]> git.saurik.com Git - bison.git/blob - doc/bison.texi
regen
[bison.git] / doc / bison.texi
1 \input texinfo @c -*-texinfo-*-
2 @comment %**start of header
3 @setfilename bison.info
4 @include version.texi
5 @settitle Bison @value{VERSION}
6 @setchapternewpage odd
7
8 @finalout
9
10 @c SMALL BOOK version
11 @c This edition has been formatted so that you can format and print it in
12 @c the smallbook format.
13 @c @smallbook
14
15 @c Set following if you want to document %default-prec and %no-default-prec.
16 @c This feature is experimental and may change in future Bison versions.
17 @c @set defaultprec
18
19 @ifnotinfo
20 @syncodeindex fn cp
21 @syncodeindex vr cp
22 @syncodeindex tp cp
23 @end ifnotinfo
24 @ifinfo
25 @synindex fn cp
26 @synindex vr cp
27 @synindex tp cp
28 @end ifinfo
29 @comment %**end of header
30
31 @copying
32
33 This manual (@value{UPDATED}) is for GNU Bison (version
34 @value{VERSION}), the GNU parser generator.
35
36 Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
37 Foundation, Inc.
38
39 @quotation
40 Permission is granted to copy, distribute and/or modify this document
41 under the terms of the GNU Free Documentation License,
42 Version 1.3 or any later version published by the Free Software
43 Foundation; with no Invariant Sections, with the Front-Cover texts
44 being ``A GNU Manual,'' and with the Back-Cover Texts as in
45 (a) below. A copy of the license is included in the section entitled
46 ``GNU Free Documentation License.''
47
48 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
49 modify this GNU manual. Buying copies from the FSF
50 supports it in developing GNU and promoting software
51 freedom.''
52 @end quotation
53 @end copying
54
55 @dircategory Software development
56 @direntry
57 * bison: (bison). GNU parser generator (Yacc replacement).
58 @end direntry
59
60 @titlepage
61 @title Bison
62 @subtitle The Yacc-compatible Parser Generator
63 @subtitle @value{UPDATED}, Bison Version @value{VERSION}
64
65 @author by Charles Donnelly and Richard Stallman
66
67 @page
68 @vskip 0pt plus 1filll
69 @insertcopying
70 @sp 2
71 Published by the Free Software Foundation @*
72 51 Franklin Street, Fifth Floor @*
73 Boston, MA 02110-1301 USA @*
74 Printed copies are available from the Free Software Foundation.@*
75 ISBN 1-882114-44-2
76 @sp 2
77 Cover art by Etienne Suvasa.
78 @end titlepage
79
80 @contents
81
82 @ifnottex
83 @node Top
84 @top Bison
85 @insertcopying
86 @end ifnottex
87
88 @menu
89 * Introduction::
90 * Conditions::
91 * Copying:: The GNU General Public License says
92 how you can copy and share Bison.
93
94 Tutorial sections:
95 * Concepts:: Basic concepts for understanding Bison.
96 * Examples:: Three simple explained examples of using Bison.
97
98 Reference sections:
99 * Grammar File:: Writing Bison declarations and rules.
100 * Interface:: C-language interface to the parser function @code{yyparse}.
101 * Algorithm:: How the Bison parser works at run-time.
102 * Error Recovery:: Writing rules for error recovery.
103 * Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
105 * Debugging:: Understanding or debugging Bison parsers.
106 * Invocation:: How to run Bison (to produce the parser implementation).
107 * Other Languages:: Creating C++ and Java parsers.
108 * FAQ:: Frequently Asked Questions
109 * Table of Symbols:: All the keywords of the Bison language are explained.
110 * Glossary:: Basic concepts are explained.
111 * Copying This Manual:: License for copying this manual.
112 * Bibliography:: Publications cited in this manual.
113 * Index of Terms:: Cross-references to the text.
114
115 @detailmenu
116 --- The Detailed Node Listing ---
117
118 The Concepts of Bison
119
120 * Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122 * Grammar in Bison:: How we represent grammars for Bison's sake.
123 * Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126 * Semantic Actions:: Each rule can have an action containing C code.
127 * GLR Parsers:: Writing parsers for general context-free languages.
128 * Locations:: Overview of location tracking.
129 * Bison Parser:: What are Bison's input and output,
130 how is the output used?
131 * Stages:: Stages in writing and running Bison grammars.
132 * Grammar Layout:: Overall structure of a Bison grammar file.
133
134 Writing GLR Parsers
135
136 * Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137 * Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
138 * GLR Semantic Actions:: Deferred semantic actions have special concerns.
139 * Compiler Requirements:: GLR parsers require a modern C compiler.
140
141 Examples
142
143 * RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145 * Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
147 * Simple Error Recovery:: Continuing after syntax errors.
148 * Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
149 * Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151 * Exercises:: Ideas for improving the multi-function calculator.
152
153 Reverse Polish Notation Calculator
154
155 * Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156 * Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157 * Rpcalc Lexer:: The lexical analyzer.
158 * Rpcalc Main:: The controlling function.
159 * Rpcalc Error:: The error reporting function.
160 * Rpcalc Generate:: Running Bison on the grammar file.
161 * Rpcalc Compile:: Run the C compiler on the output code.
162
163 Grammar Rules for @code{rpcalc}
164
165 * Rpcalc Input::
166 * Rpcalc Line::
167 * Rpcalc Expr::
168
169 Location Tracking Calculator: @code{ltcalc}
170
171 * Ltcalc Declarations:: Bison and C declarations for ltcalc.
172 * Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173 * Ltcalc Lexer:: The lexical analyzer.
174
175 Multi-Function Calculator: @code{mfcalc}
176
177 * Mfcalc Declarations:: Bison declarations for multi-function calculator.
178 * Mfcalc Rules:: Grammar rules for the calculator.
179 * Mfcalc Symbol Table:: Symbol table management subroutines.
180
181 Bison Grammar Files
182
183 * Grammar Outline:: Overall layout of the grammar file.
184 * Symbols:: Terminal and nonterminal symbols.
185 * Rules:: How to write grammar rules.
186 * Recursion:: Writing recursive rules.
187 * Semantics:: Semantic values and actions.
188 * Tracking Locations:: Locations and actions.
189 * Named References:: Using named references in actions.
190 * Declarations:: All kinds of Bison declarations are described here.
191 * Multiple Parsers:: Putting more than one Bison parser in one program.
192
193 Outline of a Bison Grammar
194
195 * Prologue:: Syntax and usage of the prologue.
196 * Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
197 * Bison Declarations:: Syntax and usage of the Bison declarations section.
198 * Grammar Rules:: Syntax and usage of the grammar rules section.
199 * Epilogue:: Syntax and usage of the epilogue.
200
201 Defining Language Semantics
202
203 * Value Type:: Specifying one data type for all semantic values.
204 * Multiple Types:: Specifying several alternative data types.
205 * Actions:: An action is the semantic definition of a grammar rule.
206 * Action Types:: Specifying data types for actions to operate on.
207 * Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
211 Tracking Locations
212
213 * Location Type:: Specifying a data type for locations.
214 * Actions and Locations:: Using locations in actions.
215 * Location Default Action:: Defining a general way to compute locations.
216
217 Bison Declarations
218
219 * Require Decl:: Requiring a Bison version.
220 * Token Decl:: Declaring terminal symbols.
221 * Precedence Decl:: Declaring terminals with precedence and associativity.
222 * Union Decl:: Declaring the set of all semantic value types.
223 * Type Decl:: Declaring the choice of type for a nonterminal symbol.
224 * Initial Action Decl:: Code run before parsing starts.
225 * Destructor Decl:: Declaring how symbols are freed.
226 * Printer Decl:: Declaring how symbol values are displayed.
227 * Expect Decl:: Suppressing warnings about parsing conflicts.
228 * Start Decl:: Specifying the start symbol.
229 * Pure Decl:: Requesting a reentrant parser.
230 * Push Decl:: Requesting a push parser.
231 * Decl Summary:: Table of all Bison declarations.
232 * %define Summary:: Defining variables to adjust Bison's behavior.
233 * %code Summary:: Inserting code into the parser source.
234
235 Parser C-Language Interface
236
237 * Parser Function:: How to call @code{yyparse} and what it returns.
238 * Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239 * Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240 * Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241 * Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242 * Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244 * Error Reporting:: You must supply a function @code{yyerror}.
245 * Action Features:: Special features for use in actions.
246 * Internationalization:: How to let the parser speak in the user's
247 native language.
248
249 The Lexical Analyzer Function @code{yylex}
250
251 * Calling Convention:: How @code{yyparse} calls @code{yylex}.
252 * Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254 * Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257 * Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
259
260 The Bison Parser Algorithm
261
262 * Lookahead:: Parser looks one token ahead when deciding what to do.
263 * Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264 * Precedence:: Operator precedence works by resolving conflicts.
265 * Contextual Precedence:: When an operator's precedence depends on context.
266 * Parser States:: The parser is a finite-state-machine with stack.
267 * Reduce/Reduce:: When two rules are applicable in the same situation.
268 * Mysterious Conflicts:: Conflicts that look unjustified.
269 * Tuning LR:: How to tune fundamental aspects of LR-based parsing.
270 * Generalized LR Parsing:: Parsing arbitrary context-free grammars.
271 * Memory Management:: What happens when memory is exhausted. How to avoid it.
272
273 Operator Precedence
274
275 * Why Precedence:: An example showing why precedence is needed.
276 * Using Precedence:: How to specify precedence in Bison grammars.
277 * Precedence Examples:: How these features are used in the previous example.
278 * How Precedence:: How they work.
279
280 Tuning LR
281
282 * LR Table Construction:: Choose a different construction algorithm.
283 * Default Reductions:: Disable default reductions.
284 * LAC:: Correct lookahead sets in the parser states.
285 * Unreachable States:: Keep unreachable parser states for debugging.
286
287 Handling Context Dependencies
288
289 * Semantic Tokens:: Token parsing can depend on the semantic context.
290 * Lexical Tie-ins:: Token parsing can depend on the syntactic context.
291 * Tie-in Recovery:: Lexical tie-ins have implications for how
292 error recovery rules must be written.
293
294 Debugging Your Parser
295
296 * Understanding:: Understanding the structure of your parser.
297 * Tracing:: Tracing the execution of your parser.
298
299 Tracing Your Parser
300
301 * Enabling Traces:: Activating run-time trace support
302 * Mfcalc Traces:: Extending @code{mfcalc} to support traces
303 * The YYPRINT Macro:: Obsolete interface for semantic value reports
304
305 Invoking Bison
306
307 * Bison Options:: All the options described in detail,
308 in alphabetical order by short options.
309 * Option Cross Key:: Alphabetical list of long options.
310 * Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
311
312 Parsers Written In Other Languages
313
314 * C++ Parsers:: The interface to generate C++ parser classes
315 * Java Parsers:: The interface to generate Java parser classes
316
317 C++ Parsers
318
319 * C++ Bison Interface:: Asking for C++ parser generation
320 * C++ Semantic Values:: %union vs. C++
321 * C++ Location Values:: The position and location classes
322 * C++ Parser Interface:: Instantiating and running the parser
323 * C++ Scanner Interface:: Exchanges between yylex and parse
324 * A Complete C++ Example:: Demonstrating their use
325
326 C++ Location Values
327
328 * C++ position:: One point in the source file
329 * C++ location:: Two points in the source file
330
331 A Complete C++ Example
332
333 * Calc++ --- C++ Calculator:: The specifications
334 * Calc++ Parsing Driver:: An active parsing context
335 * Calc++ Parser:: A parser class
336 * Calc++ Scanner:: A pure C++ Flex scanner
337 * Calc++ Top Level:: Conducting the band
338
339 Java Parsers
340
341 * Java Bison Interface:: Asking for Java parser generation
342 * Java Semantic Values:: %type and %token vs. Java
343 * Java Location Values:: The position and location classes
344 * Java Parser Interface:: Instantiating and running the parser
345 * Java Scanner Interface:: Specifying the scanner for the parser
346 * Java Action Features:: Special features for use in actions
347 * Java Differences:: Differences between C/C++ and Java Grammars
348 * Java Declarations Summary:: List of Bison declarations used with Java
349
350 Frequently Asked Questions
351
352 * Memory Exhausted:: Breaking the Stack Limits
353 * How Can I Reset the Parser:: @code{yyparse} Keeps some State
354 * Strings are Destroyed:: @code{yylval} Loses Track of Strings
355 * Implementing Gotos/Loops:: Control Flow in the Calculator
356 * Multiple start-symbols:: Factoring closely related grammars
357 * Secure? Conform?:: Is Bison POSIX safe?
358 * I can't build Bison:: Troubleshooting
359 * Where can I find help?:: Troubleshouting
360 * Bug Reports:: Troublereporting
361 * More Languages:: Parsers in C++, Java, and so on
362 * Beta Testing:: Experimenting development versions
363 * Mailing Lists:: Meeting other Bison users
364
365 Copying This Manual
366
367 * Copying This Manual:: License for copying this manual.
368
369 @end detailmenu
370 @end menu
371
372 @node Introduction
373 @unnumbered Introduction
374 @cindex introduction
375
376 @dfn{Bison} is a general-purpose parser generator that converts an
377 annotated context-free grammar into a deterministic LR or generalized
378 LR (GLR) parser employing LALR(1) parser tables. As an experimental
379 feature, Bison can also generate IELR(1) or canonical LR(1) parser
380 tables. Once you are proficient with Bison, you can use it to develop
381 a wide range of language parsers, from those used in simple desk
382 calculators to complex programming languages.
383
384 Bison is upward compatible with Yacc: all properly-written Yacc
385 grammars ought to work with Bison with no change. Anyone familiar
386 with Yacc should be able to use Bison with little trouble. You need
387 to be fluent in C or C++ programming in order to use Bison or to
388 understand this manual. Java is also supported as an experimental
389 feature.
390
391 We begin with tutorial chapters that explain the basic concepts of
392 using Bison and show three explained examples, each building on the
393 last. If you don't know Bison or Yacc, start by reading these
394 chapters. Reference chapters follow, which describe specific aspects
395 of Bison in detail.
396
397 Bison was written originally by Robert Corbett. Richard Stallman made
398 it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
399 added multi-character string literals and other features. Since then,
400 Bison has grown more robust and evolved many other new features thanks
401 to the hard work of a long list of volunteers. For details, see the
402 @file{THANKS} and @file{ChangeLog} files included in the Bison
403 distribution.
404
405 This edition corresponds to version @value{VERSION} of Bison.
406
407 @node Conditions
408 @unnumbered Conditions for Using Bison
409
410 The distribution terms for Bison-generated parsers permit using the
411 parsers in nonfree programs. Before Bison version 2.2, these extra
412 permissions applied only when Bison was generating LALR(1)
413 parsers in C@. And before Bison version 1.24, Bison-generated
414 parsers could be used only in programs that were free software.
415
416 The other GNU programming tools, such as the GNU C
417 compiler, have never
418 had such a requirement. They could always be used for nonfree
419 software. The reason Bison was different was not due to a special
420 policy decision; it resulted from applying the usual General Public
421 License to all of the Bison source code.
422
423 The main output of the Bison utility---the Bison parser implementation
424 file---contains a verbatim copy of a sizable piece of Bison, which is
425 the code for the parser's implementation. (The actions from your
426 grammar are inserted into this implementation at one point, but most
427 of the rest of the implementation is not changed.) When we applied
428 the GPL terms to the skeleton code for the parser's implementation,
429 the effect was to restrict the use of Bison output to free software.
430
431 We didn't change the terms because of sympathy for people who want to
432 make software proprietary. @strong{Software should be free.} But we
433 concluded that limiting Bison's use to free software was doing little to
434 encourage people to make other software free. So we decided to make the
435 practical conditions for using Bison match the practical conditions for
436 using the other GNU tools.
437
438 This exception applies when Bison is generating code for a parser.
439 You can tell whether the exception applies to a Bison output file by
440 inspecting the file for text beginning with ``As a special
441 exception@dots{}''. The text spells out the exact terms of the
442 exception.
443
444 @node Copying
445 @unnumbered GNU GENERAL PUBLIC LICENSE
446 @include gpl-3.0.texi
447
448 @node Concepts
449 @chapter The Concepts of Bison
450
451 This chapter introduces many of the basic concepts without which the
452 details of Bison will not make sense. If you do not already know how to
453 use Bison or Yacc, we suggest you start by reading this chapter carefully.
454
455 @menu
456 * Language and Grammar:: Languages and context-free grammars,
457 as mathematical ideas.
458 * Grammar in Bison:: How we represent grammars for Bison's sake.
459 * Semantic Values:: Each token or syntactic grouping can have
460 a semantic value (the value of an integer,
461 the name of an identifier, etc.).
462 * Semantic Actions:: Each rule can have an action containing C code.
463 * GLR Parsers:: Writing parsers for general context-free languages.
464 * Locations:: Overview of location tracking.
465 * Bison Parser:: What are Bison's input and output,
466 how is the output used?
467 * Stages:: Stages in writing and running Bison grammars.
468 * Grammar Layout:: Overall structure of a Bison grammar file.
469 @end menu
470
471 @node Language and Grammar
472 @section Languages and Context-Free Grammars
473
474 @cindex context-free grammar
475 @cindex grammar, context-free
476 In order for Bison to parse a language, it must be described by a
477 @dfn{context-free grammar}. This means that you specify one or more
478 @dfn{syntactic groupings} and give rules for constructing them from their
479 parts. For example, in the C language, one kind of grouping is called an
480 `expression'. One rule for making an expression might be, ``An expression
481 can be made of a minus sign and another expression''. Another would be,
482 ``An expression can be an integer''. As you can see, rules are often
483 recursive, but there must be at least one rule which leads out of the
484 recursion.
485
486 @cindex BNF
487 @cindex Backus-Naur form
488 The most common formal system for presenting such rules for humans to read
489 is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
490 order to specify the language Algol 60. Any grammar expressed in
491 BNF is a context-free grammar. The input to Bison is
492 essentially machine-readable BNF.
493
494 @cindex LALR grammars
495 @cindex IELR grammars
496 @cindex LR grammars
497 There are various important subclasses of context-free grammars. Although
498 it can handle almost all context-free grammars, Bison is optimized for what
499 are called LR(1) grammars. In brief, in these grammars, it must be possible
500 to tell how to parse any portion of an input string with just a single token
501 of lookahead. For historical reasons, Bison by default is limited by the
502 additional restrictions of LALR(1), which is hard to explain simply.
503 @xref{Mysterious Conflicts}, for more information on this. As an
504 experimental feature, you can escape these additional restrictions by
505 requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
506 Construction}, to learn how.
507
508 @cindex GLR parsing
509 @cindex generalized LR (GLR) parsing
510 @cindex ambiguous grammars
511 @cindex nondeterministic parsing
512
513 Parsers for LR(1) grammars are @dfn{deterministic}, meaning
514 roughly that the next grammar rule to apply at any point in the input is
515 uniquely determined by the preceding input and a fixed, finite portion
516 (called a @dfn{lookahead}) of the remaining input. A context-free
517 grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
518 apply the grammar rules to get the same inputs. Even unambiguous
519 grammars can be @dfn{nondeterministic}, meaning that no fixed
520 lookahead always suffices to determine the next grammar rule to apply.
521 With the proper declarations, Bison is also able to parse these more
522 general context-free grammars, using a technique known as GLR
523 parsing (for Generalized LR). Bison's GLR parsers
524 are able to handle any context-free grammar for which the number of
525 possible parses of any given string is finite.
526
527 @cindex symbols (abstract)
528 @cindex token
529 @cindex syntactic grouping
530 @cindex grouping, syntactic
531 In the formal grammatical rules for a language, each kind of syntactic
532 unit or grouping is named by a @dfn{symbol}. Those which are built by
533 grouping smaller constructs according to grammatical rules are called
534 @dfn{nonterminal symbols}; those which can't be subdivided are called
535 @dfn{terminal symbols} or @dfn{token types}. We call a piece of input
536 corresponding to a single terminal symbol a @dfn{token}, and a piece
537 corresponding to a single nonterminal symbol a @dfn{grouping}.
538
539 We can use the C language as an example of what symbols, terminal and
540 nonterminal, mean. The tokens of C are identifiers, constants (numeric
541 and string), and the various keywords, arithmetic operators and
542 punctuation marks. So the terminal symbols of a grammar for C include
543 `identifier', `number', `string', plus one symbol for each keyword,
544 operator or punctuation mark: `if', `return', `const', `static', `int',
545 `char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
546 (These tokens can be subdivided into characters, but that is a matter of
547 lexicography, not grammar.)
548
549 Here is a simple C function subdivided into tokens:
550
551 @example
552 int /* @r{keyword `int'} */
553 square (int x) /* @r{identifier, open-paren, keyword `int',}
554 @r{identifier, close-paren} */
555 @{ /* @r{open-brace} */
556 return x * x; /* @r{keyword `return', identifier, asterisk,}
557 @r{identifier, semicolon} */
558 @} /* @r{close-brace} */
559 @end example
560
561 The syntactic groupings of C include the expression, the statement, the
562 declaration, and the function definition. These are represented in the
563 grammar of C by nonterminal symbols `expression', `statement',
564 `declaration' and `function definition'. The full grammar uses dozens of
565 additional language constructs, each with its own nonterminal symbol, in
566 order to express the meanings of these four. The example above is a
567 function definition; it contains one declaration, and one statement. In
568 the statement, each @samp{x} is an expression and so is @samp{x * x}.
569
570 Each nonterminal symbol must have grammatical rules showing how it is made
571 out of simpler constructs. For example, one kind of C statement is the
572 @code{return} statement; this would be described with a grammar rule which
573 reads informally as follows:
574
575 @quotation
576 A `statement' can be made of a `return' keyword, an `expression' and a
577 `semicolon'.
578 @end quotation
579
580 @noindent
581 There would be many other rules for `statement', one for each kind of
582 statement in C.
583
584 @cindex start symbol
585 One nonterminal symbol must be distinguished as the special one which
586 defines a complete utterance in the language. It is called the @dfn{start
587 symbol}. In a compiler, this means a complete input program. In the C
588 language, the nonterminal symbol `sequence of definitions and declarations'
589 plays this role.
590
591 For example, @samp{1 + 2} is a valid C expression---a valid part of a C
592 program---but it is not valid as an @emph{entire} C program. In the
593 context-free grammar of C, this follows from the fact that `expression' is
594 not the start symbol.
595
596 The Bison parser reads a sequence of tokens as its input, and groups the
597 tokens using the grammar rules. If the input is valid, the end result is
598 that the entire token sequence reduces to a single grouping whose symbol is
599 the grammar's start symbol. If we use a grammar for C, the entire input
600 must be a `sequence of definitions and declarations'. If not, the parser
601 reports a syntax error.
602
603 @node Grammar in Bison
604 @section From Formal Rules to Bison Input
605 @cindex Bison grammar
606 @cindex grammar, Bison
607 @cindex formal grammar
608
609 A formal grammar is a mathematical construct. To define the language
610 for Bison, you must write a file expressing the grammar in Bison syntax:
611 a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
612
613 A nonterminal symbol in the formal grammar is represented in Bison input
614 as an identifier, like an identifier in C@. By convention, it should be
615 in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
616
617 The Bison representation for a terminal symbol is also called a @dfn{token
618 type}. Token types as well can be represented as C-like identifiers. By
619 convention, these identifiers should be upper case to distinguish them from
620 nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
621 @code{RETURN}. A terminal symbol that stands for a particular keyword in
622 the language should be named after that keyword converted to upper case.
623 The terminal symbol @code{error} is reserved for error recovery.
624 @xref{Symbols}.
625
626 A terminal symbol can also be represented as a character literal, just like
627 a C character constant. You should do this whenever a token is just a
628 single character (parenthesis, plus-sign, etc.): use that same character in
629 a literal as the terminal symbol for that token.
630
631 A third way to represent a terminal symbol is with a C string constant
632 containing several characters. @xref{Symbols}, for more information.
633
634 The grammar rules also have an expression in Bison syntax. For example,
635 here is the Bison rule for a C @code{return} statement. The semicolon in
636 quotes is a literal character token, representing part of the C syntax for
637 the statement; the naked semicolon, and the colon, are Bison punctuation
638 used in every rule.
639
640 @example
641 stmt: RETURN expr ';' ;
642 @end example
643
644 @noindent
645 @xref{Rules, ,Syntax of Grammar Rules}.
646
647 @node Semantic Values
648 @section Semantic Values
649 @cindex semantic value
650 @cindex value, semantic
651
652 A formal grammar selects tokens only by their classifications: for example,
653 if a rule mentions the terminal symbol `integer constant', it means that
654 @emph{any} integer constant is grammatically valid in that position. The
655 precise value of the constant is irrelevant to how to parse the input: if
656 @samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
657 grammatical.
658
659 But the precise value is very important for what the input means once it is
660 parsed. A compiler is useless if it fails to distinguish between 4, 1 and
661 3989 as constants in the program! Therefore, each token in a Bison grammar
662 has both a token type and a @dfn{semantic value}. @xref{Semantics,
663 ,Defining Language Semantics},
664 for details.
665
666 The token type is a terminal symbol defined in the grammar, such as
667 @code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
668 you need to know to decide where the token may validly appear and how to
669 group it with other tokens. The grammar rules know nothing about tokens
670 except their types.
671
672 The semantic value has all the rest of the information about the
673 meaning of the token, such as the value of an integer, or the name of an
674 identifier. (A token such as @code{','} which is just punctuation doesn't
675 need to have any semantic value.)
676
677 For example, an input token might be classified as token type
678 @code{INTEGER} and have the semantic value 4. Another input token might
679 have the same token type @code{INTEGER} but value 3989. When a grammar
680 rule says that @code{INTEGER} is allowed, either of these tokens is
681 acceptable because each is an @code{INTEGER}. When the parser accepts the
682 token, it keeps track of the token's semantic value.
683
684 Each grouping can also have a semantic value as well as its nonterminal
685 symbol. For example, in a calculator, an expression typically has a
686 semantic value that is a number. In a compiler for a programming
687 language, an expression typically has a semantic value that is a tree
688 structure describing the meaning of the expression.
689
690 @node Semantic Actions
691 @section Semantic Actions
692 @cindex semantic actions
693 @cindex actions, semantic
694
695 In order to be useful, a program must do more than parse input; it must
696 also produce some output based on the input. In a Bison grammar, a grammar
697 rule can have an @dfn{action} made up of C statements. Each time the
698 parser recognizes a match for that rule, the action is executed.
699 @xref{Actions}.
700
701 Most of the time, the purpose of an action is to compute the semantic value
702 of the whole construct from the semantic values of its parts. For example,
703 suppose we have a rule which says an expression can be the sum of two
704 expressions. When the parser recognizes such a sum, each of the
705 subexpressions has a semantic value which describes how it was built up.
706 The action for this rule should create a similar sort of value for the
707 newly recognized larger expression.
708
709 For example, here is a rule that says an expression can be the sum of
710 two subexpressions:
711
712 @example
713 expr: expr '+' expr @{ $$ = $1 + $3; @} ;
714 @end example
715
716 @noindent
717 The action says how to produce the semantic value of the sum expression
718 from the values of the two subexpressions.
719
720 @node GLR Parsers
721 @section Writing GLR Parsers
722 @cindex GLR parsing
723 @cindex generalized LR (GLR) parsing
724 @findex %glr-parser
725 @cindex conflicts
726 @cindex shift/reduce conflicts
727 @cindex reduce/reduce conflicts
728
729 In some grammars, Bison's deterministic
730 LR(1) parsing algorithm cannot decide whether to apply a
731 certain grammar rule at a given point. That is, it may not be able to
732 decide (on the basis of the input read so far) which of two possible
733 reductions (applications of a grammar rule) applies, or whether to apply
734 a reduction or read more of the input and apply a reduction later in the
735 input. These are known respectively as @dfn{reduce/reduce} conflicts
736 (@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
737 (@pxref{Shift/Reduce}).
738
739 To use a grammar that is not easily modified to be LR(1), a
740 more general parsing algorithm is sometimes necessary. If you include
741 @code{%glr-parser} among the Bison declarations in your file
742 (@pxref{Grammar Outline}), the result is a Generalized LR
743 (GLR) parser. These parsers handle Bison grammars that
744 contain no unresolved conflicts (i.e., after applying precedence
745 declarations) identically to deterministic parsers. However, when
746 faced with unresolved shift/reduce and reduce/reduce conflicts,
747 GLR parsers use the simple expedient of doing both,
748 effectively cloning the parser to follow both possibilities. Each of
749 the resulting parsers can again split, so that at any given time, there
750 can be any number of possible parses being explored. The parsers
751 proceed in lockstep; that is, all of them consume (shift) a given input
752 symbol before any of them proceed to the next. Each of the cloned
753 parsers eventually meets one of two possible fates: either it runs into
754 a parsing error, in which case it simply vanishes, or it merges with
755 another parser, because the two of them have reduced the input to an
756 identical set of symbols.
757
758 During the time that there are multiple parsers, semantic actions are
759 recorded, but not performed. When a parser disappears, its recorded
760 semantic actions disappear as well, and are never performed. When a
761 reduction makes two parsers identical, causing them to merge, Bison
762 records both sets of semantic actions. Whenever the last two parsers
763 merge, reverting to the single-parser case, Bison resolves all the
764 outstanding actions either by precedences given to the grammar rules
765 involved, or by performing both actions, and then calling a designated
766 user-defined function on the resulting values to produce an arbitrary
767 merged result.
768
769 @menu
770 * Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
771 * Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
772 * GLR Semantic Actions:: Deferred semantic actions have special concerns.
773 * Compiler Requirements:: GLR parsers require a modern C compiler.
774 @end menu
775
776 @node Simple GLR Parsers
777 @subsection Using GLR on Unambiguous Grammars
778 @cindex GLR parsing, unambiguous grammars
779 @cindex generalized LR (GLR) parsing, unambiguous grammars
780 @findex %glr-parser
781 @findex %expect-rr
782 @cindex conflicts
783 @cindex reduce/reduce conflicts
784 @cindex shift/reduce conflicts
785
786 In the simplest cases, you can use the GLR algorithm
787 to parse grammars that are unambiguous but fail to be LR(1).
788 Such grammars typically require more than one symbol of lookahead.
789
790 Consider a problem that
791 arises in the declaration of enumerated and subrange types in the
792 programming language Pascal. Here are some examples:
793
794 @example
795 type subrange = lo .. hi;
796 type enum = (a, b, c);
797 @end example
798
799 @noindent
800 The original language standard allows only numeric
801 literals and constant identifiers for the subrange bounds (@samp{lo}
802 and @samp{hi}), but Extended Pascal (ISO/IEC
803 10206) and many other
804 Pascal implementations allow arbitrary expressions there. This gives
805 rise to the following situation, containing a superfluous pair of
806 parentheses:
807
808 @example
809 type subrange = (a) .. b;
810 @end example
811
812 @noindent
813 Compare this to the following declaration of an enumerated
814 type with only one value:
815
816 @example
817 type enum = (a);
818 @end example
819
820 @noindent
821 (These declarations are contrived, but they are syntactically
822 valid, and more-complicated cases can come up in practical programs.)
823
824 These two declarations look identical until the @samp{..} token.
825 With normal LR(1) one-token lookahead it is not
826 possible to decide between the two forms when the identifier
827 @samp{a} is parsed. It is, however, desirable
828 for a parser to decide this, since in the latter case
829 @samp{a} must become a new identifier to represent the enumeration
830 value, while in the former case @samp{a} must be evaluated with its
831 current meaning, which may be a constant or even a function call.
832
833 You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
834 to be resolved later, but this typically requires substantial
835 contortions in both semantic actions and large parts of the
836 grammar, where the parentheses are nested in the recursive rules for
837 expressions.
838
839 You might think of using the lexer to distinguish between the two
840 forms by returning different tokens for currently defined and
841 undefined identifiers. But if these declarations occur in a local
842 scope, and @samp{a} is defined in an outer scope, then both forms
843 are possible---either locally redefining @samp{a}, or using the
844 value of @samp{a} from the outer scope. So this approach cannot
845 work.
846
847 A simple solution to this problem is to declare the parser to
848 use the GLR algorithm.
849 When the GLR parser reaches the critical state, it
850 merely splits into two branches and pursues both syntax rules
851 simultaneously. Sooner or later, one of them runs into a parsing
852 error. If there is a @samp{..} token before the next
853 @samp{;}, the rule for enumerated types fails since it cannot
854 accept @samp{..} anywhere; otherwise, the subrange type rule
855 fails since it requires a @samp{..} token. So one of the branches
856 fails silently, and the other one continues normally, performing
857 all the intermediate actions that were postponed during the split.
858
859 If the input is syntactically incorrect, both branches fail and the parser
860 reports a syntax error as usual.
861
862 The effect of all this is that the parser seems to ``guess'' the
863 correct branch to take, or in other words, it seems to use more
864 lookahead than the underlying LR(1) algorithm actually allows
865 for. In this example, LR(2) would suffice, but also some cases
866 that are not LR(@math{k}) for any @math{k} can be handled this way.
867
868 In general, a GLR parser can take quadratic or cubic worst-case time,
869 and the current Bison parser even takes exponential time and space
870 for some grammars. In practice, this rarely happens, and for many
871 grammars it is possible to prove that it cannot happen.
872 The present example contains only one conflict between two
873 rules, and the type-declaration context containing the conflict
874 cannot be nested. So the number of
875 branches that can exist at any time is limited by the constant 2,
876 and the parsing time is still linear.
877
878 Here is a Bison grammar corresponding to the example above. It
879 parses a vastly simplified form of Pascal type declarations.
880
881 @example
882 %token TYPE DOTDOT ID
883
884 @group
885 %left '+' '-'
886 %left '*' '/'
887 @end group
888
889 %%
890
891 @group
892 type_decl: TYPE ID '=' type ';' ;
893 @end group
894
895 @group
896 type:
897 '(' id_list ')'
898 | expr DOTDOT expr
899 ;
900 @end group
901
902 @group
903 id_list:
904 ID
905 | id_list ',' ID
906 ;
907 @end group
908
909 @group
910 expr:
911 '(' expr ')'
912 | expr '+' expr
913 | expr '-' expr
914 | expr '*' expr
915 | expr '/' expr
916 | ID
917 ;
918 @end group
919 @end example
920
921 When used as a normal LR(1) grammar, Bison correctly complains
922 about one reduce/reduce conflict. In the conflicting situation the
923 parser chooses one of the alternatives, arbitrarily the one
924 declared first. Therefore the following correct input is not
925 recognized:
926
927 @example
928 type t = (a) .. b;
929 @end example
930
931 The parser can be turned into a GLR parser, while also telling Bison
932 to be silent about the one known reduce/reduce conflict, by adding
933 these two declarations to the Bison grammar file (before the first
934 @samp{%%}):
935
936 @example
937 %glr-parser
938 %expect-rr 1
939 @end example
940
941 @noindent
942 No change in the grammar itself is required. Now the
943 parser recognizes all valid declarations, according to the
944 limited syntax above, transparently. In fact, the user does not even
945 notice when the parser splits.
946
947 So here we have a case where we can use the benefits of GLR,
948 almost without disadvantages. Even in simple cases like this, however,
949 there are at least two potential problems to beware. First, always
950 analyze the conflicts reported by Bison to make sure that GLR
951 splitting is only done where it is intended. A GLR parser
952 splitting inadvertently may cause problems less obvious than an
953 LR parser statically choosing the wrong alternative in a
954 conflict. Second, consider interactions with the lexer (@pxref{Semantic
955 Tokens}) with great care. Since a split parser consumes tokens without
956 performing any actions during the split, the lexer cannot obtain
957 information via parser actions. Some cases of lexer interactions can be
958 eliminated by using GLR to shift the complications from the
959 lexer to the parser. You must check the remaining cases for
960 correctness.
961
962 In our example, it would be safe for the lexer to return tokens based on
963 their current meanings in some symbol table, because no new symbols are
964 defined in the middle of a type declaration. Though it is possible for
965 a parser to define the enumeration constants as they are parsed, before
966 the type declaration is completed, it actually makes no difference since
967 they cannot be used within the same enumerated type declaration.
968
969 @node Merging GLR Parses
970 @subsection Using GLR to Resolve Ambiguities
971 @cindex GLR parsing, ambiguous grammars
972 @cindex generalized LR (GLR) parsing, ambiguous grammars
973 @findex %dprec
974 @findex %merge
975 @cindex conflicts
976 @cindex reduce/reduce conflicts
977
978 Let's consider an example, vastly simplified from a C++ grammar.
979
980 @example
981 %@{
982 #include <stdio.h>
983 #define YYSTYPE char const *
984 int yylex (void);
985 void yyerror (char const *);
986 %@}
987
988 %token TYPENAME ID
989
990 %right '='
991 %left '+'
992
993 %glr-parser
994
995 %%
996
997 prog:
998 /* Nothing. */
999 | prog stmt @{ printf ("\n"); @}
1000 ;
1001
1002 stmt:
1003 expr ';' %dprec 1
1004 | decl %dprec 2
1005 ;
1006
1007 expr:
1008 ID @{ printf ("%s ", $$); @}
1009 | TYPENAME '(' expr ')'
1010 @{ printf ("%s <cast> ", $1); @}
1011 | expr '+' expr @{ printf ("+ "); @}
1012 | expr '=' expr @{ printf ("= "); @}
1013 ;
1014
1015 decl:
1016 TYPENAME declarator ';'
1017 @{ printf ("%s <declare> ", $1); @}
1018 | TYPENAME declarator '=' expr ';'
1019 @{ printf ("%s <init-declare> ", $1); @}
1020 ;
1021
1022 declarator:
1023 ID @{ printf ("\"%s\" ", $1); @}
1024 | '(' declarator ')'
1025 ;
1026 @end example
1027
1028 @noindent
1029 This models a problematic part of the C++ grammar---the ambiguity between
1030 certain declarations and statements. For example,
1031
1032 @example
1033 T (x) = y+z;
1034 @end example
1035
1036 @noindent
1037 parses as either an @code{expr} or a @code{stmt}
1038 (assuming that @samp{T} is recognized as a @code{TYPENAME} and
1039 @samp{x} as an @code{ID}).
1040 Bison detects this as a reduce/reduce conflict between the rules
1041 @code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
1042 time it encounters @code{x} in the example above. Since this is a
1043 GLR parser, it therefore splits the problem into two parses, one for
1044 each choice of resolving the reduce/reduce conflict.
1045 Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1046 however, neither of these parses ``dies,'' because the grammar as it stands is
1047 ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1048 the other reduces @code{stmt : decl}, after which both parsers are in an
1049 identical state: they've seen @samp{prog stmt} and have the same unprocessed
1050 input remaining. We say that these parses have @dfn{merged.}
1051
1052 At this point, the GLR parser requires a specification in the
1053 grammar of how to choose between the competing parses.
1054 In the example above, the two @code{%dprec}
1055 declarations specify that Bison is to give precedence
1056 to the parse that interprets the example as a
1057 @code{decl}, which implies that @code{x} is a declarator.
1058 The parser therefore prints
1059
1060 @example
1061 "x" y z + T <init-declare>
1062 @end example
1063
1064 The @code{%dprec} declarations only come into play when more than one
1065 parse survives. Consider a different input string for this parser:
1066
1067 @example
1068 T (x) + y;
1069 @end example
1070
1071 @noindent
1072 This is another example of using GLR to parse an unambiguous
1073 construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
1074 Here, there is no ambiguity (this cannot be parsed as a declaration).
1075 However, at the time the Bison parser encounters @code{x}, it does not
1076 have enough information to resolve the reduce/reduce conflict (again,
1077 between @code{x} as an @code{expr} or a @code{declarator}). In this
1078 case, no precedence declaration is used. Again, the parser splits
1079 into two, one assuming that @code{x} is an @code{expr}, and the other
1080 assuming @code{x} is a @code{declarator}. The second of these parsers
1081 then vanishes when it sees @code{+}, and the parser prints
1082
1083 @example
1084 x T <cast> y +
1085 @end example
1086
1087 Suppose that instead of resolving the ambiguity, you wanted to see all
1088 the possibilities. For this purpose, you must merge the semantic
1089 actions of the two possible parsers, rather than choosing one over the
1090 other. To do so, you could change the declaration of @code{stmt} as
1091 follows:
1092
1093 @example
1094 stmt:
1095 expr ';' %merge <stmtMerge>
1096 | decl %merge <stmtMerge>
1097 ;
1098 @end example
1099
1100 @noindent
1101 and define the @code{stmtMerge} function as:
1102
1103 @example
1104 static YYSTYPE
1105 stmtMerge (YYSTYPE x0, YYSTYPE x1)
1106 @{
1107 printf ("<OR> ");
1108 return "";
1109 @}
1110 @end example
1111
1112 @noindent
1113 with an accompanying forward declaration
1114 in the C declarations at the beginning of the file:
1115
1116 @example
1117 %@{
1118 #define YYSTYPE char const *
1119 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1120 %@}
1121 @end example
1122
1123 @noindent
1124 With these declarations, the resulting parser parses the first example
1125 as both an @code{expr} and a @code{decl}, and prints
1126
1127 @example
1128 "x" y z + T <init-declare> x T <cast> y z + = <OR>
1129 @end example
1130
1131 Bison requires that all of the
1132 productions that participate in any particular merge have identical
1133 @samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1134 and the parser will report an error during any parse that results in
1135 the offending merge.
1136
1137 @node GLR Semantic Actions
1138 @subsection GLR Semantic Actions
1139
1140 @cindex deferred semantic actions
1141 By definition, a deferred semantic action is not performed at the same time as
1142 the associated reduction.
1143 This raises caveats for several Bison features you might use in a semantic
1144 action in a GLR parser.
1145
1146 @vindex yychar
1147 @cindex GLR parsers and @code{yychar}
1148 @vindex yylval
1149 @cindex GLR parsers and @code{yylval}
1150 @vindex yylloc
1151 @cindex GLR parsers and @code{yylloc}
1152 In any semantic action, you can examine @code{yychar} to determine the type of
1153 the lookahead token present at the time of the associated reduction.
1154 After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1155 you can then examine @code{yylval} and @code{yylloc} to determine the
1156 lookahead token's semantic value and location, if any.
1157 In a nondeferred semantic action, you can also modify any of these variables to
1158 influence syntax analysis.
1159 @xref{Lookahead, ,Lookahead Tokens}.
1160
1161 @findex yyclearin
1162 @cindex GLR parsers and @code{yyclearin}
1163 In a deferred semantic action, it's too late to influence syntax analysis.
1164 In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1165 shallow copies of the values they had at the time of the associated reduction.
1166 For this reason alone, modifying them is dangerous.
1167 Moreover, the result of modifying them is undefined and subject to change with
1168 future versions of Bison.
1169 For example, if a semantic action might be deferred, you should never write it
1170 to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1171 memory referenced by @code{yylval}.
1172
1173 @findex YYERROR
1174 @cindex GLR parsers and @code{YYERROR}
1175 Another Bison feature requiring special consideration is @code{YYERROR}
1176 (@pxref{Action Features}), which you can invoke in a semantic action to
1177 initiate error recovery.
1178 During deterministic GLR operation, the effect of @code{YYERROR} is
1179 the same as its effect in a deterministic parser.
1180 In a deferred semantic action, its effect is undefined.
1181 @c The effect is probably a syntax error at the split point.
1182
1183 Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1184 describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
1185
1186 @node Compiler Requirements
1187 @subsection Considerations when Compiling GLR Parsers
1188 @cindex @code{inline}
1189 @cindex GLR parsers and @code{inline}
1190
1191 The GLR parsers require a compiler for ISO C89 or
1192 later. In addition, they use the @code{inline} keyword, which is not
1193 C89, but is C99 and is a common extension in pre-C99 compilers. It is
1194 up to the user of these parsers to handle
1195 portability issues. For instance, if using Autoconf and the Autoconf
1196 macro @code{AC_C_INLINE}, a mere
1197
1198 @example
1199 %@{
1200 #include <config.h>
1201 %@}
1202 @end example
1203
1204 @noindent
1205 will suffice. Otherwise, we suggest
1206
1207 @example
1208 %@{
1209 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1210 && ! defined inline)
1211 # define inline
1212 #endif
1213 %@}
1214 @end example
1215
1216 @node Locations
1217 @section Locations
1218 @cindex location
1219 @cindex textual location
1220 @cindex location, textual
1221
1222 Many applications, like interpreters or compilers, have to produce verbose
1223 and useful error messages. To achieve this, one must be able to keep track of
1224 the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
1225 Bison provides a mechanism for handling these locations.
1226
1227 Each token has a semantic value. In a similar fashion, each token has an
1228 associated location, but the type of locations is the same for all tokens
1229 and groupings. Moreover, the output parser is equipped with a default data
1230 structure for storing locations (@pxref{Tracking Locations}, for more
1231 details).
1232
1233 Like semantic values, locations can be reached in actions using a dedicated
1234 set of constructs. In the example above, the location of the whole grouping
1235 is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1236 @code{@@3}.
1237
1238 When a rule is matched, a default action is used to compute the semantic value
1239 of its left hand side (@pxref{Actions}). In the same way, another default
1240 action is used for locations. However, the action for locations is general
1241 enough for most cases, meaning there is usually no need to describe for each
1242 rule how @code{@@$} should be formed. When building a new location for a given
1243 grouping, the default behavior of the output parser is to take the beginning
1244 of the first symbol, and the end of the last symbol.
1245
1246 @node Bison Parser
1247 @section Bison Output: the Parser Implementation File
1248 @cindex Bison parser
1249 @cindex Bison utility
1250 @cindex lexical analyzer, purpose
1251 @cindex parser
1252
1253 When you run Bison, you give it a Bison grammar file as input. The
1254 most important output is a C source file that implements a parser for
1255 the language described by the grammar. This parser is called a
1256 @dfn{Bison parser}, and this file is called a @dfn{Bison parser
1257 implementation file}. Keep in mind that the Bison utility and the
1258 Bison parser are two distinct programs: the Bison utility is a program
1259 whose output is the Bison parser implementation file that becomes part
1260 of your program.
1261
1262 The job of the Bison parser is to group tokens into groupings according to
1263 the grammar rules---for example, to build identifiers and operators into
1264 expressions. As it does this, it runs the actions for the grammar rules it
1265 uses.
1266
1267 The tokens come from a function called the @dfn{lexical analyzer} that
1268 you must supply in some fashion (such as by writing it in C). The Bison
1269 parser calls the lexical analyzer each time it wants a new token. It
1270 doesn't know what is ``inside'' the tokens (though their semantic values
1271 may reflect this). Typically the lexical analyzer makes the tokens by
1272 parsing characters of text, but Bison does not depend on this.
1273 @xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
1274
1275 The Bison parser implementation file is C code which defines a
1276 function named @code{yyparse} which implements that grammar. This
1277 function does not make a complete C program: you must supply some
1278 additional functions. One is the lexical analyzer. Another is an
1279 error-reporting function which the parser calls to report an error.
1280 In addition, a complete C program must start with a function called
1281 @code{main}; you have to provide this, and arrange for it to call
1282 @code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1283 C-Language Interface}.
1284
1285 Aside from the token type names and the symbols in the actions you
1286 write, all symbols defined in the Bison parser implementation file
1287 itself begin with @samp{yy} or @samp{YY}. This includes interface
1288 functions such as the lexical analyzer function @code{yylex}, the
1289 error reporting function @code{yyerror} and the parser function
1290 @code{yyparse} itself. This also includes numerous identifiers used
1291 for internal purposes. Therefore, you should avoid using C
1292 identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1293 file except for the ones defined in this manual. Also, you should
1294 avoid using the C identifiers @samp{malloc} and @samp{free} for
1295 anything other than their usual meanings.
1296
1297 In some cases the Bison parser implementation file includes system
1298 headers, and in those cases your code should respect the identifiers
1299 reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1300 @code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1301 included as needed to declare memory allocators and related types.
1302 @code{<libintl.h>} is included if message translation is in use
1303 (@pxref{Internationalization}). Other system headers may be included
1304 if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1305 ,Tracing Your Parser}).
1306
1307 @node Stages
1308 @section Stages in Using Bison
1309 @cindex stages in using Bison
1310 @cindex using Bison
1311
1312 The actual language-design process using Bison, from grammar specification
1313 to a working compiler or interpreter, has these parts:
1314
1315 @enumerate
1316 @item
1317 Formally specify the grammar in a form recognized by Bison
1318 (@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1319 in the language, describe the action that is to be taken when an
1320 instance of that rule is recognized. The action is described by a
1321 sequence of C statements.
1322
1323 @item
1324 Write a lexical analyzer to process input and pass tokens to the parser.
1325 The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1326 Lexical Analyzer Function @code{yylex}}). It could also be produced
1327 using Lex, but the use of Lex is not discussed in this manual.
1328
1329 @item
1330 Write a controlling function that calls the Bison-produced parser.
1331
1332 @item
1333 Write error-reporting routines.
1334 @end enumerate
1335
1336 To turn this source code as written into a runnable program, you
1337 must follow these steps:
1338
1339 @enumerate
1340 @item
1341 Run Bison on the grammar to produce the parser.
1342
1343 @item
1344 Compile the code output by Bison, as well as any other source files.
1345
1346 @item
1347 Link the object files to produce the finished product.
1348 @end enumerate
1349
1350 @node Grammar Layout
1351 @section The Overall Layout of a Bison Grammar
1352 @cindex grammar file
1353 @cindex file format
1354 @cindex format of grammar file
1355 @cindex layout of Bison grammar
1356
1357 The input file for the Bison utility is a @dfn{Bison grammar file}. The
1358 general form of a Bison grammar file is as follows:
1359
1360 @example
1361 %@{
1362 @var{Prologue}
1363 %@}
1364
1365 @var{Bison declarations}
1366
1367 %%
1368 @var{Grammar rules}
1369 %%
1370 @var{Epilogue}
1371 @end example
1372
1373 @noindent
1374 The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1375 in every Bison grammar file to separate the sections.
1376
1377 The prologue may define types and variables used in the actions. You can
1378 also use preprocessor commands to define macros used there, and use
1379 @code{#include} to include header files that do any of these things.
1380 You need to declare the lexical analyzer @code{yylex} and the error
1381 printer @code{yyerror} here, along with any other global identifiers
1382 used by the actions in the grammar rules.
1383
1384 The Bison declarations declare the names of the terminal and nonterminal
1385 symbols, and may also describe operator precedence and the data types of
1386 semantic values of various symbols.
1387
1388 The grammar rules define how to construct each nonterminal symbol from its
1389 parts.
1390
1391 The epilogue can contain any code you want to use. Often the
1392 definitions of functions declared in the prologue go here. In a
1393 simple program, all the rest of the program can go here.
1394
1395 @node Examples
1396 @chapter Examples
1397 @cindex simple examples
1398 @cindex examples, simple
1399
1400 Now we show and explain several sample programs written using Bison: a
1401 reverse polish notation calculator, an algebraic (infix) notation
1402 calculator --- later extended to track ``locations'' ---
1403 and a multi-function calculator. All
1404 produce usable, though limited, interactive desk-top calculators.
1405
1406 These examples are simple, but Bison grammars for real programming
1407 languages are written the same way. You can copy these examples into a
1408 source file to try them.
1409
1410 @menu
1411 * RPN Calc:: Reverse polish notation calculator;
1412 a first example with no operator precedence.
1413 * Infix Calc:: Infix (algebraic) notation calculator.
1414 Operator precedence is introduced.
1415 * Simple Error Recovery:: Continuing after syntax errors.
1416 * Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
1417 * Multi-function Calc:: Calculator with memory and trig functions.
1418 It uses multiple data-types for semantic values.
1419 * Exercises:: Ideas for improving the multi-function calculator.
1420 @end menu
1421
1422 @node RPN Calc
1423 @section Reverse Polish Notation Calculator
1424 @cindex reverse polish notation
1425 @cindex polish notation calculator
1426 @cindex @code{rpcalc}
1427 @cindex calculator, simple
1428
1429 The first example is that of a simple double-precision @dfn{reverse polish
1430 notation} calculator (a calculator using postfix operators). This example
1431 provides a good starting point, since operator precedence is not an issue.
1432 The second example will illustrate how operator precedence is handled.
1433
1434 The source code for this calculator is named @file{rpcalc.y}. The
1435 @samp{.y} extension is a convention used for Bison grammar files.
1436
1437 @menu
1438 * Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1439 * Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1440 * Rpcalc Lexer:: The lexical analyzer.
1441 * Rpcalc Main:: The controlling function.
1442 * Rpcalc Error:: The error reporting function.
1443 * Rpcalc Generate:: Running Bison on the grammar file.
1444 * Rpcalc Compile:: Run the C compiler on the output code.
1445 @end menu
1446
1447 @node Rpcalc Declarations
1448 @subsection Declarations for @code{rpcalc}
1449
1450 Here are the C and Bison declarations for the reverse polish notation
1451 calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1452
1453 @example
1454 /* Reverse polish notation calculator. */
1455
1456 %@{
1457 #define YYSTYPE double
1458 #include <math.h>
1459 int yylex (void);
1460 void yyerror (char const *);
1461 %@}
1462
1463 %token NUM
1464
1465 %% /* Grammar rules and actions follow. */
1466 @end example
1467
1468 The declarations section (@pxref{Prologue, , The prologue}) contains two
1469 preprocessor directives and two forward declarations.
1470
1471 The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1472 specifying the C data type for semantic values of both tokens and
1473 groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1474 Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1475 don't define it, @code{int} is the default. Because we specify
1476 @code{double}, each token and each expression has an associated value,
1477 which is a floating point number.
1478
1479 The @code{#include} directive is used to declare the exponentiation
1480 function @code{pow}.
1481
1482 The forward declarations for @code{yylex} and @code{yyerror} are
1483 needed because the C language requires that functions be declared
1484 before they are used. These functions will be defined in the
1485 epilogue, but the parser calls them so they must be declared in the
1486 prologue.
1487
1488 The second section, Bison declarations, provides information to Bison
1489 about the token types (@pxref{Bison Declarations, ,The Bison
1490 Declarations Section}). Each terminal symbol that is not a
1491 single-character literal must be declared here. (Single-character
1492 literals normally don't need to be declared.) In this example, all the
1493 arithmetic operators are designated by single-character literals, so the
1494 only terminal symbol that needs to be declared is @code{NUM}, the token
1495 type for numeric constants.
1496
1497 @node Rpcalc Rules
1498 @subsection Grammar Rules for @code{rpcalc}
1499
1500 Here are the grammar rules for the reverse polish notation calculator.
1501
1502 @example
1503 @group
1504 input:
1505 /* empty */
1506 | input line
1507 ;
1508 @end group
1509
1510 @group
1511 line:
1512 '\n'
1513 | exp '\n' @{ printf ("%.10g\n", $1); @}
1514 ;
1515 @end group
1516
1517 @group
1518 exp:
1519 NUM @{ $$ = $1; @}
1520 | exp exp '+' @{ $$ = $1 + $2; @}
1521 | exp exp '-' @{ $$ = $1 - $2; @}
1522 | exp exp '*' @{ $$ = $1 * $2; @}
1523 | exp exp '/' @{ $$ = $1 / $2; @}
1524 | exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1525 | exp 'n' @{ $$ = -$1; @} /* Unary minus */
1526 ;
1527 @end group
1528 %%
1529 @end example
1530
1531 The groupings of the rpcalc ``language'' defined here are the expression
1532 (given the name @code{exp}), the line of input (@code{line}), and the
1533 complete input transcript (@code{input}). Each of these nonterminal
1534 symbols has several alternate rules, joined by the vertical bar @samp{|}
1535 which is read as ``or''. The following sections explain what these rules
1536 mean.
1537
1538 The semantics of the language is determined by the actions taken when a
1539 grouping is recognized. The actions are the C code that appears inside
1540 braces. @xref{Actions}.
1541
1542 You must specify these actions in C, but Bison provides the means for
1543 passing semantic values between the rules. In each action, the
1544 pseudo-variable @code{$$} stands for the semantic value for the grouping
1545 that the rule is going to construct. Assigning a value to @code{$$} is the
1546 main job of most actions. The semantic values of the components of the
1547 rule are referred to as @code{$1}, @code{$2}, and so on.
1548
1549 @menu
1550 * Rpcalc Input::
1551 * Rpcalc Line::
1552 * Rpcalc Expr::
1553 @end menu
1554
1555 @node Rpcalc Input
1556 @subsubsection Explanation of @code{input}
1557
1558 Consider the definition of @code{input}:
1559
1560 @example
1561 input:
1562 /* empty */
1563 | input line
1564 ;
1565 @end example
1566
1567 This definition reads as follows: ``A complete input is either an empty
1568 string, or a complete input followed by an input line''. Notice that
1569 ``complete input'' is defined in terms of itself. This definition is said
1570 to be @dfn{left recursive} since @code{input} appears always as the
1571 leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1572
1573 The first alternative is empty because there are no symbols between the
1574 colon and the first @samp{|}; this means that @code{input} can match an
1575 empty string of input (no tokens). We write the rules this way because it
1576 is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1577 It's conventional to put an empty alternative first and write the comment
1578 @samp{/* empty */} in it.
1579
1580 The second alternate rule (@code{input line}) handles all nontrivial input.
1581 It means, ``After reading any number of lines, read one more line if
1582 possible.'' The left recursion makes this rule into a loop. Since the
1583 first alternative matches empty input, the loop can be executed zero or
1584 more times.
1585
1586 The parser function @code{yyparse} continues to process input until a
1587 grammatical error is seen or the lexical analyzer says there are no more
1588 input tokens; we will arrange for the latter to happen at end-of-input.
1589
1590 @node Rpcalc Line
1591 @subsubsection Explanation of @code{line}
1592
1593 Now consider the definition of @code{line}:
1594
1595 @example
1596 line:
1597 '\n'
1598 | exp '\n' @{ printf ("%.10g\n", $1); @}
1599 ;
1600 @end example
1601
1602 The first alternative is a token which is a newline character; this means
1603 that rpcalc accepts a blank line (and ignores it, since there is no
1604 action). The second alternative is an expression followed by a newline.
1605 This is the alternative that makes rpcalc useful. The semantic value of
1606 the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1607 question is the first symbol in the alternative. The action prints this
1608 value, which is the result of the computation the user asked for.
1609
1610 This action is unusual because it does not assign a value to @code{$$}. As
1611 a consequence, the semantic value associated with the @code{line} is
1612 uninitialized (its value will be unpredictable). This would be a bug if
1613 that value were ever used, but we don't use it: once rpcalc has printed the
1614 value of the user's input line, that value is no longer needed.
1615
1616 @node Rpcalc Expr
1617 @subsubsection Explanation of @code{expr}
1618
1619 The @code{exp} grouping has several rules, one for each kind of expression.
1620 The first rule handles the simplest expressions: those that are just numbers.
1621 The second handles an addition-expression, which looks like two expressions
1622 followed by a plus-sign. The third handles subtraction, and so on.
1623
1624 @example
1625 exp:
1626 NUM
1627 | exp exp '+' @{ $$ = $1 + $2; @}
1628 | exp exp '-' @{ $$ = $1 - $2; @}
1629 @dots{}
1630 ;
1631 @end example
1632
1633 We have used @samp{|} to join all the rules for @code{exp}, but we could
1634 equally well have written them separately:
1635
1636 @example
1637 exp: NUM ;
1638 exp: exp exp '+' @{ $$ = $1 + $2; @};
1639 exp: exp exp '-' @{ $$ = $1 - $2; @};
1640 @dots{}
1641 @end example
1642
1643 Most of the rules have actions that compute the value of the expression in
1644 terms of the value of its parts. For example, in the rule for addition,
1645 @code{$1} refers to the first component @code{exp} and @code{$2} refers to
1646 the second one. The third component, @code{'+'}, has no meaningful
1647 associated semantic value, but if it had one you could refer to it as
1648 @code{$3}. When @code{yyparse} recognizes a sum expression using this
1649 rule, the sum of the two subexpressions' values is produced as the value of
1650 the entire expression. @xref{Actions}.
1651
1652 You don't have to give an action for every rule. When a rule has no
1653 action, Bison by default copies the value of @code{$1} into @code{$$}.
1654 This is what happens in the first rule (the one that uses @code{NUM}).
1655
1656 The formatting shown here is the recommended convention, but Bison does
1657 not require it. You can add or change white space as much as you wish.
1658 For example, this:
1659
1660 @example
1661 exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
1662 @end example
1663
1664 @noindent
1665 means the same thing as this:
1666
1667 @example
1668 exp:
1669 NUM
1670 | exp exp '+' @{ $$ = $1 + $2; @}
1671 | @dots{}
1672 ;
1673 @end example
1674
1675 @noindent
1676 The latter, however, is much more readable.
1677
1678 @node Rpcalc Lexer
1679 @subsection The @code{rpcalc} Lexical Analyzer
1680 @cindex writing a lexical analyzer
1681 @cindex lexical analyzer, writing
1682
1683 The lexical analyzer's job is low-level parsing: converting characters
1684 or sequences of characters into tokens. The Bison parser gets its
1685 tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1686 Analyzer Function @code{yylex}}.
1687
1688 Only a simple lexical analyzer is needed for the RPN
1689 calculator. This
1690 lexical analyzer skips blanks and tabs, then reads in numbers as
1691 @code{double} and returns them as @code{NUM} tokens. Any other character
1692 that isn't part of a number is a separate token. Note that the token-code
1693 for such a single-character token is the character itself.
1694
1695 The return value of the lexical analyzer function is a numeric code which
1696 represents a token type. The same text used in Bison rules to stand for
1697 this token type is also a C expression for the numeric code for the type.
1698 This works in two ways. If the token type is a character literal, then its
1699 numeric code is that of the character; you can use the same
1700 character literal in the lexical analyzer to express the number. If the
1701 token type is an identifier, that identifier is defined by Bison as a C
1702 macro whose definition is the appropriate number. In this example,
1703 therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1704
1705 The semantic value of the token (if it has one) is stored into the
1706 global variable @code{yylval}, which is where the Bison parser will look
1707 for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1708 defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1709 ,Declarations for @code{rpcalc}}.)
1710
1711 A token type code of zero is returned if the end-of-input is encountered.
1712 (Bison recognizes any nonpositive value as indicating end-of-input.)
1713
1714 Here is the code for the lexical analyzer:
1715
1716 @example
1717 @group
1718 /* The lexical analyzer returns a double floating point
1719 number on the stack and the token NUM, or the numeric code
1720 of the character read if not a number. It skips all blanks
1721 and tabs, and returns 0 for end-of-input. */
1722
1723 #include <ctype.h>
1724 @end group
1725
1726 @group
1727 int
1728 yylex (void)
1729 @{
1730 int c;
1731
1732 /* Skip white space. */
1733 while ((c = getchar ()) == ' ' || c == '\t')
1734 continue;
1735 @end group
1736 @group
1737 /* Process numbers. */
1738 if (c == '.' || isdigit (c))
1739 @{
1740 ungetc (c, stdin);
1741 scanf ("%lf", &yylval);
1742 return NUM;
1743 @}
1744 @end group
1745 @group
1746 /* Return end-of-input. */
1747 if (c == EOF)
1748 return 0;
1749 /* Return a single char. */
1750 return c;
1751 @}
1752 @end group
1753 @end example
1754
1755 @node Rpcalc Main
1756 @subsection The Controlling Function
1757 @cindex controlling function
1758 @cindex main function in simple example
1759
1760 In keeping with the spirit of this example, the controlling function is
1761 kept to the bare minimum. The only requirement is that it call
1762 @code{yyparse} to start the process of parsing.
1763
1764 @example
1765 @group
1766 int
1767 main (void)
1768 @{
1769 return yyparse ();
1770 @}
1771 @end group
1772 @end example
1773
1774 @node Rpcalc Error
1775 @subsection The Error Reporting Routine
1776 @cindex error reporting routine
1777
1778 When @code{yyparse} detects a syntax error, it calls the error reporting
1779 function @code{yyerror} to print an error message (usually but not
1780 always @code{"syntax error"}). It is up to the programmer to supply
1781 @code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1782 here is the definition we will use:
1783
1784 @example
1785 @group
1786 #include <stdio.h>
1787 @end group
1788
1789 @group
1790 /* Called by yyparse on error. */
1791 void
1792 yyerror (char const *s)
1793 @{
1794 fprintf (stderr, "%s\n", s);
1795 @}
1796 @end group
1797 @end example
1798
1799 After @code{yyerror} returns, the Bison parser may recover from the error
1800 and continue parsing if the grammar contains a suitable error rule
1801 (@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1802 have not written any error rules in this example, so any invalid input will
1803 cause the calculator program to exit. This is not clean behavior for a
1804 real calculator, but it is adequate for the first example.
1805
1806 @node Rpcalc Generate
1807 @subsection Running Bison to Make the Parser
1808 @cindex running Bison (introduction)
1809
1810 Before running Bison to produce a parser, we need to decide how to
1811 arrange all the source code in one or more source files. For such a
1812 simple example, the easiest thing is to put everything in one file,
1813 the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1814 @code{main} go at the end, in the epilogue of the grammar file
1815 (@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
1816
1817 For a large project, you would probably have several source files, and use
1818 @code{make} to arrange to recompile them.
1819
1820 With all the source in the grammar file, you use the following command
1821 to convert it into a parser implementation file:
1822
1823 @example
1824 bison @var{file}.y
1825 @end example
1826
1827 @noindent
1828 In this example, the grammar file is called @file{rpcalc.y} (for
1829 ``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1830 implementation file named @file{@var{file}.tab.c}, removing the
1831 @samp{.y} from the grammar file name. The parser implementation file
1832 contains the source code for @code{yyparse}. The additional functions
1833 in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1834 copied verbatim to the parser implementation file.
1835
1836 @node Rpcalc Compile
1837 @subsection Compiling the Parser Implementation File
1838 @cindex compiling the parser
1839
1840 Here is how to compile and run the parser implementation file:
1841
1842 @example
1843 @group
1844 # @r{List files in current directory.}
1845 $ @kbd{ls}
1846 rpcalc.tab.c rpcalc.y
1847 @end group
1848
1849 @group
1850 # @r{Compile the Bison parser.}
1851 # @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
1852 $ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
1853 @end group
1854
1855 @group
1856 # @r{List files again.}
1857 $ @kbd{ls}
1858 rpcalc rpcalc.tab.c rpcalc.y
1859 @end group
1860 @end example
1861
1862 The file @file{rpcalc} now contains the executable code. Here is an
1863 example session using @code{rpcalc}.
1864
1865 @example
1866 $ @kbd{rpcalc}
1867 @kbd{4 9 +}
1868 13
1869 @kbd{3 7 + 3 4 5 *+-}
1870 -13
1871 @kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
1872 13
1873 @kbd{5 6 / 4 n +}
1874 -3.166666667
1875 @kbd{3 4 ^} @r{Exponentiation}
1876 81
1877 @kbd{^D} @r{End-of-file indicator}
1878 $
1879 @end example
1880
1881 @node Infix Calc
1882 @section Infix Notation Calculator: @code{calc}
1883 @cindex infix notation calculator
1884 @cindex @code{calc}
1885 @cindex calculator, infix notation
1886
1887 We now modify rpcalc to handle infix operators instead of postfix. Infix
1888 notation involves the concept of operator precedence and the need for
1889 parentheses nested to arbitrary depth. Here is the Bison code for
1890 @file{calc.y}, an infix desk-top calculator.
1891
1892 @example
1893 /* Infix notation calculator. */
1894
1895 @group
1896 %@{
1897 #define YYSTYPE double
1898 #include <math.h>
1899 #include <stdio.h>
1900 int yylex (void);
1901 void yyerror (char const *);
1902 %@}
1903 @end group
1904
1905 @group
1906 /* Bison declarations. */
1907 %token NUM
1908 %left '-' '+'
1909 %left '*' '/'
1910 %left NEG /* negation--unary minus */
1911 %right '^' /* exponentiation */
1912 @end group
1913
1914 %% /* The grammar follows. */
1915 @group
1916 input:
1917 /* empty */
1918 | input line
1919 ;
1920 @end group
1921
1922 @group
1923 line:
1924 '\n'
1925 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1926 ;
1927 @end group
1928
1929 @group
1930 exp:
1931 NUM @{ $$ = $1; @}
1932 | exp '+' exp @{ $$ = $1 + $3; @}
1933 | exp '-' exp @{ $$ = $1 - $3; @}
1934 | exp '*' exp @{ $$ = $1 * $3; @}
1935 | exp '/' exp @{ $$ = $1 / $3; @}
1936 | '-' exp %prec NEG @{ $$ = -$2; @}
1937 | exp '^' exp @{ $$ = pow ($1, $3); @}
1938 | '(' exp ')' @{ $$ = $2; @}
1939 ;
1940 @end group
1941 %%
1942 @end example
1943
1944 @noindent
1945 The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1946 same as before.
1947
1948 There are two important new features shown in this code.
1949
1950 In the second section (Bison declarations), @code{%left} declares token
1951 types and says they are left-associative operators. The declarations
1952 @code{%left} and @code{%right} (right associativity) take the place of
1953 @code{%token} which is used to declare a token type name without
1954 associativity. (These tokens are single-character literals, which
1955 ordinarily don't need to be declared. We declare them here to specify
1956 the associativity.)
1957
1958 Operator precedence is determined by the line ordering of the
1959 declarations; the higher the line number of the declaration (lower on
1960 the page or screen), the higher the precedence. Hence, exponentiation
1961 has the highest precedence, unary minus (@code{NEG}) is next, followed
1962 by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1963 Precedence}.
1964
1965 The other important new feature is the @code{%prec} in the grammar
1966 section for the unary minus operator. The @code{%prec} simply instructs
1967 Bison that the rule @samp{| '-' exp} has the same precedence as
1968 @code{NEG}---in this case the next-to-highest. @xref{Contextual
1969 Precedence, ,Context-Dependent Precedence}.
1970
1971 Here is a sample run of @file{calc.y}:
1972
1973 @need 500
1974 @example
1975 $ @kbd{calc}
1976 @kbd{4 + 4.5 - (34/(8*3+-3))}
1977 6.880952381
1978 @kbd{-56 + 2}
1979 -54
1980 @kbd{3 ^ 2}
1981 9
1982 @end example
1983
1984 @node Simple Error Recovery
1985 @section Simple Error Recovery
1986 @cindex error recovery, simple
1987
1988 Up to this point, this manual has not addressed the issue of @dfn{error
1989 recovery}---how to continue parsing after the parser detects a syntax
1990 error. All we have handled is error reporting with @code{yyerror}.
1991 Recall that by default @code{yyparse} returns after calling
1992 @code{yyerror}. This means that an erroneous input line causes the
1993 calculator program to exit. Now we show how to rectify this deficiency.
1994
1995 The Bison language itself includes the reserved word @code{error}, which
1996 may be included in the grammar rules. In the example below it has
1997 been added to one of the alternatives for @code{line}:
1998
1999 @example
2000 @group
2001 line:
2002 '\n'
2003 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2004 | error '\n' @{ yyerrok; @}
2005 ;
2006 @end group
2007 @end example
2008
2009 This addition to the grammar allows for simple error recovery in the
2010 event of a syntax error. If an expression that cannot be evaluated is
2011 read, the error will be recognized by the third rule for @code{line},
2012 and parsing will continue. (The @code{yyerror} function is still called
2013 upon to print its message as well.) The action executes the statement
2014 @code{yyerrok}, a macro defined automatically by Bison; its meaning is
2015 that error recovery is complete (@pxref{Error Recovery}). Note the
2016 difference between @code{yyerrok} and @code{yyerror}; neither one is a
2017 misprint.
2018
2019 This form of error recovery deals with syntax errors. There are other
2020 kinds of errors; for example, division by zero, which raises an exception
2021 signal that is normally fatal. A real calculator program must handle this
2022 signal and use @code{longjmp} to return to @code{main} and resume parsing
2023 input lines; it would also have to discard the rest of the current line of
2024 input. We won't discuss this issue further because it is not specific to
2025 Bison programs.
2026
2027 @node Location Tracking Calc
2028 @section Location Tracking Calculator: @code{ltcalc}
2029 @cindex location tracking calculator
2030 @cindex @code{ltcalc}
2031 @cindex calculator, location tracking
2032
2033 This example extends the infix notation calculator with location
2034 tracking. This feature will be used to improve the error messages. For
2035 the sake of clarity, this example is a simple integer calculator, since
2036 most of the work needed to use locations will be done in the lexical
2037 analyzer.
2038
2039 @menu
2040 * Ltcalc Declarations:: Bison and C declarations for ltcalc.
2041 * Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2042 * Ltcalc Lexer:: The lexical analyzer.
2043 @end menu
2044
2045 @node Ltcalc Declarations
2046 @subsection Declarations for @code{ltcalc}
2047
2048 The C and Bison declarations for the location tracking calculator are
2049 the same as the declarations for the infix notation calculator.
2050
2051 @example
2052 /* Location tracking calculator. */
2053
2054 %@{
2055 #define YYSTYPE int
2056 #include <math.h>
2057 int yylex (void);
2058 void yyerror (char const *);
2059 %@}
2060
2061 /* Bison declarations. */
2062 %token NUM
2063
2064 %left '-' '+'
2065 %left '*' '/'
2066 %left NEG
2067 %right '^'
2068
2069 %% /* The grammar follows. */
2070 @end example
2071
2072 @noindent
2073 Note there are no declarations specific to locations. Defining a data
2074 type for storing locations is not needed: we will use the type provided
2075 by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2076 four member structure with the following integer fields:
2077 @code{first_line}, @code{first_column}, @code{last_line} and
2078 @code{last_column}. By conventions, and in accordance with the GNU
2079 Coding Standards and common practice, the line and column count both
2080 start at 1.
2081
2082 @node Ltcalc Rules
2083 @subsection Grammar Rules for @code{ltcalc}
2084
2085 Whether handling locations or not has no effect on the syntax of your
2086 language. Therefore, grammar rules for this example will be very close
2087 to those of the previous example: we will only modify them to benefit
2088 from the new information.
2089
2090 Here, we will use locations to report divisions by zero, and locate the
2091 wrong expressions or subexpressions.
2092
2093 @example
2094 @group
2095 input:
2096 /* empty */
2097 | input line
2098 ;
2099 @end group
2100
2101 @group
2102 line:
2103 '\n'
2104 | exp '\n' @{ printf ("%d\n", $1); @}
2105 ;
2106 @end group
2107
2108 @group
2109 exp:
2110 NUM @{ $$ = $1; @}
2111 | exp '+' exp @{ $$ = $1 + $3; @}
2112 | exp '-' exp @{ $$ = $1 - $3; @}
2113 | exp '*' exp @{ $$ = $1 * $3; @}
2114 @end group
2115 @group
2116 | exp '/' exp
2117 @{
2118 if ($3)
2119 $$ = $1 / $3;
2120 else
2121 @{
2122 $$ = 1;
2123 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2124 @@3.first_line, @@3.first_column,
2125 @@3.last_line, @@3.last_column);
2126 @}
2127 @}
2128 @end group
2129 @group
2130 | '-' exp %prec NEG @{ $$ = -$2; @}
2131 | exp '^' exp @{ $$ = pow ($1, $3); @}
2132 | '(' exp ')' @{ $$ = $2; @}
2133 @end group
2134 @end example
2135
2136 This code shows how to reach locations inside of semantic actions, by
2137 using the pseudo-variables @code{@@@var{n}} for rule components, and the
2138 pseudo-variable @code{@@$} for groupings.
2139
2140 We don't need to assign a value to @code{@@$}: the output parser does it
2141 automatically. By default, before executing the C code of each action,
2142 @code{@@$} is set to range from the beginning of @code{@@1} to the end
2143 of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2144 can be redefined (@pxref{Location Default Action, , Default Action for
2145 Locations}), and for very specific rules, @code{@@$} can be computed by
2146 hand.
2147
2148 @node Ltcalc Lexer
2149 @subsection The @code{ltcalc} Lexical Analyzer.
2150
2151 Until now, we relied on Bison's defaults to enable location
2152 tracking. The next step is to rewrite the lexical analyzer, and make it
2153 able to feed the parser with the token locations, as it already does for
2154 semantic values.
2155
2156 To this end, we must take into account every single character of the
2157 input text, to avoid the computed locations of being fuzzy or wrong:
2158
2159 @example
2160 @group
2161 int
2162 yylex (void)
2163 @{
2164 int c;
2165 @end group
2166
2167 @group
2168 /* Skip white space. */
2169 while ((c = getchar ()) == ' ' || c == '\t')
2170 ++yylloc.last_column;
2171 @end group
2172
2173 @group
2174 /* Step. */
2175 yylloc.first_line = yylloc.last_line;
2176 yylloc.first_column = yylloc.last_column;
2177 @end group
2178
2179 @group
2180 /* Process numbers. */
2181 if (isdigit (c))
2182 @{
2183 yylval = c - '0';
2184 ++yylloc.last_column;
2185 while (isdigit (c = getchar ()))
2186 @{
2187 ++yylloc.last_column;
2188 yylval = yylval * 10 + c - '0';
2189 @}
2190 ungetc (c, stdin);
2191 return NUM;
2192 @}
2193 @end group
2194
2195 /* Return end-of-input. */
2196 if (c == EOF)
2197 return 0;
2198
2199 @group
2200 /* Return a single char, and update location. */
2201 if (c == '\n')
2202 @{
2203 ++yylloc.last_line;
2204 yylloc.last_column = 0;
2205 @}
2206 else
2207 ++yylloc.last_column;
2208 return c;
2209 @}
2210 @end group
2211 @end example
2212
2213 Basically, the lexical analyzer performs the same processing as before:
2214 it skips blanks and tabs, and reads numbers or single-character tokens.
2215 In addition, it updates @code{yylloc}, the global variable (of type
2216 @code{YYLTYPE}) containing the token's location.
2217
2218 Now, each time this function returns a token, the parser has its number
2219 as well as its semantic value, and its location in the text. The last
2220 needed change is to initialize @code{yylloc}, for example in the
2221 controlling function:
2222
2223 @example
2224 @group
2225 int
2226 main (void)
2227 @{
2228 yylloc.first_line = yylloc.last_line = 1;
2229 yylloc.first_column = yylloc.last_column = 0;
2230 return yyparse ();
2231 @}
2232 @end group
2233 @end example
2234
2235 Remember that computing locations is not a matter of syntax. Every
2236 character must be associated to a location update, whether it is in
2237 valid input, in comments, in literal strings, and so on.
2238
2239 @node Multi-function Calc
2240 @section Multi-Function Calculator: @code{mfcalc}
2241 @cindex multi-function calculator
2242 @cindex @code{mfcalc}
2243 @cindex calculator, multi-function
2244
2245 Now that the basics of Bison have been discussed, it is time to move on to
2246 a more advanced problem. The above calculators provided only five
2247 functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2248 be nice to have a calculator that provides other mathematical functions such
2249 as @code{sin}, @code{cos}, etc.
2250
2251 It is easy to add new operators to the infix calculator as long as they are
2252 only single-character literals. The lexical analyzer @code{yylex} passes
2253 back all nonnumeric characters as tokens, so new grammar rules suffice for
2254 adding a new operator. But we want something more flexible: built-in
2255 functions whose syntax has this form:
2256
2257 @example
2258 @var{function_name} (@var{argument})
2259 @end example
2260
2261 @noindent
2262 At the same time, we will add memory to the calculator, by allowing you
2263 to create named variables, store values in them, and use them later.
2264 Here is a sample session with the multi-function calculator:
2265
2266 @example
2267 $ @kbd{mfcalc}
2268 @kbd{pi = 3.141592653589}
2269 3.1415926536
2270 @kbd{sin(pi)}
2271 0.0000000000
2272 @kbd{alpha = beta1 = 2.3}
2273 2.3000000000
2274 @kbd{alpha}
2275 2.3000000000
2276 @kbd{ln(alpha)}
2277 0.8329091229
2278 @kbd{exp(ln(beta1))}
2279 2.3000000000
2280 $
2281 @end example
2282
2283 Note that multiple assignment and nested function calls are permitted.
2284
2285 @menu
2286 * Mfcalc Declarations:: Bison declarations for multi-function calculator.
2287 * Mfcalc Rules:: Grammar rules for the calculator.
2288 * Mfcalc Symbol Table:: Symbol table management subroutines.
2289 @end menu
2290
2291 @node Mfcalc Declarations
2292 @subsection Declarations for @code{mfcalc}
2293
2294 Here are the C and Bison declarations for the multi-function calculator.
2295
2296 @comment file: mfcalc.y: 1
2297 @example
2298 @group
2299 %@{
2300 #include <math.h> /* For math functions, cos(), sin(), etc. */
2301 #include "calc.h" /* Contains definition of `symrec'. */
2302 int yylex (void);
2303 void yyerror (char const *);
2304 %@}
2305 @end group
2306
2307 @group
2308 %union @{
2309 double val; /* For returning numbers. */
2310 symrec *tptr; /* For returning symbol-table pointers. */
2311 @}
2312 @end group
2313 %token <val> NUM /* Simple double precision number. */
2314 %token <tptr> VAR FNCT /* Variable and function. */
2315 %type <val> exp
2316
2317 @group
2318 %right '='
2319 %left '-' '+'
2320 %left '*' '/'
2321 %left NEG /* negation--unary minus */
2322 %right '^' /* exponentiation */
2323 @end group
2324 @end example
2325
2326 The above grammar introduces only two new features of the Bison language.
2327 These features allow semantic values to have various data types
2328 (@pxref{Multiple Types, ,More Than One Value Type}).
2329
2330 The @code{%union} declaration specifies the entire list of possible types;
2331 this is instead of defining @code{YYSTYPE}. The allowable types are now
2332 double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2333 the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2334
2335 Since values can now have various types, it is necessary to associate a
2336 type with each grammar symbol whose semantic value is used. These symbols
2337 are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2338 declarations are augmented with information about their data type (placed
2339 between angle brackets).
2340
2341 The Bison construct @code{%type} is used for declaring nonterminal
2342 symbols, just as @code{%token} is used for declaring token types. We
2343 have not used @code{%type} before because nonterminal symbols are
2344 normally declared implicitly by the rules that define them. But
2345 @code{exp} must be declared explicitly so we can specify its value type.
2346 @xref{Type Decl, ,Nonterminal Symbols}.
2347
2348 @node Mfcalc Rules
2349 @subsection Grammar Rules for @code{mfcalc}
2350
2351 Here are the grammar rules for the multi-function calculator.
2352 Most of them are copied directly from @code{calc}; three rules,
2353 those which mention @code{VAR} or @code{FNCT}, are new.
2354
2355 @comment file: mfcalc.y: 3
2356 @example
2357 %% /* The grammar follows. */
2358 @group
2359 input:
2360 /* empty */
2361 | input line
2362 ;
2363 @end group
2364
2365 @group
2366 line:
2367 '\n'
2368 | exp '\n' @{ printf ("%.10g\n", $1); @}
2369 | error '\n' @{ yyerrok; @}
2370 ;
2371 @end group
2372
2373 @group
2374 exp:
2375 NUM @{ $$ = $1; @}
2376 | VAR @{ $$ = $1->value.var; @}
2377 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2378 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2379 | exp '+' exp @{ $$ = $1 + $3; @}
2380 | exp '-' exp @{ $$ = $1 - $3; @}
2381 | exp '*' exp @{ $$ = $1 * $3; @}
2382 | exp '/' exp @{ $$ = $1 / $3; @}
2383 | '-' exp %prec NEG @{ $$ = -$2; @}
2384 | exp '^' exp @{ $$ = pow ($1, $3); @}
2385 | '(' exp ')' @{ $$ = $2; @}
2386 ;
2387 @end group
2388 /* End of grammar. */
2389 %%
2390 @end example
2391
2392 @node Mfcalc Symbol Table
2393 @subsection The @code{mfcalc} Symbol Table
2394 @cindex symbol table example
2395
2396 The multi-function calculator requires a symbol table to keep track of the
2397 names and meanings of variables and functions. This doesn't affect the
2398 grammar rules (except for the actions) or the Bison declarations, but it
2399 requires some additional C functions for support.
2400
2401 The symbol table itself consists of a linked list of records. Its
2402 definition, which is kept in the header @file{calc.h}, is as follows. It
2403 provides for either functions or variables to be placed in the table.
2404
2405 @comment file: calc.h
2406 @example
2407 @group
2408 /* Function type. */
2409 typedef double (*func_t) (double);
2410 @end group
2411
2412 @group
2413 /* Data type for links in the chain of symbols. */
2414 struct symrec
2415 @{
2416 char *name; /* name of symbol */
2417 int type; /* type of symbol: either VAR or FNCT */
2418 union
2419 @{
2420 double var; /* value of a VAR */
2421 func_t fnctptr; /* value of a FNCT */
2422 @} value;
2423 struct symrec *next; /* link field */
2424 @};
2425 @end group
2426
2427 @group
2428 typedef struct symrec symrec;
2429
2430 /* The symbol table: a chain of `struct symrec'. */
2431 extern symrec *sym_table;
2432
2433 symrec *putsym (char const *, int);
2434 symrec *getsym (char const *);
2435 @end group
2436 @end example
2437
2438 The new version of @code{main} includes a call to @code{init_table}, a
2439 function that initializes the symbol table. Here it is, and
2440 @code{init_table} as well:
2441
2442 @comment file: mfcalc.y: 3
2443 @example
2444 #include <stdio.h>
2445
2446 @group
2447 /* Called by yyparse on error. */
2448 void
2449 yyerror (char const *s)
2450 @{
2451 printf ("%s\n", s);
2452 @}
2453 @end group
2454
2455 @group
2456 struct init
2457 @{
2458 char const *fname;
2459 double (*fnct) (double);
2460 @};
2461 @end group
2462
2463 @group
2464 struct init const arith_fncts[] =
2465 @{
2466 "sin", sin,
2467 "cos", cos,
2468 "atan", atan,
2469 "ln", log,
2470 "exp", exp,
2471 "sqrt", sqrt,
2472 0, 0
2473 @};
2474 @end group
2475
2476 @group
2477 /* The symbol table: a chain of `struct symrec'. */
2478 symrec *sym_table;
2479 @end group
2480
2481 @group
2482 /* Put arithmetic functions in table. */
2483 void
2484 init_table (void)
2485 @{
2486 int i;
2487 for (i = 0; arith_fncts[i].fname != 0; i++)
2488 @{
2489 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
2490 ptr->value.fnctptr = arith_fncts[i].fnct;
2491 @}
2492 @}
2493 @end group
2494
2495 @group
2496 int
2497 main (void)
2498 @{
2499 init_table ();
2500 return yyparse ();
2501 @}
2502 @end group
2503 @end example
2504
2505 By simply editing the initialization list and adding the necessary include
2506 files, you can add additional functions to the calculator.
2507
2508 Two important functions allow look-up and installation of symbols in the
2509 symbol table. The function @code{putsym} is passed a name and the type
2510 (@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2511 linked to the front of the list, and a pointer to the object is returned.
2512 The function @code{getsym} is passed the name of the symbol to look up. If
2513 found, a pointer to that symbol is returned; otherwise zero is returned.
2514
2515 @comment file: mfcalc.y: 3
2516 @example
2517 #include <stdlib.h> /* malloc. */
2518 #include <string.h> /* strlen. */
2519
2520 @group
2521 symrec *
2522 putsym (char const *sym_name, int sym_type)
2523 @{
2524 symrec *ptr = (symrec *) malloc (sizeof (symrec));
2525 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2526 strcpy (ptr->name,sym_name);
2527 ptr->type = sym_type;
2528 ptr->value.var = 0; /* Set value to 0 even if fctn. */
2529 ptr->next = (struct symrec *)sym_table;
2530 sym_table = ptr;
2531 return ptr;
2532 @}
2533 @end group
2534
2535 @group
2536 symrec *
2537 getsym (char const *sym_name)
2538 @{
2539 symrec *ptr;
2540 for (ptr = sym_table; ptr != (symrec *) 0;
2541 ptr = (symrec *)ptr->next)
2542 if (strcmp (ptr->name,sym_name) == 0)
2543 return ptr;
2544 return 0;
2545 @}
2546 @end group
2547 @end example
2548
2549 The function @code{yylex} must now recognize variables, numeric values, and
2550 the single-character arithmetic operators. Strings of alphanumeric
2551 characters with a leading letter are recognized as either variables or
2552 functions depending on what the symbol table says about them.
2553
2554 The string is passed to @code{getsym} for look up in the symbol table. If
2555 the name appears in the table, a pointer to its location and its type
2556 (@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2557 already in the table, then it is installed as a @code{VAR} using
2558 @code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
2559 returned to @code{yyparse}.
2560
2561 No change is needed in the handling of numeric values and arithmetic
2562 operators in @code{yylex}.
2563
2564 @comment file: mfcalc.y: 3
2565 @example
2566 @group
2567 #include <ctype.h>
2568 @end group
2569
2570 @group
2571 int
2572 yylex (void)
2573 @{
2574 int c;
2575
2576 /* Ignore white space, get first nonwhite character. */
2577 while ((c = getchar ()) == ' ' || c == '\t')
2578 continue;
2579
2580 if (c == EOF)
2581 return 0;
2582 @end group
2583
2584 @group
2585 /* Char starts a number => parse the number. */
2586 if (c == '.' || isdigit (c))
2587 @{
2588 ungetc (c, stdin);
2589 scanf ("%lf", &yylval.val);
2590 return NUM;
2591 @}
2592 @end group
2593
2594 @group
2595 /* Char starts an identifier => read the name. */
2596 if (isalpha (c))
2597 @{
2598 /* Initially make the buffer long enough
2599 for a 40-character symbol name. */
2600 static size_t length = 40;
2601 static char *symbuf = 0;
2602 symrec *s;
2603 int i;
2604 @end group
2605
2606 if (!symbuf)
2607 symbuf = (char *) malloc (length + 1);
2608
2609 i = 0;
2610 do
2611 @group
2612 @{
2613 /* If buffer is full, make it bigger. */
2614 if (i == length)
2615 @{
2616 length *= 2;
2617 symbuf = (char *) realloc (symbuf, length + 1);
2618 @}
2619 /* Add this character to the buffer. */
2620 symbuf[i++] = c;
2621 /* Get another character. */
2622 c = getchar ();
2623 @}
2624 @end group
2625 @group
2626 while (isalnum (c));
2627
2628 ungetc (c, stdin);
2629 symbuf[i] = '\0';
2630 @end group
2631
2632 @group
2633 s = getsym (symbuf);
2634 if (s == 0)
2635 s = putsym (symbuf, VAR);
2636 yylval.tptr = s;
2637 return s->type;
2638 @}
2639
2640 /* Any other character is a token by itself. */
2641 return c;
2642 @}
2643 @end group
2644 @end example
2645
2646 The error reporting function is unchanged, and the new version of
2647 @code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2648 on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
2649
2650 @comment file: mfcalc.y: 3
2651 @example
2652 @group
2653 /* Called by yyparse on error. */
2654 void
2655 yyerror (char const *s)
2656 @{
2657 fprintf (stderr, "%s\n", s);
2658 @}
2659 @end group
2660
2661 @group
2662 int
2663 main (int argc, char const* argv[])
2664 @{
2665 int i;
2666 /* Enable parse traces on option -p. */
2667 for (i = 1; i < argc; ++i)
2668 if (!strcmp(argv[i], "-p"))
2669 yydebug = 1;
2670 init_table ();
2671 return yyparse ();
2672 @}
2673 @end group
2674 @end example
2675
2676 This program is both powerful and flexible. You may easily add new
2677 functions, and it is a simple job to modify this code to install
2678 predefined variables such as @code{pi} or @code{e} as well.
2679
2680 @node Exercises
2681 @section Exercises
2682 @cindex exercises
2683
2684 @enumerate
2685 @item
2686 Add some new functions from @file{math.h} to the initialization list.
2687
2688 @item
2689 Add another array that contains constants and their values. Then
2690 modify @code{init_table} to add these constants to the symbol table.
2691 It will be easiest to give the constants type @code{VAR}.
2692
2693 @item
2694 Make the program report an error if the user refers to an
2695 uninitialized variable in any way except to store a value in it.
2696 @end enumerate
2697
2698 @node Grammar File
2699 @chapter Bison Grammar Files
2700
2701 Bison takes as input a context-free grammar specification and produces a
2702 C-language function that recognizes correct instances of the grammar.
2703
2704 The Bison grammar file conventionally has a name ending in @samp{.y}.
2705 @xref{Invocation, ,Invoking Bison}.
2706
2707 @menu
2708 * Grammar Outline:: Overall layout of the grammar file.
2709 * Symbols:: Terminal and nonterminal symbols.
2710 * Rules:: How to write grammar rules.
2711 * Recursion:: Writing recursive rules.
2712 * Semantics:: Semantic values and actions.
2713 * Tracking Locations:: Locations and actions.
2714 * Named References:: Using named references in actions.
2715 * Declarations:: All kinds of Bison declarations are described here.
2716 * Multiple Parsers:: Putting more than one Bison parser in one program.
2717 @end menu
2718
2719 @node Grammar Outline
2720 @section Outline of a Bison Grammar
2721
2722 A Bison grammar file has four main sections, shown here with the
2723 appropriate delimiters:
2724
2725 @example
2726 %@{
2727 @var{Prologue}
2728 %@}
2729
2730 @var{Bison declarations}
2731
2732 %%
2733 @var{Grammar rules}
2734 %%
2735
2736 @var{Epilogue}
2737 @end example
2738
2739 Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2740 As a GNU extension, @samp{//} introduces a comment that
2741 continues until end of line.
2742
2743 @menu
2744 * Prologue:: Syntax and usage of the prologue.
2745 * Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
2746 * Bison Declarations:: Syntax and usage of the Bison declarations section.
2747 * Grammar Rules:: Syntax and usage of the grammar rules section.
2748 * Epilogue:: Syntax and usage of the epilogue.
2749 @end menu
2750
2751 @node Prologue
2752 @subsection The prologue
2753 @cindex declarations section
2754 @cindex Prologue
2755 @cindex declarations
2756
2757 The @var{Prologue} section contains macro definitions and declarations
2758 of functions and variables that are used in the actions in the grammar
2759 rules. These are copied to the beginning of the parser implementation
2760 file so that they precede the definition of @code{yyparse}. You can
2761 use @samp{#include} to get the declarations from a header file. If
2762 you don't need any C declarations, you may omit the @samp{%@{} and
2763 @samp{%@}} delimiters that bracket this section.
2764
2765 The @var{Prologue} section is terminated by the first occurrence
2766 of @samp{%@}} that is outside a comment, a string literal, or a
2767 character constant.
2768
2769 You may have more than one @var{Prologue} section, intermixed with the
2770 @var{Bison declarations}. This allows you to have C and Bison
2771 declarations that refer to each other. For example, the @code{%union}
2772 declaration may use types defined in a header file, and you may wish to
2773 prototype functions that take arguments of type @code{YYSTYPE}. This
2774 can be done with two @var{Prologue} blocks, one before and one after the
2775 @code{%union} declaration.
2776
2777 @example
2778 %@{
2779 #define _GNU_SOURCE
2780 #include <stdio.h>
2781 #include "ptypes.h"
2782 %@}
2783
2784 %union @{
2785 long int n;
2786 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2787 @}
2788
2789 %@{
2790 static void print_token_value (FILE *, int, YYSTYPE);
2791 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2792 %@}
2793
2794 @dots{}
2795 @end example
2796
2797 When in doubt, it is usually safer to put prologue code before all
2798 Bison declarations, rather than after. For example, any definitions
2799 of feature test macros like @code{_GNU_SOURCE} or
2800 @code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2801 feature test macros can affect the behavior of Bison-generated
2802 @code{#include} directives.
2803
2804 @node Prologue Alternatives
2805 @subsection Prologue Alternatives
2806 @cindex Prologue Alternatives
2807
2808 @findex %code
2809 @findex %code requires
2810 @findex %code provides
2811 @findex %code top
2812
2813 The functionality of @var{Prologue} sections can often be subtle and
2814 inflexible. As an alternative, Bison provides a @code{%code}
2815 directive with an explicit qualifier field, which identifies the
2816 purpose of the code and thus the location(s) where Bison should
2817 generate it. For C/C++, the qualifier can be omitted for the default
2818 location, or it can be one of @code{requires}, @code{provides},
2819 @code{top}. @xref{%code Summary}.
2820
2821 Look again at the example of the previous section:
2822
2823 @example
2824 %@{
2825 #define _GNU_SOURCE
2826 #include <stdio.h>
2827 #include "ptypes.h"
2828 %@}
2829
2830 %union @{
2831 long int n;
2832 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2833 @}
2834
2835 %@{
2836 static void print_token_value (FILE *, int, YYSTYPE);
2837 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2838 %@}
2839
2840 @dots{}
2841 @end example
2842
2843 @noindent
2844 Notice that there are two @var{Prologue} sections here, but there's a
2845 subtle distinction between their functionality. For example, if you
2846 decide to override Bison's default definition for @code{YYLTYPE}, in
2847 which @var{Prologue} section should you write your new definition?
2848 You should write it in the first since Bison will insert that code
2849 into the parser implementation file @emph{before} the default
2850 @code{YYLTYPE} definition. In which @var{Prologue} section should you
2851 prototype an internal function, @code{trace_token}, that accepts
2852 @code{YYLTYPE} and @code{yytokentype} as arguments? You should
2853 prototype it in the second since Bison will insert that code
2854 @emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2855
2856 This distinction in functionality between the two @var{Prologue} sections is
2857 established by the appearance of the @code{%union} between them.
2858 This behavior raises a few questions.
2859 First, why should the position of a @code{%union} affect definitions related to
2860 @code{YYLTYPE} and @code{yytokentype}?
2861 Second, what if there is no @code{%union}?
2862 In that case, the second kind of @var{Prologue} section is not available.
2863 This behavior is not intuitive.
2864
2865 To avoid this subtle @code{%union} dependency, rewrite the example using a
2866 @code{%code top} and an unqualified @code{%code}.
2867 Let's go ahead and add the new @code{YYLTYPE} definition and the
2868 @code{trace_token} prototype at the same time:
2869
2870 @example
2871 %code top @{
2872 #define _GNU_SOURCE
2873 #include <stdio.h>
2874
2875 /* WARNING: The following code really belongs
2876 * in a `%code requires'; see below. */
2877
2878 #include "ptypes.h"
2879 #define YYLTYPE YYLTYPE
2880 typedef struct YYLTYPE
2881 @{
2882 int first_line;
2883 int first_column;
2884 int last_line;
2885 int last_column;
2886 char *filename;
2887 @} YYLTYPE;
2888 @}
2889
2890 %union @{
2891 long int n;
2892 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2893 @}
2894
2895 %code @{
2896 static void print_token_value (FILE *, int, YYSTYPE);
2897 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2898 static void trace_token (enum yytokentype token, YYLTYPE loc);
2899 @}
2900
2901 @dots{}
2902 @end example
2903
2904 @noindent
2905 In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2906 functionality as the two kinds of @var{Prologue} sections, but it's always
2907 explicit which kind you intend.
2908 Moreover, both kinds are always available even in the absence of @code{%union}.
2909
2910 The @code{%code top} block above logically contains two parts. The
2911 first two lines before the warning need to appear near the top of the
2912 parser implementation file. The first line after the warning is
2913 required by @code{YYSTYPE} and thus also needs to appear in the parser
2914 implementation file. However, if you've instructed Bison to generate
2915 a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2916 want that line to appear before the @code{YYSTYPE} definition in that
2917 header file as well. The @code{YYLTYPE} definition should also appear
2918 in the parser header file to override the default @code{YYLTYPE}
2919 definition there.
2920
2921 In other words, in the @code{%code top} block above, all but the first two
2922 lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2923 definitions.
2924 Thus, they belong in one or more @code{%code requires}:
2925
2926 @example
2927 @group
2928 %code top @{
2929 #define _GNU_SOURCE
2930 #include <stdio.h>
2931 @}
2932 @end group
2933
2934 @group
2935 %code requires @{
2936 #include "ptypes.h"
2937 @}
2938 @end group
2939 @group
2940 %union @{
2941 long int n;
2942 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2943 @}
2944 @end group
2945
2946 @group
2947 %code requires @{
2948 #define YYLTYPE YYLTYPE
2949 typedef struct YYLTYPE
2950 @{
2951 int first_line;
2952 int first_column;
2953 int last_line;
2954 int last_column;
2955 char *filename;
2956 @} YYLTYPE;
2957 @}
2958 @end group
2959
2960 @group
2961 %code @{
2962 static void print_token_value (FILE *, int, YYSTYPE);
2963 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2964 static void trace_token (enum yytokentype token, YYLTYPE loc);
2965 @}
2966 @end group
2967
2968 @dots{}
2969 @end example
2970
2971 @noindent
2972 Now Bison will insert @code{#include "ptypes.h"} and the new
2973 @code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2974 and @code{YYLTYPE} definitions in both the parser implementation file
2975 and the parser header file. (By the same reasoning, @code{%code
2976 requires} would also be the appropriate place to write your own
2977 definition for @code{YYSTYPE}.)
2978
2979 When you are writing dependency code for @code{YYSTYPE} and
2980 @code{YYLTYPE}, you should prefer @code{%code requires} over
2981 @code{%code top} regardless of whether you instruct Bison to generate
2982 a parser header file. When you are writing code that you need Bison
2983 to insert only into the parser implementation file and that has no
2984 special need to appear at the top of that file, you should prefer the
2985 unqualified @code{%code} over @code{%code top}. These practices will
2986 make the purpose of each block of your code explicit to Bison and to
2987 other developers reading your grammar file. Following these
2988 practices, we expect the unqualified @code{%code} and @code{%code
2989 requires} to be the most important of the four @var{Prologue}
2990 alternatives.
2991
2992 At some point while developing your parser, you might decide to
2993 provide @code{trace_token} to modules that are external to your
2994 parser. Thus, you might wish for Bison to insert the prototype into
2995 both the parser header file and the parser implementation file. Since
2996 this function is not a dependency required by @code{YYSTYPE} or
2997 @code{YYLTYPE}, it doesn't make sense to move its prototype to a
2998 @code{%code requires}. More importantly, since it depends upon
2999 @code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3000 sufficient. Instead, move its prototype from the unqualified
3001 @code{%code} to a @code{%code provides}:
3002
3003 @example
3004 @group
3005 %code top @{
3006 #define _GNU_SOURCE
3007 #include <stdio.h>
3008 @}
3009 @end group
3010
3011 @group
3012 %code requires @{
3013 #include "ptypes.h"
3014 @}
3015 @end group
3016 @group
3017 %union @{
3018 long int n;
3019 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3020 @}
3021 @end group
3022
3023 @group
3024 %code requires @{
3025 #define YYLTYPE YYLTYPE
3026 typedef struct YYLTYPE
3027 @{
3028 int first_line;
3029 int first_column;
3030 int last_line;
3031 int last_column;
3032 char *filename;
3033 @} YYLTYPE;
3034 @}
3035 @end group
3036
3037 @group
3038 %code provides @{
3039 void trace_token (enum yytokentype token, YYLTYPE loc);
3040 @}
3041 @end group
3042
3043 @group
3044 %code @{
3045 static void print_token_value (FILE *, int, YYSTYPE);
3046 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3047 @}
3048 @end group
3049
3050 @dots{}
3051 @end example
3052
3053 @noindent
3054 Bison will insert the @code{trace_token} prototype into both the
3055 parser header file and the parser implementation file after the
3056 definitions for @code{yytokentype}, @code{YYLTYPE}, and
3057 @code{YYSTYPE}.
3058
3059 The above examples are careful to write directives in an order that
3060 reflects the layout of the generated parser implementation and header
3061 files: @code{%code top}, @code{%code requires}, @code{%code provides},
3062 and then @code{%code}. While your grammar files may generally be
3063 easier to read if you also follow this order, Bison does not require
3064 it. Instead, Bison lets you choose an organization that makes sense
3065 to you.
3066
3067 You may declare any of these directives multiple times in the grammar file.
3068 In that case, Bison concatenates the contained code in declaration order.
3069 This is the only way in which the position of one of these directives within
3070 the grammar file affects its functionality.
3071
3072 The result of the previous two properties is greater flexibility in how you may
3073 organize your grammar file.
3074 For example, you may organize semantic-type-related directives by semantic
3075 type:
3076
3077 @example
3078 @group
3079 %code requires @{ #include "type1.h" @}
3080 %union @{ type1 field1; @}
3081 %destructor @{ type1_free ($$); @} <field1>
3082 %printer @{ type1_print (yyoutput, $$); @} <field1>
3083 @end group
3084
3085 @group
3086 %code requires @{ #include "type2.h" @}
3087 %union @{ type2 field2; @}
3088 %destructor @{ type2_free ($$); @} <field2>
3089 %printer @{ type2_print (yyoutput, $$); @} <field2>
3090 @end group
3091 @end example
3092
3093 @noindent
3094 You could even place each of the above directive groups in the rules section of
3095 the grammar file next to the set of rules that uses the associated semantic
3096 type.
3097 (In the rules section, you must terminate each of those directives with a
3098 semicolon.)
3099 And you don't have to worry that some directive (like a @code{%union}) in the
3100 definitions section is going to adversely affect their functionality in some
3101 counter-intuitive manner just because it comes first.
3102 Such an organization is not possible using @var{Prologue} sections.
3103
3104 This section has been concerned with explaining the advantages of the four
3105 @var{Prologue} alternatives over the original Yacc @var{Prologue}.
3106 However, in most cases when using these directives, you shouldn't need to
3107 think about all the low-level ordering issues discussed here.
3108 Instead, you should simply use these directives to label each block of your
3109 code according to its purpose and let Bison handle the ordering.
3110 @code{%code} is the most generic label.
3111 Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3112 as needed.
3113
3114 @node Bison Declarations
3115 @subsection The Bison Declarations Section
3116 @cindex Bison declarations (introduction)
3117 @cindex declarations, Bison (introduction)
3118
3119 The @var{Bison declarations} section contains declarations that define
3120 terminal and nonterminal symbols, specify precedence, and so on.
3121 In some simple grammars you may not need any declarations.
3122 @xref{Declarations, ,Bison Declarations}.
3123
3124 @node Grammar Rules
3125 @subsection The Grammar Rules Section
3126 @cindex grammar rules section
3127 @cindex rules section for grammar
3128
3129 The @dfn{grammar rules} section contains one or more Bison grammar
3130 rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3131
3132 There must always be at least one grammar rule, and the first
3133 @samp{%%} (which precedes the grammar rules) may never be omitted even
3134 if it is the first thing in the file.
3135
3136 @node Epilogue
3137 @subsection The epilogue
3138 @cindex additional C code section
3139 @cindex epilogue
3140 @cindex C code, section for additional
3141
3142 The @var{Epilogue} is copied verbatim to the end of the parser
3143 implementation file, just as the @var{Prologue} is copied to the
3144 beginning. This is the most convenient place to put anything that you
3145 want to have in the parser implementation file but which need not come
3146 before the definition of @code{yyparse}. For example, the definitions
3147 of @code{yylex} and @code{yyerror} often go here. Because C requires
3148 functions to be declared before being used, you often need to declare
3149 functions like @code{yylex} and @code{yyerror} in the Prologue, even
3150 if you define them in the Epilogue. @xref{Interface, ,Parser
3151 C-Language Interface}.
3152
3153 If the last section is empty, you may omit the @samp{%%} that separates it
3154 from the grammar rules.
3155
3156 The Bison parser itself contains many macros and identifiers whose names
3157 start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3158 any such names (except those documented in this manual) in the epilogue
3159 of the grammar file.
3160
3161 @node Symbols
3162 @section Symbols, Terminal and Nonterminal
3163 @cindex nonterminal symbol
3164 @cindex terminal symbol
3165 @cindex token type
3166 @cindex symbol
3167
3168 @dfn{Symbols} in Bison grammars represent the grammatical classifications
3169 of the language.
3170
3171 A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3172 class of syntactically equivalent tokens. You use the symbol in grammar
3173 rules to mean that a token in that class is allowed. The symbol is
3174 represented in the Bison parser by a numeric code, and the @code{yylex}
3175 function returns a token type code to indicate what kind of token has
3176 been read. You don't need to know what the code value is; you can use
3177 the symbol to stand for it.
3178
3179 A @dfn{nonterminal symbol} stands for a class of syntactically
3180 equivalent groupings. The symbol name is used in writing grammar rules.
3181 By convention, it should be all lower case.
3182
3183 Symbol names can contain letters, underscores, periods, and non-initial
3184 digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3185 with POSIX Yacc. Periods and dashes make symbol names less convenient to
3186 use with named references, which require brackets around such names
3187 (@pxref{Named References}). Terminal symbols that contain periods or dashes
3188 make little sense: since they are not valid symbols (in most programming
3189 languages) they are not exported as token names.
3190
3191 There are three ways of writing terminal symbols in the grammar:
3192
3193 @itemize @bullet
3194 @item
3195 A @dfn{named token type} is written with an identifier, like an
3196 identifier in C@. By convention, it should be all upper case. Each
3197 such name must be defined with a Bison declaration such as
3198 @code{%token}. @xref{Token Decl, ,Token Type Names}.
3199
3200 @item
3201 @cindex character token
3202 @cindex literal token
3203 @cindex single-character literal
3204 A @dfn{character token type} (or @dfn{literal character token}) is
3205 written in the grammar using the same syntax used in C for character
3206 constants; for example, @code{'+'} is a character token type. A
3207 character token type doesn't need to be declared unless you need to
3208 specify its semantic value data type (@pxref{Value Type, ,Data Types of
3209 Semantic Values}), associativity, or precedence (@pxref{Precedence,
3210 ,Operator Precedence}).
3211
3212 By convention, a character token type is used only to represent a
3213 token that consists of that particular character. Thus, the token
3214 type @code{'+'} is used to represent the character @samp{+} as a
3215 token. Nothing enforces this convention, but if you depart from it,
3216 your program will confuse other readers.
3217
3218 All the usual escape sequences used in character literals in C can be
3219 used in Bison as well, but you must not use the null character as a
3220 character literal because its numeric code, zero, signifies
3221 end-of-input (@pxref{Calling Convention, ,Calling Convention
3222 for @code{yylex}}). Also, unlike standard C, trigraphs have no
3223 special meaning in Bison character literals, nor is backslash-newline
3224 allowed.
3225
3226 @item
3227 @cindex string token
3228 @cindex literal string token
3229 @cindex multicharacter literal
3230 A @dfn{literal string token} is written like a C string constant; for
3231 example, @code{"<="} is a literal string token. A literal string token
3232 doesn't need to be declared unless you need to specify its semantic
3233 value data type (@pxref{Value Type}), associativity, or precedence
3234 (@pxref{Precedence}).
3235
3236 You can associate the literal string token with a symbolic name as an
3237 alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3238 Declarations}). If you don't do that, the lexical analyzer has to
3239 retrieve the token number for the literal string token from the
3240 @code{yytname} table (@pxref{Calling Convention}).
3241
3242 @strong{Warning}: literal string tokens do not work in Yacc.
3243
3244 By convention, a literal string token is used only to represent a token
3245 that consists of that particular string. Thus, you should use the token
3246 type @code{"<="} to represent the string @samp{<=} as a token. Bison
3247 does not enforce this convention, but if you depart from it, people who
3248 read your program will be confused.
3249
3250 All the escape sequences used in string literals in C can be used in
3251 Bison as well, except that you must not use a null character within a
3252 string literal. Also, unlike Standard C, trigraphs have no special
3253 meaning in Bison string literals, nor is backslash-newline allowed. A
3254 literal string token must contain two or more characters; for a token
3255 containing just one character, use a character token (see above).
3256 @end itemize
3257
3258 How you choose to write a terminal symbol has no effect on its
3259 grammatical meaning. That depends only on where it appears in rules and
3260 on when the parser function returns that symbol.
3261
3262 The value returned by @code{yylex} is always one of the terminal
3263 symbols, except that a zero or negative value signifies end-of-input.
3264 Whichever way you write the token type in the grammar rules, you write
3265 it the same way in the definition of @code{yylex}. The numeric code
3266 for a character token type is simply the positive numeric code of the
3267 character, so @code{yylex} can use the identical value to generate the
3268 requisite code, though you may need to convert it to @code{unsigned
3269 char} to avoid sign-extension on hosts where @code{char} is signed.
3270 Each named token type becomes a C macro in the parser implementation
3271 file, so @code{yylex} can use the name to stand for the code. (This
3272 is why periods don't make sense in terminal symbols.) @xref{Calling
3273 Convention, ,Calling Convention for @code{yylex}}.
3274
3275 If @code{yylex} is defined in a separate file, you need to arrange for the
3276 token-type macro definitions to be available there. Use the @samp{-d}
3277 option when you run Bison, so that it will write these macro definitions
3278 into a separate header file @file{@var{name}.tab.h} which you can include
3279 in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3280
3281 If you want to write a grammar that is portable to any Standard C
3282 host, you must use only nonnull character tokens taken from the basic
3283 execution character set of Standard C@. This set consists of the ten
3284 digits, the 52 lower- and upper-case English letters, and the
3285 characters in the following C-language string:
3286
3287 @example
3288 "\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3289 @end example
3290
3291 The @code{yylex} function and Bison must use a consistent character set
3292 and encoding for character tokens. For example, if you run Bison in an
3293 ASCII environment, but then compile and run the resulting
3294 program in an environment that uses an incompatible character set like
3295 EBCDIC, the resulting program may not work because the tables
3296 generated by Bison will assume ASCII numeric values for
3297 character tokens. It is standard practice for software distributions to
3298 contain C source files that were generated by Bison in an
3299 ASCII environment, so installers on platforms that are
3300 incompatible with ASCII must rebuild those files before
3301 compiling them.
3302
3303 The symbol @code{error} is a terminal symbol reserved for error recovery
3304 (@pxref{Error Recovery}); you shouldn't use it for any other purpose.
3305 In particular, @code{yylex} should never return this value. The default
3306 value of the error token is 256, unless you explicitly assigned 256 to
3307 one of your tokens with a @code{%token} declaration.
3308
3309 @node Rules
3310 @section Syntax of Grammar Rules
3311 @cindex rule syntax
3312 @cindex grammar rule syntax
3313 @cindex syntax of grammar rules
3314
3315 A Bison grammar rule has the following general form:
3316
3317 @example
3318 @group
3319 @var{result}: @var{components}@dots{};
3320 @end group
3321 @end example
3322
3323 @noindent
3324 where @var{result} is the nonterminal symbol that this rule describes,
3325 and @var{components} are various terminal and nonterminal symbols that
3326 are put together by this rule (@pxref{Symbols}).
3327
3328 For example,
3329
3330 @example
3331 @group
3332 exp: exp '+' exp;
3333 @end group
3334 @end example
3335
3336 @noindent
3337 says that two groupings of type @code{exp}, with a @samp{+} token in between,
3338 can be combined into a larger grouping of type @code{exp}.
3339
3340 White space in rules is significant only to separate symbols. You can add
3341 extra white space as you wish.
3342
3343 Scattered among the components can be @var{actions} that determine
3344 the semantics of the rule. An action looks like this:
3345
3346 @example
3347 @{@var{C statements}@}
3348 @end example
3349
3350 @noindent
3351 @cindex braced code
3352 This is an example of @dfn{braced code}, that is, C code surrounded by
3353 braces, much like a compound statement in C@. Braced code can contain
3354 any sequence of C tokens, so long as its braces are balanced. Bison
3355 does not check the braced code for correctness directly; it merely
3356 copies the code to the parser implementation file, where the C
3357 compiler can check it.
3358
3359 Within braced code, the balanced-brace count is not affected by braces
3360 within comments, string literals, or character constants, but it is
3361 affected by the C digraphs @samp{<%} and @samp{%>} that represent
3362 braces. At the top level braced code must be terminated by @samp{@}}
3363 and not by a digraph. Bison does not look for trigraphs, so if braced
3364 code uses trigraphs you should ensure that they do not affect the
3365 nesting of braces or the boundaries of comments, string literals, or
3366 character constants.
3367
3368 Usually there is only one action and it follows the components.
3369 @xref{Actions}.
3370
3371 @findex |
3372 Multiple rules for the same @var{result} can be written separately or can
3373 be joined with the vertical-bar character @samp{|} as follows:
3374
3375 @example
3376 @group
3377 @var{result}:
3378 @var{rule1-components}@dots{}
3379 | @var{rule2-components}@dots{}
3380 @dots{}
3381 ;
3382 @end group
3383 @end example
3384
3385 @noindent
3386 They are still considered distinct rules even when joined in this way.
3387
3388 If @var{components} in a rule is empty, it means that @var{result} can
3389 match the empty string. For example, here is how to define a
3390 comma-separated sequence of zero or more @code{exp} groupings:
3391
3392 @example
3393 @group
3394 expseq:
3395 /* empty */
3396 | expseq1
3397 ;
3398 @end group
3399
3400 @group
3401 expseq1:
3402 exp
3403 | expseq1 ',' exp
3404 ;
3405 @end group
3406 @end example
3407
3408 @noindent
3409 It is customary to write a comment @samp{/* empty */} in each rule
3410 with no components.
3411
3412 @node Recursion
3413 @section Recursive Rules
3414 @cindex recursive rule
3415
3416 A rule is called @dfn{recursive} when its @var{result} nonterminal
3417 appears also on its right hand side. Nearly all Bison grammars need to
3418 use recursion, because that is the only way to define a sequence of any
3419 number of a particular thing. Consider this recursive definition of a
3420 comma-separated sequence of one or more expressions:
3421
3422 @example
3423 @group
3424 expseq1:
3425 exp
3426 | expseq1 ',' exp
3427 ;
3428 @end group
3429 @end example
3430
3431 @cindex left recursion
3432 @cindex right recursion
3433 @noindent
3434 Since the recursive use of @code{expseq1} is the leftmost symbol in the
3435 right hand side, we call this @dfn{left recursion}. By contrast, here
3436 the same construct is defined using @dfn{right recursion}:
3437
3438 @example
3439 @group
3440 expseq1:
3441 exp
3442 | exp ',' expseq1
3443 ;
3444 @end group
3445 @end example
3446
3447 @noindent
3448 Any kind of sequence can be defined using either left recursion or right
3449 recursion, but you should always use left recursion, because it can
3450 parse a sequence of any number of elements with bounded stack space.
3451 Right recursion uses up space on the Bison stack in proportion to the
3452 number of elements in the sequence, because all the elements must be
3453 shifted onto the stack before the rule can be applied even once.
3454 @xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3455 of this.
3456
3457 @cindex mutual recursion
3458 @dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3459 rule does not appear directly on its right hand side, but does appear
3460 in rules for other nonterminals which do appear on its right hand
3461 side.
3462
3463 For example:
3464
3465 @example
3466 @group
3467 expr:
3468 primary
3469 | primary '+' primary
3470 ;
3471 @end group
3472
3473 @group
3474 primary:
3475 constant
3476 | '(' expr ')'
3477 ;
3478 @end group
3479 @end example
3480
3481 @noindent
3482 defines two mutually-recursive nonterminals, since each refers to the
3483 other.
3484
3485 @node Semantics
3486 @section Defining Language Semantics
3487 @cindex defining language semantics
3488 @cindex language semantics, defining
3489
3490 The grammar rules for a language determine only the syntax. The semantics
3491 are determined by the semantic values associated with various tokens and
3492 groupings, and by the actions taken when various groupings are recognized.
3493
3494 For example, the calculator calculates properly because the value
3495 associated with each expression is the proper number; it adds properly
3496 because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3497 the numbers associated with @var{x} and @var{y}.
3498
3499 @menu
3500 * Value Type:: Specifying one data type for all semantic values.
3501 * Multiple Types:: Specifying several alternative data types.
3502 * Actions:: An action is the semantic definition of a grammar rule.
3503 * Action Types:: Specifying data types for actions to operate on.
3504 * Mid-Rule Actions:: Most actions go at the end of a rule.
3505 This says when, why and how to use the exceptional
3506 action in the middle of a rule.
3507 @end menu
3508
3509 @node Value Type
3510 @subsection Data Types of Semantic Values
3511 @cindex semantic value type
3512 @cindex value type, semantic
3513 @cindex data types of semantic values
3514 @cindex default data type
3515
3516 In a simple program it may be sufficient to use the same data type for
3517 the semantic values of all language constructs. This was true in the
3518 RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
3519 Notation Calculator}).
3520
3521 Bison normally uses the type @code{int} for semantic values if your
3522 program uses the same data type for all language constructs. To
3523 specify some other type, define @code{YYSTYPE} as a macro, like this:
3524
3525 @example
3526 #define YYSTYPE double
3527 @end example
3528
3529 @noindent
3530 @code{YYSTYPE}'s replacement list should be a type name
3531 that does not contain parentheses or square brackets.
3532 This macro definition must go in the prologue of the grammar file
3533 (@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
3534
3535 @node Multiple Types
3536 @subsection More Than One Value Type
3537
3538 In most programs, you will need different data types for different kinds
3539 of tokens and groupings. For example, a numeric constant may need type
3540 @code{int} or @code{long int}, while a string constant needs type
3541 @code{char *}, and an identifier might need a pointer to an entry in the
3542 symbol table.
3543
3544 To use more than one data type for semantic values in one parser, Bison
3545 requires you to do two things:
3546
3547 @itemize @bullet
3548 @item
3549 Specify the entire collection of possible data types, either by using the
3550 @code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3551 Value Types}), or by using a @code{typedef} or a @code{#define} to
3552 define @code{YYSTYPE} to be a union type whose member names are
3553 the type tags.
3554
3555 @item
3556 Choose one of those types for each symbol (terminal or nonterminal) for
3557 which semantic values are used. This is done for tokens with the
3558 @code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3559 and for groupings with the @code{%type} Bison declaration (@pxref{Type
3560 Decl, ,Nonterminal Symbols}).
3561 @end itemize
3562
3563 @node Actions
3564 @subsection Actions
3565 @cindex action
3566 @vindex $$
3567 @vindex $@var{n}
3568 @vindex $@var{name}
3569 @vindex $[@var{name}]
3570
3571 An action accompanies a syntactic rule and contains C code to be executed
3572 each time an instance of that rule is recognized. The task of most actions
3573 is to compute a semantic value for the grouping built by the rule from the
3574 semantic values associated with tokens or smaller groupings.
3575
3576 An action consists of braced code containing C statements, and can be
3577 placed at any position in the rule;
3578 it is executed at that position. Most rules have just one action at the
3579 end of the rule, following all the components. Actions in the middle of
3580 a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3581 Actions, ,Actions in Mid-Rule}).
3582
3583 The C code in an action can refer to the semantic values of the
3584 components matched by the rule with the construct @code{$@var{n}},
3585 which stands for the value of the @var{n}th component. The semantic
3586 value for the grouping being constructed is @code{$$}. In addition,
3587 the semantic values of symbols can be accessed with the named
3588 references construct @code{$@var{name}} or @code{$[@var{name}]}.
3589 Bison translates both of these constructs into expressions of the
3590 appropriate type when it copies the actions into the parser
3591 implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3592 for the current grouping) is translated to a modifiable lvalue, so it
3593 can be assigned to.
3594
3595 Here is a typical example:
3596
3597 @example
3598 @group
3599 exp:
3600 @dots{}
3601 | exp '+' exp @{ $$ = $1 + $3; @}
3602 @end group
3603 @end example
3604
3605 Or, in terms of named references:
3606
3607 @example
3608 @group
3609 exp[result]:
3610 @dots{}
3611 | exp[left] '+' exp[right] @{ $result = $left + $right; @}
3612 @end group
3613 @end example
3614
3615 @noindent
3616 This rule constructs an @code{exp} from two smaller @code{exp} groupings
3617 connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3618 (@code{$left} and @code{$right})
3619 refer to the semantic values of the two component @code{exp} groupings,
3620 which are the first and third symbols on the right hand side of the rule.
3621 The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3622 semantic value of
3623 the addition-expression just recognized by the rule. If there were a
3624 useful semantic value associated with the @samp{+} token, it could be
3625 referred to as @code{$2}.
3626
3627 @xref{Named References}, for more information about using the named
3628 references construct.
3629
3630 Note that the vertical-bar character @samp{|} is really a rule
3631 separator, and actions are attached to a single rule. This is a
3632 difference with tools like Flex, for which @samp{|} stands for either
3633 ``or'', or ``the same action as that of the next rule''. In the
3634 following example, the action is triggered only when @samp{b} is found:
3635
3636 @example
3637 @group
3638 a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3639 @end group
3640 @end example
3641
3642 @cindex default action
3643 If you don't specify an action for a rule, Bison supplies a default:
3644 @w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3645 becomes the value of the whole rule. Of course, the default action is
3646 valid only if the two data types match. There is no meaningful default
3647 action for an empty rule; every empty rule must have an explicit action
3648 unless the rule's value does not matter.
3649
3650 @code{$@var{n}} with @var{n} zero or negative is allowed for reference
3651 to tokens and groupings on the stack @emph{before} those that match the
3652 current rule. This is a very risky practice, and to use it reliably
3653 you must be certain of the context in which the rule is applied. Here
3654 is a case in which you can use this reliably:
3655
3656 @example
3657 @group
3658 foo:
3659 expr bar '+' expr @{ @dots{} @}
3660 | expr bar '-' expr @{ @dots{} @}
3661 ;
3662 @end group
3663
3664 @group
3665 bar:
3666 /* empty */ @{ previous_expr = $0; @}
3667 ;
3668 @end group
3669 @end example
3670
3671 As long as @code{bar} is used only in the fashion shown here, @code{$0}
3672 always refers to the @code{expr} which precedes @code{bar} in the
3673 definition of @code{foo}.
3674
3675 @vindex yylval
3676 It is also possible to access the semantic value of the lookahead token, if
3677 any, from a semantic action.
3678 This semantic value is stored in @code{yylval}.
3679 @xref{Action Features, ,Special Features for Use in Actions}.
3680
3681 @node Action Types
3682 @subsection Data Types of Values in Actions
3683 @cindex action data types
3684 @cindex data types in actions
3685
3686 If you have chosen a single data type for semantic values, the @code{$$}
3687 and @code{$@var{n}} constructs always have that data type.
3688
3689 If you have used @code{%union} to specify a variety of data types, then you
3690 must declare a choice among these types for each terminal or nonterminal
3691 symbol that can have a semantic value. Then each time you use @code{$$} or
3692 @code{$@var{n}}, its data type is determined by which symbol it refers to
3693 in the rule. In this example,
3694
3695 @example
3696 @group
3697 exp:
3698 @dots{}
3699 | exp '+' exp @{ $$ = $1 + $3; @}
3700 @end group
3701 @end example
3702
3703 @noindent
3704 @code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3705 have the data type declared for the nonterminal symbol @code{exp}. If
3706 @code{$2} were used, it would have the data type declared for the
3707 terminal symbol @code{'+'}, whatever that might be.
3708
3709 Alternatively, you can specify the data type when you refer to the value,
3710 by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3711 reference. For example, if you have defined types as shown here:
3712
3713 @example
3714 @group
3715 %union @{
3716 int itype;
3717 double dtype;
3718 @}
3719 @end group
3720 @end example
3721
3722 @noindent
3723 then you can write @code{$<itype>1} to refer to the first subunit of the
3724 rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3725
3726 @node Mid-Rule Actions
3727 @subsection Actions in Mid-Rule
3728 @cindex actions in mid-rule
3729 @cindex mid-rule actions
3730
3731 Occasionally it is useful to put an action in the middle of a rule.
3732 These actions are written just like usual end-of-rule actions, but they
3733 are executed before the parser even recognizes the following components.
3734
3735 A mid-rule action may refer to the components preceding it using
3736 @code{$@var{n}}, but it may not refer to subsequent components because
3737 it is run before they are parsed.
3738
3739 The mid-rule action itself counts as one of the components of the rule.
3740 This makes a difference when there is another action later in the same rule
3741 (and usually there is another at the end): you have to count the actions
3742 along with the symbols when working out which number @var{n} to use in
3743 @code{$@var{n}}.
3744
3745 The mid-rule action can also have a semantic value. The action can set
3746 its value with an assignment to @code{$$}, and actions later in the rule
3747 can refer to the value using @code{$@var{n}}. Since there is no symbol
3748 to name the action, there is no way to declare a data type for the value
3749 in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3750 specify a data type each time you refer to this value.
3751
3752 There is no way to set the value of the entire rule with a mid-rule
3753 action, because assignments to @code{$$} do not have that effect. The
3754 only way to set the value for the entire rule is with an ordinary action
3755 at the end of the rule.
3756
3757 Here is an example from a hypothetical compiler, handling a @code{let}
3758 statement that looks like @samp{let (@var{variable}) @var{statement}} and
3759 serves to create a variable named @var{variable} temporarily for the
3760 duration of @var{statement}. To parse this construct, we must put
3761 @var{variable} into the symbol table while @var{statement} is parsed, then
3762 remove it afterward. Here is how it is done:
3763
3764 @example
3765 @group
3766 stmt:
3767 LET '(' var ')'
3768 @{ $<context>$ = push_context (); declare_variable ($3); @}
3769 stmt
3770 @{ $$ = $6; pop_context ($<context>5); @}
3771 @end group
3772 @end example
3773
3774 @noindent
3775 As soon as @samp{let (@var{variable})} has been recognized, the first
3776 action is run. It saves a copy of the current semantic context (the
3777 list of accessible variables) as its semantic value, using alternative
3778 @code{context} in the data-type union. Then it calls
3779 @code{declare_variable} to add the new variable to that list. Once the
3780 first action is finished, the embedded statement @code{stmt} can be
3781 parsed. Note that the mid-rule action is component number 5, so the
3782 @samp{stmt} is component number 6.
3783
3784 After the embedded statement is parsed, its semantic value becomes the
3785 value of the entire @code{let}-statement. Then the semantic value from the
3786 earlier action is used to restore the prior list of variables. This
3787 removes the temporary @code{let}-variable from the list so that it won't
3788 appear to exist while the rest of the program is parsed.
3789
3790 @findex %destructor
3791 @cindex discarded symbols, mid-rule actions
3792 @cindex error recovery, mid-rule actions
3793 In the above example, if the parser initiates error recovery (@pxref{Error
3794 Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3795 it might discard the previous semantic context @code{$<context>5} without
3796 restoring it.
3797 Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3798 Discarded Symbols}).
3799 However, Bison currently provides no means to declare a destructor specific to
3800 a particular mid-rule action's semantic value.
3801
3802 One solution is to bury the mid-rule action inside a nonterminal symbol and to
3803 declare a destructor for that symbol:
3804
3805 @example
3806 @group
3807 %type <context> let
3808 %destructor @{ pop_context ($$); @} let
3809
3810 %%
3811
3812 stmt:
3813 let stmt
3814 @{
3815 $$ = $2;
3816 pop_context ($1);
3817 @};
3818
3819 let:
3820 LET '(' var ')'
3821 @{
3822 $$ = push_context ();
3823 declare_variable ($3);
3824 @};
3825
3826 @end group
3827 @end example
3828
3829 @noindent
3830 Note that the action is now at the end of its rule.
3831 Any mid-rule action can be converted to an end-of-rule action in this way, and
3832 this is what Bison actually does to implement mid-rule actions.
3833
3834 Taking action before a rule is completely recognized often leads to
3835 conflicts since the parser must commit to a parse in order to execute the
3836 action. For example, the following two rules, without mid-rule actions,
3837 can coexist in a working parser because the parser can shift the open-brace
3838 token and look at what follows before deciding whether there is a
3839 declaration or not:
3840
3841 @example
3842 @group
3843 compound:
3844 '@{' declarations statements '@}'
3845 | '@{' statements '@}'
3846 ;
3847 @end group
3848 @end example
3849
3850 @noindent
3851 But when we add a mid-rule action as follows, the rules become nonfunctional:
3852
3853 @example
3854 @group
3855 compound:
3856 @{ prepare_for_local_variables (); @}
3857 '@{' declarations statements '@}'
3858 @end group
3859 @group
3860 | '@{' statements '@}'
3861 ;
3862 @end group
3863 @end example
3864
3865 @noindent
3866 Now the parser is forced to decide whether to run the mid-rule action
3867 when it has read no farther than the open-brace. In other words, it
3868 must commit to using one rule or the other, without sufficient
3869 information to do it correctly. (The open-brace token is what is called
3870 the @dfn{lookahead} token at this time, since the parser is still
3871 deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
3872
3873 You might think that you could correct the problem by putting identical
3874 actions into the two rules, like this:
3875
3876 @example
3877 @group
3878 compound:
3879 @{ prepare_for_local_variables (); @}
3880 '@{' declarations statements '@}'
3881 | @{ prepare_for_local_variables (); @}
3882 '@{' statements '@}'
3883 ;
3884 @end group
3885 @end example
3886
3887 @noindent
3888 But this does not help, because Bison does not realize that the two actions
3889 are identical. (Bison never tries to understand the C code in an action.)
3890
3891 If the grammar is such that a declaration can be distinguished from a
3892 statement by the first token (which is true in C), then one solution which
3893 does work is to put the action after the open-brace, like this:
3894
3895 @example
3896 @group
3897 compound:
3898 '@{' @{ prepare_for_local_variables (); @}
3899 declarations statements '@}'
3900 | '@{' statements '@}'
3901 ;
3902 @end group
3903 @end example
3904
3905 @noindent
3906 Now the first token of the following declaration or statement,
3907 which would in any case tell Bison which rule to use, can still do so.
3908
3909 Another solution is to bury the action inside a nonterminal symbol which
3910 serves as a subroutine:
3911
3912 @example
3913 @group
3914 subroutine:
3915 /* empty */ @{ prepare_for_local_variables (); @}
3916 ;
3917 @end group
3918
3919 @group
3920 compound:
3921 subroutine '@{' declarations statements '@}'
3922 | subroutine '@{' statements '@}'
3923 ;
3924 @end group
3925 @end example
3926
3927 @noindent
3928 Now Bison can execute the action in the rule for @code{subroutine} without
3929 deciding which rule for @code{compound} it will eventually use.
3930
3931 @node Tracking Locations
3932 @section Tracking Locations
3933 @cindex location
3934 @cindex textual location
3935 @cindex location, textual
3936
3937 Though grammar rules and semantic actions are enough to write a fully
3938 functional parser, it can be useful to process some additional information,
3939 especially symbol locations.
3940
3941 The way locations are handled is defined by providing a data type, and
3942 actions to take when rules are matched.
3943
3944 @menu
3945 * Location Type:: Specifying a data type for locations.
3946 * Actions and Locations:: Using locations in actions.
3947 * Location Default Action:: Defining a general way to compute locations.
3948 @end menu
3949
3950 @node Location Type
3951 @subsection Data Type of Locations
3952 @cindex data type of locations
3953 @cindex default location type
3954
3955 Defining a data type for locations is much simpler than for semantic values,
3956 since all tokens and groupings always use the same type.
3957
3958 You can specify the type of locations by defining a macro called
3959 @code{YYLTYPE}, just as you can specify the semantic value type by
3960 defining a @code{YYSTYPE} macro (@pxref{Value Type}).
3961 When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3962 four members:
3963
3964 @example
3965 typedef struct YYLTYPE
3966 @{
3967 int first_line;
3968 int first_column;
3969 int last_line;
3970 int last_column;
3971 @} YYLTYPE;
3972 @end example
3973
3974 When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3975 initializes all these fields to 1 for @code{yylloc}. To initialize
3976 @code{yylloc} with a custom location type (or to chose a different
3977 initialization), use the @code{%initial-action} directive. @xref{Initial
3978 Action Decl, , Performing Actions before Parsing}.
3979
3980 @node Actions and Locations
3981 @subsection Actions and Locations
3982 @cindex location actions
3983 @cindex actions, location
3984 @vindex @@$
3985 @vindex @@@var{n}
3986 @vindex @@@var{name}
3987 @vindex @@[@var{name}]
3988
3989 Actions are not only useful for defining language semantics, but also for
3990 describing the behavior of the output parser with locations.
3991
3992 The most obvious way for building locations of syntactic groupings is very
3993 similar to the way semantic values are computed. In a given rule, several
3994 constructs can be used to access the locations of the elements being matched.
3995 The location of the @var{n}th component of the right hand side is
3996 @code{@@@var{n}}, while the location of the left hand side grouping is
3997 @code{@@$}.
3998
3999 In addition, the named references construct @code{@@@var{name}} and
4000 @code{@@[@var{name}]} may also be used to address the symbol locations.
4001 @xref{Named References}, for more information about using the named
4002 references construct.
4003
4004 Here is a basic example using the default data type for locations:
4005
4006 @example
4007 @group
4008 exp:
4009 @dots{}
4010 | exp '/' exp
4011 @{
4012 @@$.first_column = @@1.first_column;
4013 @@$.first_line = @@1.first_line;
4014 @@$.last_column = @@3.last_column;
4015 @@$.last_line = @@3.last_line;
4016 if ($3)
4017 $$ = $1 / $3;
4018 else
4019 @{
4020 $$ = 1;
4021 fprintf (stderr,
4022 "Division by zero, l%d,c%d-l%d,c%d",
4023 @@3.first_line, @@3.first_column,
4024 @@3.last_line, @@3.last_column);
4025 @}
4026 @}
4027 @end group
4028 @end example
4029
4030 As for semantic values, there is a default action for locations that is
4031 run each time a rule is matched. It sets the beginning of @code{@@$} to the
4032 beginning of the first symbol, and the end of @code{@@$} to the end of the
4033 last symbol.
4034
4035 With this default action, the location tracking can be fully automatic. The
4036 example above simply rewrites this way:
4037
4038 @example
4039 @group
4040 exp:
4041 @dots{}
4042 | exp '/' exp
4043 @{
4044 if ($3)
4045 $$ = $1 / $3;
4046 else
4047 @{
4048 $$ = 1;
4049 fprintf (stderr,
4050 "Division by zero, l%d,c%d-l%d,c%d",
4051 @@3.first_line, @@3.first_column,
4052 @@3.last_line, @@3.last_column);
4053 @}
4054 @}
4055 @end group
4056 @end example
4057
4058 @vindex yylloc
4059 It is also possible to access the location of the lookahead token, if any,
4060 from a semantic action.
4061 This location is stored in @code{yylloc}.
4062 @xref{Action Features, ,Special Features for Use in Actions}.
4063
4064 @node Location Default Action
4065 @subsection Default Action for Locations
4066 @vindex YYLLOC_DEFAULT
4067 @cindex GLR parsers and @code{YYLLOC_DEFAULT}
4068
4069 Actually, actions are not the best place to compute locations. Since
4070 locations are much more general than semantic values, there is room in
4071 the output parser to redefine the default action to take for each
4072 rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
4073 matched, before the associated action is run. It is also invoked
4074 while processing a syntax error, to compute the error's location.
4075 Before reporting an unresolvable syntactic ambiguity, a GLR
4076 parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4077 of that ambiguity.
4078
4079 Most of the time, this macro is general enough to suppress location
4080 dedicated code from semantic actions.
4081
4082 The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
4083 the location of the grouping (the result of the computation). When a
4084 rule is matched, the second parameter identifies locations of
4085 all right hand side elements of the rule being matched, and the third
4086 parameter is the size of the rule's right hand side.
4087 When a GLR parser reports an ambiguity, which of multiple candidate
4088 right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4089 When processing a syntax error, the second parameter identifies locations
4090 of the symbols that were discarded during error processing, and the third
4091 parameter is the number of discarded symbols.
4092
4093 By default, @code{YYLLOC_DEFAULT} is defined this way:
4094
4095 @example
4096 @group
4097 # define YYLLOC_DEFAULT(Cur, Rhs, N) \
4098 do \
4099 if (N) \
4100 @{ \
4101 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4102 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4103 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4104 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4105 @} \
4106 else \
4107 @{ \
4108 (Cur).first_line = (Cur).last_line = \
4109 YYRHSLOC(Rhs, 0).last_line; \
4110 (Cur).first_column = (Cur).last_column = \
4111 YYRHSLOC(Rhs, 0).last_column; \
4112 @} \
4113 while (0)
4114 @end group
4115 @end example
4116
4117 @noindent
4118 where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4119 in @var{rhs} when @var{k} is positive, and the location of the symbol
4120 just before the reduction when @var{k} and @var{n} are both zero.
4121
4122 When defining @code{YYLLOC_DEFAULT}, you should consider that:
4123
4124 @itemize @bullet
4125 @item
4126 All arguments are free of side-effects. However, only the first one (the
4127 result) should be modified by @code{YYLLOC_DEFAULT}.
4128
4129 @item
4130 For consistency with semantic actions, valid indexes within the
4131 right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4132 valid index, and it refers to the symbol just before the reduction.
4133 During error processing @var{n} is always positive.
4134
4135 @item
4136 Your macro should parenthesize its arguments, if need be, since the
4137 actual arguments may not be surrounded by parentheses. Also, your
4138 macro should expand to something that can be used as a single
4139 statement when it is followed by a semicolon.
4140 @end itemize
4141
4142 @node Named References
4143 @section Named References
4144 @cindex named references
4145
4146 As described in the preceding sections, the traditional way to refer to any
4147 semantic value or location is a @dfn{positional reference}, which takes the
4148 form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4149 such a reference is not very descriptive. Moreover, if you later decide to
4150 insert or remove symbols in the right-hand side of a grammar rule, the need
4151 to renumber such references can be tedious and error-prone.
4152
4153 To avoid these issues, you can also refer to a semantic value or location
4154 using a @dfn{named reference}. First of all, original symbol names may be
4155 used as named references. For example:
4156
4157 @example
4158 @group
4159 invocation: op '(' args ')'
4160 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4161 @end group
4162 @end example
4163
4164 @noindent
4165 Positional and named references can be mixed arbitrarily. For example:
4166
4167 @example
4168 @group
4169 invocation: op '(' args ')'
4170 @{ $$ = new_invocation ($op, $args, @@$); @}
4171 @end group
4172 @end example
4173
4174 @noindent
4175 However, sometimes regular symbol names are not sufficient due to
4176 ambiguities:
4177
4178 @example
4179 @group
4180 exp: exp '/' exp
4181 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4182
4183 exp: exp '/' exp
4184 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4185
4186 exp: exp '/' exp
4187 @{ $$ = $1 / $3; @} // No error.
4188 @end group
4189 @end example
4190
4191 @noindent
4192 When ambiguity occurs, explicitly declared names may be used for values and
4193 locations. Explicit names are declared as a bracketed name after a symbol
4194 appearance in rule definitions. For example:
4195 @example
4196 @group
4197 exp[result]: exp[left] '/' exp[right]
4198 @{ $result = $left / $right; @}
4199 @end group
4200 @end example
4201
4202 @noindent
4203 In order to access a semantic value generated by a mid-rule action, an
4204 explicit name may also be declared by putting a bracketed name after the
4205 closing brace of the mid-rule action code:
4206 @example
4207 @group
4208 exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4209 @{ $res = $left + $right; @}
4210 @end group
4211 @end example
4212
4213 @noindent
4214
4215 In references, in order to specify names containing dots and dashes, an explicit
4216 bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4217 @example
4218 @group
4219 if-stmt: "if" '(' expr ')' "then" then.stmt ';'
4220 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4221 @end group
4222 @end example
4223
4224 It often happens that named references are followed by a dot, dash or other
4225 C punctuation marks and operators. By default, Bison will read
4226 @samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4227 @samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4228 value. In order to force Bison to recognize @samp{name.suffix} in its
4229 entirety as the name of a semantic value, the bracketed syntax
4230 @samp{$[name.suffix]} must be used.
4231
4232 The named references feature is experimental. More user feedback will help
4233 to stabilize it.
4234
4235 @node Declarations
4236 @section Bison Declarations
4237 @cindex declarations, Bison
4238 @cindex Bison declarations
4239
4240 The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4241 used in formulating the grammar and the data types of semantic values.
4242 @xref{Symbols}.
4243
4244 All token type names (but not single-character literal tokens such as
4245 @code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4246 declared if you need to specify which data type to use for the semantic
4247 value (@pxref{Multiple Types, ,More Than One Value Type}).
4248
4249 The first rule in the grammar file also specifies the start symbol, by
4250 default. If you want some other symbol to be the start symbol, you
4251 must declare it explicitly (@pxref{Language and Grammar, ,Languages
4252 and Context-Free Grammars}).
4253
4254 @menu
4255 * Require Decl:: Requiring a Bison version.
4256 * Token Decl:: Declaring terminal symbols.
4257 * Precedence Decl:: Declaring terminals with precedence and associativity.
4258 * Union Decl:: Declaring the set of all semantic value types.
4259 * Type Decl:: Declaring the choice of type for a nonterminal symbol.
4260 * Initial Action Decl:: Code run before parsing starts.
4261 * Destructor Decl:: Declaring how symbols are freed.
4262 * Printer Decl:: Declaring how symbol values are displayed.
4263 * Expect Decl:: Suppressing warnings about parsing conflicts.
4264 * Start Decl:: Specifying the start symbol.
4265 * Pure Decl:: Requesting a reentrant parser.
4266 * Push Decl:: Requesting a push parser.
4267 * Decl Summary:: Table of all Bison declarations.
4268 * %define Summary:: Defining variables to adjust Bison's behavior.
4269 * %code Summary:: Inserting code into the parser source.
4270 @end menu
4271
4272 @node Require Decl
4273 @subsection Require a Version of Bison
4274 @cindex version requirement
4275 @cindex requiring a version of Bison
4276 @findex %require
4277
4278 You may require the minimum version of Bison to process the grammar. If
4279 the requirement is not met, @command{bison} exits with an error (exit
4280 status 63).
4281
4282 @example
4283 %require "@var{version}"
4284 @end example
4285
4286 @node Token Decl
4287 @subsection Token Type Names
4288 @cindex declaring token type names
4289 @cindex token type names, declaring
4290 @cindex declaring literal string tokens
4291 @findex %token
4292
4293 The basic way to declare a token type name (terminal symbol) is as follows:
4294
4295 @example
4296 %token @var{name}
4297 @end example
4298
4299 Bison will convert this into a @code{#define} directive in
4300 the parser, so that the function @code{yylex} (if it is in this file)
4301 can use the name @var{name} to stand for this token type's code.
4302
4303 Alternatively, you can use @code{%left}, @code{%right}, or
4304 @code{%nonassoc} instead of @code{%token}, if you wish to specify
4305 associativity and precedence. @xref{Precedence Decl, ,Operator
4306 Precedence}.
4307
4308 You can explicitly specify the numeric code for a token type by appending
4309 a nonnegative decimal or hexadecimal integer value in the field immediately
4310 following the token name:
4311
4312 @example
4313 %token NUM 300
4314 %token XNUM 0x12d // a GNU extension
4315 @end example
4316
4317 @noindent
4318 It is generally best, however, to let Bison choose the numeric codes for
4319 all token types. Bison will automatically select codes that don't conflict
4320 with each other or with normal characters.
4321
4322 In the event that the stack type is a union, you must augment the
4323 @code{%token} or other token declaration to include the data type
4324 alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4325 Than One Value Type}).
4326
4327 For example:
4328
4329 @example
4330 @group
4331 %union @{ /* define stack type */
4332 double val;
4333 symrec *tptr;
4334 @}
4335 %token <val> NUM /* define token NUM and its type */
4336 @end group
4337 @end example
4338
4339 You can associate a literal string token with a token type name by
4340 writing the literal string at the end of a @code{%token}
4341 declaration which declares the name. For example:
4342
4343 @example
4344 %token arrow "=>"
4345 @end example
4346
4347 @noindent
4348 For example, a grammar for the C language might specify these names with
4349 equivalent literal string tokens:
4350
4351 @example
4352 %token <operator> OR "||"
4353 %token <operator> LE 134 "<="
4354 %left OR "<="
4355 @end example
4356
4357 @noindent
4358 Once you equate the literal string and the token name, you can use them
4359 interchangeably in further declarations or the grammar rules. The
4360 @code{yylex} function can use the token name or the literal string to
4361 obtain the token type code number (@pxref{Calling Convention}).
4362 Syntax error messages passed to @code{yyerror} from the parser will reference
4363 the literal string instead of the token name.
4364
4365 The token numbered as 0 corresponds to end of file; the following line
4366 allows for nicer error messages referring to ``end of file'' instead
4367 of ``$end'':
4368
4369 @example
4370 %token END 0 "end of file"
4371 @end example
4372
4373 @node Precedence Decl
4374 @subsection Operator Precedence
4375 @cindex precedence declarations
4376 @cindex declaring operator precedence
4377 @cindex operator precedence, declaring
4378
4379 Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4380 declare a token and specify its precedence and associativity, all at
4381 once. These are called @dfn{precedence declarations}.
4382 @xref{Precedence, ,Operator Precedence}, for general information on
4383 operator precedence.
4384
4385 The syntax of a precedence declaration is nearly the same as that of
4386 @code{%token}: either
4387
4388 @example
4389 %left @var{symbols}@dots{}
4390 @end example
4391
4392 @noindent
4393 or
4394
4395 @example
4396 %left <@var{type}> @var{symbols}@dots{}
4397 @end example
4398
4399 And indeed any of these declarations serves the purposes of @code{%token}.
4400 But in addition, they specify the associativity and relative precedence for
4401 all the @var{symbols}:
4402
4403 @itemize @bullet
4404 @item
4405 The associativity of an operator @var{op} determines how repeated uses
4406 of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4407 @var{z}} is parsed by grouping @var{x} with @var{y} first or by
4408 grouping @var{y} with @var{z} first. @code{%left} specifies
4409 left-associativity (grouping @var{x} with @var{y} first) and
4410 @code{%right} specifies right-associativity (grouping @var{y} with
4411 @var{z} first). @code{%nonassoc} specifies no associativity, which
4412 means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4413 considered a syntax error.
4414
4415 @item
4416 The precedence of an operator determines how it nests with other operators.
4417 All the tokens declared in a single precedence declaration have equal
4418 precedence and nest together according to their associativity.
4419 When two tokens declared in different precedence declarations associate,
4420 the one declared later has the higher precedence and is grouped first.
4421 @end itemize
4422
4423 For backward compatibility, there is a confusing difference between the
4424 argument lists of @code{%token} and precedence declarations.
4425 Only a @code{%token} can associate a literal string with a token type name.
4426 A precedence declaration always interprets a literal string as a reference to a
4427 separate token.
4428 For example:
4429
4430 @example
4431 %left OR "<=" // Does not declare an alias.
4432 %left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4433 @end example
4434
4435 @node Union Decl
4436 @subsection The Collection of Value Types
4437 @cindex declaring value types
4438 @cindex value types, declaring
4439 @findex %union
4440
4441 The @code{%union} declaration specifies the entire collection of
4442 possible data types for semantic values. The keyword @code{%union} is
4443 followed by braced code containing the same thing that goes inside a
4444 @code{union} in C@.
4445
4446 For example:
4447
4448 @example
4449 @group
4450 %union @{
4451 double val;
4452 symrec *tptr;
4453 @}
4454 @end group
4455 @end example
4456
4457 @noindent
4458 This says that the two alternative types are @code{double} and @code{symrec
4459 *}. They are given names @code{val} and @code{tptr}; these names are used
4460 in the @code{%token} and @code{%type} declarations to pick one of the types
4461 for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4462
4463 As an extension to POSIX, a tag is allowed after the
4464 @code{union}. For example:
4465
4466 @example
4467 @group
4468 %union value @{
4469 double val;
4470 symrec *tptr;
4471 @}
4472 @end group
4473 @end example
4474
4475 @noindent
4476 specifies the union tag @code{value}, so the corresponding C type is
4477 @code{union value}. If you do not specify a tag, it defaults to
4478 @code{YYSTYPE}.
4479
4480 As another extension to POSIX, you may specify multiple
4481 @code{%union} declarations; their contents are concatenated. However,
4482 only the first @code{%union} declaration can specify a tag.
4483
4484 Note that, unlike making a @code{union} declaration in C, you need not write
4485 a semicolon after the closing brace.
4486
4487 Instead of @code{%union}, you can define and use your own union type
4488 @code{YYSTYPE} if your grammar contains at least one
4489 @samp{<@var{type}>} tag. For example, you can put the following into
4490 a header file @file{parser.h}:
4491
4492 @example
4493 @group
4494 union YYSTYPE @{
4495 double val;
4496 symrec *tptr;
4497 @};
4498 typedef union YYSTYPE YYSTYPE;
4499 @end group
4500 @end example
4501
4502 @noindent
4503 and then your grammar can use the following
4504 instead of @code{%union}:
4505
4506 @example
4507 @group
4508 %@{
4509 #include "parser.h"
4510 %@}
4511 %type <val> expr
4512 %token <tptr> ID
4513 @end group
4514 @end example
4515
4516 @node Type Decl
4517 @subsection Nonterminal Symbols
4518 @cindex declaring value types, nonterminals
4519 @cindex value types, nonterminals, declaring
4520 @findex %type
4521
4522 @noindent
4523 When you use @code{%union} to specify multiple value types, you must
4524 declare the value type of each nonterminal symbol for which values are
4525 used. This is done with a @code{%type} declaration, like this:
4526
4527 @example
4528 %type <@var{type}> @var{nonterminal}@dots{}
4529 @end example
4530
4531 @noindent
4532 Here @var{nonterminal} is the name of a nonterminal symbol, and
4533 @var{type} is the name given in the @code{%union} to the alternative
4534 that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4535 can give any number of nonterminal symbols in the same @code{%type}
4536 declaration, if they have the same value type. Use spaces to separate
4537 the symbol names.
4538
4539 You can also declare the value type of a terminal symbol. To do this,
4540 use the same @code{<@var{type}>} construction in a declaration for the
4541 terminal symbol. All kinds of token declarations allow
4542 @code{<@var{type}>}.
4543
4544 @node Initial Action Decl
4545 @subsection Performing Actions before Parsing
4546 @findex %initial-action
4547
4548 Sometimes your parser needs to perform some initializations before
4549 parsing. The @code{%initial-action} directive allows for such arbitrary
4550 code.
4551
4552 @deffn {Directive} %initial-action @{ @var{code} @}
4553 @findex %initial-action
4554 Declare that the braced @var{code} must be invoked before parsing each time
4555 @code{yyparse} is called. The @var{code} may use @code{$$} (or
4556 @code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4557 lookahead --- and the @code{%parse-param}.
4558 @end deffn
4559
4560 For instance, if your locations use a file name, you may use
4561
4562 @example
4563 %parse-param @{ char const *file_name @};
4564 %initial-action
4565 @{
4566 @@$.initialize (file_name);
4567 @};
4568 @end example
4569
4570
4571 @node Destructor Decl
4572 @subsection Freeing Discarded Symbols
4573 @cindex freeing discarded symbols
4574 @findex %destructor
4575 @findex <*>
4576 @findex <>
4577 During error recovery (@pxref{Error Recovery}), symbols already pushed
4578 on the stack and tokens coming from the rest of the file are discarded
4579 until the parser falls on its feet. If the parser runs out of memory,
4580 or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
4581 symbols on the stack must be discarded. Even if the parser succeeds, it
4582 must discard the start symbol.
4583
4584 When discarded symbols convey heap based information, this memory is
4585 lost. While this behavior can be tolerable for batch parsers, such as
4586 in traditional compilers, it is unacceptable for programs like shells or
4587 protocol implementations that may parse and execute indefinitely.
4588
4589 The @code{%destructor} directive defines code that is called when a
4590 symbol is automatically discarded.
4591
4592 @deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4593 @findex %destructor
4594 Invoke the braced @var{code} whenever the parser discards one of the
4595 @var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4596 designates the semantic value associated with the discarded symbol, and
4597 @code{@@$} designates its location. The additional parser parameters are
4598 also available (@pxref{Parser Function, , The Parser Function
4599 @code{yyparse}}).
4600
4601 When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4602 per-symbol @code{%destructor}.
4603 You may also define a per-type @code{%destructor} by listing a semantic type
4604 tag among @var{symbols}.
4605 In that case, the parser will invoke this @var{code} whenever it discards any
4606 grammar symbol that has that semantic type tag unless that symbol has its own
4607 per-symbol @code{%destructor}.
4608
4609 Finally, you can define two different kinds of default @code{%destructor}s.
4610 (These default forms are experimental.
4611 More user feedback will help to determine whether they should become permanent
4612 features.)
4613 You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
4614 exactly one @code{%destructor} declaration in your grammar file.
4615 The parser will invoke the @var{code} associated with one of these whenever it
4616 discards any user-defined grammar symbol that has no per-symbol and no per-type
4617 @code{%destructor}.
4618 The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4619 symbol for which you have formally declared a semantic type tag (@code{%type}
4620 counts as such a declaration, but @code{$<tag>$} does not).
4621 The parser uses the @var{code} for @code{<>} in the case of such a grammar
4622 symbol that has no declared semantic type tag.
4623 @end deffn
4624
4625 @noindent
4626 For example:
4627
4628 @example
4629 %union @{ char *string; @}
4630 %token <string> STRING1
4631 %token <string> STRING2
4632 %type <string> string1
4633 %type <string> string2
4634 %union @{ char character; @}
4635 %token <character> CHR
4636 %type <character> chr
4637 %token TAGLESS
4638
4639 %destructor @{ @} <character>
4640 %destructor @{ free ($$); @} <*>
4641 %destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
4642 %destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
4643 @end example
4644
4645 @noindent
4646 guarantees that, when the parser discards any user-defined symbol that has a
4647 semantic type tag other than @code{<character>}, it passes its semantic value
4648 to @code{free} by default.
4649 However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4650 prints its line number to @code{stdout}.
4651 It performs only the second @code{%destructor} in this case, so it invokes
4652 @code{free} only once.
4653 Finally, the parser merely prints a message whenever it discards any symbol,
4654 such as @code{TAGLESS}, that has no semantic type tag.
4655
4656 A Bison-generated parser invokes the default @code{%destructor}s only for
4657 user-defined as opposed to Bison-defined symbols.
4658 For example, the parser will not invoke either kind of default
4659 @code{%destructor} for the special Bison-defined symbols @code{$accept},
4660 @code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4661 none of which you can reference in your grammar.
4662 It also will not invoke either for the @code{error} token (@pxref{Table of
4663 Symbols, ,error}), which is always defined by Bison regardless of whether you
4664 reference it in your grammar.
4665 However, it may invoke one of them for the end token (token 0) if you
4666 redefine it from @code{$end} to, for example, @code{END}:
4667
4668 @example
4669 %token END 0
4670 @end example
4671
4672 @cindex actions in mid-rule
4673 @cindex mid-rule actions
4674 Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4675 mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4676 That is, Bison does not consider a mid-rule to have a semantic value if you
4677 do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4678 (where @var{n} is the right-hand side symbol position of the mid-rule) in
4679 any later action in that rule. However, if you do reference either, the
4680 Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4681 it discards the mid-rule symbol.
4682
4683 @ignore
4684 @noindent
4685 In the future, it may be possible to redefine the @code{error} token as a
4686 nonterminal that captures the discarded symbols.
4687 In that case, the parser will invoke the default destructor for it as well.
4688 @end ignore
4689
4690 @sp 1
4691
4692 @cindex discarded symbols
4693 @dfn{Discarded symbols} are the following:
4694
4695 @itemize
4696 @item
4697 stacked symbols popped during the first phase of error recovery,
4698 @item
4699 incoming terminals during the second phase of error recovery,
4700 @item
4701 the current lookahead and the entire stack (except the current
4702 right-hand side symbols) when the parser returns immediately, and
4703 @item
4704 the start symbol, when the parser succeeds.
4705 @end itemize
4706
4707 The parser can @dfn{return immediately} because of an explicit call to
4708 @code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4709 exhaustion.
4710
4711 Right-hand side symbols of a rule that explicitly triggers a syntax
4712 error via @code{YYERROR} are not discarded automatically. As a rule
4713 of thumb, destructors are invoked only when user actions cannot manage
4714 the memory.
4715
4716 @node Printer Decl
4717 @subsection Printing Semantic Values
4718 @cindex printing semantic values
4719 @findex %printer
4720 @findex <*>
4721 @findex <>
4722 When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4723 the parser reports its actions, such as reductions. When a symbol involved
4724 in an action is reported, only its kind is displayed, as the parser cannot
4725 know how semantic values should be formatted.
4726
4727 The @code{%printer} directive defines code that is called when a symbol is
4728 reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4729 Decl, , Freeing Discarded Symbols}).
4730
4731 @deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4732 @findex %printer
4733 @vindex yyoutput
4734 @c This is the same text as for %destructor.
4735 Invoke the braced @var{code} whenever the parser displays one of the
4736 @var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4737 (a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4738 @code{$<@var{tag}>$}) designates the semantic value associated with the
4739 symbol, and @code{@@$} its location. The additional parser parameters are
4740 also available (@pxref{Parser Function, , The Parser Function
4741 @code{yyparse}}).
4742
4743 The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4744 Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4745 @samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4746 typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4747 @samp{<>}).
4748 @end deffn
4749
4750 @noindent
4751 For example:
4752
4753 @example
4754 %union @{ char *string; @}
4755 %token <string> STRING1
4756 %token <string> STRING2
4757 %type <string> string1
4758 %type <string> string2
4759 %union @{ char character; @}
4760 %token <character> CHR
4761 %type <character> chr
4762 %token TAGLESS
4763
4764 %printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4765 %printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4766 %printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4767 %printer @{ fprintf (yyoutput, "<>"); @} <>
4768 @end example
4769
4770 @noindent
4771 guarantees that, when the parser print any symbol that has a semantic type
4772 tag other than @code{<character>}, it display the address of the semantic
4773 value by default. However, when the parser displays a @code{STRING1} or a
4774 @code{string1}, it formats it as a string in double quotes. It performs
4775 only the second @code{%printer} in this case, so it prints only once.
4776 Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4777 that has no semantic type tag. See also
4778
4779
4780 @node Expect Decl
4781 @subsection Suppressing Conflict Warnings
4782 @cindex suppressing conflict warnings
4783 @cindex preventing warnings about conflicts
4784 @cindex warnings, preventing
4785 @cindex conflicts, suppressing warnings of
4786 @findex %expect
4787 @findex %expect-rr
4788
4789 Bison normally warns if there are any conflicts in the grammar
4790 (@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4791 have harmless shift/reduce conflicts which are resolved in a predictable
4792 way and would be difficult to eliminate. It is desirable to suppress
4793 the warning about these conflicts unless the number of conflicts
4794 changes. You can do this with the @code{%expect} declaration.
4795
4796 The declaration looks like this:
4797
4798 @example
4799 %expect @var{n}
4800 @end example
4801
4802 Here @var{n} is a decimal integer. The declaration says there should
4803 be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4804 Bison reports an error if the number of shift/reduce conflicts differs
4805 from @var{n}, or if there are any reduce/reduce conflicts.
4806
4807 For deterministic parsers, reduce/reduce conflicts are more
4808 serious, and should be eliminated entirely. Bison will always report
4809 reduce/reduce conflicts for these parsers. With GLR
4810 parsers, however, both kinds of conflicts are routine; otherwise,
4811 there would be no need to use GLR parsing. Therefore, it is
4812 also possible to specify an expected number of reduce/reduce conflicts
4813 in GLR parsers, using the declaration:
4814
4815 @example
4816 %expect-rr @var{n}
4817 @end example
4818
4819 In general, using @code{%expect} involves these steps:
4820
4821 @itemize @bullet
4822 @item
4823 Compile your grammar without @code{%expect}. Use the @samp{-v} option
4824 to get a verbose list of where the conflicts occur. Bison will also
4825 print the number of conflicts.
4826
4827 @item
4828 Check each of the conflicts to make sure that Bison's default
4829 resolution is what you really want. If not, rewrite the grammar and
4830 go back to the beginning.
4831
4832 @item
4833 Add an @code{%expect} declaration, copying the number @var{n} from the
4834 number which Bison printed. With GLR parsers, add an
4835 @code{%expect-rr} declaration as well.
4836 @end itemize
4837
4838 Now Bison will report an error if you introduce an unexpected conflict,
4839 but will keep silent otherwise.
4840
4841 @node Start Decl
4842 @subsection The Start-Symbol
4843 @cindex declaring the start symbol
4844 @cindex start symbol, declaring
4845 @cindex default start symbol
4846 @findex %start
4847
4848 Bison assumes by default that the start symbol for the grammar is the first
4849 nonterminal specified in the grammar specification section. The programmer
4850 may override this restriction with the @code{%start} declaration as follows:
4851
4852 @example
4853 %start @var{symbol}
4854 @end example
4855
4856 @node Pure Decl
4857 @subsection A Pure (Reentrant) Parser
4858 @cindex reentrant parser
4859 @cindex pure parser
4860 @findex %define api.pure
4861
4862 A @dfn{reentrant} program is one which does not alter in the course of
4863 execution; in other words, it consists entirely of @dfn{pure} (read-only)
4864 code. Reentrancy is important whenever asynchronous execution is possible;
4865 for example, a nonreentrant program may not be safe to call from a signal
4866 handler. In systems with multiple threads of control, a nonreentrant
4867 program must be called only within interlocks.
4868
4869 Normally, Bison generates a parser which is not reentrant. This is
4870 suitable for most uses, and it permits compatibility with Yacc. (The
4871 standard Yacc interfaces are inherently nonreentrant, because they use
4872 statically allocated variables for communication with @code{yylex},
4873 including @code{yylval} and @code{yylloc}.)
4874
4875 Alternatively, you can generate a pure, reentrant parser. The Bison
4876 declaration @code{%define api.pure} says that you want the parser to be
4877 reentrant. It looks like this:
4878
4879 @example
4880 %define api.pure
4881 @end example
4882
4883 The result is that the communication variables @code{yylval} and
4884 @code{yylloc} become local variables in @code{yyparse}, and a different
4885 calling convention is used for the lexical analyzer function
4886 @code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4887 Parsers}, for the details of this. The variable @code{yynerrs}
4888 becomes local in @code{yyparse} in pull mode but it becomes a member
4889 of yypstate in push mode. (@pxref{Error Reporting, ,The Error
4890 Reporting Function @code{yyerror}}). The convention for calling
4891 @code{yyparse} itself is unchanged.
4892
4893 Whether the parser is pure has nothing to do with the grammar rules.
4894 You can generate either a pure parser or a nonreentrant parser from any
4895 valid grammar.
4896
4897 @node Push Decl
4898 @subsection A Push Parser
4899 @cindex push parser
4900 @cindex push parser
4901 @findex %define api.push-pull
4902
4903 (The current push parsing interface is experimental and may evolve.
4904 More user feedback will help to stabilize it.)
4905
4906 A pull parser is called once and it takes control until all its input
4907 is completely parsed. A push parser, on the other hand, is called
4908 each time a new token is made available.
4909
4910 A push parser is typically useful when the parser is part of a
4911 main event loop in the client's application. This is typically
4912 a requirement of a GUI, when the main event loop needs to be triggered
4913 within a certain time period.
4914
4915 Normally, Bison generates a pull parser.
4916 The following Bison declaration says that you want the parser to be a push
4917 parser (@pxref{%define Summary,,api.push-pull}):
4918
4919 @example
4920 %define api.push-pull push
4921 @end example
4922
4923 In almost all cases, you want to ensure that your push parser is also
4924 a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
4925 time you should create an impure push parser is to have backwards
4926 compatibility with the impure Yacc pull mode interface. Unless you know
4927 what you are doing, your declarations should look like this:
4928
4929 @example
4930 %define api.pure
4931 %define api.push-pull push
4932 @end example
4933
4934 There is a major notable functional difference between the pure push parser
4935 and the impure push parser. It is acceptable for a pure push parser to have
4936 many parser instances, of the same type of parser, in memory at the same time.
4937 An impure push parser should only use one parser at a time.
4938
4939 When a push parser is selected, Bison will generate some new symbols in
4940 the generated parser. @code{yypstate} is a structure that the generated
4941 parser uses to store the parser's state. @code{yypstate_new} is the
4942 function that will create a new parser instance. @code{yypstate_delete}
4943 will free the resources associated with the corresponding parser instance.
4944 Finally, @code{yypush_parse} is the function that should be called whenever a
4945 token is available to provide the parser. A trivial example
4946 of using a pure push parser would look like this:
4947
4948 @example
4949 int status;
4950 yypstate *ps = yypstate_new ();
4951 do @{
4952 status = yypush_parse (ps, yylex (), NULL);
4953 @} while (status == YYPUSH_MORE);
4954 yypstate_delete (ps);
4955 @end example
4956
4957 If the user decided to use an impure push parser, a few things about
4958 the generated parser will change. The @code{yychar} variable becomes
4959 a global variable instead of a variable in the @code{yypush_parse} function.
4960 For this reason, the signature of the @code{yypush_parse} function is
4961 changed to remove the token as a parameter. A nonreentrant push parser
4962 example would thus look like this:
4963
4964 @example
4965 extern int yychar;
4966 int status;
4967 yypstate *ps = yypstate_new ();
4968 do @{
4969 yychar = yylex ();
4970 status = yypush_parse (ps);
4971 @} while (status == YYPUSH_MORE);
4972 yypstate_delete (ps);
4973 @end example
4974
4975 That's it. Notice the next token is put into the global variable @code{yychar}
4976 for use by the next invocation of the @code{yypush_parse} function.
4977
4978 Bison also supports both the push parser interface along with the pull parser
4979 interface in the same generated parser. In order to get this functionality,
4980 you should replace the @code{%define api.push-pull push} declaration with the
4981 @code{%define api.push-pull both} declaration. Doing this will create all of
4982 the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
4983 and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4984 would be used. However, the user should note that it is implemented in the
4985 generated parser by calling @code{yypull_parse}.
4986 This makes the @code{yyparse} function that is generated with the
4987 @code{%define api.push-pull both} declaration slower than the normal
4988 @code{yyparse} function. If the user
4989 calls the @code{yypull_parse} function it will parse the rest of the input
4990 stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4991 and then @code{yypull_parse} the rest of the input stream. If you would like
4992 to switch back and forth between between parsing styles, you would have to
4993 write your own @code{yypull_parse} function that knows when to quit looking
4994 for input. An example of using the @code{yypull_parse} function would look
4995 like this:
4996
4997 @example
4998 yypstate *ps = yypstate_new ();
4999 yypull_parse (ps); /* Will call the lexer */
5000 yypstate_delete (ps);
5001 @end example
5002
5003 Adding the @code{%define api.pure} declaration does exactly the same thing to
5004 the generated parser with @code{%define api.push-pull both} as it did for
5005 @code{%define api.push-pull push}.
5006
5007 @node Decl Summary
5008 @subsection Bison Declaration Summary
5009 @cindex Bison declaration summary
5010 @cindex declaration summary
5011 @cindex summary, Bison declaration
5012
5013 Here is a summary of the declarations used to define a grammar:
5014
5015 @deffn {Directive} %union
5016 Declare the collection of data types that semantic values may have
5017 (@pxref{Union Decl, ,The Collection of Value Types}).
5018 @end deffn
5019
5020 @deffn {Directive} %token
5021 Declare a terminal symbol (token type name) with no precedence
5022 or associativity specified (@pxref{Token Decl, ,Token Type Names}).
5023 @end deffn
5024
5025 @deffn {Directive} %right
5026 Declare a terminal symbol (token type name) that is right-associative
5027 (@pxref{Precedence Decl, ,Operator Precedence}).
5028 @end deffn
5029
5030 @deffn {Directive} %left
5031 Declare a terminal symbol (token type name) that is left-associative
5032 (@pxref{Precedence Decl, ,Operator Precedence}).
5033 @end deffn
5034
5035 @deffn {Directive} %nonassoc
5036 Declare a terminal symbol (token type name) that is nonassociative
5037 (@pxref{Precedence Decl, ,Operator Precedence}).
5038 Using it in a way that would be associative is a syntax error.
5039 @end deffn
5040
5041 @ifset defaultprec
5042 @deffn {Directive} %default-prec
5043 Assign a precedence to rules lacking an explicit @code{%prec} modifier
5044 (@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5045 @end deffn
5046 @end ifset
5047
5048 @deffn {Directive} %type
5049 Declare the type of semantic values for a nonterminal symbol
5050 (@pxref{Type Decl, ,Nonterminal Symbols}).
5051 @end deffn
5052
5053 @deffn {Directive} %start
5054 Specify the grammar's start symbol (@pxref{Start Decl, ,The
5055 Start-Symbol}).
5056 @end deffn
5057
5058 @deffn {Directive} %expect
5059 Declare the expected number of shift-reduce conflicts
5060 (@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
5061 @end deffn
5062
5063
5064 @sp 1
5065 @noindent
5066 In order to change the behavior of @command{bison}, use the following
5067 directives:
5068
5069 @deffn {Directive} %code @{@var{code}@}
5070 @deffnx {Directive} %code @var{qualifier} @{@var{code}@}
5071 @findex %code
5072 Insert @var{code} verbatim into the output parser source at the
5073 default location or at the location specified by @var{qualifier}.
5074 @xref{%code Summary}.
5075 @end deffn
5076
5077 @deffn {Directive} %debug
5078 In the parser implementation file, define the macro @code{YYDEBUG} (or
5079 @code{@var{prefix}DEBUG} with @samp{%define api.prefix @var{prefix}}), see
5080 @ref{Multiple Parsers, ,Multiple Parsers in the Same Program}) to 1 if it is
5081 not already defined, so that the debugging facilities are compiled.
5082 @xref{Tracing, ,Tracing Your Parser}.
5083 @end deffn
5084
5085 @deffn {Directive} %define @var{variable}
5086 @deffnx {Directive} %define @var{variable} @var{value}
5087 @deffnx {Directive} %define @var{variable} "@var{value}"
5088 Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5089 @end deffn
5090
5091 @deffn {Directive} %defines
5092 Write a parser header file containing macro definitions for the token
5093 type names defined in the grammar as well as a few other declarations.
5094 If the parser implementation file is named @file{@var{name}.c} then
5095 the parser header file is named @file{@var{name}.h}.
5096
5097 For C parsers, the parser header file declares @code{YYSTYPE} unless
5098 @code{YYSTYPE} is already defined as a macro or you have used a
5099 @code{<@var{type}>} tag without using @code{%union}. Therefore, if
5100 you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5101 Value Type}) with components that require other definitions, or if you
5102 have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5103 Type, ,Data Types of Semantic Values}), you need to arrange for these
5104 definitions to be propagated to all modules, e.g., by putting them in
5105 a prerequisite header that is included both by your parser and by any
5106 other module that needs @code{YYSTYPE}.
5107
5108 Unless your parser is pure, the parser header file declares
5109 @code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5110 (Reentrant) Parser}.
5111
5112 If you have also used locations, the parser header file declares
5113 @code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5114 @code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
5115
5116 This parser header file is normally essential if you wish to put the
5117 definition of @code{yylex} in a separate source file, because
5118 @code{yylex} typically needs to be able to refer to the
5119 above-mentioned declarations and to the token type codes. @xref{Token
5120 Values, ,Semantic Values of Tokens}.
5121
5122 @findex %code requires
5123 @findex %code provides
5124 If you have declared @code{%code requires} or @code{%code provides}, the output
5125 header also contains their code.
5126 @xref{%code Summary}.
5127 @end deffn
5128
5129 @deffn {Directive} %defines @var{defines-file}
5130 Same as above, but save in the file @var{defines-file}.
5131 @end deffn
5132
5133 @deffn {Directive} %destructor
5134 Specify how the parser should reclaim the memory associated to
5135 discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5136 @end deffn
5137
5138 @deffn {Directive} %file-prefix "@var{prefix}"
5139 Specify a prefix to use for all Bison output file names. The names
5140 are chosen as if the grammar file were named @file{@var{prefix}.y}.
5141 @end deffn
5142
5143 @deffn {Directive} %language "@var{language}"
5144 Specify the programming language for the generated parser. Currently
5145 supported languages include C, C++, and Java.
5146 @var{language} is case-insensitive.
5147
5148 This directive is experimental and its effect may be modified in future
5149 releases.
5150 @end deffn
5151
5152 @deffn {Directive} %locations
5153 Generate the code processing the locations (@pxref{Action Features,
5154 ,Special Features for Use in Actions}). This mode is enabled as soon as
5155 the grammar uses the special @samp{@@@var{n}} tokens, but if your
5156 grammar does not use it, using @samp{%locations} allows for more
5157 accurate syntax error messages.
5158 @end deffn
5159
5160 @ifset defaultprec
5161 @deffn {Directive} %no-default-prec
5162 Do not assign a precedence to rules lacking an explicit @code{%prec}
5163 modifier (@pxref{Contextual Precedence, ,Context-Dependent
5164 Precedence}).
5165 @end deffn
5166 @end ifset
5167
5168 @deffn {Directive} %no-lines
5169 Don't generate any @code{#line} preprocessor commands in the parser
5170 implementation file. Ordinarily Bison writes these commands in the
5171 parser implementation file so that the C compiler and debuggers will
5172 associate errors and object code with your source file (the grammar
5173 file). This directive causes them to associate errors with the parser
5174 implementation file, treating it as an independent source file in its
5175 own right.
5176 @end deffn
5177
5178 @deffn {Directive} %output "@var{file}"
5179 Specify @var{file} for the parser implementation file.
5180 @end deffn
5181
5182 @deffn {Directive} %pure-parser
5183 Deprecated version of @code{%define api.pure} (@pxref{%define
5184 Summary,,api.pure}), for which Bison is more careful to warn about
5185 unreasonable usage.
5186 @end deffn
5187
5188 @deffn {Directive} %require "@var{version}"
5189 Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5190 Require a Version of Bison}.
5191 @end deffn
5192
5193 @deffn {Directive} %skeleton "@var{file}"
5194 Specify the skeleton to use.
5195
5196 @c You probably don't need this option unless you are developing Bison.
5197 @c You should use @code{%language} if you want to specify the skeleton for a
5198 @c different language, because it is clearer and because it will always choose the
5199 @c correct skeleton for non-deterministic or push parsers.
5200
5201 If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5202 file in the Bison installation directory.
5203 If it does, @var{file} is an absolute file name or a file name relative to the
5204 directory of the grammar file.
5205 This is similar to how most shells resolve commands.
5206 @end deffn
5207
5208 @deffn {Directive} %token-table
5209 Generate an array of token names in the parser implementation file.
5210 The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5211 the name of the token whose internal Bison token code number is
5212 @var{i}. The first three elements of @code{yytname} correspond to the
5213 predefined tokens @code{"$end"}, @code{"error"}, and
5214 @code{"$undefined"}; after these come the symbols defined in the
5215 grammar file.
5216
5217 The name in the table includes all the characters needed to represent
5218 the token in Bison. For single-character literals and literal
5219 strings, this includes the surrounding quoting characters and any
5220 escape sequences. For example, the Bison single-character literal
5221 @code{'+'} corresponds to a three-character name, represented in C as
5222 @code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5223 corresponds to a five-character name, represented in C as
5224 @code{"\"\\\\/\""}.
5225
5226 When you specify @code{%token-table}, Bison also generates macro
5227 definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5228 @code{YYNRULES}, and @code{YYNSTATES}:
5229
5230 @table @code
5231 @item YYNTOKENS
5232 The highest token number, plus one.
5233 @item YYNNTS
5234 The number of nonterminal symbols.
5235 @item YYNRULES
5236 The number of grammar rules,
5237 @item YYNSTATES
5238 The number of parser states (@pxref{Parser States}).
5239 @end table
5240 @end deffn
5241
5242 @deffn {Directive} %verbose
5243 Write an extra output file containing verbose descriptions of the
5244 parser states and what is done for each type of lookahead token in
5245 that state. @xref{Understanding, , Understanding Your Parser}, for more
5246 information.
5247 @end deffn
5248
5249 @deffn {Directive} %yacc
5250 Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5251 including its naming conventions. @xref{Bison Options}, for more.
5252 @end deffn
5253
5254
5255 @node %define Summary
5256 @subsection %define Summary
5257
5258 There are many features of Bison's behavior that can be controlled by
5259 assigning the feature a single value. For historical reasons, some
5260 such features are assigned values by dedicated directives, such as
5261 @code{%start}, which assigns the start symbol. However, newer such
5262 features are associated with variables, which are assigned by the
5263 @code{%define} directive:
5264
5265 @deffn {Directive} %define @var{variable}
5266 @deffnx {Directive} %define @var{variable} @var{value}
5267 @deffnx {Directive} %define @var{variable} "@var{value}"
5268 Define @var{variable} to @var{value}.
5269
5270 @var{value} must be placed in quotation marks if it contains any
5271 character other than a letter, underscore, period, or non-initial dash
5272 or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5273 to specifying @code{""}.
5274
5275 It is an error if a @var{variable} is defined by @code{%define}
5276 multiple times, but see @ref{Bison Options,,-D
5277 @var{name}[=@var{value}]}.
5278 @end deffn
5279
5280 The rest of this section summarizes variables and values that
5281 @code{%define} accepts.
5282
5283 Some @var{variable}s take Boolean values. In this case, Bison will
5284 complain if the variable definition does not meet one of the following
5285 four conditions:
5286
5287 @enumerate
5288 @item @code{@var{value}} is @code{true}
5289
5290 @item @code{@var{value}} is omitted (or @code{""} is specified).
5291 This is equivalent to @code{true}.
5292
5293 @item @code{@var{value}} is @code{false}.
5294
5295 @item @var{variable} is never defined.
5296 In this case, Bison selects a default value.
5297 @end enumerate
5298
5299 What @var{variable}s are accepted, as well as their meanings and default
5300 values, depend on the selected target language and/or the parser
5301 skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5302 Summary,,%skeleton}).
5303 Unaccepted @var{variable}s produce an error.
5304 Some of the accepted @var{variable}s are:
5305
5306 @itemize @bullet
5307 @c ================================================== api.prefix
5308 @item @code{api.prefix}
5309 @findex %define api.prefix
5310
5311 @itemize @bullet
5312 @item Language(s): All
5313
5314 @item Purpose: Rename exported symbols
5315 @xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5316
5317 @item Accepted Values: String
5318
5319 @item Default Value: @code{yy}
5320
5321 @item History: introduced in Bison 2.6
5322 @end itemize
5323
5324 @c ================================================== api.pure
5325 @item @code{api.pure}
5326 @findex %define api.pure
5327
5328 @itemize @bullet
5329 @item Language(s): C
5330
5331 @item Purpose: Request a pure (reentrant) parser program.
5332 @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5333
5334 @item Accepted Values: Boolean
5335
5336 @item Default Value: @code{false}
5337 @end itemize
5338
5339 @c ================================================== api.push-pull
5340
5341 @item @code{api.push-pull}
5342 @findex %define api.push-pull
5343
5344 @itemize @bullet
5345 @item Language(s): C (deterministic parsers only)
5346
5347 @item Purpose: Request a pull parser, a push parser, or both.
5348 @xref{Push Decl, ,A Push Parser}.
5349 (The current push parsing interface is experimental and may evolve.
5350 More user feedback will help to stabilize it.)
5351
5352 @item Accepted Values: @code{pull}, @code{push}, @code{both}
5353
5354 @item Default Value: @code{pull}
5355 @end itemize
5356
5357 @c ================================================== lr.default-reductions
5358
5359 @item @code{lr.default-reductions}
5360 @findex %define lr.default-reductions
5361
5362 @itemize @bullet
5363 @item Language(s): all
5364
5365 @item Purpose: Specify the kind of states that are permitted to
5366 contain default reductions. @xref{Default Reductions}. (The ability to
5367 specify where default reductions should be used is experimental. More user
5368 feedback will help to stabilize it.)
5369
5370 @item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
5371 @item Default Value:
5372 @itemize
5373 @item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5374 @item @code{most} otherwise.
5375 @end itemize
5376 @end itemize
5377
5378 @c ============================================ lr.keep-unreachable-states
5379
5380 @item @code{lr.keep-unreachable-states}
5381 @findex %define lr.keep-unreachable-states
5382
5383 @itemize @bullet
5384 @item Language(s): all
5385 @item Purpose: Request that Bison allow unreachable parser states to
5386 remain in the parser tables. @xref{Unreachable States}.
5387 @item Accepted Values: Boolean
5388 @item Default Value: @code{false}
5389 @end itemize
5390
5391 @c ================================================== lr.type
5392
5393 @item @code{lr.type}
5394 @findex %define lr.type
5395
5396 @itemize @bullet
5397 @item Language(s): all
5398
5399 @item Purpose: Specify the type of parser tables within the
5400 LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
5401 More user feedback will help to stabilize it.)
5402
5403 @item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
5404
5405 @item Default Value: @code{lalr}
5406 @end itemize
5407
5408 @c ================================================== namespace
5409
5410 @item @code{namespace}
5411 @findex %define namespace
5412
5413 @itemize
5414 @item Languages(s): C++
5415
5416 @item Purpose: Specify the namespace for the parser class.
5417 For example, if you specify:
5418
5419 @smallexample
5420 %define namespace "foo::bar"
5421 @end smallexample
5422
5423 Bison uses @code{foo::bar} verbatim in references such as:
5424
5425 @smallexample
5426 foo::bar::parser::semantic_type
5427 @end smallexample
5428
5429 However, to open a namespace, Bison removes any leading @code{::} and then
5430 splits on any remaining occurrences:
5431
5432 @smallexample
5433 namespace foo @{ namespace bar @{
5434 class position;
5435 class location;
5436 @} @}
5437 @end smallexample
5438
5439 @item Accepted Values: Any absolute or relative C++ namespace reference without
5440 a trailing @code{"::"}.
5441 For example, @code{"foo"} or @code{"::foo::bar"}.
5442
5443 @item Default Value: The value specified by @code{%name-prefix}, which defaults
5444 to @code{yy}.
5445 This usage of @code{%name-prefix} is for backward compatibility and can be
5446 confusing since @code{%name-prefix} also specifies the textual prefix for the
5447 lexical analyzer function.
5448 Thus, if you specify @code{%name-prefix}, it is best to also specify
5449 @code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5450 lexical analyzer function.
5451 For example, if you specify:
5452
5453 @smallexample
5454 %define namespace "foo"
5455 %name-prefix "bar::"
5456 @end smallexample
5457
5458 The parser namespace is @code{foo} and @code{yylex} is referenced as
5459 @code{bar::lex}.
5460 @end itemize
5461
5462 @c ================================================== parse.lac
5463 @item @code{parse.lac}
5464 @findex %define parse.lac
5465
5466 @itemize
5467 @item Languages(s): C (deterministic parsers only)
5468
5469 @item Purpose: Enable LAC (lookahead correction) to improve
5470 syntax error handling. @xref{LAC}.
5471 @item Accepted Values: @code{none}, @code{full}
5472 @item Default Value: @code{none}
5473 @end itemize
5474 @end itemize
5475
5476
5477 @node %code Summary
5478 @subsection %code Summary
5479 @findex %code
5480 @cindex Prologue
5481
5482 The @code{%code} directive inserts code verbatim into the output
5483 parser source at any of a predefined set of locations. It thus serves
5484 as a flexible and user-friendly alternative to the traditional Yacc
5485 prologue, @code{%@{@var{code}%@}}. This section summarizes the
5486 functionality of @code{%code} for the various target languages
5487 supported by Bison. For a detailed discussion of how to use
5488 @code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5489 is advantageous to do so, @pxref{Prologue Alternatives}.
5490
5491 @deffn {Directive} %code @{@var{code}@}
5492 This is the unqualified form of the @code{%code} directive. It
5493 inserts @var{code} verbatim at a language-dependent default location
5494 in the parser implementation.
5495
5496 For C/C++, the default location is the parser implementation file
5497 after the usual contents of the parser header file. Thus, the
5498 unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
5499
5500 For Java, the default location is inside the parser class.
5501 @end deffn
5502
5503 @deffn {Directive} %code @var{qualifier} @{@var{code}@}
5504 This is the qualified form of the @code{%code} directive.
5505 @var{qualifier} identifies the purpose of @var{code} and thus the
5506 location(s) where Bison should insert it. That is, if you need to
5507 specify location-sensitive @var{code} that does not belong at the
5508 default location selected by the unqualified @code{%code} form, use
5509 this form instead.
5510 @end deffn
5511
5512 For any particular qualifier or for the unqualified form, if there are
5513 multiple occurrences of the @code{%code} directive, Bison concatenates
5514 the specified code in the order in which it appears in the grammar
5515 file.
5516
5517 Not all qualifiers are accepted for all target languages. Unaccepted
5518 qualifiers produce an error. Some of the accepted qualifiers are:
5519
5520 @itemize @bullet
5521 @item requires
5522 @findex %code requires
5523
5524 @itemize @bullet
5525 @item Language(s): C, C++
5526
5527 @item Purpose: This is the best place to write dependency code required for
5528 @code{YYSTYPE} and @code{YYLTYPE}.
5529 In other words, it's the best place to define types referenced in @code{%union}
5530 directives, and it's the best place to override Bison's default @code{YYSTYPE}
5531 and @code{YYLTYPE} definitions.
5532
5533 @item Location(s): The parser header file and the parser implementation file
5534 before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5535 definitions.
5536 @end itemize
5537
5538 @item provides
5539 @findex %code provides
5540
5541 @itemize @bullet
5542 @item Language(s): C, C++
5543
5544 @item Purpose: This is the best place to write additional definitions and
5545 declarations that should be provided to other modules.
5546
5547 @item Location(s): The parser header file and the parser implementation
5548 file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5549 token definitions.
5550 @end itemize
5551
5552 @item top
5553 @findex %code top
5554
5555 @itemize @bullet
5556 @item Language(s): C, C++
5557
5558 @item Purpose: The unqualified @code{%code} or @code{%code requires}
5559 should usually be more appropriate than @code{%code top}. However,
5560 occasionally it is necessary to insert code much nearer the top of the
5561 parser implementation file. For example:
5562
5563 @example
5564 %code top @{
5565 #define _GNU_SOURCE
5566 #include <stdio.h>
5567 @}
5568 @end example
5569
5570 @item Location(s): Near the top of the parser implementation file.
5571 @end itemize
5572
5573 @item imports
5574 @findex %code imports
5575
5576 @itemize @bullet
5577 @item Language(s): Java
5578
5579 @item Purpose: This is the best place to write Java import directives.
5580
5581 @item Location(s): The parser Java file after any Java package directive and
5582 before any class definitions.
5583 @end itemize
5584 @end itemize
5585
5586 Though we say the insertion locations are language-dependent, they are
5587 technically skeleton-dependent. Writers of non-standard skeletons
5588 however should choose their locations consistently with the behavior
5589 of the standard Bison skeletons.
5590
5591
5592 @node Multiple Parsers
5593 @section Multiple Parsers in the Same Program
5594
5595 Most programs that use Bison parse only one language and therefore contain
5596 only one Bison parser. But what if you want to parse more than one language
5597 with the same program? Then you need to avoid name conflicts between
5598 different definitions of functions and variables such as @code{yyparse},
5599 @code{yylval}. To use different parsers from the same compilation unit, you
5600 also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5601 exported in the generated header.
5602
5603 The easy way to do this is to define the @code{%define} variable
5604 @code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5605 headers do not conflict when included together, and that compiled objects
5606 can be linked together too. Specifying @samp{%define api.prefix
5607 @var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5608 @ref{Invocation, ,Invoking Bison}) renames the interface functions and
5609 variables of the Bison parser to start with @var{prefix} instead of
5610 @samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5611 upper-cased) instead of @samp{YY}.
5612
5613 The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5614 @code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5615 @code{yydebug}. If you use a push parser, @code{yypush_parse},
5616 @code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5617 @code{yypstate_delete} will also be renamed. The renamed macros include
5618 @code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5619 specifically --- more about this below.
5620
5621 For example, if you use @samp{%define api.prefix c}, the names become
5622 @code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5623 on.
5624
5625 The @code{%define} variable @code{api.prefix} works in two different ways.
5626 In the implementation file, it works by adding macro definitions to the
5627 beginning of the parser implementation file, defining @code{yyparse} as
5628 @code{@var{prefix}parse}, and so on:
5629
5630 @example
5631 #define YYSTYPE CTYPE
5632 #define yyparse cparse
5633 #define yylval clval
5634 ...
5635 YYSTYPE yylval;
5636 int yyparse (void);
5637 @end example
5638
5639 This effectively substitutes one name for the other in the entire parser
5640 implementation file, thus the ``original'' names (@code{yylex},
5641 @code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5642
5643 However, in the parser header file, the symbols are defined renamed, for
5644 instance:
5645
5646 @example
5647 extern CSTYPE clval;
5648 int cparse (void);
5649 @end example
5650
5651 The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5652 parsers. To comply with this tradition, when @code{api.prefix} is used,
5653 @code{YYDEBUG} (not renamed) is used as a default value:
5654
5655 @example
5656 /* Enabling traces. */
5657 #ifndef CDEBUG
5658 # if defined YYDEBUG
5659 # if YYDEBUG
5660 # define CDEBUG 1
5661 # else
5662 # define CDEBUG 0
5663 # endif
5664 # else
5665 # define CDEBUG 0
5666 # endif
5667 #endif
5668 #if CDEBUG
5669 extern int cdebug;
5670 #endif
5671 @end example
5672
5673 @sp 2
5674
5675 Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5676 the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5677 Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
5678
5679 @node Interface
5680 @chapter Parser C-Language Interface
5681 @cindex C-language interface
5682 @cindex interface
5683
5684 The Bison parser is actually a C function named @code{yyparse}. Here we
5685 describe the interface conventions of @code{yyparse} and the other
5686 functions that it needs to use.
5687
5688 Keep in mind that the parser uses many C identifiers starting with
5689 @samp{yy} and @samp{YY} for internal purposes. If you use such an
5690 identifier (aside from those in this manual) in an action or in epilogue
5691 in the grammar file, you are likely to run into trouble.
5692
5693 @menu
5694 * Parser Function:: How to call @code{yyparse} and what it returns.
5695 * Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5696 * Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5697 * Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5698 * Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5699 * Lexical:: You must supply a function @code{yylex}
5700 which reads tokens.
5701 * Error Reporting:: You must supply a function @code{yyerror}.
5702 * Action Features:: Special features for use in actions.
5703 * Internationalization:: How to let the parser speak in the user's
5704 native language.
5705 @end menu
5706
5707 @node Parser Function
5708 @section The Parser Function @code{yyparse}
5709 @findex yyparse
5710
5711 You call the function @code{yyparse} to cause parsing to occur. This
5712 function reads tokens, executes actions, and ultimately returns when it
5713 encounters end-of-input or an unrecoverable syntax error. You can also
5714 write an action which directs @code{yyparse} to return immediately
5715 without reading further.
5716
5717
5718 @deftypefun int yyparse (void)
5719 The value returned by @code{yyparse} is 0 if parsing was successful (return
5720 is due to end-of-input).
5721
5722 The value is 1 if parsing failed because of invalid input, i.e., input
5723 that contains a syntax error or that causes @code{YYABORT} to be
5724 invoked.
5725
5726 The value is 2 if parsing failed due to memory exhaustion.
5727 @end deftypefun
5728
5729 In an action, you can cause immediate return from @code{yyparse} by using
5730 these macros:
5731
5732 @defmac YYACCEPT
5733 @findex YYACCEPT
5734 Return immediately with value 0 (to report success).
5735 @end defmac
5736
5737 @defmac YYABORT
5738 @findex YYABORT
5739 Return immediately with value 1 (to report failure).
5740 @end defmac
5741
5742 If you use a reentrant parser, you can optionally pass additional
5743 parameter information to it in a reentrant way. To do so, use the
5744 declaration @code{%parse-param}:
5745
5746 @deffn {Directive} %parse-param @{@var{argument-declaration}@}
5747 @findex %parse-param
5748 Declare that an argument declared by the braced-code
5749 @var{argument-declaration} is an additional @code{yyparse} argument.
5750 The @var{argument-declaration} is used when declaring
5751 functions or prototypes. The last identifier in
5752 @var{argument-declaration} must be the argument name.
5753 @end deffn
5754
5755 Here's an example. Write this in the parser:
5756
5757 @example
5758 %parse-param @{int *nastiness@}
5759 %parse-param @{int *randomness@}
5760 @end example
5761
5762 @noindent
5763 Then call the parser like this:
5764
5765 @example
5766 @{
5767 int nastiness, randomness;
5768 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5769 value = yyparse (&nastiness, &randomness);
5770 @dots{}
5771 @}
5772 @end example
5773
5774 @noindent
5775 In the grammar actions, use expressions like this to refer to the data:
5776
5777 @example
5778 exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5779 @end example
5780
5781 @node Push Parser Function
5782 @section The Push Parser Function @code{yypush_parse}
5783 @findex yypush_parse
5784
5785 (The current push parsing interface is experimental and may evolve.
5786 More user feedback will help to stabilize it.)
5787
5788 You call the function @code{yypush_parse} to parse a single token. This
5789 function is available if either the @code{%define api.push-pull push} or
5790 @code{%define api.push-pull both} declaration is used.
5791 @xref{Push Decl, ,A Push Parser}.
5792
5793 @deftypefun int yypush_parse (yypstate *yyps)
5794 The value returned by @code{yypush_parse} is the same as for yyparse with
5795 the following exception: it returns @code{YYPUSH_MORE} if more input is
5796 required to finish parsing the grammar.
5797 @end deftypefun
5798
5799 @node Pull Parser Function
5800 @section The Pull Parser Function @code{yypull_parse}
5801 @findex yypull_parse
5802
5803 (The current push parsing interface is experimental and may evolve.
5804 More user feedback will help to stabilize it.)
5805
5806 You call the function @code{yypull_parse} to parse the rest of the input
5807 stream. This function is available if the @code{%define api.push-pull both}
5808 declaration is used.
5809 @xref{Push Decl, ,A Push Parser}.
5810
5811 @deftypefun int yypull_parse (yypstate *yyps)
5812 The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5813 @end deftypefun
5814
5815 @node Parser Create Function
5816 @section The Parser Create Function @code{yystate_new}
5817 @findex yypstate_new
5818
5819 (The current push parsing interface is experimental and may evolve.
5820 More user feedback will help to stabilize it.)
5821
5822 You call the function @code{yypstate_new} to create a new parser instance.
5823 This function is available if either the @code{%define api.push-pull push} or
5824 @code{%define api.push-pull both} declaration is used.
5825 @xref{Push Decl, ,A Push Parser}.
5826
5827 @deftypefun {yypstate*} yypstate_new (void)
5828 The function will return a valid parser instance if there was memory available
5829 or 0 if no memory was available.
5830 In impure mode, it will also return 0 if a parser instance is currently
5831 allocated.
5832 @end deftypefun
5833
5834 @node Parser Delete Function
5835 @section The Parser Delete Function @code{yystate_delete}
5836 @findex yypstate_delete
5837
5838 (The current push parsing interface is experimental and may evolve.
5839 More user feedback will help to stabilize it.)
5840
5841 You call the function @code{yypstate_delete} to delete a parser instance.
5842 function is available if either the @code{%define api.push-pull push} or
5843 @code{%define api.push-pull both} declaration is used.
5844 @xref{Push Decl, ,A Push Parser}.
5845
5846 @deftypefun void yypstate_delete (yypstate *yyps)
5847 This function will reclaim the memory associated with a parser instance.
5848 After this call, you should no longer attempt to use the parser instance.
5849 @end deftypefun
5850
5851 @node Lexical
5852 @section The Lexical Analyzer Function @code{yylex}
5853 @findex yylex
5854 @cindex lexical analyzer
5855
5856 The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5857 the input stream and returns them to the parser. Bison does not create
5858 this function automatically; you must write it so that @code{yyparse} can
5859 call it. The function is sometimes referred to as a lexical scanner.
5860
5861 In simple programs, @code{yylex} is often defined at the end of the
5862 Bison grammar file. If @code{yylex} is defined in a separate source
5863 file, you need to arrange for the token-type macro definitions to be
5864 available there. To do this, use the @samp{-d} option when you run
5865 Bison, so that it will write these macro definitions into the separate
5866 parser header file, @file{@var{name}.tab.h}, which you can include in
5867 the other source files that need it. @xref{Invocation, ,Invoking
5868 Bison}.
5869
5870 @menu
5871 * Calling Convention:: How @code{yyparse} calls @code{yylex}.
5872 * Token Values:: How @code{yylex} must return the semantic value
5873 of the token it has read.
5874 * Token Locations:: How @code{yylex} must return the text location
5875 (line number, etc.) of the token, if the
5876 actions want that.
5877 * Pure Calling:: How the calling convention differs in a pure parser
5878 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5879 @end menu
5880
5881 @node Calling Convention
5882 @subsection Calling Convention for @code{yylex}
5883
5884 The value that @code{yylex} returns must be the positive numeric code
5885 for the type of token it has just found; a zero or negative value
5886 signifies end-of-input.
5887
5888 When a token is referred to in the grammar rules by a name, that name
5889 in the parser implementation file becomes a C macro whose definition
5890 is the proper numeric code for that token type. So @code{yylex} can
5891 use the name to indicate that type. @xref{Symbols}.
5892
5893 When a token is referred to in the grammar rules by a character literal,
5894 the numeric code for that character is also the code for the token type.
5895 So @code{yylex} can simply return that character code, possibly converted
5896 to @code{unsigned char} to avoid sign-extension. The null character
5897 must not be used this way, because its code is zero and that
5898 signifies end-of-input.
5899
5900 Here is an example showing these things:
5901
5902 @example
5903 int
5904 yylex (void)
5905 @{
5906 @dots{}
5907 if (c == EOF) /* Detect end-of-input. */
5908 return 0;
5909 @dots{}
5910 if (c == '+' || c == '-')
5911 return c; /* Assume token type for `+' is '+'. */
5912 @dots{}
5913 return INT; /* Return the type of the token. */
5914 @dots{}
5915 @}
5916 @end example
5917
5918 @noindent
5919 This interface has been designed so that the output from the @code{lex}
5920 utility can be used without change as the definition of @code{yylex}.
5921
5922 If the grammar uses literal string tokens, there are two ways that
5923 @code{yylex} can determine the token type codes for them:
5924
5925 @itemize @bullet
5926 @item
5927 If the grammar defines symbolic token names as aliases for the
5928 literal string tokens, @code{yylex} can use these symbolic names like
5929 all others. In this case, the use of the literal string tokens in
5930 the grammar file has no effect on @code{yylex}.
5931
5932 @item
5933 @code{yylex} can find the multicharacter token in the @code{yytname}
5934 table. The index of the token in the table is the token type's code.
5935 The name of a multicharacter token is recorded in @code{yytname} with a
5936 double-quote, the token's characters, and another double-quote. The
5937 token's characters are escaped as necessary to be suitable as input
5938 to Bison.
5939
5940 Here's code for looking up a multicharacter token in @code{yytname},
5941 assuming that the characters of the token are stored in
5942 @code{token_buffer}, and assuming that the token does not contain any
5943 characters like @samp{"} that require escaping.
5944
5945 @example
5946 for (i = 0; i < YYNTOKENS; i++)
5947 @{
5948 if (yytname[i] != 0
5949 && yytname[i][0] == '"'
5950 && ! strncmp (yytname[i] + 1, token_buffer,
5951 strlen (token_buffer))
5952 && yytname[i][strlen (token_buffer) + 1] == '"'
5953 && yytname[i][strlen (token_buffer) + 2] == 0)
5954 break;
5955 @}
5956 @end example
5957
5958 The @code{yytname} table is generated only if you use the
5959 @code{%token-table} declaration. @xref{Decl Summary}.
5960 @end itemize
5961
5962 @node Token Values
5963 @subsection Semantic Values of Tokens
5964
5965 @vindex yylval
5966 In an ordinary (nonreentrant) parser, the semantic value of the token must
5967 be stored into the global variable @code{yylval}. When you are using
5968 just one data type for semantic values, @code{yylval} has that type.
5969 Thus, if the type is @code{int} (the default), you might write this in
5970 @code{yylex}:
5971
5972 @example
5973 @group
5974 @dots{}
5975 yylval = value; /* Put value onto Bison stack. */
5976 return INT; /* Return the type of the token. */
5977 @dots{}
5978 @end group
5979 @end example
5980
5981 When you are using multiple data types, @code{yylval}'s type is a union
5982 made from the @code{%union} declaration (@pxref{Union Decl, ,The
5983 Collection of Value Types}). So when you store a token's value, you
5984 must use the proper member of the union. If the @code{%union}
5985 declaration looks like this:
5986
5987 @example
5988 @group
5989 %union @{
5990 int intval;
5991 double val;
5992 symrec *tptr;
5993 @}
5994 @end group
5995 @end example
5996
5997 @noindent
5998 then the code in @code{yylex} might look like this:
5999
6000 @example
6001 @group
6002 @dots{}
6003 yylval.intval = value; /* Put value onto Bison stack. */
6004 return INT; /* Return the type of the token. */
6005 @dots{}
6006 @end group
6007 @end example
6008
6009 @node Token Locations
6010 @subsection Textual Locations of Tokens
6011
6012 @vindex yylloc
6013 If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6014 in actions to keep track of the textual locations of tokens and groupings,
6015 then you must provide this information in @code{yylex}. The function
6016 @code{yyparse} expects to find the textual location of a token just parsed
6017 in the global variable @code{yylloc}. So @code{yylex} must store the proper
6018 data in that variable.
6019
6020 By default, the value of @code{yylloc} is a structure and you need only
6021 initialize the members that are going to be used by the actions. The
6022 four members are called @code{first_line}, @code{first_column},
6023 @code{last_line} and @code{last_column}. Note that the use of this
6024 feature makes the parser noticeably slower.
6025
6026 @tindex YYLTYPE
6027 The data type of @code{yylloc} has the name @code{YYLTYPE}.
6028
6029 @node Pure Calling
6030 @subsection Calling Conventions for Pure Parsers
6031
6032 When you use the Bison declaration @code{%define api.pure} to request a
6033 pure, reentrant parser, the global communication variables @code{yylval}
6034 and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6035 Parser}.) In such parsers the two global variables are replaced by
6036 pointers passed as arguments to @code{yylex}. You must declare them as
6037 shown here, and pass the information back by storing it through those
6038 pointers.
6039
6040 @example
6041 int
6042 yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
6043 @{
6044 @dots{}
6045 *lvalp = value; /* Put value onto Bison stack. */
6046 return INT; /* Return the type of the token. */
6047 @dots{}
6048 @}
6049 @end example
6050
6051 If the grammar file does not use the @samp{@@} constructs to refer to
6052 textual locations, then the type @code{YYLTYPE} will not be defined. In
6053 this case, omit the second argument; @code{yylex} will be called with
6054 only one argument.
6055
6056
6057 If you wish to pass the additional parameter data to @code{yylex}, use
6058 @code{%lex-param} just like @code{%parse-param} (@pxref{Parser
6059 Function}).
6060
6061 @deffn {Directive} lex-param @{@var{argument-declaration}@}
6062 @findex %lex-param
6063 Declare that the braced-code @var{argument-declaration} is an
6064 additional @code{yylex} argument declaration.
6065 @end deffn
6066
6067 For instance:
6068
6069 @example
6070 %parse-param @{int *nastiness@}
6071 %lex-param @{int *nastiness@}
6072 %parse-param @{int *randomness@}
6073 @end example
6074
6075 @noindent
6076 results in the following signatures:
6077
6078 @example
6079 int yylex (int *nastiness);
6080 int yyparse (int *nastiness, int *randomness);
6081 @end example
6082
6083 If @code{%define api.pure} is added:
6084
6085 @example
6086 int yylex (YYSTYPE *lvalp, int *nastiness);
6087 int yyparse (int *nastiness, int *randomness);
6088 @end example
6089
6090 @noindent
6091 and finally, if both @code{%define api.pure} and @code{%locations} are used:
6092
6093 @example
6094 int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6095 int yyparse (int *nastiness, int *randomness);
6096 @end example
6097
6098 @node Error Reporting
6099 @section The Error Reporting Function @code{yyerror}
6100 @cindex error reporting function
6101 @findex yyerror
6102 @cindex parse error
6103 @cindex syntax error
6104
6105 The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
6106 whenever it reads a token which cannot satisfy any syntax rule. An
6107 action in the grammar can also explicitly proclaim an error, using the
6108 macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6109 in Actions}).
6110
6111 The Bison parser expects to report the error by calling an error
6112 reporting function named @code{yyerror}, which you must supply. It is
6113 called by @code{yyparse} whenever a syntax error is found, and it
6114 receives one argument. For a syntax error, the string is normally
6115 @w{@code{"syntax error"}}.
6116
6117 @findex %error-verbose
6118 If you invoke the directive @code{%error-verbose} in the Bison declarations
6119 section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6120 Bison provides a more verbose and specific error message string instead of
6121 just plain @w{@code{"syntax error"}}. However, that message sometimes
6122 contains incorrect information if LAC is not enabled (@pxref{LAC}).
6123
6124 The parser can detect one other kind of error: memory exhaustion. This
6125 can happen when the input contains constructions that are very deeply
6126 nested. It isn't likely you will encounter this, since the Bison
6127 parser normally extends its stack automatically up to a very large limit. But
6128 if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6129 fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6130
6131 In some cases diagnostics like @w{@code{"syntax error"}} are
6132 translated automatically from English to some other language before
6133 they are passed to @code{yyerror}. @xref{Internationalization}.
6134
6135 The following definition suffices in simple programs:
6136
6137 @example
6138 @group
6139 void
6140 yyerror (char const *s)
6141 @{
6142 @end group
6143 @group
6144 fprintf (stderr, "%s\n", s);
6145 @}
6146 @end group
6147 @end example
6148
6149 After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6150 error recovery if you have written suitable error recovery grammar rules
6151 (@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6152 immediately return 1.
6153
6154 Obviously, in location tracking pure parsers, @code{yyerror} should have
6155 an access to the current location.
6156 This is indeed the case for the GLR
6157 parsers, but not for the Yacc parser, for historical reasons. I.e., if
6158 @samp{%locations %define api.pure} is passed then the prototypes for
6159 @code{yyerror} are:
6160
6161 @example
6162 void yyerror (char const *msg); /* Yacc parsers. */
6163 void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
6164 @end example
6165
6166 If @samp{%parse-param @{int *nastiness@}} is used, then:
6167
6168 @example
6169 void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6170 void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
6171 @end example
6172
6173 Finally, GLR and Yacc parsers share the same @code{yyerror} calling
6174 convention for absolutely pure parsers, i.e., when the calling
6175 convention of @code{yylex} @emph{and} the calling convention of
6176 @code{%define api.pure} are pure.
6177 I.e.:
6178
6179 @example
6180 /* Location tracking. */
6181 %locations
6182 /* Pure yylex. */
6183 %define api.pure
6184 %lex-param @{int *nastiness@}
6185 /* Pure yyparse. */
6186 %parse-param @{int *nastiness@}
6187 %parse-param @{int *randomness@}
6188 @end example
6189
6190 @noindent
6191 results in the following signatures for all the parser kinds:
6192
6193 @example
6194 int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6195 int yyparse (int *nastiness, int *randomness);
6196 void yyerror (YYLTYPE *locp,
6197 int *nastiness, int *randomness,
6198 char const *msg);
6199 @end example
6200
6201 @noindent
6202 The prototypes are only indications of how the code produced by Bison
6203 uses @code{yyerror}. Bison-generated code always ignores the returned
6204 value, so @code{yyerror} can return any type, including @code{void}.
6205 Also, @code{yyerror} can be a variadic function; that is why the
6206 message is always passed last.
6207
6208 Traditionally @code{yyerror} returns an @code{int} that is always
6209 ignored, but this is purely for historical reasons, and @code{void} is
6210 preferable since it more accurately describes the return type for
6211 @code{yyerror}.
6212
6213 @vindex yynerrs
6214 The variable @code{yynerrs} contains the number of syntax errors
6215 reported so far. Normally this variable is global; but if you
6216 request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6217 then it is a local variable which only the actions can access.
6218
6219 @node Action Features
6220 @section Special Features for Use in Actions
6221 @cindex summary, action features
6222 @cindex action features summary
6223
6224 Here is a table of Bison constructs, variables and macros that
6225 are useful in actions.
6226
6227 @deffn {Variable} $$
6228 Acts like a variable that contains the semantic value for the
6229 grouping made by the current rule. @xref{Actions}.
6230 @end deffn
6231
6232 @deffn {Variable} $@var{n}
6233 Acts like a variable that contains the semantic value for the
6234 @var{n}th component of the current rule. @xref{Actions}.
6235 @end deffn
6236
6237 @deffn {Variable} $<@var{typealt}>$
6238 Like @code{$$} but specifies alternative @var{typealt} in the union
6239 specified by the @code{%union} declaration. @xref{Action Types, ,Data
6240 Types of Values in Actions}.
6241 @end deffn
6242
6243 @deffn {Variable} $<@var{typealt}>@var{n}
6244 Like @code{$@var{n}} but specifies alternative @var{typealt} in the
6245 union specified by the @code{%union} declaration.
6246 @xref{Action Types, ,Data Types of Values in Actions}.
6247 @end deffn
6248
6249 @deffn {Macro} YYABORT @code{;}
6250 Return immediately from @code{yyparse}, indicating failure.
6251 @xref{Parser Function, ,The Parser Function @code{yyparse}}.
6252 @end deffn
6253
6254 @deffn {Macro} YYACCEPT @code{;}
6255 Return immediately from @code{yyparse}, indicating success.
6256 @xref{Parser Function, ,The Parser Function @code{yyparse}}.
6257 @end deffn
6258
6259 @deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
6260 @findex YYBACKUP
6261 Unshift a token. This macro is allowed only for rules that reduce
6262 a single value, and only when there is no lookahead token.
6263 It is also disallowed in GLR parsers.
6264 It installs a lookahead token with token type @var{token} and
6265 semantic value @var{value}; then it discards the value that was
6266 going to be reduced by this rule.
6267
6268 If the macro is used when it is not valid, such as when there is
6269 a lookahead token already, then it reports a syntax error with
6270 a message @samp{cannot back up} and performs ordinary error
6271 recovery.
6272
6273 In either case, the rest of the action is not executed.
6274 @end deffn
6275
6276 @deffn {Macro} YYEMPTY
6277 Value stored in @code{yychar} when there is no lookahead token.
6278 @end deffn
6279
6280 @deffn {Macro} YYEOF
6281 Value stored in @code{yychar} when the lookahead is the end of the input
6282 stream.
6283 @end deffn
6284
6285 @deffn {Macro} YYERROR @code{;}
6286 Cause an immediate syntax error. This statement initiates error
6287 recovery just as if the parser itself had detected an error; however, it
6288 does not call @code{yyerror}, and does not print any message. If you
6289 want to print an error message, call @code{yyerror} explicitly before
6290 the @samp{YYERROR;} statement. @xref{Error Recovery}.
6291 @end deffn
6292
6293 @deffn {Macro} YYRECOVERING
6294 @findex YYRECOVERING
6295 The expression @code{YYRECOVERING ()} yields 1 when the parser
6296 is recovering from a syntax error, and 0 otherwise.
6297 @xref{Error Recovery}.
6298 @end deffn
6299
6300 @deffn {Variable} yychar
6301 Variable containing either the lookahead token, or @code{YYEOF} when the
6302 lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
6303 has been performed so the next token is not yet known.
6304 Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6305 Actions}).
6306 @xref{Lookahead, ,Lookahead Tokens}.
6307 @end deffn
6308
6309 @deffn {Macro} yyclearin @code{;}
6310 Discard the current lookahead token. This is useful primarily in
6311 error rules.
6312 Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6313 Semantic Actions}).
6314 @xref{Error Recovery}.
6315 @end deffn
6316
6317 @deffn {Macro} yyerrok @code{;}
6318 Resume generating error messages immediately for subsequent syntax
6319 errors. This is useful primarily in error rules.
6320 @xref{Error Recovery}.
6321 @end deffn
6322
6323 @deffn {Variable} yylloc
6324 Variable containing the lookahead token location when @code{yychar} is not set
6325 to @code{YYEMPTY} or @code{YYEOF}.
6326 Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6327 Actions}).
6328 @xref{Actions and Locations, ,Actions and Locations}.
6329 @end deffn
6330
6331 @deffn {Variable} yylval
6332 Variable containing the lookahead token semantic value when @code{yychar} is
6333 not set to @code{YYEMPTY} or @code{YYEOF}.
6334 Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6335 Actions}).
6336 @xref{Actions, ,Actions}.
6337 @end deffn
6338
6339 @deffn {Value} @@$
6340 @findex @@$
6341 Acts like a structure variable containing information on the textual
6342 location of the grouping made by the current rule. @xref{Tracking
6343 Locations}.
6344
6345 @c Check if those paragraphs are still useful or not.
6346
6347 @c @example
6348 @c struct @{
6349 @c int first_line, last_line;
6350 @c int first_column, last_column;
6351 @c @};
6352 @c @end example
6353
6354 @c Thus, to get the starting line number of the third component, you would
6355 @c use @samp{@@3.first_line}.
6356
6357 @c In order for the members of this structure to contain valid information,
6358 @c you must make @code{yylex} supply this information about each token.
6359 @c If you need only certain members, then @code{yylex} need only fill in
6360 @c those members.
6361
6362 @c The use of this feature makes the parser noticeably slower.
6363 @end deffn
6364
6365 @deffn {Value} @@@var{n}
6366 @findex @@@var{n}
6367 Acts like a structure variable containing information on the textual
6368 location of the @var{n}th component of the current rule. @xref{Tracking
6369 Locations}.
6370 @end deffn
6371
6372 @node Internationalization
6373 @section Parser Internationalization
6374 @cindex internationalization
6375 @cindex i18n
6376 @cindex NLS
6377 @cindex gettext
6378 @cindex bison-po
6379
6380 A Bison-generated parser can print diagnostics, including error and
6381 tracing messages. By default, they appear in English. However, Bison
6382 also supports outputting diagnostics in the user's native language. To
6383 make this work, the user should set the usual environment variables.
6384 @xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6385 For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6386 set the user's locale to French Canadian using the UTF-8
6387 encoding. The exact set of available locales depends on the user's
6388 installation.
6389
6390 The maintainer of a package that uses a Bison-generated parser enables
6391 the internationalization of the parser's output through the following
6392 steps. Here we assume a package that uses GNU Autoconf and
6393 GNU Automake.
6394
6395 @enumerate
6396 @item
6397 @cindex bison-i18n.m4
6398 Into the directory containing the GNU Autoconf macros used
6399 by the package---often called @file{m4}---copy the
6400 @file{bison-i18n.m4} file installed by Bison under
6401 @samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6402 For example:
6403
6404 @example
6405 cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6406 @end example
6407
6408 @item
6409 @findex BISON_I18N
6410 @vindex BISON_LOCALEDIR
6411 @vindex YYENABLE_NLS
6412 In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6413 invocation, add an invocation of @code{BISON_I18N}. This macro is
6414 defined in the file @file{bison-i18n.m4} that you copied earlier. It
6415 causes @samp{configure} to find the value of the
6416 @code{BISON_LOCALEDIR} variable, and it defines the source-language
6417 symbol @code{YYENABLE_NLS} to enable translations in the
6418 Bison-generated parser.
6419
6420 @item
6421 In the @code{main} function of your program, designate the directory
6422 containing Bison's runtime message catalog, through a call to
6423 @samp{bindtextdomain} with domain name @samp{bison-runtime}.
6424 For example:
6425
6426 @example
6427 bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6428 @end example
6429
6430 Typically this appears after any other call @code{bindtextdomain
6431 (PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6432 @samp{BISON_LOCALEDIR} to be defined as a string through the
6433 @file{Makefile}.
6434
6435 @item
6436 In the @file{Makefile.am} that controls the compilation of the @code{main}
6437 function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6438 either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6439
6440 @example
6441 DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6442 @end example
6443
6444 or:
6445
6446 @example
6447 AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6448 @end example
6449
6450 @item
6451 Finally, invoke the command @command{autoreconf} to generate the build
6452 infrastructure.
6453 @end enumerate
6454
6455
6456 @node Algorithm
6457 @chapter The Bison Parser Algorithm
6458 @cindex Bison parser algorithm
6459 @cindex algorithm of parser
6460 @cindex shifting
6461 @cindex reduction
6462 @cindex parser stack
6463 @cindex stack, parser
6464
6465 As Bison reads tokens, it pushes them onto a stack along with their
6466 semantic values. The stack is called the @dfn{parser stack}. Pushing a
6467 token is traditionally called @dfn{shifting}.
6468
6469 For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6470 @samp{3} to come. The stack will have four elements, one for each token
6471 that was shifted.
6472
6473 But the stack does not always have an element for each token read. When
6474 the last @var{n} tokens and groupings shifted match the components of a
6475 grammar rule, they can be combined according to that rule. This is called
6476 @dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6477 single grouping whose symbol is the result (left hand side) of that rule.
6478 Running the rule's action is part of the process of reduction, because this
6479 is what computes the semantic value of the resulting grouping.
6480
6481 For example, if the infix calculator's parser stack contains this:
6482
6483 @example
6484 1 + 5 * 3
6485 @end example
6486
6487 @noindent
6488 and the next input token is a newline character, then the last three
6489 elements can be reduced to 15 via the rule:
6490
6491 @example
6492 expr: expr '*' expr;
6493 @end example
6494
6495 @noindent
6496 Then the stack contains just these three elements:
6497
6498 @example
6499 1 + 15
6500 @end example
6501
6502 @noindent
6503 At this point, another reduction can be made, resulting in the single value
6504 16. Then the newline token can be shifted.
6505
6506 The parser tries, by shifts and reductions, to reduce the entire input down
6507 to a single grouping whose symbol is the grammar's start-symbol
6508 (@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6509
6510 This kind of parser is known in the literature as a bottom-up parser.
6511
6512 @menu
6513 * Lookahead:: Parser looks one token ahead when deciding what to do.
6514 * Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6515 * Precedence:: Operator precedence works by resolving conflicts.
6516 * Contextual Precedence:: When an operator's precedence depends on context.
6517 * Parser States:: The parser is a finite-state-machine with stack.
6518 * Reduce/Reduce:: When two rules are applicable in the same situation.
6519 * Mysterious Conflicts:: Conflicts that look unjustified.
6520 * Tuning LR:: How to tune fundamental aspects of LR-based parsing.
6521 * Generalized LR Parsing:: Parsing arbitrary context-free grammars.
6522 * Memory Management:: What happens when memory is exhausted. How to avoid it.
6523 @end menu
6524
6525 @node Lookahead
6526 @section Lookahead Tokens
6527 @cindex lookahead token
6528
6529 The Bison parser does @emph{not} always reduce immediately as soon as the
6530 last @var{n} tokens and groupings match a rule. This is because such a
6531 simple strategy is inadequate to handle most languages. Instead, when a
6532 reduction is possible, the parser sometimes ``looks ahead'' at the next
6533 token in order to decide what to do.
6534
6535 When a token is read, it is not immediately shifted; first it becomes the
6536 @dfn{lookahead token}, which is not on the stack. Now the parser can
6537 perform one or more reductions of tokens and groupings on the stack, while
6538 the lookahead token remains off to the side. When no more reductions
6539 should take place, the lookahead token is shifted onto the stack. This
6540 does not mean that all possible reductions have been done; depending on the
6541 token type of the lookahead token, some rules may choose to delay their
6542 application.
6543
6544 Here is a simple case where lookahead is needed. These three rules define
6545 expressions which contain binary addition operators and postfix unary
6546 factorial operators (@samp{!}), and allow parentheses for grouping.
6547
6548 @example
6549 @group
6550 expr:
6551 term '+' expr
6552 | term
6553 ;
6554 @end group
6555
6556 @group
6557 term:
6558 '(' expr ')'
6559 | term '!'
6560 | NUMBER
6561 ;
6562 @end group
6563 @end example
6564
6565 Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6566 should be done? If the following token is @samp{)}, then the first three
6567 tokens must be reduced to form an @code{expr}. This is the only valid
6568 course, because shifting the @samp{)} would produce a sequence of symbols
6569 @w{@code{term ')'}}, and no rule allows this.
6570
6571 If the following token is @samp{!}, then it must be shifted immediately so
6572 that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6573 parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6574 @code{expr}. It would then be impossible to shift the @samp{!} because
6575 doing so would produce on the stack the sequence of symbols @code{expr
6576 '!'}. No rule allows that sequence.
6577
6578 @vindex yychar
6579 @vindex yylval
6580 @vindex yylloc
6581 The lookahead token is stored in the variable @code{yychar}.
6582 Its semantic value and location, if any, are stored in the variables
6583 @code{yylval} and @code{yylloc}.
6584 @xref{Action Features, ,Special Features for Use in Actions}.
6585
6586 @node Shift/Reduce
6587 @section Shift/Reduce Conflicts
6588 @cindex conflicts
6589 @cindex shift/reduce conflicts
6590 @cindex dangling @code{else}
6591 @cindex @code{else}, dangling
6592
6593 Suppose we are parsing a language which has if-then and if-then-else
6594 statements, with a pair of rules like this:
6595
6596 @example
6597 @group
6598 if_stmt:
6599 IF expr THEN stmt
6600 | IF expr THEN stmt ELSE stmt
6601 ;
6602 @end group
6603 @end example
6604
6605 @noindent
6606 Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6607 terminal symbols for specific keyword tokens.
6608
6609 When the @code{ELSE} token is read and becomes the lookahead token, the
6610 contents of the stack (assuming the input is valid) are just right for
6611 reduction by the first rule. But it is also legitimate to shift the
6612 @code{ELSE}, because that would lead to eventual reduction by the second
6613 rule.
6614
6615 This situation, where either a shift or a reduction would be valid, is
6616 called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6617 these conflicts by choosing to shift, unless otherwise directed by
6618 operator precedence declarations. To see the reason for this, let's
6619 contrast it with the other alternative.
6620
6621 Since the parser prefers to shift the @code{ELSE}, the result is to attach
6622 the else-clause to the innermost if-statement, making these two inputs
6623 equivalent:
6624
6625 @example
6626 if x then if y then win (); else lose;
6627
6628 if x then do; if y then win (); else lose; end;
6629 @end example
6630
6631 But if the parser chose to reduce when possible rather than shift, the
6632 result would be to attach the else-clause to the outermost if-statement,
6633 making these two inputs equivalent:
6634
6635 @example
6636 if x then if y then win (); else lose;
6637
6638 if x then do; if y then win (); end; else lose;
6639 @end example
6640
6641 The conflict exists because the grammar as written is ambiguous: either
6642 parsing of the simple nested if-statement is legitimate. The established
6643 convention is that these ambiguities are resolved by attaching the
6644 else-clause to the innermost if-statement; this is what Bison accomplishes
6645 by choosing to shift rather than reduce. (It would ideally be cleaner to
6646 write an unambiguous grammar, but that is very hard to do in this case.)
6647 This particular ambiguity was first encountered in the specifications of
6648 Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6649
6650 To avoid warnings from Bison about predictable, legitimate shift/reduce
6651 conflicts, use the @code{%expect @var{n}} declaration.
6652 There will be no warning as long as the number of shift/reduce conflicts
6653 is exactly @var{n}, and Bison will report an error if there is a
6654 different number.
6655 @xref{Expect Decl, ,Suppressing Conflict Warnings}.
6656
6657 The definition of @code{if_stmt} above is solely to blame for the
6658 conflict, but the conflict does not actually appear without additional
6659 rules. Here is a complete Bison grammar file that actually manifests
6660 the conflict:
6661
6662 @example
6663 @group
6664 %token IF THEN ELSE variable
6665 %%
6666 @end group
6667 @group
6668 stmt:
6669 expr
6670 | if_stmt
6671 ;
6672 @end group
6673
6674 @group
6675 if_stmt:
6676 IF expr THEN stmt
6677 | IF expr THEN stmt ELSE stmt
6678 ;
6679 @end group
6680
6681 expr:
6682 variable
6683 ;
6684 @end example
6685
6686 @node Precedence
6687 @section Operator Precedence
6688 @cindex operator precedence
6689 @cindex precedence of operators
6690
6691 Another situation where shift/reduce conflicts appear is in arithmetic
6692 expressions. Here shifting is not always the preferred resolution; the
6693 Bison declarations for operator precedence allow you to specify when to
6694 shift and when to reduce.
6695
6696 @menu
6697 * Why Precedence:: An example showing why precedence is needed.
6698 * Using Precedence:: How to specify precedence in Bison grammars.
6699 * Precedence Examples:: How these features are used in the previous example.
6700 * How Precedence:: How they work.
6701 @end menu
6702
6703 @node Why Precedence
6704 @subsection When Precedence is Needed
6705
6706 Consider the following ambiguous grammar fragment (ambiguous because the
6707 input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6708
6709 @example
6710 @group
6711 expr:
6712 expr '-' expr
6713 | expr '*' expr
6714 | expr '<' expr
6715 | '(' expr ')'
6716 @dots{}
6717 ;
6718 @end group
6719 @end example
6720
6721 @noindent
6722 Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
6723 should it reduce them via the rule for the subtraction operator? It
6724 depends on the next token. Of course, if the next token is @samp{)}, we
6725 must reduce; shifting is invalid because no single rule can reduce the
6726 token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6727 the next token is @samp{*} or @samp{<}, we have a choice: either
6728 shifting or reduction would allow the parse to complete, but with
6729 different results.
6730
6731 To decide which one Bison should do, we must consider the results. If
6732 the next operator token @var{op} is shifted, then it must be reduced
6733 first in order to permit another opportunity to reduce the difference.
6734 The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6735 hand, if the subtraction is reduced before shifting @var{op}, the result
6736 is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6737 reduce should depend on the relative precedence of the operators
6738 @samp{-} and @var{op}: @samp{*} should be shifted first, but not
6739 @samp{<}.
6740
6741 @cindex associativity
6742 What about input such as @w{@samp{1 - 2 - 5}}; should this be
6743 @w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6744 operators we prefer the former, which is called @dfn{left association}.
6745 The latter alternative, @dfn{right association}, is desirable for
6746 assignment operators. The choice of left or right association is a
6747 matter of whether the parser chooses to shift or reduce when the stack
6748 contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
6749 makes right-associativity.
6750
6751 @node Using Precedence
6752 @subsection Specifying Operator Precedence
6753 @findex %left
6754 @findex %right
6755 @findex %nonassoc
6756
6757 Bison allows you to specify these choices with the operator precedence
6758 declarations @code{%left} and @code{%right}. Each such declaration
6759 contains a list of tokens, which are operators whose precedence and
6760 associativity is being declared. The @code{%left} declaration makes all
6761 those operators left-associative and the @code{%right} declaration makes
6762 them right-associative. A third alternative is @code{%nonassoc}, which
6763 declares that it is a syntax error to find the same operator twice ``in a
6764 row''.
6765
6766 The relative precedence of different operators is controlled by the
6767 order in which they are declared. The first @code{%left} or
6768 @code{%right} declaration in the file declares the operators whose
6769 precedence is lowest, the next such declaration declares the operators
6770 whose precedence is a little higher, and so on.
6771
6772 @node Precedence Examples
6773 @subsection Precedence Examples
6774
6775 In our example, we would want the following declarations:
6776
6777 @example
6778 %left '<'
6779 %left '-'
6780 %left '*'
6781 @end example
6782
6783 In a more complete example, which supports other operators as well, we
6784 would declare them in groups of equal precedence. For example, @code{'+'} is
6785 declared with @code{'-'}:
6786
6787 @example
6788 %left '<' '>' '=' NE LE GE
6789 %left '+' '-'
6790 %left '*' '/'
6791 @end example
6792
6793 @noindent
6794 (Here @code{NE} and so on stand for the operators for ``not equal''
6795 and so on. We assume that these tokens are more than one character long
6796 and therefore are represented by names, not character literals.)
6797
6798 @node How Precedence
6799 @subsection How Precedence Works
6800
6801 The first effect of the precedence declarations is to assign precedence
6802 levels to the terminal symbols declared. The second effect is to assign
6803 precedence levels to certain rules: each rule gets its precedence from
6804 the last terminal symbol mentioned in the components. (You can also
6805 specify explicitly the precedence of a rule. @xref{Contextual
6806 Precedence, ,Context-Dependent Precedence}.)
6807
6808 Finally, the resolution of conflicts works by comparing the precedence
6809 of the rule being considered with that of the lookahead token. If the
6810 token's precedence is higher, the choice is to shift. If the rule's
6811 precedence is higher, the choice is to reduce. If they have equal
6812 precedence, the choice is made based on the associativity of that
6813 precedence level. The verbose output file made by @samp{-v}
6814 (@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6815 resolved.
6816
6817 Not all rules and not all tokens have precedence. If either the rule or
6818 the lookahead token has no precedence, then the default is to shift.
6819
6820 @node Contextual Precedence
6821 @section Context-Dependent Precedence
6822 @cindex context-dependent precedence
6823 @cindex unary operator precedence
6824 @cindex precedence, context-dependent
6825 @cindex precedence, unary operator
6826 @findex %prec
6827
6828 Often the precedence of an operator depends on the context. This sounds
6829 outlandish at first, but it is really very common. For example, a minus
6830 sign typically has a very high precedence as a unary operator, and a
6831 somewhat lower precedence (lower than multiplication) as a binary operator.
6832
6833 The Bison precedence declarations, @code{%left}, @code{%right} and
6834 @code{%nonassoc}, can only be used once for a given token; so a token has
6835 only one precedence declared in this way. For context-dependent
6836 precedence, you need to use an additional mechanism: the @code{%prec}
6837 modifier for rules.
6838
6839 The @code{%prec} modifier declares the precedence of a particular rule by
6840 specifying a terminal symbol whose precedence should be used for that rule.
6841 It's not necessary for that symbol to appear otherwise in the rule. The
6842 modifier's syntax is:
6843
6844 @example
6845 %prec @var{terminal-symbol}
6846 @end example
6847
6848 @noindent
6849 and it is written after the components of the rule. Its effect is to
6850 assign the rule the precedence of @var{terminal-symbol}, overriding
6851 the precedence that would be deduced for it in the ordinary way. The
6852 altered rule precedence then affects how conflicts involving that rule
6853 are resolved (@pxref{Precedence, ,Operator Precedence}).
6854
6855 Here is how @code{%prec} solves the problem of unary minus. First, declare
6856 a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6857 are no tokens of this type, but the symbol serves to stand for its
6858 precedence:
6859
6860 @example
6861 @dots{}
6862 %left '+' '-'
6863 %left '*'
6864 %left UMINUS
6865 @end example
6866
6867 Now the precedence of @code{UMINUS} can be used in specific rules:
6868
6869 @example
6870 @group
6871 exp:
6872 @dots{}
6873 | exp '-' exp
6874 @dots{}
6875 | '-' exp %prec UMINUS
6876 @end group
6877 @end example
6878
6879 @ifset defaultprec
6880 If you forget to append @code{%prec UMINUS} to the rule for unary
6881 minus, Bison silently assumes that minus has its usual precedence.
6882 This kind of problem can be tricky to debug, since one typically
6883 discovers the mistake only by testing the code.
6884
6885 The @code{%no-default-prec;} declaration makes it easier to discover
6886 this kind of problem systematically. It causes rules that lack a
6887 @code{%prec} modifier to have no precedence, even if the last terminal
6888 symbol mentioned in their components has a declared precedence.
6889
6890 If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
6891 for all rules that participate in precedence conflict resolution.
6892 Then you will see any shift/reduce conflict until you tell Bison how
6893 to resolve it, either by changing your grammar or by adding an
6894 explicit precedence. This will probably add declarations to the
6895 grammar, but it helps to protect against incorrect rule precedences.
6896
6897 The effect of @code{%no-default-prec;} can be reversed by giving
6898 @code{%default-prec;}, which is the default.
6899 @end ifset
6900
6901 @node Parser States
6902 @section Parser States
6903 @cindex finite-state machine
6904 @cindex parser state
6905 @cindex state (of parser)
6906
6907 The function @code{yyparse} is implemented using a finite-state machine.
6908 The values pushed on the parser stack are not simply token type codes; they
6909 represent the entire sequence of terminal and nonterminal symbols at or
6910 near the top of the stack. The current state collects all the information
6911 about previous input which is relevant to deciding what to do next.
6912
6913 Each time a lookahead token is read, the current parser state together
6914 with the type of lookahead token are looked up in a table. This table
6915 entry can say, ``Shift the lookahead token.'' In this case, it also
6916 specifies the new parser state, which is pushed onto the top of the
6917 parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6918 This means that a certain number of tokens or groupings are taken off
6919 the top of the stack, and replaced by one grouping. In other words,
6920 that number of states are popped from the stack, and one new state is
6921 pushed.
6922
6923 There is one other alternative: the table can say that the lookahead token
6924 is erroneous in the current state. This causes error processing to begin
6925 (@pxref{Error Recovery}).
6926
6927 @node Reduce/Reduce
6928 @section Reduce/Reduce Conflicts
6929 @cindex reduce/reduce conflict
6930 @cindex conflicts, reduce/reduce
6931
6932 A reduce/reduce conflict occurs if there are two or more rules that apply
6933 to the same sequence of input. This usually indicates a serious error
6934 in the grammar.
6935
6936 For example, here is an erroneous attempt to define a sequence
6937 of zero or more @code{word} groupings.
6938
6939 @example
6940 @group
6941 sequence:
6942 /* empty */ @{ printf ("empty sequence\n"); @}
6943 | maybeword
6944 | sequence word @{ printf ("added word %s\n", $2); @}
6945 ;
6946 @end group
6947
6948 @group
6949 maybeword:
6950 /* empty */ @{ printf ("empty maybeword\n"); @}
6951 | word @{ printf ("single word %s\n", $1); @}
6952 ;
6953 @end group
6954 @end example
6955
6956 @noindent
6957 The error is an ambiguity: there is more than one way to parse a single
6958 @code{word} into a @code{sequence}. It could be reduced to a
6959 @code{maybeword} and then into a @code{sequence} via the second rule.
6960 Alternatively, nothing-at-all could be reduced into a @code{sequence}
6961 via the first rule, and this could be combined with the @code{word}
6962 using the third rule for @code{sequence}.
6963
6964 There is also more than one way to reduce nothing-at-all into a
6965 @code{sequence}. This can be done directly via the first rule,
6966 or indirectly via @code{maybeword} and then the second rule.
6967
6968 You might think that this is a distinction without a difference, because it
6969 does not change whether any particular input is valid or not. But it does
6970 affect which actions are run. One parsing order runs the second rule's
6971 action; the other runs the first rule's action and the third rule's action.
6972 In this example, the output of the program changes.
6973
6974 Bison resolves a reduce/reduce conflict by choosing to use the rule that
6975 appears first in the grammar, but it is very risky to rely on this. Every
6976 reduce/reduce conflict must be studied and usually eliminated. Here is the
6977 proper way to define @code{sequence}:
6978
6979 @example
6980 sequence:
6981 /* empty */ @{ printf ("empty sequence\n"); @}
6982 | sequence word @{ printf ("added word %s\n", $2); @}
6983 ;
6984 @end example
6985
6986 Here is another common error that yields a reduce/reduce conflict:
6987
6988 @example
6989 sequence:
6990 /* empty */
6991 | sequence words
6992 | sequence redirects
6993 ;
6994
6995 words:
6996 /* empty */
6997 | words word
6998 ;
6999
7000 redirects:
7001 /* empty */
7002 | redirects redirect
7003 ;
7004 @end example
7005
7006 @noindent
7007 The intention here is to define a sequence which can contain either
7008 @code{word} or @code{redirect} groupings. The individual definitions of
7009 @code{sequence}, @code{words} and @code{redirects} are error-free, but the
7010 three together make a subtle ambiguity: even an empty input can be parsed
7011 in infinitely many ways!
7012
7013 Consider: nothing-at-all could be a @code{words}. Or it could be two
7014 @code{words} in a row, or three, or any number. It could equally well be a
7015 @code{redirects}, or two, or any number. Or it could be a @code{words}
7016 followed by three @code{redirects} and another @code{words}. And so on.
7017
7018 Here are two ways to correct these rules. First, to make it a single level
7019 of sequence:
7020
7021 @example
7022 sequence:
7023 /* empty */
7024 | sequence word
7025 | sequence redirect
7026 ;
7027 @end example
7028
7029 Second, to prevent either a @code{words} or a @code{redirects}
7030 from being empty:
7031
7032 @example
7033 @group
7034 sequence:
7035 /* empty */
7036 | sequence words
7037 | sequence redirects
7038 ;
7039 @end group
7040
7041 @group
7042 words:
7043 word
7044 | words word
7045 ;
7046 @end group
7047
7048 @group
7049 redirects:
7050 redirect
7051 | redirects redirect
7052 ;
7053 @end group
7054 @end example
7055
7056 @node Mysterious Conflicts
7057 @section Mysterious Conflicts
7058 @cindex Mysterious Conflicts
7059
7060 Sometimes reduce/reduce conflicts can occur that don't look warranted.
7061 Here is an example:
7062
7063 @example
7064 @group
7065 %token ID
7066
7067 %%
7068 def: param_spec return_spec ',';
7069 param_spec:
7070 type
7071 | name_list ':' type
7072 ;
7073 @end group
7074 @group
7075 return_spec:
7076 type
7077 | name ':' type
7078 ;
7079 @end group
7080 @group
7081 type: ID;
7082 @end group
7083 @group
7084 name: ID;
7085 name_list:
7086 name
7087 | name ',' name_list
7088 ;
7089 @end group
7090 @end example
7091
7092 It would seem that this grammar can be parsed with only a single token
7093 of lookahead: when a @code{param_spec} is being read, an @code{ID} is
7094 a @code{name} if a comma or colon follows, or a @code{type} if another
7095 @code{ID} follows. In other words, this grammar is LR(1).
7096
7097 @cindex LR
7098 @cindex LALR
7099 However, for historical reasons, Bison cannot by default handle all
7100 LR(1) grammars.
7101 In this grammar, two contexts, that after an @code{ID} at the beginning
7102 of a @code{param_spec} and likewise at the beginning of a
7103 @code{return_spec}, are similar enough that Bison assumes they are the
7104 same.
7105 They appear similar because the same set of rules would be
7106 active---the rule for reducing to a @code{name} and that for reducing to
7107 a @code{type}. Bison is unable to determine at that stage of processing
7108 that the rules would require different lookahead tokens in the two
7109 contexts, so it makes a single parser state for them both. Combining
7110 the two contexts causes a conflict later. In parser terminology, this
7111 occurrence means that the grammar is not LALR(1).
7112
7113 @cindex IELR
7114 @cindex canonical LR
7115 For many practical grammars (specifically those that fall into the non-LR(1)
7116 class), the limitations of LALR(1) result in difficulties beyond just
7117 mysterious reduce/reduce conflicts. The best way to fix all these problems
7118 is to select a different parser table construction algorithm. Either
7119 IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7120 and easier to debug during development. @xref{LR Table Construction}, for
7121 details. (Bison's IELR(1) and canonical LR(1) implementations are
7122 experimental. More user feedback will help to stabilize them.)
7123
7124 If you instead wish to work around LALR(1)'s limitations, you
7125 can often fix a mysterious conflict by identifying the two parser states
7126 that are being confused, and adding something to make them look
7127 distinct. In the above example, adding one rule to
7128 @code{return_spec} as follows makes the problem go away:
7129
7130 @example
7131 @group
7132 %token BOGUS
7133 @dots{}
7134 %%
7135 @dots{}
7136 return_spec:
7137 type
7138 | name ':' type
7139 | ID BOGUS /* This rule is never used. */
7140 ;
7141 @end group
7142 @end example
7143
7144 This corrects the problem because it introduces the possibility of an
7145 additional active rule in the context after the @code{ID} at the beginning of
7146 @code{return_spec}. This rule is not active in the corresponding context
7147 in a @code{param_spec}, so the two contexts receive distinct parser states.
7148 As long as the token @code{BOGUS} is never generated by @code{yylex},
7149 the added rule cannot alter the way actual input is parsed.
7150
7151 In this particular example, there is another way to solve the problem:
7152 rewrite the rule for @code{return_spec} to use @code{ID} directly
7153 instead of via @code{name}. This also causes the two confusing
7154 contexts to have different sets of active rules, because the one for
7155 @code{return_spec} activates the altered rule for @code{return_spec}
7156 rather than the one for @code{name}.
7157
7158 @example
7159 param_spec:
7160 type
7161 | name_list ':' type
7162 ;
7163 return_spec:
7164 type
7165 | ID ':' type
7166 ;
7167 @end example
7168
7169 For a more detailed exposition of LALR(1) parsers and parser
7170 generators, @pxref{Bibliography,,DeRemer 1982}.
7171
7172 @node Tuning LR
7173 @section Tuning LR
7174
7175 The default behavior of Bison's LR-based parsers is chosen mostly for
7176 historical reasons, but that behavior is often not robust. For example, in
7177 the previous section, we discussed the mysterious conflicts that can be
7178 produced by LALR(1), Bison's default parser table construction algorithm.
7179 Another example is Bison's @code{%error-verbose} directive, which instructs
7180 the generated parser to produce verbose syntax error messages, which can
7181 sometimes contain incorrect information.
7182
7183 In this section, we explore several modern features of Bison that allow you
7184 to tune fundamental aspects of the generated LR-based parsers. Some of
7185 these features easily eliminate shortcomings like those mentioned above.
7186 Others can be helpful purely for understanding your parser.
7187
7188 Most of the features discussed in this section are still experimental. More
7189 user feedback will help to stabilize them.
7190
7191 @menu
7192 * LR Table Construction:: Choose a different construction algorithm.
7193 * Default Reductions:: Disable default reductions.
7194 * LAC:: Correct lookahead sets in the parser states.
7195 * Unreachable States:: Keep unreachable parser states for debugging.
7196 @end menu
7197
7198 @node LR Table Construction
7199 @subsection LR Table Construction
7200 @cindex Mysterious Conflict
7201 @cindex LALR
7202 @cindex IELR
7203 @cindex canonical LR
7204 @findex %define lr.type
7205
7206 For historical reasons, Bison constructs LALR(1) parser tables by default.
7207 However, LALR does not possess the full language-recognition power of LR.
7208 As a result, the behavior of parsers employing LALR parser tables is often
7209 mysterious. We presented a simple example of this effect in @ref{Mysterious
7210 Conflicts}.
7211
7212 As we also demonstrated in that example, the traditional approach to
7213 eliminating such mysterious behavior is to restructure the grammar.
7214 Unfortunately, doing so correctly is often difficult. Moreover, merely
7215 discovering that LALR causes mysterious behavior in your parser can be
7216 difficult as well.
7217
7218 Fortunately, Bison provides an easy way to eliminate the possibility of such
7219 mysterious behavior altogether. You simply need to activate a more powerful
7220 parser table construction algorithm by using the @code{%define lr.type}
7221 directive.
7222
7223 @deffn {Directive} {%define lr.type @var{TYPE}}
7224 Specify the type of parser tables within the LR(1) family. The accepted
7225 values for @var{TYPE} are:
7226
7227 @itemize
7228 @item @code{lalr} (default)
7229 @item @code{ielr}
7230 @item @code{canonical-lr}
7231 @end itemize
7232
7233 (This feature is experimental. More user feedback will help to stabilize
7234 it.)
7235 @end deffn
7236
7237 For example, to activate IELR, you might add the following directive to you
7238 grammar file:
7239
7240 @example
7241 %define lr.type ielr
7242 @end example
7243
7244 @noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7245 conflict is then eliminated, so there is no need to invest time in
7246 comprehending the conflict or restructuring the grammar to fix it. If,
7247 during future development, the grammar evolves such that all mysterious
7248 behavior would have disappeared using just LALR, you need not fear that
7249 continuing to use IELR will result in unnecessarily large parser tables.
7250 That is, IELR generates LALR tables when LALR (using a deterministic parsing
7251 algorithm) is sufficient to support the full language-recognition power of
7252 LR. Thus, by enabling IELR at the start of grammar development, you can
7253 safely and completely eliminate the need to consider LALR's shortcomings.
7254
7255 While IELR is almost always preferable, there are circumstances where LALR
7256 or the canonical LR parser tables described by Knuth
7257 (@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7258 relative advantages of each parser table construction algorithm within
7259 Bison:
7260
7261 @itemize
7262 @item LALR
7263
7264 There are at least two scenarios where LALR can be worthwhile:
7265
7266 @itemize
7267 @item GLR without static conflict resolution.
7268
7269 @cindex GLR with LALR
7270 When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7271 conflicts statically (for example, with @code{%left} or @code{%prec}), then
7272 the parser explores all potential parses of any given input. In this case,
7273 the choice of parser table construction algorithm is guaranteed not to alter
7274 the language accepted by the parser. LALR parser tables are the smallest
7275 parser tables Bison can currently construct, so they may then be preferable.
7276 Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7277 more like a deterministic parser in the syntactic contexts where those
7278 conflicts appear, and so either IELR or canonical LR can then be helpful to
7279 avoid LALR's mysterious behavior.
7280
7281 @item Malformed grammars.
7282
7283 Occasionally during development, an especially malformed grammar with a
7284 major recurring flaw may severely impede the IELR or canonical LR parser
7285 table construction algorithm. LALR can be a quick way to construct parser
7286 tables in order to investigate such problems while ignoring the more subtle
7287 differences from IELR and canonical LR.
7288 @end itemize
7289
7290 @item IELR
7291
7292 IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7293 any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7294 always accept exactly the same set of sentences. However, like LALR, IELR
7295 merges parser states during parser table construction so that the number of
7296 parser states is often an order of magnitude less than for canonical LR.
7297 More importantly, because canonical LR's extra parser states may contain
7298 duplicate conflicts in the case of non-LR grammars, the number of conflicts
7299 for IELR is often an order of magnitude less as well. This effect can
7300 significantly reduce the complexity of developing a grammar.
7301
7302 @item Canonical LR
7303
7304 @cindex delayed syntax error detection
7305 @cindex LAC
7306 @findex %nonassoc
7307 While inefficient, canonical LR parser tables can be an interesting means to
7308 explore a grammar because they possess a property that IELR and LALR tables
7309 do not. That is, if @code{%nonassoc} is not used and default reductions are
7310 left disabled (@pxref{Default Reductions}), then, for every left context of
7311 every canonical LR state, the set of tokens accepted by that state is
7312 guaranteed to be the exact set of tokens that is syntactically acceptable in
7313 that left context. It might then seem that an advantage of canonical LR
7314 parsers in production is that, under the above constraints, they are
7315 guaranteed to detect a syntax error as soon as possible without performing
7316 any unnecessary reductions. However, IELR parsers that use LAC are also
7317 able to achieve this behavior without sacrificing @code{%nonassoc} or
7318 default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7319 @end itemize
7320
7321 For a more detailed exposition of the mysterious behavior in LALR parsers
7322 and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7323 @ref{Bibliography,,Denny 2010 November}.
7324
7325 @node Default Reductions
7326 @subsection Default Reductions
7327 @cindex default reductions
7328 @findex %define lr.default-reductions
7329 @findex %nonassoc
7330
7331 After parser table construction, Bison identifies the reduction with the
7332 largest lookahead set in each parser state. To reduce the size of the
7333 parser state, traditional Bison behavior is to remove that lookahead set and
7334 to assign that reduction to be the default parser action. Such a reduction
7335 is known as a @dfn{default reduction}.
7336
7337 Default reductions affect more than the size of the parser tables. They
7338 also affect the behavior of the parser:
7339
7340 @itemize
7341 @item Delayed @code{yylex} invocations.
7342
7343 @cindex delayed yylex invocations
7344 @cindex consistent states
7345 @cindex defaulted states
7346 A @dfn{consistent state} is a state that has only one possible parser
7347 action. If that action is a reduction and is encoded as a default
7348 reduction, then that consistent state is called a @dfn{defaulted state}.
7349 Upon reaching a defaulted state, a Bison-generated parser does not bother to
7350 invoke @code{yylex} to fetch the next token before performing the reduction.
7351 In other words, whether default reductions are enabled in consistent states
7352 determines how soon a Bison-generated parser invokes @code{yylex} for a
7353 token: immediately when it @emph{reaches} that token in the input or when it
7354 eventually @emph{needs} that token as a lookahead to determine the next
7355 parser action. Traditionally, default reductions are enabled, and so the
7356 parser exhibits the latter behavior.
7357
7358 The presence of defaulted states is an important consideration when
7359 designing @code{yylex} and the grammar file. That is, if the behavior of
7360 @code{yylex} can influence or be influenced by the semantic actions
7361 associated with the reductions in defaulted states, then the delay of the
7362 next @code{yylex} invocation until after those reductions is significant.
7363 For example, the semantic actions might pop a scope stack that @code{yylex}
7364 uses to determine what token to return. Thus, the delay might be necessary
7365 to ensure that @code{yylex} does not look up the next token in a scope that
7366 should already be considered closed.
7367
7368 @item Delayed syntax error detection.
7369
7370 @cindex delayed syntax error detection
7371 When the parser fetches a new token by invoking @code{yylex}, it checks
7372 whether there is an action for that token in the current parser state. The
7373 parser detects a syntax error if and only if either (1) there is no action
7374 for that token or (2) the action for that token is the error action (due to
7375 the use of @code{%nonassoc}). However, if there is a default reduction in
7376 that state (which might or might not be a defaulted state), then it is
7377 impossible for condition 1 to exist. That is, all tokens have an action.
7378 Thus, the parser sometimes fails to detect the syntax error until it reaches
7379 a later state.
7380
7381 @cindex LAC
7382 @c If there's an infinite loop, default reductions can prevent an incorrect
7383 @c sentence from being rejected.
7384 While default reductions never cause the parser to accept syntactically
7385 incorrect sentences, the delay of syntax error detection can have unexpected
7386 effects on the behavior of the parser. However, the delay can be caused
7387 anyway by parser state merging and the use of @code{%nonassoc}, and it can
7388 be fixed by another Bison feature, LAC. We discuss the effects of delayed
7389 syntax error detection and LAC more in the next section (@pxref{LAC}).
7390 @end itemize
7391
7392 For canonical LR, the only default reduction that Bison enables by default
7393 is the accept action, which appears only in the accepting state, which has
7394 no other action and is thus a defaulted state. However, the default accept
7395 action does not delay any @code{yylex} invocation or syntax error detection
7396 because the accept action ends the parse.
7397
7398 For LALR and IELR, Bison enables default reductions in nearly all states by
7399 default. There are only two exceptions. First, states that have a shift
7400 action on the @code{error} token do not have default reductions because
7401 delayed syntax error detection could then prevent the @code{error} token
7402 from ever being shifted in that state. However, parser state merging can
7403 cause the same effect anyway, and LAC fixes it in both cases, so future
7404 versions of Bison might drop this exception when LAC is activated. Second,
7405 GLR parsers do not record the default reduction as the action on a lookahead
7406 token for which there is a conflict. The correct action in this case is to
7407 split the parse instead.
7408
7409 To adjust which states have default reductions enabled, use the
7410 @code{%define lr.default-reductions} directive.
7411
7412 @deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7413 Specify the kind of states that are permitted to contain default reductions.
7414 The accepted values of @var{WHERE} are:
7415 @itemize
7416 @item @code{most} (default for LALR and IELR)
7417 @item @code{consistent}
7418 @item @code{accepting} (default for canonical LR)
7419 @end itemize
7420
7421 (The ability to specify where default reductions are permitted is
7422 experimental. More user feedback will help to stabilize it.)
7423 @end deffn
7424
7425 @node LAC
7426 @subsection LAC
7427 @findex %define parse.lac
7428 @cindex LAC
7429 @cindex lookahead correction
7430
7431 Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7432 encountering a syntax error. First, the parser might perform additional
7433 parser stack reductions before discovering the syntax error. Such
7434 reductions can perform user semantic actions that are unexpected because
7435 they are based on an invalid token, and they cause error recovery to begin
7436 in a different syntactic context than the one in which the invalid token was
7437 encountered. Second, when verbose error messages are enabled (@pxref{Error
7438 Reporting}), the expected token list in the syntax error message can both
7439 contain invalid tokens and omit valid tokens.
7440
7441 The culprits for the above problems are @code{%nonassoc}, default reductions
7442 in inconsistent states (@pxref{Default Reductions}), and parser state
7443 merging. Because IELR and LALR merge parser states, they suffer the most.
7444 Canonical LR can suffer only if @code{%nonassoc} is used or if default
7445 reductions are enabled for inconsistent states.
7446
7447 LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7448 that solves these problems for canonical LR, IELR, and LALR without
7449 sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7450 enable LAC with the @code{%define parse.lac} directive.
7451
7452 @deffn {Directive} {%define parse.lac @var{VALUE}}
7453 Enable LAC to improve syntax error handling.
7454 @itemize
7455 @item @code{none} (default)
7456 @item @code{full}
7457 @end itemize
7458 (This feature is experimental. More user feedback will help to stabilize
7459 it. Moreover, it is currently only available for deterministic parsers in
7460 C.)
7461 @end deffn
7462
7463 Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7464 fetches a new token from the scanner so that it can determine the next
7465 parser action, it immediately suspends normal parsing and performs an
7466 exploratory parse using a temporary copy of the normal parser state stack.
7467 During this exploratory parse, the parser does not perform user semantic
7468 actions. If the exploratory parse reaches a shift action, normal parsing
7469 then resumes on the normal parser stacks. If the exploratory parse reaches
7470 an error instead, the parser reports a syntax error. If verbose syntax
7471 error messages are enabled, the parser must then discover the list of
7472 expected tokens, so it performs a separate exploratory parse for each token
7473 in the grammar.
7474
7475 There is one subtlety about the use of LAC. That is, when in a consistent
7476 parser state with a default reduction, the parser will not attempt to fetch
7477 a token from the scanner because no lookahead is needed to determine the
7478 next parser action. Thus, whether default reductions are enabled in
7479 consistent states (@pxref{Default Reductions}) affects how soon the parser
7480 detects a syntax error: immediately when it @emph{reaches} an erroneous
7481 token or when it eventually @emph{needs} that token as a lookahead to
7482 determine the next parser action. The latter behavior is probably more
7483 intuitive, so Bison currently provides no way to achieve the former behavior
7484 while default reductions are enabled in consistent states.
7485
7486 Thus, when LAC is in use, for some fixed decision of whether to enable
7487 default reductions in consistent states, canonical LR and IELR behave almost
7488 exactly the same for both syntactically acceptable and syntactically
7489 unacceptable input. While LALR still does not support the full
7490 language-recognition power of canonical LR and IELR, LAC at least enables
7491 LALR's syntax error handling to correctly reflect LALR's
7492 language-recognition power.
7493
7494 There are a few caveats to consider when using LAC:
7495
7496 @itemize
7497 @item Infinite parsing loops.
7498
7499 IELR plus LAC does have one shortcoming relative to canonical LR. Some
7500 parsers generated by Bison can loop infinitely. LAC does not fix infinite
7501 parsing loops that occur between encountering a syntax error and detecting
7502 it, but enabling canonical LR or disabling default reductions sometimes
7503 does.
7504
7505 @item Verbose error message limitations.
7506
7507 Because of internationalization considerations, Bison-generated parsers
7508 limit the size of the expected token list they are willing to report in a
7509 verbose syntax error message. If the number of expected tokens exceeds that
7510 limit, the list is simply dropped from the message. Enabling LAC can
7511 increase the size of the list and thus cause the parser to drop it. Of
7512 course, dropping the list is better than reporting an incorrect list.
7513
7514 @item Performance.
7515
7516 Because LAC requires many parse actions to be performed twice, it can have a
7517 performance penalty. However, not all parse actions must be performed
7518 twice. Specifically, during a series of default reductions in consistent
7519 states and shift actions, the parser never has to initiate an exploratory
7520 parse. Moreover, the most time-consuming tasks in a parse are often the
7521 file I/O, the lexical analysis performed by the scanner, and the user's
7522 semantic actions, but none of these are performed during the exploratory
7523 parse. Finally, the base of the temporary stack used during an exploratory
7524 parse is a pointer into the normal parser state stack so that the stack is
7525 never physically copied. In our experience, the performance penalty of LAC
7526 has proved insignificant for practical grammars.
7527 @end itemize
7528
7529 While the LAC algorithm shares techniques that have been recognized in the
7530 parser community for years, for the publication that introduces LAC,
7531 @pxref{Bibliography,,Denny 2010 May}.
7532
7533 @node Unreachable States
7534 @subsection Unreachable States
7535 @findex %define lr.keep-unreachable-states
7536 @cindex unreachable states
7537
7538 If there exists no sequence of transitions from the parser's start state to
7539 some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7540 state}. A state can become unreachable during conflict resolution if Bison
7541 disables a shift action leading to it from a predecessor state.
7542
7543 By default, Bison removes unreachable states from the parser after conflict
7544 resolution because they are useless in the generated parser. However,
7545 keeping unreachable states is sometimes useful when trying to understand the
7546 relationship between the parser and the grammar.
7547
7548 @deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7549 Request that Bison allow unreachable states to remain in the parser tables.
7550 @var{VALUE} must be a Boolean. The default is @code{false}.
7551 @end deffn
7552
7553 There are a few caveats to consider:
7554
7555 @itemize @bullet
7556 @item Missing or extraneous warnings.
7557
7558 Unreachable states may contain conflicts and may use rules not used in any
7559 other state. Thus, keeping unreachable states may induce warnings that are
7560 irrelevant to your parser's behavior, and it may eliminate warnings that are
7561 relevant. Of course, the change in warnings may actually be relevant to a
7562 parser table analysis that wants to keep unreachable states, so this
7563 behavior will likely remain in future Bison releases.
7564
7565 @item Other useless states.
7566
7567 While Bison is able to remove unreachable states, it is not guaranteed to
7568 remove other kinds of useless states. Specifically, when Bison disables
7569 reduce actions during conflict resolution, some goto actions may become
7570 useless, and thus some additional states may become useless. If Bison were
7571 to compute which goto actions were useless and then disable those actions,
7572 it could identify such states as unreachable and then remove those states.
7573 However, Bison does not compute which goto actions are useless.
7574 @end itemize
7575
7576 @node Generalized LR Parsing
7577 @section Generalized LR (GLR) Parsing
7578 @cindex GLR parsing
7579 @cindex generalized LR (GLR) parsing
7580 @cindex ambiguous grammars
7581 @cindex nondeterministic parsing
7582
7583 Bison produces @emph{deterministic} parsers that choose uniquely
7584 when to reduce and which reduction to apply
7585 based on a summary of the preceding input and on one extra token of lookahead.
7586 As a result, normal Bison handles a proper subset of the family of
7587 context-free languages.
7588 Ambiguous grammars, since they have strings with more than one possible
7589 sequence of reductions cannot have deterministic parsers in this sense.
7590 The same is true of languages that require more than one symbol of
7591 lookahead, since the parser lacks the information necessary to make a
7592 decision at the point it must be made in a shift-reduce parser.
7593 Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
7594 there are languages where Bison's default choice of how to
7595 summarize the input seen so far loses necessary information.
7596
7597 When you use the @samp{%glr-parser} declaration in your grammar file,
7598 Bison generates a parser that uses a different algorithm, called
7599 Generalized LR (or GLR). A Bison GLR
7600 parser uses the same basic
7601 algorithm for parsing as an ordinary Bison parser, but behaves
7602 differently in cases where there is a shift-reduce conflict that has not
7603 been resolved by precedence rules (@pxref{Precedence}) or a
7604 reduce-reduce conflict. When a GLR parser encounters such a
7605 situation, it
7606 effectively @emph{splits} into a several parsers, one for each possible
7607 shift or reduction. These parsers then proceed as usual, consuming
7608 tokens in lock-step. Some of the stacks may encounter other conflicts
7609 and split further, with the result that instead of a sequence of states,
7610 a Bison GLR parsing stack is what is in effect a tree of states.
7611
7612 In effect, each stack represents a guess as to what the proper parse
7613 is. Additional input may indicate that a guess was wrong, in which case
7614 the appropriate stack silently disappears. Otherwise, the semantics
7615 actions generated in each stack are saved, rather than being executed
7616 immediately. When a stack disappears, its saved semantic actions never
7617 get executed. When a reduction causes two stacks to become equivalent,
7618 their sets of semantic actions are both saved with the state that
7619 results from the reduction. We say that two stacks are equivalent
7620 when they both represent the same sequence of states,
7621 and each pair of corresponding states represents a
7622 grammar symbol that produces the same segment of the input token
7623 stream.
7624
7625 Whenever the parser makes a transition from having multiple
7626 states to having one, it reverts to the normal deterministic parsing
7627 algorithm, after resolving and executing the saved-up actions.
7628 At this transition, some of the states on the stack will have semantic
7629 values that are sets (actually multisets) of possible actions. The
7630 parser tries to pick one of the actions by first finding one whose rule
7631 has the highest dynamic precedence, as set by the @samp{%dprec}
7632 declaration. Otherwise, if the alternative actions are not ordered by
7633 precedence, but there the same merging function is declared for both
7634 rules by the @samp{%merge} declaration,
7635 Bison resolves and evaluates both and then calls the merge function on
7636 the result. Otherwise, it reports an ambiguity.
7637
7638 It is possible to use a data structure for the GLR parsing tree that
7639 permits the processing of any LR(1) grammar in linear time (in the
7640 size of the input), any unambiguous (not necessarily
7641 LR(1)) grammar in
7642 quadratic worst-case time, and any general (possibly ambiguous)
7643 context-free grammar in cubic worst-case time. However, Bison currently
7644 uses a simpler data structure that requires time proportional to the
7645 length of the input times the maximum number of stacks required for any
7646 prefix of the input. Thus, really ambiguous or nondeterministic
7647 grammars can require exponential time and space to process. Such badly
7648 behaving examples, however, are not generally of practical interest.
7649 Usually, nondeterminism in a grammar is local---the parser is ``in
7650 doubt'' only for a few tokens at a time. Therefore, the current data
7651 structure should generally be adequate. On LR(1) portions of a
7652 grammar, in particular, it is only slightly slower than with the
7653 deterministic LR(1) Bison parser.
7654
7655 For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
7656 2000}.
7657
7658 @node Memory Management
7659 @section Memory Management, and How to Avoid Memory Exhaustion
7660 @cindex memory exhaustion
7661 @cindex memory management
7662 @cindex stack overflow
7663 @cindex parser stack overflow
7664 @cindex overflow of parser stack
7665
7666 The Bison parser stack can run out of memory if too many tokens are shifted and
7667 not reduced. When this happens, the parser function @code{yyparse}
7668 calls @code{yyerror} and then returns 2.
7669
7670 Because Bison parsers have growing stacks, hitting the upper limit
7671 usually results from using a right recursion instead of a left
7672 recursion, see @ref{Recursion, ,Recursive Rules}.
7673
7674 @vindex YYMAXDEPTH
7675 By defining the macro @code{YYMAXDEPTH}, you can control how deep the
7676 parser stack can become before memory is exhausted. Define the
7677 macro with a value that is an integer. This value is the maximum number
7678 of tokens that can be shifted (and not reduced) before overflow.
7679
7680 The stack space allowed is not necessarily allocated. If you specify a
7681 large value for @code{YYMAXDEPTH}, the parser normally allocates a small
7682 stack at first, and then makes it bigger by stages as needed. This
7683 increasing allocation happens automatically and silently. Therefore,
7684 you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7685 space for ordinary inputs that do not need much stack.
7686
7687 However, do not allow @code{YYMAXDEPTH} to be a value so large that
7688 arithmetic overflow could occur when calculating the size of the stack
7689 space. Also, do not allow @code{YYMAXDEPTH} to be less than
7690 @code{YYINITDEPTH}.
7691
7692 @cindex default stack limit
7693 The default value of @code{YYMAXDEPTH}, if you do not define it, is
7694 10000.
7695
7696 @vindex YYINITDEPTH
7697 You can control how much stack is allocated initially by defining the
7698 macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7699 parser in C, this value must be a compile-time constant
7700 unless you are assuming C99 or some other target language or compiler
7701 that allows variable-length arrays. The default is 200.
7702
7703 Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
7704
7705 @c FIXME: C++ output.
7706 Because of semantic differences between C and C++, the deterministic
7707 parsers in C produced by Bison cannot grow when compiled
7708 by C++ compilers. In this precise case (compiling a C parser as C++) you are
7709 suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7710 this deficiency in a future release.
7711
7712 @node Error Recovery
7713 @chapter Error Recovery
7714 @cindex error recovery
7715 @cindex recovery from errors
7716
7717 It is not usually acceptable to have a program terminate on a syntax
7718 error. For example, a compiler should recover sufficiently to parse the
7719 rest of the input file and check it for errors; a calculator should accept
7720 another expression.
7721
7722 In a simple interactive command parser where each input is one line, it may
7723 be sufficient to allow @code{yyparse} to return 1 on error and have the
7724 caller ignore the rest of the input line when that happens (and then call
7725 @code{yyparse} again). But this is inadequate for a compiler, because it
7726 forgets all the syntactic context leading up to the error. A syntax error
7727 deep within a function in the compiler input should not cause the compiler
7728 to treat the following line like the beginning of a source file.
7729
7730 @findex error
7731 You can define how to recover from a syntax error by writing rules to
7732 recognize the special token @code{error}. This is a terminal symbol that
7733 is always defined (you need not declare it) and reserved for error
7734 handling. The Bison parser generates an @code{error} token whenever a
7735 syntax error happens; if you have provided a rule to recognize this token
7736 in the current context, the parse can continue.
7737
7738 For example:
7739
7740 @example
7741 stmts:
7742 /* empty string */
7743 | stmts '\n'
7744 | stmts exp '\n'
7745 | stmts error '\n'
7746 @end example
7747
7748 The fourth rule in this example says that an error followed by a newline
7749 makes a valid addition to any @code{stmts}.
7750
7751 What happens if a syntax error occurs in the middle of an @code{exp}? The
7752 error recovery rule, interpreted strictly, applies to the precise sequence
7753 of a @code{stmts}, an @code{error} and a newline. If an error occurs in
7754 the middle of an @code{exp}, there will probably be some additional tokens
7755 and subexpressions on the stack after the last @code{stmts}, and there
7756 will be tokens to read before the next newline. So the rule is not
7757 applicable in the ordinary way.
7758
7759 But Bison can force the situation to fit the rule, by discarding part of
7760 the semantic context and part of the input. First it discards states
7761 and objects from the stack until it gets back to a state in which the
7762 @code{error} token is acceptable. (This means that the subexpressions
7763 already parsed are discarded, back to the last complete @code{stmts}.)
7764 At this point the @code{error} token can be shifted. Then, if the old
7765 lookahead token is not acceptable to be shifted next, the parser reads
7766 tokens and discards them until it finds a token which is acceptable. In
7767 this example, Bison reads and discards input until the next newline so
7768 that the fourth rule can apply. Note that discarded symbols are
7769 possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7770 Discarded Symbols}, for a means to reclaim this memory.
7771
7772 The choice of error rules in the grammar is a choice of strategies for
7773 error recovery. A simple and useful strategy is simply to skip the rest of
7774 the current input line or current statement if an error is detected:
7775
7776 @example
7777 stmt: error ';' /* On error, skip until ';' is read. */
7778 @end example
7779
7780 It is also useful to recover to the matching close-delimiter of an
7781 opening-delimiter that has already been parsed. Otherwise the
7782 close-delimiter will probably appear to be unmatched, and generate another,
7783 spurious error message:
7784
7785 @example
7786 primary:
7787 '(' expr ')'
7788 | '(' error ')'
7789 @dots{}
7790 ;
7791 @end example
7792
7793 Error recovery strategies are necessarily guesses. When they guess wrong,
7794 one syntax error often leads to another. In the above example, the error
7795 recovery rule guesses that an error is due to bad input within one
7796 @code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7797 middle of a valid @code{stmt}. After the error recovery rule recovers
7798 from the first error, another syntax error will be found straightaway,
7799 since the text following the spurious semicolon is also an invalid
7800 @code{stmt}.
7801
7802 To prevent an outpouring of error messages, the parser will output no error
7803 message for another syntax error that happens shortly after the first; only
7804 after three consecutive input tokens have been successfully shifted will
7805 error messages resume.
7806
7807 Note that rules which accept the @code{error} token may have actions, just
7808 as any other rules can.
7809
7810 @findex yyerrok
7811 You can make error messages resume immediately by using the macro
7812 @code{yyerrok} in an action. If you do this in the error rule's action, no
7813 error messages will be suppressed. This macro requires no arguments;
7814 @samp{yyerrok;} is a valid C statement.
7815
7816 @findex yyclearin
7817 The previous lookahead token is reanalyzed immediately after an error. If
7818 this is unacceptable, then the macro @code{yyclearin} may be used to clear
7819 this token. Write the statement @samp{yyclearin;} in the error rule's
7820 action.
7821 @xref{Action Features, ,Special Features for Use in Actions}.
7822
7823 For example, suppose that on a syntax error, an error handling routine is
7824 called that advances the input stream to some point where parsing should
7825 once again commence. The next symbol returned by the lexical scanner is
7826 probably correct. The previous lookahead token ought to be discarded
7827 with @samp{yyclearin;}.
7828
7829 @vindex YYRECOVERING
7830 The expression @code{YYRECOVERING ()} yields 1 when the parser
7831 is recovering from a syntax error, and 0 otherwise.
7832 Syntax error diagnostics are suppressed while recovering from a syntax
7833 error.
7834
7835 @node Context Dependency
7836 @chapter Handling Context Dependencies
7837
7838 The Bison paradigm is to parse tokens first, then group them into larger
7839 syntactic units. In many languages, the meaning of a token is affected by
7840 its context. Although this violates the Bison paradigm, certain techniques
7841 (known as @dfn{kludges}) may enable you to write Bison parsers for such
7842 languages.
7843
7844 @menu
7845 * Semantic Tokens:: Token parsing can depend on the semantic context.
7846 * Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7847 * Tie-in Recovery:: Lexical tie-ins have implications for how
7848 error recovery rules must be written.
7849 @end menu
7850
7851 (Actually, ``kludge'' means any technique that gets its job done but is
7852 neither clean nor robust.)
7853
7854 @node Semantic Tokens
7855 @section Semantic Info in Token Types
7856
7857 The C language has a context dependency: the way an identifier is used
7858 depends on what its current meaning is. For example, consider this:
7859
7860 @example
7861 foo (x);
7862 @end example
7863
7864 This looks like a function call statement, but if @code{foo} is a typedef
7865 name, then this is actually a declaration of @code{x}. How can a Bison
7866 parser for C decide how to parse this input?
7867
7868 The method used in GNU C is to have two different token types,
7869 @code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7870 identifier, it looks up the current declaration of the identifier in order
7871 to decide which token type to return: @code{TYPENAME} if the identifier is
7872 declared as a typedef, @code{IDENTIFIER} otherwise.
7873
7874 The grammar rules can then express the context dependency by the choice of
7875 token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7876 but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7877 @code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7878 is @emph{not} significant, such as in declarations that can shadow a
7879 typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7880 accepted---there is one rule for each of the two token types.
7881
7882 This technique is simple to use if the decision of which kinds of
7883 identifiers to allow is made at a place close to where the identifier is
7884 parsed. But in C this is not always so: C allows a declaration to
7885 redeclare a typedef name provided an explicit type has been specified
7886 earlier:
7887
7888 @example
7889 typedef int foo, bar;
7890 int baz (void)
7891 @group
7892 @{
7893 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7894 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7895 return foo (bar);
7896 @}
7897 @end group
7898 @end example
7899
7900 Unfortunately, the name being declared is separated from the declaration
7901 construct itself by a complicated syntactic structure---the ``declarator''.
7902
7903 As a result, part of the Bison parser for C needs to be duplicated, with
7904 all the nonterminal names changed: once for parsing a declaration in
7905 which a typedef name can be redefined, and once for parsing a
7906 declaration in which that can't be done. Here is a part of the
7907 duplication, with actions omitted for brevity:
7908
7909 @example
7910 @group
7911 initdcl:
7912 declarator maybeasm '=' init
7913 | declarator maybeasm
7914 ;
7915 @end group
7916
7917 @group
7918 notype_initdcl:
7919 notype_declarator maybeasm '=' init
7920 | notype_declarator maybeasm
7921 ;
7922 @end group
7923 @end example
7924
7925 @noindent
7926 Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7927 cannot. The distinction between @code{declarator} and
7928 @code{notype_declarator} is the same sort of thing.
7929
7930 There is some similarity between this technique and a lexical tie-in
7931 (described next), in that information which alters the lexical analysis is
7932 changed during parsing by other parts of the program. The difference is
7933 here the information is global, and is used for other purposes in the
7934 program. A true lexical tie-in has a special-purpose flag controlled by
7935 the syntactic context.
7936
7937 @node Lexical Tie-ins
7938 @section Lexical Tie-ins
7939 @cindex lexical tie-in
7940
7941 One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7942 which is set by Bison actions, whose purpose is to alter the way tokens are
7943 parsed.
7944
7945 For example, suppose we have a language vaguely like C, but with a special
7946 construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7947 an expression in parentheses in which all integers are hexadecimal. In
7948 particular, the token @samp{a1b} must be treated as an integer rather than
7949 as an identifier if it appears in that context. Here is how you can do it:
7950
7951 @example
7952 @group
7953 %@{
7954 int hexflag;
7955 int yylex (void);
7956 void yyerror (char const *);
7957 %@}
7958 %%
7959 @dots{}
7960 @end group
7961 @group
7962 expr:
7963 IDENTIFIER
7964 | constant
7965 | HEX '(' @{ hexflag = 1; @}
7966 expr ')' @{ hexflag = 0; $$ = $4; @}
7967 | expr '+' expr @{ $$ = make_sum ($1, $3); @}
7968 @dots{}
7969 ;
7970 @end group
7971
7972 @group
7973 constant:
7974 INTEGER
7975 | STRING
7976 ;
7977 @end group
7978 @end example
7979
7980 @noindent
7981 Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7982 it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7983 with letters are parsed as integers if possible.
7984
7985 The declaration of @code{hexflag} shown in the prologue of the grammar
7986 file is needed to make it accessible to the actions (@pxref{Prologue,
7987 ,The Prologue}). You must also write the code in @code{yylex} to obey
7988 the flag.
7989
7990 @node Tie-in Recovery
7991 @section Lexical Tie-ins and Error Recovery
7992
7993 Lexical tie-ins make strict demands on any error recovery rules you have.
7994 @xref{Error Recovery}.
7995
7996 The reason for this is that the purpose of an error recovery rule is to
7997 abort the parsing of one construct and resume in some larger construct.
7998 For example, in C-like languages, a typical error recovery rule is to skip
7999 tokens until the next semicolon, and then start a new statement, like this:
8000
8001 @example
8002 stmt:
8003 expr ';'
8004 | IF '(' expr ')' stmt @{ @dots{} @}
8005 @dots{}
8006 | error ';' @{ hexflag = 0; @}
8007 ;
8008 @end example
8009
8010 If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8011 construct, this error rule will apply, and then the action for the
8012 completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8013 remain set for the entire rest of the input, or until the next @code{hex}
8014 keyword, causing identifiers to be misinterpreted as integers.
8015
8016 To avoid this problem the error recovery rule itself clears @code{hexflag}.
8017
8018 There may also be an error recovery rule that works within expressions.
8019 For example, there could be a rule which applies within parentheses
8020 and skips to the close-parenthesis:
8021
8022 @example
8023 @group
8024 expr:
8025 @dots{}
8026 | '(' expr ')' @{ $$ = $2; @}
8027 | '(' error ')'
8028 @dots{}
8029 @end group
8030 @end example
8031
8032 If this rule acts within the @code{hex} construct, it is not going to abort
8033 that construct (since it applies to an inner level of parentheses within
8034 the construct). Therefore, it should not clear the flag: the rest of
8035 the @code{hex} construct should be parsed with the flag still in effect.
8036
8037 What if there is an error recovery rule which might abort out of the
8038 @code{hex} construct or might not, depending on circumstances? There is no
8039 way you can write the action to determine whether a @code{hex} construct is
8040 being aborted or not. So if you are using a lexical tie-in, you had better
8041 make sure your error recovery rules are not of this kind. Each rule must
8042 be such that you can be sure that it always will, or always won't, have to
8043 clear the flag.
8044
8045 @c ================================================== Debugging Your Parser
8046
8047 @node Debugging
8048 @chapter Debugging Your Parser
8049
8050 Developing a parser can be a challenge, especially if you don't understand
8051 the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8052 chapter explains how to generate and read the detailed description of the
8053 automaton, and how to enable and understand the parser run-time traces.
8054
8055 @menu
8056 * Understanding:: Understanding the structure of your parser.
8057 * Tracing:: Tracing the execution of your parser.
8058 @end menu
8059
8060 @node Understanding
8061 @section Understanding Your Parser
8062
8063 As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8064 Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8065 frequent than one would hope), looking at this automaton is required to
8066 tune or simply fix a parser. Bison provides two different
8067 representation of it, either textually or graphically (as a DOT file).
8068
8069 The textual file is generated when the options @option{--report} or
8070 @option{--verbose} are specified, see @ref{Invocation, , Invoking
8071 Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
8072 the parser implementation file name, and adding @samp{.output}
8073 instead. Therefore, if the grammar file is @file{foo.y}, then the
8074 parser implementation file is called @file{foo.tab.c} by default. As
8075 a consequence, the verbose output file is called @file{foo.output}.
8076
8077 The following grammar file, @file{calc.y}, will be used in the sequel:
8078
8079 @example
8080 %token NUM STR
8081 %left '+' '-'
8082 %left '*'
8083 %%
8084 exp:
8085 exp '+' exp
8086 | exp '-' exp
8087 | exp '*' exp
8088 | exp '/' exp
8089 | NUM
8090 ;
8091 useless: STR;
8092 %%
8093 @end example
8094
8095 @command{bison} reports:
8096
8097 @example
8098 calc.y: warning: 1 nonterminal useless in grammar
8099 calc.y: warning: 1 rule useless in grammar
8100 calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8101 calc.y:11.10-12: warning: rule useless in grammar: useless: STR
8102 calc.y: conflicts: 7 shift/reduce
8103 @end example
8104
8105 When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8106 creates a file @file{calc.output} with contents detailed below. The
8107 order of the output and the exact presentation might vary, but the
8108 interpretation is the same.
8109
8110 @noindent
8111 @cindex token, useless
8112 @cindex useless token
8113 @cindex nonterminal, useless
8114 @cindex useless nonterminal
8115 @cindex rule, useless
8116 @cindex useless rule
8117 The first section reports useless tokens, nonterminals and rules. Useless
8118 nonterminals and rules are removed in order to produce a smaller parser, but
8119 useless tokens are preserved, since they might be used by the scanner (note
8120 the difference between ``useless'' and ``unused'' below):
8121
8122 @example
8123 Nonterminals useless in grammar
8124 useless
8125
8126 Terminals unused in grammar
8127 STR
8128
8129 Rules useless in grammar
8130 6 useless: STR
8131 @end example
8132
8133 @noindent
8134 The next section lists states that still have conflicts.
8135
8136 @example
8137 State 8 conflicts: 1 shift/reduce
8138 State 9 conflicts: 1 shift/reduce
8139 State 10 conflicts: 1 shift/reduce
8140 State 11 conflicts: 4 shift/reduce
8141 @end example
8142
8143 @noindent
8144 Then Bison reproduces the exact grammar it used:
8145
8146 @example
8147 Grammar
8148
8149 0 $accept: exp $end
8150
8151 1 exp: exp '+' exp
8152 2 | exp '-' exp
8153 3 | exp '*' exp
8154 4 | exp '/' exp
8155 5 | NUM
8156 @end example
8157
8158 @noindent
8159 and reports the uses of the symbols:
8160
8161 @example
8162 @group
8163 Terminals, with rules where they appear
8164
8165 $end (0) 0
8166 '*' (42) 3
8167 '+' (43) 1
8168 '-' (45) 2
8169 '/' (47) 4
8170 error (256)
8171 NUM (258) 5
8172 STR (259)
8173 @end group
8174
8175 @group
8176 Nonterminals, with rules where they appear
8177
8178 $accept (9)
8179 on left: 0
8180 exp (10)
8181 on left: 1 2 3 4 5, on right: 0 1 2 3 4
8182 @end group
8183 @end example
8184
8185 @noindent
8186 @cindex item
8187 @cindex pointed rule
8188 @cindex rule, pointed
8189 Bison then proceeds onto the automaton itself, describing each state
8190 with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8191 item is a production rule together with a point (@samp{.}) marking
8192 the location of the input cursor.
8193
8194 @example
8195 state 0
8196
8197 0 $accept: . exp $end
8198
8199 NUM shift, and go to state 1
8200
8201 exp go to state 2
8202 @end example
8203
8204 This reads as follows: ``state 0 corresponds to being at the very
8205 beginning of the parsing, in the initial rule, right before the start
8206 symbol (here, @code{exp}). When the parser returns to this state right
8207 after having reduced a rule that produced an @code{exp}, the control
8208 flow jumps to state 2. If there is no such transition on a nonterminal
8209 symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
8210 the parse stack, and the control flow jumps to state 1. Any other
8211 lookahead triggers a syntax error.''
8212
8213 @cindex core, item set
8214 @cindex item set core
8215 @cindex kernel, item set
8216 @cindex item set core
8217 Even though the only active rule in state 0 seems to be rule 0, the
8218 report lists @code{NUM} as a lookahead token because @code{NUM} can be
8219 at the beginning of any rule deriving an @code{exp}. By default Bison
8220 reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8221 you want to see more detail you can invoke @command{bison} with
8222 @option{--report=itemset} to list the derived items as well:
8223
8224 @example
8225 state 0
8226
8227 0 $accept: . exp $end
8228 1 exp: . exp '+' exp
8229 2 | . exp '-' exp
8230 3 | . exp '*' exp
8231 4 | . exp '/' exp
8232 5 | . NUM
8233
8234 NUM shift, and go to state 1
8235
8236 exp go to state 2
8237 @end example
8238
8239 @noindent
8240 In the state 1@dots{}
8241
8242 @example
8243 state 1
8244
8245 5 exp: NUM .
8246
8247 $default reduce using rule 5 (exp)
8248 @end example
8249
8250 @noindent
8251 the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
8252 (@samp{$default}), the parser will reduce it. If it was coming from
8253 state 0, then, after this reduction it will return to state 0, and will
8254 jump to state 2 (@samp{exp: go to state 2}).
8255
8256 @example
8257 state 2
8258
8259 0 $accept: exp . $end
8260 1 exp: exp . '+' exp
8261 2 | exp . '-' exp
8262 3 | exp . '*' exp
8263 4 | exp . '/' exp
8264
8265 $end shift, and go to state 3
8266 '+' shift, and go to state 4
8267 '-' shift, and go to state 5
8268 '*' shift, and go to state 6
8269 '/' shift, and go to state 7
8270 @end example
8271
8272 @noindent
8273 In state 2, the automaton can only shift a symbol. For instance,
8274 because of the item @samp{exp: exp . '+' exp}, if the lookahead is
8275 @samp{+} it is shifted onto the parse stack, and the automaton
8276 jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
8277 Since there is no default action, any lookahead not listed triggers a syntax
8278 error.
8279
8280 @cindex accepting state
8281 The state 3 is named the @dfn{final state}, or the @dfn{accepting
8282 state}:
8283
8284 @example
8285 state 3
8286
8287 0 $accept: exp $end .
8288
8289 $default accept
8290 @end example
8291
8292 @noindent
8293 the initial rule is completed (the start symbol and the end-of-input were
8294 read), the parsing exits successfully.
8295
8296 The interpretation of states 4 to 7 is straightforward, and is left to
8297 the reader.
8298
8299 @example
8300 state 4
8301
8302 1 exp: exp '+' . exp
8303
8304 NUM shift, and go to state 1
8305
8306 exp go to state 8
8307
8308
8309 state 5
8310
8311 2 exp: exp '-' . exp
8312
8313 NUM shift, and go to state 1
8314
8315 exp go to state 9
8316
8317
8318 state 6
8319
8320 3 exp: exp '*' . exp
8321
8322 NUM shift, and go to state 1
8323
8324 exp go to state 10
8325
8326
8327 state 7
8328
8329 4 exp: exp '/' . exp
8330
8331 NUM shift, and go to state 1
8332
8333 exp go to state 11
8334 @end example
8335
8336 As was announced in beginning of the report, @samp{State 8 conflicts:
8337 1 shift/reduce}:
8338
8339 @example
8340 state 8
8341
8342 1 exp: exp . '+' exp
8343 1 | exp '+' exp .
8344 2 | exp . '-' exp
8345 3 | exp . '*' exp
8346 4 | exp . '/' exp
8347
8348 '*' shift, and go to state 6
8349 '/' shift, and go to state 7
8350
8351 '/' [reduce using rule 1 (exp)]
8352 $default reduce using rule 1 (exp)
8353 @end example
8354
8355 Indeed, there are two actions associated to the lookahead @samp{/}:
8356 either shifting (and going to state 7), or reducing rule 1. The
8357 conflict means that either the grammar is ambiguous, or the parser lacks
8358 information to make the right decision. Indeed the grammar is
8359 ambiguous, as, since we did not specify the precedence of @samp{/}, the
8360 sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8361 NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8362 NUM}, which corresponds to reducing rule 1.
8363
8364 Because in deterministic parsing a single decision can be made, Bison
8365 arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8366 Shift/Reduce Conflicts}. Discarded actions are reported between
8367 square brackets.
8368
8369 Note that all the previous states had a single possible action: either
8370 shifting the next token and going to the corresponding state, or
8371 reducing a single rule. In the other cases, i.e., when shifting
8372 @emph{and} reducing is possible or when @emph{several} reductions are
8373 possible, the lookahead is required to select the action. State 8 is
8374 one such state: if the lookahead is @samp{*} or @samp{/} then the action
8375 is shifting, otherwise the action is reducing rule 1. In other words,
8376 the first two items, corresponding to rule 1, are not eligible when the
8377 lookahead token is @samp{*}, since we specified that @samp{*} has higher
8378 precedence than @samp{+}. More generally, some items are eligible only
8379 with some set of possible lookahead tokens. When run with
8380 @option{--report=lookahead}, Bison specifies these lookahead tokens:
8381
8382 @example
8383 state 8
8384
8385 1 exp: exp . '+' exp
8386 1 | exp '+' exp . [$end, '+', '-', '/']
8387 2 | exp . '-' exp
8388 3 | exp . '*' exp
8389 4 | exp . '/' exp
8390
8391 '*' shift, and go to state 6
8392 '/' shift, and go to state 7
8393
8394 '/' [reduce using rule 1 (exp)]
8395 $default reduce using rule 1 (exp)
8396 @end example
8397
8398 Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8399 the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8400 solved thanks to associativity and precedence directives. If invoked with
8401 @option{--report=solved}, Bison includes information about the solved
8402 conflicts in the report:
8403
8404 @example
8405 Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8406 Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8407 Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
8408 @end example
8409
8410
8411 The remaining states are similar:
8412
8413 @example
8414 @group
8415 state 9
8416
8417 1 exp: exp . '+' exp
8418 2 | exp . '-' exp
8419 2 | exp '-' exp .
8420 3 | exp . '*' exp
8421 4 | exp . '/' exp
8422
8423 '*' shift, and go to state 6
8424 '/' shift, and go to state 7
8425
8426 '/' [reduce using rule 2 (exp)]
8427 $default reduce using rule 2 (exp)
8428 @end group
8429
8430 @group
8431 state 10
8432
8433 1 exp: exp . '+' exp
8434 2 | exp . '-' exp
8435 3 | exp . '*' exp
8436 3 | exp '*' exp .
8437 4 | exp . '/' exp
8438
8439 '/' shift, and go to state 7
8440
8441 '/' [reduce using rule 3 (exp)]
8442 $default reduce using rule 3 (exp)
8443 @end group
8444
8445 @group
8446 state 11
8447
8448 1 exp: exp . '+' exp
8449 2 | exp . '-' exp
8450 3 | exp . '*' exp
8451 4 | exp . '/' exp
8452 4 | exp '/' exp .
8453
8454 '+' shift, and go to state 4
8455 '-' shift, and go to state 5
8456 '*' shift, and go to state 6
8457 '/' shift, and go to state 7
8458
8459 '+' [reduce using rule 4 (exp)]
8460 '-' [reduce using rule 4 (exp)]
8461 '*' [reduce using rule 4 (exp)]
8462 '/' [reduce using rule 4 (exp)]
8463 $default reduce using rule 4 (exp)
8464 @end group
8465 @end example
8466
8467 @noindent
8468 Observe that state 11 contains conflicts not only due to the lack of
8469 precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8470 @samp{*}, but also because the
8471 associativity of @samp{/} is not specified.
8472
8473
8474 @node Tracing
8475 @section Tracing Your Parser
8476 @findex yydebug
8477 @cindex debugging
8478 @cindex tracing the parser
8479
8480 When a Bison grammar compiles properly but parses ``incorrectly'', the
8481 @code{yydebug} parser-trace feature helps figuring out why.
8482
8483 @menu
8484 * Enabling Traces:: Activating run-time trace support
8485 * Mfcalc Traces:: Extending @code{mfcalc} to support traces
8486 * The YYPRINT Macro:: Obsolete interface for semantic value reports
8487 @end menu
8488
8489 @node Enabling Traces
8490 @subsection Enabling Traces
8491 There are several means to enable compilation of trace facilities:
8492
8493 @table @asis
8494 @item the macro @code{YYDEBUG}
8495 @findex YYDEBUG
8496 Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8497 parser. This is compliant with POSIX Yacc. You could use
8498 @samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8499 YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8500 Prologue}).
8501
8502 If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
8503 Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8504 api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
8505 tracing feature (enabled iff nonzero); otherwise tracing is enabled iff
8506 @code{YYDEBUG} is nonzero.
8507
8508 @item the option @option{-t} (POSIX Yacc compliant)
8509 @itemx the option @option{--debug} (Bison extension)
8510 Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8511 Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8512 otherwise it defines @code{YYDEBUG} to 1.
8513
8514 @item the directive @samp{%debug}
8515 @findex %debug
8516 Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8517 Summary}). This is a Bison extension, especially useful for languages that
8518 don't use a preprocessor. Unless POSIX and Yacc portability matter to you,
8519 this is the preferred solution.
8520 @end table
8521
8522 We suggest that you always enable the debug option so that debugging is
8523 always possible.
8524
8525 @findex YYFPRINTF
8526 The trace facility outputs messages with macro calls of the form
8527 @code{YYFPRINTF (stderr, @var{format}, @var{args})} where
8528 @var{format} and @var{args} are the usual @code{printf} format and variadic
8529 arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8530 define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
8531 and @code{YYFPRINTF} is defined to @code{fprintf}.
8532
8533 Once you have compiled the program with trace facilities, the way to
8534 request a trace is to store a nonzero value in the variable @code{yydebug}.
8535 You can do this by making the C code do it (in @code{main}, perhaps), or
8536 you can alter the value with a C debugger.
8537
8538 Each step taken by the parser when @code{yydebug} is nonzero produces a
8539 line or two of trace information, written on @code{stderr}. The trace
8540 messages tell you these things:
8541
8542 @itemize @bullet
8543 @item
8544 Each time the parser calls @code{yylex}, what kind of token was read.
8545
8546 @item
8547 Each time a token is shifted, the depth and complete contents of the
8548 state stack (@pxref{Parser States}).
8549
8550 @item
8551 Each time a rule is reduced, which rule it is, and the complete contents
8552 of the state stack afterward.
8553 @end itemize
8554
8555 To make sense of this information, it helps to refer to the automaton
8556 description file (@pxref{Understanding, ,Understanding Your Parser}).
8557 This file shows the meaning of each state in terms of
8558 positions in various rules, and also what each state will do with each
8559 possible input token. As you read the successive trace messages, you
8560 can see that the parser is functioning according to its specification in
8561 the listing file. Eventually you will arrive at the place where
8562 something undesirable happens, and you will see which parts of the
8563 grammar are to blame.
8564
8565 The parser implementation file is a C/C++/Java program and you can use
8566 debuggers on it, but it's not easy to interpret what it is doing. The
8567 parser function is a finite-state machine interpreter, and aside from
8568 the actions it executes the same code over and over. Only the values
8569 of variables show where in the grammar it is working.
8570
8571 @node Mfcalc Traces
8572 @subsection Enabling Debug Traces for @code{mfcalc}
8573
8574 The debugging information normally gives the token type of each token read,
8575 but not its semantic value. The @code{%printer} directive allows specify
8576 how semantic values are reported, see @ref{Printer Decl, , Printing
8577 Semantic Values}. For backward compatibility, Yacc like C parsers may also
8578 use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8579 Macro}), but its use is discouraged.
8580
8581 As a demonstration of @code{%printer}, consider the multi-function
8582 calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8583 traces, and semantic value reports, insert the following directives in its
8584 prologue:
8585
8586 @comment file: mfcalc.y: 2
8587 @example
8588 /* Generate the parser description file. */
8589 %verbose
8590 /* Enable run-time traces (yydebug). */
8591 %define parse.trace
8592
8593 /* Formatting semantic values. */
8594 %printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8595 %printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8596 %printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8597 @end example
8598
8599 The @code{%define} directive instructs Bison to generate run-time trace
8600 support. Then, activation of these traces is controlled at run-time by the
8601 @code{yydebug} variable, which is disabled by default. Because these traces
8602 will refer to the ``states'' of the parser, it is helpful to ask for the
8603 creation of a description of that parser; this is the purpose of (admittedly
8604 ill-named) @code{%verbose} directive.
8605
8606 The set of @code{%printer} directives demonstrates how to format the
8607 semantic value in the traces. Note that the specification can be done
8608 either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8609 tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8610 printer will be used for them.
8611
8612 Here is a sample of the information provided by run-time traces. The traces
8613 are sent onto standard error.
8614
8615 @example
8616 $ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8617 Starting parse
8618 Entering state 0
8619 Reducing stack by rule 1 (line 34):
8620 -> $$ = nterm input ()
8621 Stack now 0
8622 Entering state 1
8623 @end example
8624
8625 @noindent
8626 This first batch shows a specific feature of this grammar: the first rule
8627 (which is in line 34 of @file{mfcalc.y} can be reduced without even having
8628 to look for the first token. The resulting left-hand symbol (@code{$$}) is
8629 a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8630
8631 Then the parser calls the scanner.
8632 @example
8633 Reading a token: Next token is token FNCT (sin())
8634 Shifting token FNCT (sin())
8635 Entering state 6
8636 @end example
8637
8638 @noindent
8639 That token (@code{token}) is a function (@code{FNCT}) whose value is
8640 @samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8641 The parser stores (@code{Shifting}) that token, and others, until it can do
8642 something about it.
8643
8644 @example
8645 Reading a token: Next token is token '(' ()
8646 Shifting token '(' ()
8647 Entering state 14
8648 Reading a token: Next token is token NUM (1.000000)
8649 Shifting token NUM (1.000000)
8650 Entering state 4
8651 Reducing stack by rule 6 (line 44):
8652 $1 = token NUM (1.000000)
8653 -> $$ = nterm exp (1.000000)
8654 Stack now 0 1 6 14
8655 Entering state 24
8656 @end example
8657
8658 @noindent
8659 The previous reduction demonstrates the @code{%printer} directive for
8660 @code{<val>}: both the token @code{NUM} and the resulting non-terminal
8661 @code{exp} have @samp{1} as value.
8662
8663 @example
8664 Reading a token: Next token is token '-' ()
8665 Shifting token '-' ()
8666 Entering state 17
8667 Reading a token: Next token is token NUM (1.000000)
8668 Shifting token NUM (1.000000)
8669 Entering state 4
8670 Reducing stack by rule 6 (line 44):
8671 $1 = token NUM (1.000000)
8672 -> $$ = nterm exp (1.000000)
8673 Stack now 0 1 6 14 24 17
8674 Entering state 26
8675 Reading a token: Next token is token ')' ()
8676 Reducing stack by rule 11 (line 49):
8677 $1 = nterm exp (1.000000)
8678 $2 = token '-' ()
8679 $3 = nterm exp (1.000000)
8680 -> $$ = nterm exp (0.000000)
8681 Stack now 0 1 6 14
8682 Entering state 24
8683 @end example
8684
8685 @noindent
8686 The rule for the subtraction was just reduced. The parser is about to
8687 discover the end of the call to @code{sin}.
8688
8689 @example
8690 Next token is token ')' ()
8691 Shifting token ')' ()
8692 Entering state 31
8693 Reducing stack by rule 9 (line 47):
8694 $1 = token FNCT (sin())
8695 $2 = token '(' ()
8696 $3 = nterm exp (0.000000)
8697 $4 = token ')' ()
8698 -> $$ = nterm exp (0.000000)
8699 Stack now 0 1
8700 Entering state 11
8701 @end example
8702
8703 @noindent
8704 Finally, the end-of-line allow the parser to complete the computation, and
8705 display its result.
8706
8707 @example
8708 Reading a token: Next token is token '\n' ()
8709 Shifting token '\n' ()
8710 Entering state 22
8711 Reducing stack by rule 4 (line 40):
8712 $1 = nterm exp (0.000000)
8713 $2 = token '\n' ()
8714 @result{} 0
8715 -> $$ = nterm line ()
8716 Stack now 0 1
8717 Entering state 10
8718 Reducing stack by rule 2 (line 35):
8719 $1 = nterm input ()
8720 $2 = nterm line ()
8721 -> $$ = nterm input ()
8722 Stack now 0
8723 Entering state 1
8724 @end example
8725
8726 The parser has returned into state 1, in which it is waiting for the next
8727 expression to evaluate, or for the end-of-file token, which causes the
8728 completion of the parsing.
8729
8730 @example
8731 Reading a token: Now at end of input.
8732 Shifting token $end ()
8733 Entering state 2
8734 Stack now 0 1 2
8735 Cleanup: popping token $end ()
8736 Cleanup: popping nterm input ()
8737 @end example
8738
8739
8740 @node The YYPRINT Macro
8741 @subsection The @code{YYPRINT} Macro
8742
8743 @findex YYPRINT
8744 Before @code{%printer} support, semantic values could be displayed using the
8745 @code{YYPRINT} macro, which works only for terminal symbols and only with
8746 the @file{yacc.c} skeleton.
8747
8748 @deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
8749 @findex YYPRINT
8750 If you define @code{YYPRINT}, it should take three arguments. The parser
8751 will pass a standard I/O stream, the numeric code for the token type, and
8752 the token value (from @code{yylval}).
8753
8754 For @file{yacc.c} only. Obsoleted by @code{%printer}.
8755 @end deffn
8756
8757 Here is an example of @code{YYPRINT} suitable for the multi-function
8758 calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
8759
8760 @example
8761 %@{
8762 static void print_token_value (FILE *, int, YYSTYPE);
8763 #define YYPRINT(File, Type, Value) \
8764 print_token_value (File, Type, Value)
8765 %@}
8766
8767 @dots{} %% @dots{} %% @dots{}
8768
8769 static void
8770 print_token_value (FILE *file, int type, YYSTYPE value)
8771 @{
8772 if (type == VAR)
8773 fprintf (file, "%s", value.tptr->name);
8774 else if (type == NUM)
8775 fprintf (file, "%d", value.val);
8776 @}
8777 @end example
8778
8779 @c ================================================= Invoking Bison
8780
8781 @node Invocation
8782 @chapter Invoking Bison
8783 @cindex invoking Bison
8784 @cindex Bison invocation
8785 @cindex options for invoking Bison
8786
8787 The usual way to invoke Bison is as follows:
8788
8789 @example
8790 bison @var{infile}
8791 @end example
8792
8793 Here @var{infile} is the grammar file name, which usually ends in
8794 @samp{.y}. The parser implementation file's name is made by replacing
8795 the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8796 Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8797 the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8798 also possible, in case you are writing C++ code instead of C in your
8799 grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8800 output files will take an extension like the given one as input
8801 (respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8802 feature takes effect with all options that manipulate file names like
8803 @samp{-o} or @samp{-d}.
8804
8805 For example :
8806
8807 @example
8808 bison -d @var{infile.yxx}
8809 @end example
8810 @noindent
8811 will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
8812
8813 @example
8814 bison -d -o @var{output.c++} @var{infile.y}
8815 @end example
8816 @noindent
8817 will produce @file{output.c++} and @file{outfile.h++}.
8818
8819 For compatibility with POSIX, the standard Bison
8820 distribution also contains a shell script called @command{yacc} that
8821 invokes Bison with the @option{-y} option.
8822
8823 @menu
8824 * Bison Options:: All the options described in detail,
8825 in alphabetical order by short options.
8826 * Option Cross Key:: Alphabetical list of long options.
8827 * Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
8828 @end menu
8829
8830 @node Bison Options
8831 @section Bison Options
8832
8833 Bison supports both traditional single-letter options and mnemonic long
8834 option names. Long option names are indicated with @samp{--} instead of
8835 @samp{-}. Abbreviations for option names are allowed as long as they
8836 are unique. When a long option takes an argument, like
8837 @samp{--file-prefix}, connect the option name and the argument with
8838 @samp{=}.
8839
8840 Here is a list of options that can be used with Bison, alphabetized by
8841 short option. It is followed by a cross key alphabetized by long
8842 option.
8843
8844 @c Please, keep this ordered as in `bison --help'.
8845 @noindent
8846 Operations modes:
8847 @table @option
8848 @item -h
8849 @itemx --help
8850 Print a summary of the command-line options to Bison and exit.
8851
8852 @item -V
8853 @itemx --version
8854 Print the version number of Bison and exit.
8855
8856 @item --print-localedir
8857 Print the name of the directory containing locale-dependent data.
8858
8859 @item --print-datadir
8860 Print the name of the directory containing skeletons and XSLT.
8861
8862 @item -y
8863 @itemx --yacc
8864 Act more like the traditional Yacc command. This can cause different
8865 diagnostics to be generated, and may change behavior in other minor
8866 ways. Most importantly, imitate Yacc's output file name conventions,
8867 so that the parser implementation file is called @file{y.tab.c}, and
8868 the other outputs are called @file{y.output} and @file{y.tab.h}.
8869 Also, if generating a deterministic parser in C, generate
8870 @code{#define} statements in addition to an @code{enum} to associate
8871 token numbers with token names. Thus, the following shell script can
8872 substitute for Yacc, and the Bison distribution contains such a script
8873 for compatibility with POSIX:
8874
8875 @example
8876 #! /bin/sh
8877 bison -y "$@@"
8878 @end example
8879
8880 The @option{-y}/@option{--yacc} option is intended for use with
8881 traditional Yacc grammars. If your grammar uses a Bison extension
8882 like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8883 this option is specified.
8884
8885 @item -W [@var{category}]
8886 @itemx --warnings[=@var{category}]
8887 Output warnings falling in @var{category}. @var{category} can be one
8888 of:
8889 @table @code
8890 @item midrule-values
8891 Warn about mid-rule values that are set but not used within any of the actions
8892 of the parent rule.
8893 For example, warn about unused @code{$2} in:
8894
8895 @example
8896 exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8897 @end example
8898
8899 Also warn about mid-rule values that are used but not set.
8900 For example, warn about unset @code{$$} in the mid-rule action in:
8901
8902 @example
8903 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8904 @end example
8905
8906 These warnings are not enabled by default since they sometimes prove to
8907 be false alarms in existing grammars employing the Yacc constructs
8908 @code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
8909
8910 @item yacc
8911 Incompatibilities with POSIX Yacc.
8912
8913 @item conflicts-sr
8914 @itemx conflicts-rr
8915 S/R and R/R conflicts. These warnings are enabled by default. However, if
8916 the @code{%expect} or @code{%expect-rr} directive is specified, an
8917 unexpected number of conflicts is an error, and an expected number of
8918 conflicts is not reported, so @option{-W} and @option{--warning} then have
8919 no effect on the conflict report.
8920
8921 @item other
8922 All warnings not categorized above. These warnings are enabled by default.
8923
8924 This category is provided merely for the sake of completeness. Future
8925 releases of Bison may move warnings from this category to new, more specific
8926 categories.
8927
8928 @item all
8929 All the warnings.
8930 @item none
8931 Turn off all the warnings.
8932 @item error
8933 Treat warnings as errors.
8934 @end table
8935
8936 A category can be turned off by prefixing its name with @samp{no-}. For
8937 instance, @option{-Wno-yacc} will hide the warnings about
8938 POSIX Yacc incompatibilities.
8939 @end table
8940
8941 @noindent
8942 Tuning the parser:
8943
8944 @table @option
8945 @item -t
8946 @itemx --debug
8947 In the parser implementation file, define the macro @code{YYDEBUG} to
8948 1 if it is not already defined, so that the debugging facilities are
8949 compiled. @xref{Tracing, ,Tracing Your Parser}.
8950
8951 @item -D @var{name}[=@var{value}]
8952 @itemx --define=@var{name}[=@var{value}]
8953 @itemx -F @var{name}[=@var{value}]
8954 @itemx --force-define=@var{name}[=@var{value}]
8955 Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8956 (@pxref{%define Summary}) except that Bison processes multiple
8957 definitions for the same @var{name} as follows:
8958
8959 @itemize
8960 @item
8961 Bison quietly ignores all command-line definitions for @var{name} except
8962 the last.
8963 @item
8964 If that command-line definition is specified by a @code{-D} or
8965 @code{--define}, Bison reports an error for any @code{%define}
8966 definition for @var{name}.
8967 @item
8968 If that command-line definition is specified by a @code{-F} or
8969 @code{--force-define} instead, Bison quietly ignores all @code{%define}
8970 definitions for @var{name}.
8971 @item
8972 Otherwise, Bison reports an error if there are multiple @code{%define}
8973 definitions for @var{name}.
8974 @end itemize
8975
8976 You should avoid using @code{-F} and @code{--force-define} in your
8977 make files unless you are confident that it is safe to quietly ignore
8978 any conflicting @code{%define} that may be added to the grammar file.
8979
8980 @item -L @var{language}
8981 @itemx --language=@var{language}
8982 Specify the programming language for the generated parser, as if
8983 @code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
8984 Summary}). Currently supported languages include C, C++, and Java.
8985 @var{language} is case-insensitive.
8986
8987 This option is experimental and its effect may be modified in future
8988 releases.
8989
8990 @item --locations
8991 Pretend that @code{%locations} was specified. @xref{Decl Summary}.
8992
8993 @item -p @var{prefix}
8994 @itemx --name-prefix=@var{prefix}
8995 Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
8996 Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
8997 Parsers, ,Multiple Parsers in the Same Program}.
8998
8999 @item -l
9000 @itemx --no-lines
9001 Don't put any @code{#line} preprocessor commands in the parser
9002 implementation file. Ordinarily Bison puts them in the parser
9003 implementation file so that the C compiler and debuggers will
9004 associate errors with your source file, the grammar file. This option
9005 causes them to associate errors with the parser implementation file,
9006 treating it as an independent source file in its own right.
9007
9008 @item -S @var{file}
9009 @itemx --skeleton=@var{file}
9010 Specify the skeleton to use, similar to @code{%skeleton}
9011 (@pxref{Decl Summary, , Bison Declaration Summary}).
9012
9013 @c You probably don't need this option unless you are developing Bison.
9014 @c You should use @option{--language} if you want to specify the skeleton for a
9015 @c different language, because it is clearer and because it will always
9016 @c choose the correct skeleton for non-deterministic or push parsers.
9017
9018 If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9019 file in the Bison installation directory.
9020 If it does, @var{file} is an absolute file name or a file name relative to the
9021 current working directory.
9022 This is similar to how most shells resolve commands.
9023
9024 @item -k
9025 @itemx --token-table
9026 Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
9027 @end table
9028
9029 @noindent
9030 Adjust the output:
9031
9032 @table @option
9033 @item --defines[=@var{file}]
9034 Pretend that @code{%defines} was specified, i.e., write an extra output
9035 file containing macro definitions for the token type names defined in
9036 the grammar, as well as a few other declarations. @xref{Decl Summary}.
9037
9038 @item -d
9039 This is the same as @code{--defines} except @code{-d} does not accept a
9040 @var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9041 with other short options.
9042
9043 @item -b @var{file-prefix}
9044 @itemx --file-prefix=@var{prefix}
9045 Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
9046 for all Bison output file names. @xref{Decl Summary}.
9047
9048 @item -r @var{things}
9049 @itemx --report=@var{things}
9050 Write an extra output file containing verbose description of the comma
9051 separated list of @var{things} among:
9052
9053 @table @code
9054 @item state
9055 Description of the grammar, conflicts (resolved and unresolved), and
9056 parser's automaton.
9057
9058 @item lookahead
9059 Implies @code{state} and augments the description of the automaton with
9060 each rule's lookahead set.
9061
9062 @item itemset
9063 Implies @code{state} and augments the description of the automaton with
9064 the full set of items for each state, instead of its core only.
9065 @end table
9066
9067 @item --report-file=@var{file}
9068 Specify the @var{file} for the verbose description.
9069
9070 @item -v
9071 @itemx --verbose
9072 Pretend that @code{%verbose} was specified, i.e., write an extra output
9073 file containing verbose descriptions of the grammar and
9074 parser. @xref{Decl Summary}.
9075
9076 @item -o @var{file}
9077 @itemx --output=@var{file}
9078 Specify the @var{file} for the parser implementation file.
9079
9080 The other output files' names are constructed from @var{file} as
9081 described under the @samp{-v} and @samp{-d} options.
9082
9083 @item -g [@var{file}]
9084 @itemx --graph[=@var{file}]
9085 Output a graphical representation of the parser's
9086 automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
9087 @uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
9088 @code{@var{file}} is optional.
9089 If omitted and the grammar file is @file{foo.y}, the output file will be
9090 @file{foo.dot}.
9091
9092 @item -x [@var{file}]
9093 @itemx --xml[=@var{file}]
9094 Output an XML report of the parser's automaton computed by Bison.
9095 @code{@var{file}} is optional.
9096 If omitted and the grammar file is @file{foo.y}, the output file will be
9097 @file{foo.xml}.
9098 (The current XML schema is experimental and may evolve.
9099 More user feedback will help to stabilize it.)
9100 @end table
9101
9102 @node Option Cross Key
9103 @section Option Cross Key
9104
9105 Here is a list of options, alphabetized by long option, to help you find
9106 the corresponding short option and directive.
9107
9108 @multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
9109 @headitem Long Option @tab Short Option @tab Bison Directive
9110 @include cross-options.texi
9111 @end multitable
9112
9113 @node Yacc Library
9114 @section Yacc Library
9115
9116 The Yacc library contains default implementations of the
9117 @code{yyerror} and @code{main} functions. These default
9118 implementations are normally not useful, but POSIX requires
9119 them. To use the Yacc library, link your program with the
9120 @option{-ly} option. Note that Bison's implementation of the Yacc
9121 library is distributed under the terms of the GNU General
9122 Public License (@pxref{Copying}).
9123
9124 If you use the Yacc library's @code{yyerror} function, you should
9125 declare @code{yyerror} as follows:
9126
9127 @example
9128 int yyerror (char const *);
9129 @end example
9130
9131 Bison ignores the @code{int} value returned by this @code{yyerror}.
9132 If you use the Yacc library's @code{main} function, your
9133 @code{yyparse} function should have the following type signature:
9134
9135 @example
9136 int yyparse (void);
9137 @end example
9138
9139 @c ================================================= C++ Bison
9140
9141 @node Other Languages
9142 @chapter Parsers Written In Other Languages
9143
9144 @menu
9145 * C++ Parsers:: The interface to generate C++ parser classes
9146 * Java Parsers:: The interface to generate Java parser classes
9147 @end menu
9148
9149 @node C++ Parsers
9150 @section C++ Parsers
9151
9152 @menu
9153 * C++ Bison Interface:: Asking for C++ parser generation
9154 * C++ Semantic Values:: %union vs. C++
9155 * C++ Location Values:: The position and location classes
9156 * C++ Parser Interface:: Instantiating and running the parser
9157 * C++ Scanner Interface:: Exchanges between yylex and parse
9158 * A Complete C++ Example:: Demonstrating their use
9159 @end menu
9160
9161 @node C++ Bison Interface
9162 @subsection C++ Bison Interface
9163 @c - %skeleton "lalr1.cc"
9164 @c - Always pure
9165 @c - initial action
9166
9167 The C++ deterministic parser is selected using the skeleton directive,
9168 @samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9169 @option{--skeleton=lalr1.cc}.
9170 @xref{Decl Summary}.
9171
9172 When run, @command{bison} will create several entities in the @samp{yy}
9173 namespace.
9174 @findex %define namespace
9175 Use the @samp{%define namespace} directive to change the namespace
9176 name, see @ref{%define Summary,,namespace}. The various classes are
9177 generated in the following files:
9178
9179 @table @file
9180 @item position.hh
9181 @itemx location.hh
9182 The definition of the classes @code{position} and @code{location},
9183 used for location tracking. @xref{C++ Location Values}.
9184
9185 @item stack.hh
9186 An auxiliary class @code{stack} used by the parser.
9187
9188 @item @var{file}.hh
9189 @itemx @var{file}.cc
9190 (Assuming the extension of the grammar file was @samp{.yy}.) The
9191 declaration and implementation of the C++ parser class. The basename
9192 and extension of these two files follow the same rules as with regular C
9193 parsers (@pxref{Invocation}).
9194
9195 The header is @emph{mandatory}; you must either pass
9196 @option{-d}/@option{--defines} to @command{bison}, or use the
9197 @samp{%defines} directive.
9198 @end table
9199
9200 All these files are documented using Doxygen; run @command{doxygen}
9201 for a complete and accurate documentation.
9202
9203 @node C++ Semantic Values
9204 @subsection C++ Semantic Values
9205 @c - No objects in unions
9206 @c - YYSTYPE
9207 @c - Printer and destructor
9208
9209 The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9210 Collection of Value Types}. In particular it produces a genuine
9211 @code{union}@footnote{In the future techniques to allow complex types
9212 within pseudo-unions (similar to Boost variants) might be implemented to
9213 alleviate these issues.}, which have a few specific features in C++.
9214 @itemize @minus
9215 @item
9216 The type @code{YYSTYPE} is defined but its use is discouraged: rather
9217 you should refer to the parser's encapsulated type
9218 @code{yy::parser::semantic_type}.
9219 @item
9220 Non POD (Plain Old Data) types cannot be used. C++ forbids any
9221 instance of classes with constructors in unions: only @emph{pointers}
9222 to such objects are allowed.
9223 @end itemize
9224
9225 Because objects have to be stored via pointers, memory is not
9226 reclaimed automatically: using the @code{%destructor} directive is the
9227 only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9228 Symbols}.
9229
9230
9231 @node C++ Location Values
9232 @subsection C++ Location Values
9233 @c - %locations
9234 @c - class Position
9235 @c - class Location
9236 @c - %define filename_type "const symbol::Symbol"
9237
9238 When the directive @code{%locations} is used, the C++ parser supports
9239 location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9240 define a @code{position}, a single point in a file, and a @code{location}, a
9241 range composed of a pair of @code{position}s (possibly spanning several
9242 files).
9243
9244 @tindex uint
9245 In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9246 genuine code only the latter is used.
9247
9248 @menu
9249 * C++ position:: One point in the source file
9250 * C++ location:: Two points in the source file
9251 @end menu
9252
9253 @node C++ position
9254 @subsubsection C++ @code{position}
9255
9256 @deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9257 Create a @code{position} denoting a given point. Note that @code{file} is
9258 not reclaimed when the @code{position} is destroyed: memory managed must be
9259 handled elsewhere.
9260 @end deftypeop
9261
9262 @deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9263 Reset the position to the given values.
9264 @end deftypemethod
9265
9266 @deftypeivar {position} {std::string*} file
9267 The name of the file. It will always be handled as a pointer, the
9268 parser will never duplicate nor deallocate it. As an experimental
9269 feature you may change it to @samp{@var{type}*} using @samp{%define
9270 filename_type "@var{type}"}.
9271 @end deftypeivar
9272
9273 @deftypeivar {position} {uint} line
9274 The line, starting at 1.
9275 @end deftypeivar
9276
9277 @deftypemethod {position} {uint} lines (int @var{height} = 1)
9278 Advance by @var{height} lines, resetting the column number.
9279 @end deftypemethod
9280
9281 @deftypeivar {position} {uint} column
9282 The column, starting at 1.
9283 @end deftypeivar
9284
9285 @deftypemethod {position} {uint} columns (int @var{width} = 1)
9286 Advance by @var{width} columns, without changing the line number.
9287 @end deftypemethod
9288
9289 @deftypemethod {position} {position&} operator+= (int @var{width})
9290 @deftypemethodx {position} {position} operator+ (int @var{width})
9291 @deftypemethodx {position} {position&} operator-= (int @var{width})
9292 @deftypemethodx {position} {position} operator- (int @var{width})
9293 Various forms of syntactic sugar for @code{columns}.
9294 @end deftypemethod
9295
9296 @deftypemethod {position} {bool} operator== (const position& @var{that})
9297 @deftypemethodx {position} {bool} operator!= (const position& @var{that})
9298 Whether @code{*this} and @code{that} denote equal/different positions.
9299 @end deftypemethod
9300
9301 @deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
9302 Report @var{p} on @var{o} like this:
9303 @samp{@var{file}:@var{line}.@var{column}}, or
9304 @samp{@var{line}.@var{column}} if @var{file} is null.
9305 @end deftypefun
9306
9307 @node C++ location
9308 @subsubsection C++ @code{location}
9309
9310 @deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9311 Create a @code{Location} from the endpoints of the range.
9312 @end deftypeop
9313
9314 @deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9315 @deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9316 Create a @code{Location} denoting an empty range located at a given point.
9317 @end deftypeop
9318
9319 @deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9320 Reset the location to an empty range at the given values.
9321 @end deftypemethod
9322
9323 @deftypeivar {location} {position} begin
9324 @deftypeivarx {location} {position} end
9325 The first, inclusive, position of the range, and the first beyond.
9326 @end deftypeivar
9327
9328 @deftypemethod {location} {uint} columns (int @var{width} = 1)
9329 @deftypemethodx {location} {uint} lines (int @var{height} = 1)
9330 Advance the @code{end} position.
9331 @end deftypemethod
9332
9333 @deftypemethod {location} {location} operator+ (const location& @var{end})
9334 @deftypemethodx {location} {location} operator+ (int @var{width})
9335 @deftypemethodx {location} {location} operator+= (int @var{width})
9336 Various forms of syntactic sugar.
9337 @end deftypemethod
9338
9339 @deftypemethod {location} {void} step ()
9340 Move @code{begin} onto @code{end}.
9341 @end deftypemethod
9342
9343 @deftypemethod {location} {bool} operator== (const location& @var{that})
9344 @deftypemethodx {location} {bool} operator!= (const location& @var{that})
9345 Whether @code{*this} and @code{that} denote equal/different ranges of
9346 positions.
9347 @end deftypemethod
9348
9349 @deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9350 Report @var{p} on @var{o}, taking care of special cases such as: no
9351 @code{filename} defined, or equal filename/line or column.
9352 @end deftypefun
9353
9354 @node C++ Parser Interface
9355 @subsection C++ Parser Interface
9356 @c - define parser_class_name
9357 @c - Ctor
9358 @c - parse, error, set_debug_level, debug_level, set_debug_stream,
9359 @c debug_stream.
9360 @c - Reporting errors
9361
9362 The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9363 declare and define the parser class in the namespace @code{yy}. The
9364 class name defaults to @code{parser}, but may be changed using
9365 @samp{%define parser_class_name "@var{name}"}. The interface of
9366 this class is detailed below. It can be extended using the
9367 @code{%parse-param} feature: its semantics is slightly changed since
9368 it describes an additional member of the parser class, and an
9369 additional argument for its constructor.
9370
9371 @defcv {Type} {parser} {semantic_type}
9372 @defcvx {Type} {parser} {location_type}
9373 The types for semantics value and locations.
9374 @end defcv
9375
9376 @defcv {Type} {parser} {token}
9377 A structure that contains (only) the @code{yytokentype} enumeration, which
9378 defines the tokens. To refer to the token @code{FOO},
9379 use @code{yy::parser::token::FOO}. The scanner can use
9380 @samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9381 (@pxref{Calc++ Scanner}).
9382 @end defcv
9383
9384 @deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9385 Build a new parser object. There are no arguments by default, unless
9386 @samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9387 @end deftypemethod
9388
9389 @deftypemethod {parser} {int} parse ()
9390 Run the syntactic analysis, and return 0 on success, 1 otherwise.
9391 @end deftypemethod
9392
9393 @deftypemethod {parser} {std::ostream&} debug_stream ()
9394 @deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9395 Get or set the stream used for tracing the parsing. It defaults to
9396 @code{std::cerr}.
9397 @end deftypemethod
9398
9399 @deftypemethod {parser} {debug_level_type} debug_level ()
9400 @deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9401 Get or set the tracing level. Currently its value is either 0, no trace,
9402 or nonzero, full tracing.
9403 @end deftypemethod
9404
9405 @deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
9406 The definition for this member function must be supplied by the user:
9407 the parser uses it to report a parser error occurring at @var{l},
9408 described by @var{m}.
9409 @end deftypemethod
9410
9411
9412 @node C++ Scanner Interface
9413 @subsection C++ Scanner Interface
9414 @c - prefix for yylex.
9415 @c - Pure interface to yylex
9416 @c - %lex-param
9417
9418 The parser invokes the scanner by calling @code{yylex}. Contrary to C
9419 parsers, C++ parsers are always pure: there is no point in using the
9420 @code{%define api.pure} directive. Therefore the interface is as follows.
9421
9422 @deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9423 Return the next token. Its type is the return value, its semantic
9424 value and location being @var{yylval} and @var{yylloc}. Invocations of
9425 @samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9426 @end deftypemethod
9427
9428
9429 @node A Complete C++ Example
9430 @subsection A Complete C++ Example
9431
9432 This section demonstrates the use of a C++ parser with a simple but
9433 complete example. This example should be available on your system,
9434 ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9435 focuses on the use of Bison, therefore the design of the various C++
9436 classes is very naive: no accessors, no encapsulation of members etc.
9437 We will use a Lex scanner, and more precisely, a Flex scanner, to
9438 demonstrate the various interaction. A hand written scanner is
9439 actually easier to interface with.
9440
9441 @menu
9442 * Calc++ --- C++ Calculator:: The specifications
9443 * Calc++ Parsing Driver:: An active parsing context
9444 * Calc++ Parser:: A parser class
9445 * Calc++ Scanner:: A pure C++ Flex scanner
9446 * Calc++ Top Level:: Conducting the band
9447 @end menu
9448
9449 @node Calc++ --- C++ Calculator
9450 @subsubsection Calc++ --- C++ Calculator
9451
9452 Of course the grammar is dedicated to arithmetics, a single
9453 expression, possibly preceded by variable assignments. An
9454 environment containing possibly predefined variables such as
9455 @code{one} and @code{two}, is exchanged with the parser. An example
9456 of valid input follows.
9457
9458 @example
9459 three := 3
9460 seven := one + two * three
9461 seven * seven
9462 @end example
9463
9464 @node Calc++ Parsing Driver
9465 @subsubsection Calc++ Parsing Driver
9466 @c - An env
9467 @c - A place to store error messages
9468 @c - A place for the result
9469
9470 To support a pure interface with the parser (and the scanner) the
9471 technique of the ``parsing context'' is convenient: a structure
9472 containing all the data to exchange. Since, in addition to simply
9473 launch the parsing, there are several auxiliary tasks to execute (open
9474 the file for parsing, instantiate the parser etc.), we recommend
9475 transforming the simple parsing context structure into a fully blown
9476 @dfn{parsing driver} class.
9477
9478 The declaration of this driver class, @file{calc++-driver.hh}, is as
9479 follows. The first part includes the CPP guard and imports the
9480 required standard library components, and the declaration of the parser
9481 class.
9482
9483 @comment file: calc++-driver.hh
9484 @example
9485 #ifndef CALCXX_DRIVER_HH
9486 # define CALCXX_DRIVER_HH
9487 # include <string>
9488 # include <map>
9489 # include "calc++-parser.hh"
9490 @end example
9491
9492
9493 @noindent
9494 Then comes the declaration of the scanning function. Flex expects
9495 the signature of @code{yylex} to be defined in the macro
9496 @code{YY_DECL}, and the C++ parser expects it to be declared. We can
9497 factor both as follows.
9498
9499 @comment file: calc++-driver.hh
9500 @example
9501 // Tell Flex the lexer's prototype ...
9502 # define YY_DECL \
9503 yy::calcxx_parser::token_type \
9504 yylex (yy::calcxx_parser::semantic_type* yylval, \
9505 yy::calcxx_parser::location_type* yylloc, \
9506 calcxx_driver& driver)
9507 // ... and declare it for the parser's sake.
9508 YY_DECL;
9509 @end example
9510
9511 @noindent
9512 The @code{calcxx_driver} class is then declared with its most obvious
9513 members.
9514
9515 @comment file: calc++-driver.hh
9516 @example
9517 // Conducting the whole scanning and parsing of Calc++.
9518 class calcxx_driver
9519 @{
9520 public:
9521 calcxx_driver ();
9522 virtual ~calcxx_driver ();
9523
9524 std::map<std::string, int> variables;
9525
9526 int result;
9527 @end example
9528
9529 @noindent
9530 To encapsulate the coordination with the Flex scanner, it is useful to
9531 have two members function to open and close the scanning phase.
9532
9533 @comment file: calc++-driver.hh
9534 @example
9535 // Handling the scanner.
9536 void scan_begin ();
9537 void scan_end ();
9538 bool trace_scanning;
9539 @end example
9540
9541 @noindent
9542 Similarly for the parser itself.
9543
9544 @comment file: calc++-driver.hh
9545 @example
9546 // Run the parser. Return 0 on success.
9547 int parse (const std::string& f);
9548 std::string file;
9549 bool trace_parsing;
9550 @end example
9551
9552 @noindent
9553 To demonstrate pure handling of parse errors, instead of simply
9554 dumping them on the standard error output, we will pass them to the
9555 compiler driver using the following two member functions. Finally, we
9556 close the class declaration and CPP guard.
9557
9558 @comment file: calc++-driver.hh
9559 @example
9560 // Error handling.
9561 void error (const yy::location& l, const std::string& m);
9562 void error (const std::string& m);
9563 @};
9564 #endif // ! CALCXX_DRIVER_HH
9565 @end example
9566
9567 The implementation of the driver is straightforward. The @code{parse}
9568 member function deserves some attention. The @code{error} functions
9569 are simple stubs, they should actually register the located error
9570 messages and set error state.
9571
9572 @comment file: calc++-driver.cc
9573 @example
9574 #include "calc++-driver.hh"
9575 #include "calc++-parser.hh"
9576
9577 calcxx_driver::calcxx_driver ()
9578 : trace_scanning (false), trace_parsing (false)
9579 @{
9580 variables["one"] = 1;
9581 variables["two"] = 2;
9582 @}
9583
9584 calcxx_driver::~calcxx_driver ()
9585 @{
9586 @}
9587
9588 int
9589 calcxx_driver::parse (const std::string &f)
9590 @{
9591 file = f;
9592 scan_begin ();
9593 yy::calcxx_parser parser (*this);
9594 parser.set_debug_level (trace_parsing);
9595 int res = parser.parse ();
9596 scan_end ();
9597 return res;
9598 @}
9599
9600 void
9601 calcxx_driver::error (const yy::location& l, const std::string& m)
9602 @{
9603 std::cerr << l << ": " << m << std::endl;
9604 @}
9605
9606 void
9607 calcxx_driver::error (const std::string& m)
9608 @{
9609 std::cerr << m << std::endl;
9610 @}
9611 @end example
9612
9613 @node Calc++ Parser
9614 @subsubsection Calc++ Parser
9615
9616 The grammar file @file{calc++-parser.yy} starts by asking for the C++
9617 deterministic parser skeleton, the creation of the parser header file,
9618 and specifies the name of the parser class. Because the C++ skeleton
9619 changed several times, it is safer to require the version you designed
9620 the grammar for.
9621
9622 @comment file: calc++-parser.yy
9623 @example
9624 %skeleton "lalr1.cc" /* -*- C++ -*- */
9625 %require "@value{VERSION}"
9626 %defines
9627 %define parser_class_name "calcxx_parser"
9628 @end example
9629
9630 @noindent
9631 @findex %code requires
9632 Then come the declarations/inclusions needed to define the
9633 @code{%union}. Because the parser uses the parsing driver and
9634 reciprocally, both cannot include the header of the other. Because the
9635 driver's header needs detailed knowledge about the parser class (in
9636 particular its inner types), it is the parser's header which will simply
9637 use a forward declaration of the driver.
9638 @xref{%code Summary}.
9639
9640 @comment file: calc++-parser.yy
9641 @example
9642 %code requires @{
9643 # include <string>
9644 class calcxx_driver;
9645 @}
9646 @end example
9647
9648 @noindent
9649 The driver is passed by reference to the parser and to the scanner.
9650 This provides a simple but effective pure interface, not relying on
9651 global variables.
9652
9653 @comment file: calc++-parser.yy
9654 @example
9655 // The parsing context.
9656 %parse-param @{ calcxx_driver& driver @}
9657 %lex-param @{ calcxx_driver& driver @}
9658 @end example
9659
9660 @noindent
9661 Then we request the location tracking feature, and initialize the
9662 first location's file name. Afterward new locations are computed
9663 relatively to the previous locations: the file name will be
9664 automatically propagated.
9665
9666 @comment file: calc++-parser.yy
9667 @example
9668 %locations
9669 %initial-action
9670 @{
9671 // Initialize the initial location.
9672 @@$.begin.filename = @@$.end.filename = &driver.file;
9673 @};
9674 @end example
9675
9676 @noindent
9677 Use the two following directives to enable parser tracing and verbose error
9678 messages. However, verbose error messages can contain incorrect information
9679 (@pxref{LAC}).
9680
9681 @comment file: calc++-parser.yy
9682 @example
9683 %debug
9684 %error-verbose
9685 @end example
9686
9687 @noindent
9688 Semantic values cannot use ``real'' objects, but only pointers to
9689 them.
9690
9691 @comment file: calc++-parser.yy
9692 @example
9693 // Symbols.
9694 %union
9695 @{
9696 int ival;
9697 std::string *sval;
9698 @};
9699 @end example
9700
9701 @noindent
9702 @findex %code
9703 The code between @samp{%code @{} and @samp{@}} is output in the
9704 @file{*.cc} file; it needs detailed knowledge about the driver.
9705
9706 @comment file: calc++-parser.yy
9707 @example
9708 %code @{
9709 # include "calc++-driver.hh"
9710 @}
9711 @end example
9712
9713
9714 @noindent
9715 The token numbered as 0 corresponds to end of file; the following line
9716 allows for nicer error messages referring to ``end of file'' instead
9717 of ``$end''. Similarly user friendly named are provided for each
9718 symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9719 avoid name clashes.
9720
9721 @comment file: calc++-parser.yy
9722 @example
9723 %token END 0 "end of file"
9724 %token ASSIGN ":="
9725 %token <sval> IDENTIFIER "identifier"
9726 %token <ival> NUMBER "number"
9727 %type <ival> exp
9728 @end example
9729
9730 @noindent
9731 To enable memory deallocation during error recovery, use
9732 @code{%destructor}.
9733
9734 @c FIXME: Document %printer, and mention that it takes a braced-code operand.
9735 @comment file: calc++-parser.yy
9736 @example
9737 %printer @{ yyoutput << *$$; @} "identifier"
9738 %destructor @{ delete $$; @} "identifier"
9739
9740 %printer @{ yyoutput << $$; @} <ival>
9741 @end example
9742
9743 @noindent
9744 The grammar itself is straightforward.
9745
9746 @comment file: calc++-parser.yy
9747 @example
9748 %%
9749 %start unit;
9750 unit: assignments exp @{ driver.result = $2; @};
9751
9752 assignments:
9753 /* Nothing. */ @{@}
9754 | assignments assignment @{@};
9755
9756 assignment:
9757 "identifier" ":=" exp
9758 @{ driver.variables[*$1] = $3; delete $1; @};
9759
9760 %left '+' '-';
9761 %left '*' '/';
9762 exp: exp '+' exp @{ $$ = $1 + $3; @}
9763 | exp '-' exp @{ $$ = $1 - $3; @}
9764 | exp '*' exp @{ $$ = $1 * $3; @}
9765 | exp '/' exp @{ $$ = $1 / $3; @}
9766 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
9767 | "number" @{ $$ = $1; @};
9768 %%
9769 @end example
9770
9771 @noindent
9772 Finally the @code{error} member function registers the errors to the
9773 driver.
9774
9775 @comment file: calc++-parser.yy
9776 @example
9777 void
9778 yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9779 const std::string& m)
9780 @{
9781 driver.error (l, m);
9782 @}
9783 @end example
9784
9785 @node Calc++ Scanner
9786 @subsubsection Calc++ Scanner
9787
9788 The Flex scanner first includes the driver declaration, then the
9789 parser's to get the set of defined tokens.
9790
9791 @comment file: calc++-scanner.ll
9792 @example
9793 %@{ /* -*- C++ -*- */
9794 # include <cstdlib>
9795 # include <cerrno>
9796 # include <climits>
9797 # include <string>
9798 # include "calc++-driver.hh"
9799 # include "calc++-parser.hh"
9800
9801 /* Work around an incompatibility in flex (at least versions
9802 2.5.31 through 2.5.33): it generates code that does
9803 not conform to C89. See Debian bug 333231
9804 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
9805 # undef yywrap
9806 # define yywrap() 1
9807
9808 /* By default yylex returns int, we use token_type.
9809 Unfortunately yyterminate by default returns 0, which is
9810 not of token_type. */
9811 #define yyterminate() return token::END
9812 %@}
9813 @end example
9814
9815 @noindent
9816 Because there is no @code{#include}-like feature we don't need
9817 @code{yywrap}, we don't need @code{unput} either, and we parse an
9818 actual file, this is not an interactive session with the user.
9819 Finally we enable the scanner tracing features.
9820
9821 @comment file: calc++-scanner.ll
9822 @example
9823 %option noyywrap nounput batch debug
9824 @end example
9825
9826 @noindent
9827 Abbreviations allow for more readable rules.
9828
9829 @comment file: calc++-scanner.ll
9830 @example
9831 id [a-zA-Z][a-zA-Z_0-9]*
9832 int [0-9]+
9833 blank [ \t]
9834 @end example
9835
9836 @noindent
9837 The following paragraph suffices to track locations accurately. Each
9838 time @code{yylex} is invoked, the begin position is moved onto the end
9839 position. Then when a pattern is matched, the end position is
9840 advanced of its width. In case it matched ends of lines, the end
9841 cursor is adjusted, and each time blanks are matched, the begin cursor
9842 is moved onto the end cursor to effectively ignore the blanks
9843 preceding tokens. Comments would be treated equally.
9844
9845 @comment file: calc++-scanner.ll
9846 @example
9847 @group
9848 %@{
9849 # define YY_USER_ACTION yylloc->columns (yyleng);
9850 %@}
9851 @end group
9852 %%
9853 %@{
9854 yylloc->step ();
9855 %@}
9856 @{blank@}+ yylloc->step ();
9857 [\n]+ yylloc->lines (yyleng); yylloc->step ();
9858 @end example
9859
9860 @noindent
9861 The rules are simple, just note the use of the driver to report errors.
9862 It is convenient to use a typedef to shorten
9863 @code{yy::calcxx_parser::token::identifier} into
9864 @code{token::identifier} for instance.
9865
9866 @comment file: calc++-scanner.ll
9867 @example
9868 %@{
9869 typedef yy::calcxx_parser::token token;
9870 %@}
9871 /* Convert ints to the actual type of tokens. */
9872 [-+*/] return yy::calcxx_parser::token_type (yytext[0]);
9873 ":=" return token::ASSIGN;
9874 @{int@} @{
9875 errno = 0;
9876 long n = strtol (yytext, NULL, 10);
9877 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9878 driver.error (*yylloc, "integer is out of range");
9879 yylval->ival = n;
9880 return token::NUMBER;
9881 @}
9882 @{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
9883 . driver.error (*yylloc, "invalid character");
9884 %%
9885 @end example
9886
9887 @noindent
9888 Finally, because the scanner related driver's member function depend
9889 on the scanner's data, it is simpler to implement them in this file.
9890
9891 @comment file: calc++-scanner.ll
9892 @example
9893 @group
9894 void
9895 calcxx_driver::scan_begin ()
9896 @{
9897 yy_flex_debug = trace_scanning;
9898 if (file.empty () || file == "-")
9899 yyin = stdin;
9900 else if (!(yyin = fopen (file.c_str (), "r")))
9901 @{
9902 error ("cannot open " + file + ": " + strerror(errno));
9903 exit (EXIT_FAILURE);
9904 @}
9905 @}
9906 @end group
9907
9908 @group
9909 void
9910 calcxx_driver::scan_end ()
9911 @{
9912 fclose (yyin);
9913 @}
9914 @end group
9915 @end example
9916
9917 @node Calc++ Top Level
9918 @subsubsection Calc++ Top Level
9919
9920 The top level file, @file{calc++.cc}, poses no problem.
9921
9922 @comment file: calc++.cc
9923 @example
9924 #include <iostream>
9925 #include "calc++-driver.hh"
9926
9927 @group
9928 int
9929 main (int argc, char *argv[])
9930 @{
9931 calcxx_driver driver;
9932 for (int i = 1; i < argc; ++i)
9933 if (argv[i] == std::string ("-p"))
9934 driver.trace_parsing = true;
9935 else if (argv[i] == std::string ("-s"))
9936 driver.trace_scanning = true;
9937 else if (!driver.parse (argv[i]))
9938 std::cout << driver.result << std::endl;
9939 @}
9940 @end group
9941 @end example
9942
9943 @node Java Parsers
9944 @section Java Parsers
9945
9946 @menu
9947 * Java Bison Interface:: Asking for Java parser generation
9948 * Java Semantic Values:: %type and %token vs. Java
9949 * Java Location Values:: The position and location classes
9950 * Java Parser Interface:: Instantiating and running the parser
9951 * Java Scanner Interface:: Specifying the scanner for the parser
9952 * Java Action Features:: Special features for use in actions
9953 * Java Differences:: Differences between C/C++ and Java Grammars
9954 * Java Declarations Summary:: List of Bison declarations used with Java
9955 @end menu
9956
9957 @node Java Bison Interface
9958 @subsection Java Bison Interface
9959 @c - %language "Java"
9960
9961 (The current Java interface is experimental and may evolve.
9962 More user feedback will help to stabilize it.)
9963
9964 The Java parser skeletons are selected using the @code{%language "Java"}
9965 directive or the @option{-L java}/@option{--language=java} option.
9966
9967 @c FIXME: Documented bug.
9968 When generating a Java parser, @code{bison @var{basename}.y} will
9969 create a single Java source file named @file{@var{basename}.java}
9970 containing the parser implementation. Using a grammar file without a
9971 @file{.y} suffix is currently broken. The basename of the parser
9972 implementation file can be changed by the @code{%file-prefix}
9973 directive or the @option{-p}/@option{--name-prefix} option. The
9974 entire parser implementation file name can be changed by the
9975 @code{%output} directive or the @option{-o}/@option{--output} option.
9976 The parser implementation file contains a single class for the parser.
9977
9978 You can create documentation for generated parsers using Javadoc.
9979
9980 Contrary to C parsers, Java parsers do not use global variables; the
9981 state of the parser is always local to an instance of the parser class.
9982 Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9983 and @code{%define api.pure} directives does not do anything when used in
9984 Java.
9985
9986 Push parsers are currently unsupported in Java and @code{%define
9987 api.push-pull} have no effect.
9988
9989 GLR parsers are currently unsupported in Java. Do not use the
9990 @code{glr-parser} directive.
9991
9992 No header file can be generated for Java parsers. Do not use the
9993 @code{%defines} directive or the @option{-d}/@option{--defines} options.
9994
9995 @c FIXME: Possible code change.
9996 Currently, support for debugging and verbose errors are always compiled
9997 in. Thus the @code{%debug} and @code{%token-table} directives and the
9998 @option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9999 options have no effect. This may change in the future to eliminate
10000 unused code in the generated parser, so use @code{%debug} and
10001 @code{%verbose-error} explicitly if needed. Also, in the future the
10002 @code{%token-table} directive might enable a public interface to
10003 access the token names and codes.
10004
10005 @node Java Semantic Values
10006 @subsection Java Semantic Values
10007 @c - No %union, specify type in %type/%token.
10008 @c - YYSTYPE
10009 @c - Printer and destructor
10010
10011 There is no @code{%union} directive in Java parsers. Instead, the
10012 semantic values' types (class names) should be specified in the
10013 @code{%type} or @code{%token} directive:
10014
10015 @example
10016 %type <Expression> expr assignment_expr term factor
10017 %type <Integer> number
10018 @end example
10019
10020 By default, the semantic stack is declared to have @code{Object} members,
10021 which means that the class types you specify can be of any class.
10022 To improve the type safety of the parser, you can declare the common
10023 superclass of all the semantic values using the @code{%define stype}
10024 directive. For example, after the following declaration:
10025
10026 @example
10027 %define stype "ASTNode"
10028 @end example
10029
10030 @noindent
10031 any @code{%type} or @code{%token} specifying a semantic type which
10032 is not a subclass of ASTNode, will cause a compile-time error.
10033
10034 @c FIXME: Documented bug.
10035 Types used in the directives may be qualified with a package name.
10036 Primitive data types are accepted for Java version 1.5 or later. Note
10037 that in this case the autoboxing feature of Java 1.5 will be used.
10038 Generic types may not be used; this is due to a limitation in the
10039 implementation of Bison, and may change in future releases.
10040
10041 Java parsers do not support @code{%destructor}, since the language
10042 adopts garbage collection. The parser will try to hold references
10043 to semantic values for as little time as needed.
10044
10045 Java parsers do not support @code{%printer}, as @code{toString()}
10046 can be used to print the semantic values. This however may change
10047 (in a backwards-compatible way) in future versions of Bison.
10048
10049
10050 @node Java Location Values
10051 @subsection Java Location Values
10052 @c - %locations
10053 @c - class Position
10054 @c - class Location
10055
10056 When the directive @code{%locations} is used, the Java parser supports
10057 location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10058 class defines a @dfn{position}, a single point in a file; Bison itself
10059 defines a class representing a @dfn{location}, a range composed of a pair of
10060 positions (possibly spanning several files). The location class is an inner
10061 class of the parser; the name is @code{Location} by default, and may also be
10062 renamed using @code{%define location_type "@var{class-name}"}.
10063
10064 The location class treats the position as a completely opaque value.
10065 By default, the class name is @code{Position}, but this can be changed
10066 with @code{%define position_type "@var{class-name}"}. This class must
10067 be supplied by the user.
10068
10069
10070 @deftypeivar {Location} {Position} begin
10071 @deftypeivarx {Location} {Position} end
10072 The first, inclusive, position of the range, and the first beyond.
10073 @end deftypeivar
10074
10075 @deftypeop {Constructor} {Location} {} Location (Position @var{loc})
10076 Create a @code{Location} denoting an empty range located at a given point.
10077 @end deftypeop
10078
10079 @deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10080 Create a @code{Location} from the endpoints of the range.
10081 @end deftypeop
10082
10083 @deftypemethod {Location} {String} toString ()
10084 Prints the range represented by the location. For this to work
10085 properly, the position class should override the @code{equals} and
10086 @code{toString} methods appropriately.
10087 @end deftypemethod
10088
10089
10090 @node Java Parser Interface
10091 @subsection Java Parser Interface
10092 @c - define parser_class_name
10093 @c - Ctor
10094 @c - parse, error, set_debug_level, debug_level, set_debug_stream,
10095 @c debug_stream.
10096 @c - Reporting errors
10097
10098 The name of the generated parser class defaults to @code{YYParser}. The
10099 @code{YY} prefix may be changed using the @code{%name-prefix} directive
10100 or the @option{-p}/@option{--name-prefix} option. Alternatively, use
10101 @code{%define parser_class_name "@var{name}"} to give a custom name to
10102 the class. The interface of this class is detailed below.
10103
10104 By default, the parser class has package visibility. A declaration
10105 @code{%define public} will change to public visibility. Remember that,
10106 according to the Java language specification, the name of the @file{.java}
10107 file should match the name of the class in this case. Similarly, you can
10108 use @code{abstract}, @code{final} and @code{strictfp} with the
10109 @code{%define} declaration to add other modifiers to the parser class.
10110
10111 The Java package name of the parser class can be specified using the
10112 @code{%define package} directive. The superclass and the implemented
10113 interfaces of the parser class can be specified with the @code{%define
10114 extends} and @code{%define implements} directives.
10115
10116 The parser class defines an inner class, @code{Location}, that is used
10117 for location tracking (see @ref{Java Location Values}), and a inner
10118 interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10119 these inner class/interface, and the members described in the interface
10120 below, all the other members and fields are preceded with a @code{yy} or
10121 @code{YY} prefix to avoid clashes with user code.
10122
10123 @c FIXME: The following constants and variables are still undocumented:
10124 @c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
10125
10126 The parser class can be extended using the @code{%parse-param}
10127 directive. Each occurrence of the directive will add a @code{protected
10128 final} field to the parser class, and an argument to its constructor,
10129 which initialize them automatically.
10130
10131 Token names defined by @code{%token} and the predefined @code{EOF} token
10132 name are added as constant fields to the parser class.
10133
10134 @deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10135 Build a new parser object with embedded @code{%code lexer}. There are
10136 no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
10137 used.
10138 @end deftypeop
10139
10140 @deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10141 Build a new parser object using the specified scanner. There are no
10142 additional parameters unless @code{%parse-param}s are used.
10143
10144 If the scanner is defined by @code{%code lexer}, this constructor is
10145 declared @code{protected} and is called automatically with a scanner
10146 created with the correct @code{%lex-param}s.
10147 @end deftypeop
10148
10149 @deftypemethod {YYParser} {boolean} parse ()
10150 Run the syntactic analysis, and return @code{true} on success,
10151 @code{false} otherwise.
10152 @end deftypemethod
10153
10154 @deftypemethod {YYParser} {boolean} recovering ()
10155 During the syntactic analysis, return @code{true} if recovering
10156 from a syntax error.
10157 @xref{Error Recovery}.
10158 @end deftypemethod
10159
10160 @deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10161 @deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10162 Get or set the stream used for tracing the parsing. It defaults to
10163 @code{System.err}.
10164 @end deftypemethod
10165
10166 @deftypemethod {YYParser} {int} getDebugLevel ()
10167 @deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10168 Get or set the tracing level. Currently its value is either 0, no trace,
10169 or nonzero, full tracing.
10170 @end deftypemethod
10171
10172
10173 @node Java Scanner Interface
10174 @subsection Java Scanner Interface
10175 @c - %code lexer
10176 @c - %lex-param
10177 @c - Lexer interface
10178
10179 There are two possible ways to interface a Bison-generated Java parser
10180 with a scanner: the scanner may be defined by @code{%code lexer}, or
10181 defined elsewhere. In either case, the scanner has to implement the
10182 @code{Lexer} inner interface of the parser class.
10183
10184 In the first case, the body of the scanner class is placed in
10185 @code{%code lexer} blocks. If you want to pass parameters from the
10186 parser constructor to the scanner constructor, specify them with
10187 @code{%lex-param}; they are passed before @code{%parse-param}s to the
10188 constructor.
10189
10190 In the second case, the scanner has to implement the @code{Lexer} interface,
10191 which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10192 The constructor of the parser object will then accept an object
10193 implementing the interface; @code{%lex-param} is not used in this
10194 case.
10195
10196 In both cases, the scanner has to implement the following methods.
10197
10198 @deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10199 This method is defined by the user to emit an error message. The first
10200 parameter is omitted if location tracking is not active. Its type can be
10201 changed using @code{%define location_type "@var{class-name}".}
10202 @end deftypemethod
10203
10204 @deftypemethod {Lexer} {int} yylex ()
10205 Return the next token. Its type is the return value, its semantic
10206 value and location are saved and returned by the their methods in the
10207 interface.
10208
10209 Use @code{%define lex_throws} to specify any uncaught exceptions.
10210 Default is @code{java.io.IOException}.
10211 @end deftypemethod
10212
10213 @deftypemethod {Lexer} {Position} getStartPos ()
10214 @deftypemethodx {Lexer} {Position} getEndPos ()
10215 Return respectively the first position of the last token that
10216 @code{yylex} returned, and the first position beyond it. These
10217 methods are not needed unless location tracking is active.
10218
10219 The return type can be changed using @code{%define position_type
10220 "@var{class-name}".}
10221 @end deftypemethod
10222
10223 @deftypemethod {Lexer} {Object} getLVal ()
10224 Return the semantic value of the last token that yylex returned.
10225
10226 The return type can be changed using @code{%define stype
10227 "@var{class-name}".}
10228 @end deftypemethod
10229
10230
10231 @node Java Action Features
10232 @subsection Special Features for Use in Java Actions
10233
10234 The following special constructs can be uses in Java actions.
10235 Other analogous C action features are currently unavailable for Java.
10236
10237 Use @code{%define throws} to specify any uncaught exceptions from parser
10238 actions, and initial actions specified by @code{%initial-action}.
10239
10240 @defvar $@var{n}
10241 The semantic value for the @var{n}th component of the current rule.
10242 This may not be assigned to.
10243 @xref{Java Semantic Values}.
10244 @end defvar
10245
10246 @defvar $<@var{typealt}>@var{n}
10247 Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10248 @xref{Java Semantic Values}.
10249 @end defvar
10250
10251 @defvar $$
10252 The semantic value for the grouping made by the current rule. As a
10253 value, this is in the base type (@code{Object} or as specified by
10254 @code{%define stype}) as in not cast to the declared subtype because
10255 casts are not allowed on the left-hand side of Java assignments.
10256 Use an explicit Java cast if the correct subtype is needed.
10257 @xref{Java Semantic Values}.
10258 @end defvar
10259
10260 @defvar $<@var{typealt}>$
10261 Same as @code{$$} since Java always allow assigning to the base type.
10262 Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10263 for setting the value but there is currently no easy way to distinguish
10264 these constructs.
10265 @xref{Java Semantic Values}.
10266 @end defvar
10267
10268 @defvar @@@var{n}
10269 The location information of the @var{n}th component of the current rule.
10270 This may not be assigned to.
10271 @xref{Java Location Values}.
10272 @end defvar
10273
10274 @defvar @@$
10275 The location information of the grouping made by the current rule.
10276 @xref{Java Location Values}.
10277 @end defvar
10278
10279 @deftypefn {Statement} return YYABORT @code{;}
10280 Return immediately from the parser, indicating failure.
10281 @xref{Java Parser Interface}.
10282 @end deftypefn
10283
10284 @deftypefn {Statement} return YYACCEPT @code{;}
10285 Return immediately from the parser, indicating success.
10286 @xref{Java Parser Interface}.
10287 @end deftypefn
10288
10289 @deftypefn {Statement} {return} YYERROR @code{;}
10290 Start error recovery (without printing an error message).
10291 @xref{Error Recovery}.
10292 @end deftypefn
10293
10294 @deftypefn {Function} {boolean} recovering ()
10295 Return whether error recovery is being done. In this state, the parser
10296 reads token until it reaches a known state, and then restarts normal
10297 operation.
10298 @xref{Error Recovery}.
10299 @end deftypefn
10300
10301 @deftypefn {Function} {protected void} yyerror (String msg)
10302 @deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
10303 @deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
10304 Print an error message using the @code{yyerror} method of the scanner
10305 instance in use.
10306 @end deftypefn
10307
10308
10309 @node Java Differences
10310 @subsection Differences between C/C++ and Java Grammars
10311
10312 The different structure of the Java language forces several differences
10313 between C/C++ grammars, and grammars designed for Java parsers. This
10314 section summarizes these differences.
10315
10316 @itemize
10317 @item
10318 Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
10319 @code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
10320 macros. Instead, they should be preceded by @code{return} when they
10321 appear in an action. The actual definition of these symbols is
10322 opaque to the Bison grammar, and it might change in the future. The
10323 only meaningful operation that you can do, is to return them.
10324 @xref{Java Action Features}.
10325
10326 Note that of these three symbols, only @code{YYACCEPT} and
10327 @code{YYABORT} will cause a return from the @code{yyparse}
10328 method@footnote{Java parsers include the actions in a separate
10329 method than @code{yyparse} in order to have an intuitive syntax that
10330 corresponds to these C macros.}.
10331
10332 @item
10333 Java lacks unions, so @code{%union} has no effect. Instead, semantic
10334 values have a common base type: @code{Object} or as specified by
10335 @samp{%define stype}. Angle brackets on @code{%token}, @code{type},
10336 @code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10337 an union. The type of @code{$$}, even with angle brackets, is the base
10338 type since Java casts are not allow on the left-hand side of assignments.
10339 Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10340 left-hand side of assignments. @xref{Java Semantic Values}, and
10341 @ref{Java Action Features}.
10342
10343 @item
10344 The prologue declarations have a different meaning than in C/C++ code.
10345 @table @asis
10346 @item @code{%code imports}
10347 blocks are placed at the beginning of the Java source code. They may
10348 include copyright notices. For a @code{package} declarations, it is
10349 suggested to use @code{%define package} instead.
10350
10351 @item unqualified @code{%code}
10352 blocks are placed inside the parser class.
10353
10354 @item @code{%code lexer}
10355 blocks, if specified, should include the implementation of the
10356 scanner. If there is no such block, the scanner can be any class
10357 that implements the appropriate interface (@pxref{Java Scanner
10358 Interface}).
10359 @end table
10360
10361 Other @code{%code} blocks are not supported in Java parsers.
10362 In particular, @code{%@{ @dots{} %@}} blocks should not be used
10363 and may give an error in future versions of Bison.
10364
10365 The epilogue has the same meaning as in C/C++ code and it can
10366 be used to define other classes used by the parser @emph{outside}
10367 the parser class.
10368 @end itemize
10369
10370
10371 @node Java Declarations Summary
10372 @subsection Java Declarations Summary
10373
10374 This summary only include declarations specific to Java or have special
10375 meaning when used in a Java parser.
10376
10377 @deffn {Directive} {%language "Java"}
10378 Generate a Java class for the parser.
10379 @end deffn
10380
10381 @deffn {Directive} %lex-param @{@var{type} @var{name}@}
10382 A parameter for the lexer class defined by @code{%code lexer}
10383 @emph{only}, added as parameters to the lexer constructor and the parser
10384 constructor that @emph{creates} a lexer. Default is none.
10385 @xref{Java Scanner Interface}.
10386 @end deffn
10387
10388 @deffn {Directive} %name-prefix "@var{prefix}"
10389 The prefix of the parser class name @code{@var{prefix}Parser} if
10390 @code{%define parser_class_name} is not used. Default is @code{YY}.
10391 @xref{Java Bison Interface}.
10392 @end deffn
10393
10394 @deffn {Directive} %parse-param @{@var{type} @var{name}@}
10395 A parameter for the parser class added as parameters to constructor(s)
10396 and as fields initialized by the constructor(s). Default is none.
10397 @xref{Java Parser Interface}.
10398 @end deffn
10399
10400 @deffn {Directive} %token <@var{type}> @var{token} @dots{}
10401 Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10402 @xref{Java Semantic Values}.
10403 @end deffn
10404
10405 @deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10406 Declare the type of nonterminals. Note that the angle brackets enclose
10407 a Java @emph{type}.
10408 @xref{Java Semantic Values}.
10409 @end deffn
10410
10411 @deffn {Directive} %code @{ @var{code} @dots{} @}
10412 Code appended to the inside of the parser class.
10413 @xref{Java Differences}.
10414 @end deffn
10415
10416 @deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10417 Code inserted just after the @code{package} declaration.
10418 @xref{Java Differences}.
10419 @end deffn
10420
10421 @deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10422 Code added to the body of a inner lexer class within the parser class.
10423 @xref{Java Scanner Interface}.
10424 @end deffn
10425
10426 @deffn {Directive} %% @var{code} @dots{}
10427 Code (after the second @code{%%}) appended to the end of the file,
10428 @emph{outside} the parser class.
10429 @xref{Java Differences}.
10430 @end deffn
10431
10432 @deffn {Directive} %@{ @var{code} @dots{} %@}
10433 Not supported. Use @code{%code import} instead.
10434 @xref{Java Differences}.
10435 @end deffn
10436
10437 @deffn {Directive} {%define abstract}
10438 Whether the parser class is declared @code{abstract}. Default is false.
10439 @xref{Java Bison Interface}.
10440 @end deffn
10441
10442 @deffn {Directive} {%define extends} "@var{superclass}"
10443 The superclass of the parser class. Default is none.
10444 @xref{Java Bison Interface}.
10445 @end deffn
10446
10447 @deffn {Directive} {%define final}
10448 Whether the parser class is declared @code{final}. Default is false.
10449 @xref{Java Bison Interface}.
10450 @end deffn
10451
10452 @deffn {Directive} {%define implements} "@var{interfaces}"
10453 The implemented interfaces of the parser class, a comma-separated list.
10454 Default is none.
10455 @xref{Java Bison Interface}.
10456 @end deffn
10457
10458 @deffn {Directive} {%define lex_throws} "@var{exceptions}"
10459 The exceptions thrown by the @code{yylex} method of the lexer, a
10460 comma-separated list. Default is @code{java.io.IOException}.
10461 @xref{Java Scanner Interface}.
10462 @end deffn
10463
10464 @deffn {Directive} {%define location_type} "@var{class}"
10465 The name of the class used for locations (a range between two
10466 positions). This class is generated as an inner class of the parser
10467 class by @command{bison}. Default is @code{Location}.
10468 @xref{Java Location Values}.
10469 @end deffn
10470
10471 @deffn {Directive} {%define package} "@var{package}"
10472 The package to put the parser class in. Default is none.
10473 @xref{Java Bison Interface}.
10474 @end deffn
10475
10476 @deffn {Directive} {%define parser_class_name} "@var{name}"
10477 The name of the parser class. Default is @code{YYParser} or
10478 @code{@var{name-prefix}Parser}.
10479 @xref{Java Bison Interface}.
10480 @end deffn
10481
10482 @deffn {Directive} {%define position_type} "@var{class}"
10483 The name of the class used for positions. This class must be supplied by
10484 the user. Default is @code{Position}.
10485 @xref{Java Location Values}.
10486 @end deffn
10487
10488 @deffn {Directive} {%define public}
10489 Whether the parser class is declared @code{public}. Default is false.
10490 @xref{Java Bison Interface}.
10491 @end deffn
10492
10493 @deffn {Directive} {%define stype} "@var{class}"
10494 The base type of semantic values. Default is @code{Object}.
10495 @xref{Java Semantic Values}.
10496 @end deffn
10497
10498 @deffn {Directive} {%define strictfp}
10499 Whether the parser class is declared @code{strictfp}. Default is false.
10500 @xref{Java Bison Interface}.
10501 @end deffn
10502
10503 @deffn {Directive} {%define throws} "@var{exceptions}"
10504 The exceptions thrown by user-supplied parser actions and
10505 @code{%initial-action}, a comma-separated list. Default is none.
10506 @xref{Java Parser Interface}.
10507 @end deffn
10508
10509
10510 @c ================================================= FAQ
10511
10512 @node FAQ
10513 @chapter Frequently Asked Questions
10514 @cindex frequently asked questions
10515 @cindex questions
10516
10517 Several questions about Bison come up occasionally. Here some of them
10518 are addressed.
10519
10520 @menu
10521 * Memory Exhausted:: Breaking the Stack Limits
10522 * How Can I Reset the Parser:: @code{yyparse} Keeps some State
10523 * Strings are Destroyed:: @code{yylval} Loses Track of Strings
10524 * Implementing Gotos/Loops:: Control Flow in the Calculator
10525 * Multiple start-symbols:: Factoring closely related grammars
10526 * Secure? Conform?:: Is Bison POSIX safe?
10527 * I can't build Bison:: Troubleshooting
10528 * Where can I find help?:: Troubleshouting
10529 * Bug Reports:: Troublereporting
10530 * More Languages:: Parsers in C++, Java, and so on
10531 * Beta Testing:: Experimenting development versions
10532 * Mailing Lists:: Meeting other Bison users
10533 @end menu
10534
10535 @node Memory Exhausted
10536 @section Memory Exhausted
10537
10538 @quotation
10539 My parser returns with error with a @samp{memory exhausted}
10540 message. What can I do?
10541 @end quotation
10542
10543 This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
10544 Rules}.
10545
10546 @node How Can I Reset the Parser
10547 @section How Can I Reset the Parser
10548
10549 The following phenomenon has several symptoms, resulting in the
10550 following typical questions:
10551
10552 @quotation
10553 I invoke @code{yyparse} several times, and on correct input it works
10554 properly; but when a parse error is found, all the other calls fail
10555 too. How can I reset the error flag of @code{yyparse}?
10556 @end quotation
10557
10558 @noindent
10559 or
10560
10561 @quotation
10562 My parser includes support for an @samp{#include}-like feature, in
10563 which case I run @code{yyparse} from @code{yyparse}. This fails
10564 although I did specify @samp{%define api.pure}.
10565 @end quotation
10566
10567 These problems typically come not from Bison itself, but from
10568 Lex-generated scanners. Because these scanners use large buffers for
10569 speed, they might not notice a change of input file. As a
10570 demonstration, consider the following source file,
10571 @file{first-line.l}:
10572
10573 @example
10574 @group
10575 %@{
10576 #include <stdio.h>
10577 #include <stdlib.h>
10578 %@}
10579 @end group
10580 %%
10581 .*\n ECHO; return 1;
10582 %%
10583 @group
10584 int
10585 yyparse (char const *file)
10586 @{
10587 yyin = fopen (file, "r");
10588 if (!yyin)
10589 @{
10590 perror ("fopen");
10591 exit (EXIT_FAILURE);
10592 @}
10593 @end group
10594 @group
10595 /* One token only. */
10596 yylex ();
10597 if (fclose (yyin) != 0)
10598 @{
10599 perror ("fclose");
10600 exit (EXIT_FAILURE);
10601 @}
10602 return 0;
10603 @}
10604 @end group
10605
10606 @group
10607 int
10608 main (void)
10609 @{
10610 yyparse ("input");
10611 yyparse ("input");
10612 return 0;
10613 @}
10614 @end group
10615 @end example
10616
10617 @noindent
10618 If the file @file{input} contains
10619
10620 @example
10621 input:1: Hello,
10622 input:2: World!
10623 @end example
10624
10625 @noindent
10626 then instead of getting the first line twice, you get:
10627
10628 @example
10629 $ @kbd{flex -ofirst-line.c first-line.l}
10630 $ @kbd{gcc -ofirst-line first-line.c -ll}
10631 $ @kbd{./first-line}
10632 input:1: Hello,
10633 input:2: World!
10634 @end example
10635
10636 Therefore, whenever you change @code{yyin}, you must tell the
10637 Lex-generated scanner to discard its current buffer and switch to the
10638 new one. This depends upon your implementation of Lex; see its
10639 documentation for more. For Flex, it suffices to call
10640 @samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10641 Flex-generated scanner needs to read from several input streams to
10642 handle features like include files, you might consider using Flex
10643 functions like @samp{yy_switch_to_buffer} that manipulate multiple
10644 input buffers.
10645
10646 If your Flex-generated scanner uses start conditions (@pxref{Start
10647 conditions, , Start conditions, flex, The Flex Manual}), you might
10648 also want to reset the scanner's state, i.e., go back to the initial
10649 start condition, through a call to @samp{BEGIN (0)}.
10650
10651 @node Strings are Destroyed
10652 @section Strings are Destroyed
10653
10654 @quotation
10655 My parser seems to destroy old strings, or maybe it loses track of
10656 them. Instead of reporting @samp{"foo", "bar"}, it reports
10657 @samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10658 @end quotation
10659
10660 This error is probably the single most frequent ``bug report'' sent to
10661 Bison lists, but is only concerned with a misunderstanding of the role
10662 of the scanner. Consider the following Lex code:
10663
10664 @example
10665 @group
10666 %@{
10667 #include <stdio.h>
10668 char *yylval = NULL;
10669 %@}
10670 @end group
10671 @group
10672 %%
10673 .* yylval = yytext; return 1;
10674 \n /* IGNORE */
10675 %%
10676 @end group
10677 @group
10678 int
10679 main ()
10680 @{
10681 /* Similar to using $1, $2 in a Bison action. */
10682 char *fst = (yylex (), yylval);
10683 char *snd = (yylex (), yylval);
10684 printf ("\"%s\", \"%s\"\n", fst, snd);
10685 return 0;
10686 @}
10687 @end group
10688 @end example
10689
10690 If you compile and run this code, you get:
10691
10692 @example
10693 $ @kbd{flex -osplit-lines.c split-lines.l}
10694 $ @kbd{gcc -osplit-lines split-lines.c -ll}
10695 $ @kbd{printf 'one\ntwo\n' | ./split-lines}
10696 "one
10697 two", "two"
10698 @end example
10699
10700 @noindent
10701 this is because @code{yytext} is a buffer provided for @emph{reading}
10702 in the action, but if you want to keep it, you have to duplicate it
10703 (e.g., using @code{strdup}). Note that the output may depend on how
10704 your implementation of Lex handles @code{yytext}. For instance, when
10705 given the Lex compatibility option @option{-l} (which triggers the
10706 option @samp{%array}) Flex generates a different behavior:
10707
10708 @example
10709 $ @kbd{flex -l -osplit-lines.c split-lines.l}
10710 $ @kbd{gcc -osplit-lines split-lines.c -ll}
10711 $ @kbd{printf 'one\ntwo\n' | ./split-lines}
10712 "two", "two"
10713 @end example
10714
10715
10716 @node Implementing Gotos/Loops
10717 @section Implementing Gotos/Loops
10718
10719 @quotation
10720 My simple calculator supports variables, assignments, and functions,
10721 but how can I implement gotos, or loops?
10722 @end quotation
10723
10724 Although very pedagogical, the examples included in the document blur
10725 the distinction to make between the parser---whose job is to recover
10726 the structure of a text and to transmit it to subsequent modules of
10727 the program---and the processing (such as the execution) of this
10728 structure. This works well with so called straight line programs,
10729 i.e., precisely those that have a straightforward execution model:
10730 execute simple instructions one after the others.
10731
10732 @cindex abstract syntax tree
10733 @cindex AST
10734 If you want a richer model, you will probably need to use the parser
10735 to construct a tree that does represent the structure it has
10736 recovered; this tree is usually called the @dfn{abstract syntax tree},
10737 or @dfn{AST} for short. Then, walking through this tree,
10738 traversing it in various ways, will enable treatments such as its
10739 execution or its translation, which will result in an interpreter or a
10740 compiler.
10741
10742 This topic is way beyond the scope of this manual, and the reader is
10743 invited to consult the dedicated literature.
10744
10745
10746 @node Multiple start-symbols
10747 @section Multiple start-symbols
10748
10749 @quotation
10750 I have several closely related grammars, and I would like to share their
10751 implementations. In fact, I could use a single grammar but with
10752 multiple entry points.
10753 @end quotation
10754
10755 Bison does not support multiple start-symbols, but there is a very
10756 simple means to simulate them. If @code{foo} and @code{bar} are the two
10757 pseudo start-symbols, then introduce two new tokens, say
10758 @code{START_FOO} and @code{START_BAR}, and use them as switches from the
10759 real start-symbol:
10760
10761 @example
10762 %token START_FOO START_BAR;
10763 %start start;
10764 start:
10765 START_FOO foo
10766 | START_BAR bar;
10767 @end example
10768
10769 These tokens prevents the introduction of new conflicts. As far as the
10770 parser goes, that is all that is needed.
10771
10772 Now the difficult part is ensuring that the scanner will send these
10773 tokens first. If your scanner is hand-written, that should be
10774 straightforward. If your scanner is generated by Lex, them there is
10775 simple means to do it: recall that anything between @samp{%@{ ... %@}}
10776 after the first @code{%%} is copied verbatim in the top of the generated
10777 @code{yylex} function. Make sure a variable @code{start_token} is
10778 available in the scanner (e.g., a global variable or using
10779 @code{%lex-param} etc.), and use the following:
10780
10781 @example
10782 /* @r{Prologue.} */
10783 %%
10784 %@{
10785 if (start_token)
10786 @{
10787 int t = start_token;
10788 start_token = 0;
10789 return t;
10790 @}
10791 %@}
10792 /* @r{The rules.} */
10793 @end example
10794
10795
10796 @node Secure? Conform?
10797 @section Secure? Conform?
10798
10799 @quotation
10800 Is Bison secure? Does it conform to POSIX?
10801 @end quotation
10802
10803 If you're looking for a guarantee or certification, we don't provide it.
10804 However, Bison is intended to be a reliable program that conforms to the
10805 POSIX specification for Yacc. If you run into problems,
10806 please send us a bug report.
10807
10808 @node I can't build Bison
10809 @section I can't build Bison
10810
10811 @quotation
10812 I can't build Bison because @command{make} complains that
10813 @code{msgfmt} is not found.
10814 What should I do?
10815 @end quotation
10816
10817 Like most GNU packages with internationalization support, that feature
10818 is turned on by default. If you have problems building in the @file{po}
10819 subdirectory, it indicates that your system's internationalization
10820 support is lacking. You can re-configure Bison with
10821 @option{--disable-nls} to turn off this support, or you can install GNU
10822 gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10823 Bison. See the file @file{ABOUT-NLS} for more information.
10824
10825
10826 @node Where can I find help?
10827 @section Where can I find help?
10828
10829 @quotation
10830 I'm having trouble using Bison. Where can I find help?
10831 @end quotation
10832
10833 First, read this fine manual. Beyond that, you can send mail to
10834 @email{help-bison@@gnu.org}. This mailing list is intended to be
10835 populated with people who are willing to answer questions about using
10836 and installing Bison. Please keep in mind that (most of) the people on
10837 the list have aspects of their lives which are not related to Bison (!),
10838 so you may not receive an answer to your question right away. This can
10839 be frustrating, but please try not to honk them off; remember that any
10840 help they provide is purely voluntary and out of the kindness of their
10841 hearts.
10842
10843 @node Bug Reports
10844 @section Bug Reports
10845
10846 @quotation
10847 I found a bug. What should I include in the bug report?
10848 @end quotation
10849
10850 Before you send a bug report, make sure you are using the latest
10851 version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10852 mirrors. Be sure to include the version number in your bug report. If
10853 the bug is present in the latest version but not in a previous version,
10854 try to determine the most recent version which did not contain the bug.
10855
10856 If the bug is parser-related, you should include the smallest grammar
10857 you can which demonstrates the bug. The grammar file should also be
10858 complete (i.e., I should be able to run it through Bison without having
10859 to edit or add anything). The smaller and simpler the grammar, the
10860 easier it will be to fix the bug.
10861
10862 Include information about your compilation environment, including your
10863 operating system's name and version and your compiler's name and
10864 version. If you have trouble compiling, you should also include a
10865 transcript of the build session, starting with the invocation of
10866 `configure'. Depending on the nature of the bug, you may be asked to
10867 send additional files as well (such as `config.h' or `config.cache').
10868
10869 Patches are most welcome, but not required. That is, do not hesitate to
10870 send a bug report just because you cannot provide a fix.
10871
10872 Send bug reports to @email{bug-bison@@gnu.org}.
10873
10874 @node More Languages
10875 @section More Languages
10876
10877 @quotation
10878 Will Bison ever have C++ and Java support? How about @var{insert your
10879 favorite language here}?
10880 @end quotation
10881
10882 C++ and Java support is there now, and is documented. We'd love to add other
10883 languages; contributions are welcome.
10884
10885 @node Beta Testing
10886 @section Beta Testing
10887
10888 @quotation
10889 What is involved in being a beta tester?
10890 @end quotation
10891
10892 It's not terribly involved. Basically, you would download a test
10893 release, compile it, and use it to build and run a parser or two. After
10894 that, you would submit either a bug report or a message saying that
10895 everything is okay. It is important to report successes as well as
10896 failures because test releases eventually become mainstream releases,
10897 but only if they are adequately tested. If no one tests, development is
10898 essentially halted.
10899
10900 Beta testers are particularly needed for operating systems to which the
10901 developers do not have easy access. They currently have easy access to
10902 recent GNU/Linux and Solaris versions. Reports about other operating
10903 systems are especially welcome.
10904
10905 @node Mailing Lists
10906 @section Mailing Lists
10907
10908 @quotation
10909 How do I join the help-bison and bug-bison mailing lists?
10910 @end quotation
10911
10912 See @url{http://lists.gnu.org/}.
10913
10914 @c ================================================= Table of Symbols
10915
10916 @node Table of Symbols
10917 @appendix Bison Symbols
10918 @cindex Bison symbols, table of
10919 @cindex symbols in Bison, table of
10920
10921 @deffn {Variable} @@$
10922 In an action, the location of the left-hand side of the rule.
10923 @xref{Tracking Locations}.
10924 @end deffn
10925
10926 @deffn {Variable} @@@var{n}
10927 In an action, the location of the @var{n}-th symbol of the right-hand side
10928 of the rule. @xref{Tracking Locations}.
10929 @end deffn
10930
10931 @deffn {Variable} @@@var{name}
10932 In an action, the location of a symbol addressed by name. @xref{Tracking
10933 Locations}.
10934 @end deffn
10935
10936 @deffn {Variable} @@[@var{name}]
10937 In an action, the location of a symbol addressed by name. @xref{Tracking
10938 Locations}.
10939 @end deffn
10940
10941 @deffn {Variable} $$
10942 In an action, the semantic value of the left-hand side of the rule.
10943 @xref{Actions}.
10944 @end deffn
10945
10946 @deffn {Variable} $@var{n}
10947 In an action, the semantic value of the @var{n}-th symbol of the
10948 right-hand side of the rule. @xref{Actions}.
10949 @end deffn
10950
10951 @deffn {Variable} $@var{name}
10952 In an action, the semantic value of a symbol addressed by name.
10953 @xref{Actions}.
10954 @end deffn
10955
10956 @deffn {Variable} $[@var{name}]
10957 In an action, the semantic value of a symbol addressed by name.
10958 @xref{Actions}.
10959 @end deffn
10960
10961 @deffn {Delimiter} %%
10962 Delimiter used to separate the grammar rule section from the
10963 Bison declarations section or the epilogue.
10964 @xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
10965 @end deffn
10966
10967 @c Don't insert spaces, or check the DVI output.
10968 @deffn {Delimiter} %@{@var{code}%@}
10969 All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10970 to the parser implementation file. Such code forms the prologue of
10971 the grammar file. @xref{Grammar Outline, ,Outline of a Bison
10972 Grammar}.
10973 @end deffn
10974
10975 @deffn {Construct} /*@dots{}*/
10976 Comment delimiters, as in C.
10977 @end deffn
10978
10979 @deffn {Delimiter} :
10980 Separates a rule's result from its components. @xref{Rules, ,Syntax of
10981 Grammar Rules}.
10982 @end deffn
10983
10984 @deffn {Delimiter} ;
10985 Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
10986 @end deffn
10987
10988 @deffn {Delimiter} |
10989 Separates alternate rules for the same result nonterminal.
10990 @xref{Rules, ,Syntax of Grammar Rules}.
10991 @end deffn
10992
10993 @deffn {Directive} <*>
10994 Used to define a default tagged @code{%destructor} or default tagged
10995 @code{%printer}.
10996
10997 This feature is experimental.
10998 More user feedback will help to determine whether it should become a permanent
10999 feature.
11000
11001 @xref{Destructor Decl, , Freeing Discarded Symbols}.
11002 @end deffn
11003
11004 @deffn {Directive} <>
11005 Used to define a default tagless @code{%destructor} or default tagless
11006 @code{%printer}.
11007
11008 This feature is experimental.
11009 More user feedback will help to determine whether it should become a permanent
11010 feature.
11011
11012 @xref{Destructor Decl, , Freeing Discarded Symbols}.
11013 @end deffn
11014
11015 @deffn {Symbol} $accept
11016 The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11017 $end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11018 Start-Symbol}. It cannot be used in the grammar.
11019 @end deffn
11020
11021 @deffn {Directive} %code @{@var{code}@}
11022 @deffnx {Directive} %code @var{qualifier} @{@var{code}@}
11023 Insert @var{code} verbatim into the output parser source at the
11024 default location or at the location specified by @var{qualifier}.
11025 @xref{%code Summary}.
11026 @end deffn
11027
11028 @deffn {Directive} %debug
11029 Equip the parser for debugging. @xref{Decl Summary}.
11030 @end deffn
11031
11032 @ifset defaultprec
11033 @deffn {Directive} %default-prec
11034 Assign a precedence to rules that lack an explicit @samp{%prec}
11035 modifier. @xref{Contextual Precedence, ,Context-Dependent
11036 Precedence}.
11037 @end deffn
11038 @end ifset
11039
11040 @deffn {Directive} %define @var{variable}
11041 @deffnx {Directive} %define @var{variable} @var{value}
11042 @deffnx {Directive} %define @var{variable} "@var{value}"
11043 Define a variable to adjust Bison's behavior. @xref{%define Summary}.
11044 @end deffn
11045
11046 @deffn {Directive} %defines
11047 Bison declaration to create a parser header file, which is usually
11048 meant for the scanner. @xref{Decl Summary}.
11049 @end deffn
11050
11051 @deffn {Directive} %defines @var{defines-file}
11052 Same as above, but save in the file @var{defines-file}.
11053 @xref{Decl Summary}.
11054 @end deffn
11055
11056 @deffn {Directive} %destructor
11057 Specify how the parser should reclaim the memory associated to
11058 discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
11059 @end deffn
11060
11061 @deffn {Directive} %dprec
11062 Bison declaration to assign a precedence to a rule that is used at parse
11063 time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
11064 GLR Parsers}.
11065 @end deffn
11066
11067 @deffn {Symbol} $end
11068 The predefined token marking the end of the token stream. It cannot be
11069 used in the grammar.
11070 @end deffn
11071
11072 @deffn {Symbol} error
11073 A token name reserved for error recovery. This token may be used in
11074 grammar rules so as to allow the Bison parser to recognize an error in
11075 the grammar without halting the process. In effect, a sentence
11076 containing an error may be recognized as valid. On a syntax error, the
11077 token @code{error} becomes the current lookahead token. Actions
11078 corresponding to @code{error} are then executed, and the lookahead
11079 token is reset to the token that originally caused the violation.
11080 @xref{Error Recovery}.
11081 @end deffn
11082
11083 @deffn {Directive} %error-verbose
11084 Bison declaration to request verbose, specific error message strings
11085 when @code{yyerror} is called. @xref{Error Reporting}.
11086 @end deffn
11087
11088 @deffn {Directive} %file-prefix "@var{prefix}"
11089 Bison declaration to set the prefix of the output files. @xref{Decl
11090 Summary}.
11091 @end deffn
11092
11093 @deffn {Directive} %glr-parser
11094 Bison declaration to produce a GLR parser. @xref{GLR
11095 Parsers, ,Writing GLR Parsers}.
11096 @end deffn
11097
11098 @deffn {Directive} %initial-action
11099 Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11100 @end deffn
11101
11102 @deffn {Directive} %language
11103 Specify the programming language for the generated parser.
11104 @xref{Decl Summary}.
11105 @end deffn
11106
11107 @deffn {Directive} %left
11108 Bison declaration to assign left associativity to token(s).
11109 @xref{Precedence Decl, ,Operator Precedence}.
11110 @end deffn
11111
11112 @deffn {Directive} %lex-param @{@var{argument-declaration}@}
11113 Bison declaration to specifying an additional parameter that
11114 @code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11115 for Pure Parsers}.
11116 @end deffn
11117
11118 @deffn {Directive} %merge
11119 Bison declaration to assign a merging function to a rule. If there is a
11120 reduce/reduce conflict with a rule having the same merging function, the
11121 function is applied to the two semantic values to get a single result.
11122 @xref{GLR Parsers, ,Writing GLR Parsers}.
11123 @end deffn
11124
11125 @deffn {Directive} %name-prefix "@var{prefix}"
11126 Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11127 Parsers, ,Multiple Parsers in the Same Program}).
11128
11129 Rename the external symbols (variables and functions) used in the parser so
11130 that they start with @var{prefix} instead of @samp{yy}. Contrary to
11131 @code{api.prefix}, do no rename types and macros.
11132
11133 The precise list of symbols renamed in C parsers is @code{yyparse},
11134 @code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11135 @code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11136 push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11137 @code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11138 example, if you use @samp{%name-prefix "c_"}, the names become
11139 @code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11140 @code{%define namespace} documentation in this section.
11141 @end deffn
11142
11143
11144 @ifset defaultprec
11145 @deffn {Directive} %no-default-prec
11146 Do not assign a precedence to rules that lack an explicit @samp{%prec}
11147 modifier. @xref{Contextual Precedence, ,Context-Dependent
11148 Precedence}.
11149 @end deffn
11150 @end ifset
11151
11152 @deffn {Directive} %no-lines
11153 Bison declaration to avoid generating @code{#line} directives in the
11154 parser implementation file. @xref{Decl Summary}.
11155 @end deffn
11156
11157 @deffn {Directive} %nonassoc
11158 Bison declaration to assign nonassociativity to token(s).
11159 @xref{Precedence Decl, ,Operator Precedence}.
11160 @end deffn
11161
11162 @deffn {Directive} %output "@var{file}"
11163 Bison declaration to set the name of the parser implementation file.
11164 @xref{Decl Summary}.
11165 @end deffn
11166
11167 @deffn {Directive} %parse-param @{@var{argument-declaration}@}
11168 Bison declaration to specifying an additional parameter that
11169 @code{yyparse} should accept. @xref{Parser Function,, The Parser
11170 Function @code{yyparse}}.
11171 @end deffn
11172
11173 @deffn {Directive} %prec
11174 Bison declaration to assign a precedence to a specific rule.
11175 @xref{Contextual Precedence, ,Context-Dependent Precedence}.
11176 @end deffn
11177
11178 @deffn {Directive} %pure-parser
11179 Deprecated version of @code{%define api.pure} (@pxref{%define
11180 Summary,,api.pure}), for which Bison is more careful to warn about
11181 unreasonable usage.
11182 @end deffn
11183
11184 @deffn {Directive} %require "@var{version}"
11185 Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11186 Require a Version of Bison}.
11187 @end deffn
11188
11189 @deffn {Directive} %right
11190 Bison declaration to assign right associativity to token(s).
11191 @xref{Precedence Decl, ,Operator Precedence}.
11192 @end deffn
11193
11194 @deffn {Directive} %skeleton
11195 Specify the skeleton to use; usually for development.
11196 @xref{Decl Summary}.
11197 @end deffn
11198
11199 @deffn {Directive} %start
11200 Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11201 Start-Symbol}.
11202 @end deffn
11203
11204 @deffn {Directive} %token
11205 Bison declaration to declare token(s) without specifying precedence.
11206 @xref{Token Decl, ,Token Type Names}.
11207 @end deffn
11208
11209 @deffn {Directive} %token-table
11210 Bison declaration to include a token name table in the parser
11211 implementation file. @xref{Decl Summary}.
11212 @end deffn
11213
11214 @deffn {Directive} %type
11215 Bison declaration to declare nonterminals. @xref{Type Decl,
11216 ,Nonterminal Symbols}.
11217 @end deffn
11218
11219 @deffn {Symbol} $undefined
11220 The predefined token onto which all undefined values returned by
11221 @code{yylex} are mapped. It cannot be used in the grammar, rather, use
11222 @code{error}.
11223 @end deffn
11224
11225 @deffn {Directive} %union
11226 Bison declaration to specify several possible data types for semantic
11227 values. @xref{Union Decl, ,The Collection of Value Types}.
11228 @end deffn
11229
11230 @deffn {Macro} YYABORT
11231 Macro to pretend that an unrecoverable syntax error has occurred, by
11232 making @code{yyparse} return 1 immediately. The error reporting
11233 function @code{yyerror} is not called. @xref{Parser Function, ,The
11234 Parser Function @code{yyparse}}.
11235
11236 For Java parsers, this functionality is invoked using @code{return YYABORT;}
11237 instead.
11238 @end deffn
11239
11240 @deffn {Macro} YYACCEPT
11241 Macro to pretend that a complete utterance of the language has been
11242 read, by making @code{yyparse} return 0 immediately.
11243 @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11244
11245 For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11246 instead.
11247 @end deffn
11248
11249 @deffn {Macro} YYBACKUP
11250 Macro to discard a value from the parser stack and fake a lookahead
11251 token. @xref{Action Features, ,Special Features for Use in Actions}.
11252 @end deffn
11253
11254 @deffn {Variable} yychar
11255 External integer variable that contains the integer value of the
11256 lookahead token. (In a pure parser, it is a local variable within
11257 @code{yyparse}.) Error-recovery rule actions may examine this variable.
11258 @xref{Action Features, ,Special Features for Use in Actions}.
11259 @end deffn
11260
11261 @deffn {Variable} yyclearin
11262 Macro used in error-recovery rule actions. It clears the previous
11263 lookahead token. @xref{Error Recovery}.
11264 @end deffn
11265
11266 @deffn {Macro} YYDEBUG
11267 Macro to define to equip the parser with tracing code. @xref{Tracing,
11268 ,Tracing Your Parser}.
11269 @end deffn
11270
11271 @deffn {Variable} yydebug
11272 External integer variable set to zero by default. If @code{yydebug}
11273 is given a nonzero value, the parser will output information on input
11274 symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
11275 @end deffn
11276
11277 @deffn {Macro} yyerrok
11278 Macro to cause parser to recover immediately to its normal mode
11279 after a syntax error. @xref{Error Recovery}.
11280 @end deffn
11281
11282 @deffn {Macro} YYERROR
11283 Cause an immediate syntax error. This statement initiates error
11284 recovery just as if the parser itself had detected an error; however, it
11285 does not call @code{yyerror}, and does not print any message. If you
11286 want to print an error message, call @code{yyerror} explicitly before
11287 the @samp{YYERROR;} statement. @xref{Error Recovery}.
11288
11289 For Java parsers, this functionality is invoked using @code{return YYERROR;}
11290 instead.
11291 @end deffn
11292
11293 @deffn {Function} yyerror
11294 User-supplied function to be called by @code{yyparse} on error.
11295 @xref{Error Reporting, ,The Error
11296 Reporting Function @code{yyerror}}.
11297 @end deffn
11298
11299 @deffn {Macro} YYERROR_VERBOSE
11300 An obsolete macro that you define with @code{#define} in the prologue
11301 to request verbose, specific error message strings
11302 when @code{yyerror} is called. It doesn't matter what definition you
11303 use for @code{YYERROR_VERBOSE}, just whether you define it.
11304 Supported by the C skeletons only; using
11305 @code{%error-verbose} is preferred. @xref{Error Reporting}.
11306 @end deffn
11307
11308 @deffn {Macro} YYFPRINTF
11309 Macro used to output run-time traces.
11310 @xref{Enabling Traces}.
11311 @end deffn
11312
11313 @deffn {Macro} YYINITDEPTH
11314 Macro for specifying the initial size of the parser stack.
11315 @xref{Memory Management}.
11316 @end deffn
11317
11318 @deffn {Function} yylex
11319 User-supplied lexical analyzer function, called with no arguments to get
11320 the next token. @xref{Lexical, ,The Lexical Analyzer Function
11321 @code{yylex}}.
11322 @end deffn
11323
11324 @deffn {Macro} YYLEX_PARAM
11325 An obsolete macro for specifying an extra argument (or list of extra
11326 arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
11327 macro is deprecated, and is supported only for Yacc like parsers.
11328 @xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11329 @end deffn
11330
11331 @deffn {Variable} yylloc
11332 External variable in which @code{yylex} should place the line and column
11333 numbers associated with a token. (In a pure parser, it is a local
11334 variable within @code{yyparse}, and its address is passed to
11335 @code{yylex}.)
11336 You can ignore this variable if you don't use the @samp{@@} feature in the
11337 grammar actions.
11338 @xref{Token Locations, ,Textual Locations of Tokens}.
11339 In semantic actions, it stores the location of the lookahead token.
11340 @xref{Actions and Locations, ,Actions and Locations}.
11341 @end deffn
11342
11343 @deffn {Type} YYLTYPE
11344 Data type of @code{yylloc}; by default, a structure with four
11345 members. @xref{Location Type, , Data Types of Locations}.
11346 @end deffn
11347
11348 @deffn {Variable} yylval
11349 External variable in which @code{yylex} should place the semantic
11350 value associated with a token. (In a pure parser, it is a local
11351 variable within @code{yyparse}, and its address is passed to
11352 @code{yylex}.)
11353 @xref{Token Values, ,Semantic Values of Tokens}.
11354 In semantic actions, it stores the semantic value of the lookahead token.
11355 @xref{Actions, ,Actions}.
11356 @end deffn
11357
11358 @deffn {Macro} YYMAXDEPTH
11359 Macro for specifying the maximum size of the parser stack. @xref{Memory
11360 Management}.
11361 @end deffn
11362
11363 @deffn {Variable} yynerrs
11364 Global variable which Bison increments each time it reports a syntax error.
11365 (In a pure parser, it is a local variable within @code{yyparse}. In a
11366 pure push parser, it is a member of yypstate.)
11367 @xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11368 @end deffn
11369
11370 @deffn {Function} yyparse
11371 The parser function produced by Bison; call this function to start
11372 parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11373 @end deffn
11374
11375 @deffn {Macro} YYPRINT
11376 Macro used to output token semantic values. For @file{yacc.c} only.
11377 Obsoleted by @code{%printer}.
11378 @xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
11379 @end deffn
11380
11381 @deffn {Function} yypstate_delete
11382 The function to delete a parser instance, produced by Bison in push mode;
11383 call this function to delete the memory associated with a parser.
11384 @xref{Parser Delete Function, ,The Parser Delete Function
11385 @code{yypstate_delete}}.
11386 (The current push parsing interface is experimental and may evolve.
11387 More user feedback will help to stabilize it.)
11388 @end deffn
11389
11390 @deffn {Function} yypstate_new
11391 The function to create a parser instance, produced by Bison in push mode;
11392 call this function to create a new parser.
11393 @xref{Parser Create Function, ,The Parser Create Function
11394 @code{yypstate_new}}.
11395 (The current push parsing interface is experimental and may evolve.
11396 More user feedback will help to stabilize it.)
11397 @end deffn
11398
11399 @deffn {Function} yypull_parse
11400 The parser function produced by Bison in push mode; call this function to
11401 parse the rest of the input stream.
11402 @xref{Pull Parser Function, ,The Pull Parser Function
11403 @code{yypull_parse}}.
11404 (The current push parsing interface is experimental and may evolve.
11405 More user feedback will help to stabilize it.)
11406 @end deffn
11407
11408 @deffn {Function} yypush_parse
11409 The parser function produced by Bison in push mode; call this function to
11410 parse a single token. @xref{Push Parser Function, ,The Push Parser Function
11411 @code{yypush_parse}}.
11412 (The current push parsing interface is experimental and may evolve.
11413 More user feedback will help to stabilize it.)
11414 @end deffn
11415
11416 @deffn {Macro} YYPARSE_PARAM
11417 An obsolete macro for specifying the name of a parameter that
11418 @code{yyparse} should accept. The use of this macro is deprecated, and
11419 is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11420 Conventions for Pure Parsers}.
11421 @end deffn
11422
11423 @deffn {Macro} YYRECOVERING
11424 The expression @code{YYRECOVERING ()} yields 1 when the parser
11425 is recovering from a syntax error, and 0 otherwise.
11426 @xref{Action Features, ,Special Features for Use in Actions}.
11427 @end deffn
11428
11429 @deffn {Macro} YYSTACK_USE_ALLOCA
11430 Macro used to control the use of @code{alloca} when the
11431 deterministic parser in C needs to extend its stacks. If defined to 0,
11432 the parser will use @code{malloc} to extend its stacks. If defined to
11433 1, the parser will use @code{alloca}. Values other than 0 and 1 are
11434 reserved for future Bison extensions. If not defined,
11435 @code{YYSTACK_USE_ALLOCA} defaults to 0.
11436
11437 In the all-too-common case where your code may run on a host with a
11438 limited stack and with unreliable stack-overflow checking, you should
11439 set @code{YYMAXDEPTH} to a value that cannot possibly result in
11440 unchecked stack overflow on any of your target hosts when
11441 @code{alloca} is called. You can inspect the code that Bison
11442 generates in order to determine the proper numeric values. This will
11443 require some expertise in low-level implementation details.
11444 @end deffn
11445
11446 @deffn {Type} YYSTYPE
11447 Data type of semantic values; @code{int} by default.
11448 @xref{Value Type, ,Data Types of Semantic Values}.
11449 @end deffn
11450
11451 @node Glossary
11452 @appendix Glossary
11453 @cindex glossary
11454
11455 @table @asis
11456 @item Accepting state
11457 A state whose only action is the accept action.
11458 The accepting state is thus a consistent state.
11459 @xref{Understanding,,}.
11460
11461 @item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
11462 Formal method of specifying context-free grammars originally proposed
11463 by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11464 committee document contributing to what became the Algol 60 report.
11465 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11466
11467 @item Consistent state
11468 A state containing only one possible action. @xref{Default Reductions}.
11469
11470 @item Context-free grammars
11471 Grammars specified as rules that can be applied regardless of context.
11472 Thus, if there is a rule which says that an integer can be used as an
11473 expression, integers are allowed @emph{anywhere} an expression is
11474 permitted. @xref{Language and Grammar, ,Languages and Context-Free
11475 Grammars}.
11476
11477 @item Default reduction
11478 The reduction that a parser should perform if the current parser state
11479 contains no other action for the lookahead token. In permitted parser
11480 states, Bison declares the reduction with the largest lookahead set to be
11481 the default reduction and removes that lookahead set. @xref{Default
11482 Reductions}.
11483
11484 @item Defaulted state
11485 A consistent state with a default reduction. @xref{Default Reductions}.
11486
11487 @item Dynamic allocation
11488 Allocation of memory that occurs during execution, rather than at
11489 compile time or on entry to a function.
11490
11491 @item Empty string
11492 Analogous to the empty set in set theory, the empty string is a
11493 character string of length zero.
11494
11495 @item Finite-state stack machine
11496 A ``machine'' that has discrete states in which it is said to exist at
11497 each instant in time. As input to the machine is processed, the
11498 machine moves from state to state as specified by the logic of the
11499 machine. In the case of the parser, the input is the language being
11500 parsed, and the states correspond to various stages in the grammar
11501 rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
11502
11503 @item Generalized LR (GLR)
11504 A parsing algorithm that can handle all context-free grammars, including those
11505 that are not LR(1). It resolves situations that Bison's
11506 deterministic parsing
11507 algorithm cannot by effectively splitting off multiple parsers, trying all
11508 possible parsers, and discarding those that fail in the light of additional
11509 right context. @xref{Generalized LR Parsing, ,Generalized
11510 LR Parsing}.
11511
11512 @item Grouping
11513 A language construct that is (in general) grammatically divisible;
11514 for example, `expression' or `declaration' in C@.
11515 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11516
11517 @item IELR(1) (Inadequacy Elimination LR(1))
11518 A minimal LR(1) parser table construction algorithm. That is, given any
11519 context-free grammar, IELR(1) generates parser tables with the full
11520 language-recognition power of canonical LR(1) but with nearly the same
11521 number of parser states as LALR(1). This reduction in parser states is
11522 often an order of magnitude. More importantly, because canonical LR(1)'s
11523 extra parser states may contain duplicate conflicts in the case of non-LR(1)
11524 grammars, the number of conflicts for IELR(1) is often an order of magnitude
11525 less as well. This can significantly reduce the complexity of developing a
11526 grammar. @xref{LR Table Construction}.
11527
11528 @item Infix operator
11529 An arithmetic operator that is placed between the operands on which it
11530 performs some operation.
11531
11532 @item Input stream
11533 A continuous flow of data between devices or programs.
11534
11535 @item LAC (Lookahead Correction)
11536 A parsing mechanism that fixes the problem of delayed syntax error
11537 detection, which is caused by LR state merging, default reductions, and the
11538 use of @code{%nonassoc}. Delayed syntax error detection results in
11539 unexpected semantic actions, initiation of error recovery in the wrong
11540 syntactic context, and an incorrect list of expected tokens in a verbose
11541 syntax error message. @xref{LAC}.
11542
11543 @item Language construct
11544 One of the typical usage schemas of the language. For example, one of
11545 the constructs of the C language is the @code{if} statement.
11546 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11547
11548 @item Left associativity
11549 Operators having left associativity are analyzed from left to right:
11550 @samp{a+b+c} first computes @samp{a+b} and then combines with
11551 @samp{c}. @xref{Precedence, ,Operator Precedence}.
11552
11553 @item Left recursion
11554 A rule whose result symbol is also its first component symbol; for
11555 example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11556 Rules}.
11557
11558 @item Left-to-right parsing
11559 Parsing a sentence of a language by analyzing it token by token from
11560 left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
11561
11562 @item Lexical analyzer (scanner)
11563 A function that reads an input stream and returns tokens one by one.
11564 @xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11565
11566 @item Lexical tie-in
11567 A flag, set by actions in the grammar rules, which alters the way
11568 tokens are parsed. @xref{Lexical Tie-ins}.
11569
11570 @item Literal string token
11571 A token which consists of two or more fixed characters. @xref{Symbols}.
11572
11573 @item Lookahead token
11574 A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
11575 Tokens}.
11576
11577 @item LALR(1)
11578 The class of context-free grammars that Bison (like most other parser
11579 generators) can handle by default; a subset of LR(1).
11580 @xref{Mysterious Conflicts}.
11581
11582 @item LR(1)
11583 The class of context-free grammars in which at most one token of
11584 lookahead is needed to disambiguate the parsing of any piece of input.
11585
11586 @item Nonterminal symbol
11587 A grammar symbol standing for a grammatical construct that can
11588 be expressed through rules in terms of smaller constructs; in other
11589 words, a construct that is not a token. @xref{Symbols}.
11590
11591 @item Parser
11592 A function that recognizes valid sentences of a language by analyzing
11593 the syntax structure of a set of tokens passed to it from a lexical
11594 analyzer.
11595
11596 @item Postfix operator
11597 An arithmetic operator that is placed after the operands upon which it
11598 performs some operation.
11599
11600 @item Reduction
11601 Replacing a string of nonterminals and/or terminals with a single
11602 nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
11603 Parser Algorithm}.
11604
11605 @item Reentrant
11606 A reentrant subprogram is a subprogram which can be in invoked any
11607 number of times in parallel, without interference between the various
11608 invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11609
11610 @item Reverse polish notation
11611 A language in which all operators are postfix operators.
11612
11613 @item Right recursion
11614 A rule whose result symbol is also its last component symbol; for
11615 example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11616 Rules}.
11617
11618 @item Semantics
11619 In computer languages, the semantics are specified by the actions
11620 taken for each instance of the language, i.e., the meaning of
11621 each statement. @xref{Semantics, ,Defining Language Semantics}.
11622
11623 @item Shift
11624 A parser is said to shift when it makes the choice of analyzing
11625 further input from the stream rather than reducing immediately some
11626 already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
11627
11628 @item Single-character literal
11629 A single character that is recognized and interpreted as is.
11630 @xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11631
11632 @item Start symbol
11633 The nonterminal symbol that stands for a complete valid utterance in
11634 the language being parsed. The start symbol is usually listed as the
11635 first nonterminal symbol in a language specification.
11636 @xref{Start Decl, ,The Start-Symbol}.
11637
11638 @item Symbol table
11639 A data structure where symbol names and associated data are stored
11640 during parsing to allow for recognition and use of existing
11641 information in repeated uses of a symbol. @xref{Multi-function Calc}.
11642
11643 @item Syntax error
11644 An error encountered during parsing of an input stream due to invalid
11645 syntax. @xref{Error Recovery}.
11646
11647 @item Token
11648 A basic, grammatically indivisible unit of a language. The symbol
11649 that describes a token in the grammar is a terminal symbol.
11650 The input of the Bison parser is a stream of tokens which comes from
11651 the lexical analyzer. @xref{Symbols}.
11652
11653 @item Terminal symbol
11654 A grammar symbol that has no rules in the grammar and therefore is
11655 grammatically indivisible. The piece of text it represents is a token.
11656 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11657
11658 @item Unreachable state
11659 A parser state to which there does not exist a sequence of transitions from
11660 the parser's start state. A state can become unreachable during conflict
11661 resolution. @xref{Unreachable States}.
11662 @end table
11663
11664 @node Copying This Manual
11665 @appendix Copying This Manual
11666 @include fdl.texi
11667
11668 @node Bibliography
11669 @unnumbered Bibliography
11670
11671 @table @asis
11672 @item [Denny 2008]
11673 Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11674 for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
11675 2008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11676 pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11677
11678 @item [Denny 2010 May]
11679 Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11680 Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11681 University, Clemson, SC, USA (May 2010).
11682 @uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11683
11684 @item [Denny 2010 November]
11685 Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11686 Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11687 in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
11688 2010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11689
11690 @item [DeRemer 1982]
11691 Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11692 Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11693 Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11694 615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11695
11696 @item [Knuth 1965]
11697 Donald E. Knuth, On the Translation of Languages from Left to Right, in
11698 @cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11699 607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11700
11701 @item [Scott 2000]
11702 Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11703 @cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11704 London, Department of Computer Science, TR-00-12 (December 2000).
11705 @uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11706 @end table
11707
11708 @node Index of Terms
11709 @unnumbered Index of Terms
11710
11711 @printindex cp
11712
11713 @bye
11714
11715 @c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11716 @c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11717 @c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11718 @c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11719 @c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11720 @c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11721 @c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11722 @c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11723 @c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11724 @c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11725 @c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11726 @c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11727 @c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11728 @c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
11729 @c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11730 @c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11731 @c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11732 @c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11733 @c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11734 @c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11735 @c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11736 @c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11737 @c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11738 @c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
11739 @c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11740 @c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11741 @c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11742 @c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11743 @c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
11744 @c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
11745 @c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
11746 @c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
11747 @c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11748 @c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
11749 @c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11750 @c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11751 @c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11752 @c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
11753 @c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11754 @c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
11755 @c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11756 @c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11757 @c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11758 @c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11759 @c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
11760 @c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11761 @c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11762 @c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11763 @c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11764 @c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
11765 @c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
11766 @c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
11767 @c LocalWords: Scannerless ispell american
11768
11769 @c Local Variables:
11770 @c ispell-dictionary: "american"
11771 @c fill-column: 76
11772 @c End: