]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/warshall.h, src/warshall.c (bitmatrix_print): Move to...
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "bitset.h"
27 #include "symtab.h"
28 #include "getargs.h"
29 #include "reader.h"
30 #include "gram.h"
31 #include "state.h"
32 #include "complain.h"
33 #include "closure.h"
34 #include "LR0.h"
35 #include "lalr.h"
36 #include "reduce.h"
37
38 unsigned int nstates;
39 /* Initialize the final state to -1, otherwise, it might be set to 0
40 by default, and since we don't compute the reductions of the final
41 state, we end up not computing the reductions of the initial state,
42 which is of course needed.
43
44 FINAL_STATE is properly set by new_state when it recognizes the
45 accessing symbol: EOF. */
46 int final_state = -1;
47 static state_t *first_state = NULL;
48
49 static state_t *this_state = NULL;
50 static state_t *last_state = NULL;
51
52 static int nshifts;
53 static short *shift_symbol = NULL;
54
55 static short *redset = NULL;
56 static short *shiftset = NULL;
57
58 static short **kernel_base = NULL;
59 static int *kernel_size = NULL;
60 static short *kernel_items = NULL;
61
62 /* hash table for states, to recognize equivalent ones. */
63
64 #define STATE_HASH_SIZE 1009
65 static state_t **state_hash = NULL;
66
67 \f
68 static void
69 allocate_itemsets (void)
70 {
71 int i;
72
73 /* Count the number of occurrences of all the symbols in RITEMS.
74 Note that useless productions (hence useless nonterminals) are
75 browsed too, hence we need to allocate room for _all_ the
76 symbols. */
77 int count = 0;
78 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
79
80 for (i = 0; i < nritems; ++i)
81 if (ritem[i] >= 0)
82 {
83 count++;
84 symbol_count[ritem[i]]++;
85 }
86
87 /* See comments before new_itemsets. All the vectors of items
88 live inside KERNEL_ITEMS. The number of active items after
89 some symbol cannot be more than the number of times that symbol
90 appears as an item, which is symbol_count[symbol].
91 We allocate that much space for each symbol. */
92
93 kernel_base = XCALLOC (short *, nsyms);
94 if (count)
95 kernel_items = XCALLOC (short, count);
96
97 count = 0;
98 for (i = 0; i < nsyms; i++)
99 {
100 kernel_base[i] = kernel_items + count;
101 count += symbol_count[i];
102 }
103
104 free (symbol_count);
105 kernel_size = XCALLOC (int, nsyms);
106 }
107
108
109 static void
110 allocate_storage (void)
111 {
112 allocate_itemsets ();
113
114 shiftset = XCALLOC (short, nsyms);
115 redset = XCALLOC (short, nrules + 1);
116 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
117 shift_symbol = XCALLOC (short, nsyms);
118 }
119
120
121 static void
122 free_storage (void)
123 {
124 free (shift_symbol);
125 free (redset);
126 free (shiftset);
127 free (kernel_base);
128 free (kernel_size);
129 XFREE (kernel_items);
130 free (state_hash);
131 }
132
133
134
135
136 /*----------------------------------------------------------------.
137 | Find which symbols can be shifted in the current state, and for |
138 | each one record which items would be active after that shift. |
139 | Uses the contents of itemset. |
140 | |
141 | shift_symbol is set to a vector of the symbols that can be |
142 | shifted. For each symbol in the grammar, kernel_base[symbol] |
143 | points to a vector of item numbers activated if that symbol is |
144 | shifted, and kernel_size[symbol] is their numbers. |
145 `----------------------------------------------------------------*/
146
147 static void
148 new_itemsets (void)
149 {
150 int i;
151
152 if (trace_flag)
153 fprintf (stderr, "Entering new_itemsets, state = %d\n",
154 this_state->number);
155
156 for (i = 0; i < nsyms; i++)
157 kernel_size[i] = 0;
158
159 nshifts = 0;
160
161 for (i = 0; i < nitemset; ++i)
162 {
163 int symbol = ritem[itemset[i]];
164 if (symbol >= 0)
165 {
166 if (!kernel_size[symbol])
167 {
168 shift_symbol[nshifts] = symbol;
169 nshifts++;
170 }
171
172 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
173 kernel_size[symbol]++;
174 }
175 }
176 }
177
178
179
180 /*-----------------------------------------------------------------.
181 | Subroutine of get_state. Create a new state for those items, if |
182 | necessary. |
183 `-----------------------------------------------------------------*/
184
185 static state_t *
186 new_state (int symbol)
187 {
188 state_t *p;
189
190 if (trace_flag)
191 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
192 this_state->number, symbol, symbols[symbol]->tag);
193
194 if (nstates >= MAXSHORT)
195 fatal (_("too many states (max %d)"), MAXSHORT);
196
197 p = STATE_ALLOC (kernel_size[symbol]);
198 p->accessing_symbol = symbol;
199 p->number = nstates;
200 p->nitems = kernel_size[symbol];
201
202 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
203
204 last_state->next = p;
205 last_state = p;
206 nstates++;
207
208 /* If this is the eoftoken, then this is the final state. */
209 if (symbol == 0)
210 final_state = p->number;
211
212 return p;
213 }
214
215
216 /*--------------------------------------------------------------.
217 | Find the state number for the state we would get to (from the |
218 | current state) by shifting symbol. Create a new state if no |
219 | equivalent one exists already. Used by append_states. |
220 `--------------------------------------------------------------*/
221
222 static int
223 get_state (int symbol)
224 {
225 int key;
226 int i;
227 state_t *sp;
228
229 if (trace_flag)
230 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
231 this_state->number, symbol, symbols[symbol]->tag);
232
233 /* Add up the target state's active item numbers to get a hash key.
234 */
235 key = 0;
236 for (i = 0; i < kernel_size[symbol]; ++i)
237 key += kernel_base[symbol][i];
238 key = key % STATE_HASH_SIZE;
239 sp = state_hash[key];
240
241 if (sp)
242 {
243 int found = 0;
244 while (!found)
245 {
246 if (sp->nitems == kernel_size[symbol])
247 {
248 found = 1;
249 for (i = 0; i < kernel_size[symbol]; ++i)
250 if (kernel_base[symbol][i] != sp->items[i])
251 found = 0;
252 }
253
254 if (!found)
255 {
256 if (sp->link)
257 {
258 sp = sp->link;
259 }
260 else /* bucket exhausted and no match */
261 {
262 sp = sp->link = new_state (symbol);
263 found = 1;
264 }
265 }
266 }
267 }
268 else /* bucket is empty */
269 {
270 state_hash[key] = sp = new_state (symbol);
271 }
272
273 if (trace_flag)
274 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
275
276 return sp->number;
277 }
278
279 /*------------------------------------------------------------------.
280 | Use the information computed by new_itemsets to find the state |
281 | numbers reached by each shift transition from the current state. |
282 | |
283 | shiftset is set up as a vector of state numbers of those states. |
284 `------------------------------------------------------------------*/
285
286 static void
287 append_states (void)
288 {
289 int i;
290 int j;
291 int symbol;
292
293 if (trace_flag)
294 fprintf (stderr, "Entering append_states, state = %d\n",
295 this_state->number);
296
297 /* first sort shift_symbol into increasing order */
298
299 for (i = 1; i < nshifts; i++)
300 {
301 symbol = shift_symbol[i];
302 j = i;
303 while (j > 0 && shift_symbol[j - 1] > symbol)
304 {
305 shift_symbol[j] = shift_symbol[j - 1];
306 j--;
307 }
308 shift_symbol[j] = symbol;
309 }
310
311 for (i = 0; i < nshifts; i++)
312 shiftset[i] = get_state (shift_symbol[i]);
313 }
314
315
316 static void
317 new_states (void)
318 {
319 first_state = last_state = this_state = STATE_ALLOC (0);
320 nstates = 1;
321 }
322
323
324 /*------------------------------------------------------------.
325 | Save the NSHIFTS of SHIFTSET into the current linked list. |
326 `------------------------------------------------------------*/
327
328 static void
329 save_shifts (void)
330 {
331 shifts *p = shifts_new (nshifts);
332 shortcpy (p->shifts, shiftset, nshifts);
333 this_state->shifts = p;
334 }
335
336
337 /*----------------------------------------------------------------.
338 | Find which rules can be used for reduction transitions from the |
339 | current state and make a reductions structure for the state to |
340 | record their rule numbers. |
341 `----------------------------------------------------------------*/
342
343 static void
344 save_reductions (void)
345 {
346 int count = 0;
347 int i;
348
349 /* If this is the final state, we want it to have no reductions at
350 all, although it has one for `START_SYMBOL EOF .'. */
351 if (this_state->number == final_state)
352 return;
353
354 /* Find and count the active items that represent ends of rules. */
355 for (i = 0; i < nitemset; ++i)
356 {
357 int item = ritem[itemset[i]];
358 if (item < 0)
359 redset[count++] = -item;
360 }
361
362 /* Make a reductions structure and copy the data into it. */
363 this_state->reductions = reductions_new (count);
364 shortcpy (this_state->reductions->rules, redset, count);
365 }
366
367 \f
368 /*---------------.
369 | Build STATES. |
370 `---------------*/
371
372 static void
373 set_states (void)
374 {
375 state_t *sp;
376 states = XCALLOC (state_t *, nstates);
377
378 for (sp = first_state; sp; sp = sp->next)
379 {
380 /* Pessimization, but simplification of the code: make sure all
381 the states have a shifts, errs, and reductions, even if
382 reduced to 0. */
383 if (!sp->shifts)
384 sp->shifts = shifts_new (0);
385 if (!sp->errs)
386 sp->errs = errs_new (0);
387 if (!sp->reductions)
388 sp->reductions = reductions_new (0);
389
390 states[sp->number] = sp;
391 }
392 }
393
394 /*-------------------------------------------------------------------.
395 | Compute the nondeterministic finite state machine (see state.h for |
396 | details) from the grammar. |
397 `-------------------------------------------------------------------*/
398
399 void
400 generate_states (void)
401 {
402 allocate_storage ();
403 new_closure (nritems);
404 new_states ();
405
406 while (this_state)
407 {
408 if (trace_flag)
409 fprintf (stderr, "Processing state %d (reached by %s)\n",
410 this_state->number,
411 symbols[this_state->accessing_symbol]->tag);
412 /* Set up ruleset and itemset for the transitions out of this
413 state. ruleset gets a 1 bit for each rule that could reduce
414 now. itemset gets a vector of all the items that could be
415 accepted next. */
416 closure (this_state->items, this_state->nitems);
417 /* record the reductions allowed out of this state */
418 save_reductions ();
419 /* find the itemsets of the states that shifts can reach */
420 new_itemsets ();
421 /* find or create the core structures for those states */
422 append_states ();
423
424 /* create the shifts structures for the shifts to those states,
425 now that the state numbers transitioning to are known */
426 save_shifts ();
427
428 /* states are queued when they are created; process them all */
429 this_state = this_state->next;
430 }
431
432 /* discard various storage */
433 free_closure ();
434 free_storage ();
435
436 /* Set up STATES. */
437 set_states ();
438 }