]>
Commit | Line | Data |
---|---|---|
1 | /* Timing variables for measuring compiler performance. | |
2 | Copyright (C) 2000, 2002, 2004-2006, 2009-2010 Free Software | |
3 | Foundation, Inc. | |
4 | Contributed by Alex Samuel <samuel@codesourcery.com> | |
5 | ||
6 | This program is free software: you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation, either version 3 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
18 | ||
19 | #include <config.h> | |
20 | ||
21 | #if IN_GCC | |
22 | ||
23 | #include "system.h" | |
24 | #include "intl.h" | |
25 | #include "rtl.h" | |
26 | ||
27 | #else | |
28 | ||
29 | /* This source file is taken from the GCC source code, with slight | |
30 | modifications that are under control of the IN_GCC preprocessor | |
31 | variable. The !IN_GCC part of this file is specific to Bison. */ | |
32 | ||
33 | # include "../src/system.h" | |
34 | # if HAVE_SYS_TIME_H | |
35 | # include <sys/time.h> | |
36 | # endif | |
37 | int timevar_report = 0; | |
38 | ||
39 | #endif | |
40 | ||
41 | ||
42 | #ifdef HAVE_SYS_TIMES_H | |
43 | # include <sys/times.h> | |
44 | #endif | |
45 | #ifdef HAVE_SYS_RESOURCE_H | |
46 | #include <sys/resource.h> | |
47 | #endif | |
48 | ||
49 | #ifndef HAVE_CLOCK_T | |
50 | typedef int clock_t; | |
51 | #endif | |
52 | ||
53 | #ifndef HAVE_STRUCT_TMS | |
54 | struct tms | |
55 | { | |
56 | clock_t tms_utime; | |
57 | clock_t tms_stime; | |
58 | clock_t tms_cutime; | |
59 | clock_t tms_cstime; | |
60 | }; | |
61 | #endif | |
62 | ||
63 | #if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE | |
64 | extern int getrusage (int, struct rusage *); | |
65 | #endif | |
66 | #if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES | |
67 | extern clock_t times (struct tms *); | |
68 | #endif | |
69 | #if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK | |
70 | extern clock_t clock (void); | |
71 | #endif | |
72 | ||
73 | #ifndef RUSAGE_SELF | |
74 | # define RUSAGE_SELF 0 | |
75 | #endif | |
76 | ||
77 | /* Calculation of scale factor to convert ticks to microseconds. | |
78 | We mustn't use CLOCKS_PER_SEC except with clock(). */ | |
79 | #if HAVE_SYSCONF && defined _SC_CLK_TCK | |
80 | # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */ | |
81 | #else | |
82 | # ifdef CLK_TCK | |
83 | # define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */ | |
84 | # else | |
85 | # ifdef HZ | |
86 | # define TICKS_PER_SECOND HZ /* traditional UNIX */ | |
87 | # else | |
88 | # define TICKS_PER_SECOND 100 /* often the correct value */ | |
89 | # endif | |
90 | # endif | |
91 | #endif | |
92 | ||
93 | /* Prefer times to getrusage to clock (each gives successively less | |
94 | information). */ | |
95 | #ifdef HAVE_TIMES | |
96 | # define USE_TIMES | |
97 | # define HAVE_USER_TIME | |
98 | # define HAVE_SYS_TIME | |
99 | # define HAVE_WALL_TIME | |
100 | #else | |
101 | #ifdef HAVE_GETRUSAGE | |
102 | # define USE_GETRUSAGE | |
103 | # define HAVE_USER_TIME | |
104 | # define HAVE_SYS_TIME | |
105 | #else | |
106 | #ifdef HAVE_CLOCK | |
107 | # define USE_CLOCK | |
108 | # define HAVE_USER_TIME | |
109 | #endif | |
110 | #endif | |
111 | #endif | |
112 | ||
113 | /* libc is very likely to have snuck a call to sysconf() into one of | |
114 | the underlying constants, and that can be very slow, so we have to | |
115 | precompute them. Whose wonderful idea was it to make all those | |
116 | _constants_ variable at run time, anyway? */ | |
117 | #ifdef USE_TIMES | |
118 | static float ticks_to_msec; | |
119 | #define TICKS_TO_MSEC (1.0 / TICKS_PER_SECOND) | |
120 | #endif | |
121 | ||
122 | #ifdef USE_CLOCK | |
123 | static float clocks_to_msec; | |
124 | #define CLOCKS_TO_MSEC (1.0 / CLOCKS_PER_SEC) | |
125 | #endif | |
126 | ||
127 | #if IN_GCC | |
128 | #include "flags.h" | |
129 | #endif | |
130 | #include "timevar.h" | |
131 | ||
132 | /* See timevar.h for an explanation of timing variables. */ | |
133 | ||
134 | /* This macro evaluates to nonzero if timing variables are enabled. */ | |
135 | #define TIMEVAR_ENABLE (timevar_report) | |
136 | ||
137 | /* A timing variable. */ | |
138 | ||
139 | struct timevar_def | |
140 | { | |
141 | /* Elapsed time for this variable. */ | |
142 | struct timevar_time_def elapsed; | |
143 | ||
144 | /* If this variable is timed independently of the timing stack, | |
145 | using timevar_start, this contains the start time. */ | |
146 | struct timevar_time_def start_time; | |
147 | ||
148 | /* The name of this timing variable. */ | |
149 | const char *name; | |
150 | ||
151 | /* Non-zero if this timing variable is running as a standalone | |
152 | timer. */ | |
153 | unsigned standalone : 1; | |
154 | ||
155 | /* Non-zero if this timing variable was ever started or pushed onto | |
156 | the timing stack. */ | |
157 | unsigned used : 1; | |
158 | }; | |
159 | ||
160 | /* An element on the timing stack. Elapsed time is attributed to the | |
161 | topmost timing variable on the stack. */ | |
162 | ||
163 | struct timevar_stack_def | |
164 | { | |
165 | /* The timing variable at this stack level. */ | |
166 | struct timevar_def *timevar; | |
167 | ||
168 | /* The next lower timing variable context in the stack. */ | |
169 | struct timevar_stack_def *next; | |
170 | }; | |
171 | ||
172 | /* Declared timing variables. Constructed from the contents of | |
173 | timevar.def. */ | |
174 | static struct timevar_def timevars[TIMEVAR_LAST]; | |
175 | ||
176 | /* The top of the timing stack. */ | |
177 | static struct timevar_stack_def *stack; | |
178 | ||
179 | /* A list of unused (i.e. allocated and subsequently popped) | |
180 | timevar_stack_def instances. */ | |
181 | static struct timevar_stack_def *unused_stack_instances; | |
182 | ||
183 | /* The time at which the topmost element on the timing stack was | |
184 | pushed. Time elapsed since then is attributed to the topmost | |
185 | element. */ | |
186 | static struct timevar_time_def start_time; | |
187 | ||
188 | static void get_time (struct timevar_time_def *); | |
189 | static void timevar_accumulate (struct timevar_time_def *, | |
190 | struct timevar_time_def *, | |
191 | struct timevar_time_def *); | |
192 | ||
193 | /* Fill the current times into TIME. The definition of this function | |
194 | also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and | |
195 | HAVE_WALL_TIME macros. */ | |
196 | ||
197 | static void | |
198 | get_time (now) | |
199 | struct timevar_time_def *now; | |
200 | { | |
201 | now->user = 0; | |
202 | now->sys = 0; | |
203 | now->wall = 0; | |
204 | ||
205 | if (!TIMEVAR_ENABLE) | |
206 | return; | |
207 | ||
208 | { | |
209 | #ifdef USE_TIMES | |
210 | struct tms tms; | |
211 | now->wall = times (&tms) * ticks_to_msec; | |
212 | #if IN_GCC | |
213 | now->user = tms.tms_utime * ticks_to_msec; | |
214 | now->sys = tms.tms_stime * ticks_to_msec; | |
215 | #else | |
216 | now->user = (tms.tms_utime + tms.tms_cutime) * ticks_to_msec; | |
217 | now->sys = (tms.tms_stime + tms.tms_cstime) * ticks_to_msec; | |
218 | #endif | |
219 | #endif | |
220 | #ifdef USE_GETRUSAGE | |
221 | struct rusage rusage; | |
222 | #if IN_GCC | |
223 | getrusage (RUSAGE_SELF, &rusage); | |
224 | #else | |
225 | getrusage (RUSAGE_CHILDREN, &rusage); | |
226 | #endif | |
227 | now->user = rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec * 1e-6; | |
228 | now->sys = rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec * 1e-6; | |
229 | #endif | |
230 | #ifdef USE_CLOCK | |
231 | now->user = clock () * clocks_to_msec; | |
232 | #endif | |
233 | } | |
234 | } | |
235 | ||
236 | /* Add the difference between STOP and START to TIMER. */ | |
237 | ||
238 | static void | |
239 | timevar_accumulate (timer, start, stop) | |
240 | struct timevar_time_def *timer; | |
241 | struct timevar_time_def *start; | |
242 | struct timevar_time_def *stop; | |
243 | { | |
244 | timer->user += stop->user - start->user; | |
245 | timer->sys += stop->sys - start->sys; | |
246 | timer->wall += stop->wall - start->wall; | |
247 | } | |
248 | ||
249 | /* Initialize timing variables. */ | |
250 | ||
251 | void | |
252 | init_timevar () | |
253 | { | |
254 | if (!TIMEVAR_ENABLE) | |
255 | return; | |
256 | ||
257 | /* Zero all elapsed times. */ | |
258 | memset ((void *) timevars, 0, sizeof (timevars)); | |
259 | ||
260 | /* Initialize the names of timing variables. */ | |
261 | #define DEFTIMEVAR(identifier__, name__) \ | |
262 | timevars[identifier__].name = name__; | |
263 | #include "timevar.def" | |
264 | #undef DEFTIMEVAR | |
265 | ||
266 | #ifdef USE_TIMES | |
267 | ticks_to_msec = TICKS_TO_MSEC; | |
268 | #endif | |
269 | #ifdef USE_CLOCK | |
270 | clocks_to_msec = CLOCKS_TO_MSEC; | |
271 | #endif | |
272 | } | |
273 | ||
274 | /* Push TIMEVAR onto the timing stack. No further elapsed time is | |
275 | attributed to the previous topmost timing variable on the stack; | |
276 | subsequent elapsed time is attributed to TIMEVAR, until it is | |
277 | popped or another element is pushed on top. | |
278 | ||
279 | TIMEVAR cannot be running as a standalone timer. */ | |
280 | ||
281 | void | |
282 | timevar_push (timevar) | |
283 | timevar_id_t timevar; | |
284 | { | |
285 | struct timevar_def *tv = &timevars[timevar]; | |
286 | struct timevar_stack_def *context; | |
287 | struct timevar_time_def now; | |
288 | ||
289 | if (!TIMEVAR_ENABLE) | |
290 | return; | |
291 | ||
292 | /* Mark this timing variable as used. */ | |
293 | tv->used = 1; | |
294 | ||
295 | /* Can't push a standalone timer. */ | |
296 | if (tv->standalone) | |
297 | abort (); | |
298 | ||
299 | /* What time is it? */ | |
300 | get_time (&now); | |
301 | ||
302 | /* If the stack isn't empty, attribute the current elapsed time to | |
303 | the old topmost element. */ | |
304 | if (stack) | |
305 | timevar_accumulate (&stack->timevar->elapsed, &start_time, &now); | |
306 | ||
307 | /* Reset the start time; from now on, time is attributed to | |
308 | TIMEVAR. */ | |
309 | start_time = now; | |
310 | ||
311 | /* See if we have a previously-allocated stack instance. If so, | |
312 | take it off the list. If not, malloc a new one. */ | |
313 | if (unused_stack_instances != NULL) | |
314 | { | |
315 | context = unused_stack_instances; | |
316 | unused_stack_instances = unused_stack_instances->next; | |
317 | } | |
318 | else | |
319 | context = (struct timevar_stack_def *) | |
320 | xmalloc (sizeof (struct timevar_stack_def)); | |
321 | ||
322 | /* Fill it in and put it on the stack. */ | |
323 | context->timevar = tv; | |
324 | context->next = stack; | |
325 | stack = context; | |
326 | } | |
327 | ||
328 | /* Pop the topmost timing variable element off the timing stack. The | |
329 | popped variable must be TIMEVAR. Elapsed time since the that | |
330 | element was pushed on, or since it was last exposed on top of the | |
331 | stack when the element above it was popped off, is credited to that | |
332 | timing variable. */ | |
333 | ||
334 | void | |
335 | timevar_pop (timevar) | |
336 | timevar_id_t timevar; | |
337 | { | |
338 | struct timevar_time_def now; | |
339 | struct timevar_stack_def *popped = stack; | |
340 | ||
341 | if (!TIMEVAR_ENABLE) | |
342 | return; | |
343 | ||
344 | if (&timevars[timevar] != stack->timevar) | |
345 | abort (); | |
346 | ||
347 | /* What time is it? */ | |
348 | get_time (&now); | |
349 | ||
350 | /* Attribute the elapsed time to the element we're popping. */ | |
351 | timevar_accumulate (&popped->timevar->elapsed, &start_time, &now); | |
352 | ||
353 | /* Reset the start time; from now on, time is attributed to the | |
354 | element just exposed on the stack. */ | |
355 | start_time = now; | |
356 | ||
357 | /* Take the item off the stack. */ | |
358 | stack = stack->next; | |
359 | ||
360 | /* Don't delete the stack element; instead, add it to the list of | |
361 | unused elements for later use. */ | |
362 | popped->next = unused_stack_instances; | |
363 | unused_stack_instances = popped; | |
364 | } | |
365 | ||
366 | /* Start timing TIMEVAR independently of the timing stack. Elapsed | |
367 | time until timevar_stop is called for the same timing variable is | |
368 | attributed to TIMEVAR. */ | |
369 | ||
370 | void | |
371 | timevar_start (timevar) | |
372 | timevar_id_t timevar; | |
373 | { | |
374 | struct timevar_def *tv = &timevars[timevar]; | |
375 | ||
376 | if (!TIMEVAR_ENABLE) | |
377 | return; | |
378 | ||
379 | /* Mark this timing variable as used. */ | |
380 | tv->used = 1; | |
381 | ||
382 | /* Don't allow the same timing variable to be started more than | |
383 | once. */ | |
384 | if (tv->standalone) | |
385 | abort (); | |
386 | tv->standalone = 1; | |
387 | ||
388 | get_time (&tv->start_time); | |
389 | } | |
390 | ||
391 | /* Stop timing TIMEVAR. Time elapsed since timevar_start was called | |
392 | is attributed to it. */ | |
393 | ||
394 | void | |
395 | timevar_stop (timevar) | |
396 | timevar_id_t timevar; | |
397 | { | |
398 | struct timevar_def *tv = &timevars[timevar]; | |
399 | struct timevar_time_def now; | |
400 | ||
401 | if (!TIMEVAR_ENABLE) | |
402 | return; | |
403 | ||
404 | /* TIMEVAR must have been started via timevar_start. */ | |
405 | if (!tv->standalone) | |
406 | abort (); | |
407 | ||
408 | get_time (&now); | |
409 | timevar_accumulate (&tv->elapsed, &tv->start_time, &now); | |
410 | } | |
411 | ||
412 | /* Fill the elapsed time for TIMEVAR into ELAPSED. Returns | |
413 | update-to-date information even if TIMEVAR is currently running. */ | |
414 | ||
415 | void | |
416 | timevar_get (timevar, elapsed) | |
417 | timevar_id_t timevar; | |
418 | struct timevar_time_def *elapsed; | |
419 | { | |
420 | struct timevar_def *tv = &timevars[timevar]; | |
421 | struct timevar_time_def now; | |
422 | ||
423 | *elapsed = tv->elapsed; | |
424 | ||
425 | /* Is TIMEVAR currently running as a standalone timer? */ | |
426 | if (tv->standalone) | |
427 | { | |
428 | get_time (&now); | |
429 | timevar_accumulate (elapsed, &tv->start_time, &now); | |
430 | } | |
431 | /* Or is TIMEVAR at the top of the timer stack? */ | |
432 | else if (stack->timevar == tv) | |
433 | { | |
434 | get_time (&now); | |
435 | timevar_accumulate (elapsed, &start_time, &now); | |
436 | } | |
437 | } | |
438 | ||
439 | /* Summarize timing variables to FP. The timing variable TV_TOTAL has | |
440 | a special meaning -- it's considered to be the total elapsed time, | |
441 | for normalizing the others, and is displayed last. */ | |
442 | ||
443 | void | |
444 | timevar_print (fp) | |
445 | FILE *fp; | |
446 | { | |
447 | /* Only print stuff if we have some sort of time information. */ | |
448 | #if defined HAVE_USER_TIME || defined HAVE_SYS_TIME || defined HAVE_WALL_TIME | |
449 | unsigned int /* timevar_id_t */ id; | |
450 | struct timevar_time_def *total = &timevars[TV_TOTAL].elapsed; | |
451 | struct timevar_time_def now; | |
452 | ||
453 | if (!TIMEVAR_ENABLE) | |
454 | return; | |
455 | ||
456 | /* Update timing information in case we're calling this from GDB. */ | |
457 | ||
458 | if (fp == 0) | |
459 | fp = stderr; | |
460 | ||
461 | /* What time is it? */ | |
462 | get_time (&now); | |
463 | ||
464 | /* If the stack isn't empty, attribute the current elapsed time to | |
465 | the old topmost element. */ | |
466 | if (stack) | |
467 | timevar_accumulate (&stack->timevar->elapsed, &start_time, &now); | |
468 | ||
469 | /* Reset the start time; from now on, time is attributed to | |
470 | TIMEVAR. */ | |
471 | start_time = now; | |
472 | ||
473 | fputs (_("\nExecution times (seconds)\n"), fp); | |
474 | for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id) | |
475 | { | |
476 | struct timevar_def *tv = &timevars[(timevar_id_t) id]; | |
477 | const float tiny = 5e-3; | |
478 | ||
479 | /* Don't print the total execution time here; that goes at the | |
480 | end. */ | |
481 | if ((timevar_id_t) id == TV_TOTAL) | |
482 | continue; | |
483 | ||
484 | /* Don't print timing variables that were never used. */ | |
485 | if (!tv->used) | |
486 | continue; | |
487 | ||
488 | /* Don't print timing variables if we're going to get a row of | |
489 | zeroes. */ | |
490 | if (tv->elapsed.user < tiny | |
491 | && tv->elapsed.sys < tiny | |
492 | && tv->elapsed.wall < tiny) | |
493 | continue; | |
494 | ||
495 | /* The timing variable name. */ | |
496 | fprintf (fp, " %-22s:", tv->name); | |
497 | ||
498 | #ifdef HAVE_USER_TIME | |
499 | /* Print user-mode time for this process. */ | |
500 | fprintf (fp, "%7.2f (%2.0f%%) usr", | |
501 | tv->elapsed.user, | |
502 | (total->user == 0 ? 0 : tv->elapsed.user / total->user) * 100); | |
503 | #endif /* HAVE_USER_TIME */ | |
504 | ||
505 | #ifdef HAVE_SYS_TIME | |
506 | /* Print system-mode time for this process. */ | |
507 | fprintf (fp, "%7.2f (%2.0f%%) sys", | |
508 | tv->elapsed.sys, | |
509 | (total->sys == 0 ? 0 : tv->elapsed.sys / total->sys) * 100); | |
510 | #endif /* HAVE_SYS_TIME */ | |
511 | ||
512 | #ifdef HAVE_WALL_TIME | |
513 | /* Print wall clock time elapsed. */ | |
514 | fprintf (fp, "%7.2f (%2.0f%%) wall", | |
515 | tv->elapsed.wall, | |
516 | (total->wall == 0 ? 0 : tv->elapsed.wall / total->wall) * 100); | |
517 | #endif /* HAVE_WALL_TIME */ | |
518 | ||
519 | putc ('\n', fp); | |
520 | } | |
521 | ||
522 | /* Print total time. */ | |
523 | fputs (_(" TOTAL :"), fp); | |
524 | #ifdef HAVE_USER_TIME | |
525 | fprintf (fp, "%7.2f ", total->user); | |
526 | #endif | |
527 | #ifdef HAVE_SYS_TIME | |
528 | fprintf (fp, "%7.2f ", total->sys); | |
529 | #endif | |
530 | #ifdef HAVE_WALL_TIME | |
531 | fprintf (fp, "%7.2f\n", total->wall); | |
532 | #endif | |
533 | ||
534 | #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) | |
535 | || defined (HAVE_WALL_TIME) */ | |
536 | } | |
537 | ||
538 | /* Returns time (user + system) used so far by the compiler process, | |
539 | in microseconds. */ | |
540 | ||
541 | long | |
542 | get_run_time () | |
543 | { | |
544 | struct timevar_time_def total_elapsed; | |
545 | timevar_get (TV_TOTAL, &total_elapsed); | |
546 | return total_elapsed.user + total_elapsed.sys; | |
547 | } | |
548 | ||
549 | /* Prints a message to stderr stating that time elapsed in STR is | |
550 | TOTAL (given in microseconds). */ | |
551 | ||
552 | void | |
553 | print_time (str, total) | |
554 | const char *str; | |
555 | long total; | |
556 | { | |
557 | long all_time = get_run_time (); | |
558 | fprintf (stderr, | |
559 | _("time in %s: %ld.%06ld (%ld%%)\n"), | |
560 | str, total / 1000000, total % 1000000, | |
561 | all_time == 0 ? 0 | |
562 | : (long) (((100.0 * (double) total) / (double) all_time) + .5)); | |
563 | } |