-/* Generate the nondeterministic finite state machine for bison,
- Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
+/* Generate the LR(0) parser states for Bison.
+
+ Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2007, 2009-2012 Free
+ Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
- Bison is free software; you can redistribute it and/or modify
+ This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
- Bison is distributed in the hope that it will be useful,
+ This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with Bison; see the file COPYING. If not, write to
- the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* See comments in state.h for the data structures that represent it.
The entry point is generate_states. */
+#include <config.h>
#include "system.h"
+
+#include <bitset.h>
+
+#include "LR0.h"
+#include "closure.h"
+#include "complain.h"
#include "getargs.h"
-#include "reader.h"
#include "gram.h"
+#include "gram.h"
+#include "lalr.h"
+#include "reader.h"
+#include "reduce.h"
#include "state.h"
-#include "complain.h"
-#include "closure.h"
-#include "LR0.h"
+#include "symtab.h"
+typedef struct state_list
+{
+ struct state_list *next;
+ state *state;
+} state_list;
-int nstates;
-int final_state;
-core *first_state = NULL;
-shifts *first_shift = NULL;
-reductions *first_reduction = NULL;
+static state_list *first_state = NULL;
+static state_list *last_state = NULL;
-static core *this_state = NULL;
-static core *last_state = NULL;
-static shifts *last_shift = NULL;
-static reductions *last_reduction = NULL;
-static int nshifts;
-static short *shift_symbol = NULL;
+/*------------------------------------------------------------------.
+| A state was just discovered from another state. Queue it for |
+| later examination, in order to find its transitions. Return it. |
+`------------------------------------------------------------------*/
-static short *redset = NULL;
-static short *shiftset = NULL;
+static state *
+state_list_append (symbol_number sym, size_t core_size, item_number *core)
+{
+ state_list *node = xmalloc (sizeof *node);
+ state *s = state_new (sym, core_size, core);
-static short **kernel_base = NULL;
-static size_t *kernel_size = NULL;
-static short *kernel_items = NULL;
+ if (trace_flag & trace_automaton)
+ fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
+ nstates, sym, symbols[sym]->tag);
-/* hash table for states, to recognize equivalent ones. */
+ node->next = NULL;
+ node->state = s;
-#define STATE_TABLE_SIZE 1009
-static core **state_table = NULL;
+ if (!first_state)
+ first_state = node;
+ if (last_state)
+ last_state->next = node;
+ last_state = node;
+
+ return s;
+}
+
+static int nshifts;
+static symbol_number *shift_symbol;
+
+static rule **redset;
+static state **shiftset;
+
+static item_number **kernel_base;
+static int *kernel_size;
+static item_number *kernel_items;
\f
static void
allocate_itemsets (void)
{
- int i;
- int count;
- short *symbol_count = NULL;
-
- count = 0;
- symbol_count = XCALLOC (short, nsyms);
-
- for (i = 0; ritem[i]; ++i)
- if (ritem[i] > 0)
+ symbol_number i;
+ rule_number r;
+ item_number *rhsp;
+
+ /* Count the number of occurrences of all the symbols in RITEMS.
+ Note that useless productions (hence useless nonterminals) are
+ browsed too, hence we need to allocate room for _all_ the
+ symbols. */
+ size_t count = 0;
+ size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
+ sizeof *symbol_count);
+
+ for (r = 0; r < nrules; ++r)
+ for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
{
count++;
- symbol_count[ritem[i]]++;
+ symbol_count[*rhsp]++;
}
/* See comments before new_itemsets. All the vectors of items
live inside KERNEL_ITEMS. The number of active items after
- some symbol cannot be more than the number of times that symbol
- appears as an item, which is symbol_count[symbol].
+ some symbol S cannot be more than the number of times that S
+ appears as an item, which is SYMBOL_COUNT[S].
We allocate that much space for each symbol. */
- kernel_base = XCALLOC (short *, nsyms);
- if (count)
- kernel_items = XCALLOC (short, count);
+ kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
+ kernel_items = xnmalloc (count, sizeof *kernel_items);
count = 0;
for (i = 0; i < nsyms; i++)
count += symbol_count[i];
}
- shift_symbol = symbol_count;
- kernel_size = XCALLOC (size_t, nsyms);
+ free (symbol_count);
+ kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
}
{
allocate_itemsets ();
- shiftset = XCALLOC (short, nsyms);
- redset = XCALLOC (short, nrules + 1);
- state_table = XCALLOC (core *, STATE_TABLE_SIZE);
+ shiftset = xnmalloc (nsyms, sizeof *shiftset);
+ redset = xnmalloc (nrules, sizeof *redset);
+ state_hash_new ();
+ shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
}
static void
free_storage (void)
{
- XFREE (shift_symbol);
- XFREE (redset);
- XFREE (shiftset);
- XFREE (kernel_base);
- XFREE (kernel_size);
- XFREE (kernel_items);
- XFREE (state_table);
+ free (shift_symbol);
+ free (redset);
+ free (shiftset);
+ free (kernel_base);
+ free (kernel_size);
+ free (kernel_items);
+ state_hash_free ();
}
-/*----------------------------------------------------------------.
-| Find which symbols can be shifted in the current state, and for |
-| each one record which items would be active after that shift. |
-| Uses the contents of itemset. |
-| |
-| shift_symbol is set to a vector of the symbols that can be |
-| shifted. For each symbol in the grammar, kernel_base[symbol] |
-| points to a vector of item numbers activated if that symbol is |
-| shifted, and kernel_size[symbol] is their numbers. |
-`----------------------------------------------------------------*/
+/*---------------------------------------------------------------.
+| Find which symbols can be shifted in S, and for each one |
+| record which items would be active after that shift. Uses the |
+| contents of itemset. |
+| |
+| shift_symbol is set to a vector of the symbols that can be |
+| shifted. For each symbol in the grammar, kernel_base[symbol] |
+| points to a vector of item numbers activated if that symbol is |
+| shifted, and kernel_size[symbol] is their numbers. |
+| |
+| itemset is sorted on item index in ritem, which is sorted on |
+| rule number. Compute each kernel_base[symbol] with the same |
+| sort. |
+`---------------------------------------------------------------*/
static void
-new_itemsets (void)
+new_itemsets (state *s)
{
- int i;
- int shiftcount;
+ size_t i;
- if (trace_flag)
- fprintf (stderr, "Entering new_itemsets, state = %d\n",
- this_state->number);
+ if (trace_flag & trace_automaton)
+ fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
- for (i = 0; i < nsyms; i++)
- kernel_size[i] = 0;
+ memset (kernel_size, 0, nsyms * sizeof *kernel_size);
- shiftcount = 0;
+ nshifts = 0;
- for (i = 0; i < itemsetsize; ++i)
- {
- int symbol = ritem[itemset[i]];
- if (symbol > 0)
- {
- if (!kernel_size[symbol])
- {
- shift_symbol[shiftcount] = symbol;
- shiftcount++;
- }
-
- kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
- kernel_size[symbol]++;
- }
- }
-
- nshifts = shiftcount;
+ for (i = 0; i < nitemset; ++i)
+ if (item_number_is_symbol_number (ritem[itemset[i]]))
+ {
+ symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
+ if (!kernel_size[sym])
+ {
+ shift_symbol[nshifts] = sym;
+ nshifts++;
+ }
+
+ kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
+ kernel_size[sym]++;
+ }
}
-/*-----------------------------------------------------------------.
-| Subroutine of get_state. Create a new state for those items, if |
-| necessary. |
-`-----------------------------------------------------------------*/
-
-static core *
-new_state (int symbol)
-{
- core *p;
-
- if (trace_flag)
- fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
- this_state->number, symbol, tags[symbol]);
-
- if (nstates >= MAXSHORT)
- fatal (_("too many states (max %d)"), MAXSHORT);
-
- p = CORE_ALLOC (kernel_size[symbol]);
- p->accessing_symbol = symbol;
- p->number = nstates;
- p->nitems = kernel_size[symbol];
-
- shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
-
- last_state->next = p;
- last_state = p;
- nstates++;
-
- return p;
-}
-
-
/*--------------------------------------------------------------.
-| Find the state number for the state we would get to (from the |
-| current state) by shifting symbol. Create a new state if no |
-| equivalent one exists already. Used by append_states. |
+| Find the state we would get to (from the current state) by |
+| shifting SYM. Create a new state if no equivalent one exists |
+| already. Used by append_states. |
`--------------------------------------------------------------*/
-static int
-get_state (int symbol)
+static state *
+get_state (symbol_number sym, size_t core_size, item_number *core)
{
- int key;
- short *isp2;
- int i;
- core *sp;
+ state *s;
- if (trace_flag)
- fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
- this_state->number, symbol, tags[symbol]);
+ if (trace_flag & trace_automaton)
+ fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
+ sym, symbols[sym]->tag);
- /* Add up the target state's active item numbers to get a hash key.
- */
- key = 0;
- for (i = 0; i < kernel_size[symbol]; ++i)
- key += kernel_base[symbol][i];
- key = key % STATE_TABLE_SIZE;
- sp = state_table[key];
+ s = state_hash_lookup (core_size, core);
+ if (!s)
+ s = state_list_append (sym, core_size, core);
- if (sp)
- {
- int found = 0;
- while (!found)
- {
- if (sp->nitems == kernel_size[symbol])
- {
- int i;
- found = 1;
- for (i = 0; i < kernel_size[symbol]; ++i)
- if (kernel_base[symbol][i] != sp->items[i])
- found = 0;
- }
+ if (trace_flag & trace_automaton)
+ fprintf (stderr, "Exiting get_state => %d\n", s->number);
- if (!found)
- {
- if (sp->link)
- {
- sp = sp->link;
- }
- else /* bucket exhausted and no match */
- {
- sp = sp->link = new_state (symbol);
- found = 1;
- }
- }
- }
- }
- else /* bucket is empty */
- {
- state_table[key] = sp = new_state (symbol);
- }
-
- if (trace_flag)
- fprintf (stderr, "Exiting get_state => %d\n", sp->number);
-
- return sp->number;
+ return s;
}
-/*------------------------------------------------------------------.
-| Use the information computed by new_itemsets to find the state |
-| numbers reached by each shift transition from the current state. |
-| |
-| shiftset is set up as a vector of state numbers of those states. |
-`------------------------------------------------------------------*/
+/*---------------------------------------------------------------.
+| Use the information computed by new_itemsets to find the state |
+| numbers reached by each shift transition from S. |
+| |
+| SHIFTSET is set up as a vector of those states. |
+`---------------------------------------------------------------*/
static void
-append_states (void)
+append_states (state *s)
{
int i;
- int j;
- int symbol;
- if (trace_flag)
- fprintf (stderr, "Entering append_states, state = %d\n",
- this_state->number);
+ if (trace_flag & trace_automaton)
+ fprintf (stderr, "Entering append_states, state = %d\n", s->number);
- /* first sort shift_symbol into increasing order */
+ /* First sort shift_symbol into increasing order. */
for (i = 1; i < nshifts; i++)
{
- symbol = shift_symbol[i];
- j = i;
- while (j > 0 && shift_symbol[j - 1] > symbol)
- {
- shift_symbol[j] = shift_symbol[j - 1];
- j--;
- }
- shift_symbol[j] = symbol;
+ symbol_number sym = shift_symbol[i];
+ int j;
+ for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
+ shift_symbol[j] = shift_symbol[j - 1];
+ shift_symbol[j] = sym;
}
for (i = 0; i < nshifts; i++)
- shiftset[i] = get_state (shift_symbol[i]);
-}
-
-
-static void
-new_states (void)
-{
- first_state = last_state = this_state = CORE_ALLOC (0);
- nstates = 1;
-}
-
-
-static void
-save_shifts (void)
-{
- shifts *p = SHIFTS_ALLOC (nshifts);
-
- p->number = this_state->number;
- p->nshifts = nshifts;
-
- shortcpy (p->shifts, shiftset, nshifts);
-
- if (last_shift)
- last_shift->next = p;
- else
- first_shift = p;
- last_shift = p;
-}
-
-
-/*------------------------------------------------------------------.
-| Subroutine of augment_automaton. Create the next-to-final state, |
-| to which a shift has already been made in the initial state. |
-`------------------------------------------------------------------*/
-
-static void
-insert_start_shift (void)
-{
- core *statep;
- shifts *sp;
-
- statep = CORE_ALLOC (0);
- statep->number = nstates;
- statep->accessing_symbol = start_symbol;
-
- last_state->next = statep;
- last_state = statep;
-
- /* Make a shift from this state to (what will be) the final state. */
- sp = SHIFTS_ALLOC (1);
- sp->number = nstates++;
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
-
- last_shift->next = sp;
- last_shift = sp;
-}
-
-
-/*------------------------------------------------------------------.
-| Make sure that the initial state has a shift that accepts the |
-| grammar's start symbol and goes to the next-to-final state, which |
-| has a shift going to the final state, which has a shift to the |
-| termination state. Create such states and shifts if they don't |
-| happen to exist already. |
-`------------------------------------------------------------------*/
-
-static void
-augment_automaton (void)
-{
- int i;
- int k;
- core *statep;
- shifts *sp;
- shifts *sp2;
- shifts *sp1 = NULL;
-
- sp = first_shift;
-
- if (sp)
{
- if (sp->number == 0)
- {
- k = sp->nshifts;
- statep = first_state->next;
-
- /* The states reached by shifts from first_state are numbered 1...K.
- Look for one reached by start_symbol. */
- while (statep->accessing_symbol < start_symbol
- && statep->number < k)
- statep = statep->next;
-
- if (statep->accessing_symbol == start_symbol)
- {
- /* We already have a next-to-final state.
- Make sure it has a shift to what will be the final state. */
- k = statep->number;
-
- while (sp && sp->number < k)
- {
- sp1 = sp;
- sp = sp->next;
- }
-
- if (sp && sp->number == k)
- {
- sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
- sp2->number = k;
- sp2->nshifts = sp->nshifts + 1;
- sp2->shifts[0] = nstates;
- for (i = sp->nshifts; i > 0; i--)
- sp2->shifts[i] = sp->shifts[i - 1];
-
- /* Patch sp2 into the chain of shifts in place of sp,
- following sp1. */
- sp2->next = sp->next;
- sp1->next = sp2;
- if (sp == last_shift)
- last_shift = sp2;
- XFREE (sp);
- }
- else
- {
- sp2 = SHIFTS_ALLOC (1);
- sp2->number = k;
- sp2->nshifts = 1;
- sp2->shifts[0] = nstates;
-
- /* Patch sp2 into the chain of shifts between sp1 and sp. */
- sp2->next = sp;
- sp1->next = sp2;
- if (sp == 0)
- last_shift = sp2;
- }
- }
- else
- {
- /* There is no next-to-final state as yet. */
- /* Add one more shift in first_shift,
- going to the next-to-final state (yet to be made). */
- sp = first_shift;
-
- sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
- sp2->nshifts = sp->nshifts + 1;
-
- /* Stick this shift into the vector at the proper place. */
- statep = first_state->next;
- for (k = 0, i = 0; i < sp->nshifts; k++, i++)
- {
- if (statep->accessing_symbol > start_symbol && i == k)
- sp2->shifts[k++] = nstates;
- sp2->shifts[k] = sp->shifts[i];
- statep = statep->next;
- }
- if (i == k)
- sp2->shifts[k++] = nstates;
-
- /* Patch sp2 into the chain of shifts
- in place of sp, at the beginning. */
- sp2->next = sp->next;
- first_shift = sp2;
- if (last_shift == sp)
- last_shift = sp2;
-
- XFREE (sp);
-
- /* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift ();
- }
- }
- else
- {
- /* The initial state didn't even have any shifts.
- Give it one shift, to the next-to-final state. */
- sp = SHIFTS_ALLOC (1);
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
-
- /* Patch sp into the chain of shifts at the beginning. */
- sp->next = first_shift;
- first_shift = sp;
-
- /* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift ();
- }
- }
- else
- {
- /* There are no shifts for any state.
- Make one shift, from the initial state to the next-to-final state. */
-
- sp = SHIFTS_ALLOC (1);
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
-
- /* Initialize the chain of shifts with sp. */
- first_shift = sp;
- last_shift = sp;
-
- /* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift ();
+ symbol_number sym = shift_symbol[i];
+ shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
}
-
- /* Make the final state--the one that follows a shift from the
- next-to-final state.
- The symbol for that shift is 0 (end-of-file). */
- statep = CORE_ALLOC (0);
- statep->number = nstates;
- last_state->next = statep;
- last_state = statep;
-
- /* Make the shift from the final state to the termination state. */
- sp = SHIFTS_ALLOC (1);
- sp->number = nstates++;
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
- last_shift->next = sp;
- last_shift = sp;
-
- /* Note that the variable `final_state' refers to what we sometimes call
- the termination state. */
- final_state = nstates;
-
- /* Make the termination state. */
- statep = CORE_ALLOC (0);
- statep->number = nstates++;
- last_state->next = statep;
- last_state = statep;
}
`----------------------------------------------------------------*/
static void
-save_reductions (void)
+save_reductions (state *s)
{
- int count;
- int i;
+ int count = 0;
+ size_t i;
/* Find and count the active items that represent ends of rules. */
-
- count = 0;
- for (i = 0; i < itemsetsize; ++i)
+ for (i = 0; i < nitemset; ++i)
{
- int item = ritem[itemset[i]];
- if (item < 0)
- redset[count++] = -item;
+ item_number item = ritem[itemset[i]];
+ if (item_number_is_rule_number (item))
+ {
+ rule_number r = item_number_as_rule_number (item);
+ redset[count++] = &rules[r];
+ if (r == 0)
+ {
+ /* This is "reduce 0", i.e., accept. */
+ aver (!final_state);
+ final_state = s;
+ }
+ }
}
/* Make a reductions structure and copy the data into it. */
+ state_reductions_set (s, count, redset);
+}
- if (count)
- {
- reductions *p = REDUCTIONS_ALLOC (count);
-
- p->number = this_state->number;
- p->nreds = count;
+\f
+/*---------------.
+| Build STATES. |
+`---------------*/
- shortcpy (p->rules, redset, count);
+static void
+set_states (void)
+{
+ states = xcalloc (nstates, sizeof *states);
- if (last_reduction)
- last_reduction->next = p;
- else
- first_reduction = p;
- last_reduction = p;
+ while (first_state)
+ {
+ state_list *this = first_state;
+
+ /* Pessimization, but simplification of the code: make sure all
+ the states have valid transitions and reductions members,
+ even if reduced to 0. It is too soon for errs, which are
+ computed later, but set_conflicts. */
+ state *s = this->state;
+ if (!s->transitions)
+ state_transitions_set (s, 0, 0);
+ if (!s->reductions)
+ state_reductions_set (s, 0, 0);
+
+ states[s->number] = s;
+
+ first_state = this->next;
+ free (this);
}
+ first_state = NULL;
+ last_state = NULL;
}
-\f
+
/*-------------------------------------------------------------------.
-| Compute the nondeterministic finite state machine (see state.h for |
-| details) from the grammar. |
+| Compute the LR(0) parser states (see state.h for details) from the |
+| grammar. |
`-------------------------------------------------------------------*/
void
generate_states (void)
{
+ item_number initial_core = 0;
+ state_list *list = NULL;
allocate_storage ();
- new_closure (nitems);
- new_states ();
+ new_closure (nritems);
+
+ /* Create the initial state. The 0 at the lhs is the index of the
+ item of this initial rule. */
+ state_list_append (0, 1, &initial_core);
- while (this_state)
+ /* States are queued when they are created; process them all. */
+ for (list = first_state; list; list = list->next)
{
- /* Set up ruleset and itemset for the transitions out of this
- state. ruleset gets a 1 bit for each rule that could reduce
- now. itemset gets a vector of all the items that could be
- accepted next. */
- closure (this_state->items, this_state->nitems);
- /* record the reductions allowed out of this state */
- save_reductions ();
- /* find the itemsets of the states that shifts can reach */
- new_itemsets ();
- /* find or create the core structures for those states */
- append_states ();
-
- /* create the shifts structures for the shifts to those states,
- now that the state numbers transitioning to are known */
- if (nshifts > 0)
- save_shifts ();
-
- /* states are queued when they are created; process them all */
- this_state = this_state->next;
+ state *s = list->state;
+ if (trace_flag & trace_automaton)
+ fprintf (stderr, "Processing state %d (reached by %s)\n",
+ s->number,
+ symbols[s->accessing_symbol]->tag);
+ /* Set up itemset for the transitions out of this state. itemset gets a
+ vector of all the items that could be accepted next. */
+ closure (s->items, s->nitems);
+ /* Record the reductions allowed out of this state. */
+ save_reductions (s);
+ /* Find the itemsets of the states that shifts can reach. */
+ new_itemsets (s);
+ /* Find or create the core structures for those states. */
+ append_states (s);
+
+ /* Create the shifts structures for the shifts to those states,
+ now that the state numbers transitioning to are known. */
+ state_transitions_set (s, nshifts, shiftset);
}
/* discard various storage */
free_closure ();
free_storage ();
- /* set up initial and final states as parser wants them */
- augment_automaton ();
+ /* Set up STATES. */
+ set_states ();
}