]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Reorganize GLR section a bit.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1452af69 471999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760
PE
51under the terms of the @acronym{GNU} Free Documentation License,
52Version 1.1 or any later version published by the Free Software
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
65@dircategory GNU programming tools
66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
931c7513
RS
8559 Temple Place, Suite 330 @*
86Boston, MA 02111-1307 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976
RS
119* Invocation:: How to run Bison (to produce the parser source file).
120* Table of Symbols:: All the keywords of the Bison language are explained.
121* Glossary:: Basic concepts are explained.
d1a1114f 122* FAQ:: Frequently Asked Questions
f2b5126e 123* Copying This Manual:: License for copying this manual.
bfa74976
RS
124* Index:: Cross-references to the text.
125
93dd49ab
PE
126@detailmenu
127 --- The Detailed Node Listing ---
bfa74976
RS
128
129The Concepts of Bison
130
131* Language and Grammar:: Languages and context-free grammars,
132 as mathematical ideas.
133* Grammar in Bison:: How we represent grammars for Bison's sake.
134* Semantic Values:: Each token or syntactic grouping can have
135 a semantic value (the value of an integer,
136 the name of an identifier, etc.).
137* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 138* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 139* Locations Overview:: Tracking Locations.
bfa74976
RS
140* Bison Parser:: What are Bison's input and output,
141 how is the output used?
142* Stages:: Stages in writing and running Bison grammars.
143* Grammar Layout:: Overall structure of a Bison grammar file.
144
fa7e68c3
PE
145Writing @acronym{GLR} Parsers
146
147* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
148* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
149* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
150
bfa74976
RS
151Examples
152
153* RPN Calc:: Reverse polish notation calculator;
154 a first example with no operator precedence.
155* Infix Calc:: Infix (algebraic) notation calculator.
156 Operator precedence is introduced.
157* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 158* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
159* Multi-function Calc:: Calculator with memory and trig functions.
160 It uses multiple data-types for semantic values.
bfa74976
RS
161* Exercises:: Ideas for improving the multi-function calculator.
162
163Reverse Polish Notation Calculator
164
75f5aaea 165* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
166* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
167* Lexer: Rpcalc Lexer. The lexical analyzer.
168* Main: Rpcalc Main. The controlling function.
169* Error: Rpcalc Error. The error reporting function.
170* Gen: Rpcalc Gen. Running Bison on the grammar file.
171* Comp: Rpcalc Compile. Run the C compiler on the output code.
172
173Grammar Rules for @code{rpcalc}
174
13863333
AD
175* Rpcalc Input::
176* Rpcalc Line::
177* Rpcalc Expr::
bfa74976 178
342b8b6e
AD
179Location Tracking Calculator: @code{ltcalc}
180
181* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
182* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
183* Lexer: Ltcalc Lexer. The lexical analyzer.
184
bfa74976
RS
185Multi-Function Calculator: @code{mfcalc}
186
187* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
188* Rules: Mfcalc Rules. Grammar rules for the calculator.
189* Symtab: Mfcalc Symtab. Symbol table management subroutines.
190
191Bison Grammar Files
192
193* Grammar Outline:: Overall layout of the grammar file.
194* Symbols:: Terminal and nonterminal symbols.
195* Rules:: How to write grammar rules.
196* Recursion:: Writing recursive rules.
197* Semantics:: Semantic values and actions.
93dd49ab 198* Locations:: Locations and actions.
bfa74976
RS
199* Declarations:: All kinds of Bison declarations are described here.
200* Multiple Parsers:: Putting more than one Bison parser in one program.
201
202Outline of a Bison Grammar
203
93dd49ab 204* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
205* Bison Declarations:: Syntax and usage of the Bison declarations section.
206* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 207* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
208
209Defining Language Semantics
210
211* Value Type:: Specifying one data type for all semantic values.
212* Multiple Types:: Specifying several alternative data types.
213* Actions:: An action is the semantic definition of a grammar rule.
214* Action Types:: Specifying data types for actions to operate on.
215* Mid-Rule Actions:: Most actions go at the end of a rule.
216 This says when, why and how to use the exceptional
217 action in the middle of a rule.
218
93dd49ab
PE
219Tracking Locations
220
221* Location Type:: Specifying a data type for locations.
222* Actions and Locations:: Using locations in actions.
223* Location Default Action:: Defining a general way to compute locations.
224
bfa74976
RS
225Bison Declarations
226
227* Token Decl:: Declaring terminal symbols.
228* Precedence Decl:: Declaring terminals with precedence and associativity.
229* Union Decl:: Declaring the set of all semantic value types.
230* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 231* Destructor Decl:: Declaring how symbols are freed.
d6328241 232* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
233* Start Decl:: Specifying the start symbol.
234* Pure Decl:: Requesting a reentrant parser.
235* Decl Summary:: Table of all Bison declarations.
236
237Parser C-Language Interface
238
239* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 240* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
95923bd6 250* Token Locations:: How @code{yylex} must return the text location
bfa74976 251 (line number, etc.) of the token, if the
93dd49ab 252 actions want that.
bfa74976
RS
253* Pure Calling:: How the calling convention differs
254 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
255
13863333 256The Bison Parser Algorithm
bfa74976
RS
257
258* Look-Ahead:: Parser looks one token ahead when deciding what to do.
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
266* Stack Overflow:: What happens when stack gets full. How to avoid it.
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
d1a1114f
AD
294Frequently Asked Questions
295
296* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 297* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 298* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
299* C++ Parsers:: Compiling Parsers with C++ Compilers
300* Implementing Loops:: Control Flow in the Calculator
d1a1114f 301
f2b5126e
PB
302Copying This Manual
303
304* GNU Free Documentation License:: License for copying this manual.
305
342b8b6e 306@end detailmenu
bfa74976
RS
307@end menu
308
342b8b6e 309@node Introduction
bfa74976
RS
310@unnumbered Introduction
311@cindex introduction
312
313@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 314grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
315program to parse that grammar. Once you are proficient with Bison,
316you may use it to develop a wide range of language parsers, from those
317used in simple desk calculators to complex programming languages.
318
319Bison is upward compatible with Yacc: all properly-written Yacc grammars
320ought to work with Bison with no change. Anyone familiar with Yacc
321should be able to use Bison with little trouble. You need to be fluent in
322C programming in order to use Bison or to understand this manual.
323
324We begin with tutorial chapters that explain the basic concepts of using
325Bison and show three explained examples, each building on the last. If you
326don't know Bison or Yacc, start by reading these chapters. Reference
327chapters follow which describe specific aspects of Bison in detail.
328
931c7513
RS
329Bison was written primarily by Robert Corbett; Richard Stallman made it
330Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 331multi-character string literals and other features.
931c7513 332
df1af54c 333This edition corresponds to version @value{VERSION} of Bison.
bfa74976 334
342b8b6e 335@node Conditions
bfa74976
RS
336@unnumbered Conditions for Using Bison
337
a31239f1 338As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 339@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 340Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 341parsers could be used only in programs that were free software.
a31239f1 342
c827f760
PE
343The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
344compiler, have never
9ecbd125 345had such a requirement. They could always be used for nonfree
a31239f1
RS
346software. The reason Bison was different was not due to a special
347policy decision; it resulted from applying the usual General Public
348License to all of the Bison source code.
349
350The output of the Bison utility---the Bison parser file---contains a
351verbatim copy of a sizable piece of Bison, which is the code for the
352@code{yyparse} function. (The actions from your grammar are inserted
353into this function at one point, but the rest of the function is not
c827f760
PE
354changed.) When we applied the @acronym{GPL} terms to the code for
355@code{yyparse},
a31239f1
RS
356the effect was to restrict the use of Bison output to free software.
357
358We didn't change the terms because of sympathy for people who want to
359make software proprietary. @strong{Software should be free.} But we
360concluded that limiting Bison's use to free software was doing little to
361encourage people to make other software free. So we decided to make the
362practical conditions for using Bison match the practical conditions for
c827f760 363using the other @acronym{GNU} tools.
bfa74976 364
eda42934 365This exception applies only when Bison is generating C code for an
c827f760
PE
366@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
367as usual. You can
262aa8dd
PE
368tell whether the exception applies to your @samp{.c} output file by
369inspecting it to see whether it says ``As a special exception, when
370this file is copied by Bison into a Bison output file, you may use
371that output file without restriction.''
372
c67a198d 373@include gpl.texi
bfa74976 374
342b8b6e 375@node Concepts
bfa74976
RS
376@chapter The Concepts of Bison
377
378This chapter introduces many of the basic concepts without which the
379details of Bison will not make sense. If you do not already know how to
380use Bison or Yacc, we suggest you start by reading this chapter carefully.
381
382@menu
383* Language and Grammar:: Languages and context-free grammars,
384 as mathematical ideas.
385* Grammar in Bison:: How we represent grammars for Bison's sake.
386* Semantic Values:: Each token or syntactic grouping can have
387 a semantic value (the value of an integer,
388 the name of an identifier, etc.).
389* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 390* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 391* Locations Overview:: Tracking Locations.
bfa74976
RS
392* Bison Parser:: What are Bison's input and output,
393 how is the output used?
394* Stages:: Stages in writing and running Bison grammars.
395* Grammar Layout:: Overall structure of a Bison grammar file.
396@end menu
397
342b8b6e 398@node Language and Grammar
bfa74976
RS
399@section Languages and Context-Free Grammars
400
bfa74976
RS
401@cindex context-free grammar
402@cindex grammar, context-free
403In order for Bison to parse a language, it must be described by a
404@dfn{context-free grammar}. This means that you specify one or more
405@dfn{syntactic groupings} and give rules for constructing them from their
406parts. For example, in the C language, one kind of grouping is called an
407`expression'. One rule for making an expression might be, ``An expression
408can be made of a minus sign and another expression''. Another would be,
409``An expression can be an integer''. As you can see, rules are often
410recursive, but there must be at least one rule which leads out of the
411recursion.
412
c827f760 413@cindex @acronym{BNF}
bfa74976
RS
414@cindex Backus-Naur form
415The most common formal system for presenting such rules for humans to read
c827f760
PE
416is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
417order to specify the language Algol 60. Any grammar expressed in
418@acronym{BNF} is a context-free grammar. The input to Bison is
419essentially machine-readable @acronym{BNF}.
bfa74976 420
c827f760
PE
421@cindex @acronym{LALR}(1) grammars
422@cindex @acronym{LR}(1) grammars
676385e2
PH
423There are various important subclasses of context-free grammar. Although it
424can handle almost all context-free grammars, Bison is optimized for what
c827f760 425are called @acronym{LALR}(1) grammars.
676385e2 426In brief, in these grammars, it must be possible to
bfa74976
RS
427tell how to parse any portion of an input string with just a single
428token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
429@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
430restrictions that are
bfa74976 431hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
432@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
433@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
434more information on this.
bfa74976 435
c827f760
PE
436@cindex @acronym{GLR} parsing
437@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
438@cindex ambiguous grammars
439@cindex non-deterministic parsing
9501dc6e
AD
440
441Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
442roughly that the next grammar rule to apply at any point in the input is
443uniquely determined by the preceding input and a fixed, finite portion
444(called a @dfn{look-ahead}) of the remaining input. A context-free
445grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
446apply the grammar rules to get the some inputs. Even unambiguous
447grammars can be @dfn{non-deterministic}, meaning that no fixed
448look-ahead always suffices to determine the next grammar rule to apply.
449With the proper declarations, Bison is also able to parse these more
450general context-free grammars, using a technique known as @acronym{GLR}
451parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
452are able to handle any context-free grammar for which the number of
453possible parses of any given string is finite.
676385e2 454
bfa74976
RS
455@cindex symbols (abstract)
456@cindex token
457@cindex syntactic grouping
458@cindex grouping, syntactic
9501dc6e
AD
459In the formal grammatical rules for a language, each kind of syntactic
460unit or grouping is named by a @dfn{symbol}. Those which are built by
461grouping smaller constructs according to grammatical rules are called
bfa74976
RS
462@dfn{nonterminal symbols}; those which can't be subdivided are called
463@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
464corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 465corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
466
467We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
468nonterminal, mean. The tokens of C are identifiers, constants (numeric
469and string), and the various keywords, arithmetic operators and
470punctuation marks. So the terminal symbols of a grammar for C include
471`identifier', `number', `string', plus one symbol for each keyword,
472operator or punctuation mark: `if', `return', `const', `static', `int',
473`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
474(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
475lexicography, not grammar.)
476
477Here is a simple C function subdivided into tokens:
478
9edcd895
AD
479@ifinfo
480@example
481int /* @r{keyword `int'} */
482square (int x) /* @r{identifier, open-paren, identifier,}
483 @r{identifier, close-paren} */
484@{ /* @r{open-brace} */
485 return x * x; /* @r{keyword `return', identifier, asterisk,
486 identifier, semicolon} */
487@} /* @r{close-brace} */
488@end example
489@end ifinfo
490@ifnotinfo
bfa74976
RS
491@example
492int /* @r{keyword `int'} */
9edcd895 493square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
bfa74976 494@{ /* @r{open-brace} */
9edcd895 495 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
496@} /* @r{close-brace} */
497@end example
9edcd895 498@end ifnotinfo
bfa74976
RS
499
500The syntactic groupings of C include the expression, the statement, the
501declaration, and the function definition. These are represented in the
502grammar of C by nonterminal symbols `expression', `statement',
503`declaration' and `function definition'. The full grammar uses dozens of
504additional language constructs, each with its own nonterminal symbol, in
505order to express the meanings of these four. The example above is a
506function definition; it contains one declaration, and one statement. In
507the statement, each @samp{x} is an expression and so is @samp{x * x}.
508
509Each nonterminal symbol must have grammatical rules showing how it is made
510out of simpler constructs. For example, one kind of C statement is the
511@code{return} statement; this would be described with a grammar rule which
512reads informally as follows:
513
514@quotation
515A `statement' can be made of a `return' keyword, an `expression' and a
516`semicolon'.
517@end quotation
518
519@noindent
520There would be many other rules for `statement', one for each kind of
521statement in C.
522
523@cindex start symbol
524One nonterminal symbol must be distinguished as the special one which
525defines a complete utterance in the language. It is called the @dfn{start
526symbol}. In a compiler, this means a complete input program. In the C
527language, the nonterminal symbol `sequence of definitions and declarations'
528plays this role.
529
530For example, @samp{1 + 2} is a valid C expression---a valid part of a C
531program---but it is not valid as an @emph{entire} C program. In the
532context-free grammar of C, this follows from the fact that `expression' is
533not the start symbol.
534
535The Bison parser reads a sequence of tokens as its input, and groups the
536tokens using the grammar rules. If the input is valid, the end result is
537that the entire token sequence reduces to a single grouping whose symbol is
538the grammar's start symbol. If we use a grammar for C, the entire input
539must be a `sequence of definitions and declarations'. If not, the parser
540reports a syntax error.
541
342b8b6e 542@node Grammar in Bison
bfa74976
RS
543@section From Formal Rules to Bison Input
544@cindex Bison grammar
545@cindex grammar, Bison
546@cindex formal grammar
547
548A formal grammar is a mathematical construct. To define the language
549for Bison, you must write a file expressing the grammar in Bison syntax:
550a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
551
552A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 553as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
554in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
555
556The Bison representation for a terminal symbol is also called a @dfn{token
557type}. Token types as well can be represented as C-like identifiers. By
558convention, these identifiers should be upper case to distinguish them from
559nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
560@code{RETURN}. A terminal symbol that stands for a particular keyword in
561the language should be named after that keyword converted to upper case.
562The terminal symbol @code{error} is reserved for error recovery.
931c7513 563@xref{Symbols}.
bfa74976
RS
564
565A terminal symbol can also be represented as a character literal, just like
566a C character constant. You should do this whenever a token is just a
567single character (parenthesis, plus-sign, etc.): use that same character in
568a literal as the terminal symbol for that token.
569
931c7513
RS
570A third way to represent a terminal symbol is with a C string constant
571containing several characters. @xref{Symbols}, for more information.
572
bfa74976
RS
573The grammar rules also have an expression in Bison syntax. For example,
574here is the Bison rule for a C @code{return} statement. The semicolon in
575quotes is a literal character token, representing part of the C syntax for
576the statement; the naked semicolon, and the colon, are Bison punctuation
577used in every rule.
578
579@example
580stmt: RETURN expr ';'
581 ;
582@end example
583
584@noindent
585@xref{Rules, ,Syntax of Grammar Rules}.
586
342b8b6e 587@node Semantic Values
bfa74976
RS
588@section Semantic Values
589@cindex semantic value
590@cindex value, semantic
591
592A formal grammar selects tokens only by their classifications: for example,
593if a rule mentions the terminal symbol `integer constant', it means that
594@emph{any} integer constant is grammatically valid in that position. The
595precise value of the constant is irrelevant to how to parse the input: if
596@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 597grammatical.
bfa74976
RS
598
599But the precise value is very important for what the input means once it is
600parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6013989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
602has both a token type and a @dfn{semantic value}. @xref{Semantics,
603,Defining Language Semantics},
bfa74976
RS
604for details.
605
606The token type is a terminal symbol defined in the grammar, such as
607@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
608you need to know to decide where the token may validly appear and how to
609group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 610except their types.
bfa74976
RS
611
612The semantic value has all the rest of the information about the
613meaning of the token, such as the value of an integer, or the name of an
614identifier. (A token such as @code{','} which is just punctuation doesn't
615need to have any semantic value.)
616
617For example, an input token might be classified as token type
618@code{INTEGER} and have the semantic value 4. Another input token might
619have the same token type @code{INTEGER} but value 3989. When a grammar
620rule says that @code{INTEGER} is allowed, either of these tokens is
621acceptable because each is an @code{INTEGER}. When the parser accepts the
622token, it keeps track of the token's semantic value.
623
624Each grouping can also have a semantic value as well as its nonterminal
625symbol. For example, in a calculator, an expression typically has a
626semantic value that is a number. In a compiler for a programming
627language, an expression typically has a semantic value that is a tree
628structure describing the meaning of the expression.
629
342b8b6e 630@node Semantic Actions
bfa74976
RS
631@section Semantic Actions
632@cindex semantic actions
633@cindex actions, semantic
634
635In order to be useful, a program must do more than parse input; it must
636also produce some output based on the input. In a Bison grammar, a grammar
637rule can have an @dfn{action} made up of C statements. Each time the
638parser recognizes a match for that rule, the action is executed.
639@xref{Actions}.
13863333 640
bfa74976
RS
641Most of the time, the purpose of an action is to compute the semantic value
642of the whole construct from the semantic values of its parts. For example,
643suppose we have a rule which says an expression can be the sum of two
644expressions. When the parser recognizes such a sum, each of the
645subexpressions has a semantic value which describes how it was built up.
646The action for this rule should create a similar sort of value for the
647newly recognized larger expression.
648
649For example, here is a rule that says an expression can be the sum of
650two subexpressions:
651
652@example
653expr: expr '+' expr @{ $$ = $1 + $3; @}
654 ;
655@end example
656
657@noindent
658The action says how to produce the semantic value of the sum expression
659from the values of the two subexpressions.
660
676385e2 661@node GLR Parsers
c827f760
PE
662@section Writing @acronym{GLR} Parsers
663@cindex @acronym{GLR} parsing
664@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
665@findex %glr-parser
666@cindex conflicts
667@cindex shift/reduce conflicts
fa7e68c3 668@cindex reduce/reduce conflicts
676385e2 669
fa7e68c3 670In some grammars, Bison's standard
9501dc6e
AD
671@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
672certain grammar rule at a given point. That is, it may not be able to
673decide (on the basis of the input read so far) which of two possible
674reductions (applications of a grammar rule) applies, or whether to apply
675a reduction or read more of the input and apply a reduction later in the
676input. These are known respectively as @dfn{reduce/reduce} conflicts
677(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
678(@pxref{Shift/Reduce}).
679
680To use a grammar that is not easily modified to be @acronym{LALR}(1), a
681more general parsing algorithm is sometimes necessary. If you include
676385e2 682@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 683(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
684(@acronym{GLR}) parser. These parsers handle Bison grammars that
685contain no unresolved conflicts (i.e., after applying precedence
686declarations) identically to @acronym{LALR}(1) parsers. However, when
687faced with unresolved shift/reduce and reduce/reduce conflicts,
688@acronym{GLR} parsers use the simple expedient of doing both,
689effectively cloning the parser to follow both possibilities. Each of
690the resulting parsers can again split, so that at any given time, there
691can be any number of possible parses being explored. The parsers
676385e2
PH
692proceed in lockstep; that is, all of them consume (shift) a given input
693symbol before any of them proceed to the next. Each of the cloned
694parsers eventually meets one of two possible fates: either it runs into
695a parsing error, in which case it simply vanishes, or it merges with
696another parser, because the two of them have reduced the input to an
697identical set of symbols.
698
699During the time that there are multiple parsers, semantic actions are
700recorded, but not performed. When a parser disappears, its recorded
701semantic actions disappear as well, and are never performed. When a
702reduction makes two parsers identical, causing them to merge, Bison
703records both sets of semantic actions. Whenever the last two parsers
704merge, reverting to the single-parser case, Bison resolves all the
705outstanding actions either by precedences given to the grammar rules
706involved, or by performing both actions, and then calling a designated
707user-defined function on the resulting values to produce an arbitrary
708merged result.
709
fa7e68c3
PE
710@menu
711* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
712* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
713* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
714@end menu
715
716@node Simple GLR Parsers
717@subsection Using @acronym{GLR} on Unambiguous Grammars
718@cindex @acronym{GLR} parsing, unambiguous grammars
719@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
720@findex %glr-parser
721@findex %expect-rr
722@cindex conflicts
723@cindex reduce/reduce conflicts
724@cindex shift/reduce conflicts
725
726In the simplest cases, you can use the @acronym{GLR} algorithm
727to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
728Such grammars typically require more than one symbol of look-ahead,
729or (in rare cases) fall into the category of grammars in which the
730@acronym{LALR}(1) algorithm throws away too much information (they are in
731@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
732
733Consider a problem that
734arises in the declaration of enumerated and subrange types in the
735programming language Pascal. Here are some examples:
736
737@example
738type subrange = lo .. hi;
739type enum = (a, b, c);
740@end example
741
742@noindent
743The original language standard allows only numeric
744literals and constant identifiers for the subrange bounds (@samp{lo}
745and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
74610206) and many other
747Pascal implementations allow arbitrary expressions there. This gives
748rise to the following situation, containing a superfluous pair of
749parentheses:
750
751@example
752type subrange = (a) .. b;
753@end example
754
755@noindent
756Compare this to the following declaration of an enumerated
757type with only one value:
758
759@example
760type enum = (a);
761@end example
762
763@noindent
764(These declarations are contrived, but they are syntactically
765valid, and more-complicated cases can come up in practical programs.)
766
767These two declarations look identical until the @samp{..} token.
768With normal @acronym{LALR}(1) one-token look-ahead it is not
769possible to decide between the two forms when the identifier
770@samp{a} is parsed. It is, however, desirable
771for a parser to decide this, since in the latter case
772@samp{a} must become a new identifier to represent the enumeration
773value, while in the former case @samp{a} must be evaluated with its
774current meaning, which may be a constant or even a function call.
775
776You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
777to be resolved later, but this typically requires substantial
778contortions in both semantic actions and large parts of the
779grammar, where the parentheses are nested in the recursive rules for
780expressions.
781
782You might think of using the lexer to distinguish between the two
783forms by returning different tokens for currently defined and
784undefined identifiers. But if these declarations occur in a local
785scope, and @samp{a} is defined in an outer scope, then both forms
786are possible---either locally redefining @samp{a}, or using the
787value of @samp{a} from the outer scope. So this approach cannot
788work.
789
790A simple solution to this problem is to declare the parser to
791use the @acronym{GLR} algorithm.
792When the @acronym{GLR} parser reaches the critical state, it
793merely splits into two branches and pursues both syntax rules
794simultaneously. Sooner or later, one of them runs into a parsing
795error. If there is a @samp{..} token before the next
796@samp{;}, the rule for enumerated types fails since it cannot
797accept @samp{..} anywhere; otherwise, the subrange type rule
798fails since it requires a @samp{..} token. So one of the branches
799fails silently, and the other one continues normally, performing
800all the intermediate actions that were postponed during the split.
801
802If the input is syntactically incorrect, both branches fail and the parser
803reports a syntax error as usual.
804
805The effect of all this is that the parser seems to ``guess'' the
806correct branch to take, or in other words, it seems to use more
807look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
808for. In this example, @acronym{LALR}(2) would suffice, but also some cases
809that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
810
811In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
812and the current Bison parser even takes exponential time and space
813for some grammars. In practice, this rarely happens, and for many
814grammars it is possible to prove that it cannot happen.
815The present example contains only one conflict between two
816rules, and the type-declaration context containing the conflict
817cannot be nested. So the number of
818branches that can exist at any time is limited by the constant 2,
819and the parsing time is still linear.
820
821Here is a Bison grammar corresponding to the example above. It
822parses a vastly simplified form of Pascal type declarations.
823
824@example
825%token TYPE DOTDOT ID
826
827@group
828%left '+' '-'
829%left '*' '/'
830@end group
831
832%%
833
834@group
835type_decl : TYPE ID '=' type ';'
836 ;
837@end group
838
839@group
840type : '(' id_list ')'
841 | expr DOTDOT expr
842 ;
843@end group
844
845@group
846id_list : ID
847 | id_list ',' ID
848 ;
849@end group
850
851@group
852expr : '(' expr ')'
853 | expr '+' expr
854 | expr '-' expr
855 | expr '*' expr
856 | expr '/' expr
857 | ID
858 ;
859@end group
860@end example
861
862When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
863about one reduce/reduce conflict. In the conflicting situation the
864parser chooses one of the alternatives, arbitrarily the one
865declared first. Therefore the following correct input is not
866recognized:
867
868@example
869type t = (a) .. b;
870@end example
871
872The parser can be turned into a @acronym{GLR} parser, while also telling Bison
873to be silent about the one known reduce/reduce conflict, by
874adding these two declarations to the Bison input file (before the first
875@samp{%%}):
876
877@example
878%glr-parser
879%expect-rr 1
880@end example
881
882@noindent
883No change in the grammar itself is required. Now the
884parser recognizes all valid declarations, according to the
885limited syntax above, transparently. In fact, the user does not even
886notice when the parser splits.
887
888So here we have a case where we can use the benefits of @acronym{GLR}, almost
889without disadvantages. Even in simple cases like this, however, there
890are at least two potential problems to beware.
891First, always analyze the conflicts reported by
892Bison to make sure that @acronym{GLR} splitting is only done where it is
893intended. A @acronym{GLR} parser splitting inadvertently may cause
894problems less obvious than an @acronym{LALR} parser statically choosing the
895wrong alternative in a conflict.
896Second, consider interactions with the lexer (@pxref{Semantic Tokens})
897with great care. Since a split parser consumes tokens
898without performing any actions during the split, the lexer cannot
899obtain information via parser actions. Some cases of
900lexer interactions can be eliminated by using @acronym{GLR} to
901shift the complications from the lexer to the parser. You must check
902the remaining cases for correctness.
903
904In our example, it would be safe for the lexer to return tokens
905based on their current meanings in some symbol table, because no new
906symbols are defined in the middle of a type declaration. Though it
907is possible for a parser to define the enumeration
908constants as they are parsed, before the type declaration is
909completed, it actually makes no difference since they cannot be used
910within the same enumerated type declaration.
911
912@node Merging GLR Parses
913@subsection Using @acronym{GLR} to Resolve Ambiguities
914@cindex @acronym{GLR} parsing, ambiguous grammars
915@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
916@findex %dprec
917@findex %merge
918@cindex conflicts
919@cindex reduce/reduce conflicts
920
2a8d363a 921Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
922
923@example
924%@{
38a92d50
PE
925 #include <stdio.h>
926 #define YYSTYPE char const *
927 int yylex (void);
928 void yyerror (char const *);
676385e2
PH
929%@}
930
931%token TYPENAME ID
932
933%right '='
934%left '+'
935
936%glr-parser
937
938%%
939
fae437e8 940prog :
676385e2
PH
941 | prog stmt @{ printf ("\n"); @}
942 ;
943
944stmt : expr ';' %dprec 1
945 | decl %dprec 2
946 ;
947
2a8d363a 948expr : ID @{ printf ("%s ", $$); @}
fae437e8 949 | TYPENAME '(' expr ')'
2a8d363a
AD
950 @{ printf ("%s <cast> ", $1); @}
951 | expr '+' expr @{ printf ("+ "); @}
952 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
953 ;
954
fae437e8 955decl : TYPENAME declarator ';'
2a8d363a 956 @{ printf ("%s <declare> ", $1); @}
676385e2 957 | TYPENAME declarator '=' expr ';'
2a8d363a 958 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
959 ;
960
2a8d363a 961declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
962 | '(' declarator ')'
963 ;
964@end example
965
966@noindent
967This models a problematic part of the C++ grammar---the ambiguity between
968certain declarations and statements. For example,
969
970@example
971T (x) = y+z;
972@end example
973
974@noindent
975parses as either an @code{expr} or a @code{stmt}
c827f760
PE
976(assuming that @samp{T} is recognized as a @code{TYPENAME} and
977@samp{x} as an @code{ID}).
676385e2 978Bison detects this as a reduce/reduce conflict between the rules
fae437e8 979@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
fa7e68c3
PE
980time it encounters @code{x} in the example above. Since this is a
981@acronym{GLR} parser, it therefore splits the problem into two parses, one for
982each choice of resolving the reduce/reduce conflict.
983Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
984however, neither of these parses ``dies,'' because the grammar as it stands is
985ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
986the other reduces @code{stmt : decl}, after which both parsers are in an
987identical state: they've seen @samp{prog stmt} and have the same unprocessed
988input remaining. We say that these parses have @dfn{merged.}
989
990At this point, the @acronym{GLR} parser requires a specification in the
991grammar of how to choose between the competing parses.
992In the example above, the two @code{%dprec}
993declarations specify that Bison is to give precedence
994to the parse that interprets the example as a
676385e2
PH
995@code{decl}, which implies that @code{x} is a declarator.
996The parser therefore prints
997
998@example
fae437e8 999"x" y z + T <init-declare>
676385e2
PH
1000@end example
1001
fa7e68c3
PE
1002The @code{%dprec} declarations only come into play when more than one
1003parse survives. Consider a different input string for this parser:
676385e2
PH
1004
1005@example
1006T (x) + y;
1007@end example
1008
1009@noindent
fa7e68c3
PE
1010This is another example of using @acronym{GLR} to parse an unambiguous
1011construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1012Here, there is no ambiguity (this cannot be parsed as a declaration).
1013However, at the time the Bison parser encounters @code{x}, it does not
1014have enough information to resolve the reduce/reduce conflict (again,
1015between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1016case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1017into two, one assuming that @code{x} is an @code{expr}, and the other
1018assuming @code{x} is a @code{declarator}. The second of these parsers
1019then vanishes when it sees @code{+}, and the parser prints
1020
1021@example
fae437e8 1022x T <cast> y +
676385e2
PH
1023@end example
1024
1025Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1026the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1027actions of the two possible parsers, rather than choosing one over the
1028other. To do so, you could change the declaration of @code{stmt} as
1029follows:
1030
1031@example
1032stmt : expr ';' %merge <stmtMerge>
1033 | decl %merge <stmtMerge>
1034 ;
1035@end example
1036
1037@noindent
676385e2
PH
1038and define the @code{stmtMerge} function as:
1039
1040@example
38a92d50
PE
1041static YYSTYPE
1042stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1043@{
1044 printf ("<OR> ");
1045 return "";
1046@}
1047@end example
1048
1049@noindent
1050with an accompanying forward declaration
1051in the C declarations at the beginning of the file:
1052
1053@example
1054%@{
38a92d50 1055 #define YYSTYPE char const *
676385e2
PH
1056 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1057%@}
1058@end example
1059
1060@noindent
fa7e68c3
PE
1061With these declarations, the resulting parser parses the first example
1062as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1063
1064@example
fae437e8 1065"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1066@end example
1067
fa7e68c3
PE
1068Bison requires that all of the
1069productions that participate in any particular merge have identical
1070@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1071and the parser will report an error during any parse that results in
1072the offending merge.
9501dc6e 1073
fa7e68c3
PE
1074@node Compiler Requirements
1075@subsection Considerations when Compiling @acronym{GLR} Parsers
1076@cindex @code{inline}
9501dc6e 1077@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1078
38a92d50
PE
1079The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1080later. In addition, they use the @code{inline} keyword, which is not
1081C89, but is C99 and is a common extension in pre-C99 compilers. It is
1082up to the user of these parsers to handle
9501dc6e
AD
1083portability issues. For instance, if using Autoconf and the Autoconf
1084macro @code{AC_C_INLINE}, a mere
1085
1086@example
1087%@{
38a92d50 1088 #include <config.h>
9501dc6e
AD
1089%@}
1090@end example
1091
1092@noindent
1093will suffice. Otherwise, we suggest
1094
1095@example
1096%@{
38a92d50
PE
1097 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1098 #define inline
1099 #endif
9501dc6e
AD
1100%@}
1101@end example
676385e2 1102
342b8b6e 1103@node Locations Overview
847bf1f5
AD
1104@section Locations
1105@cindex location
95923bd6
AD
1106@cindex textual location
1107@cindex location, textual
847bf1f5
AD
1108
1109Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1110and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1111the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1112Bison provides a mechanism for handling these locations.
1113
72d2299c 1114Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1115associated location, but the type of locations is the same for all tokens and
72d2299c 1116groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1117structure for storing locations (@pxref{Locations}, for more details).
1118
1119Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1120set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1121is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1122@code{@@3}.
1123
1124When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1125of its left hand side (@pxref{Actions}). In the same way, another default
1126action is used for locations. However, the action for locations is general
847bf1f5 1127enough for most cases, meaning there is usually no need to describe for each
72d2299c 1128rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1129grouping, the default behavior of the output parser is to take the beginning
1130of the first symbol, and the end of the last symbol.
1131
342b8b6e 1132@node Bison Parser
bfa74976
RS
1133@section Bison Output: the Parser File
1134@cindex Bison parser
1135@cindex Bison utility
1136@cindex lexical analyzer, purpose
1137@cindex parser
1138
1139When you run Bison, you give it a Bison grammar file as input. The output
1140is a C source file that parses the language described by the grammar.
1141This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1142utility and the Bison parser are two distinct programs: the Bison utility
1143is a program whose output is the Bison parser that becomes part of your
1144program.
1145
1146The job of the Bison parser is to group tokens into groupings according to
1147the grammar rules---for example, to build identifiers and operators into
1148expressions. As it does this, it runs the actions for the grammar rules it
1149uses.
1150
704a47c4
AD
1151The tokens come from a function called the @dfn{lexical analyzer} that
1152you must supply in some fashion (such as by writing it in C). The Bison
1153parser calls the lexical analyzer each time it wants a new token. It
1154doesn't know what is ``inside'' the tokens (though their semantic values
1155may reflect this). Typically the lexical analyzer makes the tokens by
1156parsing characters of text, but Bison does not depend on this.
1157@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1158
1159The Bison parser file is C code which defines a function named
1160@code{yyparse} which implements that grammar. This function does not make
1161a complete C program: you must supply some additional functions. One is
1162the lexical analyzer. Another is an error-reporting function which the
1163parser calls to report an error. In addition, a complete C program must
1164start with a function called @code{main}; you have to provide this, and
1165arrange for it to call @code{yyparse} or the parser will never run.
1166@xref{Interface, ,Parser C-Language Interface}.
1167
1168Aside from the token type names and the symbols in the actions you
7093d0f5 1169write, all symbols defined in the Bison parser file itself
bfa74976
RS
1170begin with @samp{yy} or @samp{YY}. This includes interface functions
1171such as the lexical analyzer function @code{yylex}, the error reporting
1172function @code{yyerror} and the parser function @code{yyparse} itself.
1173This also includes numerous identifiers used for internal purposes.
1174Therefore, you should avoid using C identifiers starting with @samp{yy}
1175or @samp{YY} in the Bison grammar file except for the ones defined in
1176this manual.
1177
7093d0f5
AD
1178In some cases the Bison parser file includes system headers, and in
1179those cases your code should respect the identifiers reserved by those
c827f760 1180headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1181@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
1182declare memory allocators and related types. Other system headers may
1183be included if you define @code{YYDEBUG} to a nonzero value
1184(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1185
342b8b6e 1186@node Stages
bfa74976
RS
1187@section Stages in Using Bison
1188@cindex stages in using Bison
1189@cindex using Bison
1190
1191The actual language-design process using Bison, from grammar specification
1192to a working compiler or interpreter, has these parts:
1193
1194@enumerate
1195@item
1196Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1197(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1198in the language, describe the action that is to be taken when an
1199instance of that rule is recognized. The action is described by a
1200sequence of C statements.
bfa74976
RS
1201
1202@item
704a47c4
AD
1203Write a lexical analyzer to process input and pass tokens to the parser.
1204The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1205Lexical Analyzer Function @code{yylex}}). It could also be produced
1206using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1207
1208@item
1209Write a controlling function that calls the Bison-produced parser.
1210
1211@item
1212Write error-reporting routines.
1213@end enumerate
1214
1215To turn this source code as written into a runnable program, you
1216must follow these steps:
1217
1218@enumerate
1219@item
1220Run Bison on the grammar to produce the parser.
1221
1222@item
1223Compile the code output by Bison, as well as any other source files.
1224
1225@item
1226Link the object files to produce the finished product.
1227@end enumerate
1228
342b8b6e 1229@node Grammar Layout
bfa74976
RS
1230@section The Overall Layout of a Bison Grammar
1231@cindex grammar file
1232@cindex file format
1233@cindex format of grammar file
1234@cindex layout of Bison grammar
1235
1236The input file for the Bison utility is a @dfn{Bison grammar file}. The
1237general form of a Bison grammar file is as follows:
1238
1239@example
1240%@{
08e49d20 1241@var{Prologue}
bfa74976
RS
1242%@}
1243
1244@var{Bison declarations}
1245
1246%%
1247@var{Grammar rules}
1248%%
08e49d20 1249@var{Epilogue}
bfa74976
RS
1250@end example
1251
1252@noindent
1253The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1254in every Bison grammar file to separate the sections.
1255
72d2299c 1256The prologue may define types and variables used in the actions. You can
342b8b6e 1257also use preprocessor commands to define macros used there, and use
bfa74976 1258@code{#include} to include header files that do any of these things.
38a92d50
PE
1259You need to declare the lexical analyzer @code{yylex} and the error
1260printer @code{yyerror} here, along with any other global identifiers
1261used by the actions in the grammar rules.
bfa74976
RS
1262
1263The Bison declarations declare the names of the terminal and nonterminal
1264symbols, and may also describe operator precedence and the data types of
1265semantic values of various symbols.
1266
1267The grammar rules define how to construct each nonterminal symbol from its
1268parts.
1269
38a92d50
PE
1270The epilogue can contain any code you want to use. Often the
1271definitions of functions declared in the prologue go here. In a
1272simple program, all the rest of the program can go here.
bfa74976 1273
342b8b6e 1274@node Examples
bfa74976
RS
1275@chapter Examples
1276@cindex simple examples
1277@cindex examples, simple
1278
1279Now we show and explain three sample programs written using Bison: a
1280reverse polish notation calculator, an algebraic (infix) notation
1281calculator, and a multi-function calculator. All three have been tested
1282under BSD Unix 4.3; each produces a usable, though limited, interactive
1283desk-top calculator.
1284
1285These examples are simple, but Bison grammars for real programming
1286languages are written the same way.
1287@ifinfo
1288You can copy these examples out of the Info file and into a source file
1289to try them.
1290@end ifinfo
1291
1292@menu
1293* RPN Calc:: Reverse polish notation calculator;
1294 a first example with no operator precedence.
1295* Infix Calc:: Infix (algebraic) notation calculator.
1296 Operator precedence is introduced.
1297* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1298* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1299* Multi-function Calc:: Calculator with memory and trig functions.
1300 It uses multiple data-types for semantic values.
1301* Exercises:: Ideas for improving the multi-function calculator.
1302@end menu
1303
342b8b6e 1304@node RPN Calc
bfa74976
RS
1305@section Reverse Polish Notation Calculator
1306@cindex reverse polish notation
1307@cindex polish notation calculator
1308@cindex @code{rpcalc}
1309@cindex calculator, simple
1310
1311The first example is that of a simple double-precision @dfn{reverse polish
1312notation} calculator (a calculator using postfix operators). This example
1313provides a good starting point, since operator precedence is not an issue.
1314The second example will illustrate how operator precedence is handled.
1315
1316The source code for this calculator is named @file{rpcalc.y}. The
1317@samp{.y} extension is a convention used for Bison input files.
1318
1319@menu
75f5aaea 1320* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1321* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1322* Lexer: Rpcalc Lexer. The lexical analyzer.
1323* Main: Rpcalc Main. The controlling function.
1324* Error: Rpcalc Error. The error reporting function.
1325* Gen: Rpcalc Gen. Running Bison on the grammar file.
1326* Comp: Rpcalc Compile. Run the C compiler on the output code.
1327@end menu
1328
342b8b6e 1329@node Rpcalc Decls
bfa74976
RS
1330@subsection Declarations for @code{rpcalc}
1331
1332Here are the C and Bison declarations for the reverse polish notation
1333calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1334
1335@example
72d2299c 1336/* Reverse polish notation calculator. */
bfa74976
RS
1337
1338%@{
38a92d50
PE
1339 #define YYSTYPE double
1340 #include <math.h>
1341 int yylex (void);
1342 void yyerror (char const *);
bfa74976
RS
1343%@}
1344
1345%token NUM
1346
72d2299c 1347%% /* Grammar rules and actions follow. */
bfa74976
RS
1348@end example
1349
75f5aaea 1350The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1351preprocessor directives and two forward declarations.
bfa74976
RS
1352
1353The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1354specifying the C data type for semantic values of both tokens and
1355groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1356Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1357don't define it, @code{int} is the default. Because we specify
1358@code{double}, each token and each expression has an associated value,
1359which is a floating point number.
bfa74976
RS
1360
1361The @code{#include} directive is used to declare the exponentiation
1362function @code{pow}.
1363
38a92d50
PE
1364The forward declarations for @code{yylex} and @code{yyerror} are
1365needed because the C language requires that functions be declared
1366before they are used. These functions will be defined in the
1367epilogue, but the parser calls them so they must be declared in the
1368prologue.
1369
704a47c4
AD
1370The second section, Bison declarations, provides information to Bison
1371about the token types (@pxref{Bison Declarations, ,The Bison
1372Declarations Section}). Each terminal symbol that is not a
1373single-character literal must be declared here. (Single-character
bfa74976
RS
1374literals normally don't need to be declared.) In this example, all the
1375arithmetic operators are designated by single-character literals, so the
1376only terminal symbol that needs to be declared is @code{NUM}, the token
1377type for numeric constants.
1378
342b8b6e 1379@node Rpcalc Rules
bfa74976
RS
1380@subsection Grammar Rules for @code{rpcalc}
1381
1382Here are the grammar rules for the reverse polish notation calculator.
1383
1384@example
1385input: /* empty */
1386 | input line
1387;
1388
1389line: '\n'
18b519c0 1390 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1391;
1392
18b519c0
AD
1393exp: NUM @{ $$ = $1; @}
1394 | exp exp '+' @{ $$ = $1 + $2; @}
1395 | exp exp '-' @{ $$ = $1 - $2; @}
1396 | exp exp '*' @{ $$ = $1 * $2; @}
1397 | exp exp '/' @{ $$ = $1 / $2; @}
1398 /* Exponentiation */
1399 | exp exp '^' @{ $$ = pow ($1, $2); @}
1400 /* Unary minus */
1401 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1402;
1403%%
1404@end example
1405
1406The groupings of the rpcalc ``language'' defined here are the expression
1407(given the name @code{exp}), the line of input (@code{line}), and the
1408complete input transcript (@code{input}). Each of these nonterminal
1409symbols has several alternate rules, joined by the @samp{|} punctuator
1410which is read as ``or''. The following sections explain what these rules
1411mean.
1412
1413The semantics of the language is determined by the actions taken when a
1414grouping is recognized. The actions are the C code that appears inside
1415braces. @xref{Actions}.
1416
1417You must specify these actions in C, but Bison provides the means for
1418passing semantic values between the rules. In each action, the
1419pseudo-variable @code{$$} stands for the semantic value for the grouping
1420that the rule is going to construct. Assigning a value to @code{$$} is the
1421main job of most actions. The semantic values of the components of the
1422rule are referred to as @code{$1}, @code{$2}, and so on.
1423
1424@menu
13863333
AD
1425* Rpcalc Input::
1426* Rpcalc Line::
1427* Rpcalc Expr::
bfa74976
RS
1428@end menu
1429
342b8b6e 1430@node Rpcalc Input
bfa74976
RS
1431@subsubsection Explanation of @code{input}
1432
1433Consider the definition of @code{input}:
1434
1435@example
1436input: /* empty */
1437 | input line
1438;
1439@end example
1440
1441This definition reads as follows: ``A complete input is either an empty
1442string, or a complete input followed by an input line''. Notice that
1443``complete input'' is defined in terms of itself. This definition is said
1444to be @dfn{left recursive} since @code{input} appears always as the
1445leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1446
1447The first alternative is empty because there are no symbols between the
1448colon and the first @samp{|}; this means that @code{input} can match an
1449empty string of input (no tokens). We write the rules this way because it
1450is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1451It's conventional to put an empty alternative first and write the comment
1452@samp{/* empty */} in it.
1453
1454The second alternate rule (@code{input line}) handles all nontrivial input.
1455It means, ``After reading any number of lines, read one more line if
1456possible.'' The left recursion makes this rule into a loop. Since the
1457first alternative matches empty input, the loop can be executed zero or
1458more times.
1459
1460The parser function @code{yyparse} continues to process input until a
1461grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1462input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1463
342b8b6e 1464@node Rpcalc Line
bfa74976
RS
1465@subsubsection Explanation of @code{line}
1466
1467Now consider the definition of @code{line}:
1468
1469@example
1470line: '\n'
1471 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1472;
1473@end example
1474
1475The first alternative is a token which is a newline character; this means
1476that rpcalc accepts a blank line (and ignores it, since there is no
1477action). The second alternative is an expression followed by a newline.
1478This is the alternative that makes rpcalc useful. The semantic value of
1479the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1480question is the first symbol in the alternative. The action prints this
1481value, which is the result of the computation the user asked for.
1482
1483This action is unusual because it does not assign a value to @code{$$}. As
1484a consequence, the semantic value associated with the @code{line} is
1485uninitialized (its value will be unpredictable). This would be a bug if
1486that value were ever used, but we don't use it: once rpcalc has printed the
1487value of the user's input line, that value is no longer needed.
1488
342b8b6e 1489@node Rpcalc Expr
bfa74976
RS
1490@subsubsection Explanation of @code{expr}
1491
1492The @code{exp} grouping has several rules, one for each kind of expression.
1493The first rule handles the simplest expressions: those that are just numbers.
1494The second handles an addition-expression, which looks like two expressions
1495followed by a plus-sign. The third handles subtraction, and so on.
1496
1497@example
1498exp: NUM
1499 | exp exp '+' @{ $$ = $1 + $2; @}
1500 | exp exp '-' @{ $$ = $1 - $2; @}
1501 @dots{}
1502 ;
1503@end example
1504
1505We have used @samp{|} to join all the rules for @code{exp}, but we could
1506equally well have written them separately:
1507
1508@example
1509exp: NUM ;
1510exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1511exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1512 @dots{}
1513@end example
1514
1515Most of the rules have actions that compute the value of the expression in
1516terms of the value of its parts. For example, in the rule for addition,
1517@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1518the second one. The third component, @code{'+'}, has no meaningful
1519associated semantic value, but if it had one you could refer to it as
1520@code{$3}. When @code{yyparse} recognizes a sum expression using this
1521rule, the sum of the two subexpressions' values is produced as the value of
1522the entire expression. @xref{Actions}.
1523
1524You don't have to give an action for every rule. When a rule has no
1525action, Bison by default copies the value of @code{$1} into @code{$$}.
1526This is what happens in the first rule (the one that uses @code{NUM}).
1527
1528The formatting shown here is the recommended convention, but Bison does
72d2299c 1529not require it. You can add or change white space as much as you wish.
bfa74976
RS
1530For example, this:
1531
1532@example
99a9344e 1533exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1534@end example
1535
1536@noindent
1537means the same thing as this:
1538
1539@example
1540exp: NUM
1541 | exp exp '+' @{ $$ = $1 + $2; @}
1542 | @dots{}
99a9344e 1543;
bfa74976
RS
1544@end example
1545
1546@noindent
1547The latter, however, is much more readable.
1548
342b8b6e 1549@node Rpcalc Lexer
bfa74976
RS
1550@subsection The @code{rpcalc} Lexical Analyzer
1551@cindex writing a lexical analyzer
1552@cindex lexical analyzer, writing
1553
704a47c4
AD
1554The lexical analyzer's job is low-level parsing: converting characters
1555or sequences of characters into tokens. The Bison parser gets its
1556tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1557Analyzer Function @code{yylex}}.
bfa74976 1558
c827f760
PE
1559Only a simple lexical analyzer is needed for the @acronym{RPN}
1560calculator. This
bfa74976
RS
1561lexical analyzer skips blanks and tabs, then reads in numbers as
1562@code{double} and returns them as @code{NUM} tokens. Any other character
1563that isn't part of a number is a separate token. Note that the token-code
1564for such a single-character token is the character itself.
1565
1566The return value of the lexical analyzer function is a numeric code which
1567represents a token type. The same text used in Bison rules to stand for
1568this token type is also a C expression for the numeric code for the type.
1569This works in two ways. If the token type is a character literal, then its
e966383b 1570numeric code is that of the character; you can use the same
bfa74976
RS
1571character literal in the lexical analyzer to express the number. If the
1572token type is an identifier, that identifier is defined by Bison as a C
1573macro whose definition is the appropriate number. In this example,
1574therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1575
1964ad8c
AD
1576The semantic value of the token (if it has one) is stored into the
1577global variable @code{yylval}, which is where the Bison parser will look
1578for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1579defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1580,Declarations for @code{rpcalc}}.)
bfa74976 1581
72d2299c
PE
1582A token type code of zero is returned if the end-of-input is encountered.
1583(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1584
1585Here is the code for the lexical analyzer:
1586
1587@example
1588@group
72d2299c 1589/* The lexical analyzer returns a double floating point
e966383b 1590 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1591 of the character read if not a number. It skips all blanks
1592 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1593
1594#include <ctype.h>
1595@end group
1596
1597@group
13863333
AD
1598int
1599yylex (void)
bfa74976
RS
1600@{
1601 int c;
1602
72d2299c 1603 /* Skip white space. */
13863333 1604 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1605 ;
1606@end group
1607@group
72d2299c 1608 /* Process numbers. */
13863333 1609 if (c == '.' || isdigit (c))
bfa74976
RS
1610 @{
1611 ungetc (c, stdin);
1612 scanf ("%lf", &yylval);
1613 return NUM;
1614 @}
1615@end group
1616@group
72d2299c 1617 /* Return end-of-input. */
13863333 1618 if (c == EOF)
bfa74976 1619 return 0;
72d2299c 1620 /* Return a single char. */
13863333 1621 return c;
bfa74976
RS
1622@}
1623@end group
1624@end example
1625
342b8b6e 1626@node Rpcalc Main
bfa74976
RS
1627@subsection The Controlling Function
1628@cindex controlling function
1629@cindex main function in simple example
1630
1631In keeping with the spirit of this example, the controlling function is
1632kept to the bare minimum. The only requirement is that it call
1633@code{yyparse} to start the process of parsing.
1634
1635@example
1636@group
13863333
AD
1637int
1638main (void)
bfa74976 1639@{
13863333 1640 return yyparse ();
bfa74976
RS
1641@}
1642@end group
1643@end example
1644
342b8b6e 1645@node Rpcalc Error
bfa74976
RS
1646@subsection The Error Reporting Routine
1647@cindex error reporting routine
1648
1649When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1650function @code{yyerror} to print an error message (usually but not
6e649e65 1651always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1652@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1653here is the definition we will use:
bfa74976
RS
1654
1655@example
1656@group
1657#include <stdio.h>
1658
38a92d50 1659/* Called by yyparse on error. */
13863333 1660void
38a92d50 1661yyerror (char const *s)
bfa74976 1662@{
4e03e201 1663 fprintf (stderr, "%s\n", s);
bfa74976
RS
1664@}
1665@end group
1666@end example
1667
1668After @code{yyerror} returns, the Bison parser may recover from the error
1669and continue parsing if the grammar contains a suitable error rule
1670(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1671have not written any error rules in this example, so any invalid input will
1672cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1673real calculator, but it is adequate for the first example.
bfa74976 1674
342b8b6e 1675@node Rpcalc Gen
bfa74976
RS
1676@subsection Running Bison to Make the Parser
1677@cindex running Bison (introduction)
1678
ceed8467
AD
1679Before running Bison to produce a parser, we need to decide how to
1680arrange all the source code in one or more source files. For such a
1681simple example, the easiest thing is to put everything in one file. The
1682definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1683end, in the epilogue of the file
75f5aaea 1684(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1685
1686For a large project, you would probably have several source files, and use
1687@code{make} to arrange to recompile them.
1688
1689With all the source in a single file, you use the following command to
1690convert it into a parser file:
1691
1692@example
1693bison @var{file_name}.y
1694@end example
1695
1696@noindent
1697In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1698@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1699removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1700Bison contains the source code for @code{yyparse}. The additional
1701functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1702are copied verbatim to the output.
1703
342b8b6e 1704@node Rpcalc Compile
bfa74976
RS
1705@subsection Compiling the Parser File
1706@cindex compiling the parser
1707
1708Here is how to compile and run the parser file:
1709
1710@example
1711@group
1712# @r{List files in current directory.}
9edcd895 1713$ @kbd{ls}
bfa74976
RS
1714rpcalc.tab.c rpcalc.y
1715@end group
1716
1717@group
1718# @r{Compile the Bison parser.}
1719# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1720$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1721@end group
1722
1723@group
1724# @r{List files again.}
9edcd895 1725$ @kbd{ls}
bfa74976
RS
1726rpcalc rpcalc.tab.c rpcalc.y
1727@end group
1728@end example
1729
1730The file @file{rpcalc} now contains the executable code. Here is an
1731example session using @code{rpcalc}.
1732
1733@example
9edcd895
AD
1734$ @kbd{rpcalc}
1735@kbd{4 9 +}
bfa74976 173613
9edcd895 1737@kbd{3 7 + 3 4 5 *+-}
bfa74976 1738-13
9edcd895 1739@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 174013
9edcd895 1741@kbd{5 6 / 4 n +}
bfa74976 1742-3.166666667
9edcd895 1743@kbd{3 4 ^} @r{Exponentiation}
bfa74976 174481
9edcd895
AD
1745@kbd{^D} @r{End-of-file indicator}
1746$
bfa74976
RS
1747@end example
1748
342b8b6e 1749@node Infix Calc
bfa74976
RS
1750@section Infix Notation Calculator: @code{calc}
1751@cindex infix notation calculator
1752@cindex @code{calc}
1753@cindex calculator, infix notation
1754
1755We now modify rpcalc to handle infix operators instead of postfix. Infix
1756notation involves the concept of operator precedence and the need for
1757parentheses nested to arbitrary depth. Here is the Bison code for
1758@file{calc.y}, an infix desk-top calculator.
1759
1760@example
38a92d50 1761/* Infix notation calculator. */
bfa74976
RS
1762
1763%@{
38a92d50
PE
1764 #define YYSTYPE double
1765 #include <math.h>
1766 #include <stdio.h>
1767 int yylex (void);
1768 void yyerror (char const *);
bfa74976
RS
1769%@}
1770
38a92d50 1771/* Bison declarations. */
bfa74976
RS
1772%token NUM
1773%left '-' '+'
1774%left '*' '/'
1775%left NEG /* negation--unary minus */
38a92d50 1776%right '^' /* exponentiation */
bfa74976 1777
38a92d50
PE
1778%% /* The grammar follows. */
1779input: /* empty */
bfa74976
RS
1780 | input line
1781;
1782
1783line: '\n'
1784 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1785;
1786
1787exp: NUM @{ $$ = $1; @}
1788 | exp '+' exp @{ $$ = $1 + $3; @}
1789 | exp '-' exp @{ $$ = $1 - $3; @}
1790 | exp '*' exp @{ $$ = $1 * $3; @}
1791 | exp '/' exp @{ $$ = $1 / $3; @}
1792 | '-' exp %prec NEG @{ $$ = -$2; @}
1793 | exp '^' exp @{ $$ = pow ($1, $3); @}
1794 | '(' exp ')' @{ $$ = $2; @}
1795;
1796%%
1797@end example
1798
1799@noindent
ceed8467
AD
1800The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1801same as before.
bfa74976
RS
1802
1803There are two important new features shown in this code.
1804
1805In the second section (Bison declarations), @code{%left} declares token
1806types and says they are left-associative operators. The declarations
1807@code{%left} and @code{%right} (right associativity) take the place of
1808@code{%token} which is used to declare a token type name without
1809associativity. (These tokens are single-character literals, which
1810ordinarily don't need to be declared. We declare them here to specify
1811the associativity.)
1812
1813Operator precedence is determined by the line ordering of the
1814declarations; the higher the line number of the declaration (lower on
1815the page or screen), the higher the precedence. Hence, exponentiation
1816has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1817by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1818Precedence}.
bfa74976 1819
704a47c4
AD
1820The other important new feature is the @code{%prec} in the grammar
1821section for the unary minus operator. The @code{%prec} simply instructs
1822Bison that the rule @samp{| '-' exp} has the same precedence as
1823@code{NEG}---in this case the next-to-highest. @xref{Contextual
1824Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1825
1826Here is a sample run of @file{calc.y}:
1827
1828@need 500
1829@example
9edcd895
AD
1830$ @kbd{calc}
1831@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18326.880952381
9edcd895 1833@kbd{-56 + 2}
bfa74976 1834-54
9edcd895 1835@kbd{3 ^ 2}
bfa74976
RS
18369
1837@end example
1838
342b8b6e 1839@node Simple Error Recovery
bfa74976
RS
1840@section Simple Error Recovery
1841@cindex error recovery, simple
1842
1843Up to this point, this manual has not addressed the issue of @dfn{error
1844recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1845error. All we have handled is error reporting with @code{yyerror}.
1846Recall that by default @code{yyparse} returns after calling
1847@code{yyerror}. This means that an erroneous input line causes the
1848calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1849
1850The Bison language itself includes the reserved word @code{error}, which
1851may be included in the grammar rules. In the example below it has
1852been added to one of the alternatives for @code{line}:
1853
1854@example
1855@group
1856line: '\n'
1857 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1858 | error '\n' @{ yyerrok; @}
1859;
1860@end group
1861@end example
1862
ceed8467 1863This addition to the grammar allows for simple error recovery in the
6e649e65 1864event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1865read, the error will be recognized by the third rule for @code{line},
1866and parsing will continue. (The @code{yyerror} function is still called
1867upon to print its message as well.) The action executes the statement
1868@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1869that error recovery is complete (@pxref{Error Recovery}). Note the
1870difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1871misprint.
bfa74976
RS
1872
1873This form of error recovery deals with syntax errors. There are other
1874kinds of errors; for example, division by zero, which raises an exception
1875signal that is normally fatal. A real calculator program must handle this
1876signal and use @code{longjmp} to return to @code{main} and resume parsing
1877input lines; it would also have to discard the rest of the current line of
1878input. We won't discuss this issue further because it is not specific to
1879Bison programs.
1880
342b8b6e
AD
1881@node Location Tracking Calc
1882@section Location Tracking Calculator: @code{ltcalc}
1883@cindex location tracking calculator
1884@cindex @code{ltcalc}
1885@cindex calculator, location tracking
1886
9edcd895
AD
1887This example extends the infix notation calculator with location
1888tracking. This feature will be used to improve the error messages. For
1889the sake of clarity, this example is a simple integer calculator, since
1890most of the work needed to use locations will be done in the lexical
72d2299c 1891analyzer.
342b8b6e
AD
1892
1893@menu
1894* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1895* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1896* Lexer: Ltcalc Lexer. The lexical analyzer.
1897@end menu
1898
1899@node Ltcalc Decls
1900@subsection Declarations for @code{ltcalc}
1901
9edcd895
AD
1902The C and Bison declarations for the location tracking calculator are
1903the same as the declarations for the infix notation calculator.
342b8b6e
AD
1904
1905@example
1906/* Location tracking calculator. */
1907
1908%@{
38a92d50
PE
1909 #define YYSTYPE int
1910 #include <math.h>
1911 int yylex (void);
1912 void yyerror (char const *);
342b8b6e
AD
1913%@}
1914
1915/* Bison declarations. */
1916%token NUM
1917
1918%left '-' '+'
1919%left '*' '/'
1920%left NEG
1921%right '^'
1922
38a92d50 1923%% /* The grammar follows. */
342b8b6e
AD
1924@end example
1925
9edcd895
AD
1926@noindent
1927Note there are no declarations specific to locations. Defining a data
1928type for storing locations is not needed: we will use the type provided
1929by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1930four member structure with the following integer fields:
1931@code{first_line}, @code{first_column}, @code{last_line} and
1932@code{last_column}.
342b8b6e
AD
1933
1934@node Ltcalc Rules
1935@subsection Grammar Rules for @code{ltcalc}
1936
9edcd895
AD
1937Whether handling locations or not has no effect on the syntax of your
1938language. Therefore, grammar rules for this example will be very close
1939to those of the previous example: we will only modify them to benefit
1940from the new information.
342b8b6e 1941
9edcd895
AD
1942Here, we will use locations to report divisions by zero, and locate the
1943wrong expressions or subexpressions.
342b8b6e
AD
1944
1945@example
1946@group
1947input : /* empty */
1948 | input line
1949;
1950@end group
1951
1952@group
1953line : '\n'
1954 | exp '\n' @{ printf ("%d\n", $1); @}
1955;
1956@end group
1957
1958@group
1959exp : NUM @{ $$ = $1; @}
1960 | exp '+' exp @{ $$ = $1 + $3; @}
1961 | exp '-' exp @{ $$ = $1 - $3; @}
1962 | exp '*' exp @{ $$ = $1 * $3; @}
1963@end group
342b8b6e 1964@group
9edcd895 1965 | exp '/' exp
342b8b6e
AD
1966 @{
1967 if ($3)
1968 $$ = $1 / $3;
1969 else
1970 @{
1971 $$ = 1;
9edcd895
AD
1972 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1973 @@3.first_line, @@3.first_column,
1974 @@3.last_line, @@3.last_column);
342b8b6e
AD
1975 @}
1976 @}
1977@end group
1978@group
1979 | '-' exp %preg NEG @{ $$ = -$2; @}
1980 | exp '^' exp @{ $$ = pow ($1, $3); @}
1981 | '(' exp ')' @{ $$ = $2; @}
1982@end group
1983@end example
1984
1985This code shows how to reach locations inside of semantic actions, by
1986using the pseudo-variables @code{@@@var{n}} for rule components, and the
1987pseudo-variable @code{@@$} for groupings.
1988
9edcd895
AD
1989We don't need to assign a value to @code{@@$}: the output parser does it
1990automatically. By default, before executing the C code of each action,
1991@code{@@$} is set to range from the beginning of @code{@@1} to the end
1992of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
1993can be redefined (@pxref{Location Default Action, , Default Action for
1994Locations}), and for very specific rules, @code{@@$} can be computed by
1995hand.
342b8b6e
AD
1996
1997@node Ltcalc Lexer
1998@subsection The @code{ltcalc} Lexical Analyzer.
1999
9edcd895 2000Until now, we relied on Bison's defaults to enable location
72d2299c 2001tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2002able to feed the parser with the token locations, as it already does for
2003semantic values.
342b8b6e 2004
9edcd895
AD
2005To this end, we must take into account every single character of the
2006input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2007
2008@example
2009@group
2010int
2011yylex (void)
2012@{
2013 int c;
18b519c0 2014@end group
342b8b6e 2015
18b519c0 2016@group
72d2299c 2017 /* Skip white space. */
342b8b6e
AD
2018 while ((c = getchar ()) == ' ' || c == '\t')
2019 ++yylloc.last_column;
18b519c0 2020@end group
342b8b6e 2021
18b519c0 2022@group
72d2299c 2023 /* Step. */
342b8b6e
AD
2024 yylloc.first_line = yylloc.last_line;
2025 yylloc.first_column = yylloc.last_column;
2026@end group
2027
2028@group
72d2299c 2029 /* Process numbers. */
342b8b6e
AD
2030 if (isdigit (c))
2031 @{
2032 yylval = c - '0';
2033 ++yylloc.last_column;
2034 while (isdigit (c = getchar ()))
2035 @{
2036 ++yylloc.last_column;
2037 yylval = yylval * 10 + c - '0';
2038 @}
2039 ungetc (c, stdin);
2040 return NUM;
2041 @}
2042@end group
2043
72d2299c 2044 /* Return end-of-input. */
342b8b6e
AD
2045 if (c == EOF)
2046 return 0;
2047
72d2299c 2048 /* Return a single char, and update location. */
342b8b6e
AD
2049 if (c == '\n')
2050 @{
2051 ++yylloc.last_line;
2052 yylloc.last_column = 0;
2053 @}
2054 else
2055 ++yylloc.last_column;
2056 return c;
2057@}
2058@end example
2059
9edcd895
AD
2060Basically, the lexical analyzer performs the same processing as before:
2061it skips blanks and tabs, and reads numbers or single-character tokens.
2062In addition, it updates @code{yylloc}, the global variable (of type
2063@code{YYLTYPE}) containing the token's location.
342b8b6e 2064
9edcd895 2065Now, each time this function returns a token, the parser has its number
72d2299c 2066as well as its semantic value, and its location in the text. The last
9edcd895
AD
2067needed change is to initialize @code{yylloc}, for example in the
2068controlling function:
342b8b6e
AD
2069
2070@example
9edcd895 2071@group
342b8b6e
AD
2072int
2073main (void)
2074@{
2075 yylloc.first_line = yylloc.last_line = 1;
2076 yylloc.first_column = yylloc.last_column = 0;
2077 return yyparse ();
2078@}
9edcd895 2079@end group
342b8b6e
AD
2080@end example
2081
9edcd895
AD
2082Remember that computing locations is not a matter of syntax. Every
2083character must be associated to a location update, whether it is in
2084valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2085
2086@node Multi-function Calc
bfa74976
RS
2087@section Multi-Function Calculator: @code{mfcalc}
2088@cindex multi-function calculator
2089@cindex @code{mfcalc}
2090@cindex calculator, multi-function
2091
2092Now that the basics of Bison have been discussed, it is time to move on to
2093a more advanced problem. The above calculators provided only five
2094functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2095be nice to have a calculator that provides other mathematical functions such
2096as @code{sin}, @code{cos}, etc.
2097
2098It is easy to add new operators to the infix calculator as long as they are
2099only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2100back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2101adding a new operator. But we want something more flexible: built-in
2102functions whose syntax has this form:
2103
2104@example
2105@var{function_name} (@var{argument})
2106@end example
2107
2108@noindent
2109At the same time, we will add memory to the calculator, by allowing you
2110to create named variables, store values in them, and use them later.
2111Here is a sample session with the multi-function calculator:
2112
2113@example
9edcd895
AD
2114$ @kbd{mfcalc}
2115@kbd{pi = 3.141592653589}
bfa74976 21163.1415926536
9edcd895 2117@kbd{sin(pi)}
bfa74976 21180.0000000000
9edcd895 2119@kbd{alpha = beta1 = 2.3}
bfa74976 21202.3000000000
9edcd895 2121@kbd{alpha}
bfa74976 21222.3000000000
9edcd895 2123@kbd{ln(alpha)}
bfa74976 21240.8329091229
9edcd895 2125@kbd{exp(ln(beta1))}
bfa74976 21262.3000000000
9edcd895 2127$
bfa74976
RS
2128@end example
2129
2130Note that multiple assignment and nested function calls are permitted.
2131
2132@menu
2133* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2134* Rules: Mfcalc Rules. Grammar rules for the calculator.
2135* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2136@end menu
2137
342b8b6e 2138@node Mfcalc Decl
bfa74976
RS
2139@subsection Declarations for @code{mfcalc}
2140
2141Here are the C and Bison declarations for the multi-function calculator.
2142
2143@smallexample
18b519c0 2144@group
bfa74976 2145%@{
38a92d50
PE
2146 #include <math.h> /* For math functions, cos(), sin(), etc. */
2147 #include "calc.h" /* Contains definition of `symrec'. */
2148 int yylex (void);
2149 void yyerror (char const *);
bfa74976 2150%@}
18b519c0
AD
2151@end group
2152@group
bfa74976 2153%union @{
38a92d50
PE
2154 double val; /* For returning numbers. */
2155 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2156@}
18b519c0 2157@end group
38a92d50
PE
2158%token <val> NUM /* Simple double precision number. */
2159%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2160%type <val> exp
2161
18b519c0 2162@group
bfa74976
RS
2163%right '='
2164%left '-' '+'
2165%left '*' '/'
38a92d50
PE
2166%left NEG /* negation--unary minus */
2167%right '^' /* exponentiation */
18b519c0 2168@end group
38a92d50 2169%% /* The grammar follows. */
bfa74976
RS
2170@end smallexample
2171
2172The above grammar introduces only two new features of the Bison language.
2173These features allow semantic values to have various data types
2174(@pxref{Multiple Types, ,More Than One Value Type}).
2175
2176The @code{%union} declaration specifies the entire list of possible types;
2177this is instead of defining @code{YYSTYPE}. The allowable types are now
2178double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2179the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2180
2181Since values can now have various types, it is necessary to associate a
2182type with each grammar symbol whose semantic value is used. These symbols
2183are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2184declarations are augmented with information about their data type (placed
2185between angle brackets).
2186
704a47c4
AD
2187The Bison construct @code{%type} is used for declaring nonterminal
2188symbols, just as @code{%token} is used for declaring token types. We
2189have not used @code{%type} before because nonterminal symbols are
2190normally declared implicitly by the rules that define them. But
2191@code{exp} must be declared explicitly so we can specify its value type.
2192@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2193
342b8b6e 2194@node Mfcalc Rules
bfa74976
RS
2195@subsection Grammar Rules for @code{mfcalc}
2196
2197Here are the grammar rules for the multi-function calculator.
2198Most of them are copied directly from @code{calc}; three rules,
2199those which mention @code{VAR} or @code{FNCT}, are new.
2200
2201@smallexample
18b519c0 2202@group
bfa74976
RS
2203input: /* empty */
2204 | input line
2205;
18b519c0 2206@end group
bfa74976 2207
18b519c0 2208@group
bfa74976
RS
2209line:
2210 '\n'
2211 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2212 | error '\n' @{ yyerrok; @}
2213;
18b519c0 2214@end group
bfa74976 2215
18b519c0 2216@group
bfa74976
RS
2217exp: NUM @{ $$ = $1; @}
2218 | VAR @{ $$ = $1->value.var; @}
2219 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2220 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2221 | exp '+' exp @{ $$ = $1 + $3; @}
2222 | exp '-' exp @{ $$ = $1 - $3; @}
2223 | exp '*' exp @{ $$ = $1 * $3; @}
2224 | exp '/' exp @{ $$ = $1 / $3; @}
2225 | '-' exp %prec NEG @{ $$ = -$2; @}
2226 | exp '^' exp @{ $$ = pow ($1, $3); @}
2227 | '(' exp ')' @{ $$ = $2; @}
2228;
18b519c0 2229@end group
38a92d50 2230/* End of grammar. */
bfa74976
RS
2231%%
2232@end smallexample
2233
342b8b6e 2234@node Mfcalc Symtab
bfa74976
RS
2235@subsection The @code{mfcalc} Symbol Table
2236@cindex symbol table example
2237
2238The multi-function calculator requires a symbol table to keep track of the
2239names and meanings of variables and functions. This doesn't affect the
2240grammar rules (except for the actions) or the Bison declarations, but it
2241requires some additional C functions for support.
2242
2243The symbol table itself consists of a linked list of records. Its
2244definition, which is kept in the header @file{calc.h}, is as follows. It
2245provides for either functions or variables to be placed in the table.
2246
2247@smallexample
2248@group
38a92d50 2249/* Function type. */
32dfccf8 2250typedef double (*func_t) (double);
72f889cc 2251@end group
32dfccf8 2252
72f889cc 2253@group
38a92d50 2254/* Data type for links in the chain of symbols. */
bfa74976
RS
2255struct symrec
2256@{
38a92d50 2257 char *name; /* name of symbol */
bfa74976 2258 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2259 union
2260 @{
38a92d50
PE
2261 double var; /* value of a VAR */
2262 func_t fnctptr; /* value of a FNCT */
bfa74976 2263 @} value;
38a92d50 2264 struct symrec *next; /* link field */
bfa74976
RS
2265@};
2266@end group
2267
2268@group
2269typedef struct symrec symrec;
2270
38a92d50 2271/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2272extern symrec *sym_table;
2273
38a92d50
PE
2274symrec *putsym (char const *, func_t);
2275symrec *getsym (char const *);
bfa74976
RS
2276@end group
2277@end smallexample
2278
2279The new version of @code{main} includes a call to @code{init_table}, a
2280function that initializes the symbol table. Here it is, and
2281@code{init_table} as well:
2282
2283@smallexample
bfa74976
RS
2284#include <stdio.h>
2285
18b519c0 2286@group
38a92d50 2287/* Called by yyparse on error. */
13863333 2288void
38a92d50 2289yyerror (char const *s)
bfa74976
RS
2290@{
2291 printf ("%s\n", s);
2292@}
18b519c0 2293@end group
bfa74976 2294
18b519c0 2295@group
bfa74976
RS
2296struct init
2297@{
38a92d50
PE
2298 char const *fname;
2299 double (*fnct) (double);
bfa74976
RS
2300@};
2301@end group
2302
2303@group
38a92d50 2304struct init const arith_fncts[] =
13863333 2305@{
32dfccf8
AD
2306 "sin", sin,
2307 "cos", cos,
13863333 2308 "atan", atan,
32dfccf8
AD
2309 "ln", log,
2310 "exp", exp,
13863333
AD
2311 "sqrt", sqrt,
2312 0, 0
2313@};
18b519c0 2314@end group
bfa74976 2315
18b519c0 2316@group
bfa74976 2317/* The symbol table: a chain of `struct symrec'. */
38a92d50 2318symrec *sym_table;
bfa74976
RS
2319@end group
2320
2321@group
72d2299c 2322/* Put arithmetic functions in table. */
13863333
AD
2323void
2324init_table (void)
bfa74976
RS
2325@{
2326 int i;
2327 symrec *ptr;
2328 for (i = 0; arith_fncts[i].fname != 0; i++)
2329 @{
2330 ptr = putsym (arith_fncts[i].fname, FNCT);
2331 ptr->value.fnctptr = arith_fncts[i].fnct;
2332 @}
2333@}
2334@end group
38a92d50
PE
2335
2336@group
2337int
2338main (void)
2339@{
2340 init_table ();
2341 return yyparse ();
2342@}
2343@end group
bfa74976
RS
2344@end smallexample
2345
2346By simply editing the initialization list and adding the necessary include
2347files, you can add additional functions to the calculator.
2348
2349Two important functions allow look-up and installation of symbols in the
2350symbol table. The function @code{putsym} is passed a name and the type
2351(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2352linked to the front of the list, and a pointer to the object is returned.
2353The function @code{getsym} is passed the name of the symbol to look up. If
2354found, a pointer to that symbol is returned; otherwise zero is returned.
2355
2356@smallexample
2357symrec *
38a92d50 2358putsym (char const *sym_name, int sym_type)
bfa74976
RS
2359@{
2360 symrec *ptr;
2361 ptr = (symrec *) malloc (sizeof (symrec));
2362 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2363 strcpy (ptr->name,sym_name);
2364 ptr->type = sym_type;
72d2299c 2365 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2366 ptr->next = (struct symrec *)sym_table;
2367 sym_table = ptr;
2368 return ptr;
2369@}
2370
2371symrec *
38a92d50 2372getsym (char const *sym_name)
bfa74976
RS
2373@{
2374 symrec *ptr;
2375 for (ptr = sym_table; ptr != (symrec *) 0;
2376 ptr = (symrec *)ptr->next)
2377 if (strcmp (ptr->name,sym_name) == 0)
2378 return ptr;
2379 return 0;
2380@}
2381@end smallexample
2382
2383The function @code{yylex} must now recognize variables, numeric values, and
2384the single-character arithmetic operators. Strings of alphanumeric
14ded682 2385characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2386functions depending on what the symbol table says about them.
2387
2388The string is passed to @code{getsym} for look up in the symbol table. If
2389the name appears in the table, a pointer to its location and its type
2390(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2391already in the table, then it is installed as a @code{VAR} using
2392@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2393returned to @code{yyparse}.
bfa74976
RS
2394
2395No change is needed in the handling of numeric values and arithmetic
2396operators in @code{yylex}.
2397
2398@smallexample
2399@group
2400#include <ctype.h>
18b519c0 2401@end group
13863333 2402
18b519c0 2403@group
13863333
AD
2404int
2405yylex (void)
bfa74976
RS
2406@{
2407 int c;
2408
72d2299c 2409 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2410 while ((c = getchar ()) == ' ' || c == '\t');
2411
2412 if (c == EOF)
2413 return 0;
2414@end group
2415
2416@group
2417 /* Char starts a number => parse the number. */
2418 if (c == '.' || isdigit (c))
2419 @{
2420 ungetc (c, stdin);
2421 scanf ("%lf", &yylval.val);
2422 return NUM;
2423 @}
2424@end group
2425
2426@group
2427 /* Char starts an identifier => read the name. */
2428 if (isalpha (c))
2429 @{
2430 symrec *s;
2431 static char *symbuf = 0;
2432 static int length = 0;
2433 int i;
2434@end group
2435
2436@group
2437 /* Initially make the buffer long enough
2438 for a 40-character symbol name. */
2439 if (length == 0)
2440 length = 40, symbuf = (char *)malloc (length + 1);
2441
2442 i = 0;
2443 do
2444@end group
2445@group
2446 @{
2447 /* If buffer is full, make it bigger. */
2448 if (i == length)
2449 @{
2450 length *= 2;
18b519c0 2451 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2452 @}
2453 /* Add this character to the buffer. */
2454 symbuf[i++] = c;
2455 /* Get another character. */
2456 c = getchar ();
2457 @}
2458@end group
2459@group
72d2299c 2460 while (isalnum (c));
bfa74976
RS
2461
2462 ungetc (c, stdin);
2463 symbuf[i] = '\0';
2464@end group
2465
2466@group
2467 s = getsym (symbuf);
2468 if (s == 0)
2469 s = putsym (symbuf, VAR);
2470 yylval.tptr = s;
2471 return s->type;
2472 @}
2473
2474 /* Any other character is a token by itself. */
2475 return c;
2476@}
2477@end group
2478@end smallexample
2479
72d2299c 2480This program is both powerful and flexible. You may easily add new
704a47c4
AD
2481functions, and it is a simple job to modify this code to install
2482predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2483
342b8b6e 2484@node Exercises
bfa74976
RS
2485@section Exercises
2486@cindex exercises
2487
2488@enumerate
2489@item
2490Add some new functions from @file{math.h} to the initialization list.
2491
2492@item
2493Add another array that contains constants and their values. Then
2494modify @code{init_table} to add these constants to the symbol table.
2495It will be easiest to give the constants type @code{VAR}.
2496
2497@item
2498Make the program report an error if the user refers to an
2499uninitialized variable in any way except to store a value in it.
2500@end enumerate
2501
342b8b6e 2502@node Grammar File
bfa74976
RS
2503@chapter Bison Grammar Files
2504
2505Bison takes as input a context-free grammar specification and produces a
2506C-language function that recognizes correct instances of the grammar.
2507
2508The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2509@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2510
2511@menu
2512* Grammar Outline:: Overall layout of the grammar file.
2513* Symbols:: Terminal and nonterminal symbols.
2514* Rules:: How to write grammar rules.
2515* Recursion:: Writing recursive rules.
2516* Semantics:: Semantic values and actions.
847bf1f5 2517* Locations:: Locations and actions.
bfa74976
RS
2518* Declarations:: All kinds of Bison declarations are described here.
2519* Multiple Parsers:: Putting more than one Bison parser in one program.
2520@end menu
2521
342b8b6e 2522@node Grammar Outline
bfa74976
RS
2523@section Outline of a Bison Grammar
2524
2525A Bison grammar file has four main sections, shown here with the
2526appropriate delimiters:
2527
2528@example
2529%@{
38a92d50 2530 @var{Prologue}
bfa74976
RS
2531%@}
2532
2533@var{Bison declarations}
2534
2535%%
2536@var{Grammar rules}
2537%%
2538
75f5aaea 2539@var{Epilogue}
bfa74976
RS
2540@end example
2541
2542Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2543As a @acronym{GNU} extension, @samp{//} introduces a comment that
2544continues until end of line.
bfa74976
RS
2545
2546@menu
75f5aaea 2547* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2548* Bison Declarations:: Syntax and usage of the Bison declarations section.
2549* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2550* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2551@end menu
2552
38a92d50 2553@node Prologue
75f5aaea
MA
2554@subsection The prologue
2555@cindex declarations section
2556@cindex Prologue
2557@cindex declarations
bfa74976 2558
08e49d20 2559The @var{Prologue} section contains macro definitions and
bfa74976
RS
2560declarations of functions and variables that are used in the actions in the
2561grammar rules. These are copied to the beginning of the parser file so
2562that they precede the definition of @code{yyparse}. You can use
2563@samp{#include} to get the declarations from a header file. If you don't
2564need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2565delimiters that bracket this section.
2566
c732d2c6
AD
2567You may have more than one @var{Prologue} section, intermixed with the
2568@var{Bison declarations}. This allows you to have C and Bison
2569declarations that refer to each other. For example, the @code{%union}
2570declaration may use types defined in a header file, and you may wish to
2571prototype functions that take arguments of type @code{YYSTYPE}. This
2572can be done with two @var{Prologue} blocks, one before and one after the
2573@code{%union} declaration.
2574
2575@smallexample
2576%@{
38a92d50
PE
2577 #include <stdio.h>
2578 #include "ptypes.h"
c732d2c6
AD
2579%@}
2580
2581%union @{
779e7ceb 2582 long int n;
c732d2c6
AD
2583 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2584@}
2585
2586%@{
38a92d50
PE
2587 static void print_token_value (FILE *, int, YYSTYPE);
2588 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2589%@}
2590
2591@dots{}
2592@end smallexample
2593
342b8b6e 2594@node Bison Declarations
bfa74976
RS
2595@subsection The Bison Declarations Section
2596@cindex Bison declarations (introduction)
2597@cindex declarations, Bison (introduction)
2598
2599The @var{Bison declarations} section contains declarations that define
2600terminal and nonterminal symbols, specify precedence, and so on.
2601In some simple grammars you may not need any declarations.
2602@xref{Declarations, ,Bison Declarations}.
2603
342b8b6e 2604@node Grammar Rules
bfa74976
RS
2605@subsection The Grammar Rules Section
2606@cindex grammar rules section
2607@cindex rules section for grammar
2608
2609The @dfn{grammar rules} section contains one or more Bison grammar
2610rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2611
2612There must always be at least one grammar rule, and the first
2613@samp{%%} (which precedes the grammar rules) may never be omitted even
2614if it is the first thing in the file.
2615
38a92d50 2616@node Epilogue
75f5aaea 2617@subsection The epilogue
bfa74976 2618@cindex additional C code section
75f5aaea 2619@cindex epilogue
bfa74976
RS
2620@cindex C code, section for additional
2621
08e49d20
PE
2622The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2623the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2624place to put anything that you want to have in the parser file but which need
2625not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2626definitions of @code{yylex} and @code{yyerror} often go here. Because
2627C requires functions to be declared before being used, you often need
2628to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
2629even if you define them int he Epilogue.
75f5aaea 2630@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2631
2632If the last section is empty, you may omit the @samp{%%} that separates it
2633from the grammar rules.
2634
38a92d50
PE
2635The Bison parser itself contains many macros and identifiers whose
2636names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2637good idea to avoid using any such names (except those documented in this
75f5aaea 2638manual) in the epilogue of the grammar file.
bfa74976 2639
342b8b6e 2640@node Symbols
bfa74976
RS
2641@section Symbols, Terminal and Nonterminal
2642@cindex nonterminal symbol
2643@cindex terminal symbol
2644@cindex token type
2645@cindex symbol
2646
2647@dfn{Symbols} in Bison grammars represent the grammatical classifications
2648of the language.
2649
2650A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2651class of syntactically equivalent tokens. You use the symbol in grammar
2652rules to mean that a token in that class is allowed. The symbol is
2653represented in the Bison parser by a numeric code, and the @code{yylex}
2654function returns a token type code to indicate what kind of token has been
2655read. You don't need to know what the code value is; you can use the
2656symbol to stand for it.
2657
2658A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2659groupings. The symbol name is used in writing grammar rules. By convention,
2660it should be all lower case.
2661
2662Symbol names can contain letters, digits (not at the beginning),
2663underscores and periods. Periods make sense only in nonterminals.
2664
931c7513 2665There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2666
2667@itemize @bullet
2668@item
2669A @dfn{named token type} is written with an identifier, like an
c827f760 2670identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2671such name must be defined with a Bison declaration such as
2672@code{%token}. @xref{Token Decl, ,Token Type Names}.
2673
2674@item
2675@cindex character token
2676@cindex literal token
2677@cindex single-character literal
931c7513
RS
2678A @dfn{character token type} (or @dfn{literal character token}) is
2679written in the grammar using the same syntax used in C for character
2680constants; for example, @code{'+'} is a character token type. A
2681character token type doesn't need to be declared unless you need to
2682specify its semantic value data type (@pxref{Value Type, ,Data Types of
2683Semantic Values}), associativity, or precedence (@pxref{Precedence,
2684,Operator Precedence}).
bfa74976
RS
2685
2686By convention, a character token type is used only to represent a
2687token that consists of that particular character. Thus, the token
2688type @code{'+'} is used to represent the character @samp{+} as a
2689token. Nothing enforces this convention, but if you depart from it,
2690your program will confuse other readers.
2691
2692All the usual escape sequences used in character literals in C can be
2693used in Bison as well, but you must not use the null character as a
72d2299c
PE
2694character literal because its numeric code, zero, signifies
2695end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2696for @code{yylex}}). Also, unlike standard C, trigraphs have no
2697special meaning in Bison character literals, nor is backslash-newline
2698allowed.
931c7513
RS
2699
2700@item
2701@cindex string token
2702@cindex literal string token
9ecbd125 2703@cindex multicharacter literal
931c7513
RS
2704A @dfn{literal string token} is written like a C string constant; for
2705example, @code{"<="} is a literal string token. A literal string token
2706doesn't need to be declared unless you need to specify its semantic
14ded682 2707value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2708(@pxref{Precedence}).
2709
2710You can associate the literal string token with a symbolic name as an
2711alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2712Declarations}). If you don't do that, the lexical analyzer has to
2713retrieve the token number for the literal string token from the
2714@code{yytname} table (@pxref{Calling Convention}).
2715
c827f760 2716@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2717
2718By convention, a literal string token is used only to represent a token
2719that consists of that particular string. Thus, you should use the token
2720type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2721does not enforce this convention, but if you depart from it, people who
931c7513
RS
2722read your program will be confused.
2723
2724All the escape sequences used in string literals in C can be used in
92ac3705
PE
2725Bison as well, except that you must not use a null character within a
2726string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2727meaning in Bison string literals, nor is backslash-newline allowed. A
2728literal string token must contain two or more characters; for a token
2729containing just one character, use a character token (see above).
bfa74976
RS
2730@end itemize
2731
2732How you choose to write a terminal symbol has no effect on its
2733grammatical meaning. That depends only on where it appears in rules and
2734on when the parser function returns that symbol.
2735
72d2299c
PE
2736The value returned by @code{yylex} is always one of the terminal
2737symbols, except that a zero or negative value signifies end-of-input.
2738Whichever way you write the token type in the grammar rules, you write
2739it the same way in the definition of @code{yylex}. The numeric code
2740for a character token type is simply the positive numeric code of the
2741character, so @code{yylex} can use the identical value to generate the
2742requisite code, though you may need to convert it to @code{unsigned
2743char} to avoid sign-extension on hosts where @code{char} is signed.
2744Each named token type becomes a C macro in
bfa74976 2745the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2746(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2747@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2748
2749If @code{yylex} is defined in a separate file, you need to arrange for the
2750token-type macro definitions to be available there. Use the @samp{-d}
2751option when you run Bison, so that it will write these macro definitions
2752into a separate header file @file{@var{name}.tab.h} which you can include
2753in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2754
72d2299c
PE
2755If you want to write a grammar that is portable to any Standard C
2756host, you must use only non-null character tokens taken from the basic
c827f760 2757execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2758digits, the 52 lower- and upper-case English letters, and the
2759characters in the following C-language string:
2760
2761@example
2762"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2763@end example
2764
2765The @code{yylex} function and Bison must use a consistent character
2766set and encoding for character tokens. For example, if you run Bison in an
c827f760 2767@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2768in an environment that uses an incompatible character set like
c827f760
PE
2769@acronym{EBCDIC}, the resulting program may not work because the
2770tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2771character tokens. It is standard
e966383b 2772practice for software distributions to contain C source files that
c827f760
PE
2773were generated by Bison in an @acronym{ASCII} environment, so installers on
2774platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2775files before compiling them.
2776
bfa74976
RS
2777The symbol @code{error} is a terminal symbol reserved for error recovery
2778(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2779In particular, @code{yylex} should never return this value. The default
2780value of the error token is 256, unless you explicitly assigned 256 to
2781one of your tokens with a @code{%token} declaration.
bfa74976 2782
342b8b6e 2783@node Rules
bfa74976
RS
2784@section Syntax of Grammar Rules
2785@cindex rule syntax
2786@cindex grammar rule syntax
2787@cindex syntax of grammar rules
2788
2789A Bison grammar rule has the following general form:
2790
2791@example
e425e872 2792@group
bfa74976
RS
2793@var{result}: @var{components}@dots{}
2794 ;
e425e872 2795@end group
bfa74976
RS
2796@end example
2797
2798@noindent
9ecbd125 2799where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2800and @var{components} are various terminal and nonterminal symbols that
13863333 2801are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2802
2803For example,
2804
2805@example
2806@group
2807exp: exp '+' exp
2808 ;
2809@end group
2810@end example
2811
2812@noindent
2813says that two groupings of type @code{exp}, with a @samp{+} token in between,
2814can be combined into a larger grouping of type @code{exp}.
2815
72d2299c
PE
2816White space in rules is significant only to separate symbols. You can add
2817extra white space as you wish.
bfa74976
RS
2818
2819Scattered among the components can be @var{actions} that determine
2820the semantics of the rule. An action looks like this:
2821
2822@example
2823@{@var{C statements}@}
2824@end example
2825
2826@noindent
2827Usually there is only one action and it follows the components.
2828@xref{Actions}.
2829
2830@findex |
2831Multiple rules for the same @var{result} can be written separately or can
2832be joined with the vertical-bar character @samp{|} as follows:
2833
2834@ifinfo
2835@example
2836@var{result}: @var{rule1-components}@dots{}
2837 | @var{rule2-components}@dots{}
2838 @dots{}
2839 ;
2840@end example
2841@end ifinfo
2842@iftex
2843@example
2844@group
2845@var{result}: @var{rule1-components}@dots{}
2846 | @var{rule2-components}@dots{}
2847 @dots{}
2848 ;
2849@end group
2850@end example
2851@end iftex
2852
2853@noindent
2854They are still considered distinct rules even when joined in this way.
2855
2856If @var{components} in a rule is empty, it means that @var{result} can
2857match the empty string. For example, here is how to define a
2858comma-separated sequence of zero or more @code{exp} groupings:
2859
2860@example
2861@group
2862expseq: /* empty */
2863 | expseq1
2864 ;
2865@end group
2866
2867@group
2868expseq1: exp
2869 | expseq1 ',' exp
2870 ;
2871@end group
2872@end example
2873
2874@noindent
2875It is customary to write a comment @samp{/* empty */} in each rule
2876with no components.
2877
342b8b6e 2878@node Recursion
bfa74976
RS
2879@section Recursive Rules
2880@cindex recursive rule
2881
2882A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2883also on its right hand side. Nearly all Bison grammars need to use
2884recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2885of a particular thing. Consider this recursive definition of a
2886comma-separated sequence of one or more expressions:
bfa74976
RS
2887
2888@example
2889@group
2890expseq1: exp
2891 | expseq1 ',' exp
2892 ;
2893@end group
2894@end example
2895
2896@cindex left recursion
2897@cindex right recursion
2898@noindent
2899Since the recursive use of @code{expseq1} is the leftmost symbol in the
2900right hand side, we call this @dfn{left recursion}. By contrast, here
2901the same construct is defined using @dfn{right recursion}:
2902
2903@example
2904@group
2905expseq1: exp
2906 | exp ',' expseq1
2907 ;
2908@end group
2909@end example
2910
2911@noindent
ec3bc396
AD
2912Any kind of sequence can be defined using either left recursion or right
2913recursion, but you should always use left recursion, because it can
2914parse a sequence of any number of elements with bounded stack space.
2915Right recursion uses up space on the Bison stack in proportion to the
2916number of elements in the sequence, because all the elements must be
2917shifted onto the stack before the rule can be applied even once.
2918@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2919of this.
bfa74976
RS
2920
2921@cindex mutual recursion
2922@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2923rule does not appear directly on its right hand side, but does appear
2924in rules for other nonterminals which do appear on its right hand
13863333 2925side.
bfa74976
RS
2926
2927For example:
2928
2929@example
2930@group
2931expr: primary
2932 | primary '+' primary
2933 ;
2934@end group
2935
2936@group
2937primary: constant
2938 | '(' expr ')'
2939 ;
2940@end group
2941@end example
2942
2943@noindent
2944defines two mutually-recursive nonterminals, since each refers to the
2945other.
2946
342b8b6e 2947@node Semantics
bfa74976
RS
2948@section Defining Language Semantics
2949@cindex defining language semantics
13863333 2950@cindex language semantics, defining
bfa74976
RS
2951
2952The grammar rules for a language determine only the syntax. The semantics
2953are determined by the semantic values associated with various tokens and
2954groupings, and by the actions taken when various groupings are recognized.
2955
2956For example, the calculator calculates properly because the value
2957associated with each expression is the proper number; it adds properly
2958because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2959the numbers associated with @var{x} and @var{y}.
2960
2961@menu
2962* Value Type:: Specifying one data type for all semantic values.
2963* Multiple Types:: Specifying several alternative data types.
2964* Actions:: An action is the semantic definition of a grammar rule.
2965* Action Types:: Specifying data types for actions to operate on.
2966* Mid-Rule Actions:: Most actions go at the end of a rule.
2967 This says when, why and how to use the exceptional
2968 action in the middle of a rule.
2969@end menu
2970
342b8b6e 2971@node Value Type
bfa74976
RS
2972@subsection Data Types of Semantic Values
2973@cindex semantic value type
2974@cindex value type, semantic
2975@cindex data types of semantic values
2976@cindex default data type
2977
2978In a simple program it may be sufficient to use the same data type for
2979the semantic values of all language constructs. This was true in the
c827f760 2980@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 2981Notation Calculator}).
bfa74976
RS
2982
2983Bison's default is to use type @code{int} for all semantic values. To
2984specify some other type, define @code{YYSTYPE} as a macro, like this:
2985
2986@example
2987#define YYSTYPE double
2988@end example
2989
2990@noindent
342b8b6e 2991This macro definition must go in the prologue of the grammar file
75f5aaea 2992(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 2993
342b8b6e 2994@node Multiple Types
bfa74976
RS
2995@subsection More Than One Value Type
2996
2997In most programs, you will need different data types for different kinds
2998of tokens and groupings. For example, a numeric constant may need type
779e7ceb 2999@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3000and an identifier might need a pointer to an entry in the symbol table.
3001
3002To use more than one data type for semantic values in one parser, Bison
3003requires you to do two things:
3004
3005@itemize @bullet
3006@item
3007Specify the entire collection of possible data types, with the
704a47c4
AD
3008@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3009Value Types}).
bfa74976
RS
3010
3011@item
14ded682
AD
3012Choose one of those types for each symbol (terminal or nonterminal) for
3013which semantic values are used. This is done for tokens with the
3014@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3015and for groupings with the @code{%type} Bison declaration (@pxref{Type
3016Decl, ,Nonterminal Symbols}).
bfa74976
RS
3017@end itemize
3018
342b8b6e 3019@node Actions
bfa74976
RS
3020@subsection Actions
3021@cindex action
3022@vindex $$
3023@vindex $@var{n}
3024
3025An action accompanies a syntactic rule and contains C code to be executed
3026each time an instance of that rule is recognized. The task of most actions
3027is to compute a semantic value for the grouping built by the rule from the
3028semantic values associated with tokens or smaller groupings.
3029
3030An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3031compound statement in C@. An action can contain any sequence of C
3032statements. Bison does not look for trigraphs, though, so if your C
3033code uses trigraphs you should ensure that they do not affect the
3034nesting of braces or the boundaries of comments, strings, or character
3035literals.
3036
3037An action can be placed at any position in the rule;
704a47c4
AD
3038it is executed at that position. Most rules have just one action at the
3039end of the rule, following all the components. Actions in the middle of
3040a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3041Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3042
3043The C code in an action can refer to the semantic values of the components
3044matched by the rule with the construct @code{$@var{n}}, which stands for
3045the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3046being constructed is @code{$$}. Bison translates both of these
3047constructs into expressions of the appropriate type when it copies the
3048actions into the parser file. @code{$$} is translated to a modifiable
3049lvalue, so it can be assigned to.
bfa74976
RS
3050
3051Here is a typical example:
3052
3053@example
3054@group
3055exp: @dots{}
3056 | exp '+' exp
3057 @{ $$ = $1 + $3; @}
3058@end group
3059@end example
3060
3061@noindent
3062This rule constructs an @code{exp} from two smaller @code{exp} groupings
3063connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3064refer to the semantic values of the two component @code{exp} groupings,
3065which are the first and third symbols on the right hand side of the rule.
3066The sum is stored into @code{$$} so that it becomes the semantic value of
3067the addition-expression just recognized by the rule. If there were a
3068useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3069referred to as @code{$2}.
bfa74976 3070
3ded9a63
AD
3071Note that the vertical-bar character @samp{|} is really a rule
3072separator, and actions are attached to a single rule. This is a
3073difference with tools like Flex, for which @samp{|} stands for either
3074``or'', or ``the same action as that of the next rule''. In the
3075following example, the action is triggered only when @samp{b} is found:
3076
3077@example
3078@group
3079a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3080@end group
3081@end example
3082
bfa74976
RS
3083@cindex default action
3084If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3085@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3086becomes the value of the whole rule. Of course, the default action is
3087valid only if the two data types match. There is no meaningful default
3088action for an empty rule; every empty rule must have an explicit action
3089unless the rule's value does not matter.
bfa74976
RS
3090
3091@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3092to tokens and groupings on the stack @emph{before} those that match the
3093current rule. This is a very risky practice, and to use it reliably
3094you must be certain of the context in which the rule is applied. Here
3095is a case in which you can use this reliably:
3096
3097@example
3098@group
3099foo: expr bar '+' expr @{ @dots{} @}
3100 | expr bar '-' expr @{ @dots{} @}
3101 ;
3102@end group
3103
3104@group
3105bar: /* empty */
3106 @{ previous_expr = $0; @}
3107 ;
3108@end group
3109@end example
3110
3111As long as @code{bar} is used only in the fashion shown here, @code{$0}
3112always refers to the @code{expr} which precedes @code{bar} in the
3113definition of @code{foo}.
3114
342b8b6e 3115@node Action Types
bfa74976
RS
3116@subsection Data Types of Values in Actions
3117@cindex action data types
3118@cindex data types in actions
3119
3120If you have chosen a single data type for semantic values, the @code{$$}
3121and @code{$@var{n}} constructs always have that data type.
3122
3123If you have used @code{%union} to specify a variety of data types, then you
3124must declare a choice among these types for each terminal or nonterminal
3125symbol that can have a semantic value. Then each time you use @code{$$} or
3126@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3127in the rule. In this example,
bfa74976
RS
3128
3129@example
3130@group
3131exp: @dots{}
3132 | exp '+' exp
3133 @{ $$ = $1 + $3; @}
3134@end group
3135@end example
3136
3137@noindent
3138@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3139have the data type declared for the nonterminal symbol @code{exp}. If
3140@code{$2} were used, it would have the data type declared for the
e0c471a9 3141terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3142
3143Alternatively, you can specify the data type when you refer to the value,
3144by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3145reference. For example, if you have defined types as shown here:
3146
3147@example
3148@group
3149%union @{
3150 int itype;
3151 double dtype;
3152@}
3153@end group
3154@end example
3155
3156@noindent
3157then you can write @code{$<itype>1} to refer to the first subunit of the
3158rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3159
342b8b6e 3160@node Mid-Rule Actions
bfa74976
RS
3161@subsection Actions in Mid-Rule
3162@cindex actions in mid-rule
3163@cindex mid-rule actions
3164
3165Occasionally it is useful to put an action in the middle of a rule.
3166These actions are written just like usual end-of-rule actions, but they
3167are executed before the parser even recognizes the following components.
3168
3169A mid-rule action may refer to the components preceding it using
3170@code{$@var{n}}, but it may not refer to subsequent components because
3171it is run before they are parsed.
3172
3173The mid-rule action itself counts as one of the components of the rule.
3174This makes a difference when there is another action later in the same rule
3175(and usually there is another at the end): you have to count the actions
3176along with the symbols when working out which number @var{n} to use in
3177@code{$@var{n}}.
3178
3179The mid-rule action can also have a semantic value. The action can set
3180its value with an assignment to @code{$$}, and actions later in the rule
3181can refer to the value using @code{$@var{n}}. Since there is no symbol
3182to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3183in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3184specify a data type each time you refer to this value.
bfa74976
RS
3185
3186There is no way to set the value of the entire rule with a mid-rule
3187action, because assignments to @code{$$} do not have that effect. The
3188only way to set the value for the entire rule is with an ordinary action
3189at the end of the rule.
3190
3191Here is an example from a hypothetical compiler, handling a @code{let}
3192statement that looks like @samp{let (@var{variable}) @var{statement}} and
3193serves to create a variable named @var{variable} temporarily for the
3194duration of @var{statement}. To parse this construct, we must put
3195@var{variable} into the symbol table while @var{statement} is parsed, then
3196remove it afterward. Here is how it is done:
3197
3198@example
3199@group
3200stmt: LET '(' var ')'
3201 @{ $<context>$ = push_context ();
3202 declare_variable ($3); @}
3203 stmt @{ $$ = $6;
3204 pop_context ($<context>5); @}
3205@end group
3206@end example
3207
3208@noindent
3209As soon as @samp{let (@var{variable})} has been recognized, the first
3210action is run. It saves a copy of the current semantic context (the
3211list of accessible variables) as its semantic value, using alternative
3212@code{context} in the data-type union. Then it calls
3213@code{declare_variable} to add the new variable to that list. Once the
3214first action is finished, the embedded statement @code{stmt} can be
3215parsed. Note that the mid-rule action is component number 5, so the
3216@samp{stmt} is component number 6.
3217
3218After the embedded statement is parsed, its semantic value becomes the
3219value of the entire @code{let}-statement. Then the semantic value from the
3220earlier action is used to restore the prior list of variables. This
3221removes the temporary @code{let}-variable from the list so that it won't
3222appear to exist while the rest of the program is parsed.
3223
3224Taking action before a rule is completely recognized often leads to
3225conflicts since the parser must commit to a parse in order to execute the
3226action. For example, the following two rules, without mid-rule actions,
3227can coexist in a working parser because the parser can shift the open-brace
3228token and look at what follows before deciding whether there is a
3229declaration or not:
3230
3231@example
3232@group
3233compound: '@{' declarations statements '@}'
3234 | '@{' statements '@}'
3235 ;
3236@end group
3237@end example
3238
3239@noindent
3240But when we add a mid-rule action as follows, the rules become nonfunctional:
3241
3242@example
3243@group
3244compound: @{ prepare_for_local_variables (); @}
3245 '@{' declarations statements '@}'
3246@end group
3247@group
3248 | '@{' statements '@}'
3249 ;
3250@end group
3251@end example
3252
3253@noindent
3254Now the parser is forced to decide whether to run the mid-rule action
3255when it has read no farther than the open-brace. In other words, it
3256must commit to using one rule or the other, without sufficient
3257information to do it correctly. (The open-brace token is what is called
3258the @dfn{look-ahead} token at this time, since the parser is still
3259deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3260
3261You might think that you could correct the problem by putting identical
3262actions into the two rules, like this:
3263
3264@example
3265@group
3266compound: @{ prepare_for_local_variables (); @}
3267 '@{' declarations statements '@}'
3268 | @{ prepare_for_local_variables (); @}
3269 '@{' statements '@}'
3270 ;
3271@end group
3272@end example
3273
3274@noindent
3275But this does not help, because Bison does not realize that the two actions
3276are identical. (Bison never tries to understand the C code in an action.)
3277
3278If the grammar is such that a declaration can be distinguished from a
3279statement by the first token (which is true in C), then one solution which
3280does work is to put the action after the open-brace, like this:
3281
3282@example
3283@group
3284compound: '@{' @{ prepare_for_local_variables (); @}
3285 declarations statements '@}'
3286 | '@{' statements '@}'
3287 ;
3288@end group
3289@end example
3290
3291@noindent
3292Now the first token of the following declaration or statement,
3293which would in any case tell Bison which rule to use, can still do so.
3294
3295Another solution is to bury the action inside a nonterminal symbol which
3296serves as a subroutine:
3297
3298@example
3299@group
3300subroutine: /* empty */
3301 @{ prepare_for_local_variables (); @}
3302 ;
3303
3304@end group
3305
3306@group
3307compound: subroutine
3308 '@{' declarations statements '@}'
3309 | subroutine
3310 '@{' statements '@}'
3311 ;
3312@end group
3313@end example
3314
3315@noindent
3316Now Bison can execute the action in the rule for @code{subroutine} without
3317deciding which rule for @code{compound} it will eventually use. Note that
3318the action is now at the end of its rule. Any mid-rule action can be
3319converted to an end-of-rule action in this way, and this is what Bison
3320actually does to implement mid-rule actions.
3321
342b8b6e 3322@node Locations
847bf1f5
AD
3323@section Tracking Locations
3324@cindex location
95923bd6
AD
3325@cindex textual location
3326@cindex location, textual
847bf1f5
AD
3327
3328Though grammar rules and semantic actions are enough to write a fully
72d2299c 3329functional parser, it can be useful to process some additional information,
3e259915
MA
3330especially symbol locations.
3331
704a47c4
AD
3332The way locations are handled is defined by providing a data type, and
3333actions to take when rules are matched.
847bf1f5
AD
3334
3335@menu
3336* Location Type:: Specifying a data type for locations.
3337* Actions and Locations:: Using locations in actions.
3338* Location Default Action:: Defining a general way to compute locations.
3339@end menu
3340
342b8b6e 3341@node Location Type
847bf1f5
AD
3342@subsection Data Type of Locations
3343@cindex data type of locations
3344@cindex default location type
3345
3346Defining a data type for locations is much simpler than for semantic values,
3347since all tokens and groupings always use the same type.
3348
3349The type of locations is specified by defining a macro called @code{YYLTYPE}.
3350When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3351four members:
3352
3353@example
6273355b 3354typedef struct YYLTYPE
847bf1f5
AD
3355@{
3356 int first_line;
3357 int first_column;
3358 int last_line;
3359 int last_column;
6273355b 3360@} YYLTYPE;
847bf1f5
AD
3361@end example
3362
342b8b6e 3363@node Actions and Locations
847bf1f5
AD
3364@subsection Actions and Locations
3365@cindex location actions
3366@cindex actions, location
3367@vindex @@$
3368@vindex @@@var{n}
3369
3370Actions are not only useful for defining language semantics, but also for
3371describing the behavior of the output parser with locations.
3372
3373The most obvious way for building locations of syntactic groupings is very
72d2299c 3374similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3375constructs can be used to access the locations of the elements being matched.
3376The location of the @var{n}th component of the right hand side is
3377@code{@@@var{n}}, while the location of the left hand side grouping is
3378@code{@@$}.
3379
3e259915 3380Here is a basic example using the default data type for locations:
847bf1f5
AD
3381
3382@example
3383@group
3384exp: @dots{}
3e259915 3385 | exp '/' exp
847bf1f5 3386 @{
3e259915
MA
3387 @@$.first_column = @@1.first_column;
3388 @@$.first_line = @@1.first_line;
847bf1f5
AD
3389 @@$.last_column = @@3.last_column;
3390 @@$.last_line = @@3.last_line;
3e259915
MA
3391 if ($3)
3392 $$ = $1 / $3;
3393 else
3394 @{
3395 $$ = 1;
4e03e201
AD
3396 fprintf (stderr,
3397 "Division by zero, l%d,c%d-l%d,c%d",
3398 @@3.first_line, @@3.first_column,
3399 @@3.last_line, @@3.last_column);
3e259915 3400 @}
847bf1f5
AD
3401 @}
3402@end group
3403@end example
3404
3e259915 3405As for semantic values, there is a default action for locations that is
72d2299c 3406run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3407beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3408last symbol.
3e259915 3409
72d2299c 3410With this default action, the location tracking can be fully automatic. The
3e259915
MA
3411example above simply rewrites this way:
3412
3413@example
3414@group
3415exp: @dots{}
3416 | exp '/' exp
3417 @{
3418 if ($3)
3419 $$ = $1 / $3;
3420 else
3421 @{
3422 $$ = 1;
4e03e201
AD
3423 fprintf (stderr,
3424 "Division by zero, l%d,c%d-l%d,c%d",
3425 @@3.first_line, @@3.first_column,
3426 @@3.last_line, @@3.last_column);
3e259915
MA
3427 @}
3428 @}
3429@end group
3430@end example
847bf1f5 3431
342b8b6e 3432@node Location Default Action
847bf1f5
AD
3433@subsection Default Action for Locations
3434@vindex YYLLOC_DEFAULT
3435
72d2299c 3436Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3437locations are much more general than semantic values, there is room in
3438the output parser to redefine the default action to take for each
72d2299c 3439rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3440matched, before the associated action is run. It is also invoked
3441while processing a syntax error, to compute the error's location.
847bf1f5 3442
3e259915 3443Most of the time, this macro is general enough to suppress location
79282c6c 3444dedicated code from semantic actions.
847bf1f5 3445
72d2299c 3446The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d
PE
3447the location of the grouping (the result of the computation). When a
3448rule is matched, the second parameter is an array holding locations of
3449all right hand side elements of the rule being matched, and the third
3450parameter is the size of the rule's right hand side. When processing
3451a syntax error, the second parameter is an array holding locations of
3452the symbols that were discarded during error processing, and the third
3453parameter is the number of discarded symbols.
847bf1f5 3454
96b93a3d
PE
3455By default, @code{YYLLOC_DEFAULT} is defined this way for simple
3456@acronym{LALR}(1) parsers:
847bf1f5
AD
3457
3458@example
3459@group
0ae99356
PE
3460# define YYLLOC_DEFAULT(Current, Rhs, N) \
3461 ((Current).first_line = (Rhs)[1].first_line, \
3462 (Current).first_column = (Rhs)[1].first_column, \
3463 (Current).last_line = (Rhs)[N].last_line, \
3464 (Current).last_column = (Rhs)[N].last_column)
847bf1f5
AD
3465@end group
3466@end example
3467
676385e2 3468@noindent
c827f760 3469and like this for @acronym{GLR} parsers:
676385e2
PH
3470
3471@example
3472@group
0ae99356
PE
3473# define YYLLOC_DEFAULT(yyCurrent, yyRhs, YYN) \
3474 ((yyCurrent).first_line = YYRHSLOC(yyRhs, 1).first_line, \
3475 (yyCurrent).first_column = YYRHSLOC(yyRhs, 1).first_column, \
3476 (yyCurrent).last_line = YYRHSLOC(yyRhs, YYN).last_line, \
3477 (yyCurrent).last_column = YYRHSLOC(yyRhs, YYN).last_column)
676385e2
PH
3478@end group
3479@end example
3480
3e259915 3481When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3482
3e259915 3483@itemize @bullet
79282c6c 3484@item
72d2299c 3485All arguments are free of side-effects. However, only the first one (the
3e259915 3486result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3487
3e259915 3488@item
b2d52318
AD
3489For consistency with semantic actions, valid indexes for the location
3490array range from 1 to @var{n}.
0ae99356
PE
3491
3492@item
3493Your macro should parenthesize its arguments, if need be, since the
3494actual arguments may not be surrounded by parentheses. Also, your
3495macro should expand to something that can be used as a single
3496statement when it is followed by a semicolon.
3e259915 3497@end itemize
847bf1f5 3498
342b8b6e 3499@node Declarations
bfa74976
RS
3500@section Bison Declarations
3501@cindex declarations, Bison
3502@cindex Bison declarations
3503
3504The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3505used in formulating the grammar and the data types of semantic values.
3506@xref{Symbols}.
3507
3508All token type names (but not single-character literal tokens such as
3509@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3510declared if you need to specify which data type to use for the semantic
3511value (@pxref{Multiple Types, ,More Than One Value Type}).
3512
3513The first rule in the file also specifies the start symbol, by default.
3514If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3515it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3516Grammars}).
bfa74976
RS
3517
3518@menu
3519* Token Decl:: Declaring terminal symbols.
3520* Precedence Decl:: Declaring terminals with precedence and associativity.
3521* Union Decl:: Declaring the set of all semantic value types.
3522* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 3523* Destructor Decl:: Declaring how symbols are freed.
d6328241 3524* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3525* Start Decl:: Specifying the start symbol.
3526* Pure Decl:: Requesting a reentrant parser.
3527* Decl Summary:: Table of all Bison declarations.
3528@end menu
3529
342b8b6e 3530@node Token Decl
bfa74976
RS
3531@subsection Token Type Names
3532@cindex declaring token type names
3533@cindex token type names, declaring
931c7513 3534@cindex declaring literal string tokens
bfa74976
RS
3535@findex %token
3536
3537The basic way to declare a token type name (terminal symbol) is as follows:
3538
3539@example
3540%token @var{name}
3541@end example
3542
3543Bison will convert this into a @code{#define} directive in
3544the parser, so that the function @code{yylex} (if it is in this file)
3545can use the name @var{name} to stand for this token type's code.
3546
14ded682
AD
3547Alternatively, you can use @code{%left}, @code{%right}, or
3548@code{%nonassoc} instead of @code{%token}, if you wish to specify
3549associativity and precedence. @xref{Precedence Decl, ,Operator
3550Precedence}.
bfa74976
RS
3551
3552You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3553a decimal or hexadecimal integer value in the field immediately
3554following the token name:
bfa74976
RS
3555
3556@example
3557%token NUM 300
1452af69 3558%token XNUM 0x12d // a GNU extension
bfa74976
RS
3559@end example
3560
3561@noindent
3562It is generally best, however, to let Bison choose the numeric codes for
3563all token types. Bison will automatically select codes that don't conflict
e966383b 3564with each other or with normal characters.
bfa74976
RS
3565
3566In the event that the stack type is a union, you must augment the
3567@code{%token} or other token declaration to include the data type
704a47c4
AD
3568alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3569Than One Value Type}).
bfa74976
RS
3570
3571For example:
3572
3573@example
3574@group
3575%union @{ /* define stack type */
3576 double val;
3577 symrec *tptr;
3578@}
3579%token <val> NUM /* define token NUM and its type */
3580@end group
3581@end example
3582
931c7513
RS
3583You can associate a literal string token with a token type name by
3584writing the literal string at the end of a @code{%token}
3585declaration which declares the name. For example:
3586
3587@example
3588%token arrow "=>"
3589@end example
3590
3591@noindent
3592For example, a grammar for the C language might specify these names with
3593equivalent literal string tokens:
3594
3595@example
3596%token <operator> OR "||"
3597%token <operator> LE 134 "<="
3598%left OR "<="
3599@end example
3600
3601@noindent
3602Once you equate the literal string and the token name, you can use them
3603interchangeably in further declarations or the grammar rules. The
3604@code{yylex} function can use the token name or the literal string to
3605obtain the token type code number (@pxref{Calling Convention}).
3606
342b8b6e 3607@node Precedence Decl
bfa74976
RS
3608@subsection Operator Precedence
3609@cindex precedence declarations
3610@cindex declaring operator precedence
3611@cindex operator precedence, declaring
3612
3613Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3614declare a token and specify its precedence and associativity, all at
3615once. These are called @dfn{precedence declarations}.
704a47c4
AD
3616@xref{Precedence, ,Operator Precedence}, for general information on
3617operator precedence.
bfa74976
RS
3618
3619The syntax of a precedence declaration is the same as that of
3620@code{%token}: either
3621
3622@example
3623%left @var{symbols}@dots{}
3624@end example
3625
3626@noindent
3627or
3628
3629@example
3630%left <@var{type}> @var{symbols}@dots{}
3631@end example
3632
3633And indeed any of these declarations serves the purposes of @code{%token}.
3634But in addition, they specify the associativity and relative precedence for
3635all the @var{symbols}:
3636
3637@itemize @bullet
3638@item
3639The associativity of an operator @var{op} determines how repeated uses
3640of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3641@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3642grouping @var{y} with @var{z} first. @code{%left} specifies
3643left-associativity (grouping @var{x} with @var{y} first) and
3644@code{%right} specifies right-associativity (grouping @var{y} with
3645@var{z} first). @code{%nonassoc} specifies no associativity, which
3646means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3647considered a syntax error.
3648
3649@item
3650The precedence of an operator determines how it nests with other operators.
3651All the tokens declared in a single precedence declaration have equal
3652precedence and nest together according to their associativity.
3653When two tokens declared in different precedence declarations associate,
3654the one declared later has the higher precedence and is grouped first.
3655@end itemize
3656
342b8b6e 3657@node Union Decl
bfa74976
RS
3658@subsection The Collection of Value Types
3659@cindex declaring value types
3660@cindex value types, declaring
3661@findex %union
3662
3663The @code{%union} declaration specifies the entire collection of possible
3664data types for semantic values. The keyword @code{%union} is followed by a
3665pair of braces containing the same thing that goes inside a @code{union} in
13863333 3666C.
bfa74976
RS
3667
3668For example:
3669
3670@example
3671@group
3672%union @{
3673 double val;
3674 symrec *tptr;
3675@}
3676@end group
3677@end example
3678
3679@noindent
3680This says that the two alternative types are @code{double} and @code{symrec
3681*}. They are given names @code{val} and @code{tptr}; these names are used
3682in the @code{%token} and @code{%type} declarations to pick one of the types
3683for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3684
6273355b
PE
3685As an extension to @acronym{POSIX}, a tag is allowed after the
3686@code{union}. For example:
3687
3688@example
3689@group
3690%union value @{
3691 double val;
3692 symrec *tptr;
3693@}
3694@end group
3695@end example
3696
3697specifies the union tag @code{value}, so the corresponding C type is
3698@code{union value}. If you do not specify a tag, it defaults to
3699@code{YYSTYPE}.
3700
3701Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3702a semicolon after the closing brace.
3703
342b8b6e 3704@node Type Decl
bfa74976
RS
3705@subsection Nonterminal Symbols
3706@cindex declaring value types, nonterminals
3707@cindex value types, nonterminals, declaring
3708@findex %type
3709
3710@noindent
3711When you use @code{%union} to specify multiple value types, you must
3712declare the value type of each nonterminal symbol for which values are
3713used. This is done with a @code{%type} declaration, like this:
3714
3715@example
3716%type <@var{type}> @var{nonterminal}@dots{}
3717@end example
3718
3719@noindent
704a47c4
AD
3720Here @var{nonterminal} is the name of a nonterminal symbol, and
3721@var{type} is the name given in the @code{%union} to the alternative
3722that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3723can give any number of nonterminal symbols in the same @code{%type}
3724declaration, if they have the same value type. Use spaces to separate
3725the symbol names.
bfa74976 3726
931c7513
RS
3727You can also declare the value type of a terminal symbol. To do this,
3728use the same @code{<@var{type}>} construction in a declaration for the
3729terminal symbol. All kinds of token declarations allow
3730@code{<@var{type}>}.
3731
72f889cc
AD
3732@node Destructor Decl
3733@subsection Freeing Discarded Symbols
3734@cindex freeing discarded symbols
3735@findex %destructor
3736
3737Some symbols can be discarded by the parser, typically during error
3738recovery (@pxref{Error Recovery}). Basically, during error recovery,
3739embarrassing symbols already pushed on the stack, and embarrassing
3740tokens coming from the rest of the file are thrown away until the parser
3741falls on its feet. If these symbols convey heap based information, this
3742memory is lost. While this behavior is tolerable for batch parsers,
3743such as in compilers, it is unacceptable for parsers that can
3744possibility ``never end'' such as shells, or implementations of
3745communication protocols.
3746
3747The @code{%destructor} directive allows for the definition of code that
3748is called when a symbol is thrown away.
3749
3750@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3751@findex %destructor
3752Declare that the @var{code} must be invoked for each of the
3753@var{symbols} that will be discarded by the parser. The @var{code}
3754should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3755@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3756(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3757
3758@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3759experimental, as there was not enough user feedback. In particular,
3df37415 3760the syntax might still change.
72f889cc
AD
3761@end deffn
3762
3763For instance:
3764
3765@smallexample
3766%union
3767@{
3768 char *string;
3769@}
3770%token <string> STRING
3771%type <string> string
3772%destructor @{ free ($$); @} STRING string
3773@end smallexample
3774
3775@noindent
3776guarantees that when a @code{STRING} or a @code{string} will be discarded,
3777its associated memory will be freed.
3778
3779Note that in the future, Bison might also consider that right hand side
3780members that are not mentioned in the action can be destroyed. For
3781instance, in:
3782
3783@smallexample
3784comment: "/*" STRING "*/";
3785@end smallexample
3786
3787@noindent
3788the parser is entitled to destroy the semantic value of the
3789@code{string}. Of course, this will not apply to the default action;
3790compare:
3791
3792@smallexample
3793typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3794typefull: string; // $$ = $1 applies, $1 is not destroyed.
3795@end smallexample
3796
342b8b6e 3797@node Expect Decl
bfa74976
RS
3798@subsection Suppressing Conflict Warnings
3799@cindex suppressing conflict warnings
3800@cindex preventing warnings about conflicts
3801@cindex warnings, preventing
3802@cindex conflicts, suppressing warnings of
3803@findex %expect
d6328241 3804@findex %expect-rr
bfa74976
RS
3805
3806Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3807(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3808have harmless shift/reduce conflicts which are resolved in a predictable
3809way and would be difficult to eliminate. It is desirable to suppress
3810the warning about these conflicts unless the number of conflicts
3811changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3812
3813The declaration looks like this:
3814
3815@example
3816%expect @var{n}
3817@end example
3818
7da99ede
AD
3819Here @var{n} is a decimal integer. The declaration says there should be
3820no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3821reduce/reduce conflicts. The usual warning is
7da99ede
AD
3822given if there are either more or fewer conflicts, or if there are any
3823reduce/reduce conflicts.
bfa74976 3824
fa7e68c3 3825For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3826and should be eliminated entirely. Bison will always report
fa7e68c3 3827reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3828both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3829would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3830to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3831parsers, using the declaration:
3832
3833@example
3834%expect-rr @var{n}
3835@end example
3836
bfa74976
RS
3837In general, using @code{%expect} involves these steps:
3838
3839@itemize @bullet
3840@item
3841Compile your grammar without @code{%expect}. Use the @samp{-v} option
3842to get a verbose list of where the conflicts occur. Bison will also
3843print the number of conflicts.
3844
3845@item
3846Check each of the conflicts to make sure that Bison's default
3847resolution is what you really want. If not, rewrite the grammar and
3848go back to the beginning.
3849
3850@item
3851Add an @code{%expect} declaration, copying the number @var{n} from the
3852number which Bison printed.
3853@end itemize
3854
69363a9e
PE
3855Now Bison will stop annoying you if you do not change the number of
3856conflicts, but it will warn you again if changes in the grammar result
3857in more or fewer conflicts.
bfa74976 3858
342b8b6e 3859@node Start Decl
bfa74976
RS
3860@subsection The Start-Symbol
3861@cindex declaring the start symbol
3862@cindex start symbol, declaring
3863@cindex default start symbol
3864@findex %start
3865
3866Bison assumes by default that the start symbol for the grammar is the first
3867nonterminal specified in the grammar specification section. The programmer
3868may override this restriction with the @code{%start} declaration as follows:
3869
3870@example
3871%start @var{symbol}
3872@end example
3873
342b8b6e 3874@node Pure Decl
bfa74976
RS
3875@subsection A Pure (Reentrant) Parser
3876@cindex reentrant parser
3877@cindex pure parser
8c9a50be 3878@findex %pure-parser
bfa74976
RS
3879
3880A @dfn{reentrant} program is one which does not alter in the course of
3881execution; in other words, it consists entirely of @dfn{pure} (read-only)
3882code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3883for example, a non-reentrant program may not be safe to call from a signal
3884handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3885program must be called only within interlocks.
3886
70811b85 3887Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3888suitable for most uses, and it permits compatibility with Yacc. (The
3889standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3890statically allocated variables for communication with @code{yylex},
3891including @code{yylval} and @code{yylloc}.)
bfa74976 3892
70811b85 3893Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3894declaration @code{%pure-parser} says that you want the parser to be
70811b85 3895reentrant. It looks like this:
bfa74976
RS
3896
3897@example
8c9a50be 3898%pure-parser
bfa74976
RS
3899@end example
3900
70811b85
RS
3901The result is that the communication variables @code{yylval} and
3902@code{yylloc} become local variables in @code{yyparse}, and a different
3903calling convention is used for the lexical analyzer function
3904@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3905Parsers}, for the details of this. The variable @code{yynerrs} also
3906becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3907Reporting Function @code{yyerror}}). The convention for calling
3908@code{yyparse} itself is unchanged.
3909
3910Whether the parser is pure has nothing to do with the grammar rules.
3911You can generate either a pure parser or a nonreentrant parser from any
3912valid grammar.
bfa74976 3913
342b8b6e 3914@node Decl Summary
bfa74976
RS
3915@subsection Bison Declaration Summary
3916@cindex Bison declaration summary
3917@cindex declaration summary
3918@cindex summary, Bison declaration
3919
d8988b2f 3920Here is a summary of the declarations used to define a grammar:
bfa74976 3921
18b519c0 3922@deffn {Directive} %union
bfa74976
RS
3923Declare the collection of data types that semantic values may have
3924(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3925@end deffn
bfa74976 3926
18b519c0 3927@deffn {Directive} %token
bfa74976
RS
3928Declare a terminal symbol (token type name) with no precedence
3929or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 3930@end deffn
bfa74976 3931
18b519c0 3932@deffn {Directive} %right
bfa74976
RS
3933Declare a terminal symbol (token type name) that is right-associative
3934(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3935@end deffn
bfa74976 3936
18b519c0 3937@deffn {Directive} %left
bfa74976
RS
3938Declare a terminal symbol (token type name) that is left-associative
3939(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3940@end deffn
bfa74976 3941
18b519c0 3942@deffn {Directive} %nonassoc
bfa74976 3943Declare a terminal symbol (token type name) that is nonassociative
bfa74976 3944(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
3945Using it in a way that would be associative is a syntax error.
3946@end deffn
3947
91d2c560 3948@ifset defaultprec
39a06c25 3949@deffn {Directive} %default-prec
22fccf95 3950Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
3951(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
3952@end deffn
91d2c560 3953@end ifset
bfa74976 3954
18b519c0 3955@deffn {Directive} %type
bfa74976
RS
3956Declare the type of semantic values for a nonterminal symbol
3957(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 3958@end deffn
bfa74976 3959
18b519c0 3960@deffn {Directive} %start
89cab50d
AD
3961Specify the grammar's start symbol (@pxref{Start Decl, ,The
3962Start-Symbol}).
18b519c0 3963@end deffn
bfa74976 3964
18b519c0 3965@deffn {Directive} %expect
bfa74976
RS
3966Declare the expected number of shift-reduce conflicts
3967(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
3968@end deffn
3969
bfa74976 3970
d8988b2f
AD
3971@sp 1
3972@noindent
3973In order to change the behavior of @command{bison}, use the following
3974directives:
3975
18b519c0 3976@deffn {Directive} %debug
4947ebdb
PE
3977In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
3978already defined, so that the debugging facilities are compiled.
18b519c0 3979@end deffn
ec3bc396 3980@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 3981
18b519c0 3982@deffn {Directive} %defines
4bfd5e4e
PE
3983Write a header file containing macro definitions for the token type
3984names defined in the grammar as well as a few other declarations.
d8988b2f 3985If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 3986is named @file{@var{name}.h}.
d8988b2f 3987
4bfd5e4e 3988Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
3989declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
3990(@pxref{Multiple Types, ,More Than One Value Type}) with components
3991that require other definitions, or if you have defined a
4bfd5e4e 3992@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
3993Values}), you need to arrange for these definitions to be propagated to
3994all modules, e.g., by putting them in a
4bfd5e4e
PE
3995prerequisite header that is included both by your parser and by any
3996other module that needs @code{YYSTYPE}.
3997
3998Unless your parser is pure, the output header declares @code{yylval}
3999as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4000Parser}.
4001
4002If you have also used locations, the output header declares
4003@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4004@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4005Locations}.
4006
4007This output file is normally essential if you wish to put the
4008definition of @code{yylex} in a separate source file, because
4009@code{yylex} typically needs to be able to refer to the
4010above-mentioned declarations and to the token type codes.
4011@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4012@end deffn
d8988b2f 4013
18b519c0 4014@deffn {Directive} %destructor
72f889cc 4015Specifying how the parser should reclaim the memory associated to
fa7e68c3 4016discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4017@end deffn
72f889cc 4018
18b519c0 4019@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4020Specify a prefix to use for all Bison output file names. The names are
4021chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4022@end deffn
d8988b2f 4023
18b519c0 4024@deffn {Directive} %locations
89cab50d
AD
4025Generate the code processing the locations (@pxref{Action Features,
4026,Special Features for Use in Actions}). This mode is enabled as soon as
4027the grammar uses the special @samp{@@@var{n}} tokens, but if your
4028grammar does not use it, using @samp{%locations} allows for more
6e649e65 4029accurate syntax error messages.
18b519c0 4030@end deffn
89cab50d 4031
18b519c0 4032@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4033Rename the external symbols used in the parser so that they start with
4034@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4035is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4036@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4037possible @code{yylloc}. For example, if you use
4038@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4039and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4040Program}.
18b519c0 4041@end deffn
931c7513 4042
91d2c560 4043@ifset defaultprec
22fccf95
PE
4044@deffn {Directive} %no-default-prec
4045Do not assign a precedence to rules lacking an explicit @code{%prec}
4046modifier (@pxref{Contextual Precedence, ,Context-Dependent
4047Precedence}).
4048@end deffn
91d2c560 4049@end ifset
22fccf95 4050
18b519c0 4051@deffn {Directive} %no-parser
6deb4447
AD
4052Do not include any C code in the parser file; generate tables only. The
4053parser file contains just @code{#define} directives and static variable
4054declarations.
4055
4056This option also tells Bison to write the C code for the grammar actions
4057into a file named @file{@var{filename}.act}, in the form of a
4058brace-surrounded body fit for a @code{switch} statement.
18b519c0 4059@end deffn
6deb4447 4060
18b519c0 4061@deffn {Directive} %no-lines
931c7513
RS
4062Don't generate any @code{#line} preprocessor commands in the parser
4063file. Ordinarily Bison writes these commands in the parser file so that
4064the C compiler and debuggers will associate errors and object code with
4065your source file (the grammar file). This directive causes them to
4066associate errors with the parser file, treating it an independent source
4067file in its own right.
18b519c0 4068@end deffn
931c7513 4069
18b519c0 4070@deffn {Directive} %output="@var{filename}"
d8988b2f 4071Specify the @var{filename} for the parser file.
18b519c0 4072@end deffn
6deb4447 4073
18b519c0 4074@deffn {Directive} %pure-parser
d8988b2f
AD
4075Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4076(Reentrant) Parser}).
18b519c0 4077@end deffn
6deb4447 4078
18b519c0 4079@deffn {Directive} %token-table
931c7513
RS
4080Generate an array of token names in the parser file. The name of the
4081array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4082token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4083three elements of @code{yytname} correspond to the predefined tokens
4084@code{"$end"},
88bce5a2
AD
4085@code{"error"}, and @code{"$undefined"}; after these come the symbols
4086defined in the grammar file.
931c7513
RS
4087
4088For single-character literal tokens and literal string tokens, the name
4089in the table includes the single-quote or double-quote characters: for
4090example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
4091is a literal string token. All the characters of the literal string
4092token appear verbatim in the string found in the table; even
4093double-quote characters are not escaped. For example, if the token
4094consists of three characters @samp{*"*}, its string in @code{yytname}
4095contains @samp{"*"*"}. (In C, that would be written as
4096@code{"\"*\"*\""}).
4097
8c9a50be 4098When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4099definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4100@code{YYNRULES}, and @code{YYNSTATES}:
4101
4102@table @code
4103@item YYNTOKENS
4104The highest token number, plus one.
4105@item YYNNTS
9ecbd125 4106The number of nonterminal symbols.
931c7513
RS
4107@item YYNRULES
4108The number of grammar rules,
4109@item YYNSTATES
4110The number of parser states (@pxref{Parser States}).
4111@end table
18b519c0 4112@end deffn
d8988b2f 4113
18b519c0 4114@deffn {Directive} %verbose
d8988b2f
AD
4115Write an extra output file containing verbose descriptions of the
4116parser states and what is done for each type of look-ahead token in
72d2299c 4117that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4118information.
18b519c0 4119@end deffn
d8988b2f 4120
18b519c0 4121@deffn {Directive} %yacc
d8988b2f
AD
4122Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4123including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4124@end deffn
d8988b2f
AD
4125
4126
342b8b6e 4127@node Multiple Parsers
bfa74976
RS
4128@section Multiple Parsers in the Same Program
4129
4130Most programs that use Bison parse only one language and therefore contain
4131only one Bison parser. But what if you want to parse more than one
4132language with the same program? Then you need to avoid a name conflict
4133between different definitions of @code{yyparse}, @code{yylval}, and so on.
4134
4135The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4136(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4137functions and variables of the Bison parser to start with @var{prefix}
4138instead of @samp{yy}. You can use this to give each parser distinct
4139names that do not conflict.
bfa74976
RS
4140
4141The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4142@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4143@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4144the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4145
4146@strong{All the other variables and macros associated with Bison are not
4147renamed.} These others are not global; there is no conflict if the same
4148name is used in different parsers. For example, @code{YYSTYPE} is not
4149renamed, but defining this in different ways in different parsers causes
4150no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4151
4152The @samp{-p} option works by adding macro definitions to the beginning
4153of the parser source file, defining @code{yyparse} as
4154@code{@var{prefix}parse}, and so on. This effectively substitutes one
4155name for the other in the entire parser file.
4156
342b8b6e 4157@node Interface
bfa74976
RS
4158@chapter Parser C-Language Interface
4159@cindex C-language interface
4160@cindex interface
4161
4162The Bison parser is actually a C function named @code{yyparse}. Here we
4163describe the interface conventions of @code{yyparse} and the other
4164functions that it needs to use.
4165
4166Keep in mind that the parser uses many C identifiers starting with
4167@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4168identifier (aside from those in this manual) in an action or in epilogue
4169in the grammar file, you are likely to run into trouble.
bfa74976
RS
4170
4171@menu
4172* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4173* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4174 which reads tokens.
4175* Error Reporting:: You must supply a function @code{yyerror}.
4176* Action Features:: Special features for use in actions.
4177@end menu
4178
342b8b6e 4179@node Parser Function
bfa74976
RS
4180@section The Parser Function @code{yyparse}
4181@findex yyparse
4182
4183You call the function @code{yyparse} to cause parsing to occur. This
4184function reads tokens, executes actions, and ultimately returns when it
4185encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4186write an action which directs @code{yyparse} to return immediately
4187without reading further.
bfa74976 4188
2a8d363a
AD
4189
4190@deftypefun int yyparse (void)
bfa74976
RS
4191The value returned by @code{yyparse} is 0 if parsing was successful (return
4192is due to end-of-input).
4193
4194The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4195@end deftypefun
bfa74976
RS
4196
4197In an action, you can cause immediate return from @code{yyparse} by using
4198these macros:
4199
2a8d363a 4200@defmac YYACCEPT
bfa74976
RS
4201@findex YYACCEPT
4202Return immediately with value 0 (to report success).
2a8d363a 4203@end defmac
bfa74976 4204
2a8d363a 4205@defmac YYABORT
bfa74976
RS
4206@findex YYABORT
4207Return immediately with value 1 (to report failure).
2a8d363a
AD
4208@end defmac
4209
4210If you use a reentrant parser, you can optionally pass additional
4211parameter information to it in a reentrant way. To do so, use the
4212declaration @code{%parse-param}:
4213
feeb0eda 4214@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4215@findex %parse-param
feeb0eda 4216Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4217additional @code{yyparse} argument.
4218The @var{argument-declaration} is used when declaring
feeb0eda
PE
4219functions or prototypes. The last identifier in
4220@var{argument-declaration} must be the argument name.
2a8d363a
AD
4221@end deffn
4222
4223Here's an example. Write this in the parser:
4224
4225@example
feeb0eda
PE
4226%parse-param @{int *nastiness@}
4227%parse-param @{int *randomness@}
2a8d363a
AD
4228@end example
4229
4230@noindent
4231Then call the parser like this:
4232
4233@example
4234@{
4235 int nastiness, randomness;
4236 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4237 value = yyparse (&nastiness, &randomness);
4238 @dots{}
4239@}
4240@end example
4241
4242@noindent
4243In the grammar actions, use expressions like this to refer to the data:
4244
4245@example
4246exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4247@end example
4248
bfa74976 4249
342b8b6e 4250@node Lexical
bfa74976
RS
4251@section The Lexical Analyzer Function @code{yylex}
4252@findex yylex
4253@cindex lexical analyzer
4254
4255The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4256the input stream and returns them to the parser. Bison does not create
4257this function automatically; you must write it so that @code{yyparse} can
4258call it. The function is sometimes referred to as a lexical scanner.
4259
4260In simple programs, @code{yylex} is often defined at the end of the Bison
4261grammar file. If @code{yylex} is defined in a separate source file, you
4262need to arrange for the token-type macro definitions to be available there.
4263To do this, use the @samp{-d} option when you run Bison, so that it will
4264write these macro definitions into a separate header file
4265@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4266that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4267
4268@menu
4269* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4270* Token Values:: How @code{yylex} must return the semantic value
4271 of the token it has read.
95923bd6 4272* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4273 (line number, etc.) of the token, if the
4274 actions want that.
4275* Pure Calling:: How the calling convention differs
4276 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4277@end menu
4278
342b8b6e 4279@node Calling Convention
bfa74976
RS
4280@subsection Calling Convention for @code{yylex}
4281
72d2299c
PE
4282The value that @code{yylex} returns must be the positive numeric code
4283for the type of token it has just found; a zero or negative value
4284signifies end-of-input.
bfa74976
RS
4285
4286When a token is referred to in the grammar rules by a name, that name
4287in the parser file becomes a C macro whose definition is the proper
4288numeric code for that token type. So @code{yylex} can use the name
4289to indicate that type. @xref{Symbols}.
4290
4291When a token is referred to in the grammar rules by a character literal,
4292the numeric code for that character is also the code for the token type.
72d2299c
PE
4293So @code{yylex} can simply return that character code, possibly converted
4294to @code{unsigned char} to avoid sign-extension. The null character
4295must not be used this way, because its code is zero and that
bfa74976
RS
4296signifies end-of-input.
4297
4298Here is an example showing these things:
4299
4300@example
13863333
AD
4301int
4302yylex (void)
bfa74976
RS
4303@{
4304 @dots{}
72d2299c 4305 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4306 return 0;
4307 @dots{}
4308 if (c == '+' || c == '-')
72d2299c 4309 return c; /* Assume token type for `+' is '+'. */
bfa74976 4310 @dots{}
72d2299c 4311 return INT; /* Return the type of the token. */
bfa74976
RS
4312 @dots{}
4313@}
4314@end example
4315
4316@noindent
4317This interface has been designed so that the output from the @code{lex}
4318utility can be used without change as the definition of @code{yylex}.
4319
931c7513
RS
4320If the grammar uses literal string tokens, there are two ways that
4321@code{yylex} can determine the token type codes for them:
4322
4323@itemize @bullet
4324@item
4325If the grammar defines symbolic token names as aliases for the
4326literal string tokens, @code{yylex} can use these symbolic names like
4327all others. In this case, the use of the literal string tokens in
4328the grammar file has no effect on @code{yylex}.
4329
4330@item
9ecbd125 4331@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4332table. The index of the token in the table is the token type's code.
9ecbd125 4333The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4334double-quote, the token's characters, and another double-quote. The
4335token's characters are not escaped in any way; they appear verbatim in
4336the contents of the string in the table.
4337
4338Here's code for looking up a token in @code{yytname}, assuming that the
4339characters of the token are stored in @code{token_buffer}.
4340
4341@smallexample
4342for (i = 0; i < YYNTOKENS; i++)
4343 @{
4344 if (yytname[i] != 0
4345 && yytname[i][0] == '"'
68449b3a
PE
4346 && ! strncmp (yytname[i] + 1, token_buffer,
4347 strlen (token_buffer))
931c7513
RS
4348 && yytname[i][strlen (token_buffer) + 1] == '"'
4349 && yytname[i][strlen (token_buffer) + 2] == 0)
4350 break;
4351 @}
4352@end smallexample
4353
4354The @code{yytname} table is generated only if you use the
8c9a50be 4355@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4356@end itemize
4357
342b8b6e 4358@node Token Values
bfa74976
RS
4359@subsection Semantic Values of Tokens
4360
4361@vindex yylval
14ded682 4362In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4363be stored into the global variable @code{yylval}. When you are using
4364just one data type for semantic values, @code{yylval} has that type.
4365Thus, if the type is @code{int} (the default), you might write this in
4366@code{yylex}:
4367
4368@example
4369@group
4370 @dots{}
72d2299c
PE
4371 yylval = value; /* Put value onto Bison stack. */
4372 return INT; /* Return the type of the token. */
bfa74976
RS
4373 @dots{}
4374@end group
4375@end example
4376
4377When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4378made from the @code{%union} declaration (@pxref{Union Decl, ,The
4379Collection of Value Types}). So when you store a token's value, you
4380must use the proper member of the union. If the @code{%union}
4381declaration looks like this:
bfa74976
RS
4382
4383@example
4384@group
4385%union @{
4386 int intval;
4387 double val;
4388 symrec *tptr;
4389@}
4390@end group
4391@end example
4392
4393@noindent
4394then the code in @code{yylex} might look like this:
4395
4396@example
4397@group
4398 @dots{}
72d2299c
PE
4399 yylval.intval = value; /* Put value onto Bison stack. */
4400 return INT; /* Return the type of the token. */
bfa74976
RS
4401 @dots{}
4402@end group
4403@end example
4404
95923bd6
AD
4405@node Token Locations
4406@subsection Textual Locations of Tokens
bfa74976
RS
4407
4408@vindex yylloc
847bf1f5
AD
4409If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4410Tracking Locations}) in actions to keep track of the
89cab50d
AD
4411textual locations of tokens and groupings, then you must provide this
4412information in @code{yylex}. The function @code{yyparse} expects to
4413find the textual location of a token just parsed in the global variable
4414@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4415variable.
4416
4417By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4418initialize the members that are going to be used by the actions. The
4419four members are called @code{first_line}, @code{first_column},
4420@code{last_line} and @code{last_column}. Note that the use of this
4421feature makes the parser noticeably slower.
bfa74976
RS
4422
4423@tindex YYLTYPE
4424The data type of @code{yylloc} has the name @code{YYLTYPE}.
4425
342b8b6e 4426@node Pure Calling
c656404a 4427@subsection Calling Conventions for Pure Parsers
bfa74976 4428
8c9a50be 4429When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4430pure, reentrant parser, the global communication variables @code{yylval}
4431and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4432Parser}.) In such parsers the two global variables are replaced by
4433pointers passed as arguments to @code{yylex}. You must declare them as
4434shown here, and pass the information back by storing it through those
4435pointers.
bfa74976
RS
4436
4437@example
13863333
AD
4438int
4439yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4440@{
4441 @dots{}
4442 *lvalp = value; /* Put value onto Bison stack. */
4443 return INT; /* Return the type of the token. */
4444 @dots{}
4445@}
4446@end example
4447
4448If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4449textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4450this case, omit the second argument; @code{yylex} will be called with
4451only one argument.
4452
e425e872 4453
2a8d363a
AD
4454If you wish to pass the additional parameter data to @code{yylex}, use
4455@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4456Function}).
e425e872 4457
feeb0eda 4458@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4459@findex %lex-param
feeb0eda
PE
4460Declare that @code{argument-declaration} is an additional @code{yylex}
4461argument declaration.
2a8d363a 4462@end deffn
e425e872 4463
2a8d363a 4464For instance:
e425e872
RS
4465
4466@example
feeb0eda
PE
4467%parse-param @{int *nastiness@}
4468%lex-param @{int *nastiness@}
4469%parse-param @{int *randomness@}
e425e872
RS
4470@end example
4471
4472@noindent
2a8d363a 4473results in the following signature:
e425e872
RS
4474
4475@example
2a8d363a
AD
4476int yylex (int *nastiness);
4477int yyparse (int *nastiness, int *randomness);
e425e872
RS
4478@end example
4479
2a8d363a 4480If @code{%pure-parser} is added:
c656404a
RS
4481
4482@example
2a8d363a
AD
4483int yylex (YYSTYPE *lvalp, int *nastiness);
4484int yyparse (int *nastiness, int *randomness);
c656404a
RS
4485@end example
4486
2a8d363a
AD
4487@noindent
4488and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4489
2a8d363a
AD
4490@example
4491int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4492int yyparse (int *nastiness, int *randomness);
4493@end example
931c7513 4494
342b8b6e 4495@node Error Reporting
bfa74976
RS
4496@section The Error Reporting Function @code{yyerror}
4497@cindex error reporting function
4498@findex yyerror
4499@cindex parse error
4500@cindex syntax error
4501
6e649e65 4502The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4503whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4504action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4505macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4506in Actions}).
bfa74976
RS
4507
4508The Bison parser expects to report the error by calling an error
4509reporting function named @code{yyerror}, which you must supply. It is
4510called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4511receives one argument. For a syntax error, the string is normally
4512@w{@code{"syntax error"}}.
bfa74976 4513
2a8d363a
AD
4514@findex %error-verbose
4515If you invoke the directive @code{%error-verbose} in the Bison
4516declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4517Section}), then Bison provides a more verbose and specific error message
6e649e65 4518string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4519
4520The parser can detect one other kind of error: stack overflow. This
4521happens when the input contains constructions that are very deeply
4522nested. It isn't likely you will encounter this, since the Bison
4523parser extends its stack automatically up to a very large limit. But
4524if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4525fashion, except that the argument string is @w{@code{"parser stack
4526overflow"}}.
4527
4528The following definition suffices in simple programs:
4529
4530@example
4531@group
13863333 4532void
38a92d50 4533yyerror (char const *s)
bfa74976
RS
4534@{
4535@end group
4536@group
4537 fprintf (stderr, "%s\n", s);
4538@}
4539@end group
4540@end example
4541
4542After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4543error recovery if you have written suitable error recovery grammar rules
4544(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4545immediately return 1.
4546
93724f13 4547Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4548an access to the current location.
4549This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4550parsers, but not for the Yacc parser, for historical reasons. I.e., if
4551@samp{%locations %pure-parser} is passed then the prototypes for
4552@code{yyerror} are:
4553
4554@example
38a92d50
PE
4555void yyerror (char const *msg); /* Yacc parsers. */
4556void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4557@end example
4558
feeb0eda 4559If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4560
4561@example
b317297e
PE
4562void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4563void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4564@end example
4565
fa7e68c3 4566Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4567convention for absolutely pure parsers, i.e., when the calling
4568convention of @code{yylex} @emph{and} the calling convention of
4569@code{%pure-parser} are pure. I.e.:
4570
4571@example
4572/* Location tracking. */
4573%locations
4574/* Pure yylex. */
4575%pure-parser
feeb0eda 4576%lex-param @{int *nastiness@}
2a8d363a 4577/* Pure yyparse. */
feeb0eda
PE
4578%parse-param @{int *nastiness@}
4579%parse-param @{int *randomness@}
2a8d363a
AD
4580@end example
4581
4582@noindent
4583results in the following signatures for all the parser kinds:
4584
4585@example
4586int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4587int yyparse (int *nastiness, int *randomness);
93724f13
AD
4588void yyerror (YYLTYPE *locp,
4589 int *nastiness, int *randomness,
38a92d50 4590 char const *msg);
2a8d363a
AD
4591@end example
4592
1c0c3e95 4593@noindent
38a92d50
PE
4594The prototypes are only indications of how the code produced by Bison
4595uses @code{yyerror}. Bison-generated code always ignores the returned
4596value, so @code{yyerror} can return any type, including @code{void}.
4597Also, @code{yyerror} can be a variadic function; that is why the
4598message is always passed last.
4599
4600Traditionally @code{yyerror} returns an @code{int} that is always
4601ignored, but this is purely for historical reasons, and @code{void} is
4602preferable since it more accurately describes the return type for
4603@code{yyerror}.
93724f13 4604
bfa74976
RS
4605@vindex yynerrs
4606The variable @code{yynerrs} contains the number of syntax errors
4607encountered so far. Normally this variable is global; but if you
704a47c4
AD
4608request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4609then it is a local variable which only the actions can access.
bfa74976 4610
342b8b6e 4611@node Action Features
bfa74976
RS
4612@section Special Features for Use in Actions
4613@cindex summary, action features
4614@cindex action features summary
4615
4616Here is a table of Bison constructs, variables and macros that
4617are useful in actions.
4618
18b519c0 4619@deffn {Variable} $$
bfa74976
RS
4620Acts like a variable that contains the semantic value for the
4621grouping made by the current rule. @xref{Actions}.
18b519c0 4622@end deffn
bfa74976 4623
18b519c0 4624@deffn {Variable} $@var{n}
bfa74976
RS
4625Acts like a variable that contains the semantic value for the
4626@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4627@end deffn
bfa74976 4628
18b519c0 4629@deffn {Variable} $<@var{typealt}>$
bfa74976 4630Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4631specified by the @code{%union} declaration. @xref{Action Types, ,Data
4632Types of Values in Actions}.
18b519c0 4633@end deffn
bfa74976 4634
18b519c0 4635@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4636Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4637union specified by the @code{%union} declaration.
e0c471a9 4638@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4639@end deffn
bfa74976 4640
18b519c0 4641@deffn {Macro} YYABORT;
bfa74976
RS
4642Return immediately from @code{yyparse}, indicating failure.
4643@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4644@end deffn
bfa74976 4645
18b519c0 4646@deffn {Macro} YYACCEPT;
bfa74976
RS
4647Return immediately from @code{yyparse}, indicating success.
4648@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4649@end deffn
bfa74976 4650
18b519c0 4651@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4652@findex YYBACKUP
4653Unshift a token. This macro is allowed only for rules that reduce
4654a single value, and only when there is no look-ahead token.
c827f760 4655It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4656It installs a look-ahead token with token type @var{token} and
4657semantic value @var{value}; then it discards the value that was
4658going to be reduced by this rule.
4659
4660If the macro is used when it is not valid, such as when there is
4661a look-ahead token already, then it reports a syntax error with
4662a message @samp{cannot back up} and performs ordinary error
4663recovery.
4664
4665In either case, the rest of the action is not executed.
18b519c0 4666@end deffn
bfa74976 4667
18b519c0 4668@deffn {Macro} YYEMPTY
bfa74976
RS
4669@vindex YYEMPTY
4670Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4671@end deffn
bfa74976 4672
18b519c0 4673@deffn {Macro} YYERROR;
bfa74976
RS
4674@findex YYERROR
4675Cause an immediate syntax error. This statement initiates error
4676recovery just as if the parser itself had detected an error; however, it
4677does not call @code{yyerror}, and does not print any message. If you
4678want to print an error message, call @code{yyerror} explicitly before
4679the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4680@end deffn
bfa74976 4681
18b519c0 4682@deffn {Macro} YYRECOVERING
bfa74976
RS
4683This macro stands for an expression that has the value 1 when the parser
4684is recovering from a syntax error, and 0 the rest of the time.
4685@xref{Error Recovery}.
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Variable} yychar
bfa74976
RS
4689Variable containing the current look-ahead token. (In a pure parser,
4690this is actually a local variable within @code{yyparse}.) When there is
4691no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4692@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4693@end deffn
bfa74976 4694
18b519c0 4695@deffn {Macro} yyclearin;
bfa74976
RS
4696Discard the current look-ahead token. This is useful primarily in
4697error rules. @xref{Error Recovery}.
18b519c0 4698@end deffn
bfa74976 4699
18b519c0 4700@deffn {Macro} yyerrok;
bfa74976 4701Resume generating error messages immediately for subsequent syntax
13863333 4702errors. This is useful primarily in error rules.
bfa74976 4703@xref{Error Recovery}.
18b519c0 4704@end deffn
bfa74976 4705
18b519c0 4706@deffn {Value} @@$
847bf1f5 4707@findex @@$
95923bd6 4708Acts like a structure variable containing information on the textual location
847bf1f5
AD
4709of the grouping made by the current rule. @xref{Locations, ,
4710Tracking Locations}.
bfa74976 4711
847bf1f5
AD
4712@c Check if those paragraphs are still useful or not.
4713
4714@c @example
4715@c struct @{
4716@c int first_line, last_line;
4717@c int first_column, last_column;
4718@c @};
4719@c @end example
4720
4721@c Thus, to get the starting line number of the third component, you would
4722@c use @samp{@@3.first_line}.
bfa74976 4723
847bf1f5
AD
4724@c In order for the members of this structure to contain valid information,
4725@c you must make @code{yylex} supply this information about each token.
4726@c If you need only certain members, then @code{yylex} need only fill in
4727@c those members.
bfa74976 4728
847bf1f5 4729@c The use of this feature makes the parser noticeably slower.
18b519c0 4730@end deffn
847bf1f5 4731
18b519c0 4732@deffn {Value} @@@var{n}
847bf1f5 4733@findex @@@var{n}
95923bd6 4734Acts like a structure variable containing information on the textual location
847bf1f5
AD
4735of the @var{n}th component of the current rule. @xref{Locations, ,
4736Tracking Locations}.
18b519c0 4737@end deffn
bfa74976 4738
bfa74976 4739
342b8b6e 4740@node Algorithm
13863333
AD
4741@chapter The Bison Parser Algorithm
4742@cindex Bison parser algorithm
bfa74976
RS
4743@cindex algorithm of parser
4744@cindex shifting
4745@cindex reduction
4746@cindex parser stack
4747@cindex stack, parser
4748
4749As Bison reads tokens, it pushes them onto a stack along with their
4750semantic values. The stack is called the @dfn{parser stack}. Pushing a
4751token is traditionally called @dfn{shifting}.
4752
4753For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4754@samp{3} to come. The stack will have four elements, one for each token
4755that was shifted.
4756
4757But the stack does not always have an element for each token read. When
4758the last @var{n} tokens and groupings shifted match the components of a
4759grammar rule, they can be combined according to that rule. This is called
4760@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4761single grouping whose symbol is the result (left hand side) of that rule.
4762Running the rule's action is part of the process of reduction, because this
4763is what computes the semantic value of the resulting grouping.
4764
4765For example, if the infix calculator's parser stack contains this:
4766
4767@example
47681 + 5 * 3
4769@end example
4770
4771@noindent
4772and the next input token is a newline character, then the last three
4773elements can be reduced to 15 via the rule:
4774
4775@example
4776expr: expr '*' expr;
4777@end example
4778
4779@noindent
4780Then the stack contains just these three elements:
4781
4782@example
47831 + 15
4784@end example
4785
4786@noindent
4787At this point, another reduction can be made, resulting in the single value
478816. Then the newline token can be shifted.
4789
4790The parser tries, by shifts and reductions, to reduce the entire input down
4791to a single grouping whose symbol is the grammar's start-symbol
4792(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4793
4794This kind of parser is known in the literature as a bottom-up parser.
4795
4796@menu
4797* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4798* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4799* Precedence:: Operator precedence works by resolving conflicts.
4800* Contextual Precedence:: When an operator's precedence depends on context.
4801* Parser States:: The parser is a finite-state-machine with stack.
4802* Reduce/Reduce:: When two rules are applicable in the same situation.
4803* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4804* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4805* Stack Overflow:: What happens when stack gets full. How to avoid it.
4806@end menu
4807
342b8b6e 4808@node Look-Ahead
bfa74976
RS
4809@section Look-Ahead Tokens
4810@cindex look-ahead token
4811
4812The Bison parser does @emph{not} always reduce immediately as soon as the
4813last @var{n} tokens and groupings match a rule. This is because such a
4814simple strategy is inadequate to handle most languages. Instead, when a
4815reduction is possible, the parser sometimes ``looks ahead'' at the next
4816token in order to decide what to do.
4817
4818When a token is read, it is not immediately shifted; first it becomes the
4819@dfn{look-ahead token}, which is not on the stack. Now the parser can
4820perform one or more reductions of tokens and groupings on the stack, while
4821the look-ahead token remains off to the side. When no more reductions
4822should take place, the look-ahead token is shifted onto the stack. This
4823does not mean that all possible reductions have been done; depending on the
4824token type of the look-ahead token, some rules may choose to delay their
4825application.
4826
4827Here is a simple case where look-ahead is needed. These three rules define
4828expressions which contain binary addition operators and postfix unary
4829factorial operators (@samp{!}), and allow parentheses for grouping.
4830
4831@example
4832@group
4833expr: term '+' expr
4834 | term
4835 ;
4836@end group
4837
4838@group
4839term: '(' expr ')'
4840 | term '!'
4841 | NUMBER
4842 ;
4843@end group
4844@end example
4845
4846Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4847should be done? If the following token is @samp{)}, then the first three
4848tokens must be reduced to form an @code{expr}. This is the only valid
4849course, because shifting the @samp{)} would produce a sequence of symbols
4850@w{@code{term ')'}}, and no rule allows this.
4851
4852If the following token is @samp{!}, then it must be shifted immediately so
4853that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
4854parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
4855@code{expr}. It would then be impossible to shift the @samp{!} because
4856doing so would produce on the stack the sequence of symbols @code{expr
4857'!'}. No rule allows that sequence.
4858
4859@vindex yychar
4860The current look-ahead token is stored in the variable @code{yychar}.
4861@xref{Action Features, ,Special Features for Use in Actions}.
4862
342b8b6e 4863@node Shift/Reduce
bfa74976
RS
4864@section Shift/Reduce Conflicts
4865@cindex conflicts
4866@cindex shift/reduce conflicts
4867@cindex dangling @code{else}
4868@cindex @code{else}, dangling
4869
4870Suppose we are parsing a language which has if-then and if-then-else
4871statements, with a pair of rules like this:
4872
4873@example
4874@group
4875if_stmt:
4876 IF expr THEN stmt
4877 | IF expr THEN stmt ELSE stmt
4878 ;
4879@end group
4880@end example
4881
4882@noindent
4883Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
4884terminal symbols for specific keyword tokens.
4885
4886When the @code{ELSE} token is read and becomes the look-ahead token, the
4887contents of the stack (assuming the input is valid) are just right for
4888reduction by the first rule. But it is also legitimate to shift the
4889@code{ELSE}, because that would lead to eventual reduction by the second
4890rule.
4891
4892This situation, where either a shift or a reduction would be valid, is
4893called a @dfn{shift/reduce conflict}. Bison is designed to resolve
4894these conflicts by choosing to shift, unless otherwise directed by
4895operator precedence declarations. To see the reason for this, let's
4896contrast it with the other alternative.
4897
4898Since the parser prefers to shift the @code{ELSE}, the result is to attach
4899the else-clause to the innermost if-statement, making these two inputs
4900equivalent:
4901
4902@example
4903if x then if y then win (); else lose;
4904
4905if x then do; if y then win (); else lose; end;
4906@end example
4907
4908But if the parser chose to reduce when possible rather than shift, the
4909result would be to attach the else-clause to the outermost if-statement,
4910making these two inputs equivalent:
4911
4912@example
4913if x then if y then win (); else lose;
4914
4915if x then do; if y then win (); end; else lose;
4916@end example
4917
4918The conflict exists because the grammar as written is ambiguous: either
4919parsing of the simple nested if-statement is legitimate. The established
4920convention is that these ambiguities are resolved by attaching the
4921else-clause to the innermost if-statement; this is what Bison accomplishes
4922by choosing to shift rather than reduce. (It would ideally be cleaner to
4923write an unambiguous grammar, but that is very hard to do in this case.)
4924This particular ambiguity was first encountered in the specifications of
4925Algol 60 and is called the ``dangling @code{else}'' ambiguity.
4926
4927To avoid warnings from Bison about predictable, legitimate shift/reduce
4928conflicts, use the @code{%expect @var{n}} declaration. There will be no
4929warning as long as the number of shift/reduce conflicts is exactly @var{n}.
4930@xref{Expect Decl, ,Suppressing Conflict Warnings}.
4931
4932The definition of @code{if_stmt} above is solely to blame for the
4933conflict, but the conflict does not actually appear without additional
4934rules. Here is a complete Bison input file that actually manifests the
4935conflict:
4936
4937@example
4938@group
4939%token IF THEN ELSE variable
4940%%
4941@end group
4942@group
4943stmt: expr
4944 | if_stmt
4945 ;
4946@end group
4947
4948@group
4949if_stmt:
4950 IF expr THEN stmt
4951 | IF expr THEN stmt ELSE stmt
4952 ;
4953@end group
4954
4955expr: variable
4956 ;
4957@end example
4958
342b8b6e 4959@node Precedence
bfa74976
RS
4960@section Operator Precedence
4961@cindex operator precedence
4962@cindex precedence of operators
4963
4964Another situation where shift/reduce conflicts appear is in arithmetic
4965expressions. Here shifting is not always the preferred resolution; the
4966Bison declarations for operator precedence allow you to specify when to
4967shift and when to reduce.
4968
4969@menu
4970* Why Precedence:: An example showing why precedence is needed.
4971* Using Precedence:: How to specify precedence in Bison grammars.
4972* Precedence Examples:: How these features are used in the previous example.
4973* How Precedence:: How they work.
4974@end menu
4975
342b8b6e 4976@node Why Precedence
bfa74976
RS
4977@subsection When Precedence is Needed
4978
4979Consider the following ambiguous grammar fragment (ambiguous because the
4980input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
4981
4982@example
4983@group
4984expr: expr '-' expr
4985 | expr '*' expr
4986 | expr '<' expr
4987 | '(' expr ')'
4988 @dots{}
4989 ;
4990@end group
4991@end example
4992
4993@noindent
4994Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
4995should it reduce them via the rule for the subtraction operator? It
4996depends on the next token. Of course, if the next token is @samp{)}, we
4997must reduce; shifting is invalid because no single rule can reduce the
4998token sequence @w{@samp{- 2 )}} or anything starting with that. But if
4999the next token is @samp{*} or @samp{<}, we have a choice: either
5000shifting or reduction would allow the parse to complete, but with
5001different results.
5002
5003To decide which one Bison should do, we must consider the results. If
5004the next operator token @var{op} is shifted, then it must be reduced
5005first in order to permit another opportunity to reduce the difference.
5006The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5007hand, if the subtraction is reduced before shifting @var{op}, the result
5008is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5009reduce should depend on the relative precedence of the operators
5010@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5011@samp{<}.
bfa74976
RS
5012
5013@cindex associativity
5014What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5015@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5016operators we prefer the former, which is called @dfn{left association}.
5017The latter alternative, @dfn{right association}, is desirable for
5018assignment operators. The choice of left or right association is a
5019matter of whether the parser chooses to shift or reduce when the stack
5020contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5021makes right-associativity.
bfa74976 5022
342b8b6e 5023@node Using Precedence
bfa74976
RS
5024@subsection Specifying Operator Precedence
5025@findex %left
5026@findex %right
5027@findex %nonassoc
5028
5029Bison allows you to specify these choices with the operator precedence
5030declarations @code{%left} and @code{%right}. Each such declaration
5031contains a list of tokens, which are operators whose precedence and
5032associativity is being declared. The @code{%left} declaration makes all
5033those operators left-associative and the @code{%right} declaration makes
5034them right-associative. A third alternative is @code{%nonassoc}, which
5035declares that it is a syntax error to find the same operator twice ``in a
5036row''.
5037
5038The relative precedence of different operators is controlled by the
5039order in which they are declared. The first @code{%left} or
5040@code{%right} declaration in the file declares the operators whose
5041precedence is lowest, the next such declaration declares the operators
5042whose precedence is a little higher, and so on.
5043
342b8b6e 5044@node Precedence Examples
bfa74976
RS
5045@subsection Precedence Examples
5046
5047In our example, we would want the following declarations:
5048
5049@example
5050%left '<'
5051%left '-'
5052%left '*'
5053@end example
5054
5055In a more complete example, which supports other operators as well, we
5056would declare them in groups of equal precedence. For example, @code{'+'} is
5057declared with @code{'-'}:
5058
5059@example
5060%left '<' '>' '=' NE LE GE
5061%left '+' '-'
5062%left '*' '/'
5063@end example
5064
5065@noindent
5066(Here @code{NE} and so on stand for the operators for ``not equal''
5067and so on. We assume that these tokens are more than one character long
5068and therefore are represented by names, not character literals.)
5069
342b8b6e 5070@node How Precedence
bfa74976
RS
5071@subsection How Precedence Works
5072
5073The first effect of the precedence declarations is to assign precedence
5074levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5075precedence levels to certain rules: each rule gets its precedence from
5076the last terminal symbol mentioned in the components. (You can also
5077specify explicitly the precedence of a rule. @xref{Contextual
5078Precedence, ,Context-Dependent Precedence}.)
5079
5080Finally, the resolution of conflicts works by comparing the precedence
5081of the rule being considered with that of the look-ahead token. If the
5082token's precedence is higher, the choice is to shift. If the rule's
5083precedence is higher, the choice is to reduce. If they have equal
5084precedence, the choice is made based on the associativity of that
5085precedence level. The verbose output file made by @samp{-v}
5086(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5087resolved.
bfa74976
RS
5088
5089Not all rules and not all tokens have precedence. If either the rule or
5090the look-ahead token has no precedence, then the default is to shift.
5091
342b8b6e 5092@node Contextual Precedence
bfa74976
RS
5093@section Context-Dependent Precedence
5094@cindex context-dependent precedence
5095@cindex unary operator precedence
5096@cindex precedence, context-dependent
5097@cindex precedence, unary operator
5098@findex %prec
5099
5100Often the precedence of an operator depends on the context. This sounds
5101outlandish at first, but it is really very common. For example, a minus
5102sign typically has a very high precedence as a unary operator, and a
5103somewhat lower precedence (lower than multiplication) as a binary operator.
5104
5105The Bison precedence declarations, @code{%left}, @code{%right} and
5106@code{%nonassoc}, can only be used once for a given token; so a token has
5107only one precedence declared in this way. For context-dependent
5108precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5109modifier for rules.
bfa74976
RS
5110
5111The @code{%prec} modifier declares the precedence of a particular rule by
5112specifying a terminal symbol whose precedence should be used for that rule.
5113It's not necessary for that symbol to appear otherwise in the rule. The
5114modifier's syntax is:
5115
5116@example
5117%prec @var{terminal-symbol}
5118@end example
5119
5120@noindent
5121and it is written after the components of the rule. Its effect is to
5122assign the rule the precedence of @var{terminal-symbol}, overriding
5123the precedence that would be deduced for it in the ordinary way. The
5124altered rule precedence then affects how conflicts involving that rule
5125are resolved (@pxref{Precedence, ,Operator Precedence}).
5126
5127Here is how @code{%prec} solves the problem of unary minus. First, declare
5128a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5129are no tokens of this type, but the symbol serves to stand for its
5130precedence:
5131
5132@example
5133@dots{}
5134%left '+' '-'
5135%left '*'
5136%left UMINUS
5137@end example
5138
5139Now the precedence of @code{UMINUS} can be used in specific rules:
5140
5141@example
5142@group
5143exp: @dots{}
5144 | exp '-' exp
5145 @dots{}
5146 | '-' exp %prec UMINUS
5147@end group
5148@end example
5149
91d2c560 5150@ifset defaultprec
39a06c25
PE
5151If you forget to append @code{%prec UMINUS} to the rule for unary
5152minus, Bison silently assumes that minus has its usual precedence.
5153This kind of problem can be tricky to debug, since one typically
5154discovers the mistake only by testing the code.
5155
22fccf95 5156The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5157this kind of problem systematically. It causes rules that lack a
5158@code{%prec} modifier to have no precedence, even if the last terminal
5159symbol mentioned in their components has a declared precedence.
5160
22fccf95 5161If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5162for all rules that participate in precedence conflict resolution.
5163Then you will see any shift/reduce conflict until you tell Bison how
5164to resolve it, either by changing your grammar or by adding an
5165explicit precedence. This will probably add declarations to the
5166grammar, but it helps to protect against incorrect rule precedences.
5167
22fccf95
PE
5168The effect of @code{%no-default-prec;} can be reversed by giving
5169@code{%default-prec;}, which is the default.
91d2c560 5170@end ifset
39a06c25 5171
342b8b6e 5172@node Parser States
bfa74976
RS
5173@section Parser States
5174@cindex finite-state machine
5175@cindex parser state
5176@cindex state (of parser)
5177
5178The function @code{yyparse} is implemented using a finite-state machine.
5179The values pushed on the parser stack are not simply token type codes; they
5180represent the entire sequence of terminal and nonterminal symbols at or
5181near the top of the stack. The current state collects all the information
5182about previous input which is relevant to deciding what to do next.
5183
5184Each time a look-ahead token is read, the current parser state together
5185with the type of look-ahead token are looked up in a table. This table
5186entry can say, ``Shift the look-ahead token.'' In this case, it also
5187specifies the new parser state, which is pushed onto the top of the
5188parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5189This means that a certain number of tokens or groupings are taken off
5190the top of the stack, and replaced by one grouping. In other words,
5191that number of states are popped from the stack, and one new state is
5192pushed.
5193
5194There is one other alternative: the table can say that the look-ahead token
5195is erroneous in the current state. This causes error processing to begin
5196(@pxref{Error Recovery}).
5197
342b8b6e 5198@node Reduce/Reduce
bfa74976
RS
5199@section Reduce/Reduce Conflicts
5200@cindex reduce/reduce conflict
5201@cindex conflicts, reduce/reduce
5202
5203A reduce/reduce conflict occurs if there are two or more rules that apply
5204to the same sequence of input. This usually indicates a serious error
5205in the grammar.
5206
5207For example, here is an erroneous attempt to define a sequence
5208of zero or more @code{word} groupings.
5209
5210@example
5211sequence: /* empty */
5212 @{ printf ("empty sequence\n"); @}
5213 | maybeword
5214 | sequence word
5215 @{ printf ("added word %s\n", $2); @}
5216 ;
5217
5218maybeword: /* empty */
5219 @{ printf ("empty maybeword\n"); @}
5220 | word
5221 @{ printf ("single word %s\n", $1); @}
5222 ;
5223@end example
5224
5225@noindent
5226The error is an ambiguity: there is more than one way to parse a single
5227@code{word} into a @code{sequence}. It could be reduced to a
5228@code{maybeword} and then into a @code{sequence} via the second rule.
5229Alternatively, nothing-at-all could be reduced into a @code{sequence}
5230via the first rule, and this could be combined with the @code{word}
5231using the third rule for @code{sequence}.
5232
5233There is also more than one way to reduce nothing-at-all into a
5234@code{sequence}. This can be done directly via the first rule,
5235or indirectly via @code{maybeword} and then the second rule.
5236
5237You might think that this is a distinction without a difference, because it
5238does not change whether any particular input is valid or not. But it does
5239affect which actions are run. One parsing order runs the second rule's
5240action; the other runs the first rule's action and the third rule's action.
5241In this example, the output of the program changes.
5242
5243Bison resolves a reduce/reduce conflict by choosing to use the rule that
5244appears first in the grammar, but it is very risky to rely on this. Every
5245reduce/reduce conflict must be studied and usually eliminated. Here is the
5246proper way to define @code{sequence}:
5247
5248@example
5249sequence: /* empty */
5250 @{ printf ("empty sequence\n"); @}
5251 | sequence word
5252 @{ printf ("added word %s\n", $2); @}
5253 ;
5254@end example
5255
5256Here is another common error that yields a reduce/reduce conflict:
5257
5258@example
5259sequence: /* empty */
5260 | sequence words
5261 | sequence redirects
5262 ;
5263
5264words: /* empty */
5265 | words word
5266 ;
5267
5268redirects:/* empty */
5269 | redirects redirect
5270 ;
5271@end example
5272
5273@noindent
5274The intention here is to define a sequence which can contain either
5275@code{word} or @code{redirect} groupings. The individual definitions of
5276@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5277three together make a subtle ambiguity: even an empty input can be parsed
5278in infinitely many ways!
5279
5280Consider: nothing-at-all could be a @code{words}. Or it could be two
5281@code{words} in a row, or three, or any number. It could equally well be a
5282@code{redirects}, or two, or any number. Or it could be a @code{words}
5283followed by three @code{redirects} and another @code{words}. And so on.
5284
5285Here are two ways to correct these rules. First, to make it a single level
5286of sequence:
5287
5288@example
5289sequence: /* empty */
5290 | sequence word
5291 | sequence redirect
5292 ;
5293@end example
5294
5295Second, to prevent either a @code{words} or a @code{redirects}
5296from being empty:
5297
5298@example
5299sequence: /* empty */
5300 | sequence words
5301 | sequence redirects
5302 ;
5303
5304words: word
5305 | words word
5306 ;
5307
5308redirects:redirect
5309 | redirects redirect
5310 ;
5311@end example
5312
342b8b6e 5313@node Mystery Conflicts
bfa74976
RS
5314@section Mysterious Reduce/Reduce Conflicts
5315
5316Sometimes reduce/reduce conflicts can occur that don't look warranted.
5317Here is an example:
5318
5319@example
5320@group
5321%token ID
5322
5323%%
5324def: param_spec return_spec ','
5325 ;
5326param_spec:
5327 type
5328 | name_list ':' type
5329 ;
5330@end group
5331@group
5332return_spec:
5333 type
5334 | name ':' type
5335 ;
5336@end group
5337@group
5338type: ID
5339 ;
5340@end group
5341@group
5342name: ID
5343 ;
5344name_list:
5345 name
5346 | name ',' name_list
5347 ;
5348@end group
5349@end example
5350
5351It would seem that this grammar can be parsed with only a single token
13863333 5352of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5353a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5354@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5355
c827f760
PE
5356@cindex @acronym{LR}(1)
5357@cindex @acronym{LALR}(1)
bfa74976 5358However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5359@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5360an @code{ID}
bfa74976
RS
5361at the beginning of a @code{param_spec} and likewise at the beginning of
5362a @code{return_spec}, are similar enough that Bison assumes they are the
5363same. They appear similar because the same set of rules would be
5364active---the rule for reducing to a @code{name} and that for reducing to
5365a @code{type}. Bison is unable to determine at that stage of processing
5366that the rules would require different look-ahead tokens in the two
5367contexts, so it makes a single parser state for them both. Combining
5368the two contexts causes a conflict later. In parser terminology, this
c827f760 5369occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5370
5371In general, it is better to fix deficiencies than to document them. But
5372this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5373generators that can handle @acronym{LR}(1) grammars are hard to write
5374and tend to
bfa74976
RS
5375produce parsers that are very large. In practice, Bison is more useful
5376as it is now.
5377
5378When the problem arises, you can often fix it by identifying the two
a220f555
MA
5379parser states that are being confused, and adding something to make them
5380look distinct. In the above example, adding one rule to
bfa74976
RS
5381@code{return_spec} as follows makes the problem go away:
5382
5383@example
5384@group
5385%token BOGUS
5386@dots{}
5387%%
5388@dots{}
5389return_spec:
5390 type
5391 | name ':' type
5392 /* This rule is never used. */
5393 | ID BOGUS
5394 ;
5395@end group
5396@end example
5397
5398This corrects the problem because it introduces the possibility of an
5399additional active rule in the context after the @code{ID} at the beginning of
5400@code{return_spec}. This rule is not active in the corresponding context
5401in a @code{param_spec}, so the two contexts receive distinct parser states.
5402As long as the token @code{BOGUS} is never generated by @code{yylex},
5403the added rule cannot alter the way actual input is parsed.
5404
5405In this particular example, there is another way to solve the problem:
5406rewrite the rule for @code{return_spec} to use @code{ID} directly
5407instead of via @code{name}. This also causes the two confusing
5408contexts to have different sets of active rules, because the one for
5409@code{return_spec} activates the altered rule for @code{return_spec}
5410rather than the one for @code{name}.
5411
5412@example
5413param_spec:
5414 type
5415 | name_list ':' type
5416 ;
5417return_spec:
5418 type
5419 | ID ':' type
5420 ;
5421@end example
5422
fae437e8 5423@node Generalized LR Parsing
c827f760
PE
5424@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5425@cindex @acronym{GLR} parsing
5426@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5427@cindex ambiguous grammars
5428@cindex non-deterministic parsing
5429
fae437e8
AD
5430Bison produces @emph{deterministic} parsers that choose uniquely
5431when to reduce and which reduction to apply
8dd162d3 5432based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5433As a result, normal Bison handles a proper subset of the family of
5434context-free languages.
fae437e8 5435Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5436sequence of reductions cannot have deterministic parsers in this sense.
5437The same is true of languages that require more than one symbol of
8dd162d3 5438look-ahead, since the parser lacks the information necessary to make a
676385e2 5439decision at the point it must be made in a shift-reduce parser.
fae437e8 5440Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5441there are languages where Bison's particular choice of how to
5442summarize the input seen so far loses necessary information.
5443
5444When you use the @samp{%glr-parser} declaration in your grammar file,
5445Bison generates a parser that uses a different algorithm, called
c827f760
PE
5446Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5447parser uses the same basic
676385e2
PH
5448algorithm for parsing as an ordinary Bison parser, but behaves
5449differently in cases where there is a shift-reduce conflict that has not
fae437e8 5450been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5451reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5452situation, it
fae437e8 5453effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5454shift or reduction. These parsers then proceed as usual, consuming
5455tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5456and split further, with the result that instead of a sequence of states,
c827f760 5457a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5458
5459In effect, each stack represents a guess as to what the proper parse
5460is. Additional input may indicate that a guess was wrong, in which case
5461the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5462actions generated in each stack are saved, rather than being executed
676385e2 5463immediately. When a stack disappears, its saved semantic actions never
fae437e8 5464get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5465their sets of semantic actions are both saved with the state that
5466results from the reduction. We say that two stacks are equivalent
fae437e8 5467when they both represent the same sequence of states,
676385e2
PH
5468and each pair of corresponding states represents a
5469grammar symbol that produces the same segment of the input token
5470stream.
5471
5472Whenever the parser makes a transition from having multiple
c827f760 5473states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5474algorithm, after resolving and executing the saved-up actions.
5475At this transition, some of the states on the stack will have semantic
5476values that are sets (actually multisets) of possible actions. The
5477parser tries to pick one of the actions by first finding one whose rule
5478has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5479declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5480precedence, but there the same merging function is declared for both
fae437e8 5481rules by the @samp{%merge} declaration,
676385e2
PH
5482Bison resolves and evaluates both and then calls the merge function on
5483the result. Otherwise, it reports an ambiguity.
5484
c827f760
PE
5485It is possible to use a data structure for the @acronym{GLR} parsing tree that
5486permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5487size of the input), any unambiguous (not necessarily
5488@acronym{LALR}(1)) grammar in
fae437e8 5489quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5490context-free grammar in cubic worst-case time. However, Bison currently
5491uses a simpler data structure that requires time proportional to the
5492length of the input times the maximum number of stacks required for any
5493prefix of the input. Thus, really ambiguous or non-deterministic
5494grammars can require exponential time and space to process. Such badly
5495behaving examples, however, are not generally of practical interest.
5496Usually, non-determinism in a grammar is local---the parser is ``in
5497doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5498structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5499grammar, in particular, it is only slightly slower than with the default
5500Bison parser.
5501
fa7e68c3 5502For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5503Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5504Generalised @acronym{LR} Parsers, Royal Holloway, University of
5505London, Department of Computer Science, TR-00-12,
5506@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5507(2000-12-24).
5508
342b8b6e 5509@node Stack Overflow
bfa74976
RS
5510@section Stack Overflow, and How to Avoid It
5511@cindex stack overflow
5512@cindex parser stack overflow
5513@cindex overflow of parser stack
5514
5515The Bison parser stack can overflow if too many tokens are shifted and
5516not reduced. When this happens, the parser function @code{yyparse}
5517returns a nonzero value, pausing only to call @code{yyerror} to report
5518the overflow.
5519
c827f760 5520Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5521usually results from using a right recursion instead of a left
5522recursion, @xref{Recursion, ,Recursive Rules}.
5523
bfa74976
RS
5524@vindex YYMAXDEPTH
5525By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5526parser stack can become before a stack overflow occurs. Define the
5527macro with a value that is an integer. This value is the maximum number
5528of tokens that can be shifted (and not reduced) before overflow.
5529It must be a constant expression whose value is known at compile time.
5530
5531The stack space allowed is not necessarily allocated. If you specify a
5532large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5533stack at first, and then makes it bigger by stages as needed. This
5534increasing allocation happens automatically and silently. Therefore,
5535you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5536space for ordinary inputs that do not need much stack.
5537
5538@cindex default stack limit
5539The default value of @code{YYMAXDEPTH}, if you do not define it, is
554010000.
5541
5542@vindex YYINITDEPTH
5543You can control how much stack is allocated initially by defining the
5544macro @code{YYINITDEPTH}. This value too must be a compile-time
5545constant integer. The default is 200.
5546
d1a1114f 5547@c FIXME: C++ output.
c827f760
PE
5548Because of semantical differences between C and C++, the
5549@acronym{LALR}(1) parsers
d1a1114f
AD
5550in C produced by Bison by compiled as C++ cannot grow. In this precise
5551case (compiling a C parser as C++) you are suggested to grow
5552@code{YYINITDEPTH}. In the near future, a C++ output output will be
5553provided which addresses this issue.
5554
342b8b6e 5555@node Error Recovery
bfa74976
RS
5556@chapter Error Recovery
5557@cindex error recovery
5558@cindex recovery from errors
5559
6e649e65 5560It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5561error. For example, a compiler should recover sufficiently to parse the
5562rest of the input file and check it for errors; a calculator should accept
5563another expression.
5564
5565In a simple interactive command parser where each input is one line, it may
5566be sufficient to allow @code{yyparse} to return 1 on error and have the
5567caller ignore the rest of the input line when that happens (and then call
5568@code{yyparse} again). But this is inadequate for a compiler, because it
5569forgets all the syntactic context leading up to the error. A syntax error
5570deep within a function in the compiler input should not cause the compiler
5571to treat the following line like the beginning of a source file.
5572
5573@findex error
5574You can define how to recover from a syntax error by writing rules to
5575recognize the special token @code{error}. This is a terminal symbol that
5576is always defined (you need not declare it) and reserved for error
5577handling. The Bison parser generates an @code{error} token whenever a
5578syntax error happens; if you have provided a rule to recognize this token
13863333 5579in the current context, the parse can continue.
bfa74976
RS
5580
5581For example:
5582
5583@example
5584stmnts: /* empty string */
5585 | stmnts '\n'
5586 | stmnts exp '\n'
5587 | stmnts error '\n'
5588@end example
5589
5590The fourth rule in this example says that an error followed by a newline
5591makes a valid addition to any @code{stmnts}.
5592
5593What happens if a syntax error occurs in the middle of an @code{exp}? The
5594error recovery rule, interpreted strictly, applies to the precise sequence
5595of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5596the middle of an @code{exp}, there will probably be some additional tokens
5597and subexpressions on the stack after the last @code{stmnts}, and there
5598will be tokens to read before the next newline. So the rule is not
5599applicable in the ordinary way.
5600
5601But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5602the semantic context and part of the input. First it discards states
5603and objects from the stack until it gets back to a state in which the
bfa74976 5604@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5605already parsed are discarded, back to the last complete @code{stmnts}.)
5606At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5607look-ahead token is not acceptable to be shifted next, the parser reads
5608tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5609this example, Bison reads and discards input until the next newline so
5610that the fourth rule can apply. Note that discarded symbols are
5611possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5612Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5613
5614The choice of error rules in the grammar is a choice of strategies for
5615error recovery. A simple and useful strategy is simply to skip the rest of
5616the current input line or current statement if an error is detected:
5617
5618@example
72d2299c 5619stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5620@end example
5621
5622It is also useful to recover to the matching close-delimiter of an
5623opening-delimiter that has already been parsed. Otherwise the
5624close-delimiter will probably appear to be unmatched, and generate another,
5625spurious error message:
5626
5627@example
5628primary: '(' expr ')'
5629 | '(' error ')'
5630 @dots{}
5631 ;
5632@end example
5633
5634Error recovery strategies are necessarily guesses. When they guess wrong,
5635one syntax error often leads to another. In the above example, the error
5636recovery rule guesses that an error is due to bad input within one
5637@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5638middle of a valid @code{stmnt}. After the error recovery rule recovers
5639from the first error, another syntax error will be found straightaway,
5640since the text following the spurious semicolon is also an invalid
5641@code{stmnt}.
5642
5643To prevent an outpouring of error messages, the parser will output no error
5644message for another syntax error that happens shortly after the first; only
5645after three consecutive input tokens have been successfully shifted will
5646error messages resume.
5647
5648Note that rules which accept the @code{error} token may have actions, just
5649as any other rules can.
5650
5651@findex yyerrok
5652You can make error messages resume immediately by using the macro
5653@code{yyerrok} in an action. If you do this in the error rule's action, no
5654error messages will be suppressed. This macro requires no arguments;
5655@samp{yyerrok;} is a valid C statement.
5656
5657@findex yyclearin
5658The previous look-ahead token is reanalyzed immediately after an error. If
5659this is unacceptable, then the macro @code{yyclearin} may be used to clear
5660this token. Write the statement @samp{yyclearin;} in the error rule's
5661action.
5662
6e649e65 5663For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5664called that advances the input stream to some point where parsing should
5665once again commence. The next symbol returned by the lexical scanner is
5666probably correct. The previous look-ahead token ought to be discarded
5667with @samp{yyclearin;}.
5668
5669@vindex YYRECOVERING
5670The macro @code{YYRECOVERING} stands for an expression that has the
5671value 1 when the parser is recovering from a syntax error, and 0 the
5672rest of the time. A value of 1 indicates that error messages are
5673currently suppressed for new syntax errors.
5674
342b8b6e 5675@node Context Dependency
bfa74976
RS
5676@chapter Handling Context Dependencies
5677
5678The Bison paradigm is to parse tokens first, then group them into larger
5679syntactic units. In many languages, the meaning of a token is affected by
5680its context. Although this violates the Bison paradigm, certain techniques
5681(known as @dfn{kludges}) may enable you to write Bison parsers for such
5682languages.
5683
5684@menu
5685* Semantic Tokens:: Token parsing can depend on the semantic context.
5686* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5687* Tie-in Recovery:: Lexical tie-ins have implications for how
5688 error recovery rules must be written.
5689@end menu
5690
5691(Actually, ``kludge'' means any technique that gets its job done but is
5692neither clean nor robust.)
5693
342b8b6e 5694@node Semantic Tokens
bfa74976
RS
5695@section Semantic Info in Token Types
5696
5697The C language has a context dependency: the way an identifier is used
5698depends on what its current meaning is. For example, consider this:
5699
5700@example
5701foo (x);
5702@end example
5703
5704This looks like a function call statement, but if @code{foo} is a typedef
5705name, then this is actually a declaration of @code{x}. How can a Bison
5706parser for C decide how to parse this input?
5707
c827f760 5708The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5709@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5710identifier, it looks up the current declaration of the identifier in order
5711to decide which token type to return: @code{TYPENAME} if the identifier is
5712declared as a typedef, @code{IDENTIFIER} otherwise.
5713
5714The grammar rules can then express the context dependency by the choice of
5715token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5716but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5717@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5718is @emph{not} significant, such as in declarations that can shadow a
5719typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5720accepted---there is one rule for each of the two token types.
5721
5722This technique is simple to use if the decision of which kinds of
5723identifiers to allow is made at a place close to where the identifier is
5724parsed. But in C this is not always so: C allows a declaration to
5725redeclare a typedef name provided an explicit type has been specified
5726earlier:
5727
5728@example
5729typedef int foo, bar, lose;
5730static foo (bar); /* @r{redeclare @code{bar} as static variable} */
5731static int foo (lose); /* @r{redeclare @code{foo} as function} */
5732@end example
5733
5734Unfortunately, the name being declared is separated from the declaration
5735construct itself by a complicated syntactic structure---the ``declarator''.
5736
9ecbd125 5737As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5738all the nonterminal names changed: once for parsing a declaration in
5739which a typedef name can be redefined, and once for parsing a
5740declaration in which that can't be done. Here is a part of the
5741duplication, with actions omitted for brevity:
bfa74976
RS
5742
5743@example
5744initdcl:
5745 declarator maybeasm '='
5746 init
5747 | declarator maybeasm
5748 ;
5749
5750notype_initdcl:
5751 notype_declarator maybeasm '='
5752 init
5753 | notype_declarator maybeasm
5754 ;
5755@end example
5756
5757@noindent
5758Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5759cannot. The distinction between @code{declarator} and
5760@code{notype_declarator} is the same sort of thing.
5761
5762There is some similarity between this technique and a lexical tie-in
5763(described next), in that information which alters the lexical analysis is
5764changed during parsing by other parts of the program. The difference is
5765here the information is global, and is used for other purposes in the
5766program. A true lexical tie-in has a special-purpose flag controlled by
5767the syntactic context.
5768
342b8b6e 5769@node Lexical Tie-ins
bfa74976
RS
5770@section Lexical Tie-ins
5771@cindex lexical tie-in
5772
5773One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5774which is set by Bison actions, whose purpose is to alter the way tokens are
5775parsed.
5776
5777For example, suppose we have a language vaguely like C, but with a special
5778construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5779an expression in parentheses in which all integers are hexadecimal. In
5780particular, the token @samp{a1b} must be treated as an integer rather than
5781as an identifier if it appears in that context. Here is how you can do it:
5782
5783@example
5784@group
5785%@{
38a92d50
PE
5786 int hexflag;
5787 int yylex (void);
5788 void yyerror (char const *);
bfa74976
RS
5789%@}
5790%%
5791@dots{}
5792@end group
5793@group
5794expr: IDENTIFIER
5795 | constant
5796 | HEX '('
5797 @{ hexflag = 1; @}
5798 expr ')'
5799 @{ hexflag = 0;
5800 $$ = $4; @}
5801 | expr '+' expr
5802 @{ $$ = make_sum ($1, $3); @}
5803 @dots{}
5804 ;
5805@end group
5806
5807@group
5808constant:
5809 INTEGER
5810 | STRING
5811 ;
5812@end group
5813@end example
5814
5815@noindent
5816Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5817it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5818with letters are parsed as integers if possible.
5819
342b8b6e
AD
5820The declaration of @code{hexflag} shown in the prologue of the parser file
5821is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5822You must also write the code in @code{yylex} to obey the flag.
bfa74976 5823
342b8b6e 5824@node Tie-in Recovery
bfa74976
RS
5825@section Lexical Tie-ins and Error Recovery
5826
5827Lexical tie-ins make strict demands on any error recovery rules you have.
5828@xref{Error Recovery}.
5829
5830The reason for this is that the purpose of an error recovery rule is to
5831abort the parsing of one construct and resume in some larger construct.
5832For example, in C-like languages, a typical error recovery rule is to skip
5833tokens until the next semicolon, and then start a new statement, like this:
5834
5835@example
5836stmt: expr ';'
5837 | IF '(' expr ')' stmt @{ @dots{} @}
5838 @dots{}
5839 error ';'
5840 @{ hexflag = 0; @}
5841 ;
5842@end example
5843
5844If there is a syntax error in the middle of a @samp{hex (@var{expr})}
5845construct, this error rule will apply, and then the action for the
5846completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
5847remain set for the entire rest of the input, or until the next @code{hex}
5848keyword, causing identifiers to be misinterpreted as integers.
5849
5850To avoid this problem the error recovery rule itself clears @code{hexflag}.
5851
5852There may also be an error recovery rule that works within expressions.
5853For example, there could be a rule which applies within parentheses
5854and skips to the close-parenthesis:
5855
5856@example
5857@group
5858expr: @dots{}
5859 | '(' expr ')'
5860 @{ $$ = $2; @}
5861 | '(' error ')'
5862 @dots{}
5863@end group
5864@end example
5865
5866If this rule acts within the @code{hex} construct, it is not going to abort
5867that construct (since it applies to an inner level of parentheses within
5868the construct). Therefore, it should not clear the flag: the rest of
5869the @code{hex} construct should be parsed with the flag still in effect.
5870
5871What if there is an error recovery rule which might abort out of the
5872@code{hex} construct or might not, depending on circumstances? There is no
5873way you can write the action to determine whether a @code{hex} construct is
5874being aborted or not. So if you are using a lexical tie-in, you had better
5875make sure your error recovery rules are not of this kind. Each rule must
5876be such that you can be sure that it always will, or always won't, have to
5877clear the flag.
5878
ec3bc396
AD
5879@c ================================================== Debugging Your Parser
5880
342b8b6e 5881@node Debugging
bfa74976 5882@chapter Debugging Your Parser
ec3bc396
AD
5883
5884Developing a parser can be a challenge, especially if you don't
5885understand the algorithm (@pxref{Algorithm, ,The Bison Parser
5886Algorithm}). Even so, sometimes a detailed description of the automaton
5887can help (@pxref{Understanding, , Understanding Your Parser}), or
5888tracing the execution of the parser can give some insight on why it
5889behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
5890
5891@menu
5892* Understanding:: Understanding the structure of your parser.
5893* Tracing:: Tracing the execution of your parser.
5894@end menu
5895
5896@node Understanding
5897@section Understanding Your Parser
5898
5899As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
5900Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
5901frequent than one would hope), looking at this automaton is required to
5902tune or simply fix a parser. Bison provides two different
c827f760 5903representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
5904file).
5905
5906The textual file is generated when the options @option{--report} or
5907@option{--verbose} are specified, see @xref{Invocation, , Invoking
5908Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
5909the parser output file name, and adding @samp{.output} instead.
5910Therefore, if the input file is @file{foo.y}, then the parser file is
5911called @file{foo.tab.c} by default. As a consequence, the verbose
5912output file is called @file{foo.output}.
5913
5914The following grammar file, @file{calc.y}, will be used in the sequel:
5915
5916@example
5917%token NUM STR
5918%left '+' '-'
5919%left '*'
5920%%
5921exp: exp '+' exp
5922 | exp '-' exp
5923 | exp '*' exp
5924 | exp '/' exp
5925 | NUM
5926 ;
5927useless: STR;
5928%%
5929@end example
5930
88bce5a2
AD
5931@command{bison} reports:
5932
5933@example
5934calc.y: warning: 1 useless nonterminal and 1 useless rule
5935calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
5936calc.y:11.10-12: warning: useless rule: useless: STR
5937calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
5938@end example
5939
5940When given @option{--report=state}, in addition to @file{calc.tab.c}, it
5941creates a file @file{calc.output} with contents detailed below. The
5942order of the output and the exact presentation might vary, but the
5943interpretation is the same.
ec3bc396
AD
5944
5945The first section includes details on conflicts that were solved thanks
5946to precedence and/or associativity:
5947
5948@example
5949Conflict in state 8 between rule 2 and token '+' resolved as reduce.
5950Conflict in state 8 between rule 2 and token '-' resolved as reduce.
5951Conflict in state 8 between rule 2 and token '*' resolved as shift.
5952@exdent @dots{}
5953@end example
5954
5955@noindent
5956The next section lists states that still have conflicts.
5957
5958@example
5a99098d
PE
5959State 8 conflicts: 1 shift/reduce
5960State 9 conflicts: 1 shift/reduce
5961State 10 conflicts: 1 shift/reduce
5962State 11 conflicts: 4 shift/reduce
ec3bc396
AD
5963@end example
5964
5965@noindent
5966@cindex token, useless
5967@cindex useless token
5968@cindex nonterminal, useless
5969@cindex useless nonterminal
5970@cindex rule, useless
5971@cindex useless rule
5972The next section reports useless tokens, nonterminal and rules. Useless
5973nonterminals and rules are removed in order to produce a smaller parser,
5974but useless tokens are preserved, since they might be used by the
5975scanner (note the difference between ``useless'' and ``not used''
5976below):
5977
5978@example
5979Useless nonterminals:
5980 useless
5981
5982Terminals which are not used:
5983 STR
5984
5985Useless rules:
5986#6 useless: STR;
5987@end example
5988
5989@noindent
5990The next section reproduces the exact grammar that Bison used:
5991
5992@example
5993Grammar
5994
5995 Number, Line, Rule
88bce5a2 5996 0 5 $accept -> exp $end
ec3bc396
AD
5997 1 5 exp -> exp '+' exp
5998 2 6 exp -> exp '-' exp
5999 3 7 exp -> exp '*' exp
6000 4 8 exp -> exp '/' exp
6001 5 9 exp -> NUM
6002@end example
6003
6004@noindent
6005and reports the uses of the symbols:
6006
6007@example
6008Terminals, with rules where they appear
6009
88bce5a2 6010$end (0) 0
ec3bc396
AD
6011'*' (42) 3
6012'+' (43) 1
6013'-' (45) 2
6014'/' (47) 4
6015error (256)
6016NUM (258) 5
6017
6018Nonterminals, with rules where they appear
6019
88bce5a2 6020$accept (8)
ec3bc396
AD
6021 on left: 0
6022exp (9)
6023 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6024@end example
6025
6026@noindent
6027@cindex item
6028@cindex pointed rule
6029@cindex rule, pointed
6030Bison then proceeds onto the automaton itself, describing each state
6031with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6032item is a production rule together with a point (marked by @samp{.})
6033that the input cursor.
6034
6035@example
6036state 0
6037
88bce5a2 6038 $accept -> . exp $ (rule 0)
ec3bc396 6039
2a8d363a 6040 NUM shift, and go to state 1
ec3bc396 6041
2a8d363a 6042 exp go to state 2
ec3bc396
AD
6043@end example
6044
6045This reads as follows: ``state 0 corresponds to being at the very
6046beginning of the parsing, in the initial rule, right before the start
6047symbol (here, @code{exp}). When the parser returns to this state right
6048after having reduced a rule that produced an @code{exp}, the control
6049flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6050symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6051the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6052look-ahead triggers a syntax error.''
ec3bc396
AD
6053
6054@cindex core, item set
6055@cindex item set core
6056@cindex kernel, item set
6057@cindex item set core
6058Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6059report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6060at the beginning of any rule deriving an @code{exp}. By default Bison
6061reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6062you want to see more detail you can invoke @command{bison} with
6063@option{--report=itemset} to list all the items, include those that can
6064be derived:
6065
6066@example
6067state 0
6068
88bce5a2 6069 $accept -> . exp $ (rule 0)
ec3bc396
AD
6070 exp -> . exp '+' exp (rule 1)
6071 exp -> . exp '-' exp (rule 2)
6072 exp -> . exp '*' exp (rule 3)
6073 exp -> . exp '/' exp (rule 4)
6074 exp -> . NUM (rule 5)
6075
6076 NUM shift, and go to state 1
6077
6078 exp go to state 2
6079@end example
6080
6081@noindent
6082In the state 1...
6083
6084@example
6085state 1
6086
6087 exp -> NUM . (rule 5)
6088
2a8d363a 6089 $default reduce using rule 5 (exp)
ec3bc396
AD
6090@end example
6091
6092@noindent
8dd162d3 6093the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6094(@samp{$default}), the parser will reduce it. If it was coming from
6095state 0, then, after this reduction it will return to state 0, and will
6096jump to state 2 (@samp{exp: go to state 2}).
6097
6098@example
6099state 2
6100
88bce5a2 6101 $accept -> exp . $ (rule 0)
ec3bc396
AD
6102 exp -> exp . '+' exp (rule 1)
6103 exp -> exp . '-' exp (rule 2)
6104 exp -> exp . '*' exp (rule 3)
6105 exp -> exp . '/' exp (rule 4)
6106
2a8d363a
AD
6107 $ shift, and go to state 3
6108 '+' shift, and go to state 4
6109 '-' shift, and go to state 5
6110 '*' shift, and go to state 6
6111 '/' shift, and go to state 7
ec3bc396
AD
6112@end example
6113
6114@noindent
6115In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6116because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6117@samp{+}, it will be shifted on the parse stack, and the automaton
6118control will jump to state 4, corresponding to the item @samp{exp -> exp
6119'+' . exp}. Since there is no default action, any other token than
6e649e65 6120those listed above will trigger a syntax error.
ec3bc396
AD
6121
6122The state 3 is named the @dfn{final state}, or the @dfn{accepting
6123state}:
6124
6125@example
6126state 3
6127
88bce5a2 6128 $accept -> exp $ . (rule 0)
ec3bc396 6129
2a8d363a 6130 $default accept
ec3bc396
AD
6131@end example
6132
6133@noindent
6134the initial rule is completed (the start symbol and the end
6135of input were read), the parsing exits successfully.
6136
6137The interpretation of states 4 to 7 is straightforward, and is left to
6138the reader.
6139
6140@example
6141state 4
6142
6143 exp -> exp '+' . exp (rule 1)
6144
2a8d363a 6145 NUM shift, and go to state 1
ec3bc396 6146
2a8d363a 6147 exp go to state 8
ec3bc396
AD
6148
6149state 5
6150
6151 exp -> exp '-' . exp (rule 2)
6152
2a8d363a 6153 NUM shift, and go to state 1
ec3bc396 6154
2a8d363a 6155 exp go to state 9
ec3bc396
AD
6156
6157state 6
6158
6159 exp -> exp '*' . exp (rule 3)
6160
2a8d363a 6161 NUM shift, and go to state 1
ec3bc396 6162
2a8d363a 6163 exp go to state 10
ec3bc396
AD
6164
6165state 7
6166
6167 exp -> exp '/' . exp (rule 4)
6168
2a8d363a 6169 NUM shift, and go to state 1
ec3bc396 6170
2a8d363a 6171 exp go to state 11
ec3bc396
AD
6172@end example
6173
5a99098d
PE
6174As was announced in beginning of the report, @samp{State 8 conflicts:
61751 shift/reduce}:
ec3bc396
AD
6176
6177@example
6178state 8
6179
6180 exp -> exp . '+' exp (rule 1)
6181 exp -> exp '+' exp . (rule 1)
6182 exp -> exp . '-' exp (rule 2)
6183 exp -> exp . '*' exp (rule 3)
6184 exp -> exp . '/' exp (rule 4)
6185
2a8d363a
AD
6186 '*' shift, and go to state 6
6187 '/' shift, and go to state 7
ec3bc396 6188
2a8d363a
AD
6189 '/' [reduce using rule 1 (exp)]
6190 $default reduce using rule 1 (exp)
ec3bc396
AD
6191@end example
6192
8dd162d3 6193Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6194either shifting (and going to state 7), or reducing rule 1. The
6195conflict means that either the grammar is ambiguous, or the parser lacks
6196information to make the right decision. Indeed the grammar is
6197ambiguous, as, since we did not specify the precedence of @samp{/}, the
6198sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6199NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6200NUM}, which corresponds to reducing rule 1.
6201
c827f760 6202Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6203arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6204Shift/Reduce Conflicts}. Discarded actions are reported in between
6205square brackets.
6206
6207Note that all the previous states had a single possible action: either
6208shifting the next token and going to the corresponding state, or
6209reducing a single rule. In the other cases, i.e., when shifting
6210@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6211possible, the look-ahead is required to select the action. State 8 is
6212one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6213is shifting, otherwise the action is reducing rule 1. In other words,
6214the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6215look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6216precedence than @samp{+}. More generally, some items are eligible only
6217with some set of possible look-ahead tokens. When run with
6218@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6219
6220@example
6221state 8
6222
6223 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6224 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6225 exp -> exp . '-' exp (rule 2)
6226 exp -> exp . '*' exp (rule 3)
6227 exp -> exp . '/' exp (rule 4)
6228
6229 '*' shift, and go to state 6
6230 '/' shift, and go to state 7
6231
6232 '/' [reduce using rule 1 (exp)]
6233 $default reduce using rule 1 (exp)
6234@end example
6235
6236The remaining states are similar:
6237
6238@example
6239state 9
6240
6241 exp -> exp . '+' exp (rule 1)
6242 exp -> exp . '-' exp (rule 2)
6243 exp -> exp '-' exp . (rule 2)
6244 exp -> exp . '*' exp (rule 3)
6245 exp -> exp . '/' exp (rule 4)
6246
2a8d363a
AD
6247 '*' shift, and go to state 6
6248 '/' shift, and go to state 7
ec3bc396 6249
2a8d363a
AD
6250 '/' [reduce using rule 2 (exp)]
6251 $default reduce using rule 2 (exp)
ec3bc396
AD
6252
6253state 10
6254
6255 exp -> exp . '+' exp (rule 1)
6256 exp -> exp . '-' exp (rule 2)
6257 exp -> exp . '*' exp (rule 3)
6258 exp -> exp '*' exp . (rule 3)
6259 exp -> exp . '/' exp (rule 4)
6260
2a8d363a 6261 '/' shift, and go to state 7
ec3bc396 6262
2a8d363a
AD
6263 '/' [reduce using rule 3 (exp)]
6264 $default reduce using rule 3 (exp)
ec3bc396
AD
6265
6266state 11
6267
6268 exp -> exp . '+' exp (rule 1)
6269 exp -> exp . '-' exp (rule 2)
6270 exp -> exp . '*' exp (rule 3)
6271 exp -> exp . '/' exp (rule 4)
6272 exp -> exp '/' exp . (rule 4)
6273
2a8d363a
AD
6274 '+' shift, and go to state 4
6275 '-' shift, and go to state 5
6276 '*' shift, and go to state 6
6277 '/' shift, and go to state 7
ec3bc396 6278
2a8d363a
AD
6279 '+' [reduce using rule 4 (exp)]
6280 '-' [reduce using rule 4 (exp)]
6281 '*' [reduce using rule 4 (exp)]
6282 '/' [reduce using rule 4 (exp)]
6283 $default reduce using rule 4 (exp)
ec3bc396
AD
6284@end example
6285
6286@noindent
fa7e68c3
PE
6287Observe that state 11 contains conflicts not only due to the lack of
6288precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6289@samp{*}, but also because the
ec3bc396
AD
6290associativity of @samp{/} is not specified.
6291
6292
6293@node Tracing
6294@section Tracing Your Parser
bfa74976
RS
6295@findex yydebug
6296@cindex debugging
6297@cindex tracing the parser
6298
6299If a Bison grammar compiles properly but doesn't do what you want when it
6300runs, the @code{yydebug} parser-trace feature can help you figure out why.
6301
3ded9a63
AD
6302There are several means to enable compilation of trace facilities:
6303
6304@table @asis
6305@item the macro @code{YYDEBUG}
6306@findex YYDEBUG
6307Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6308parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6309@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6310YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6311Prologue}).
6312
6313@item the option @option{-t}, @option{--debug}
6314Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6315,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6316
6317@item the directive @samp{%debug}
6318@findex %debug
6319Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6320Declaration Summary}). This is a Bison extension, which will prove
6321useful when Bison will output parsers for languages that don't use a
c827f760
PE
6322preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6323you, this is
3ded9a63
AD
6324the preferred solution.
6325@end table
6326
6327We suggest that you always enable the debug option so that debugging is
6328always possible.
bfa74976 6329
02a81e05 6330The trace facility outputs messages with macro calls of the form
e2742e46 6331@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6332@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6333arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6334define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6335and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6336
6337Once you have compiled the program with trace facilities, the way to
6338request a trace is to store a nonzero value in the variable @code{yydebug}.
6339You can do this by making the C code do it (in @code{main}, perhaps), or
6340you can alter the value with a C debugger.
6341
6342Each step taken by the parser when @code{yydebug} is nonzero produces a
6343line or two of trace information, written on @code{stderr}. The trace
6344messages tell you these things:
6345
6346@itemize @bullet
6347@item
6348Each time the parser calls @code{yylex}, what kind of token was read.
6349
6350@item
6351Each time a token is shifted, the depth and complete contents of the
6352state stack (@pxref{Parser States}).
6353
6354@item
6355Each time a rule is reduced, which rule it is, and the complete contents
6356of the state stack afterward.
6357@end itemize
6358
6359To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6360produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6361Bison}). This file shows the meaning of each state in terms of
6362positions in various rules, and also what each state will do with each
6363possible input token. As you read the successive trace messages, you
6364can see that the parser is functioning according to its specification in
6365the listing file. Eventually you will arrive at the place where
6366something undesirable happens, and you will see which parts of the
6367grammar are to blame.
bfa74976
RS
6368
6369The parser file is a C program and you can use C debuggers on it, but it's
6370not easy to interpret what it is doing. The parser function is a
6371finite-state machine interpreter, and aside from the actions it executes
6372the same code over and over. Only the values of variables show where in
6373the grammar it is working.
6374
6375@findex YYPRINT
6376The debugging information normally gives the token type of each token
6377read, but not its semantic value. You can optionally define a macro
6378named @code{YYPRINT} to provide a way to print the value. If you define
6379@code{YYPRINT}, it should take three arguments. The parser will pass a
6380standard I/O stream, the numeric code for the token type, and the token
6381value (from @code{yylval}).
6382
6383Here is an example of @code{YYPRINT} suitable for the multi-function
6384calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6385
6386@smallexample
38a92d50
PE
6387%@{
6388 static void print_token_value (FILE *, int, YYSTYPE);
6389 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6390%@}
6391
6392@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6393
6394static void
831d3c99 6395print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6396@{
6397 if (type == VAR)
d3c4e709 6398 fprintf (file, "%s", value.tptr->name);
bfa74976 6399 else if (type == NUM)
d3c4e709 6400 fprintf (file, "%d", value.val);
bfa74976
RS
6401@}
6402@end smallexample
6403
ec3bc396
AD
6404@c ================================================= Invoking Bison
6405
342b8b6e 6406@node Invocation
bfa74976
RS
6407@chapter Invoking Bison
6408@cindex invoking Bison
6409@cindex Bison invocation
6410@cindex options for invoking Bison
6411
6412The usual way to invoke Bison is as follows:
6413
6414@example
6415bison @var{infile}
6416@end example
6417
6418Here @var{infile} is the grammar file name, which usually ends in
6419@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6420with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6421@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6422@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6423C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6424or @file{foo.y++}. Then, the output files will take an extension like
6425the given one as input (respectively @file{foo.tab.cpp} and
6426@file{foo.tab.c++}).
234a3be3
AD
6427This feature takes effect with all options that manipulate filenames like
6428@samp{-o} or @samp{-d}.
6429
6430For example :
6431
6432@example
6433bison -d @var{infile.yxx}
6434@end example
84163231 6435@noindent
72d2299c 6436will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6437
6438@example
b56471a6 6439bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6440@end example
84163231 6441@noindent
234a3be3
AD
6442will produce @file{output.c++} and @file{outfile.h++}.
6443
397ec073
PE
6444For compatibility with @acronym{POSIX}, the standard Bison
6445distribution also contains a shell script called @command{yacc} that
6446invokes Bison with the @option{-y} option.
6447
bfa74976 6448@menu
13863333 6449* Bison Options:: All the options described in detail,
c827f760 6450 in alphabetical order by short options.
bfa74976 6451* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6452* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6453@end menu
6454
342b8b6e 6455@node Bison Options
bfa74976
RS
6456@section Bison Options
6457
6458Bison supports both traditional single-letter options and mnemonic long
6459option names. Long option names are indicated with @samp{--} instead of
6460@samp{-}. Abbreviations for option names are allowed as long as they
6461are unique. When a long option takes an argument, like
6462@samp{--file-prefix}, connect the option name and the argument with
6463@samp{=}.
6464
6465Here is a list of options that can be used with Bison, alphabetized by
6466short option. It is followed by a cross key alphabetized by long
6467option.
6468
89cab50d
AD
6469@c Please, keep this ordered as in `bison --help'.
6470@noindent
6471Operations modes:
6472@table @option
6473@item -h
6474@itemx --help
6475Print a summary of the command-line options to Bison and exit.
bfa74976 6476
89cab50d
AD
6477@item -V
6478@itemx --version
6479Print the version number of Bison and exit.
bfa74976 6480
89cab50d
AD
6481@need 1750
6482@item -y
6483@itemx --yacc
89cab50d
AD
6484Equivalent to @samp{-o y.tab.c}; the parser output file is called
6485@file{y.tab.c}, and the other outputs are called @file{y.output} and
6486@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6487file name conventions. Thus, the following shell script can substitute
397ec073
PE
6488for Yacc, and the Bison distribution contains such a script for
6489compatibility with @acronym{POSIX}:
bfa74976 6490
89cab50d 6491@example
397ec073 6492#! /bin/sh
26e06a21 6493bison -y "$@@"
89cab50d
AD
6494@end example
6495@end table
6496
6497@noindent
6498Tuning the parser:
6499
6500@table @option
cd5bd6ac
AD
6501@item -S @var{file}
6502@itemx --skeleton=@var{file}
6503Specify the skeleton to use. You probably don't need this option unless
6504you are developing Bison.
6505
89cab50d
AD
6506@item -t
6507@itemx --debug
4947ebdb
PE
6508In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6509already defined, so that the debugging facilities are compiled.
ec3bc396 6510@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6511
6512@item --locations
d8988b2f 6513Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6514
6515@item -p @var{prefix}
6516@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6517Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6518@xref{Decl Summary}.
bfa74976
RS
6519
6520@item -l
6521@itemx --no-lines
6522Don't put any @code{#line} preprocessor commands in the parser file.
6523Ordinarily Bison puts them in the parser file so that the C compiler
6524and debuggers will associate errors with your source file, the
6525grammar file. This option causes them to associate errors with the
95e742f7 6526parser file, treating it as an independent source file in its own right.
bfa74976 6527
931c7513
RS
6528@item -n
6529@itemx --no-parser
d8988b2f 6530Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6531
89cab50d
AD
6532@item -k
6533@itemx --token-table
d8988b2f 6534Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6535@end table
bfa74976 6536
89cab50d
AD
6537@noindent
6538Adjust the output:
bfa74976 6539
89cab50d
AD
6540@table @option
6541@item -d
d8988b2f
AD
6542@itemx --defines
6543Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6544file containing macro definitions for the token type names defined in
4bfd5e4e 6545the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6546
342b8b6e 6547@item --defines=@var{defines-file}
d8988b2f 6548Same as above, but save in the file @var{defines-file}.
342b8b6e 6549
89cab50d
AD
6550@item -b @var{file-prefix}
6551@itemx --file-prefix=@var{prefix}
d8988b2f 6552Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6553for all Bison output file names. @xref{Decl Summary}.
bfa74976 6554
ec3bc396
AD
6555@item -r @var{things}
6556@itemx --report=@var{things}
6557Write an extra output file containing verbose description of the comma
6558separated list of @var{things} among:
6559
6560@table @code
6561@item state
6562Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6563@acronym{LALR} automaton.
ec3bc396 6564
8dd162d3 6565@item look-ahead
ec3bc396 6566Implies @code{state} and augments the description of the automaton with
8dd162d3 6567each rule's look-ahead set.
ec3bc396
AD
6568
6569@item itemset
6570Implies @code{state} and augments the description of the automaton with
6571the full set of items for each state, instead of its core only.
6572@end table
6573
6574For instance, on the following grammar
6575
bfa74976
RS
6576@item -v
6577@itemx --verbose
6deb4447
AD
6578Pretend that @code{%verbose} was specified, i.e, write an extra output
6579file containing verbose descriptions of the grammar and
72d2299c 6580parser. @xref{Decl Summary}.
bfa74976 6581
d8988b2f
AD
6582@item -o @var{filename}
6583@itemx --output=@var{filename}
6584Specify the @var{filename} for the parser file.
bfa74976 6585
d8988b2f
AD
6586The other output files' names are constructed from @var{filename} as
6587described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6588
6589@item -g
c827f760
PE
6590Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6591automaton computed by Bison. If the grammar file is @file{foo.y}, the
6592@acronym{VCG} output file will
342b8b6e
AD
6593be @file{foo.vcg}.
6594
6595@item --graph=@var{graph-file}
72d2299c
PE
6596The behavior of @var{--graph} is the same than @samp{-g}. The only
6597difference is that it has an optional argument which is the name of
342b8b6e 6598the output graph filename.
bfa74976
RS
6599@end table
6600
342b8b6e 6601@node Option Cross Key
bfa74976
RS
6602@section Option Cross Key
6603
6604Here is a list of options, alphabetized by long option, to help you find
6605the corresponding short option.
6606
6607@tex
6608\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6609
6610{\tt
6611\line{ --debug \leaderfill -t}
6612\line{ --defines \leaderfill -d}
6613\line{ --file-prefix \leaderfill -b}
342b8b6e 6614\line{ --graph \leaderfill -g}
ff51d159 6615\line{ --help \leaderfill -h}
bfa74976
RS
6616\line{ --name-prefix \leaderfill -p}
6617\line{ --no-lines \leaderfill -l}
931c7513 6618\line{ --no-parser \leaderfill -n}
d8988b2f 6619\line{ --output \leaderfill -o}
931c7513 6620\line{ --token-table \leaderfill -k}
bfa74976
RS
6621\line{ --verbose \leaderfill -v}
6622\line{ --version \leaderfill -V}
6623\line{ --yacc \leaderfill -y}
6624}
6625@end tex
6626
6627@ifinfo
6628@example
6629--debug -t
342b8b6e 6630--defines=@var{defines-file} -d
bfa74976 6631--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6632--graph=@var{graph-file} -d
ff51d159 6633--help -h
931c7513 6634--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6635--no-lines -l
931c7513 6636--no-parser -n
d8988b2f 6637--output=@var{outfile} -o @var{outfile}
931c7513 6638--token-table -k
bfa74976
RS
6639--verbose -v
6640--version -V
8c9a50be 6641--yacc -y
bfa74976
RS
6642@end example
6643@end ifinfo
6644
93dd49ab
PE
6645@node Yacc Library
6646@section Yacc Library
6647
6648The Yacc library contains default implementations of the
6649@code{yyerror} and @code{main} functions. These default
6650implementations are normally not useful, but @acronym{POSIX} requires
6651them. To use the Yacc library, link your program with the
6652@option{-ly} option. Note that Bison's implementation of the Yacc
6653library is distributed under the terms of the @acronym{GNU} General
6654Public License (@pxref{Copying}).
6655
6656If you use the Yacc library's @code{yyerror} function, you should
6657declare @code{yyerror} as follows:
6658
6659@example
6660int yyerror (char const *);
6661@end example
6662
6663Bison ignores the @code{int} value returned by this @code{yyerror}.
6664If you use the Yacc library's @code{main} function, your
6665@code{yyparse} function should have the following type signature:
6666
6667@example
6668int yyparse (void);
6669@end example
6670
d1a1114f
AD
6671@c ================================================= Invoking Bison
6672
6673@node FAQ
6674@chapter Frequently Asked Questions
6675@cindex frequently asked questions
6676@cindex questions
6677
6678Several questions about Bison come up occasionally. Here some of them
6679are addressed.
6680
6681@menu
6682* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 6683* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 6684* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
6685* C++ Parsers:: Compiling Parsers with C++ Compilers
6686* Implementing Loops:: Control Flow in the Calculator
d1a1114f
AD
6687@end menu
6688
6689@node Parser Stack Overflow
6690@section Parser Stack Overflow
6691
6692@display
6693My parser returns with error with a @samp{parser stack overflow}
6694message. What can I do?
6695@end display
6696
6697This question is already addressed elsewhere, @xref{Recursion,
6698,Recursive Rules}.
6699
e64fec0a
PE
6700@node How Can I Reset the Parser
6701@section How Can I Reset the Parser
5b066063 6702
0e14ad77
PE
6703The following phenomenon has several symptoms, resulting in the
6704following typical questions:
5b066063
AD
6705
6706@display
6707I invoke @code{yyparse} several times, and on correct input it works
6708properly; but when a parse error is found, all the other calls fail
0e14ad77 6709too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
6710@end display
6711
6712@noindent
6713or
6714
6715@display
0e14ad77 6716My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
6717which case I run @code{yyparse} from @code{yyparse}. This fails
6718although I did specify I needed a @code{%pure-parser}.
6719@end display
6720
0e14ad77
PE
6721These problems typically come not from Bison itself, but from
6722Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
6723speed, they might not notice a change of input file. As a
6724demonstration, consider the following source file,
6725@file{first-line.l}:
6726
6727@verbatim
6728%{
6729#include <stdio.h>
6730#include <stdlib.h>
6731%}
6732%%
6733.*\n ECHO; return 1;
6734%%
6735int
0e14ad77 6736yyparse (char const *file)
5b066063
AD
6737{
6738 yyin = fopen (file, "r");
6739 if (!yyin)
6740 exit (2);
fa7e68c3 6741 /* One token only. */
5b066063 6742 yylex ();
0e14ad77 6743 if (fclose (yyin) != 0)
5b066063
AD
6744 exit (3);
6745 return 0;
6746}
6747
6748int
0e14ad77 6749main (void)
5b066063
AD
6750{
6751 yyparse ("input");
6752 yyparse ("input");
6753 return 0;
6754}
6755@end verbatim
6756
6757@noindent
6758If the file @file{input} contains
6759
6760@verbatim
6761input:1: Hello,
6762input:2: World!
6763@end verbatim
6764
6765@noindent
0e14ad77 6766then instead of getting the first line twice, you get:
5b066063
AD
6767
6768@example
6769$ @kbd{flex -ofirst-line.c first-line.l}
6770$ @kbd{gcc -ofirst-line first-line.c -ll}
6771$ @kbd{./first-line}
6772input:1: Hello,
6773input:2: World!
6774@end example
6775
0e14ad77
PE
6776Therefore, whenever you change @code{yyin}, you must tell the
6777Lex-generated scanner to discard its current buffer and switch to the
6778new one. This depends upon your implementation of Lex; see its
6779documentation for more. For Flex, it suffices to call
6780@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
6781Flex-generated scanner needs to read from several input streams to
6782handle features like include files, you might consider using Flex
6783functions like @samp{yy_switch_to_buffer} that manipulate multiple
6784input buffers.
5b066063 6785
b165c324
AD
6786If your Flex-generated scanner uses start conditions (@pxref{Start
6787conditions, , Start conditions, flex, The Flex Manual}), you might
6788also want to reset the scanner's state, i.e., go back to the initial
6789start condition, through a call to @samp{BEGIN (0)}.
6790
fef4cb51
AD
6791@node Strings are Destroyed
6792@section Strings are Destroyed
6793
6794@display
c7e441b4 6795My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
6796them. Instead of reporting @samp{"foo", "bar"}, it reports
6797@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
6798@end display
6799
6800This error is probably the single most frequent ``bug report'' sent to
6801Bison lists, but is only concerned with a misunderstanding of the role
6802of scanner. Consider the following Lex code:
6803
6804@verbatim
6805%{
6806#include <stdio.h>
6807char *yylval = NULL;
6808%}
6809%%
6810.* yylval = yytext; return 1;
6811\n /* IGNORE */
6812%%
6813int
6814main ()
6815{
fa7e68c3 6816 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
6817 char *fst = (yylex (), yylval);
6818 char *snd = (yylex (), yylval);
6819 printf ("\"%s\", \"%s\"\n", fst, snd);
6820 return 0;
6821}
6822@end verbatim
6823
6824If you compile and run this code, you get:
6825
6826@example
6827$ @kbd{flex -osplit-lines.c split-lines.l}
6828$ @kbd{gcc -osplit-lines split-lines.c -ll}
6829$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6830"one
6831two", "two"
6832@end example
6833
6834@noindent
6835this is because @code{yytext} is a buffer provided for @emph{reading}
6836in the action, but if you want to keep it, you have to duplicate it
6837(e.g., using @code{strdup}). Note that the output may depend on how
6838your implementation of Lex handles @code{yytext}. For instance, when
6839given the Lex compatibility option @option{-l} (which triggers the
6840option @samp{%array}) Flex generates a different behavior:
6841
6842@example
6843$ @kbd{flex -l -osplit-lines.c split-lines.l}
6844$ @kbd{gcc -osplit-lines split-lines.c -ll}
6845$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6846"two", "two"
6847@end example
6848
6849
a06ea4aa
AD
6850@node C++ Parsers
6851@section C++ Parsers
6852
6853@display
6854How can I generate parsers in C++?
6855@end display
6856
6857We are working on a C++ output for Bison, but unfortunately, for lack
6858of time, the skeleton is not finished. It is functional, but in
6859numerous respects, it will require additional work which @emph{might}
6860break backward compatibility. Since the skeleton for C++ is not
6861documented, we do not consider ourselves bound to this interface,
6862nevertheless, as much as possible we will try to keep compatibility.
6863
6864Another possibility is to use the regular C parsers, and to compile
6865them with a C++ compiler. This works properly, provided that you bear
6866some simple C++ rules in mind, such as not including ``real classes''
6867(i.e., structure with constructors) in unions. Therefore, in the
6868@code{%union}, use pointers to classes, or better yet, a single
6869pointer type to the root of your lexical/syntactic hierarchy.
6870
6871
6872@node Implementing Loops
6873@section Implementing Loops
6874
6875@display
6876My simple calculator supports variables, assignments, and functions,
6877but how can I implement loops?
6878@end display
6879
6880Although very pedagogical, the examples included in the document blur
a1c84f45 6881the distinction to make between the parser---whose job is to recover
a06ea4aa 6882the structure of a text and to transmit it to subsequent modules of
a1c84f45 6883the program---and the processing (such as the execution) of this
a06ea4aa
AD
6884structure. This works well with so called straight line programs,
6885i.e., precisely those that have a straightforward execution model:
6886execute simple instructions one after the others.
6887
6888@cindex abstract syntax tree
6889@cindex @acronym{AST}
6890If you want a richer model, you will probably need to use the parser
6891to construct a tree that does represent the structure it has
6892recovered; this tree is usually called the @dfn{abstract syntax tree},
6893or @dfn{@acronym{AST}} for short. Then, walking through this tree,
6894traversing it in various ways, will enable treatments such as its
6895execution or its translation, which will result in an interpreter or a
6896compiler.
6897
6898This topic is way beyond the scope of this manual, and the reader is
6899invited to consult the dedicated literature.
6900
6901
6902
d1a1114f
AD
6903@c ================================================= Table of Symbols
6904
342b8b6e 6905@node Table of Symbols
bfa74976
RS
6906@appendix Bison Symbols
6907@cindex Bison symbols, table of
6908@cindex symbols in Bison, table of
6909
18b519c0 6910@deffn {Variable} @@$
3ded9a63 6911In an action, the location of the left-hand side of the rule.
88bce5a2 6912@xref{Locations, , Locations Overview}.
18b519c0 6913@end deffn
3ded9a63 6914
18b519c0 6915@deffn {Variable} @@@var{n}
3ded9a63
AD
6916In an action, the location of the @var{n}-th symbol of the right-hand
6917side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 6918@end deffn
3ded9a63 6919
18b519c0 6920@deffn {Variable} $$
3ded9a63
AD
6921In an action, the semantic value of the left-hand side of the rule.
6922@xref{Actions}.
18b519c0 6923@end deffn
3ded9a63 6924
18b519c0 6925@deffn {Variable} $@var{n}
3ded9a63
AD
6926In an action, the semantic value of the @var{n}-th symbol of the
6927right-hand side of the rule. @xref{Actions}.
18b519c0 6928@end deffn
3ded9a63 6929
18b519c0 6930@deffn {Symbol} $accept
88bce5a2
AD
6931The predefined nonterminal whose only rule is @samp{$accept: @var{start}
6932$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
6933Start-Symbol}. It cannot be used in the grammar.
18b519c0 6934@end deffn
88bce5a2 6935
18b519c0 6936@deffn {Symbol} $end
88bce5a2
AD
6937The predefined token marking the end of the token stream. It cannot be
6938used in the grammar.
18b519c0 6939@end deffn
88bce5a2 6940
18b519c0 6941@deffn {Symbol} $undefined
88bce5a2
AD
6942The predefined token onto which all undefined values returned by
6943@code{yylex} are mapped. It cannot be used in the grammar, rather, use
6944@code{error}.
18b519c0 6945@end deffn
88bce5a2 6946
18b519c0 6947@deffn {Symbol} error
bfa74976
RS
6948A token name reserved for error recovery. This token may be used in
6949grammar rules so as to allow the Bison parser to recognize an error in
6950the grammar without halting the process. In effect, a sentence
6e649e65 6951containing an error may be recognized as valid. On a syntax error, the
bfa74976
RS
6952token @code{error} becomes the current look-ahead token. Actions
6953corresponding to @code{error} are then executed, and the look-ahead
6954token is reset to the token that originally caused the violation.
6955@xref{Error Recovery}.
18b519c0 6956@end deffn
bfa74976 6957
18b519c0 6958@deffn {Macro} YYABORT
bfa74976
RS
6959Macro to pretend that an unrecoverable syntax error has occurred, by
6960making @code{yyparse} return 1 immediately. The error reporting
ceed8467
AD
6961function @code{yyerror} is not called. @xref{Parser Function, ,The
6962Parser Function @code{yyparse}}.
18b519c0 6963@end deffn
bfa74976 6964
18b519c0 6965@deffn {Macro} YYACCEPT
bfa74976 6966Macro to pretend that a complete utterance of the language has been
13863333 6967read, by making @code{yyparse} return 0 immediately.
bfa74976 6968@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6969@end deffn
bfa74976 6970
18b519c0 6971@deffn {Macro} YYBACKUP
bfa74976
RS
6972Macro to discard a value from the parser stack and fake a look-ahead
6973token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6974@end deffn
bfa74976 6975
18b519c0 6976@deffn {Macro} YYDEBUG
72d2299c 6977Macro to define to equip the parser with tracing code. @xref{Tracing,
ec3bc396 6978,Tracing Your Parser}.
18b519c0 6979@end deffn
3ded9a63 6980
18b519c0 6981@deffn {Macro} YYERROR
bfa74976
RS
6982Macro to pretend that a syntax error has just been detected: call
6983@code{yyerror} and then perform normal error recovery if possible
6984(@pxref{Error Recovery}), or (if recovery is impossible) make
6985@code{yyparse} return 1. @xref{Error Recovery}.
18b519c0 6986@end deffn
bfa74976 6987
18b519c0 6988@deffn {Macro} YYERROR_VERBOSE
b69d743e
PE
6989An obsolete macro that you define with @code{#define} in the prologue
6990to request verbose, specific error message strings
2a8d363a
AD
6991when @code{yyerror} is called. It doesn't matter what definition you
6992use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6993@code{%error-verbose} is preferred.
18b519c0 6994@end deffn
bfa74976 6995
18b519c0 6996@deffn {Macro} YYINITDEPTH
bfa74976
RS
6997Macro for specifying the initial size of the parser stack.
6998@xref{Stack Overflow}.
18b519c0 6999@end deffn
bfa74976 7000
18b519c0 7001@deffn {Macro} YYLEX_PARAM
2a8d363a
AD
7002An obsolete macro for specifying an extra argument (or list of extra
7003arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
7004macro is deprecated, and is supported only for Yacc like parsers.
7005@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
18b519c0 7006@end deffn
c656404a 7007
6273355b
PE
7008@deffn {Type} YYLTYPE
7009Data type of @code{yylloc}; by default, a structure with four
847bf1f5 7010members. @xref{Location Type, , Data Types of Locations}.
18b519c0 7011@end deffn
bfa74976 7012
18b519c0
AD
7013@deffn {Macro} YYMAXDEPTH
7014Macro for specifying the maximum size of the parser stack. @xref{Stack
7015Overflow}.
7016@end deffn
bfa74976 7017
18b519c0 7018@deffn {Macro} YYPARSE_PARAM
2a8d363a
AD
7019An obsolete macro for specifying the name of a parameter that
7020@code{yyparse} should accept. The use of this macro is deprecated, and
7021is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
7022Conventions for Pure Parsers}.
18b519c0 7023@end deffn
c656404a 7024
18b519c0 7025@deffn {Macro} YYRECOVERING
bfa74976
RS
7026Macro whose value indicates whether the parser is recovering from a
7027syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7028@end deffn
bfa74976 7029
18b519c0 7030@deffn {Macro} YYSTACK_USE_ALLOCA
72d2299c 7031Macro used to control the use of @code{alloca}. If defined to @samp{0},
f9a8293a 7032the parser will not use @code{alloca} but @code{malloc} when trying to
72d2299c 7033grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA}
f9a8293a 7034to anything else.
18b519c0 7035@end deffn
f9a8293a 7036
6273355b
PE
7037@deffn {Type} YYSTYPE
7038Data type of semantic values; @code{int} by default.
bfa74976 7039@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 7040@end deffn
bfa74976 7041
18b519c0 7042@deffn {Variable} yychar
13863333
AD
7043External integer variable that contains the integer value of the current
7044look-ahead token. (In a pure parser, it is a local variable within
7045@code{yyparse}.) Error-recovery rule actions may examine this variable.
7046@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7047@end deffn
bfa74976 7048
18b519c0 7049@deffn {Variable} yyclearin
bfa74976
RS
7050Macro used in error-recovery rule actions. It clears the previous
7051look-ahead token. @xref{Error Recovery}.
18b519c0 7052@end deffn
bfa74976 7053
18b519c0 7054@deffn {Variable} yydebug
bfa74976
RS
7055External integer variable set to zero by default. If @code{yydebug}
7056is given a nonzero value, the parser will output information on input
ec3bc396 7057symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 7058@end deffn
bfa74976 7059
18b519c0 7060@deffn {Macro} yyerrok
bfa74976 7061Macro to cause parser to recover immediately to its normal mode
6e649e65 7062after a syntax error. @xref{Error Recovery}.
18b519c0 7063@end deffn
bfa74976 7064
18b519c0 7065@deffn {Function} yyerror
38a92d50
PE
7066User-supplied function to be called by @code{yyparse} on error.
7067@xref{Error Reporting, ,The Error
13863333 7068Reporting Function @code{yyerror}}.
18b519c0 7069@end deffn
bfa74976 7070
18b519c0 7071@deffn {Function} yylex
704a47c4
AD
7072User-supplied lexical analyzer function, called with no arguments to get
7073the next token. @xref{Lexical, ,The Lexical Analyzer Function
7074@code{yylex}}.
18b519c0 7075@end deffn
bfa74976 7076
18b519c0 7077@deffn {Variable} yylval
bfa74976
RS
7078External variable in which @code{yylex} should place the semantic
7079value associated with a token. (In a pure parser, it is a local
7080variable within @code{yyparse}, and its address is passed to
7081@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 7082@end deffn
bfa74976 7083
18b519c0 7084@deffn {Variable} yylloc
13863333
AD
7085External variable in which @code{yylex} should place the line and column
7086numbers associated with a token. (In a pure parser, it is a local
7087variable within @code{yyparse}, and its address is passed to
bfa74976 7088@code{yylex}.) You can ignore this variable if you don't use the
95923bd6
AD
7089@samp{@@} feature in the grammar actions. @xref{Token Locations,
7090,Textual Locations of Tokens}.
18b519c0 7091@end deffn
bfa74976 7092
18b519c0 7093@deffn {Variable} yynerrs
6e649e65 7094Global variable which Bison increments each time there is a syntax error.
13863333
AD
7095(In a pure parser, it is a local variable within @code{yyparse}.)
7096@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
18b519c0 7097@end deffn
bfa74976 7098
18b519c0 7099@deffn {Function} yyparse
bfa74976
RS
7100The parser function produced by Bison; call this function to start
7101parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 7102@end deffn
bfa74976 7103
18b519c0 7104@deffn {Directive} %debug
6deb4447 7105Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7106@end deffn
6deb4447 7107
91d2c560 7108@ifset defaultprec
22fccf95
PE
7109@deffn {Directive} %default-prec
7110Assign a precedence to rules that lack an explicit @samp{%prec}
7111modifier. @xref{Contextual Precedence, ,Context-Dependent
7112Precedence}.
39a06c25 7113@end deffn
91d2c560 7114@end ifset
39a06c25 7115
18b519c0 7116@deffn {Directive} %defines
6deb4447
AD
7117Bison declaration to create a header file meant for the scanner.
7118@xref{Decl Summary}.
18b519c0 7119@end deffn
6deb4447 7120
18b519c0 7121@deffn {Directive} %destructor
72f889cc 7122Specifying how the parser should reclaim the memory associated to
fa7e68c3 7123discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7124@end deffn
72f889cc 7125
18b519c0 7126@deffn {Directive} %dprec
676385e2 7127Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7128time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7129@acronym{GLR} Parsers}.
18b519c0 7130@end deffn
676385e2 7131
18b519c0 7132@deffn {Directive} %error-verbose
2a8d363a
AD
7133Bison declaration to request verbose, specific error message strings
7134when @code{yyerror} is called.
18b519c0 7135@end deffn
2a8d363a 7136
18b519c0 7137@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7138Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7139Summary}.
18b519c0 7140@end deffn
d8988b2f 7141
18b519c0 7142@deffn {Directive} %glr-parser
c827f760
PE
7143Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7144Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7145@end deffn
676385e2 7146
18b519c0 7147@deffn {Directive} %left
bfa74976
RS
7148Bison declaration to assign left associativity to token(s).
7149@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7150@end deffn
bfa74976 7151
feeb0eda 7152@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7153Bison declaration to specifying an additional parameter that
7154@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7155for Pure Parsers}.
18b519c0 7156@end deffn
2a8d363a 7157
18b519c0 7158@deffn {Directive} %merge
676385e2 7159Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7160reduce/reduce conflict with a rule having the same merging function, the
676385e2 7161function is applied to the two semantic values to get a single result.
c827f760 7162@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7163@end deffn
676385e2 7164
18b519c0 7165@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7166Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7167@end deffn
d8988b2f 7168
91d2c560 7169@ifset defaultprec
22fccf95
PE
7170@deffn {Directive} %no-default-prec
7171Do not assign a precedence to rules that lack an explicit @samp{%prec}
7172modifier. @xref{Contextual Precedence, ,Context-Dependent
7173Precedence}.
7174@end deffn
91d2c560 7175@end ifset
22fccf95 7176
18b519c0 7177@deffn {Directive} %no-lines
931c7513
RS
7178Bison declaration to avoid generating @code{#line} directives in the
7179parser file. @xref{Decl Summary}.
18b519c0 7180@end deffn
931c7513 7181
18b519c0 7182@deffn {Directive} %nonassoc
14ded682 7183Bison declaration to assign non-associativity to token(s).
bfa74976 7184@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7185@end deffn
bfa74976 7186
18b519c0 7187@deffn {Directive} %output="@var{filename}"
72d2299c 7188Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7189Summary}.
18b519c0 7190@end deffn
d8988b2f 7191
feeb0eda 7192@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7193Bison declaration to specifying an additional parameter that
7194@code{yyparse} should accept. @xref{Parser Function,, The Parser
7195Function @code{yyparse}}.
18b519c0 7196@end deffn
2a8d363a 7197
18b519c0 7198@deffn {Directive} %prec
bfa74976
RS
7199Bison declaration to assign a precedence to a specific rule.
7200@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7201@end deffn
bfa74976 7202
18b519c0 7203@deffn {Directive} %pure-parser
bfa74976
RS
7204Bison declaration to request a pure (reentrant) parser.
7205@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7206@end deffn
bfa74976 7207
18b519c0 7208@deffn {Directive} %right
bfa74976
RS
7209Bison declaration to assign right associativity to token(s).
7210@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7211@end deffn
bfa74976 7212
18b519c0 7213@deffn {Directive} %start
704a47c4
AD
7214Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7215Start-Symbol}.
18b519c0 7216@end deffn
bfa74976 7217
18b519c0 7218@deffn {Directive} %token
bfa74976
RS
7219Bison declaration to declare token(s) without specifying precedence.
7220@xref{Token Decl, ,Token Type Names}.
18b519c0 7221@end deffn
bfa74976 7222
18b519c0 7223@deffn {Directive} %token-table
931c7513
RS
7224Bison declaration to include a token name table in the parser file.
7225@xref{Decl Summary}.
18b519c0 7226@end deffn
931c7513 7227
18b519c0 7228@deffn {Directive} %type
704a47c4
AD
7229Bison declaration to declare nonterminals. @xref{Type Decl,
7230,Nonterminal Symbols}.
18b519c0 7231@end deffn
bfa74976 7232
18b519c0 7233@deffn {Directive} %union
bfa74976
RS
7234Bison declaration to specify several possible data types for semantic
7235values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7236@end deffn
bfa74976 7237
3ded9a63
AD
7238@sp 1
7239
bfa74976
RS
7240These are the punctuation and delimiters used in Bison input:
7241
18b519c0 7242@deffn {Delimiter} %%
bfa74976 7243Delimiter used to separate the grammar rule section from the
75f5aaea 7244Bison declarations section or the epilogue.
bfa74976 7245@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7246@end deffn
bfa74976 7247
18b519c0
AD
7248@c Don't insert spaces, or check the DVI output.
7249@deffn {Delimiter} %@{@var{code}%@}
89cab50d 7250All code listed between @samp{%@{} and @samp{%@}} is copied directly to
342b8b6e 7251the output file uninterpreted. Such code forms the prologue of the input
75f5aaea 7252file. @xref{Grammar Outline, ,Outline of a Bison
89cab50d 7253Grammar}.
18b519c0 7254@end deffn
bfa74976 7255
18b519c0 7256@deffn {Construct} /*@dots{}*/
bfa74976 7257Comment delimiters, as in C.
18b519c0 7258@end deffn
bfa74976 7259
18b519c0 7260@deffn {Delimiter} :
89cab50d
AD
7261Separates a rule's result from its components. @xref{Rules, ,Syntax of
7262Grammar Rules}.
18b519c0 7263@end deffn
bfa74976 7264
18b519c0 7265@deffn {Delimiter} ;
bfa74976 7266Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7267@end deffn
bfa74976 7268
18b519c0 7269@deffn {Delimiter} |
bfa74976
RS
7270Separates alternate rules for the same result nonterminal.
7271@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7272@end deffn
bfa74976 7273
342b8b6e 7274@node Glossary
bfa74976
RS
7275@appendix Glossary
7276@cindex glossary
7277
7278@table @asis
c827f760
PE
7279@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
7280Formal method of specifying context-free grammars originally proposed
7281by John Backus, and slightly improved by Peter Naur in his 1960-01-02
7282committee document contributing to what became the Algol 60 report.
7283@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7284
7285@item Context-free grammars
7286Grammars specified as rules that can be applied regardless of context.
7287Thus, if there is a rule which says that an integer can be used as an
7288expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
7289permitted. @xref{Language and Grammar, ,Languages and Context-Free
7290Grammars}.
bfa74976
RS
7291
7292@item Dynamic allocation
7293Allocation of memory that occurs during execution, rather than at
7294compile time or on entry to a function.
7295
7296@item Empty string
7297Analogous to the empty set in set theory, the empty string is a
7298character string of length zero.
7299
7300@item Finite-state stack machine
7301A ``machine'' that has discrete states in which it is said to exist at
7302each instant in time. As input to the machine is processed, the
7303machine moves from state to state as specified by the logic of the
7304machine. In the case of the parser, the input is the language being
7305parsed, and the states correspond to various stages in the grammar
c827f760 7306rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 7307
c827f760 7308@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 7309A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
7310that are not @acronym{LALR}(1). It resolves situations that Bison's
7311usual @acronym{LALR}(1)
676385e2
PH
7312algorithm cannot by effectively splitting off multiple parsers, trying all
7313possible parsers, and discarding those that fail in the light of additional
c827f760
PE
7314right context. @xref{Generalized LR Parsing, ,Generalized
7315@acronym{LR} Parsing}.
676385e2 7316
bfa74976
RS
7317@item Grouping
7318A language construct that is (in general) grammatically divisible;
c827f760 7319for example, `expression' or `declaration' in C@.
bfa74976
RS
7320@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7321
7322@item Infix operator
7323An arithmetic operator that is placed between the operands on which it
7324performs some operation.
7325
7326@item Input stream
7327A continuous flow of data between devices or programs.
7328
7329@item Language construct
7330One of the typical usage schemas of the language. For example, one of
7331the constructs of the C language is the @code{if} statement.
7332@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7333
7334@item Left associativity
7335Operators having left associativity are analyzed from left to right:
7336@samp{a+b+c} first computes @samp{a+b} and then combines with
7337@samp{c}. @xref{Precedence, ,Operator Precedence}.
7338
7339@item Left recursion
89cab50d
AD
7340A rule whose result symbol is also its first component symbol; for
7341example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
7342Rules}.
bfa74976
RS
7343
7344@item Left-to-right parsing
7345Parsing a sentence of a language by analyzing it token by token from
c827f760 7346left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7347
7348@item Lexical analyzer (scanner)
7349A function that reads an input stream and returns tokens one by one.
7350@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
7351
7352@item Lexical tie-in
7353A flag, set by actions in the grammar rules, which alters the way
7354tokens are parsed. @xref{Lexical Tie-ins}.
7355
931c7513 7356@item Literal string token
14ded682 7357A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 7358
bfa74976 7359@item Look-ahead token
89cab50d
AD
7360A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
7361Tokens}.
bfa74976 7362
c827f760 7363@item @acronym{LALR}(1)
bfa74976 7364The class of context-free grammars that Bison (like most other parser
c827f760
PE
7365generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
7366Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 7367
c827f760 7368@item @acronym{LR}(1)
bfa74976
RS
7369The class of context-free grammars in which at most one token of
7370look-ahead is needed to disambiguate the parsing of any piece of input.
7371
7372@item Nonterminal symbol
7373A grammar symbol standing for a grammatical construct that can
7374be expressed through rules in terms of smaller constructs; in other
7375words, a construct that is not a token. @xref{Symbols}.
7376
bfa74976
RS
7377@item Parser
7378A function that recognizes valid sentences of a language by analyzing
7379the syntax structure of a set of tokens passed to it from a lexical
7380analyzer.
7381
7382@item Postfix operator
7383An arithmetic operator that is placed after the operands upon which it
7384performs some operation.
7385
7386@item Reduction
7387Replacing a string of nonterminals and/or terminals with a single
89cab50d 7388nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 7389Parser Algorithm}.
bfa74976
RS
7390
7391@item Reentrant
7392A reentrant subprogram is a subprogram which can be in invoked any
7393number of times in parallel, without interference between the various
7394invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
7395
7396@item Reverse polish notation
7397A language in which all operators are postfix operators.
7398
7399@item Right recursion
89cab50d
AD
7400A rule whose result symbol is also its last component symbol; for
7401example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
7402Rules}.
bfa74976
RS
7403
7404@item Semantics
7405In computer languages, the semantics are specified by the actions
7406taken for each instance of the language, i.e., the meaning of
7407each statement. @xref{Semantics, ,Defining Language Semantics}.
7408
7409@item Shift
7410A parser is said to shift when it makes the choice of analyzing
7411further input from the stream rather than reducing immediately some
c827f760 7412already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7413
7414@item Single-character literal
7415A single character that is recognized and interpreted as is.
7416@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
7417
7418@item Start symbol
7419The nonterminal symbol that stands for a complete valid utterance in
7420the language being parsed. The start symbol is usually listed as the
13863333 7421first nonterminal symbol in a language specification.
bfa74976
RS
7422@xref{Start Decl, ,The Start-Symbol}.
7423
7424@item Symbol table
7425A data structure where symbol names and associated data are stored
7426during parsing to allow for recognition and use of existing
7427information in repeated uses of a symbol. @xref{Multi-function Calc}.
7428
6e649e65
PE
7429@item Syntax error
7430An error encountered during parsing of an input stream due to invalid
7431syntax. @xref{Error Recovery}.
7432
bfa74976
RS
7433@item Token
7434A basic, grammatically indivisible unit of a language. The symbol
7435that describes a token in the grammar is a terminal symbol.
7436The input of the Bison parser is a stream of tokens which comes from
7437the lexical analyzer. @xref{Symbols}.
7438
7439@item Terminal symbol
89cab50d
AD
7440A grammar symbol that has no rules in the grammar and therefore is
7441grammatically indivisible. The piece of text it represents is a token.
7442@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7443@end table
7444
342b8b6e 7445@node Copying This Manual
f2b5126e 7446@appendix Copying This Manual
f9a8293a 7447
f2b5126e
PB
7448@menu
7449* GNU Free Documentation License:: License for copying this manual.
7450@end menu
f9a8293a 7451
f2b5126e
PB
7452@include fdl.texi
7453
342b8b6e 7454@node Index
bfa74976
RS
7455@unnumbered Index
7456
7457@printindex cp
7458
bfa74976 7459@bye
a06ea4aa
AD
7460
7461@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
7462@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
7463@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
7464@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
7465@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
7466@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
7467@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
7468@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
7469@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
7470@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
7471@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
7472@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
7473@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
7474@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
7475@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
7476@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
7477@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
7478@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
7479@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
7480@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
7481@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
7482@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
7483@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
7484@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
7485@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
7486@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
7487@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
7488@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
7489@c LocalWords: YYSTACK DVI fdl printindex