generating C code for a -LALR(1) parser; otherwise, the GPL terms operate as usual. You can +@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate +as usual. You can tell whether the exception applies to your @samp{.c} output file by inspecting it to see whether it says ``As a special exception, when this file is copied by Bison into a Bison output file, you may use @@ -376,32 +385,35 @@ can be made of a minus sign and another expression''. Another would be, recursive, but there must be at least one rule which leads out of the recursion. -@cindex BNF +@cindex @acronym{BNF} @cindex Backus-Naur form The most common formal system for presenting such rules for humans to read -is @dfn{Backus-Naur Form} or ``BNF'', which was developed in order to -specify the language Algol 60. Any grammar expressed in BNF is a -context-free grammar. The input to Bison is essentially machine-readable -BNF. +is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in +order to specify the language Algol 60. Any grammar expressed in +@acronym{BNF} is a context-free grammar. The input to Bison is +essentially machine-readable @acronym{BNF}. -@cindex LALR(1) grammars -@cindex LR(1) grammars +@cindex @acronym{LALR}(1) grammars +@cindex @acronym{LR}(1) grammars There are various important subclasses of context-free grammar. Although it can handle almost all context-free grammars, Bison is optimized for what -are called LALR(1) grammars. +are called @acronym{LALR}(1) grammars. In brief, in these grammars, it must be possible to tell how to parse any portion of an input string with just a single token of look-ahead. Strictly speaking, that is a description of an -LR(1) grammar, and LALR(1) involves additional restrictions that are +@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional +restrictions that are hard to explain simply; but it is rare in actual practice to find an -LR(1) grammar that fails to be LALR(1). @xref{Mystery Conflicts, , -Mysterious Reduce/Reduce Conflicts}, for more information on this. +@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1). +@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for +more information on this. -@cindex GLR parsing -@cindex generalized LR (GLR) parsing +@cindex @acronym{GLR} parsing +@cindex generalized @acronym{LR} (@acronym{GLR}) parsing @cindex ambiguous grammars @cindex non-deterministic parsing -Parsers for LALR(1) grammars are @dfn{deterministic}, meaning roughly that +Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, +meaning roughly that the next grammar rule to apply at any point in the input is uniquely determined by the preceding input and a fixed, finite portion (called a @dfn{look-ahead}) of the remaining input. @@ -410,8 +422,9 @@ there are multiple ways to apply the grammar rules to get the some inputs. Even unambiguous grammars can be @dfn{non-deterministic}, meaning that no fixed look-ahead always suffices to determine the next grammar rule to apply. With the proper declarations, Bison is also able to parse these more general -context-free grammars, using a technique known as GLR parsing (for -Generalized LR). Bison's GLR parsers are able to handle any context-free +context-free grammars, using a technique known as @acronym{GLR} parsing (for +Generalized @acronym{LR}). Bison's @acronym{GLR} parsers are able to +handle any context-free grammar for which the number of possible parses of any given string is finite. @@ -513,7 +526,7 @@ for Bison, you must write a file expressing the grammar in Bison syntax: a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}. A nonterminal symbol in the formal grammar is represented in Bison input -as an identifier, like an identifier in C. By convention, it should be +as an identifier, like an identifier in C@. By convention, it should be in lower case, such as @code{expr}, @code{stmt} or @code{declaration}. The Bison representation for a terminal symbol is also called a @dfn{token @@ -562,7 +575,8 @@ grammatical. But the precise value is very important for what the input means once it is parsed. A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the program! Therefore, each token in a Bison grammar -has both a token type and a @dfn{semantic value}. @xref{Semantics, ,Defining Language Semantics}, +has both a token type and a @dfn{semantic value}. @xref{Semantics, +,Defining Language Semantics}, for details. The token type is a terminal symbol defined in the grammar, such as @@ -621,14 +635,14 @@ The action says how to produce the semantic value of the sum expression from the values of the two subexpressions. @node GLR Parsers -@section Writing GLR Parsers -@cindex GLR parsing -@cindex generalized LR (GLR) parsing +@section Writing @acronym{GLR} Parsers +@cindex @acronym{GLR} parsing +@cindex generalized @acronym{LR} (@acronym{GLR}) parsing @findex %glr-parser @cindex conflicts @cindex shift/reduce conflicts -In some grammars, there will be cases where Bison's standard LALR(1) +In some grammars, there will be cases where Bison's standard @acronym{LALR}(1) parsing algorithm cannot decide whether to apply a certain grammar rule at a given point. That is, it may not be able to decide (on the basis of the input read so far) which of two possible reductions (applications @@ -637,14 +651,16 @@ of the input and apply a reduction later in the input. These are known respectively as @dfn{reduce/reduce} conflicts (@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts (@pxref{Shift/Reduce}). -To use a grammar that is not easily modified to be LALR(1), a more +To use a grammar that is not easily modified to be @acronym{LALR}(1), a more general parsing algorithm is sometimes necessary. If you include @code{%glr-parser} among the Bison declarations in your file -(@pxref{Grammar Outline}), the result will be a Generalized LR (GLR) +(@pxref{Grammar Outline}), the result will be a Generalized +@acronym{LR} (@acronym{GLR}) parser. These parsers handle Bison grammars that contain no unresolved conflicts (i.e., after applying precedence declarations) identically to -LALR(1) parsers. However, when faced with unresolved shift/reduce and -reduce/reduce conflicts, GLR parsers use the simple expedient of doing +@acronym{LALR}(1) parsers. However, when faced with unresolved +shift/reduce and reduce/reduce conflicts, @acronym{GLR} parsers use +the simple expedient of doing both, effectively cloning the parser to follow both possibilities. Each of the resulting parsers can again split, so that at any given time, there can be any number of possible parses being explored. The parsers @@ -718,7 +734,8 @@ T (x) = y+z; @noindent parses as either an @code{expr} or a @code{stmt} -(assuming that @samp{T} is recognized as a TYPENAME and @samp{x} as an ID). +(assuming that @samp{T} is recognized as a @code{TYPENAME} and +@samp{x} as an @code{ID}). Bison detects this as a reduce/reduce conflict between the rules @code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the time it encounters @code{x} in the example above. The two @code{%dprec} @@ -801,25 +818,25 @@ as both an @code{expr} and a @code{decl}, and print @cindex position, textual Many applications, like interpreters or compilers, have to produce verbose -and useful error messages. To achieve this, one must be able to keep track of +and useful error messages. To achieve this, one must be able to keep track of the @dfn{textual position}, or @dfn{location}, of each syntactic construct. Bison provides a mechanism for handling these locations. -Each token has a semantic value. In a similar fashion, each token has an +Each token has a semantic value. In a similar fashion, each token has an associated location, but the type of locations is the same for all tokens and -groupings. Moreover, the output parser is equipped with a default data +groupings. Moreover, the output parser is equipped with a default data structure for storing locations (@pxref{Locations}, for more details). Like semantic values, locations can be reached in actions using a dedicated -set of constructs. In the example above, the location of the whole grouping +set of constructs. In the example above, the location of the whole grouping is @code{@@$}, while the locations of the subexpressions are @code{@@1} and @code{@@3}. When a rule is matched, a default action is used to compute the semantic value -of its left hand side (@pxref{Actions}). In the same way, another default -action is used for locations. However, the action for locations is general +of its left hand side (@pxref{Actions}). In the same way, another default +action is used for locations. However, the action for locations is general enough for most cases, meaning there is usually no need to describe for each -rule how @code{@@$} should be formed. When building a new location for a given +rule how @code{@@$} should be formed. When building a new location for a given grouping, the default behavior of the output parser is to take the beginning of the first symbol, and the end of the last symbol. @@ -871,7 +888,7 @@ this manual. In some cases the Bison parser file includes system headers, and in those cases your code should respect the identifiers reserved by those -headers. On some non-@sc{gnu} hosts, @code{}, +headers. On some non-@acronym{GNU} hosts, @code{}, @code{}, and @code{} are included as needed to declare memory allocators and related types. Other system headers may be included if you define @code{YYDEBUG} to a nonzero value @@ -947,7 +964,7 @@ general form of a Bison grammar file is as follows: The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears in every Bison grammar file to separate the sections. -The prologue may define types and variables used in the actions. You can +The prologue may define types and variables used in the actions. You can also use preprocessor commands to define macros used there, and use @code{#include} to include header files that do any of these things. @@ -958,7 +975,7 @@ semantic values of various symbols. The grammar rules define how to construct each nonterminal symbol from its parts. -The epilogue can contain any code you want to use. Often the definition of +The epilogue can contain any code you want to use. Often the definition of the lexical analyzer @code{yylex} goes here, plus subroutines called by the actions in the grammar rules. In a simple program, all the rest of the program can go here. @@ -1025,7 +1042,7 @@ Here are the C and Bison declarations for the reverse polish notation calculator. As in C, comments are placed between @samp{/*@dots{}*/}. @example -/* Reverse polish notation calculator. */ +/* Reverse polish notation calculator. */ %@{ #define YYSTYPE double @@ -1034,7 +1051,7 @@ calculator. As in C, comments are placed between @samp{/*@dots{}*/}. %token NUM -%% /* Grammar rules and actions follow */ +%% /* Grammar rules and actions follow. */ @end example The declarations section (@pxref{Prologue, , The prologue}) contains two @@ -1143,7 +1160,7 @@ more times. The parser function @code{yyparse} continues to process input until a grammatical error is seen or the lexical analyzer says there are no more -input tokens; we will arrange for the latter to happen at end of file. +input tokens; we will arrange for the latter to happen at end-of-input. @node Rpcalc Line @subsubsection Explanation of @code{line} @@ -1210,7 +1227,7 @@ action, Bison by default copies the value of @code{$1} into @code{$$}. This is what happens in the first rule (the one that uses @code{NUM}). The formatting shown here is the recommended convention, but Bison does -not require it. You can add or change whitespace as much as you wish. +not require it. You can add or change white space as much as you wish. For example, this: @example @@ -1239,7 +1256,8 @@ or sequences of characters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}. -Only a simple lexical analyzer is needed for the RPN calculator. This +Only a simple lexical analyzer is needed for the @acronym{RPN} +calculator. This lexical analyzer skips blanks and tabs, then reads in numbers as @code{double} and returns them as @code{NUM} tokens. Any other character that isn't part of a number is a separate token. Note that the token-code @@ -1261,18 +1279,17 @@ for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was defined at the beginning of the grammar; @pxref{Rpcalc Decls, ,Declarations for @code{rpcalc}}.) -A token type code of zero is returned if the end-of-file is encountered. -(Bison recognizes any nonpositive value as indicating the end of the -input.) +A token type code of zero is returned if the end-of-input is encountered. +(Bison recognizes any nonpositive value as indicating end-of-input.) Here is the code for the lexical analyzer: @example @group -/* Lexical analyzer returns a double floating point +/* The lexical analyzer returns a double floating point number on the stack and the token NUM, or the numeric code - of the character read if not a number. Skips all blanks - and tabs, returns 0 for EOF. */ + of the character read if not a number. It skips all blanks + and tabs, and returns 0 for end-of-input. */ #include @end group @@ -1283,12 +1300,12 @@ yylex (void) @{ int c; - /* skip white space */ + /* Skip white space. */ while ((c = getchar ()) == ' ' || c == '\t') ; @end group @group - /* process numbers */ + /* Process numbers. */ if (c == '.' || isdigit (c)) @{ ungetc (c, stdin); @@ -1297,10 +1314,10 @@ yylex (void) @} @end group @group - /* return end-of-file */ + /* Return end-of-input. */ if (c == EOF) return 0; - /* return single chars */ + /* Return a single char. */ return c; @} @end group @@ -1340,7 +1357,7 @@ here is the definition we will use: #include void -yyerror (const char *s) /* Called by yyparse on error */ +yyerror (const char *s) /* called by yyparse on error */ @{ printf ("%s\n", s); @} @@ -1377,8 +1394,8 @@ bison @var{file_name}.y @noindent In this example the file was called @file{rpcalc.y} (for ``Reverse Polish -CALCulator''). Bison produces a file named @file{@var{file_name}.tab.c}, -removing the @samp{.y} from the original file name. The file output by +@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c}, +removing the @samp{.y} from the original file name. The file output by Bison contains the source code for @code{yyparse}. The additional functions in the input file (@code{yylex}, @code{yyerror} and @code{main}) are copied verbatim to the output. @@ -1399,7 +1416,7 @@ rpcalc.tab.c rpcalc.y @group # @r{Compile the Bison parser.} # @r{@samp{-lm} tells compiler to search math library for @code{pow}.} -$ @kbd{cc rpcalc.tab.c -lm -o rpcalc} +$ @kbd{cc -lm -o rpcalc rpcalc.tab.c} @end group @group @@ -1447,7 +1464,7 @@ parentheses nested to arbitrary depth. Here is the Bison code for #include %@} -/* BISON Declarations */ +/* Bison Declarations */ %token NUM %left '-' '+' %left '*' '/' @@ -1568,7 +1585,7 @@ This example extends the infix notation calculator with location tracking. This feature will be used to improve the error messages. For the sake of clarity, this example is a simple integer calculator, since most of the work needed to use locations will be done in the lexical -analyser. +analyzer. @menu * Decls: Ltcalc Decls. Bison and C declarations for ltcalc. @@ -1676,7 +1693,7 @@ hand. @subsection The @code{ltcalc} Lexical Analyzer. Until now, we relied on Bison's defaults to enable location -tracking. The next step is to rewrite the lexical analyser, and make it +tracking. The next step is to rewrite the lexical analyzer, and make it able to feed the parser with the token locations, as it already does for semantic values. @@ -1690,17 +1707,17 @@ yylex (void) @{ int c; - /* skip white space */ + /* Skip white space. */ while ((c = getchar ()) == ' ' || c == '\t') ++yylloc.last_column; - /* step */ + /* Step. */ yylloc.first_line = yylloc.last_line; yylloc.first_column = yylloc.last_column; @end group @group - /* process numbers */ + /* Process numbers. */ if (isdigit (c)) @{ yylval = c - '0'; @@ -1715,11 +1732,11 @@ yylex (void) @} @end group - /* return end-of-file */ + /* Return end-of-input. */ if (c == EOF) return 0; - /* return single chars and update location */ + /* Return a single char, and update location. */ if (c == '\n') @{ ++yylloc.last_line; @@ -1737,7 +1754,7 @@ In addition, it updates @code{yylloc}, the global variable (of type @code{YYLTYPE}) containing the token's location. Now, each time this function returns a token, the parser has its number -as well as its semantic value, and its location in the text. The last +as well as its semantic value, and its location in the text. The last needed change is to initialize @code{yylloc}, for example in the controlling function: @@ -1816,7 +1833,7 @@ Here are the C and Bison declarations for the multi-function calculator. @smallexample %@{ -#include /* For math functions, cos(), sin(), etc. */ +#include /* For math functions, cos(), sin(), etc. */ #include "calc.h" /* Contains definition of `symrec' */ %@} %union @{ @@ -1910,7 +1927,7 @@ provides for either functions or variables to be placed in the table. @smallexample @group -/* Fonctions type. */ +/* Function type. */ typedef double (*func_t) (double); /* Data type for links in the chain of symbols. */ @@ -1985,7 +2002,7 @@ symrec *sym_table = (symrec *) 0; @end group @group -/* Put arithmetic functions in table. */ +/* Put arithmetic functions in table. */ void init_table (void) @{ @@ -2019,7 +2036,7 @@ putsym (char *sym_name, int sym_type) ptr->name = (char *) malloc (strlen (sym_name) + 1); strcpy (ptr->name,sym_name); ptr->type = sym_type; - ptr->value.var = 0; /* set value to 0 even if fctn. */ + ptr->value.var = 0; /* Set value to 0 even if fctn. */ ptr->next = (struct symrec *)sym_table; sym_table = ptr; return ptr; @@ -2061,7 +2078,7 @@ yylex (void) @{ int c; - /* Ignore whitespace, get first nonwhite character. */ + /* Ignore white space, get first nonwhite character. */ while ((c = getchar ()) == ' ' || c == '\t'); if (c == EOF) @@ -2112,7 +2129,7 @@ yylex (void) @} @end group @group - while (c != EOF && isalnum (c)); + while (isalnum (c)); ungetc (c, stdin); symbuf[i] = '\0'; @@ -2132,7 +2149,7 @@ yylex (void) @end group @end smallexample -This program is both powerful and flexible. You may easily add new +This program is both powerful and flexible. You may easily add new functions, and it is a simple job to modify this code to install predefined variables such as @code{pi} or @code{e} as well. @@ -2317,7 +2334,7 @@ There are three ways of writing terminal symbols in the grammar: @itemize @bullet @item A @dfn{named token type} is written with an identifier, like an -identifier in C. By convention, it should be all upper case. Each +identifier in C@. By convention, it should be all upper case. Each such name must be defined with a Bison declaration such as @code{%token}. @xref{Token Decl, ,Token Type Names}. @@ -2341,8 +2358,8 @@ your program will confuse other readers. All the usual escape sequences used in character literals in C can be used in Bison as well, but you must not use the null character as a -character literal because its numeric code, zero, is the code @code{yylex} -returns for end-of-input (@pxref{Calling Convention, ,Calling Convention +character literal because its numeric code, zero, signifies +end-of-input (@pxref{Calling Convention, ,Calling Convention for @code{yylex}}). @item @@ -2361,7 +2378,7 @@ Declarations}). If you don't do that, the lexical analyzer has to retrieve the token number for the literal string token from the @code{yytname} table (@pxref{Calling Convention}). -@strong{WARNING}: literal string tokens do not work in Yacc. +@strong{Warning}: literal string tokens do not work in Yacc. By convention, a literal string token is used only to represent a token that consists of that particular string. Thus, you should use the token @@ -2379,12 +2396,15 @@ How you choose to write a terminal symbol has no effect on its grammatical meaning. That depends only on where it appears in rules and on when the parser function returns that symbol. -The value returned by @code{yylex} is always one of the terminal symbols -(or 0 for end-of-input). Whichever way you write the token type in the -grammar rules, you write it the same way in the definition of @code{yylex}. -The numeric code for a character token type is simply the numeric code of -the character, so @code{yylex} can use the identical character constant to -generate the requisite code. Each named token type becomes a C macro in +The value returned by @code{yylex} is always one of the terminal +symbols, except that a zero or negative value signifies end-of-input. +Whichever way you write the token type in the grammar rules, you write +it the same way in the definition of @code{yylex}. The numeric code +for a character token type is simply the positive numeric code of the +character, so @code{yylex} can use the identical value to generate the +requisite code, though you may need to convert it to @code{unsigned +char} to avoid sign-extension on hosts where @code{char} is signed. +Each named token type becomes a C macro in the parser file, so @code{yylex} can use the name to stand for the code. (This is why periods don't make sense in terminal symbols.) @xref{Calling Convention, ,Calling Convention for @code{yylex}}. @@ -2395,18 +2415,26 @@ option when you run Bison, so that it will write these macro definitions into a separate header file @file{@var{name}.tab.h} which you can include in the other source files that need it. @xref{Invocation, ,Invoking Bison}. -The @code{yylex} function must use the same character set and encoding -that was used by Bison. For example, if you run Bison in an -@sc{ascii} environment, but then compile and run the resulting program +If you want to write a grammar that is portable to any Standard C +host, you must use only non-null character tokens taken from the basic +execution character set of Standard C@. This set consists of the ten +digits, the 52 lower- and upper-case English letters, and the +characters in the following C-language string: + +@example +"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~" +@end example + +The @code{yylex} function and Bison must use a consistent character +set and encoding for character tokens. For example, if you run Bison in an +@acronym{ASCII} environment, but then compile and run the resulting program in an environment that uses an incompatible character set like -@sc{ebcdic}, the resulting program will probably not work because the -tables generated by Bison will assume @sc{ascii} numeric values for -character tokens. Portable grammars should avoid non-@sc{ascii} -character tokens, as implementations in practice often use different -and incompatible extensions in this area. However, it is standard +@acronym{EBCDIC}, the resulting program may not work because the +tables generated by Bison will assume @acronym{ASCII} numeric values for +character tokens. It is standard practice for software distributions to contain C source files that -were generated by Bison in an @sc{ascii} environment, so installers on -platforms that are incompatible with @sc{ascii} must rebuild those +were generated by Bison in an @acronym{ASCII} environment, so installers on +platforms that are incompatible with @acronym{ASCII} must rebuild those files before compiling them. The symbol @code{error} is a terminal symbol reserved for error recovery @@ -2448,8 +2476,8 @@ exp: exp '+' exp says that two groupings of type @code{exp}, with a @samp{+} token in between, can be combined into a larger grouping of type @code{exp}. -Whitespace in rules is significant only to separate symbols. You can add -extra whitespace as you wish. +White space in rules is significant only to separate symbols. You can add +extra white space as you wish. Scattered among the components can be @var{actions} that determine the semantics of the rule. An action looks like this: @@ -2612,7 +2640,7 @@ the numbers associated with @var{x} and @var{y}. In a simple program it may be sufficient to use the same data type for the semantic values of all language constructs. This was true in the -RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish +@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish Notation Calculator}). Bison's default is to use type @code{int} for all semantic values. To @@ -2663,7 +2691,7 @@ is to compute a semantic value for the grouping built by the rule from the semantic values associated with tokens or smaller groupings. An action consists of C statements surrounded by braces, much like a -compound statement in C. It can be placed at any position in the rule; +compound statement in C@. It can be placed at any position in the rule; it is executed at that position. Most rules have just one action at the end of the rule, following all the components. Actions in the middle of a rule are tricky and used only for special purposes (@pxref{Mid-Rule @@ -2954,7 +2982,7 @@ actually does to implement mid-rule actions. @cindex position, textual Though grammar rules and semantic actions are enough to write a fully -functional parser, it can be useful to process some additionnal informations, +functional parser, it can be useful to process some additional information, especially symbol locations. @c (terminal or not) ? @@ -3001,7 +3029,7 @@ Actions are not only useful for defining language semantics, but also for describing the behavior of the output parser with locations. The most obvious way for building locations of syntactic groupings is very -similar to the way semantic values are computed. In a given rule, several +similar to the way semantic values are computed. In a given rule, several constructs can be used to access the locations of the elements being matched. The location of the @var{n}th component of the right hand side is @code{@@@var{n}}, while the location of the left hand side grouping is @@ -3032,11 +3060,11 @@ exp: @dots{} @end example As for semantic values, there is a default action for locations that is -run each time a rule is matched. It sets the beginning of @code{@@$} to the +run each time a rule is matched. It sets the beginning of @code{@@$} to the beginning of the first symbol, and the end of @code{@@$} to the end of the last symbol. -With this default action, the location tracking can be fully automatic. The +With this default action, the location tracking can be fully automatic. The example above simply rewrites this way: @example @@ -3061,21 +3089,21 @@ exp: @dots{} @subsection Default Action for Locations @vindex YYLLOC_DEFAULT -Actually, actions are not the best place to compute locations. Since +Actually, actions are not the best place to compute locations. Since locations are much more general than semantic values, there is room in the output parser to redefine the default action to take for each -rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is +rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is matched, before the associated action is run. Most of the time, this macro is general enough to suppress location dedicated code from semantic actions. -The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is -the location of the grouping (the result of the computation). The second one +The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is +the location of the grouping (the result of the computation). The second one is an array holding locations of all right hand side elements of the rule -being matched. The last one is the size of the right hand side rule. +being matched. The last one is the size of the right hand side rule. -By default, it is defined this way for simple LALR(1) parsers: +By default, it is defined this way for simple @acronym{LALR}(1) parsers: @example @group @@ -3088,7 +3116,7 @@ By default, it is defined this way for simple LALR(1) parsers: @end example @noindent -and like this for GLR parsers: +and like this for @acronym{GLR} parsers: @example @group @@ -3104,7 +3132,7 @@ When defining @code{YYLLOC_DEFAULT}, you should consider that: @itemize @bullet @item -All arguments are free of side-effects. However, only the first one (the +All arguments are free of side-effects. However, only the first one (the result) should be modified by @code{YYLLOC_DEFAULT}. @item @@ -3404,8 +3432,8 @@ handler. In systems with multiple threads of control, a non-reentrant program must be called only within interlocks. Normally, Bison generates a parser which is not reentrant. This is -suitable for most uses, and it permits compatibility with YACC. (The -standard YACC interfaces are inherently nonreentrant, because they use +suitable for most uses, and it permits compatibility with Yacc. (The +standard Yacc interfaces are inherently nonreentrant, because they use statically allocated variables for communication with @code{yylex}, including @code{yylval} and @code{yylloc}.) @@ -3592,7 +3620,7 @@ The number of parser states (@pxref{Parser States}). @item %verbose Write an extra output file containing verbose descriptions of the parser states and what is done for each type of look-ahead token in -that state. @xref{Understanding, , Understanding Your Parser}, for more +that state. @xref{Understanding, , Understanding Your Parser}, for more information. @@ -3717,8 +3745,9 @@ that need it. @xref{Invocation, ,Invoking Bison}. @node Calling Convention @subsection Calling Convention for @code{yylex} -The value that @code{yylex} returns must be the numeric code for the type -of token it has just found, or 0 for end-of-input. +The value that @code{yylex} returns must be the positive numeric code +for the type of token it has just found; a zero or negative value +signifies end-of-input. When a token is referred to in the grammar rules by a name, that name in the parser file becomes a C macro whose definition is the proper @@ -3727,8 +3756,9 @@ to indicate that type. @xref{Symbols}. When a token is referred to in the grammar rules by a character literal, the numeric code for that character is also the code for the token type. -So @code{yylex} can simply return that character code. The null character -must not be used this way, because its code is zero and that is what +So @code{yylex} can simply return that character code, possibly converted +to @code{unsigned char} to avoid sign-extension. The null character +must not be used this way, because its code is zero and that signifies end-of-input. Here is an example showing these things: @@ -3738,13 +3768,13 @@ int yylex (void) @{ @dots{} - if (c == EOF) /* Detect end of file. */ + if (c == EOF) /* Detect end-of-input. */ return 0; @dots{} if (c == '+' || c == '-') - return c; /* Assume token type for `+' is '+'. */ + return c; /* Assume token type for `+' is '+'. */ @dots{} - return INT; /* Return the type of the token. */ + return INT; /* Return the type of the token. */ @dots{} @} @end example @@ -3779,8 +3809,8 @@ for (i = 0; i < YYNTOKENS; i++) @{ if (yytname[i] != 0 && yytname[i][0] == '"' - && strncmp (yytname[i] + 1, token_buffer, - strlen (token_buffer)) + && ! strncmp (yytname[i] + 1, token_buffer, + strlen (token_buffer)) && yytname[i][strlen (token_buffer) + 1] == '"' && yytname[i][strlen (token_buffer) + 2] == 0) break; @@ -3804,8 +3834,8 @@ Thus, if the type is @code{int} (the default), you might write this in @example @group @dots{} - yylval = value; /* Put value onto Bison stack. */ - return INT; /* Return the type of the token. */ + yylval = value; /* Put value onto Bison stack. */ + return INT; /* Return the type of the token. */ @dots{} @end group @end example @@ -3832,8 +3862,8 @@ then the code in @code{yylex} might look like this: @example @group @dots{} - yylval.intval = value; /* Put value onto Bison stack. */ - return INT; /* Return the type of the token. */ + yylval.intval = value; /* Put value onto Bison stack. */ + return INT; /* Return the type of the token. */ @dots{} @end group @end example @@ -4065,7 +4095,7 @@ Return immediately from @code{yyparse}, indicating success. @findex YYBACKUP Unshift a token. This macro is allowed only for rules that reduce a single value, and only when there is no look-ahead token. -It is also disallowed in GLR parsers. +It is also disallowed in @acronym{GLR} parsers. It installs a look-ahead token with token type @var{token} and semantic value @var{value}; then it discards the value that was going to be reduced by this rule. @@ -4734,12 +4764,13 @@ name_list: It would seem that this grammar can be parsed with only a single token of look-ahead: when a @code{param_spec} is being read, an @code{ID} is a @code{name} if a comma or colon follows, or a @code{type} if another -@code{ID} follows. In other words, this grammar is LR(1). +@code{ID} follows. In other words, this grammar is @acronym{LR}(1). -@cindex LR(1) -@cindex LALR(1) +@cindex @acronym{LR}(1) +@cindex @acronym{LALR}(1) However, Bison, like most parser generators, cannot actually handle all -LR(1) grammars. In this grammar, two contexts, that after an @code{ID} +@acronym{LR}(1) grammars. In this grammar, two contexts, that after +an @code{ID} at the beginning of a @code{param_spec} and likewise at the beginning of a @code{return_spec}, are similar enough that Bison assumes they are the same. They appear similar because the same set of rules would be @@ -4748,11 +4779,12 @@ a @code{type}. Bison is unable to determine at that stage of processing that the rules would require different look-ahead tokens in the two contexts, so it makes a single parser state for them both. Combining the two contexts causes a conflict later. In parser terminology, this -occurrence means that the grammar is not LALR(1). +occurrence means that the grammar is not @acronym{LALR}(1). In general, it is better to fix deficiencies than to document them. But this particular deficiency is intrinsically hard to fix; parser -generators that can handle LR(1) grammars are hard to write and tend to +generators that can handle @acronym{LR}(1) grammars are hard to write +and tend to produce parsers that are very large. In practice, Bison is more useful as it is now. @@ -4802,9 +4834,9 @@ return_spec: @end example @node Generalized LR Parsing -@section Generalized LR (GLR) Parsing -@cindex GLR parsing -@cindex generalized LR (GLR) parsing +@section Generalized @acronym{LR} (@acronym{GLR}) Parsing +@cindex @acronym{GLR} parsing +@cindex generalized @acronym{LR} (@acronym{GLR}) parsing @cindex ambiguous grammars @cindex non-deterministic parsing @@ -4824,16 +4856,18 @@ summarize the input seen so far loses necessary information. When you use the @samp{%glr-parser} declaration in your grammar file, Bison generates a parser that uses a different algorithm, called -Generalized LR (or GLR). A Bison GLR parser uses the same basic +Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR} +parser uses the same basic algorithm for parsing as an ordinary Bison parser, but behaves differently in cases where there is a shift-reduce conflict that has not been resolved by precedence rules (@pxref{Precedence}) or a -reduce-reduce conflict. When a GLR parser encounters such a situation, it +reduce-reduce conflict. When a @acronym{GLR} parser encounters such a +situation, it effectively @emph{splits} into a several parsers, one for each possible shift or reduction. These parsers then proceed as usual, consuming tokens in lock-step. Some of the stacks may encounter other conflicts and split further, with the result that instead of a sequence of states, -a Bison GLR parsing stack is what is in effect a tree of states. +a Bison @acronym{GLR} parsing stack is what is in effect a tree of states. In effect, each stack represents a guess as to what the proper parse is. Additional input may indicate that a guess was wrong, in which case @@ -4849,7 +4883,7 @@ grammar symbol that produces the same segment of the input token stream. Whenever the parser makes a transition from having multiple -states to having one, it reverts to the normal LALR(1) parsing +states to having one, it reverts to the normal @acronym{LALR}(1) parsing algorithm, after resolving and executing the saved-up actions. At this transition, some of the states on the stack will have semantic values that are sets (actually multisets) of possible actions. The @@ -4861,9 +4895,10 @@ rules by the @samp{%merge} declaration, Bison resolves and evaluates both and then calls the merge function on the result. Otherwise, it reports an ambiguity. -It is possible to use a data structure for the GLR parsing tree that -permits the processing of any LALR(1) grammar in linear time (in the -size of the input), any unambiguous (not necessarily LALR(1)) grammar in +It is possible to use a data structure for the @acronym{GLR} parsing tree that +permits the processing of any @acronym{LALR}(1) grammar in linear time (in the +size of the input), any unambiguous (not necessarily +@acronym{LALR}(1)) grammar in quadratic worst-case time, and any general (possibly ambiguous) context-free grammar in cubic worst-case time. However, Bison currently uses a simpler data structure that requires time proportional to the @@ -4873,7 +4908,7 @@ grammars can require exponential time and space to process. Such badly behaving examples, however, are not generally of practical interest. Usually, non-determinism in a grammar is local---the parser is ``in doubt'' only for a few tokens at a time. Therefore, the current data -structure should generally be adequate. On LALR(1) portions of a +structure should generally be adequate. On @acronym{LALR}(1) portions of a grammar, in particular, it is only slightly slower than with the default Bison parser. @@ -4888,6 +4923,10 @@ not reduced. When this happens, the parser function @code{yyparse} returns a nonzero value, pausing only to call @code{yyerror} to report the overflow. +Because Bison parsers have growing stacks, hitting the upper limit +usually results from using a right recursion instead of a left +recursion, @xref{Recursion, ,Recursive Rules}. + @vindex YYMAXDEPTH By defining the macro @code{YYMAXDEPTH}, you can control how deep the parser stack can become before a stack overflow occurs. Define the @@ -4911,6 +4950,14 @@ You can control how much stack is allocated initially by defining the macro @code{YYINITDEPTH}. This value too must be a compile-time constant integer. The default is 200. +@c FIXME: C++ output. +Because of semantical differences between C and C++, the +@acronym{LALR}(1) parsers +in C produced by Bison by compiled as C++ cannot grow. In this precise +case (compiling a C parser as C++) you are suggested to grow +@code{YYINITDEPTH}. In the near future, a C++ output output will be +provided which addresses this issue. + @node Error Recovery @chapter Error Recovery @cindex error recovery @@ -4973,7 +5020,7 @@ error recovery. A simple and useful strategy is simply to skip the rest of the current input line or current statement if an error is detected: @example -stmnt: error ';' /* on error, skip until ';' is read */ +stmnt: error ';' /* On error, skip until ';' is read. */ @end example It is also useful to recover to the matching close-delimiter of an @@ -5062,7 +5109,7 @@ This looks like a function call statement, but if @code{foo} is a typedef name, then this is actually a declaration of @code{x}. How can a Bison parser for C decide how to parse this input? -The method used in GNU C is to have two different token types, +The method used in @acronym{GNU} C is to have two different token types, @code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an identifier, it looks up the current declaration of the identifier in order to decide which token type to return: @code{TYPENAME} if the identifier is @@ -5255,7 +5302,7 @@ As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm}) Bison parsers are @dfn{shift/reduce automata}. In some cases (much more frequent than one would hope), looking at this automaton is required to tune or simply fix a parser. Bison provides two different -representation of it, either textually or graphically (as a @sc{vcg} +representation of it, either textually or graphically (as a @acronym{VCG} file). The textual file is generated when the options @option{--report} or @@ -5554,7 +5601,7 @@ sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM / NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) / NUM}, which corresponds to reducing rule 1. -Because in LALR(1) parsing a single decision can be made, Bison +Because in @acronym{LALR}(1) parsing a single decision can be made, Bison arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions are reported in between square brackets. @@ -5659,21 +5706,22 @@ There are several means to enable compilation of trace facilities: @item the macro @code{YYDEBUG} @findex YYDEBUG Define the macro @code{YYDEBUG} to a nonzero value when you compile the -parser. This is compliant with POSIX Yacc. You could use +parser. This is compliant with @acronym{POSIX} Yacc. You could use @samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The Prologue}). @item the option @option{-t}, @option{--debug} Use the @samp{-t} option when you run Bison (@pxref{Invocation, -,Invoking Bison}). This is POSIX compliant too. +,Invoking Bison}). This is @acronym{POSIX} compliant too. @item the directive @samp{%debug} @findex %debug Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration Summary}). This is a Bison extension, which will prove useful when Bison will output parsers for languages that don't use a -preprocessor. Useless POSIX and Yacc portability matter to you, this is +preprocessor. Unless @acronym{POSIX} and Yacc portability matter to +you, this is the preferred solution. @end table @@ -5767,10 +5815,11 @@ Here @var{infile} is the grammar file name, which usually ends in @samp{.y}. The parser file's name is made by replacing the @samp{.y} with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields @file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields -@file{hack/foo.tab.c}. It's is also possible, in case you are writing +@file{hack/foo.tab.c}. It's also possible, in case you are writing C++ code instead of C in your grammar file, to name it @file{foo.ypp} -or @file{foo.y++}. Then, the output files will take an extention like -the given one as input (repectively @file{foo.tab.cpp} and @file{foo.tab.c++}). +or @file{foo.y++}. Then, the output files will take an extension like +the given one as input (respectively @file{foo.tab.cpp} and +@file{foo.tab.c++}). This feature takes effect with all options that manipulate filenames like @samp{-o} or @samp{-d}. @@ -5780,20 +5829,19 @@ For example : bison -d @var{infile.yxx} @end example @noindent -will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}. and +will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and @example -bison -d @var{infile.y} -o @var{output.c++} +bison -d -o @var{output.c++} @var{infile.y} @end example @noindent will produce @file{output.c++} and @file{outfile.h++}. - @menu * Bison Options:: All the options described in detail, - in alphabetical order by short options. + in alphabetical order by short options. * Option Cross Key:: Alphabetical list of long options. -* VMS Invocation:: Bison command syntax on VMS. +* VMS Invocation:: Bison command syntax on @acronym{VMS}. @end menu @node Bison Options @@ -5893,7 +5941,7 @@ Same as above, but save in the file @var{defines-file}. @item -b @var{file-prefix} @itemx --file-prefix=@var{prefix} Pretend that @code{%verbose} was specified, i.e, specify prefix to use -for all Bison output file names. @xref{Decl Summary}. +for all Bison output file names. @xref{Decl Summary}. @item -r @var{things} @itemx --report=@var{things} @@ -5903,7 +5951,7 @@ separated list of @var{things} among: @table @code @item state Description of the grammar, conflicts (resolved and unresolved), and -LALR automaton. +@acronym{LALR} automaton. @item lookahead Implies @code{state} and augments the description of the automaton with @@ -5920,7 +5968,7 @@ For instance, on the following grammar @itemx --verbose Pretend that @code{%verbose} was specified, i.e, write an extra output file containing verbose descriptions of the grammar and -parser. @xref{Decl Summary}. +parser. @xref{Decl Summary}. @item -o @var{filename} @itemx --output=@var{filename} @@ -5930,13 +5978,14 @@ The other output files' names are constructed from @var{filename} as described under the @samp{-v} and @samp{-d} options. @item -g -Output a VCG definition of the LALR(1) grammar automaton computed by -Bison. If the grammar file is @file{foo.y}, the VCG output file will +Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar +automaton computed by Bison. If the grammar file is @file{foo.y}, the +@acronym{VCG} output file will be @file{foo.vcg}. @item --graph=@var{graph-file} -The behaviour of @var{--graph} is the same than @samp{-g}. The only -difference is that it has an optionnal argument which is the name of +The behavior of @var{--graph} is the same than @samp{-g}. The only +difference is that it has an optional argument which is the name of the output graph filename. @end table @@ -5985,33 +6034,60 @@ the corresponding short option. @end ifinfo @node VMS Invocation -@section Invoking Bison under VMS -@cindex invoking Bison under VMS -@cindex VMS +@section Invoking Bison under @acronym{VMS} +@cindex invoking Bison under @acronym{VMS} +@cindex @acronym{VMS} -The command line syntax for Bison on VMS is a variant of the usual -Bison command syntax---adapted to fit VMS conventions. +The command line syntax for Bison on @acronym{VMS} is a variant of the usual +Bison command syntax---adapted to fit @acronym{VMS} conventions. -To find the VMS equivalent for any Bison option, start with the long +To find the @acronym{VMS} equivalent for any Bison option, start with the long option, and substitute a @samp{/} for the leading @samp{--}, and substitute a @samp{_} for each @samp{-} in the name of the long option. -For example, the following invocation under VMS: +For example, the following invocation under @acronym{VMS}: @example bison /debug/name_prefix=bar foo.y @end example @noindent -is equivalent to the following command under POSIX. +is equivalent to the following command under @acronym{POSIX}. @example bison --debug --name-prefix=bar foo.y @end example -The VMS file system does not permit filenames such as +The @acronym{VMS} file system does not permit filenames such as @file{foo.tab.c}. In the above example, the output file would instead be named @file{foo_tab.c}. +@c ================================================= Invoking Bison + +@node FAQ +@chapter Frequently Asked Questions +@cindex frequently asked questions +@cindex questions + +Several questions about Bison come up occasionally. Here some of them +are addressed. + +@menu +* Parser Stack Overflow:: Breaking the Stack Limits +@end menu + +@node Parser Stack Overflow +@section Parser Stack Overflow + +@display +My parser returns with error with a @samp{parser stack overflow} +message. What can I do? +@end display + +This question is already addressed elsewhere, @xref{Recursion, +,Recursive Rules}. + +@c ================================================= Table of Symbols + @node Table of Symbols @appendix Bison Symbols @cindex Bison symbols, table of @@ -6074,7 +6150,7 @@ Macro to discard a value from the parser stack and fake a look-ahead token. @xref{Action Features, ,Special Features for Use in Actions}. @item YYDEBUG -Macro to define to equip the parser with tracing code. @xref{Tracing, +Macro to define to equip the parser with tracing code. @xref{Tracing, ,Tracing Your Parser}. @item YYERROR @@ -6117,9 +6193,9 @@ Macro whose value indicates whether the parser is recovering from a syntax error. @xref{Action Features, ,Special Features for Use in Actions}. @item YYSTACK_USE_ALLOCA -Macro used to control the use of @code{alloca}. If defined to @samp{0}, +Macro used to control the use of @code{alloca}. If defined to @samp{0}, the parser will not use @code{alloca} but @code{malloc} when trying to -grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA} +grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA} to anything else. @item YYSTYPE @@ -6188,14 +6264,16 @@ Bison declaration to create a header file meant for the scanner. @item %dprec Bison declaration to assign a precedence to a rule that is used at parse -time to resolve reduce/reduce conflicts. @xref{GLR Parsers}. +time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing +@acronym{GLR} Parsers}. @item %file-prefix="@var{prefix}" -Bison declaration to set the prefix of the output files. @xref{Decl +Bison declaration to set the prefix of the output files. @xref{Decl Summary}. @item %glr-parser -Bison declaration to produce a GLR parser. @xref{GLR Parsers}. +Bison declaration to produce a @acronym{GLR} parser. @xref{GLR +Parsers, ,Writing @acronym{GLR} Parsers}. @c @item %source-extension @c Bison declaration to specify the generated parser output file extension. @@ -6203,7 +6281,7 @@ Bison declaration to produce a GLR parser. @xref{GLR Parsers}. @c @c @item %header-extension @c Bison declaration to specify the generated parser header file extension -@c if required. @xref{Decl Summary}. +@c if required. @xref{Decl Summary}. @item %left Bison declaration to assign left associativity to token(s). @@ -6213,10 +6291,10 @@ Bison declaration to assign left associativity to token(s). Bison declaration to assign a merging function to a rule. If there is a reduce/reduce conflict with a rule having the same merging function, the function is applied to the two semantic values to get a single result. -@xref{GLR Parsers}. +@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}. @item %name-prefix="@var{prefix}" -Bison declaration to rename the external symbols. @xref{Decl Summary}. +Bison declaration to rename the external symbols. @xref{Decl Summary}. @item %no-lines Bison declaration to avoid generating @code{#line} directives in the @@ -6227,7 +6305,7 @@ Bison declaration to assign non-associativity to token(s). @xref{Precedence Decl, ,Operator Precedence}. @item %output="@var{filename}" -Bison declaration to set the name of the parser file. @xref{Decl +Bison declaration to set the name of the parser file. @xref{Decl Summary}. @item %prec @@ -6299,10 +6377,11 @@ Separates alternate rules for the same result nonterminal. @cindex glossary @table @asis -@item Backus-Naur Form (BNF) -Formal method of specifying context-free grammars. BNF was first used -in the @cite{ALGOL-60} report, 1963. @xref{Language and Grammar, -,Languages and Context-Free Grammars}. +@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'') +Formal method of specifying context-free grammars originally proposed +by John Backus, and slightly improved by Peter Naur in his 1960-01-02 +committee document contributing to what became the Algol 60 report. +@xref{Language and Grammar, ,Languages and Context-Free Grammars}. @item Context-free grammars Grammars specified as rules that can be applied regardless of context. @@ -6325,18 +6404,20 @@ each instant in time. As input to the machine is processed, the machine moves from state to state as specified by the logic of the machine. In the case of the parser, the input is the language being parsed, and the states correspond to various stages in the grammar -rules. @xref{Algorithm, ,The Bison Parser Algorithm }. +rules. @xref{Algorithm, ,The Bison Parser Algorithm}. -@item Generalized LR (GLR) +@item Generalized @acronym{LR} (@acronym{GLR}) A parsing algorithm that can handle all context-free grammars, including those -that are not LALR(1). It resolves situations that Bison's usual LALR(1) +that are not @acronym{LALR}(1). It resolves situations that Bison's +usual @acronym{LALR}(1) algorithm cannot by effectively splitting off multiple parsers, trying all possible parsers, and discarding those that fail in the light of additional -right context. @xref{Generalized LR Parsing, ,Generalized LR Parsing}. +right context. @xref{Generalized LR Parsing, ,Generalized +@acronym{LR} Parsing}. @item Grouping A language construct that is (in general) grammatically divisible; -for example, `expression' or `declaration' in C. +for example, `expression' or `declaration' in C@. @xref{Language and Grammar, ,Languages and Context-Free Grammars}. @item Infix operator @@ -6363,7 +6444,7 @@ Rules}. @item Left-to-right parsing Parsing a sentence of a language by analyzing it token by token from -left to right. @xref{Algorithm, ,The Bison Parser Algorithm }. +left to right. @xref{Algorithm, ,The Bison Parser Algorithm}. @item Lexical analyzer (scanner) A function that reads an input stream and returns tokens one by one. @@ -6380,12 +6461,12 @@ A token which consists of two or more fixed characters. @xref{Symbols}. A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead Tokens}. -@item LALR(1) +@item @acronym{LALR}(1) The class of context-free grammars that Bison (like most other parser -generators) can handle; a subset of LR(1). @xref{Mystery Conflicts, , -Mysterious Reduce/Reduce Conflicts}. +generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery +Conflicts, ,Mysterious Reduce/Reduce Conflicts}. -@item LR(1) +@item @acronym{LR}(1) The class of context-free grammars in which at most one token of look-ahead is needed to disambiguate the parsing of any piece of input. @@ -6410,7 +6491,7 @@ performs some operation. @item Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison -Parser Algorithm }. +Parser Algorithm}. @item Reentrant A reentrant subprogram is a subprogram which can be in invoked any @@ -6433,7 +6514,7 @@ each statement. @xref{Semantics, ,Defining Language Semantics}. @item Shift A parser is said to shift when it makes the choice of analyzing further input from the stream rather than reducing immediately some -already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm }. +already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}. @item Single-character literal A single character that is recognized and interpreted as is.