]> git.saurik.com Git - bison.git/blame - doc/bison.texi
c++: clean up the handling of empty symbols
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
957255b8
PE
4@documentencoding UTF-8
5@documentlanguage en
df1af54c
JT
6@include version.texi
7@settitle Bison @value{VERSION}
bfa74976
RS
8@setchapternewpage odd
9
5378c3e7 10@finalout
5378c3e7 11
13863333 12@c SMALL BOOK version
bfa74976 13@c This edition has been formatted so that you can format and print it in
13863333 14@c the smallbook format.
bfa74976
RS
15@c @smallbook
16
91d2c560
PE
17@c Set following if you want to document %default-prec and %no-default-prec.
18@c This feature is experimental and may change in future Bison versions.
19@c @set defaultprec
20
8c5b881d 21@ifnotinfo
bfa74976
RS
22@syncodeindex fn cp
23@syncodeindex vr cp
24@syncodeindex tp cp
8c5b881d 25@end ifnotinfo
bfa74976
RS
26@ifinfo
27@synindex fn cp
28@synindex vr cp
29@synindex tp cp
30@end ifinfo
31@comment %**end of header
32
fae437e8 33@copying
bd773d73 34
8a4281b9
JD
35This manual (@value{UPDATED}) is for GNU Bison (version
36@value{VERSION}), the GNU parser generator.
fae437e8 37
3209eb1c 38Copyright @copyright{} 1988-1993, 1995, 1998-2015 Free Software
575619af 39Foundation, Inc.
fae437e8
AD
40
41@quotation
42Permission is granted to copy, distribute and/or modify this document
8a4281b9 43under the terms of the GNU Free Documentation License,
804e83b2 44Version 1.3 or any later version published by the Free Software
c827f760 45Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 46being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 47(a) below. A copy of the license is included in the section entitled
8a4281b9 48``GNU Free Documentation License.''
c827f760 49
389c8cfd 50(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
51modify this GNU manual. Buying copies from the FSF
52supports it in developing GNU and promoting software
389c8cfd 53freedom.''
fae437e8
AD
54@end quotation
55@end copying
56
e62f1a89 57@dircategory Software development
fae437e8 58@direntry
8a4281b9 59* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 60@end direntry
bfa74976 61
bfa74976
RS
62@titlepage
63@title Bison
c827f760 64@subtitle The Yacc-compatible Parser Generator
df1af54c 65@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
66
67@author by Charles Donnelly and Richard Stallman
68
69@page
70@vskip 0pt plus 1filll
fae437e8 71@insertcopying
bfa74976
RS
72@sp 2
73Published by the Free Software Foundation @*
0fb669f9
PE
7451 Franklin Street, Fifth Floor @*
75Boston, MA 02110-1301 USA @*
9ecbd125 76Printed copies are available from the Free Software Foundation.@*
8a4281b9 77ISBN 1-882114-44-2
bfa74976
RS
78@sp 2
79Cover art by Etienne Suvasa.
80@end titlepage
d5796688
JT
81
82@contents
bfa74976 83
342b8b6e
AD
84@ifnottex
85@node Top
86@top Bison
fae437e8 87@insertcopying
342b8b6e 88@end ifnottex
bfa74976
RS
89
90@menu
13863333
AD
91* Introduction::
92* Conditions::
8a4281b9 93* Copying:: The GNU General Public License says
f5f419de 94 how you can copy and share Bison.
bfa74976
RS
95
96Tutorial sections:
f5f419de
DJ
97* Concepts:: Basic concepts for understanding Bison.
98* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
99
100Reference sections:
f5f419de
DJ
101* Grammar File:: Writing Bison declarations and rules.
102* Interface:: C-language interface to the parser function @code{yyparse}.
103* Algorithm:: How the Bison parser works at run-time.
104* Error Recovery:: Writing rules for error recovery.
bfa74976 105* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
106 messy for Bison to handle straightforwardly.
107* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 108* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
109* Other Languages:: Creating C++ and Java parsers.
110* FAQ:: Frequently Asked Questions
111* Table of Symbols:: All the keywords of the Bison language are explained.
112* Glossary:: Basic concepts are explained.
113* Copying This Manual:: License for copying this manual.
5e528941 114* Bibliography:: Publications cited in this manual.
f9b86351 115* Index of Terms:: Cross-references to the text.
bfa74976 116
93dd49ab
PE
117@detailmenu
118 --- The Detailed Node Listing ---
bfa74976
RS
119
120The Concepts of Bison
121
f5f419de
DJ
122* Language and Grammar:: Languages and context-free grammars,
123 as mathematical ideas.
124* Grammar in Bison:: How we represent grammars for Bison's sake.
125* Semantic Values:: Each token or syntactic grouping can have
126 a semantic value (the value of an integer,
127 the name of an identifier, etc.).
128* Semantic Actions:: Each rule can have an action containing C code.
129* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 130* Locations:: Overview of location tracking.
f5f419de
DJ
131* Bison Parser:: What are Bison's input and output,
132 how is the output used?
133* Stages:: Stages in writing and running Bison grammars.
134* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 135
8a4281b9 136Writing GLR Parsers
fa7e68c3 137
8a4281b9
JD
138* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
139* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 140* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 141* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 142* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 143
bfa74976
RS
144Examples
145
f5f419de
DJ
146* RPN Calc:: Reverse polish notation calculator;
147 a first example with no operator precedence.
148* Infix Calc:: Infix (algebraic) notation calculator.
149 Operator precedence is introduced.
bfa74976 150* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 151* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
152* Multi-function Calc:: Calculator with memory and trig functions.
153 It uses multiple data-types for semantic values.
154* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
155
156Reverse Polish Notation Calculator
157
f5f419de
DJ
158* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
159* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
160* Rpcalc Lexer:: The lexical analyzer.
161* Rpcalc Main:: The controlling function.
162* Rpcalc Error:: The error reporting function.
163* Rpcalc Generate:: Running Bison on the grammar file.
164* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
165
166Grammar Rules for @code{rpcalc}
167
24ec0837
AD
168* Rpcalc Input:: Explanation of the @code{input} nonterminal
169* Rpcalc Line:: Explanation of the @code{line} nonterminal
170* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 171
342b8b6e
AD
172Location Tracking Calculator: @code{ltcalc}
173
f5f419de
DJ
174* Ltcalc Declarations:: Bison and C declarations for ltcalc.
175* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
176* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 177
bfa74976
RS
178Multi-Function Calculator: @code{mfcalc}
179
f5f419de
DJ
180* Mfcalc Declarations:: Bison declarations for multi-function calculator.
181* Mfcalc Rules:: Grammar rules for the calculator.
182* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
183* Mfcalc Lexer:: The lexical analyzer.
184* Mfcalc Main:: The controlling function.
bfa74976
RS
185
186Bison Grammar Files
187
303834cc
JD
188* Grammar Outline:: Overall layout of the grammar file.
189* Symbols:: Terminal and nonterminal symbols.
190* Rules:: How to write grammar rules.
303834cc
JD
191* Semantics:: Semantic values and actions.
192* Tracking Locations:: Locations and actions.
193* Named References:: Using named references in actions.
194* Declarations:: All kinds of Bison declarations are described here.
195* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
196
197Outline of a Bison Grammar
198
f5f419de 199* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 200* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
201* Bison Declarations:: Syntax and usage of the Bison declarations section.
202* Grammar Rules:: Syntax and usage of the grammar rules section.
203* Epilogue:: Syntax and usage of the epilogue.
bfa74976 204
09add9c2
AD
205Grammar Rules
206
207* Rules Syntax:: Syntax of the rules.
208* Empty Rules:: Symbols that can match the empty string.
209* Recursion:: Writing recursive rules.
210
211
bfa74976
RS
212Defining Language Semantics
213
214* Value Type:: Specifying one data type for all semantic values.
215* Multiple Types:: Specifying several alternative data types.
90b89dad 216* Type Generation:: Generating the semantic value type.
e4d49586
AD
217* Union Decl:: Declaring the set of all semantic value types.
218* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
219* Actions:: An action is the semantic definition of a grammar rule.
220* Action Types:: Specifying data types for actions to operate on.
221* Mid-Rule Actions:: Most actions go at the end of a rule.
222 This says when, why and how to use the exceptional
223 action in the middle of a rule.
224
be22823e
AD
225Actions in Mid-Rule
226
227* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
228* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
229* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
230
93dd49ab
PE
231Tracking Locations
232
233* Location Type:: Specifying a data type for locations.
234* Actions and Locations:: Using locations in actions.
235* Location Default Action:: Defining a general way to compute locations.
236
bfa74976
RS
237Bison Declarations
238
b50d2359 239* Require Decl:: Requiring a Bison version.
bfa74976
RS
240* Token Decl:: Declaring terminal symbols.
241* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 242* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 243* Initial Action Decl:: Code run before parsing starts.
72f889cc 244* Destructor Decl:: Declaring how symbols are freed.
93c150b6 245* Printer Decl:: Declaring how symbol values are displayed.
d6328241 246* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
247* Start Decl:: Specifying the start symbol.
248* Pure Decl:: Requesting a reentrant parser.
9987d1b3 249* Push Decl:: Requesting a push parser.
bfa74976 250* Decl Summary:: Table of all Bison declarations.
35c1e5f0 251* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 252* %code Summary:: Inserting code into the parser source.
bfa74976
RS
253
254Parser C-Language Interface
255
f5f419de
DJ
256* Parser Function:: How to call @code{yyparse} and what it returns.
257* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
258* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
259* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
260* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
261* Lexical:: You must supply a function @code{yylex}
262 which reads tokens.
263* Error Reporting:: You must supply a function @code{yyerror}.
264* Action Features:: Special features for use in actions.
265* Internationalization:: How to let the parser speak in the user's
266 native language.
bfa74976
RS
267
268The Lexical Analyzer Function @code{yylex}
269
270* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
271* Token Values:: How @code{yylex} must return the semantic value
272 of the token it has read.
273* Token Locations:: How @code{yylex} must return the text location
274 (line number, etc.) of the token, if the
275 actions want that.
276* Pure Calling:: How the calling convention differs in a pure parser
277 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 278
13863333 279The Bison Parser Algorithm
bfa74976 280
742e4900 281* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
282* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
283* Precedence:: Operator precedence works by resolving conflicts.
284* Contextual Precedence:: When an operator's precedence depends on context.
285* Parser States:: The parser is a finite-state-machine with stack.
286* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 287* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 288* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 289* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 290* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
291
292Operator Precedence
293
294* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
295* Using Precedence:: How to specify precedence and associativity.
296* Precedence Only:: How to specify precedence only.
bfa74976
RS
297* Precedence Examples:: How these features are used in the previous example.
298* How Precedence:: How they work.
c28cd5dc 299* Non Operators:: Using precedence for general conflicts.
bfa74976 300
7fceb615
JD
301Tuning LR
302
303* LR Table Construction:: Choose a different construction algorithm.
304* Default Reductions:: Disable default reductions.
305* LAC:: Correct lookahead sets in the parser states.
306* Unreachable States:: Keep unreachable parser states for debugging.
307
bfa74976
RS
308Handling Context Dependencies
309
310* Semantic Tokens:: Token parsing can depend on the semantic context.
311* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
312* Tie-in Recovery:: Lexical tie-ins have implications for how
313 error recovery rules must be written.
314
93dd49ab 315Debugging Your Parser
ec3bc396
AD
316
317* Understanding:: Understanding the structure of your parser.
fc4fdd62 318* Graphviz:: Getting a visual representation of the parser.
9c16d399 319* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
320* Tracing:: Tracing the execution of your parser.
321
93c150b6
AD
322Tracing Your Parser
323
324* Enabling Traces:: Activating run-time trace support
325* Mfcalc Traces:: Extending @code{mfcalc} to support traces
326* The YYPRINT Macro:: Obsolete interface for semantic value reports
327
bfa74976
RS
328Invoking Bison
329
13863333 330* Bison Options:: All the options described in detail,
c827f760 331 in alphabetical order by short options.
bfa74976 332* Option Cross Key:: Alphabetical list of long options.
93dd49ab 333* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 334
8405b70c 335Parsers Written In Other Languages
12545799
AD
336
337* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 338* Java Parsers:: The interface to generate Java parser classes
12545799
AD
339
340C++ Parsers
341
342* C++ Bison Interface:: Asking for C++ parser generation
343* C++ Semantic Values:: %union vs. C++
344* C++ Location Values:: The position and location classes
345* C++ Parser Interface:: Instantiating and running the parser
346* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 347* A Complete C++ Example:: Demonstrating their use
12545799 348
936c88d1
AD
349C++ Location Values
350
351* C++ position:: One point in the source file
352* C++ location:: Two points in the source file
db8ab2be 353* User Defined Location Type:: Required interface for locations
936c88d1 354
12545799
AD
355A Complete C++ Example
356
357* Calc++ --- C++ Calculator:: The specifications
358* Calc++ Parsing Driver:: An active parsing context
359* Calc++ Parser:: A parser class
360* Calc++ Scanner:: A pure C++ Flex scanner
361* Calc++ Top Level:: Conducting the band
362
8405b70c
PB
363Java Parsers
364
f5f419de
DJ
365* Java Bison Interface:: Asking for Java parser generation
366* Java Semantic Values:: %type and %token vs. Java
367* Java Location Values:: The position and location classes
368* Java Parser Interface:: Instantiating and running the parser
369* Java Scanner Interface:: Specifying the scanner for the parser
370* Java Action Features:: Special features for use in actions
aa94def1 371* Java Push Parser Interface:: Instantiating and running the a push parser
f5f419de
DJ
372* Java Differences:: Differences between C/C++ and Java Grammars
373* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 374
d1a1114f
AD
375Frequently Asked Questions
376
f5f419de
DJ
377* Memory Exhausted:: Breaking the Stack Limits
378* How Can I Reset the Parser:: @code{yyparse} Keeps some State
379* Strings are Destroyed:: @code{yylval} Loses Track of Strings
380* Implementing Gotos/Loops:: Control Flow in the Calculator
381* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 382* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
383* I can't build Bison:: Troubleshooting
384* Where can I find help?:: Troubleshouting
385* Bug Reports:: Troublereporting
386* More Languages:: Parsers in C++, Java, and so on
387* Beta Testing:: Experimenting development versions
388* Mailing Lists:: Meeting other Bison users
d1a1114f 389
f2b5126e
PB
390Copying This Manual
391
f5f419de 392* Copying This Manual:: License for copying this manual.
f2b5126e 393
342b8b6e 394@end detailmenu
bfa74976
RS
395@end menu
396
342b8b6e 397@node Introduction
bfa74976
RS
398@unnumbered Introduction
399@cindex introduction
400
6077da58 401@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
402annotated context-free grammar into a deterministic LR or generalized
403LR (GLR) parser employing LALR(1) parser tables. As an experimental
404feature, Bison can also generate IELR(1) or canonical LR(1) parser
405tables. Once you are proficient with Bison, you can use it to develop
406a wide range of language parsers, from those used in simple desk
407calculators to complex programming languages.
408
409Bison is upward compatible with Yacc: all properly-written Yacc
410grammars ought to work with Bison with no change. Anyone familiar
411with Yacc should be able to use Bison with little trouble. You need
412to be fluent in C or C++ programming in order to use Bison or to
413understand this manual. Java is also supported as an experimental
414feature.
415
416We begin with tutorial chapters that explain the basic concepts of
417using Bison and show three explained examples, each building on the
418last. If you don't know Bison or Yacc, start by reading these
419chapters. Reference chapters follow, which describe specific aspects
420of Bison in detail.
bfa74976 421
679e9935
JD
422Bison was written originally by Robert Corbett. Richard Stallman made
423it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
424added multi-character string literals and other features. Since then,
425Bison has grown more robust and evolved many other new features thanks
426to the hard work of a long list of volunteers. For details, see the
427@file{THANKS} and @file{ChangeLog} files included in the Bison
428distribution.
931c7513 429
df1af54c 430This edition corresponds to version @value{VERSION} of Bison.
bfa74976 431
342b8b6e 432@node Conditions
bfa74976
RS
433@unnumbered Conditions for Using Bison
434
193d7c70
PE
435The distribution terms for Bison-generated parsers permit using the
436parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 437permissions applied only when Bison was generating LALR(1)
193d7c70 438parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 439parsers could be used only in programs that were free software.
a31239f1 440
8a4281b9 441The other GNU programming tools, such as the GNU C
c827f760 442compiler, have never
9ecbd125 443had such a requirement. They could always be used for nonfree
a31239f1
RS
444software. The reason Bison was different was not due to a special
445policy decision; it resulted from applying the usual General Public
446License to all of the Bison source code.
447
ff7571c0
JD
448The main output of the Bison utility---the Bison parser implementation
449file---contains a verbatim copy of a sizable piece of Bison, which is
450the code for the parser's implementation. (The actions from your
451grammar are inserted into this implementation at one point, but most
452of the rest of the implementation is not changed.) When we applied
453the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
454the effect was to restrict the use of Bison output to free software.
455
456We didn't change the terms because of sympathy for people who want to
457make software proprietary. @strong{Software should be free.} But we
458concluded that limiting Bison's use to free software was doing little to
459encourage people to make other software free. So we decided to make the
460practical conditions for using Bison match the practical conditions for
8a4281b9 461using the other GNU tools.
bfa74976 462
193d7c70
PE
463This exception applies when Bison is generating code for a parser.
464You can tell whether the exception applies to a Bison output file by
465inspecting the file for text beginning with ``As a special
466exception@dots{}''. The text spells out the exact terms of the
467exception.
262aa8dd 468
f16b0819
PE
469@node Copying
470@unnumbered GNU GENERAL PUBLIC LICENSE
471@include gpl-3.0.texi
bfa74976 472
342b8b6e 473@node Concepts
bfa74976
RS
474@chapter The Concepts of Bison
475
476This chapter introduces many of the basic concepts without which the
477details of Bison will not make sense. If you do not already know how to
478use Bison or Yacc, we suggest you start by reading this chapter carefully.
479
480@menu
f5f419de
DJ
481* Language and Grammar:: Languages and context-free grammars,
482 as mathematical ideas.
483* Grammar in Bison:: How we represent grammars for Bison's sake.
484* Semantic Values:: Each token or syntactic grouping can have
485 a semantic value (the value of an integer,
486 the name of an identifier, etc.).
487* Semantic Actions:: Each rule can have an action containing C code.
488* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 489* Locations:: Overview of location tracking.
f5f419de
DJ
490* Bison Parser:: What are Bison's input and output,
491 how is the output used?
492* Stages:: Stages in writing and running Bison grammars.
493* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
494@end menu
495
342b8b6e 496@node Language and Grammar
bfa74976
RS
497@section Languages and Context-Free Grammars
498
bfa74976
RS
499@cindex context-free grammar
500@cindex grammar, context-free
501In order for Bison to parse a language, it must be described by a
502@dfn{context-free grammar}. This means that you specify one or more
503@dfn{syntactic groupings} and give rules for constructing them from their
504parts. For example, in the C language, one kind of grouping is called an
505`expression'. One rule for making an expression might be, ``An expression
506can be made of a minus sign and another expression''. Another would be,
507``An expression can be an integer''. As you can see, rules are often
508recursive, but there must be at least one rule which leads out of the
509recursion.
510
8a4281b9 511@cindex BNF
bfa74976
RS
512@cindex Backus-Naur form
513The most common formal system for presenting such rules for humans to read
8a4281b9 514is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 515order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
516BNF is a context-free grammar. The input to Bison is
517essentially machine-readable BNF.
bfa74976 518
7fceb615
JD
519@cindex LALR grammars
520@cindex IELR grammars
521@cindex LR grammars
522There are various important subclasses of context-free grammars. Although
523it can handle almost all context-free grammars, Bison is optimized for what
524are called LR(1) grammars. In brief, in these grammars, it must be possible
525to tell how to parse any portion of an input string with just a single token
526of lookahead. For historical reasons, Bison by default is limited by the
527additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
528@xref{Mysterious Conflicts}, for more information on this. As an
529experimental feature, you can escape these additional restrictions by
530requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
531Construction}, to learn how.
bfa74976 532
8a4281b9
JD
533@cindex GLR parsing
534@cindex generalized LR (GLR) parsing
676385e2 535@cindex ambiguous grammars
9d9b8b70 536@cindex nondeterministic parsing
9501dc6e 537
8a4281b9 538Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
539roughly that the next grammar rule to apply at any point in the input is
540uniquely determined by the preceding input and a fixed, finite portion
742e4900 541(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 542grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 543apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 544grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 545lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 546With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
547general context-free grammars, using a technique known as GLR
548parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
549are able to handle any context-free grammar for which the number of
550possible parses of any given string is finite.
676385e2 551
bfa74976
RS
552@cindex symbols (abstract)
553@cindex token
554@cindex syntactic grouping
555@cindex grouping, syntactic
9501dc6e
AD
556In the formal grammatical rules for a language, each kind of syntactic
557unit or grouping is named by a @dfn{symbol}. Those which are built by
558grouping smaller constructs according to grammatical rules are called
bfa74976
RS
559@dfn{nonterminal symbols}; those which can't be subdivided are called
560@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
561corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 562corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
563
564We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
565nonterminal, mean. The tokens of C are identifiers, constants (numeric
566and string), and the various keywords, arithmetic operators and
567punctuation marks. So the terminal symbols of a grammar for C include
568`identifier', `number', `string', plus one symbol for each keyword,
569operator or punctuation mark: `if', `return', `const', `static', `int',
570`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
571(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
572lexicography, not grammar.)
573
574Here is a simple C function subdivided into tokens:
575
9edcd895
AD
576@example
577int /* @r{keyword `int'} */
14d4662b 578square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
579 @r{identifier, close-paren} */
580@{ /* @r{open-brace} */
aa08666d
AD
581 return x * x; /* @r{keyword `return', identifier, asterisk,}
582 @r{identifier, semicolon} */
9edcd895
AD
583@} /* @r{close-brace} */
584@end example
bfa74976
RS
585
586The syntactic groupings of C include the expression, the statement, the
587declaration, and the function definition. These are represented in the
588grammar of C by nonterminal symbols `expression', `statement',
589`declaration' and `function definition'. The full grammar uses dozens of
590additional language constructs, each with its own nonterminal symbol, in
591order to express the meanings of these four. The example above is a
592function definition; it contains one declaration, and one statement. In
593the statement, each @samp{x} is an expression and so is @samp{x * x}.
594
595Each nonterminal symbol must have grammatical rules showing how it is made
596out of simpler constructs. For example, one kind of C statement is the
597@code{return} statement; this would be described with a grammar rule which
598reads informally as follows:
599
600@quotation
601A `statement' can be made of a `return' keyword, an `expression' and a
602`semicolon'.
603@end quotation
604
605@noindent
606There would be many other rules for `statement', one for each kind of
607statement in C.
608
609@cindex start symbol
610One nonterminal symbol must be distinguished as the special one which
611defines a complete utterance in the language. It is called the @dfn{start
612symbol}. In a compiler, this means a complete input program. In the C
613language, the nonterminal symbol `sequence of definitions and declarations'
614plays this role.
615
616For example, @samp{1 + 2} is a valid C expression---a valid part of a C
617program---but it is not valid as an @emph{entire} C program. In the
618context-free grammar of C, this follows from the fact that `expression' is
619not the start symbol.
620
621The Bison parser reads a sequence of tokens as its input, and groups the
622tokens using the grammar rules. If the input is valid, the end result is
623that the entire token sequence reduces to a single grouping whose symbol is
624the grammar's start symbol. If we use a grammar for C, the entire input
625must be a `sequence of definitions and declarations'. If not, the parser
626reports a syntax error.
627
342b8b6e 628@node Grammar in Bison
bfa74976
RS
629@section From Formal Rules to Bison Input
630@cindex Bison grammar
631@cindex grammar, Bison
632@cindex formal grammar
633
634A formal grammar is a mathematical construct. To define the language
635for Bison, you must write a file expressing the grammar in Bison syntax:
636a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
637
638A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 639as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
640in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
641
642The Bison representation for a terminal symbol is also called a @dfn{token
643type}. Token types as well can be represented as C-like identifiers. By
644convention, these identifiers should be upper case to distinguish them from
645nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
646@code{RETURN}. A terminal symbol that stands for a particular keyword in
647the language should be named after that keyword converted to upper case.
648The terminal symbol @code{error} is reserved for error recovery.
931c7513 649@xref{Symbols}.
bfa74976
RS
650
651A terminal symbol can also be represented as a character literal, just like
652a C character constant. You should do this whenever a token is just a
653single character (parenthesis, plus-sign, etc.): use that same character in
654a literal as the terminal symbol for that token.
655
931c7513
RS
656A third way to represent a terminal symbol is with a C string constant
657containing several characters. @xref{Symbols}, for more information.
658
bfa74976
RS
659The grammar rules also have an expression in Bison syntax. For example,
660here is the Bison rule for a C @code{return} statement. The semicolon in
661quotes is a literal character token, representing part of the C syntax for
662the statement; the naked semicolon, and the colon, are Bison punctuation
663used in every rule.
664
665@example
5e9b6624 666stmt: RETURN expr ';' ;
bfa74976
RS
667@end example
668
669@noindent
670@xref{Rules, ,Syntax of Grammar Rules}.
671
342b8b6e 672@node Semantic Values
bfa74976
RS
673@section Semantic Values
674@cindex semantic value
675@cindex value, semantic
676
677A formal grammar selects tokens only by their classifications: for example,
678if a rule mentions the terminal symbol `integer constant', it means that
679@emph{any} integer constant is grammatically valid in that position. The
680precise value of the constant is irrelevant to how to parse the input: if
681@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 682grammatical.
bfa74976
RS
683
684But the precise value is very important for what the input means once it is
685parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6863989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
687has both a token type and a @dfn{semantic value}. @xref{Semantics,
688,Defining Language Semantics},
bfa74976
RS
689for details.
690
691The token type is a terminal symbol defined in the grammar, such as
692@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
693you need to know to decide where the token may validly appear and how to
694group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 695except their types.
bfa74976
RS
696
697The semantic value has all the rest of the information about the
698meaning of the token, such as the value of an integer, or the name of an
699identifier. (A token such as @code{','} which is just punctuation doesn't
700need to have any semantic value.)
701
702For example, an input token might be classified as token type
703@code{INTEGER} and have the semantic value 4. Another input token might
704have the same token type @code{INTEGER} but value 3989. When a grammar
705rule says that @code{INTEGER} is allowed, either of these tokens is
706acceptable because each is an @code{INTEGER}. When the parser accepts the
707token, it keeps track of the token's semantic value.
708
709Each grouping can also have a semantic value as well as its nonterminal
710symbol. For example, in a calculator, an expression typically has a
711semantic value that is a number. In a compiler for a programming
712language, an expression typically has a semantic value that is a tree
713structure describing the meaning of the expression.
714
342b8b6e 715@node Semantic Actions
bfa74976
RS
716@section Semantic Actions
717@cindex semantic actions
718@cindex actions, semantic
719
720In order to be useful, a program must do more than parse input; it must
721also produce some output based on the input. In a Bison grammar, a grammar
722rule can have an @dfn{action} made up of C statements. Each time the
723parser recognizes a match for that rule, the action is executed.
724@xref{Actions}.
13863333 725
bfa74976
RS
726Most of the time, the purpose of an action is to compute the semantic value
727of the whole construct from the semantic values of its parts. For example,
728suppose we have a rule which says an expression can be the sum of two
729expressions. When the parser recognizes such a sum, each of the
730subexpressions has a semantic value which describes how it was built up.
731The action for this rule should create a similar sort of value for the
732newly recognized larger expression.
733
734For example, here is a rule that says an expression can be the sum of
735two subexpressions:
736
737@example
5e9b6624 738expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
739@end example
740
741@noindent
742The action says how to produce the semantic value of the sum expression
743from the values of the two subexpressions.
744
676385e2 745@node GLR Parsers
8a4281b9
JD
746@section Writing GLR Parsers
747@cindex GLR parsing
748@cindex generalized LR (GLR) parsing
676385e2
PH
749@findex %glr-parser
750@cindex conflicts
751@cindex shift/reduce conflicts
fa7e68c3 752@cindex reduce/reduce conflicts
676385e2 753
eb45ef3b 754In some grammars, Bison's deterministic
8a4281b9 755LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
756certain grammar rule at a given point. That is, it may not be able to
757decide (on the basis of the input read so far) which of two possible
758reductions (applications of a grammar rule) applies, or whether to apply
759a reduction or read more of the input and apply a reduction later in the
760input. These are known respectively as @dfn{reduce/reduce} conflicts
761(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
762(@pxref{Shift/Reduce}).
763
8a4281b9 764To use a grammar that is not easily modified to be LR(1), a
9501dc6e 765more general parsing algorithm is sometimes necessary. If you include
676385e2 766@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
767(@pxref{Grammar Outline}), the result is a Generalized LR
768(GLR) parser. These parsers handle Bison grammars that
9501dc6e 769contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 770declarations) identically to deterministic parsers. However, when
9501dc6e 771faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 772GLR parsers use the simple expedient of doing both,
9501dc6e
AD
773effectively cloning the parser to follow both possibilities. Each of
774the resulting parsers can again split, so that at any given time, there
775can be any number of possible parses being explored. The parsers
676385e2
PH
776proceed in lockstep; that is, all of them consume (shift) a given input
777symbol before any of them proceed to the next. Each of the cloned
778parsers eventually meets one of two possible fates: either it runs into
779a parsing error, in which case it simply vanishes, or it merges with
780another parser, because the two of them have reduced the input to an
781identical set of symbols.
782
783During the time that there are multiple parsers, semantic actions are
784recorded, but not performed. When a parser disappears, its recorded
785semantic actions disappear as well, and are never performed. When a
786reduction makes two parsers identical, causing them to merge, Bison
787records both sets of semantic actions. Whenever the last two parsers
788merge, reverting to the single-parser case, Bison resolves all the
789outstanding actions either by precedences given to the grammar rules
790involved, or by performing both actions, and then calling a designated
791user-defined function on the resulting values to produce an arbitrary
792merged result.
793
fa7e68c3 794@menu
8a4281b9
JD
795* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
796* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 797* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 798* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 799* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
800@end menu
801
802@node Simple GLR Parsers
8a4281b9
JD
803@subsection Using GLR on Unambiguous Grammars
804@cindex GLR parsing, unambiguous grammars
805@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
806@findex %glr-parser
807@findex %expect-rr
808@cindex conflicts
809@cindex reduce/reduce conflicts
810@cindex shift/reduce conflicts
811
8a4281b9
JD
812In the simplest cases, you can use the GLR algorithm
813to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 814Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
815
816Consider a problem that
817arises in the declaration of enumerated and subrange types in the
818programming language Pascal. Here are some examples:
819
820@example
821type subrange = lo .. hi;
822type enum = (a, b, c);
823@end example
824
825@noindent
826The original language standard allows only numeric
827literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 828and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82910206) and many other
830Pascal implementations allow arbitrary expressions there. This gives
831rise to the following situation, containing a superfluous pair of
832parentheses:
833
834@example
835type subrange = (a) .. b;
836@end example
837
838@noindent
839Compare this to the following declaration of an enumerated
840type with only one value:
841
842@example
843type enum = (a);
844@end example
845
846@noindent
847(These declarations are contrived, but they are syntactically
848valid, and more-complicated cases can come up in practical programs.)
849
850These two declarations look identical until the @samp{..} token.
8a4281b9 851With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
852possible to decide between the two forms when the identifier
853@samp{a} is parsed. It is, however, desirable
854for a parser to decide this, since in the latter case
855@samp{a} must become a new identifier to represent the enumeration
856value, while in the former case @samp{a} must be evaluated with its
857current meaning, which may be a constant or even a function call.
858
859You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
860to be resolved later, but this typically requires substantial
861contortions in both semantic actions and large parts of the
862grammar, where the parentheses are nested in the recursive rules for
863expressions.
864
865You might think of using the lexer to distinguish between the two
866forms by returning different tokens for currently defined and
867undefined identifiers. But if these declarations occur in a local
868scope, and @samp{a} is defined in an outer scope, then both forms
869are possible---either locally redefining @samp{a}, or using the
870value of @samp{a} from the outer scope. So this approach cannot
871work.
872
e757bb10 873A simple solution to this problem is to declare the parser to
8a4281b9
JD
874use the GLR algorithm.
875When the GLR parser reaches the critical state, it
fa7e68c3
PE
876merely splits into two branches and pursues both syntax rules
877simultaneously. Sooner or later, one of them runs into a parsing
878error. If there is a @samp{..} token before the next
879@samp{;}, the rule for enumerated types fails since it cannot
880accept @samp{..} anywhere; otherwise, the subrange type rule
881fails since it requires a @samp{..} token. So one of the branches
882fails silently, and the other one continues normally, performing
883all the intermediate actions that were postponed during the split.
884
885If the input is syntactically incorrect, both branches fail and the parser
886reports a syntax error as usual.
887
888The effect of all this is that the parser seems to ``guess'' the
889correct branch to take, or in other words, it seems to use more
8a4281b9
JD
890lookahead than the underlying LR(1) algorithm actually allows
891for. In this example, LR(2) would suffice, but also some cases
892that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 893
8a4281b9 894In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
895and the current Bison parser even takes exponential time and space
896for some grammars. In practice, this rarely happens, and for many
897grammars it is possible to prove that it cannot happen.
898The present example contains only one conflict between two
899rules, and the type-declaration context containing the conflict
900cannot be nested. So the number of
901branches that can exist at any time is limited by the constant 2,
902and the parsing time is still linear.
903
904Here is a Bison grammar corresponding to the example above. It
905parses a vastly simplified form of Pascal type declarations.
906
907@example
908%token TYPE DOTDOT ID
909
910@group
911%left '+' '-'
912%left '*' '/'
913@end group
914
915%%
5e9b6624 916type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
917
918@group
5e9b6624
AD
919type:
920 '(' id_list ')'
921| expr DOTDOT expr
922;
fa7e68c3
PE
923@end group
924
925@group
5e9b6624
AD
926id_list:
927 ID
928| id_list ',' ID
929;
fa7e68c3
PE
930@end group
931
932@group
5e9b6624
AD
933expr:
934 '(' expr ')'
935| expr '+' expr
936| expr '-' expr
937| expr '*' expr
938| expr '/' expr
939| ID
940;
fa7e68c3
PE
941@end group
942@end example
943
8a4281b9 944When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
945about one reduce/reduce conflict. In the conflicting situation the
946parser chooses one of the alternatives, arbitrarily the one
947declared first. Therefore the following correct input is not
948recognized:
949
950@example
951type t = (a) .. b;
952@end example
953
8a4281b9 954The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
955to be silent about the one known reduce/reduce conflict, by adding
956these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
957@samp{%%}):
958
959@example
960%glr-parser
961%expect-rr 1
962@end example
963
964@noindent
965No change in the grammar itself is required. Now the
966parser recognizes all valid declarations, according to the
967limited syntax above, transparently. In fact, the user does not even
968notice when the parser splits.
969
8a4281b9 970So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
971almost without disadvantages. Even in simple cases like this, however,
972there are at least two potential problems to beware. First, always
8a4281b9
JD
973analyze the conflicts reported by Bison to make sure that GLR
974splitting is only done where it is intended. A GLR parser
f8e1c9e5 975splitting inadvertently may cause problems less obvious than an
8a4281b9 976LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
977conflict. Second, consider interactions with the lexer (@pxref{Semantic
978Tokens}) with great care. Since a split parser consumes tokens without
979performing any actions during the split, the lexer cannot obtain
980information via parser actions. Some cases of lexer interactions can be
8a4281b9 981eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
982lexer to the parser. You must check the remaining cases for
983correctness.
984
985In our example, it would be safe for the lexer to return tokens based on
986their current meanings in some symbol table, because no new symbols are
987defined in the middle of a type declaration. Though it is possible for
988a parser to define the enumeration constants as they are parsed, before
989the type declaration is completed, it actually makes no difference since
990they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
991
992@node Merging GLR Parses
8a4281b9
JD
993@subsection Using GLR to Resolve Ambiguities
994@cindex GLR parsing, ambiguous grammars
995@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
996@findex %dprec
997@findex %merge
998@cindex conflicts
999@cindex reduce/reduce conflicts
1000
2a8d363a 1001Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
1002
1003@example
1004%@{
38a92d50
PE
1005 #include <stdio.h>
1006 #define YYSTYPE char const *
1007 int yylex (void);
1008 void yyerror (char const *);
676385e2
PH
1009%@}
1010
1011%token TYPENAME ID
1012
1013%right '='
1014%left '+'
1015
1016%glr-parser
1017
1018%%
1019
5e9b6624 1020prog:
6240346a 1021 %empty
5e9b6624
AD
1022| prog stmt @{ printf ("\n"); @}
1023;
676385e2 1024
5e9b6624
AD
1025stmt:
1026 expr ';' %dprec 1
1027| decl %dprec 2
1028;
676385e2 1029
5e9b6624
AD
1030expr:
1031 ID @{ printf ("%s ", $$); @}
1032| TYPENAME '(' expr ')'
1033 @{ printf ("%s <cast> ", $1); @}
1034| expr '+' expr @{ printf ("+ "); @}
1035| expr '=' expr @{ printf ("= "); @}
1036;
676385e2 1037
5e9b6624
AD
1038decl:
1039 TYPENAME declarator ';'
1040 @{ printf ("%s <declare> ", $1); @}
1041| TYPENAME declarator '=' expr ';'
1042 @{ printf ("%s <init-declare> ", $1); @}
1043;
676385e2 1044
5e9b6624
AD
1045declarator:
1046 ID @{ printf ("\"%s\" ", $1); @}
1047| '(' declarator ')'
1048;
676385e2
PH
1049@end example
1050
1051@noindent
1052This models a problematic part of the C++ grammar---the ambiguity between
1053certain declarations and statements. For example,
1054
1055@example
1056T (x) = y+z;
1057@end example
1058
1059@noindent
1060parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1061(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1062@samp{x} as an @code{ID}).
676385e2 1063Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1064@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1065time it encounters @code{x} in the example above. Since this is a
8a4281b9 1066GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1067each choice of resolving the reduce/reduce conflict.
1068Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1069however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1070ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1071the other reduces @code{stmt : decl}, after which both parsers are in an
1072identical state: they've seen @samp{prog stmt} and have the same unprocessed
1073input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1074
8a4281b9 1075At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1076grammar of how to choose between the competing parses.
1077In the example above, the two @code{%dprec}
e757bb10 1078declarations specify that Bison is to give precedence
fa7e68c3 1079to the parse that interprets the example as a
676385e2
PH
1080@code{decl}, which implies that @code{x} is a declarator.
1081The parser therefore prints
1082
1083@example
fae437e8 1084"x" y z + T <init-declare>
676385e2
PH
1085@end example
1086
fa7e68c3
PE
1087The @code{%dprec} declarations only come into play when more than one
1088parse survives. Consider a different input string for this parser:
676385e2
PH
1089
1090@example
1091T (x) + y;
1092@end example
1093
1094@noindent
8a4281b9 1095This is another example of using GLR to parse an unambiguous
fa7e68c3 1096construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1097Here, there is no ambiguity (this cannot be parsed as a declaration).
1098However, at the time the Bison parser encounters @code{x}, it does not
1099have enough information to resolve the reduce/reduce conflict (again,
1100between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1101case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1102into two, one assuming that @code{x} is an @code{expr}, and the other
1103assuming @code{x} is a @code{declarator}. The second of these parsers
1104then vanishes when it sees @code{+}, and the parser prints
1105
1106@example
fae437e8 1107x T <cast> y +
676385e2
PH
1108@end example
1109
1110Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1111the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1112actions of the two possible parsers, rather than choosing one over the
1113other. To do so, you could change the declaration of @code{stmt} as
1114follows:
1115
1116@example
5e9b6624
AD
1117stmt:
1118 expr ';' %merge <stmtMerge>
1119| decl %merge <stmtMerge>
1120;
676385e2
PH
1121@end example
1122
1123@noindent
676385e2
PH
1124and define the @code{stmtMerge} function as:
1125
1126@example
38a92d50
PE
1127static YYSTYPE
1128stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1129@{
1130 printf ("<OR> ");
1131 return "";
1132@}
1133@end example
1134
1135@noindent
1136with an accompanying forward declaration
1137in the C declarations at the beginning of the file:
1138
1139@example
1140%@{
38a92d50 1141 #define YYSTYPE char const *
676385e2
PH
1142 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1143%@}
1144@end example
1145
1146@noindent
fa7e68c3
PE
1147With these declarations, the resulting parser parses the first example
1148as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1149
1150@example
fae437e8 1151"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1152@end example
1153
fa7e68c3 1154Bison requires that all of the
e757bb10 1155productions that participate in any particular merge have identical
fa7e68c3
PE
1156@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1157and the parser will report an error during any parse that results in
1158the offending merge.
9501dc6e 1159
32c29292
JD
1160@node GLR Semantic Actions
1161@subsection GLR Semantic Actions
1162
8a4281b9 1163The nature of GLR parsing and the structure of the generated
20be2f92
PH
1164parsers give rise to certain restrictions on semantic values and actions.
1165
1166@subsubsection Deferred semantic actions
32c29292
JD
1167@cindex deferred semantic actions
1168By definition, a deferred semantic action is not performed at the same time as
1169the associated reduction.
1170This raises caveats for several Bison features you might use in a semantic
8a4281b9 1171action in a GLR parser.
32c29292
JD
1172
1173@vindex yychar
8a4281b9 1174@cindex GLR parsers and @code{yychar}
32c29292 1175@vindex yylval
8a4281b9 1176@cindex GLR parsers and @code{yylval}
32c29292 1177@vindex yylloc
8a4281b9 1178@cindex GLR parsers and @code{yylloc}
32c29292 1179In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1180the lookahead token present at the time of the associated reduction.
32c29292
JD
1181After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1182you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1183lookahead token's semantic value and location, if any.
32c29292
JD
1184In a nondeferred semantic action, you can also modify any of these variables to
1185influence syntax analysis.
742e4900 1186@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1187
1188@findex yyclearin
8a4281b9 1189@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1190In a deferred semantic action, it's too late to influence syntax analysis.
1191In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1192shallow copies of the values they had at the time of the associated reduction.
1193For this reason alone, modifying them is dangerous.
1194Moreover, the result of modifying them is undefined and subject to change with
1195future versions of Bison.
1196For example, if a semantic action might be deferred, you should never write it
1197to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1198memory referenced by @code{yylval}.
1199
20be2f92 1200@subsubsection YYERROR
32c29292 1201@findex YYERROR
8a4281b9 1202@cindex GLR parsers and @code{YYERROR}
32c29292 1203Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1204(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1205initiate error recovery.
8a4281b9 1206During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1207the same as its effect in a deterministic parser.
411614fa
JM
1208The effect in a deferred action is similar, but the precise point of the
1209error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1210selecting an unspecified stack on which to continue with a syntax error.
1211In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1212parsing, @code{YYERROR} silently prunes
1213the parse that invoked the test.
1214
1215@subsubsection Restrictions on semantic values and locations
8a4281b9 1216GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1217semantic values and location types when using the generated parsers as
1218C++ code.
8710fc41 1219
ca2a6d15
PH
1220@node Semantic Predicates
1221@subsection Controlling a Parse with Arbitrary Predicates
1222@findex %?
8a4281b9 1223@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1224
1225In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1226GLR parsers
ca2a6d15
PH
1227allow you to reject parses on the basis of arbitrary computations executed
1228in user code, without having Bison treat this rejection as an error
1229if there are alternative parses. (This feature is experimental and may
1230evolve. We welcome user feedback.) For example,
1231
c93f22fc
AD
1232@example
1233widget:
5e9b6624
AD
1234 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1235| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1236;
c93f22fc 1237@end example
ca2a6d15
PH
1238
1239@noindent
411614fa 1240is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1241widgets. The clause preceded by @code{%?} is treated like an ordinary
1242action, except that its text is treated as an expression and is always
411614fa 1243evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1244expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1245which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1246to die. In a deterministic parser, it acts like YYERROR.
1247
1248As the example shows, predicates otherwise look like semantic actions, and
1249therefore you must be take them into account when determining the numbers
1250to use for denoting the semantic values of right-hand side symbols.
1251Predicate actions, however, have no defined value, and may not be given
1252labels.
1253
1254There is a subtle difference between semantic predicates and ordinary
1255actions in nondeterministic mode, since the latter are deferred.
411614fa 1256For example, we could try to rewrite the previous example as
ca2a6d15 1257
c93f22fc
AD
1258@example
1259widget:
5e9b6624
AD
1260 @{ if (!new_syntax) YYERROR; @}
1261 "widget" id new_args @{ $$ = f($3, $4); @}
1262| @{ if (new_syntax) YYERROR; @}
1263 "widget" id old_args @{ $$ = f($3, $4); @}
1264;
c93f22fc 1265@end example
ca2a6d15
PH
1266
1267@noindent
1268(reversing the sense of the predicate tests to cause an error when they are
1269false). However, this
1270does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1271have overlapping syntax.
411614fa 1272Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1273a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1274for cases where @code{new_args} and @code{old_args} recognize the same string
1275@emph{before} performing the tests of @code{new_syntax}. It therefore
1276reports an error.
1277
1278Finally, be careful in writing predicates: deferred actions have not been
1279evaluated, so that using them in a predicate will have undefined effects.
1280
fa7e68c3 1281@node Compiler Requirements
8a4281b9 1282@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1283@cindex @code{inline}
8a4281b9 1284@cindex GLR parsers and @code{inline}
fa7e68c3 1285
8a4281b9 1286The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1287later. In addition, they use the @code{inline} keyword, which is not
1288C89, but is C99 and is a common extension in pre-C99 compilers. It is
1289up to the user of these parsers to handle
9501dc6e
AD
1290portability issues. For instance, if using Autoconf and the Autoconf
1291macro @code{AC_C_INLINE}, a mere
1292
1293@example
1294%@{
38a92d50 1295 #include <config.h>
9501dc6e
AD
1296%@}
1297@end example
1298
1299@noindent
1300will suffice. Otherwise, we suggest
1301
1302@example
1303%@{
aaaa2aae
AD
1304 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1305 && ! defined inline)
1306 # define inline
38a92d50 1307 #endif
9501dc6e
AD
1308%@}
1309@end example
676385e2 1310
1769eb30 1311@node Locations
847bf1f5
AD
1312@section Locations
1313@cindex location
95923bd6
AD
1314@cindex textual location
1315@cindex location, textual
847bf1f5
AD
1316
1317Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1318and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1319the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1320Bison provides a mechanism for handling these locations.
1321
72d2299c 1322Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1323associated location, but the type of locations is the same for all tokens
1324and groupings. Moreover, the output parser is equipped with a default data
1325structure for storing locations (@pxref{Tracking Locations}, for more
1326details).
847bf1f5
AD
1327
1328Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1329set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1330is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1331@code{@@3}.
1332
1333When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1334of its left hand side (@pxref{Actions}). In the same way, another default
1335action is used for locations. However, the action for locations is general
847bf1f5 1336enough for most cases, meaning there is usually no need to describe for each
72d2299c 1337rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1338grouping, the default behavior of the output parser is to take the beginning
1339of the first symbol, and the end of the last symbol.
1340
342b8b6e 1341@node Bison Parser
ff7571c0 1342@section Bison Output: the Parser Implementation File
bfa74976
RS
1343@cindex Bison parser
1344@cindex Bison utility
1345@cindex lexical analyzer, purpose
1346@cindex parser
1347
ff7571c0
JD
1348When you run Bison, you give it a Bison grammar file as input. The
1349most important output is a C source file that implements a parser for
1350the language described by the grammar. This parser is called a
1351@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1352implementation file}. Keep in mind that the Bison utility and the
1353Bison parser are two distinct programs: the Bison utility is a program
1354whose output is the Bison parser implementation file that becomes part
1355of your program.
bfa74976
RS
1356
1357The job of the Bison parser is to group tokens into groupings according to
1358the grammar rules---for example, to build identifiers and operators into
1359expressions. As it does this, it runs the actions for the grammar rules it
1360uses.
1361
704a47c4
AD
1362The tokens come from a function called the @dfn{lexical analyzer} that
1363you must supply in some fashion (such as by writing it in C). The Bison
1364parser calls the lexical analyzer each time it wants a new token. It
1365doesn't know what is ``inside'' the tokens (though their semantic values
1366may reflect this). Typically the lexical analyzer makes the tokens by
1367parsing characters of text, but Bison does not depend on this.
1368@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1369
ff7571c0
JD
1370The Bison parser implementation file is C code which defines a
1371function named @code{yyparse} which implements that grammar. This
1372function does not make a complete C program: you must supply some
1373additional functions. One is the lexical analyzer. Another is an
1374error-reporting function which the parser calls to report an error.
1375In addition, a complete C program must start with a function called
1376@code{main}; you have to provide this, and arrange for it to call
1377@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1378C-Language Interface}.
bfa74976 1379
f7ab6a50 1380Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1381write, all symbols defined in the Bison parser implementation file
1382itself begin with @samp{yy} or @samp{YY}. This includes interface
1383functions such as the lexical analyzer function @code{yylex}, the
1384error reporting function @code{yyerror} and the parser function
1385@code{yyparse} itself. This also includes numerous identifiers used
1386for internal purposes. Therefore, you should avoid using C
1387identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1388file except for the ones defined in this manual. Also, you should
1389avoid using the C identifiers @samp{malloc} and @samp{free} for
1390anything other than their usual meanings.
1391
1392In some cases the Bison parser implementation file includes system
1393headers, and in those cases your code should respect the identifiers
1394reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1395@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1396included as needed to declare memory allocators and related types.
1397@code{<libintl.h>} is included if message translation is in use
1398(@pxref{Internationalization}). Other system headers may be included
1399if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1400,Tracing Your Parser}).
7093d0f5 1401
342b8b6e 1402@node Stages
bfa74976
RS
1403@section Stages in Using Bison
1404@cindex stages in using Bison
1405@cindex using Bison
1406
1407The actual language-design process using Bison, from grammar specification
1408to a working compiler or interpreter, has these parts:
1409
1410@enumerate
1411@item
1412Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1413(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1414in the language, describe the action that is to be taken when an
1415instance of that rule is recognized. The action is described by a
1416sequence of C statements.
bfa74976
RS
1417
1418@item
704a47c4
AD
1419Write a lexical analyzer to process input and pass tokens to the parser.
1420The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1421Lexical Analyzer Function @code{yylex}}). It could also be produced
1422using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1423
1424@item
1425Write a controlling function that calls the Bison-produced parser.
1426
1427@item
1428Write error-reporting routines.
1429@end enumerate
1430
1431To turn this source code as written into a runnable program, you
1432must follow these steps:
1433
1434@enumerate
1435@item
1436Run Bison on the grammar to produce the parser.
1437
1438@item
1439Compile the code output by Bison, as well as any other source files.
1440
1441@item
1442Link the object files to produce the finished product.
1443@end enumerate
1444
342b8b6e 1445@node Grammar Layout
bfa74976
RS
1446@section The Overall Layout of a Bison Grammar
1447@cindex grammar file
1448@cindex file format
1449@cindex format of grammar file
1450@cindex layout of Bison grammar
1451
1452The input file for the Bison utility is a @dfn{Bison grammar file}. The
1453general form of a Bison grammar file is as follows:
1454
1455@example
1456%@{
08e49d20 1457@var{Prologue}
bfa74976
RS
1458%@}
1459
1460@var{Bison declarations}
1461
1462%%
1463@var{Grammar rules}
1464%%
08e49d20 1465@var{Epilogue}
bfa74976
RS
1466@end example
1467
1468@noindent
1469The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1470in every Bison grammar file to separate the sections.
1471
72d2299c 1472The prologue may define types and variables used in the actions. You can
342b8b6e 1473also use preprocessor commands to define macros used there, and use
bfa74976 1474@code{#include} to include header files that do any of these things.
38a92d50
PE
1475You need to declare the lexical analyzer @code{yylex} and the error
1476printer @code{yyerror} here, along with any other global identifiers
1477used by the actions in the grammar rules.
bfa74976
RS
1478
1479The Bison declarations declare the names of the terminal and nonterminal
1480symbols, and may also describe operator precedence and the data types of
1481semantic values of various symbols.
1482
1483The grammar rules define how to construct each nonterminal symbol from its
1484parts.
1485
38a92d50
PE
1486The epilogue can contain any code you want to use. Often the
1487definitions of functions declared in the prologue go here. In a
1488simple program, all the rest of the program can go here.
bfa74976 1489
342b8b6e 1490@node Examples
bfa74976
RS
1491@chapter Examples
1492@cindex simple examples
1493@cindex examples, simple
1494
aaaa2aae 1495Now we show and explain several sample programs written using Bison: a
bfa74976 1496reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1497calculator --- later extended to track ``locations'' ---
1498and a multi-function calculator. All
1499produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1500
1501These examples are simple, but Bison grammars for real programming
aa08666d
AD
1502languages are written the same way. You can copy these examples into a
1503source file to try them.
bfa74976
RS
1504
1505@menu
f5f419de
DJ
1506* RPN Calc:: Reverse polish notation calculator;
1507 a first example with no operator precedence.
1508* Infix Calc:: Infix (algebraic) notation calculator.
1509 Operator precedence is introduced.
bfa74976 1510* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1511* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1512* Multi-function Calc:: Calculator with memory and trig functions.
1513 It uses multiple data-types for semantic values.
1514* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1515@end menu
1516
342b8b6e 1517@node RPN Calc
bfa74976
RS
1518@section Reverse Polish Notation Calculator
1519@cindex reverse polish notation
1520@cindex polish notation calculator
1521@cindex @code{rpcalc}
1522@cindex calculator, simple
1523
1524The first example is that of a simple double-precision @dfn{reverse polish
1525notation} calculator (a calculator using postfix operators). This example
1526provides a good starting point, since operator precedence is not an issue.
1527The second example will illustrate how operator precedence is handled.
1528
1529The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1530@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1531
1532@menu
f5f419de
DJ
1533* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1534* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1535* Rpcalc Lexer:: The lexical analyzer.
1536* Rpcalc Main:: The controlling function.
1537* Rpcalc Error:: The error reporting function.
1538* Rpcalc Generate:: Running Bison on the grammar file.
1539* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1540@end menu
1541
f5f419de 1542@node Rpcalc Declarations
bfa74976
RS
1543@subsection Declarations for @code{rpcalc}
1544
1545Here are the C and Bison declarations for the reverse polish notation
1546calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1547
24ec0837 1548@comment file: rpcalc.y
bfa74976 1549@example
72d2299c 1550/* Reverse polish notation calculator. */
bfa74976 1551
efbc95a7 1552@group
bfa74976 1553%@{
24ec0837 1554 #include <stdio.h>
38a92d50
PE
1555 #include <math.h>
1556 int yylex (void);
1557 void yyerror (char const *);
bfa74976 1558%@}
efbc95a7 1559@end group
bfa74976 1560
435575cb 1561%define api.value.type @{double@}
bfa74976
RS
1562%token NUM
1563
72d2299c 1564%% /* Grammar rules and actions follow. */
bfa74976
RS
1565@end example
1566
75f5aaea 1567The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1568preprocessor directives and two forward declarations.
bfa74976 1569
bfa74976
RS
1570The @code{#include} directive is used to declare the exponentiation
1571function @code{pow}.
1572
38a92d50
PE
1573The forward declarations for @code{yylex} and @code{yyerror} are
1574needed because the C language requires that functions be declared
1575before they are used. These functions will be defined in the
1576epilogue, but the parser calls them so they must be declared in the
1577prologue.
1578
21e3a2b5
AD
1579The second section, Bison declarations, provides information to Bison about
1580the tokens and their types (@pxref{Bison Declarations, ,The Bison
1581Declarations Section}).
1582
1583The @code{%define} directive defines the variable @code{api.value.type},
1584thus specifying the C data type for semantic values of both tokens and
1585groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The Bison
1586parser will use whatever type @code{api.value.type} is defined as; if you
1587don't define it, @code{int} is the default. Because we specify
435575cb
AD
1588@samp{@{double@}}, each token and each expression has an associated value,
1589which is a floating point number. C code can use @code{YYSTYPE} to refer to
1590the value @code{api.value.type}.
21e3a2b5
AD
1591
1592Each terminal symbol that is not a single-character literal must be
1593declared. (Single-character literals normally don't need to be declared.)
1594In this example, all the arithmetic operators are designated by
1595single-character literals, so the only terminal symbol that needs to be
1596declared is @code{NUM}, the token type for numeric constants.
bfa74976 1597
342b8b6e 1598@node Rpcalc Rules
bfa74976
RS
1599@subsection Grammar Rules for @code{rpcalc}
1600
1601Here are the grammar rules for the reverse polish notation calculator.
1602
24ec0837 1603@comment file: rpcalc.y
bfa74976 1604@example
aaaa2aae 1605@group
5e9b6624 1606input:
6240346a 1607 %empty
5e9b6624 1608| input line
bfa74976 1609;
aaaa2aae 1610@end group
bfa74976 1611
aaaa2aae 1612@group
5e9b6624
AD
1613line:
1614 '\n'
1615| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1616;
aaaa2aae 1617@end group
bfa74976 1618
aaaa2aae 1619@group
5e9b6624
AD
1620exp:
1621 NUM @{ $$ = $1; @}
1622| exp exp '+' @{ $$ = $1 + $2; @}
1623| exp exp '-' @{ $$ = $1 - $2; @}
1624| exp exp '*' @{ $$ = $1 * $2; @}
1625| exp exp '/' @{ $$ = $1 / $2; @}
1626| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1627| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1628;
aaaa2aae 1629@end group
bfa74976
RS
1630%%
1631@end example
1632
1633The groupings of the rpcalc ``language'' defined here are the expression
1634(given the name @code{exp}), the line of input (@code{line}), and the
1635complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1636symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1637which is read as ``or''. The following sections explain what these rules
1638mean.
1639
1640The semantics of the language is determined by the actions taken when a
1641grouping is recognized. The actions are the C code that appears inside
1642braces. @xref{Actions}.
1643
1644You must specify these actions in C, but Bison provides the means for
1645passing semantic values between the rules. In each action, the
1646pseudo-variable @code{$$} stands for the semantic value for the grouping
1647that the rule is going to construct. Assigning a value to @code{$$} is the
1648main job of most actions. The semantic values of the components of the
1649rule are referred to as @code{$1}, @code{$2}, and so on.
1650
1651@menu
24ec0837
AD
1652* Rpcalc Input:: Explanation of the @code{input} nonterminal
1653* Rpcalc Line:: Explanation of the @code{line} nonterminal
1654* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1655@end menu
1656
342b8b6e 1657@node Rpcalc Input
bfa74976
RS
1658@subsubsection Explanation of @code{input}
1659
1660Consider the definition of @code{input}:
1661
1662@example
5e9b6624 1663input:
6240346a 1664 %empty
5e9b6624 1665| input line
bfa74976
RS
1666;
1667@end example
1668
1669This definition reads as follows: ``A complete input is either an empty
1670string, or a complete input followed by an input line''. Notice that
1671``complete input'' is defined in terms of itself. This definition is said
1672to be @dfn{left recursive} since @code{input} appears always as the
1673leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1674
1675The first alternative is empty because there are no symbols between the
1676colon and the first @samp{|}; this means that @code{input} can match an
1677empty string of input (no tokens). We write the rules this way because it
1678is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1679It's conventional to put an empty alternative first and to use the
1680(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1681*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1682
1683The second alternate rule (@code{input line}) handles all nontrivial input.
1684It means, ``After reading any number of lines, read one more line if
1685possible.'' The left recursion makes this rule into a loop. Since the
1686first alternative matches empty input, the loop can be executed zero or
1687more times.
1688
1689The parser function @code{yyparse} continues to process input until a
1690grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1691input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1692
342b8b6e 1693@node Rpcalc Line
bfa74976
RS
1694@subsubsection Explanation of @code{line}
1695
1696Now consider the definition of @code{line}:
1697
1698@example
5e9b6624
AD
1699line:
1700 '\n'
1701| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1702;
1703@end example
1704
1705The first alternative is a token which is a newline character; this means
1706that rpcalc accepts a blank line (and ignores it, since there is no
1707action). The second alternative is an expression followed by a newline.
1708This is the alternative that makes rpcalc useful. The semantic value of
1709the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1710question is the first symbol in the alternative. The action prints this
1711value, which is the result of the computation the user asked for.
1712
1713This action is unusual because it does not assign a value to @code{$$}. As
1714a consequence, the semantic value associated with the @code{line} is
1715uninitialized (its value will be unpredictable). This would be a bug if
1716that value were ever used, but we don't use it: once rpcalc has printed the
1717value of the user's input line, that value is no longer needed.
1718
342b8b6e 1719@node Rpcalc Expr
bfa74976
RS
1720@subsubsection Explanation of @code{expr}
1721
1722The @code{exp} grouping has several rules, one for each kind of expression.
1723The first rule handles the simplest expressions: those that are just numbers.
1724The second handles an addition-expression, which looks like two expressions
1725followed by a plus-sign. The third handles subtraction, and so on.
1726
1727@example
5e9b6624
AD
1728exp:
1729 NUM
1730| exp exp '+' @{ $$ = $1 + $2; @}
1731| exp exp '-' @{ $$ = $1 - $2; @}
1732@dots{}
1733;
bfa74976
RS
1734@end example
1735
1736We have used @samp{|} to join all the rules for @code{exp}, but we could
1737equally well have written them separately:
1738
1739@example
5e9b6624
AD
1740exp: NUM ;
1741exp: exp exp '+' @{ $$ = $1 + $2; @};
1742exp: exp exp '-' @{ $$ = $1 - $2; @};
1743@dots{}
bfa74976
RS
1744@end example
1745
1746Most of the rules have actions that compute the value of the expression in
1747terms of the value of its parts. For example, in the rule for addition,
1748@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1749the second one. The third component, @code{'+'}, has no meaningful
1750associated semantic value, but if it had one you could refer to it as
1751@code{$3}. When @code{yyparse} recognizes a sum expression using this
1752rule, the sum of the two subexpressions' values is produced as the value of
1753the entire expression. @xref{Actions}.
1754
1755You don't have to give an action for every rule. When a rule has no
1756action, Bison by default copies the value of @code{$1} into @code{$$}.
1757This is what happens in the first rule (the one that uses @code{NUM}).
1758
1759The formatting shown here is the recommended convention, but Bison does
72d2299c 1760not require it. You can add or change white space as much as you wish.
bfa74976
RS
1761For example, this:
1762
1763@example
5e9b6624 1764exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1765@end example
1766
1767@noindent
1768means the same thing as this:
1769
1770@example
5e9b6624
AD
1771exp:
1772 NUM
1773| exp exp '+' @{ $$ = $1 + $2; @}
1774| @dots{}
99a9344e 1775;
bfa74976
RS
1776@end example
1777
1778@noindent
1779The latter, however, is much more readable.
1780
342b8b6e 1781@node Rpcalc Lexer
bfa74976
RS
1782@subsection The @code{rpcalc} Lexical Analyzer
1783@cindex writing a lexical analyzer
1784@cindex lexical analyzer, writing
1785
704a47c4
AD
1786The lexical analyzer's job is low-level parsing: converting characters
1787or sequences of characters into tokens. The Bison parser gets its
1788tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1789Analyzer Function @code{yylex}}.
bfa74976 1790
8a4281b9 1791Only a simple lexical analyzer is needed for the RPN
c827f760 1792calculator. This
bfa74976
RS
1793lexical analyzer skips blanks and tabs, then reads in numbers as
1794@code{double} and returns them as @code{NUM} tokens. Any other character
1795that isn't part of a number is a separate token. Note that the token-code
1796for such a single-character token is the character itself.
1797
1798The return value of the lexical analyzer function is a numeric code which
1799represents a token type. The same text used in Bison rules to stand for
1800this token type is also a C expression for the numeric code for the type.
1801This works in two ways. If the token type is a character literal, then its
e966383b 1802numeric code is that of the character; you can use the same
bfa74976
RS
1803character literal in the lexical analyzer to express the number. If the
1804token type is an identifier, that identifier is defined by Bison as a C
1805macro whose definition is the appropriate number. In this example,
1806therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1807
1964ad8c
AD
1808The semantic value of the token (if it has one) is stored into the
1809global variable @code{yylval}, which is where the Bison parser will look
21e3a2b5
AD
1810for it. (The C data type of @code{yylval} is @code{YYSTYPE}, whose value
1811was defined at the beginning of the grammar via @samp{%define api.value.type
435575cb 1812@{double@}}; @pxref{Rpcalc Declarations,,Declarations for @code{rpcalc}}.)
bfa74976 1813
72d2299c
PE
1814A token type code of zero is returned if the end-of-input is encountered.
1815(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1816
1817Here is the code for the lexical analyzer:
1818
24ec0837 1819@comment file: rpcalc.y
bfa74976
RS
1820@example
1821@group
72d2299c 1822/* The lexical analyzer returns a double floating point
e966383b 1823 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1824 of the character read if not a number. It skips all blanks
1825 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1826
1827#include <ctype.h>
1828@end group
1829
1830@group
13863333
AD
1831int
1832yylex (void)
bfa74976
RS
1833@{
1834 int c;
1835
72d2299c 1836 /* Skip white space. */
13863333 1837 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1838 continue;
bfa74976
RS
1839@end group
1840@group
72d2299c 1841 /* Process numbers. */
13863333 1842 if (c == '.' || isdigit (c))
bfa74976
RS
1843 @{
1844 ungetc (c, stdin);
1845 scanf ("%lf", &yylval);
1846 return NUM;
1847 @}
1848@end group
1849@group
72d2299c 1850 /* Return end-of-input. */
13863333 1851 if (c == EOF)
bfa74976 1852 return 0;
72d2299c 1853 /* Return a single char. */
13863333 1854 return c;
bfa74976
RS
1855@}
1856@end group
1857@end example
1858
342b8b6e 1859@node Rpcalc Main
bfa74976
RS
1860@subsection The Controlling Function
1861@cindex controlling function
1862@cindex main function in simple example
1863
1864In keeping with the spirit of this example, the controlling function is
1865kept to the bare minimum. The only requirement is that it call
1866@code{yyparse} to start the process of parsing.
1867
24ec0837 1868@comment file: rpcalc.y
bfa74976
RS
1869@example
1870@group
13863333
AD
1871int
1872main (void)
bfa74976 1873@{
13863333 1874 return yyparse ();
bfa74976
RS
1875@}
1876@end group
1877@end example
1878
342b8b6e 1879@node Rpcalc Error
bfa74976
RS
1880@subsection The Error Reporting Routine
1881@cindex error reporting routine
1882
1883When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1884function @code{yyerror} to print an error message (usually but not
6e649e65 1885always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1886@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1887here is the definition we will use:
bfa74976 1888
24ec0837 1889@comment file: rpcalc.y
bfa74976 1890@example
bfa74976
RS
1891#include <stdio.h>
1892
aaaa2aae 1893@group
38a92d50 1894/* Called by yyparse on error. */
13863333 1895void
38a92d50 1896yyerror (char const *s)
bfa74976 1897@{
4e03e201 1898 fprintf (stderr, "%s\n", s);
bfa74976
RS
1899@}
1900@end group
1901@end example
1902
1903After @code{yyerror} returns, the Bison parser may recover from the error
1904and continue parsing if the grammar contains a suitable error rule
1905(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1906have not written any error rules in this example, so any invalid input will
1907cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1908real calculator, but it is adequate for the first example.
bfa74976 1909
f5f419de 1910@node Rpcalc Generate
bfa74976
RS
1911@subsection Running Bison to Make the Parser
1912@cindex running Bison (introduction)
1913
ceed8467
AD
1914Before running Bison to produce a parser, we need to decide how to
1915arrange all the source code in one or more source files. For such a
ff7571c0
JD
1916simple example, the easiest thing is to put everything in one file,
1917the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1918@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1919(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1920
1921For a large project, you would probably have several source files, and use
1922@code{make} to arrange to recompile them.
1923
ff7571c0
JD
1924With all the source in the grammar file, you use the following command
1925to convert it into a parser implementation file:
bfa74976
RS
1926
1927@example
fa4d969f 1928bison @var{file}.y
bfa74976
RS
1929@end example
1930
1931@noindent
ff7571c0
JD
1932In this example, the grammar file is called @file{rpcalc.y} (for
1933``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1934implementation file named @file{@var{file}.tab.c}, removing the
1935@samp{.y} from the grammar file name. The parser implementation file
1936contains the source code for @code{yyparse}. The additional functions
1937in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1938copied verbatim to the parser implementation file.
bfa74976 1939
342b8b6e 1940@node Rpcalc Compile
ff7571c0 1941@subsection Compiling the Parser Implementation File
bfa74976
RS
1942@cindex compiling the parser
1943
ff7571c0 1944Here is how to compile and run the parser implementation file:
bfa74976
RS
1945
1946@example
1947@group
1948# @r{List files in current directory.}
9edcd895 1949$ @kbd{ls}
bfa74976
RS
1950rpcalc.tab.c rpcalc.y
1951@end group
1952
1953@group
1954# @r{Compile the Bison parser.}
1955# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1956$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1957@end group
1958
1959@group
1960# @r{List files again.}
9edcd895 1961$ @kbd{ls}
bfa74976
RS
1962rpcalc rpcalc.tab.c rpcalc.y
1963@end group
1964@end example
1965
1966The file @file{rpcalc} now contains the executable code. Here is an
1967example session using @code{rpcalc}.
1968
1969@example
9edcd895
AD
1970$ @kbd{rpcalc}
1971@kbd{4 9 +}
24ec0837 1972@result{} 13
9edcd895 1973@kbd{3 7 + 3 4 5 *+-}
24ec0837 1974@result{} -13
9edcd895 1975@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1976@result{} 13
9edcd895 1977@kbd{5 6 / 4 n +}
24ec0837 1978@result{} -3.166666667
9edcd895 1979@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1980@result{} 81
9edcd895
AD
1981@kbd{^D} @r{End-of-file indicator}
1982$
bfa74976
RS
1983@end example
1984
342b8b6e 1985@node Infix Calc
bfa74976
RS
1986@section Infix Notation Calculator: @code{calc}
1987@cindex infix notation calculator
1988@cindex @code{calc}
1989@cindex calculator, infix notation
1990
1991We now modify rpcalc to handle infix operators instead of postfix. Infix
1992notation involves the concept of operator precedence and the need for
1993parentheses nested to arbitrary depth. Here is the Bison code for
1994@file{calc.y}, an infix desk-top calculator.
1995
1996@example
38a92d50 1997/* Infix notation calculator. */
bfa74976 1998
aaaa2aae 1999@group
bfa74976 2000%@{
38a92d50
PE
2001 #include <math.h>
2002 #include <stdio.h>
2003 int yylex (void);
2004 void yyerror (char const *);
bfa74976 2005%@}
aaaa2aae 2006@end group
bfa74976 2007
aaaa2aae 2008@group
38a92d50 2009/* Bison declarations. */
435575cb 2010%define api.value.type @{double@}
bfa74976
RS
2011%token NUM
2012%left '-' '+'
2013%left '*' '/'
d78f0ac9
AD
2014%precedence NEG /* negation--unary minus */
2015%right '^' /* exponentiation */
aaaa2aae 2016@end group
bfa74976 2017
38a92d50 2018%% /* The grammar follows. */
aaaa2aae 2019@group
5e9b6624 2020input:
6240346a 2021 %empty
5e9b6624 2022| input line
bfa74976 2023;
aaaa2aae 2024@end group
bfa74976 2025
aaaa2aae 2026@group
5e9b6624
AD
2027line:
2028 '\n'
2029| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2030;
aaaa2aae 2031@end group
bfa74976 2032
aaaa2aae 2033@group
5e9b6624
AD
2034exp:
2035 NUM @{ $$ = $1; @}
2036| exp '+' exp @{ $$ = $1 + $3; @}
2037| exp '-' exp @{ $$ = $1 - $3; @}
2038| exp '*' exp @{ $$ = $1 * $3; @}
2039| exp '/' exp @{ $$ = $1 / $3; @}
2040| '-' exp %prec NEG @{ $$ = -$2; @}
2041| exp '^' exp @{ $$ = pow ($1, $3); @}
2042| '(' exp ')' @{ $$ = $2; @}
bfa74976 2043;
aaaa2aae 2044@end group
bfa74976
RS
2045%%
2046@end example
2047
2048@noindent
ceed8467
AD
2049The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2050same as before.
bfa74976
RS
2051
2052There are two important new features shown in this code.
2053
2054In the second section (Bison declarations), @code{%left} declares token
2055types and says they are left-associative operators. The declarations
2056@code{%left} and @code{%right} (right associativity) take the place of
2057@code{%token} which is used to declare a token type name without
d78f0ac9 2058associativity/precedence. (These tokens are single-character literals, which
bfa74976 2059ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2060the associativity/precedence.)
bfa74976
RS
2061
2062Operator precedence is determined by the line ordering of the
2063declarations; the higher the line number of the declaration (lower on
2064the page or screen), the higher the precedence. Hence, exponentiation
2065has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2066by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2067only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2068Precedence}.
bfa74976 2069
704a47c4
AD
2070The other important new feature is the @code{%prec} in the grammar
2071section for the unary minus operator. The @code{%prec} simply instructs
2072Bison that the rule @samp{| '-' exp} has the same precedence as
2073@code{NEG}---in this case the next-to-highest. @xref{Contextual
2074Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2075
2076Here is a sample run of @file{calc.y}:
2077
2078@need 500
2079@example
9edcd895
AD
2080$ @kbd{calc}
2081@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20826.880952381
9edcd895 2083@kbd{-56 + 2}
bfa74976 2084-54
9edcd895 2085@kbd{3 ^ 2}
bfa74976
RS
20869
2087@end example
2088
342b8b6e 2089@node Simple Error Recovery
bfa74976
RS
2090@section Simple Error Recovery
2091@cindex error recovery, simple
2092
2093Up to this point, this manual has not addressed the issue of @dfn{error
2094recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2095error. All we have handled is error reporting with @code{yyerror}.
2096Recall that by default @code{yyparse} returns after calling
2097@code{yyerror}. This means that an erroneous input line causes the
2098calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2099
2100The Bison language itself includes the reserved word @code{error}, which
2101may be included in the grammar rules. In the example below it has
2102been added to one of the alternatives for @code{line}:
2103
2104@example
2105@group
5e9b6624
AD
2106line:
2107 '\n'
2108| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2109| error '\n' @{ yyerrok; @}
bfa74976
RS
2110;
2111@end group
2112@end example
2113
ceed8467 2114This addition to the grammar allows for simple error recovery in the
6e649e65 2115event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2116read, the error will be recognized by the third rule for @code{line},
2117and parsing will continue. (The @code{yyerror} function is still called
2118upon to print its message as well.) The action executes the statement
2119@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2120that error recovery is complete (@pxref{Error Recovery}). Note the
2121difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2122misprint.
bfa74976
RS
2123
2124This form of error recovery deals with syntax errors. There are other
2125kinds of errors; for example, division by zero, which raises an exception
2126signal that is normally fatal. A real calculator program must handle this
2127signal and use @code{longjmp} to return to @code{main} and resume parsing
2128input lines; it would also have to discard the rest of the current line of
2129input. We won't discuss this issue further because it is not specific to
2130Bison programs.
2131
342b8b6e
AD
2132@node Location Tracking Calc
2133@section Location Tracking Calculator: @code{ltcalc}
2134@cindex location tracking calculator
2135@cindex @code{ltcalc}
2136@cindex calculator, location tracking
2137
9edcd895
AD
2138This example extends the infix notation calculator with location
2139tracking. This feature will be used to improve the error messages. For
2140the sake of clarity, this example is a simple integer calculator, since
2141most of the work needed to use locations will be done in the lexical
72d2299c 2142analyzer.
342b8b6e
AD
2143
2144@menu
f5f419de
DJ
2145* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2146* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2147* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2148@end menu
2149
f5f419de 2150@node Ltcalc Declarations
342b8b6e
AD
2151@subsection Declarations for @code{ltcalc}
2152
9edcd895
AD
2153The C and Bison declarations for the location tracking calculator are
2154the same as the declarations for the infix notation calculator.
342b8b6e
AD
2155
2156@example
2157/* Location tracking calculator. */
2158
2159%@{
38a92d50
PE
2160 #include <math.h>
2161 int yylex (void);
2162 void yyerror (char const *);
342b8b6e
AD
2163%@}
2164
2165/* Bison declarations. */
aba47f56 2166%define api.value.type @{int@}
342b8b6e
AD
2167%token NUM
2168
2169%left '-' '+'
2170%left '*' '/'
d78f0ac9 2171%precedence NEG
342b8b6e
AD
2172%right '^'
2173
38a92d50 2174%% /* The grammar follows. */
342b8b6e
AD
2175@end example
2176
9edcd895
AD
2177@noindent
2178Note there are no declarations specific to locations. Defining a data
2179type for storing locations is not needed: we will use the type provided
2180by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2181four member structure with the following integer fields:
2182@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2183@code{last_column}. By conventions, and in accordance with the GNU
2184Coding Standards and common practice, the line and column count both
2185start at 1.
342b8b6e
AD
2186
2187@node Ltcalc Rules
2188@subsection Grammar Rules for @code{ltcalc}
2189
9edcd895
AD
2190Whether handling locations or not has no effect on the syntax of your
2191language. Therefore, grammar rules for this example will be very close
2192to those of the previous example: we will only modify them to benefit
2193from the new information.
342b8b6e 2194
9edcd895
AD
2195Here, we will use locations to report divisions by zero, and locate the
2196wrong expressions or subexpressions.
342b8b6e
AD
2197
2198@example
2199@group
5e9b6624 2200input:
6240346a 2201 %empty
5e9b6624 2202| input line
342b8b6e
AD
2203;
2204@end group
2205
2206@group
5e9b6624
AD
2207line:
2208 '\n'
2209| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2210;
2211@end group
2212
2213@group
5e9b6624
AD
2214exp:
2215 NUM @{ $$ = $1; @}
2216| exp '+' exp @{ $$ = $1 + $3; @}
2217| exp '-' exp @{ $$ = $1 - $3; @}
2218| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2219@end group
342b8b6e 2220@group
5e9b6624
AD
2221| exp '/' exp
2222 @{
2223 if ($3)
2224 $$ = $1 / $3;
2225 else
2226 @{
2227 $$ = 1;
2228 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2229 @@3.first_line, @@3.first_column,
2230 @@3.last_line, @@3.last_column);
2231 @}
2232 @}
342b8b6e
AD
2233@end group
2234@group
5e9b6624
AD
2235| '-' exp %prec NEG @{ $$ = -$2; @}
2236| exp '^' exp @{ $$ = pow ($1, $3); @}
2237| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2238@end group
2239@end example
2240
2241This code shows how to reach locations inside of semantic actions, by
2242using the pseudo-variables @code{@@@var{n}} for rule components, and the
2243pseudo-variable @code{@@$} for groupings.
2244
9edcd895
AD
2245We don't need to assign a value to @code{@@$}: the output parser does it
2246automatically. By default, before executing the C code of each action,
2247@code{@@$} is set to range from the beginning of @code{@@1} to the end
2248of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2249can be redefined (@pxref{Location Default Action, , Default Action for
2250Locations}), and for very specific rules, @code{@@$} can be computed by
2251hand.
342b8b6e
AD
2252
2253@node Ltcalc Lexer
2254@subsection The @code{ltcalc} Lexical Analyzer.
2255
9edcd895 2256Until now, we relied on Bison's defaults to enable location
72d2299c 2257tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2258able to feed the parser with the token locations, as it already does for
2259semantic values.
342b8b6e 2260
9edcd895
AD
2261To this end, we must take into account every single character of the
2262input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2263
2264@example
2265@group
2266int
2267yylex (void)
2268@{
2269 int c;
18b519c0 2270@end group
342b8b6e 2271
18b519c0 2272@group
72d2299c 2273 /* Skip white space. */
342b8b6e
AD
2274 while ((c = getchar ()) == ' ' || c == '\t')
2275 ++yylloc.last_column;
18b519c0 2276@end group
342b8b6e 2277
18b519c0 2278@group
72d2299c 2279 /* Step. */
342b8b6e
AD
2280 yylloc.first_line = yylloc.last_line;
2281 yylloc.first_column = yylloc.last_column;
2282@end group
2283
2284@group
72d2299c 2285 /* Process numbers. */
342b8b6e
AD
2286 if (isdigit (c))
2287 @{
2288 yylval = c - '0';
2289 ++yylloc.last_column;
2290 while (isdigit (c = getchar ()))
2291 @{
2292 ++yylloc.last_column;
2293 yylval = yylval * 10 + c - '0';
2294 @}
2295 ungetc (c, stdin);
2296 return NUM;
2297 @}
2298@end group
2299
72d2299c 2300 /* Return end-of-input. */
342b8b6e
AD
2301 if (c == EOF)
2302 return 0;
2303
d4fca427 2304@group
72d2299c 2305 /* Return a single char, and update location. */
342b8b6e
AD
2306 if (c == '\n')
2307 @{
2308 ++yylloc.last_line;
2309 yylloc.last_column = 0;
2310 @}
2311 else
2312 ++yylloc.last_column;
2313 return c;
2314@}
d4fca427 2315@end group
342b8b6e
AD
2316@end example
2317
9edcd895
AD
2318Basically, the lexical analyzer performs the same processing as before:
2319it skips blanks and tabs, and reads numbers or single-character tokens.
2320In addition, it updates @code{yylloc}, the global variable (of type
2321@code{YYLTYPE}) containing the token's location.
342b8b6e 2322
9edcd895 2323Now, each time this function returns a token, the parser has its number
72d2299c 2324as well as its semantic value, and its location in the text. The last
9edcd895
AD
2325needed change is to initialize @code{yylloc}, for example in the
2326controlling function:
342b8b6e
AD
2327
2328@example
9edcd895 2329@group
342b8b6e
AD
2330int
2331main (void)
2332@{
2333 yylloc.first_line = yylloc.last_line = 1;
2334 yylloc.first_column = yylloc.last_column = 0;
2335 return yyparse ();
2336@}
9edcd895 2337@end group
342b8b6e
AD
2338@end example
2339
9edcd895
AD
2340Remember that computing locations is not a matter of syntax. Every
2341character must be associated to a location update, whether it is in
2342valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2343
2344@node Multi-function Calc
bfa74976
RS
2345@section Multi-Function Calculator: @code{mfcalc}
2346@cindex multi-function calculator
2347@cindex @code{mfcalc}
2348@cindex calculator, multi-function
2349
2350Now that the basics of Bison have been discussed, it is time to move on to
2351a more advanced problem. The above calculators provided only five
2352functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2353be nice to have a calculator that provides other mathematical functions such
2354as @code{sin}, @code{cos}, etc.
2355
2356It is easy to add new operators to the infix calculator as long as they are
2357only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2358back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2359adding a new operator. But we want something more flexible: built-in
2360functions whose syntax has this form:
2361
2362@example
2363@var{function_name} (@var{argument})
2364@end example
2365
2366@noindent
2367At the same time, we will add memory to the calculator, by allowing you
2368to create named variables, store values in them, and use them later.
2369Here is a sample session with the multi-function calculator:
2370
2371@example
d4fca427 2372@group
9edcd895
AD
2373$ @kbd{mfcalc}
2374@kbd{pi = 3.141592653589}
f9c75dd0 2375@result{} 3.1415926536
d4fca427
AD
2376@end group
2377@group
9edcd895 2378@kbd{sin(pi)}
f9c75dd0 2379@result{} 0.0000000000
d4fca427 2380@end group
9edcd895 2381@kbd{alpha = beta1 = 2.3}
f9c75dd0 2382@result{} 2.3000000000
9edcd895 2383@kbd{alpha}
f9c75dd0 2384@result{} 2.3000000000
9edcd895 2385@kbd{ln(alpha)}
f9c75dd0 2386@result{} 0.8329091229
9edcd895 2387@kbd{exp(ln(beta1))}
f9c75dd0 2388@result{} 2.3000000000
9edcd895 2389$
bfa74976
RS
2390@end example
2391
2392Note that multiple assignment and nested function calls are permitted.
2393
2394@menu
f5f419de
DJ
2395* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2396* Mfcalc Rules:: Grammar rules for the calculator.
2397* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2398* Mfcalc Lexer:: The lexical analyzer.
2399* Mfcalc Main:: The controlling function.
bfa74976
RS
2400@end menu
2401
f5f419de 2402@node Mfcalc Declarations
bfa74976
RS
2403@subsection Declarations for @code{mfcalc}
2404
2405Here are the C and Bison declarations for the multi-function calculator.
2406
93c150b6 2407@comment file: mfcalc.y: 1
c93f22fc 2408@example
18b519c0 2409@group
bfa74976 2410%@{
f9c75dd0 2411 #include <stdio.h> /* For printf, etc. */
578e3413 2412 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2413 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2414 int yylex (void);
2415 void yyerror (char const *);
bfa74976 2416%@}
18b519c0 2417@end group
93c150b6 2418
90b89dad
AD
2419%define api.value.type union /* Generate YYSTYPE from these types: */
2420%token <double> NUM /* Simple double precision number. */
2421%token <symrec*> VAR FNCT /* Symbol table pointer: variable and function. */
2422%type <double> exp
bfa74976 2423
18b519c0 2424@group
e8f7155d 2425%precedence '='
bfa74976
RS
2426%left '-' '+'
2427%left '*' '/'
d78f0ac9
AD
2428%precedence NEG /* negation--unary minus */
2429%right '^' /* exponentiation */
18b519c0 2430@end group
c93f22fc 2431@end example
bfa74976
RS
2432
2433The above grammar introduces only two new features of the Bison language.
2434These features allow semantic values to have various data types
2435(@pxref{Multiple Types, ,More Than One Value Type}).
2436
90b89dad
AD
2437The special @code{union} value assigned to the @code{%define} variable
2438@code{api.value.type} specifies that the symbols are defined with their data
2439types. Bison will generate an appropriate definition of @code{YYSTYPE} to
2440store these values.
bfa74976 2441
90b89dad
AD
2442Since values can now have various types, it is necessary to associate a type
2443with each grammar symbol whose semantic value is used. These symbols are
2444@code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their declarations are
2445augmented with their data type (placed between angle brackets). For
2446instance, values of @code{NUM} are stored in @code{double}.
bfa74976 2447
90b89dad
AD
2448The Bison construct @code{%type} is used for declaring nonterminal symbols,
2449just as @code{%token} is used for declaring token types. Previously we did
2450not use @code{%type} before because nonterminal symbols are normally
2451declared implicitly by the rules that define them. But @code{exp} must be
2452declared explicitly so we can specify its value type. @xref{Type Decl,
2453,Nonterminal Symbols}.
bfa74976 2454
342b8b6e 2455@node Mfcalc Rules
bfa74976
RS
2456@subsection Grammar Rules for @code{mfcalc}
2457
2458Here are the grammar rules for the multi-function calculator.
2459Most of them are copied directly from @code{calc}; three rules,
2460those which mention @code{VAR} or @code{FNCT}, are new.
2461
93c150b6 2462@comment file: mfcalc.y: 3
c93f22fc 2463@example
93c150b6 2464%% /* The grammar follows. */
18b519c0 2465@group
5e9b6624 2466input:
6240346a 2467 %empty
5e9b6624 2468| input line
bfa74976 2469;
18b519c0 2470@end group
bfa74976 2471
18b519c0 2472@group
bfa74976 2473line:
5e9b6624
AD
2474 '\n'
2475| exp '\n' @{ printf ("%.10g\n", $1); @}
2476| error '\n' @{ yyerrok; @}
bfa74976 2477;
18b519c0 2478@end group
bfa74976 2479
18b519c0 2480@group
5e9b6624
AD
2481exp:
2482 NUM @{ $$ = $1; @}
2483| VAR @{ $$ = $1->value.var; @}
2484| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2485| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2486| exp '+' exp @{ $$ = $1 + $3; @}
2487| exp '-' exp @{ $$ = $1 - $3; @}
2488| exp '*' exp @{ $$ = $1 * $3; @}
2489| exp '/' exp @{ $$ = $1 / $3; @}
2490| '-' exp %prec NEG @{ $$ = -$2; @}
2491| exp '^' exp @{ $$ = pow ($1, $3); @}
2492| '(' exp ')' @{ $$ = $2; @}
bfa74976 2493;
18b519c0 2494@end group
38a92d50 2495/* End of grammar. */
bfa74976 2496%%
c93f22fc 2497@end example
bfa74976 2498
f5f419de 2499@node Mfcalc Symbol Table
bfa74976
RS
2500@subsection The @code{mfcalc} Symbol Table
2501@cindex symbol table example
2502
2503The multi-function calculator requires a symbol table to keep track of the
2504names and meanings of variables and functions. This doesn't affect the
2505grammar rules (except for the actions) or the Bison declarations, but it
2506requires some additional C functions for support.
2507
2508The symbol table itself consists of a linked list of records. Its
2509definition, which is kept in the header @file{calc.h}, is as follows. It
2510provides for either functions or variables to be placed in the table.
2511
f9c75dd0 2512@comment file: calc.h
c93f22fc 2513@example
bfa74976 2514@group
38a92d50 2515/* Function type. */
32dfccf8 2516typedef double (*func_t) (double);
72f889cc 2517@end group
32dfccf8 2518
72f889cc 2519@group
38a92d50 2520/* Data type for links in the chain of symbols. */
bfa74976
RS
2521struct symrec
2522@{
38a92d50 2523 char *name; /* name of symbol */
bfa74976 2524 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2525 union
2526 @{
38a92d50
PE
2527 double var; /* value of a VAR */
2528 func_t fnctptr; /* value of a FNCT */
bfa74976 2529 @} value;
38a92d50 2530 struct symrec *next; /* link field */
bfa74976
RS
2531@};
2532@end group
2533
2534@group
2535typedef struct symrec symrec;
2536
4c9b8f13 2537/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2538extern symrec *sym_table;
2539
a730d142 2540symrec *putsym (char const *, int);
38a92d50 2541symrec *getsym (char const *);
bfa74976 2542@end group
c93f22fc 2543@end example
bfa74976 2544
aeb57fb6
AD
2545The new version of @code{main} will call @code{init_table} to initialize
2546the symbol table:
bfa74976 2547
93c150b6 2548@comment file: mfcalc.y: 3
c93f22fc 2549@example
18b519c0 2550@group
bfa74976
RS
2551struct init
2552@{
38a92d50
PE
2553 char const *fname;
2554 double (*fnct) (double);
bfa74976
RS
2555@};
2556@end group
2557
2558@group
38a92d50 2559struct init const arith_fncts[] =
13863333 2560@{
f9c75dd0
AD
2561 @{ "atan", atan @},
2562 @{ "cos", cos @},
2563 @{ "exp", exp @},
2564 @{ "ln", log @},
2565 @{ "sin", sin @},
2566 @{ "sqrt", sqrt @},
2567 @{ 0, 0 @},
13863333 2568@};
18b519c0 2569@end group
bfa74976 2570
18b519c0 2571@group
4c9b8f13 2572/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2573symrec *sym_table;
bfa74976
RS
2574@end group
2575
2576@group
72d2299c 2577/* Put arithmetic functions in table. */
f9c75dd0 2578static
13863333
AD
2579void
2580init_table (void)
bfa74976
RS
2581@{
2582 int i;
bfa74976
RS
2583 for (i = 0; arith_fncts[i].fname != 0; i++)
2584 @{
aaaa2aae 2585 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2586 ptr->value.fnctptr = arith_fncts[i].fnct;
2587 @}
2588@}
2589@end group
c93f22fc 2590@end example
bfa74976
RS
2591
2592By simply editing the initialization list and adding the necessary include
2593files, you can add additional functions to the calculator.
2594
2595Two important functions allow look-up and installation of symbols in the
2596symbol table. The function @code{putsym} is passed a name and the type
2597(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2598linked to the front of the list, and a pointer to the object is returned.
2599The function @code{getsym} is passed the name of the symbol to look up. If
2600found, a pointer to that symbol is returned; otherwise zero is returned.
2601
93c150b6 2602@comment file: mfcalc.y: 3
c93f22fc 2603@example
f9c75dd0
AD
2604#include <stdlib.h> /* malloc. */
2605#include <string.h> /* strlen. */
2606
d4fca427 2607@group
bfa74976 2608symrec *
38a92d50 2609putsym (char const *sym_name, int sym_type)
bfa74976 2610@{
aaaa2aae 2611 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2612 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2613 strcpy (ptr->name,sym_name);
2614 ptr->type = sym_type;
72d2299c 2615 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2616 ptr->next = (struct symrec *)sym_table;
2617 sym_table = ptr;
2618 return ptr;
2619@}
d4fca427 2620@end group
bfa74976 2621
d4fca427 2622@group
bfa74976 2623symrec *
38a92d50 2624getsym (char const *sym_name)
bfa74976
RS
2625@{
2626 symrec *ptr;
2627 for (ptr = sym_table; ptr != (symrec *) 0;
2628 ptr = (symrec *)ptr->next)
f518dbaf 2629 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2630 return ptr;
2631 return 0;
2632@}
d4fca427 2633@end group
c93f22fc 2634@end example
bfa74976 2635
aeb57fb6
AD
2636@node Mfcalc Lexer
2637@subsection The @code{mfcalc} Lexer
2638
bfa74976
RS
2639The function @code{yylex} must now recognize variables, numeric values, and
2640the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2641characters with a leading letter are recognized as either variables or
bfa74976
RS
2642functions depending on what the symbol table says about them.
2643
2644The string is passed to @code{getsym} for look up in the symbol table. If
2645the name appears in the table, a pointer to its location and its type
2646(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2647already in the table, then it is installed as a @code{VAR} using
2648@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2649returned to @code{yyparse}.
bfa74976
RS
2650
2651No change is needed in the handling of numeric values and arithmetic
2652operators in @code{yylex}.
2653
93c150b6 2654@comment file: mfcalc.y: 3
c93f22fc 2655@example
bfa74976 2656#include <ctype.h>
13863333 2657
18b519c0 2658@group
13863333
AD
2659int
2660yylex (void)
bfa74976
RS
2661@{
2662 int c;
2663
72d2299c 2664 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2665 while ((c = getchar ()) == ' ' || c == '\t')
2666 continue;
bfa74976
RS
2667
2668 if (c == EOF)
2669 return 0;
2670@end group
2671
2672@group
2673 /* Char starts a number => parse the number. */
2674 if (c == '.' || isdigit (c))
2675 @{
2676 ungetc (c, stdin);
90b89dad 2677 scanf ("%lf", &yylval.NUM);
bfa74976
RS
2678 return NUM;
2679 @}
2680@end group
90b89dad 2681@end example
bfa74976 2682
90b89dad
AD
2683@noindent
2684Bison generated a definition of @code{YYSTYPE} with a member named
2685@code{NUM} to store value of @code{NUM} symbols.
2686
2687@comment file: mfcalc.y: 3
2688@example
bfa74976
RS
2689@group
2690 /* Char starts an identifier => read the name. */
2691 if (isalpha (c))
2692 @{
aaaa2aae
AD
2693 /* Initially make the buffer long enough
2694 for a 40-character symbol name. */
2695 static size_t length = 40;
bfa74976 2696 static char *symbuf = 0;
aaaa2aae 2697 symrec *s;
bfa74976
RS
2698 int i;
2699@end group
aaaa2aae
AD
2700 if (!symbuf)
2701 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2702
2703 i = 0;
2704 do
bfa74976
RS
2705@group
2706 @{
2707 /* If buffer is full, make it bigger. */
2708 if (i == length)
2709 @{
2710 length *= 2;
18b519c0 2711 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2712 @}
2713 /* Add this character to the buffer. */
2714 symbuf[i++] = c;
2715 /* Get another character. */
2716 c = getchar ();
2717 @}
2718@end group
2719@group
72d2299c 2720 while (isalnum (c));
bfa74976
RS
2721
2722 ungetc (c, stdin);
2723 symbuf[i] = '\0';
2724@end group
2725
2726@group
2727 s = getsym (symbuf);
2728 if (s == 0)
2729 s = putsym (symbuf, VAR);
90b89dad 2730 *((symrec**) &yylval) = s;
bfa74976
RS
2731 return s->type;
2732 @}
2733
2734 /* Any other character is a token by itself. */
2735 return c;
2736@}
2737@end group
c93f22fc 2738@end example
bfa74976 2739
aeb57fb6
AD
2740@node Mfcalc Main
2741@subsection The @code{mfcalc} Main
2742
2743The error reporting function is unchanged, and the new version of
93c150b6
AD
2744@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2745on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2746
93c150b6 2747@comment file: mfcalc.y: 3
c93f22fc 2748@example
aeb57fb6
AD
2749@group
2750/* Called by yyparse on error. */
2751void
2752yyerror (char const *s)
2753@{
2754 fprintf (stderr, "%s\n", s);
2755@}
2756@end group
2757
aaaa2aae 2758@group
aeb57fb6
AD
2759int
2760main (int argc, char const* argv[])
2761@{
93c150b6
AD
2762 int i;
2763 /* Enable parse traces on option -p. */
2764 for (i = 1; i < argc; ++i)
2765 if (!strcmp(argv[i], "-p"))
2766 yydebug = 1;
aeb57fb6
AD
2767 init_table ();
2768 return yyparse ();
2769@}
2770@end group
c93f22fc 2771@end example
aeb57fb6 2772
72d2299c 2773This program is both powerful and flexible. You may easily add new
704a47c4
AD
2774functions, and it is a simple job to modify this code to install
2775predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2776
342b8b6e 2777@node Exercises
bfa74976
RS
2778@section Exercises
2779@cindex exercises
2780
2781@enumerate
2782@item
2783Add some new functions from @file{math.h} to the initialization list.
2784
2785@item
2786Add another array that contains constants and their values. Then
2787modify @code{init_table} to add these constants to the symbol table.
2788It will be easiest to give the constants type @code{VAR}.
2789
2790@item
2791Make the program report an error if the user refers to an
2792uninitialized variable in any way except to store a value in it.
2793@end enumerate
2794
342b8b6e 2795@node Grammar File
bfa74976
RS
2796@chapter Bison Grammar Files
2797
2798Bison takes as input a context-free grammar specification and produces a
2799C-language function that recognizes correct instances of the grammar.
2800
ff7571c0 2801The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2802@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2803
2804@menu
303834cc
JD
2805* Grammar Outline:: Overall layout of the grammar file.
2806* Symbols:: Terminal and nonterminal symbols.
2807* Rules:: How to write grammar rules.
303834cc
JD
2808* Semantics:: Semantic values and actions.
2809* Tracking Locations:: Locations and actions.
2810* Named References:: Using named references in actions.
2811* Declarations:: All kinds of Bison declarations are described here.
2812* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2813@end menu
2814
342b8b6e 2815@node Grammar Outline
bfa74976 2816@section Outline of a Bison Grammar
c949ada3
AD
2817@cindex comment
2818@findex // @dots{}
2819@findex /* @dots{} */
bfa74976
RS
2820
2821A Bison grammar file has four main sections, shown here with the
2822appropriate delimiters:
2823
2824@example
2825%@{
38a92d50 2826 @var{Prologue}
bfa74976
RS
2827%@}
2828
2829@var{Bison declarations}
2830
2831%%
2832@var{Grammar rules}
2833%%
2834
75f5aaea 2835@var{Epilogue}
bfa74976
RS
2836@end example
2837
2838Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2839As a GNU extension, @samp{//} introduces a comment that continues until end
2840of line.
bfa74976
RS
2841
2842@menu
f5f419de 2843* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2844* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2845* Bison Declarations:: Syntax and usage of the Bison declarations section.
2846* Grammar Rules:: Syntax and usage of the grammar rules section.
2847* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2848@end menu
2849
38a92d50 2850@node Prologue
75f5aaea
MA
2851@subsection The prologue
2852@cindex declarations section
2853@cindex Prologue
2854@cindex declarations
bfa74976 2855
f8e1c9e5
AD
2856The @var{Prologue} section contains macro definitions and declarations
2857of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2858rules. These are copied to the beginning of the parser implementation
2859file so that they precede the definition of @code{yyparse}. You can
2860use @samp{#include} to get the declarations from a header file. If
2861you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2862@samp{%@}} delimiters that bracket this section.
bfa74976 2863
9c437126 2864The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2865of @samp{%@}} that is outside a comment, a string literal, or a
2866character constant.
2867
c732d2c6
AD
2868You may have more than one @var{Prologue} section, intermixed with the
2869@var{Bison declarations}. This allows you to have C and Bison
2870declarations that refer to each other. For example, the @code{%union}
2871declaration may use types defined in a header file, and you may wish to
2872prototype functions that take arguments of type @code{YYSTYPE}. This
2873can be done with two @var{Prologue} blocks, one before and one after the
2874@code{%union} declaration.
2875
c93f22fc 2876@example
efbc95a7 2877@group
c732d2c6 2878%@{
aef3da86 2879 #define _GNU_SOURCE
38a92d50
PE
2880 #include <stdio.h>
2881 #include "ptypes.h"
c732d2c6 2882%@}
efbc95a7 2883@end group
c732d2c6 2884
efbc95a7 2885@group
c732d2c6 2886%union @{
779e7ceb 2887 long int n;
c732d2c6
AD
2888 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2889@}
efbc95a7 2890@end group
c732d2c6 2891
efbc95a7 2892@group
c732d2c6 2893%@{
38a92d50
PE
2894 static void print_token_value (FILE *, int, YYSTYPE);
2895 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2896%@}
efbc95a7 2897@end group
c732d2c6
AD
2898
2899@dots{}
c93f22fc 2900@end example
c732d2c6 2901
aef3da86
PE
2902When in doubt, it is usually safer to put prologue code before all
2903Bison declarations, rather than after. For example, any definitions
2904of feature test macros like @code{_GNU_SOURCE} or
2905@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2906feature test macros can affect the behavior of Bison-generated
2907@code{#include} directives.
2908
2cbe6b7f
JD
2909@node Prologue Alternatives
2910@subsection Prologue Alternatives
2911@cindex Prologue Alternatives
2912
136a0f76 2913@findex %code
16dc6a9e
JD
2914@findex %code requires
2915@findex %code provides
2916@findex %code top
85894313 2917
2cbe6b7f 2918The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2919inflexible. As an alternative, Bison provides a @code{%code}
2920directive with an explicit qualifier field, which identifies the
2921purpose of the code and thus the location(s) where Bison should
2922generate it. For C/C++, the qualifier can be omitted for the default
2923location, or it can be one of @code{requires}, @code{provides},
e0c07222 2924@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2925
2926Look again at the example of the previous section:
2927
c93f22fc 2928@example
efbc95a7 2929@group
2cbe6b7f
JD
2930%@{
2931 #define _GNU_SOURCE
2932 #include <stdio.h>
2933 #include "ptypes.h"
2934%@}
efbc95a7 2935@end group
2cbe6b7f 2936
efbc95a7 2937@group
2cbe6b7f
JD
2938%union @{
2939 long int n;
2940 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2941@}
efbc95a7 2942@end group
2cbe6b7f 2943
efbc95a7 2944@group
2cbe6b7f
JD
2945%@{
2946 static void print_token_value (FILE *, int, YYSTYPE);
2947 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2948%@}
efbc95a7 2949@end group
2cbe6b7f
JD
2950
2951@dots{}
c93f22fc 2952@end example
2cbe6b7f
JD
2953
2954@noindent
ff7571c0
JD
2955Notice that there are two @var{Prologue} sections here, but there's a
2956subtle distinction between their functionality. For example, if you
2957decide to override Bison's default definition for @code{YYLTYPE}, in
2958which @var{Prologue} section should you write your new definition?
2959You should write it in the first since Bison will insert that code
2960into the parser implementation file @emph{before} the default
2961@code{YYLTYPE} definition. In which @var{Prologue} section should you
2962prototype an internal function, @code{trace_token}, that accepts
2963@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2964prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2965@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2966
2967This distinction in functionality between the two @var{Prologue} sections is
2968established by the appearance of the @code{%union} between them.
a501eca9 2969This behavior raises a few questions.
2cbe6b7f
JD
2970First, why should the position of a @code{%union} affect definitions related to
2971@code{YYLTYPE} and @code{yytokentype}?
2972Second, what if there is no @code{%union}?
2973In that case, the second kind of @var{Prologue} section is not available.
2974This behavior is not intuitive.
2975
8e0a5e9e 2976To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2977@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2978Let's go ahead and add the new @code{YYLTYPE} definition and the
2979@code{trace_token} prototype at the same time:
2980
c93f22fc 2981@example
16dc6a9e 2982%code top @{
2cbe6b7f
JD
2983 #define _GNU_SOURCE
2984 #include <stdio.h>
8e0a5e9e
JD
2985
2986 /* WARNING: The following code really belongs
4c9b8f13 2987 * in a '%code requires'; see below. */
8e0a5e9e 2988
2cbe6b7f
JD
2989 #include "ptypes.h"
2990 #define YYLTYPE YYLTYPE
2991 typedef struct YYLTYPE
2992 @{
2993 int first_line;
2994 int first_column;
2995 int last_line;
2996 int last_column;
2997 char *filename;
2998 @} YYLTYPE;
2999@}
3000
efbc95a7 3001@group
2cbe6b7f
JD
3002%union @{
3003 long int n;
3004 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3005@}
efbc95a7 3006@end group
2cbe6b7f 3007
efbc95a7 3008@group
2cbe6b7f
JD
3009%code @{
3010 static void print_token_value (FILE *, int, YYSTYPE);
3011 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3012 static void trace_token (enum yytokentype token, YYLTYPE loc);
3013@}
efbc95a7 3014@end group
2cbe6b7f
JD
3015
3016@dots{}
c93f22fc 3017@end example
2cbe6b7f
JD
3018
3019@noindent
16dc6a9e
JD
3020In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3021functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3022explicit which kind you intend.
2cbe6b7f
JD
3023Moreover, both kinds are always available even in the absence of @code{%union}.
3024
ff7571c0
JD
3025The @code{%code top} block above logically contains two parts. The
3026first two lines before the warning need to appear near the top of the
3027parser implementation file. The first line after the warning is
3028required by @code{YYSTYPE} and thus also needs to appear in the parser
3029implementation file. However, if you've instructed Bison to generate
3030a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3031want that line to appear before the @code{YYSTYPE} definition in that
3032header file as well. The @code{YYLTYPE} definition should also appear
3033in the parser header file to override the default @code{YYLTYPE}
3034definition there.
2cbe6b7f 3035
16dc6a9e 3036In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3037lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3038definitions.
16dc6a9e 3039Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3040
c93f22fc 3041@example
d4fca427 3042@group
16dc6a9e 3043%code top @{
2cbe6b7f
JD
3044 #define _GNU_SOURCE
3045 #include <stdio.h>
3046@}
d4fca427 3047@end group
2cbe6b7f 3048
d4fca427 3049@group
16dc6a9e 3050%code requires @{
9bc0dd67
JD
3051 #include "ptypes.h"
3052@}
d4fca427
AD
3053@end group
3054@group
9bc0dd67
JD
3055%union @{
3056 long int n;
3057 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3058@}
d4fca427 3059@end group
9bc0dd67 3060
d4fca427 3061@group
16dc6a9e 3062%code requires @{
2cbe6b7f
JD
3063 #define YYLTYPE YYLTYPE
3064 typedef struct YYLTYPE
3065 @{
3066 int first_line;
3067 int first_column;
3068 int last_line;
3069 int last_column;
3070 char *filename;
3071 @} YYLTYPE;
3072@}
d4fca427 3073@end group
2cbe6b7f 3074
d4fca427 3075@group
136a0f76 3076%code @{
2cbe6b7f
JD
3077 static void print_token_value (FILE *, int, YYSTYPE);
3078 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3079 static void trace_token (enum yytokentype token, YYLTYPE loc);
3080@}
d4fca427 3081@end group
2cbe6b7f
JD
3082
3083@dots{}
c93f22fc 3084@end example
2cbe6b7f
JD
3085
3086@noindent
ff7571c0
JD
3087Now Bison will insert @code{#include "ptypes.h"} and the new
3088@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3089and @code{YYLTYPE} definitions in both the parser implementation file
3090and the parser header file. (By the same reasoning, @code{%code
3091requires} would also be the appropriate place to write your own
3092definition for @code{YYSTYPE}.)
3093
3094When you are writing dependency code for @code{YYSTYPE} and
3095@code{YYLTYPE}, you should prefer @code{%code requires} over
3096@code{%code top} regardless of whether you instruct Bison to generate
3097a parser header file. When you are writing code that you need Bison
3098to insert only into the parser implementation file and that has no
3099special need to appear at the top of that file, you should prefer the
3100unqualified @code{%code} over @code{%code top}. These practices will
3101make the purpose of each block of your code explicit to Bison and to
3102other developers reading your grammar file. Following these
3103practices, we expect the unqualified @code{%code} and @code{%code
3104requires} to be the most important of the four @var{Prologue}
16dc6a9e 3105alternatives.
a501eca9 3106
ff7571c0
JD
3107At some point while developing your parser, you might decide to
3108provide @code{trace_token} to modules that are external to your
3109parser. Thus, you might wish for Bison to insert the prototype into
3110both the parser header file and the parser implementation file. Since
3111this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3112@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3113@code{%code requires}. More importantly, since it depends upon
3114@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3115sufficient. Instead, move its prototype from the unqualified
3116@code{%code} to a @code{%code provides}:
2cbe6b7f 3117
c93f22fc 3118@example
d4fca427 3119@group
16dc6a9e 3120%code top @{
2cbe6b7f 3121 #define _GNU_SOURCE
136a0f76 3122 #include <stdio.h>
2cbe6b7f 3123@}
d4fca427 3124@end group
136a0f76 3125
d4fca427 3126@group
16dc6a9e 3127%code requires @{
2cbe6b7f
JD
3128 #include "ptypes.h"
3129@}
d4fca427
AD
3130@end group
3131@group
2cbe6b7f
JD
3132%union @{
3133 long int n;
3134 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3135@}
d4fca427 3136@end group
2cbe6b7f 3137
d4fca427 3138@group
16dc6a9e 3139%code requires @{
2cbe6b7f
JD
3140 #define YYLTYPE YYLTYPE
3141 typedef struct YYLTYPE
3142 @{
3143 int first_line;
3144 int first_column;
3145 int last_line;
3146 int last_column;
3147 char *filename;
3148 @} YYLTYPE;
3149@}
d4fca427 3150@end group
2cbe6b7f 3151
d4fca427 3152@group
16dc6a9e 3153%code provides @{
2cbe6b7f
JD
3154 void trace_token (enum yytokentype token, YYLTYPE loc);
3155@}
d4fca427 3156@end group
2cbe6b7f 3157
d4fca427 3158@group
2cbe6b7f 3159%code @{
9bc0dd67
JD
3160 static void print_token_value (FILE *, int, YYSTYPE);
3161 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3162@}
d4fca427 3163@end group
9bc0dd67
JD
3164
3165@dots{}
c93f22fc 3166@end example
9bc0dd67 3167
2cbe6b7f 3168@noindent
ff7571c0
JD
3169Bison will insert the @code{trace_token} prototype into both the
3170parser header file and the parser implementation file after the
3171definitions for @code{yytokentype}, @code{YYLTYPE}, and
3172@code{YYSTYPE}.
2cbe6b7f 3173
ff7571c0
JD
3174The above examples are careful to write directives in an order that
3175reflects the layout of the generated parser implementation and header
3176files: @code{%code top}, @code{%code requires}, @code{%code provides},
3177and then @code{%code}. While your grammar files may generally be
3178easier to read if you also follow this order, Bison does not require
3179it. Instead, Bison lets you choose an organization that makes sense
3180to you.
2cbe6b7f 3181
a501eca9 3182You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3183In that case, Bison concatenates the contained code in declaration order.
3184This is the only way in which the position of one of these directives within
3185the grammar file affects its functionality.
3186
3187The result of the previous two properties is greater flexibility in how you may
3188organize your grammar file.
3189For example, you may organize semantic-type-related directives by semantic
3190type:
3191
c93f22fc 3192@example
d4fca427 3193@group
16dc6a9e 3194%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3195%union @{ type1 field1; @}
3196%destructor @{ type1_free ($$); @} <field1>
c5026327 3197%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3198@end group
2cbe6b7f 3199
d4fca427 3200@group
16dc6a9e 3201%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3202%union @{ type2 field2; @}
3203%destructor @{ type2_free ($$); @} <field2>
c5026327 3204%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3205@end group
c93f22fc 3206@end example
2cbe6b7f
JD
3207
3208@noindent
3209You could even place each of the above directive groups in the rules section of
3210the grammar file next to the set of rules that uses the associated semantic
3211type.
61fee93e
JD
3212(In the rules section, you must terminate each of those directives with a
3213semicolon.)
2cbe6b7f
JD
3214And you don't have to worry that some directive (like a @code{%union}) in the
3215definitions section is going to adversely affect their functionality in some
3216counter-intuitive manner just because it comes first.
3217Such an organization is not possible using @var{Prologue} sections.
3218
a501eca9 3219This section has been concerned with explaining the advantages of the four
8e0a5e9e 3220@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3221However, in most cases when using these directives, you shouldn't need to
3222think about all the low-level ordering issues discussed here.
3223Instead, you should simply use these directives to label each block of your
3224code according to its purpose and let Bison handle the ordering.
3225@code{%code} is the most generic label.
16dc6a9e
JD
3226Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3227as needed.
a501eca9 3228
342b8b6e 3229@node Bison Declarations
bfa74976
RS
3230@subsection The Bison Declarations Section
3231@cindex Bison declarations (introduction)
3232@cindex declarations, Bison (introduction)
3233
3234The @var{Bison declarations} section contains declarations that define
3235terminal and nonterminal symbols, specify precedence, and so on.
3236In some simple grammars you may not need any declarations.
3237@xref{Declarations, ,Bison Declarations}.
3238
342b8b6e 3239@node Grammar Rules
bfa74976
RS
3240@subsection The Grammar Rules Section
3241@cindex grammar rules section
3242@cindex rules section for grammar
3243
3244The @dfn{grammar rules} section contains one or more Bison grammar
3245rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3246
3247There must always be at least one grammar rule, and the first
3248@samp{%%} (which precedes the grammar rules) may never be omitted even
3249if it is the first thing in the file.
3250
38a92d50 3251@node Epilogue
75f5aaea 3252@subsection The epilogue
bfa74976 3253@cindex additional C code section
75f5aaea 3254@cindex epilogue
bfa74976
RS
3255@cindex C code, section for additional
3256
ff7571c0
JD
3257The @var{Epilogue} is copied verbatim to the end of the parser
3258implementation file, just as the @var{Prologue} is copied to the
3259beginning. This is the most convenient place to put anything that you
3260want to have in the parser implementation file but which need not come
3261before the definition of @code{yyparse}. For example, the definitions
3262of @code{yylex} and @code{yyerror} often go here. Because C requires
3263functions to be declared before being used, you often need to declare
3264functions like @code{yylex} and @code{yyerror} in the Prologue, even
3265if you define them in the Epilogue. @xref{Interface, ,Parser
3266C-Language Interface}.
bfa74976
RS
3267
3268If the last section is empty, you may omit the @samp{%%} that separates it
3269from the grammar rules.
3270
f8e1c9e5
AD
3271The Bison parser itself contains many macros and identifiers whose names
3272start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3273any such names (except those documented in this manual) in the epilogue
3274of the grammar file.
bfa74976 3275
342b8b6e 3276@node Symbols
bfa74976
RS
3277@section Symbols, Terminal and Nonterminal
3278@cindex nonterminal symbol
3279@cindex terminal symbol
3280@cindex token type
3281@cindex symbol
3282
3283@dfn{Symbols} in Bison grammars represent the grammatical classifications
3284of the language.
3285
3286A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3287class of syntactically equivalent tokens. You use the symbol in grammar
3288rules to mean that a token in that class is allowed. The symbol is
3289represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3290function returns a token type code to indicate what kind of token has
3291been read. You don't need to know what the code value is; you can use
3292the symbol to stand for it.
bfa74976 3293
f8e1c9e5
AD
3294A @dfn{nonterminal symbol} stands for a class of syntactically
3295equivalent groupings. The symbol name is used in writing grammar rules.
3296By convention, it should be all lower case.
bfa74976 3297
82f3355e
JD
3298Symbol names can contain letters, underscores, periods, and non-initial
3299digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3300with POSIX Yacc. Periods and dashes make symbol names less convenient to
3301use with named references, which require brackets around such names
3302(@pxref{Named References}). Terminal symbols that contain periods or dashes
3303make little sense: since they are not valid symbols (in most programming
3304languages) they are not exported as token names.
bfa74976 3305
931c7513 3306There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3307
3308@itemize @bullet
3309@item
3310A @dfn{named token type} is written with an identifier, like an
c827f760 3311identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3312such name must be defined with a Bison declaration such as
3313@code{%token}. @xref{Token Decl, ,Token Type Names}.
3314
3315@item
3316@cindex character token
3317@cindex literal token
3318@cindex single-character literal
931c7513
RS
3319A @dfn{character token type} (or @dfn{literal character token}) is
3320written in the grammar using the same syntax used in C for character
3321constants; for example, @code{'+'} is a character token type. A
3322character token type doesn't need to be declared unless you need to
3323specify its semantic value data type (@pxref{Value Type, ,Data Types of
3324Semantic Values}), associativity, or precedence (@pxref{Precedence,
3325,Operator Precedence}).
bfa74976
RS
3326
3327By convention, a character token type is used only to represent a
3328token that consists of that particular character. Thus, the token
3329type @code{'+'} is used to represent the character @samp{+} as a
3330token. Nothing enforces this convention, but if you depart from it,
3331your program will confuse other readers.
3332
3333All the usual escape sequences used in character literals in C can be
3334used in Bison as well, but you must not use the null character as a
72d2299c
PE
3335character literal because its numeric code, zero, signifies
3336end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3337for @code{yylex}}). Also, unlike standard C, trigraphs have no
3338special meaning in Bison character literals, nor is backslash-newline
3339allowed.
931c7513
RS
3340
3341@item
3342@cindex string token
3343@cindex literal string token
9ecbd125 3344@cindex multicharacter literal
931c7513
RS
3345A @dfn{literal string token} is written like a C string constant; for
3346example, @code{"<="} is a literal string token. A literal string token
3347doesn't need to be declared unless you need to specify its semantic
14ded682 3348value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3349(@pxref{Precedence}).
3350
3351You can associate the literal string token with a symbolic name as an
3352alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3353Declarations}). If you don't do that, the lexical analyzer has to
3354retrieve the token number for the literal string token from the
3355@code{yytname} table (@pxref{Calling Convention}).
3356
c827f760 3357@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3358
3359By convention, a literal string token is used only to represent a token
3360that consists of that particular string. Thus, you should use the token
3361type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3362does not enforce this convention, but if you depart from it, people who
931c7513
RS
3363read your program will be confused.
3364
3365All the escape sequences used in string literals in C can be used in
92ac3705
PE
3366Bison as well, except that you must not use a null character within a
3367string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3368meaning in Bison string literals, nor is backslash-newline allowed. A
3369literal string token must contain two or more characters; for a token
3370containing just one character, use a character token (see above).
bfa74976
RS
3371@end itemize
3372
3373How you choose to write a terminal symbol has no effect on its
3374grammatical meaning. That depends only on where it appears in rules and
3375on when the parser function returns that symbol.
3376
72d2299c
PE
3377The value returned by @code{yylex} is always one of the terminal
3378symbols, except that a zero or negative value signifies end-of-input.
3379Whichever way you write the token type in the grammar rules, you write
3380it the same way in the definition of @code{yylex}. The numeric code
3381for a character token type is simply the positive numeric code of the
3382character, so @code{yylex} can use the identical value to generate the
3383requisite code, though you may need to convert it to @code{unsigned
3384char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3385Each named token type becomes a C macro in the parser implementation
3386file, so @code{yylex} can use the name to stand for the code. (This
3387is why periods don't make sense in terminal symbols.) @xref{Calling
3388Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3389
3390If @code{yylex} is defined in a separate file, you need to arrange for the
3391token-type macro definitions to be available there. Use the @samp{-d}
3392option when you run Bison, so that it will write these macro definitions
3393into a separate header file @file{@var{name}.tab.h} which you can include
3394in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3395
72d2299c 3396If you want to write a grammar that is portable to any Standard C
9d9b8b70 3397host, you must use only nonnull character tokens taken from the basic
c827f760 3398execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3399digits, the 52 lower- and upper-case English letters, and the
3400characters in the following C-language string:
3401
3402@example
3403"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3404@end example
3405
f8e1c9e5
AD
3406The @code{yylex} function and Bison must use a consistent character set
3407and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3408ASCII environment, but then compile and run the resulting
f8e1c9e5 3409program in an environment that uses an incompatible character set like
8a4281b9
JD
3410EBCDIC, the resulting program may not work because the tables
3411generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3412character tokens. It is standard practice for software distributions to
3413contain C source files that were generated by Bison in an
8a4281b9
JD
3414ASCII environment, so installers on platforms that are
3415incompatible with ASCII must rebuild those files before
f8e1c9e5 3416compiling them.
e966383b 3417
bfa74976
RS
3418The symbol @code{error} is a terminal symbol reserved for error recovery
3419(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3420In particular, @code{yylex} should never return this value. The default
3421value of the error token is 256, unless you explicitly assigned 256 to
3422one of your tokens with a @code{%token} declaration.
bfa74976 3423
342b8b6e 3424@node Rules
09add9c2
AD
3425@section Grammar Rules
3426
3427A Bison grammar is a list of rules.
3428
3429@menu
3430* Rules Syntax:: Syntax of the rules.
3431* Empty Rules:: Symbols that can match the empty string.
3432* Recursion:: Writing recursive rules.
3433@end menu
3434
3435@node Rules Syntax
3436@subsection Syntax of Grammar Rules
bfa74976
RS
3437@cindex rule syntax
3438@cindex grammar rule syntax
3439@cindex syntax of grammar rules
3440
3441A Bison grammar rule has the following general form:
3442
3443@example
5e9b6624 3444@var{result}: @var{components}@dots{};
bfa74976
RS
3445@end example
3446
3447@noindent
9ecbd125 3448where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3449and @var{components} are various terminal and nonterminal symbols that
13863333 3450are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3451
3452For example,
3453
3454@example
5e9b6624 3455exp: exp '+' exp;
bfa74976
RS
3456@end example
3457
3458@noindent
3459says that two groupings of type @code{exp}, with a @samp{+} token in between,
3460can be combined into a larger grouping of type @code{exp}.
3461
72d2299c
PE
3462White space in rules is significant only to separate symbols. You can add
3463extra white space as you wish.
bfa74976
RS
3464
3465Scattered among the components can be @var{actions} that determine
3466the semantics of the rule. An action looks like this:
3467
3468@example
3469@{@var{C statements}@}
3470@end example
3471
3472@noindent
287c78f6
PE
3473@cindex braced code
3474This is an example of @dfn{braced code}, that is, C code surrounded by
3475braces, much like a compound statement in C@. Braced code can contain
3476any sequence of C tokens, so long as its braces are balanced. Bison
3477does not check the braced code for correctness directly; it merely
ff7571c0
JD
3478copies the code to the parser implementation file, where the C
3479compiler can check it.
287c78f6
PE
3480
3481Within braced code, the balanced-brace count is not affected by braces
3482within comments, string literals, or character constants, but it is
3483affected by the C digraphs @samp{<%} and @samp{%>} that represent
3484braces. At the top level braced code must be terminated by @samp{@}}
3485and not by a digraph. Bison does not look for trigraphs, so if braced
3486code uses trigraphs you should ensure that they do not affect the
3487nesting of braces or the boundaries of comments, string literals, or
3488character constants.
3489
bfa74976
RS
3490Usually there is only one action and it follows the components.
3491@xref{Actions}.
3492
3493@findex |
3494Multiple rules for the same @var{result} can be written separately or can
3495be joined with the vertical-bar character @samp{|} as follows:
3496
bfa74976
RS
3497@example
3498@group
5e9b6624
AD
3499@var{result}:
3500 @var{rule1-components}@dots{}
3501| @var{rule2-components}@dots{}
3502@dots{}
3503;
bfa74976
RS
3504@end group
3505@end example
bfa74976
RS
3506
3507@noindent
3508They are still considered distinct rules even when joined in this way.
3509
09add9c2
AD
3510@node Empty Rules
3511@subsection Empty Rules
3512@cindex empty rule
3513@cindex rule, empty
3514@findex %empty
3515
3516A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3517is empty. It means that @var{result} can match the empty string. For
3518example, here is how to define an optional semicolon:
3519
3520@example
3521semicolon.opt: | ";";
3522@end example
3523
3524@noindent
3525It is easy not to see an empty rule, especially when @code{|} is used. The
3526@code{%empty} directive allows to make explicit that a rule is empty on
3527purpose:
bfa74976
RS
3528
3529@example
3530@group
09add9c2
AD
3531semicolon.opt:
3532 %empty
3533| ";"
5e9b6624 3534;
bfa74976 3535@end group
09add9c2 3536@end example
bfa74976 3537
09add9c2
AD
3538Flagging a non-empty rule with @code{%empty} is an error. If run with
3539@option{-Wempty-rule}, @command{bison} will report empty rules without
3540@code{%empty}. Using @code{%empty} enables this warning, unless
3541@option{-Wno-empty-rule} was specified.
3542
3543The @code{%empty} directive is a Bison extension, it does not work with
3544Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3545comment @samp{/* empty */} in each rule with no components:
3546
3547@example
bfa74976 3548@group
09add9c2
AD
3549semicolon.opt:
3550 /* empty */
3551| ";"
5e9b6624 3552;
bfa74976
RS
3553@end group
3554@end example
3555
bfa74976 3556
342b8b6e 3557@node Recursion
09add9c2 3558@subsection Recursive Rules
bfa74976 3559@cindex recursive rule
09add9c2 3560@cindex rule, recursive
bfa74976 3561
f8e1c9e5
AD
3562A rule is called @dfn{recursive} when its @var{result} nonterminal
3563appears also on its right hand side. Nearly all Bison grammars need to
3564use recursion, because that is the only way to define a sequence of any
3565number of a particular thing. Consider this recursive definition of a
9ecbd125 3566comma-separated sequence of one or more expressions:
bfa74976
RS
3567
3568@example
3569@group
5e9b6624
AD
3570expseq1:
3571 exp
3572| expseq1 ',' exp
3573;
bfa74976
RS
3574@end group
3575@end example
3576
3577@cindex left recursion
3578@cindex right recursion
3579@noindent
3580Since the recursive use of @code{expseq1} is the leftmost symbol in the
3581right hand side, we call this @dfn{left recursion}. By contrast, here
3582the same construct is defined using @dfn{right recursion}:
3583
3584@example
3585@group
5e9b6624
AD
3586expseq1:
3587 exp
3588| exp ',' expseq1
3589;
bfa74976
RS
3590@end group
3591@end example
3592
3593@noindent
ec3bc396
AD
3594Any kind of sequence can be defined using either left recursion or right
3595recursion, but you should always use left recursion, because it can
3596parse a sequence of any number of elements with bounded stack space.
3597Right recursion uses up space on the Bison stack in proportion to the
3598number of elements in the sequence, because all the elements must be
3599shifted onto the stack before the rule can be applied even once.
3600@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3601of this.
bfa74976
RS
3602
3603@cindex mutual recursion
3604@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3605rule does not appear directly on its right hand side, but does appear
3606in rules for other nonterminals which do appear on its right hand
13863333 3607side.
bfa74976
RS
3608
3609For example:
3610
3611@example
3612@group
5e9b6624
AD
3613expr:
3614 primary
3615| primary '+' primary
3616;
bfa74976
RS
3617@end group
3618
3619@group
5e9b6624
AD
3620primary:
3621 constant
3622| '(' expr ')'
3623;
bfa74976
RS
3624@end group
3625@end example
3626
3627@noindent
3628defines two mutually-recursive nonterminals, since each refers to the
3629other.
3630
342b8b6e 3631@node Semantics
bfa74976
RS
3632@section Defining Language Semantics
3633@cindex defining language semantics
13863333 3634@cindex language semantics, defining
bfa74976
RS
3635
3636The grammar rules for a language determine only the syntax. The semantics
3637are determined by the semantic values associated with various tokens and
3638groupings, and by the actions taken when various groupings are recognized.
3639
3640For example, the calculator calculates properly because the value
3641associated with each expression is the proper number; it adds properly
3642because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3643the numbers associated with @var{x} and @var{y}.
3644
3645@menu
3646* Value Type:: Specifying one data type for all semantic values.
3647* Multiple Types:: Specifying several alternative data types.
90b89dad 3648* Type Generation:: Generating the semantic value type.
e4d49586
AD
3649* Union Decl:: Declaring the set of all semantic value types.
3650* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
3651* Actions:: An action is the semantic definition of a grammar rule.
3652* Action Types:: Specifying data types for actions to operate on.
3653* Mid-Rule Actions:: Most actions go at the end of a rule.
3654 This says when, why and how to use the exceptional
3655 action in the middle of a rule.
3656@end menu
3657
342b8b6e 3658@node Value Type
bfa74976
RS
3659@subsection Data Types of Semantic Values
3660@cindex semantic value type
3661@cindex value type, semantic
3662@cindex data types of semantic values
3663@cindex default data type
3664
3665In a simple program it may be sufficient to use the same data type for
3666the semantic values of all language constructs. This was true in the
8a4281b9 3667RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3668Notation Calculator}).
bfa74976 3669
ddc8ede1
PE
3670Bison normally uses the type @code{int} for semantic values if your
3671program uses the same data type for all language constructs. To
21e3a2b5
AD
3672specify some other type, define the @code{%define} variable
3673@code{api.value.type} like this:
3674
3675@example
435575cb 3676%define api.value.type @{double@}
21e3a2b5
AD
3677@end example
3678
3679@noindent
3680or
3681
3682@example
435575cb 3683%define api.value.type @{struct semantic_type@}
21e3a2b5
AD
3684@end example
3685
3686The value of @code{api.value.type} should be a type name that does not
3687contain parentheses or square brackets.
3688
3689Alternatively, instead of relying of Bison's @code{%define} support, you may
3690rely on the C/C++ preprocessor and define @code{YYSTYPE} as a macro, like
3691this:
bfa74976
RS
3692
3693@example
3694#define YYSTYPE double
3695@end example
3696
3697@noindent
342b8b6e 3698This macro definition must go in the prologue of the grammar file
21e3a2b5
AD
3699(@pxref{Grammar Outline, ,Outline of a Bison Grammar}). If compatibility
3700with POSIX Yacc matters to you, use this. Note however that Bison cannot
3701know @code{YYSTYPE}'s value, not even whether it is defined, so there are
3702services it cannot provide. Besides this works only for languages that have
3703a preprocessor.
bfa74976 3704
342b8b6e 3705@node Multiple Types
bfa74976
RS
3706@subsection More Than One Value Type
3707
3708In most programs, you will need different data types for different kinds
3709of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3710@code{int} or @code{long int}, while a string constant needs type
3711@code{char *}, and an identifier might need a pointer to an entry in the
3712symbol table.
bfa74976
RS
3713
3714To use more than one data type for semantic values in one parser, Bison
3715requires you to do two things:
3716
3717@itemize @bullet
3718@item
e4d49586
AD
3719Specify the entire collection of possible data types. There are several
3720options:
3721@itemize @bullet
90b89dad
AD
3722@item
3723let Bison compute the union type from the tags you assign to symbols;
3724
e4d49586
AD
3725@item
3726use the @code{%union} Bison declaration (@pxref{Union Decl, ,The Union
3727Declaration});
3728
3729@item
3730define the @code{%define} variable @code{api.value.type} to be a union type
3731whose members are the type tags (@pxref{Structured Value Type,, Providing a
3732Structured Semantic Value Type});
3733
3734@item
3735use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
3736union type whose member names are the type tags.
3737@end itemize
bfa74976
RS
3738
3739@item
14ded682
AD
3740Choose one of those types for each symbol (terminal or nonterminal) for
3741which semantic values are used. This is done for tokens with the
3742@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3743and for groupings with the @code{%type} Bison declaration (@pxref{Type
3744Decl, ,Nonterminal Symbols}).
bfa74976
RS
3745@end itemize
3746
90b89dad
AD
3747@node Type Generation
3748@subsection Generating the Semantic Value Type
3749@cindex declaring value types
3750@cindex value types, declaring
3751@findex %define api.value.type union
3752
3753The special value @code{union} of the @code{%define} variable
3754@code{api.value.type} instructs Bison that the tags used with the
3755@code{%token} and @code{%type} directives are genuine types, not names of
3756members of @code{YYSTYPE}.
3757
3758For example:
3759
3760@example
3761%define api.value.type union
3762%token <int> INT "integer"
3763%token <int> 'n'
3764%type <int> expr
3765%token <char const *> ID "identifier"
3766@end example
3767
3768@noindent
3769generates an appropriate value of @code{YYSTYPE} to support each symbol
3770type. The name of the member of @code{YYSTYPE} for tokens than have a
3771declared identifier @var{id} (such as @code{INT} and @code{ID} above, but
3772not @code{'n'}) is @code{@var{id}}. The other symbols have unspecified
3773names on which you should not depend; instead, relying on C casts to access
3774the semantic value with the appropriate type:
3775
3776@example
3777/* For an "integer". */
3778yylval.INT = 42;
3779return INT;
3780
3781/* For an 'n', also declared as int. */
3782*((int*)&yylval) = 42;
3783return 'n';
3784
3785/* For an "identifier". */
3786yylval.ID = "42";
3787return ID;
3788@end example
3789
3790If the @code{%define} variable @code{api.token.prefix} is defined
3791(@pxref{%define Summary,,api.token.prefix}), then it is also used to prefix
3792the union member names. For instance, with @samp{%define api.token.prefix
630a0218 3793@{TOK_@}}:
90b89dad
AD
3794
3795@example
3796/* For an "integer". */
3797yylval.TOK_INT = 42;
3798return TOK_INT;
3799@end example
3800
1fa19a76
AD
3801This Bison extension cannot work if @code{%yacc} (or
3802@option{-y}/@option{--yacc}) is enabled, as POSIX mandates that Yacc
3803generate tokens as macros (e.g., @samp{#define INT 258}, or @samp{#define
3804TOK_INT 258}).
3805
90b89dad
AD
3806This feature is new, and user feedback would be most welcome.
3807
3808A similar feature is provided for C++ that in addition overcomes C++
3809limitations (that forbid non-trivial objects to be part of a @code{union}):
3810@samp{%define api.value.type variant}, see @ref{C++ Variants}.
3811
e4d49586
AD
3812@node Union Decl
3813@subsection The Union Declaration
3814@cindex declaring value types
3815@cindex value types, declaring
3816@findex %union
3817
3818The @code{%union} declaration specifies the entire collection of possible
3819data types for semantic values. The keyword @code{%union} is followed by
3820braced code containing the same thing that goes inside a @code{union} in C@.
3821
3822For example:
3823
3824@example
3825@group
3826%union @{
3827 double val;
3828 symrec *tptr;
3829@}
3830@end group
3831@end example
3832
3833@noindent
3834This says that the two alternative types are @code{double} and @code{symrec
3835*}. They are given names @code{val} and @code{tptr}; these names are used
3836in the @code{%token} and @code{%type} declarations to pick one of the types
3837for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3838
3839As an extension to POSIX, a tag is allowed after the @code{%union}. For
3840example:
3841
3842@example
3843@group
3844%union value @{
3845 double val;
3846 symrec *tptr;
3847@}
3848@end group
3849@end example
3850
3851@noindent
3852specifies the union tag @code{value}, so the corresponding C type is
3853@code{union value}. If you do not specify a tag, it defaults to
827bc59c 3854@code{YYSTYPE} (@pxref{%define Summary,,api.value.union.name}).
e4d49586
AD
3855
3856As another extension to POSIX, you may specify multiple @code{%union}
3857declarations; their contents are concatenated. However, only the first
3858@code{%union} declaration can specify a tag.
3859
3860Note that, unlike making a @code{union} declaration in C, you need not write
3861a semicolon after the closing brace.
3862
3863@node Structured Value Type
3864@subsection Providing a Structured Semantic Value Type
3865@cindex declaring value types
3866@cindex value types, declaring
3867@findex %union
3868
3869Instead of @code{%union}, you can define and use your own union type
3870@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
3871tag. For example, you can put the following into a header file
3872@file{parser.h}:
3873
3874@example
3875@group
3876union YYSTYPE @{
3877 double val;
3878 symrec *tptr;
3879@};
3880@end group
3881@end example
3882
3883@noindent
3884and then your grammar can use the following instead of @code{%union}:
3885
3886@example
3887@group
3888%@{
3889#include "parser.h"
3890%@}
aba47f56 3891%define api.value.type @{union YYSTYPE@}
e4d49586
AD
3892%type <val> expr
3893%token <tptr> ID
3894@end group
3895@end example
3896
3897Actually, you may also provide a @code{struct} rather that a @code{union},
3898which may be handy if you want to track information for every symbol (such
3899as preceding comments).
3900
3901The type you provide may even be structured and include pointers, in which
3902case the type tags you provide may be composite, with @samp{.} and @samp{->}
3903operators.
3904
342b8b6e 3905@node Actions
bfa74976
RS
3906@subsection Actions
3907@cindex action
3908@vindex $$
3909@vindex $@var{n}
d013372c
AR
3910@vindex $@var{name}
3911@vindex $[@var{name}]
bfa74976
RS
3912
3913An action accompanies a syntactic rule and contains C code to be executed
3914each time an instance of that rule is recognized. The task of most actions
3915is to compute a semantic value for the grouping built by the rule from the
3916semantic values associated with tokens or smaller groupings.
3917
287c78f6
PE
3918An action consists of braced code containing C statements, and can be
3919placed at any position in the rule;
704a47c4
AD
3920it is executed at that position. Most rules have just one action at the
3921end of the rule, following all the components. Actions in the middle of
3922a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3923Actions, ,Actions in Mid-Rule}).
bfa74976 3924
ff7571c0
JD
3925The C code in an action can refer to the semantic values of the
3926components matched by the rule with the construct @code{$@var{n}},
3927which stands for the value of the @var{n}th component. The semantic
3928value for the grouping being constructed is @code{$$}. In addition,
3929the semantic values of symbols can be accessed with the named
3930references construct @code{$@var{name}} or @code{$[@var{name}]}.
3931Bison translates both of these constructs into expressions of the
3932appropriate type when it copies the actions into the parser
3933implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3934for the current grouping) is translated to a modifiable lvalue, so it
3935can be assigned to.
bfa74976
RS
3936
3937Here is a typical example:
3938
3939@example
3940@group
5e9b6624
AD
3941exp:
3942@dots{}
3943| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3944@end group
3945@end example
3946
d013372c
AR
3947Or, in terms of named references:
3948
3949@example
3950@group
5e9b6624
AD
3951exp[result]:
3952@dots{}
3953| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3954@end group
3955@end example
3956
bfa74976
RS
3957@noindent
3958This rule constructs an @code{exp} from two smaller @code{exp} groupings
3959connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3960(@code{$left} and @code{$right})
bfa74976
RS
3961refer to the semantic values of the two component @code{exp} groupings,
3962which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3963The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3964semantic value of
bfa74976
RS
3965the addition-expression just recognized by the rule. If there were a
3966useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3967referred to as @code{$2}.
bfa74976 3968
a7b15ab9
JD
3969@xref{Named References}, for more information about using the named
3970references construct.
d013372c 3971
3ded9a63
AD
3972Note that the vertical-bar character @samp{|} is really a rule
3973separator, and actions are attached to a single rule. This is a
3974difference with tools like Flex, for which @samp{|} stands for either
3975``or'', or ``the same action as that of the next rule''. In the
3976following example, the action is triggered only when @samp{b} is found:
3977
3978@example
3ded9a63 3979a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3980@end example
3981
bfa74976
RS
3982@cindex default action
3983If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3984@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3985becomes the value of the whole rule. Of course, the default action is
3986valid only if the two data types match. There is no meaningful default
3987action for an empty rule; every empty rule must have an explicit action
3988unless the rule's value does not matter.
bfa74976
RS
3989
3990@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3991to tokens and groupings on the stack @emph{before} those that match the
3992current rule. This is a very risky practice, and to use it reliably
3993you must be certain of the context in which the rule is applied. Here
3994is a case in which you can use this reliably:
3995
3996@example
3997@group
5e9b6624
AD
3998foo:
3999 expr bar '+' expr @{ @dots{} @}
4000| expr bar '-' expr @{ @dots{} @}
4001;
bfa74976
RS
4002@end group
4003
4004@group
5e9b6624 4005bar:
6240346a 4006 %empty @{ previous_expr = $0; @}
5e9b6624 4007;
bfa74976
RS
4008@end group
4009@end example
4010
4011As long as @code{bar} is used only in the fashion shown here, @code{$0}
4012always refers to the @code{expr} which precedes @code{bar} in the
4013definition of @code{foo}.
4014
32c29292 4015@vindex yylval
742e4900 4016It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
4017any, from a semantic action.
4018This semantic value is stored in @code{yylval}.
4019@xref{Action Features, ,Special Features for Use in Actions}.
4020
342b8b6e 4021@node Action Types
bfa74976
RS
4022@subsection Data Types of Values in Actions
4023@cindex action data types
4024@cindex data types in actions
4025
4026If you have chosen a single data type for semantic values, the @code{$$}
4027and @code{$@var{n}} constructs always have that data type.
4028
4029If you have used @code{%union} to specify a variety of data types, then you
4030must declare a choice among these types for each terminal or nonterminal
4031symbol that can have a semantic value. Then each time you use @code{$$} or
4032@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 4033in the rule. In this example,
bfa74976
RS
4034
4035@example
4036@group
5e9b6624
AD
4037exp:
4038 @dots{}
4039| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
4040@end group
4041@end example
4042
4043@noindent
4044@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
4045have the data type declared for the nonterminal symbol @code{exp}. If
4046@code{$2} were used, it would have the data type declared for the
e0c471a9 4047terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
4048
4049Alternatively, you can specify the data type when you refer to the value,
4050by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
4051reference. For example, if you have defined types as shown here:
4052
4053@example
4054@group
4055%union @{
4056 int itype;
4057 double dtype;
4058@}
4059@end group
4060@end example
4061
4062@noindent
4063then you can write @code{$<itype>1} to refer to the first subunit of the
4064rule as an integer, or @code{$<dtype>1} to refer to it as a double.
4065
342b8b6e 4066@node Mid-Rule Actions
bfa74976
RS
4067@subsection Actions in Mid-Rule
4068@cindex actions in mid-rule
4069@cindex mid-rule actions
4070
4071Occasionally it is useful to put an action in the middle of a rule.
4072These actions are written just like usual end-of-rule actions, but they
4073are executed before the parser even recognizes the following components.
4074
be22823e
AD
4075@menu
4076* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
4077* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
4078* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
4079@end menu
4080
4081@node Using Mid-Rule Actions
4082@subsubsection Using Mid-Rule Actions
4083
bfa74976
RS
4084A mid-rule action may refer to the components preceding it using
4085@code{$@var{n}}, but it may not refer to subsequent components because
4086it is run before they are parsed.
4087
4088The mid-rule action itself counts as one of the components of the rule.
4089This makes a difference when there is another action later in the same rule
4090(and usually there is another at the end): you have to count the actions
4091along with the symbols when working out which number @var{n} to use in
4092@code{$@var{n}}.
4093
4094The mid-rule action can also have a semantic value. The action can set
4095its value with an assignment to @code{$$}, and actions later in the rule
4096can refer to the value using @code{$@var{n}}. Since there is no symbol
4097to name the action, there is no way to declare a data type for the value
fdc6758b
MA
4098in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
4099specify a data type each time you refer to this value.
bfa74976
RS
4100
4101There is no way to set the value of the entire rule with a mid-rule
4102action, because assignments to @code{$$} do not have that effect. The
4103only way to set the value for the entire rule is with an ordinary action
4104at the end of the rule.
4105
4106Here is an example from a hypothetical compiler, handling a @code{let}
4107statement that looks like @samp{let (@var{variable}) @var{statement}} and
4108serves to create a variable named @var{variable} temporarily for the
4109duration of @var{statement}. To parse this construct, we must put
4110@var{variable} into the symbol table while @var{statement} is parsed, then
4111remove it afterward. Here is how it is done:
4112
4113@example
4114@group
5e9b6624 4115stmt:
c949ada3
AD
4116 "let" '(' var ')'
4117 @{
4118 $<context>$ = push_context ();
4119 declare_variable ($3);
4120 @}
5e9b6624 4121 stmt
c949ada3
AD
4122 @{
4123 $$ = $6;
4124 pop_context ($<context>5);
4125 @}
bfa74976
RS
4126@end group
4127@end example
4128
4129@noindent
4130As soon as @samp{let (@var{variable})} has been recognized, the first
4131action is run. It saves a copy of the current semantic context (the
4132list of accessible variables) as its semantic value, using alternative
4133@code{context} in the data-type union. Then it calls
4134@code{declare_variable} to add the new variable to that list. Once the
4135first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
4136parsed.
4137
4138Note that the mid-rule action is component number 5, so the @samp{stmt} is
4139component number 6. Named references can be used to improve the readability
4140and maintainability (@pxref{Named References}):
4141
4142@example
4143@group
4144stmt:
4145 "let" '(' var ')'
4146 @{
4147 $<context>let = push_context ();
4148 declare_variable ($3);
4149 @}[let]
4150 stmt
4151 @{
4152 $$ = $6;
4153 pop_context ($<context>let);
4154 @}
4155@end group
4156@end example
bfa74976
RS
4157
4158After the embedded statement is parsed, its semantic value becomes the
4159value of the entire @code{let}-statement. Then the semantic value from the
4160earlier action is used to restore the prior list of variables. This
4161removes the temporary @code{let}-variable from the list so that it won't
4162appear to exist while the rest of the program is parsed.
4163
841a7737
JD
4164@findex %destructor
4165@cindex discarded symbols, mid-rule actions
4166@cindex error recovery, mid-rule actions
4167In the above example, if the parser initiates error recovery (@pxref{Error
4168Recovery}) while parsing the tokens in the embedded statement @code{stmt},
4169it might discard the previous semantic context @code{$<context>5} without
4170restoring it.
4171Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
4172Discarded Symbols}).
ec5479ce
JD
4173However, Bison currently provides no means to declare a destructor specific to
4174a particular mid-rule action's semantic value.
841a7737
JD
4175
4176One solution is to bury the mid-rule action inside a nonterminal symbol and to
4177declare a destructor for that symbol:
4178
4179@example
4180@group
4181%type <context> let
4182%destructor @{ pop_context ($$); @} let
09add9c2 4183@end group
841a7737
JD
4184
4185%%
4186
09add9c2 4187@group
5e9b6624
AD
4188stmt:
4189 let stmt
4190 @{
4191 $$ = $2;
be22823e 4192 pop_context ($let);
5e9b6624 4193 @};
09add9c2 4194@end group
841a7737 4195
09add9c2 4196@group
5e9b6624 4197let:
c949ada3 4198 "let" '(' var ')'
5e9b6624 4199 @{
be22823e 4200 $let = push_context ();
5e9b6624
AD
4201 declare_variable ($3);
4202 @};
841a7737
JD
4203
4204@end group
4205@end example
4206
4207@noindent
4208Note that the action is now at the end of its rule.
4209Any mid-rule action can be converted to an end-of-rule action in this way, and
4210this is what Bison actually does to implement mid-rule actions.
4211
be22823e
AD
4212@node Mid-Rule Action Translation
4213@subsubsection Mid-Rule Action Translation
4214@vindex $@@@var{n}
4215@vindex @@@var{n}
4216
4217As hinted earlier, mid-rule actions are actually transformed into regular
4218rules and actions. The various reports generated by Bison (textual,
4219graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4220reveal this translation, best explained by means of an example. The
4221following rule:
4222
4223@example
4224exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4225@end example
4226
4227@noindent
4228is translated into:
4229
4230@example
6240346a
AD
4231$@@1: %empty @{ a(); @};
4232$@@2: %empty @{ c(); @};
4233$@@3: %empty @{ d(); @};
be22823e
AD
4234exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4235@end example
4236
4237@noindent
4238with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4239
4240A mid-rule action is expected to generate a value if it uses @code{$$}, or
4241the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4242action. In that case its nonterminal is rather named @code{@@@var{n}}:
4243
4244@example
4245exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4246@end example
4247
4248@noindent
4249is translated into
4250
4251@example
6240346a
AD
4252@@1: %empty @{ a(); @};
4253@@2: %empty @{ $$ = c(); @};
4254$@@3: %empty @{ d(); @};
be22823e
AD
4255exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4256@end example
4257
4258There are probably two errors in the above example: the first mid-rule
4259action does not generate a value (it does not use @code{$$} although the
4260final action uses it), and the value of the second one is not used (the
4261final action does not use @code{$3}). Bison reports these errors when the
4262@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4263Bison}):
4264
4265@example
4266$ bison -fcaret -Wmidrule-value mid.y
4267@group
4268mid.y:2.6-13: warning: unset value: $$
4269 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4270 ^^^^^^^^
4271@end group
4272@group
4273mid.y:2.19-31: warning: unused value: $3
4274 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4275 ^^^^^^^^^^^^^
4276@end group
4277@end example
4278
4279
4280@node Mid-Rule Conflicts
4281@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4282Taking action before a rule is completely recognized often leads to
4283conflicts since the parser must commit to a parse in order to execute the
4284action. For example, the following two rules, without mid-rule actions,
4285can coexist in a working parser because the parser can shift the open-brace
4286token and look at what follows before deciding whether there is a
4287declaration or not:
4288
4289@example
4290@group
5e9b6624
AD
4291compound:
4292 '@{' declarations statements '@}'
4293| '@{' statements '@}'
4294;
bfa74976
RS
4295@end group
4296@end example
4297
4298@noindent
4299But when we add a mid-rule action as follows, the rules become nonfunctional:
4300
4301@example
4302@group
5e9b6624
AD
4303compound:
4304 @{ prepare_for_local_variables (); @}
4305 '@{' declarations statements '@}'
bfa74976
RS
4306@end group
4307@group
5e9b6624
AD
4308| '@{' statements '@}'
4309;
bfa74976
RS
4310@end group
4311@end example
4312
4313@noindent
4314Now the parser is forced to decide whether to run the mid-rule action
4315when it has read no farther than the open-brace. In other words, it
4316must commit to using one rule or the other, without sufficient
4317information to do it correctly. (The open-brace token is what is called
742e4900
JD
4318the @dfn{lookahead} token at this time, since the parser is still
4319deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4320
4321You might think that you could correct the problem by putting identical
4322actions into the two rules, like this:
4323
4324@example
4325@group
5e9b6624
AD
4326compound:
4327 @{ prepare_for_local_variables (); @}
4328 '@{' declarations statements '@}'
4329| @{ prepare_for_local_variables (); @}
4330 '@{' statements '@}'
4331;
bfa74976
RS
4332@end group
4333@end example
4334
4335@noindent
4336But this does not help, because Bison does not realize that the two actions
4337are identical. (Bison never tries to understand the C code in an action.)
4338
4339If the grammar is such that a declaration can be distinguished from a
4340statement by the first token (which is true in C), then one solution which
4341does work is to put the action after the open-brace, like this:
4342
4343@example
4344@group
5e9b6624
AD
4345compound:
4346 '@{' @{ prepare_for_local_variables (); @}
4347 declarations statements '@}'
4348| '@{' statements '@}'
4349;
bfa74976
RS
4350@end group
4351@end example
4352
4353@noindent
4354Now the first token of the following declaration or statement,
4355which would in any case tell Bison which rule to use, can still do so.
4356
4357Another solution is to bury the action inside a nonterminal symbol which
4358serves as a subroutine:
4359
4360@example
4361@group
5e9b6624 4362subroutine:
6240346a 4363 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4364;
bfa74976
RS
4365@end group
4366
4367@group
5e9b6624
AD
4368compound:
4369 subroutine '@{' declarations statements '@}'
4370| subroutine '@{' statements '@}'
4371;
bfa74976
RS
4372@end group
4373@end example
4374
4375@noindent
4376Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4377deciding which rule for @code{compound} it will eventually use.
bfa74976 4378
be22823e 4379
303834cc 4380@node Tracking Locations
847bf1f5
AD
4381@section Tracking Locations
4382@cindex location
95923bd6
AD
4383@cindex textual location
4384@cindex location, textual
847bf1f5
AD
4385
4386Though grammar rules and semantic actions are enough to write a fully
72d2299c 4387functional parser, it can be useful to process some additional information,
3e259915
MA
4388especially symbol locations.
4389
704a47c4
AD
4390The way locations are handled is defined by providing a data type, and
4391actions to take when rules are matched.
847bf1f5
AD
4392
4393@menu
4394* Location Type:: Specifying a data type for locations.
4395* Actions and Locations:: Using locations in actions.
4396* Location Default Action:: Defining a general way to compute locations.
4397@end menu
4398
342b8b6e 4399@node Location Type
847bf1f5
AD
4400@subsection Data Type of Locations
4401@cindex data type of locations
4402@cindex default location type
4403
4404Defining a data type for locations is much simpler than for semantic values,
4405since all tokens and groupings always use the same type.
4406
50cce58e
PE
4407You can specify the type of locations by defining a macro called
4408@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4409defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4410When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4411four members:
4412
4413@example
6273355b 4414typedef struct YYLTYPE
847bf1f5
AD
4415@{
4416 int first_line;
4417 int first_column;
4418 int last_line;
4419 int last_column;
6273355b 4420@} YYLTYPE;
847bf1f5
AD
4421@end example
4422
d59e456d
AD
4423When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4424initializes all these fields to 1 for @code{yylloc}. To initialize
4425@code{yylloc} with a custom location type (or to chose a different
4426initialization), use the @code{%initial-action} directive. @xref{Initial
4427Action Decl, , Performing Actions before Parsing}.
cd48d21d 4428
342b8b6e 4429@node Actions and Locations
847bf1f5
AD
4430@subsection Actions and Locations
4431@cindex location actions
4432@cindex actions, location
4433@vindex @@$
4434@vindex @@@var{n}
d013372c
AR
4435@vindex @@@var{name}
4436@vindex @@[@var{name}]
847bf1f5
AD
4437
4438Actions are not only useful for defining language semantics, but also for
4439describing the behavior of the output parser with locations.
4440
4441The most obvious way for building locations of syntactic groupings is very
72d2299c 4442similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4443constructs can be used to access the locations of the elements being matched.
4444The location of the @var{n}th component of the right hand side is
4445@code{@@@var{n}}, while the location of the left hand side grouping is
4446@code{@@$}.
4447
d013372c
AR
4448In addition, the named references construct @code{@@@var{name}} and
4449@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4450@xref{Named References}, for more information about using the named
4451references construct.
d013372c 4452
3e259915 4453Here is a basic example using the default data type for locations:
847bf1f5
AD
4454
4455@example
4456@group
5e9b6624
AD
4457exp:
4458 @dots{}
4459| exp '/' exp
4460 @{
4461 @@$.first_column = @@1.first_column;
4462 @@$.first_line = @@1.first_line;
4463 @@$.last_column = @@3.last_column;
4464 @@$.last_line = @@3.last_line;
4465 if ($3)
4466 $$ = $1 / $3;
4467 else
4468 @{
4469 $$ = 1;
71846502 4470 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4471 @@3.first_line, @@3.first_column,
4472 @@3.last_line, @@3.last_column);
4473 @}
4474 @}
847bf1f5
AD
4475@end group
4476@end example
4477
3e259915 4478As for semantic values, there is a default action for locations that is
72d2299c 4479run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4480beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4481last symbol.
3e259915 4482
72d2299c 4483With this default action, the location tracking can be fully automatic. The
3e259915
MA
4484example above simply rewrites this way:
4485
4486@example
4487@group
5e9b6624
AD
4488exp:
4489 @dots{}
4490| exp '/' exp
4491 @{
4492 if ($3)
4493 $$ = $1 / $3;
4494 else
4495 @{
4496 $$ = 1;
71846502 4497 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4498 @@3.first_line, @@3.first_column,
4499 @@3.last_line, @@3.last_column);
4500 @}
4501 @}
3e259915
MA
4502@end group
4503@end example
847bf1f5 4504
32c29292 4505@vindex yylloc
742e4900 4506It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4507from a semantic action.
4508This location is stored in @code{yylloc}.
4509@xref{Action Features, ,Special Features for Use in Actions}.
4510
342b8b6e 4511@node Location Default Action
847bf1f5
AD
4512@subsection Default Action for Locations
4513@vindex YYLLOC_DEFAULT
8a4281b9 4514@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4515
72d2299c 4516Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4517locations are much more general than semantic values, there is room in
4518the output parser to redefine the default action to take for each
72d2299c 4519rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4520matched, before the associated action is run. It is also invoked
4521while processing a syntax error, to compute the error's location.
8a4281b9 4522Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4523parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4524of that ambiguity.
847bf1f5 4525
3e259915 4526Most of the time, this macro is general enough to suppress location
79282c6c 4527dedicated code from semantic actions.
847bf1f5 4528
72d2299c 4529The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4530the location of the grouping (the result of the computation). When a
766de5eb 4531rule is matched, the second parameter identifies locations of
96b93a3d 4532all right hand side elements of the rule being matched, and the third
8710fc41 4533parameter is the size of the rule's right hand side.
8a4281b9 4534When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4535right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4536When processing a syntax error, the second parameter identifies locations
4537of the symbols that were discarded during error processing, and the third
96b93a3d 4538parameter is the number of discarded symbols.
847bf1f5 4539
766de5eb 4540By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4541
c93f22fc
AD
4542@example
4543@group
4544# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4545do \
4546 if (N) \
4547 @{ \
4548 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4549 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4550 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4551 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4552 @} \
4553 else \
4554 @{ \
4555 (Cur).first_line = (Cur).last_line = \
4556 YYRHSLOC(Rhs, 0).last_line; \
4557 (Cur).first_column = (Cur).last_column = \
4558 YYRHSLOC(Rhs, 0).last_column; \
4559 @} \
4560while (0)
4561@end group
4562@end example
676385e2 4563
aaaa2aae 4564@noindent
766de5eb
PE
4565where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4566in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4567just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4568
3e259915 4569When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4570
3e259915 4571@itemize @bullet
79282c6c 4572@item
72d2299c 4573All arguments are free of side-effects. However, only the first one (the
3e259915 4574result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4575
3e259915 4576@item
766de5eb
PE
4577For consistency with semantic actions, valid indexes within the
4578right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4579valid index, and it refers to the symbol just before the reduction.
4580During error processing @var{n} is always positive.
0ae99356
PE
4581
4582@item
4583Your macro should parenthesize its arguments, if need be, since the
4584actual arguments may not be surrounded by parentheses. Also, your
4585macro should expand to something that can be used as a single
4586statement when it is followed by a semicolon.
3e259915 4587@end itemize
847bf1f5 4588
378e917c 4589@node Named References
a7b15ab9 4590@section Named References
378e917c
JD
4591@cindex named references
4592
a40e77eb
JD
4593As described in the preceding sections, the traditional way to refer to any
4594semantic value or location is a @dfn{positional reference}, which takes the
4595form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4596such a reference is not very descriptive. Moreover, if you later decide to
4597insert or remove symbols in the right-hand side of a grammar rule, the need
4598to renumber such references can be tedious and error-prone.
4599
4600To avoid these issues, you can also refer to a semantic value or location
4601using a @dfn{named reference}. First of all, original symbol names may be
4602used as named references. For example:
378e917c
JD
4603
4604@example
4605@group
4606invocation: op '(' args ')'
4607 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4608@end group
4609@end example
4610
4611@noindent
a40e77eb 4612Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4613
4614@example
4615@group
4616invocation: op '(' args ')'
4617 @{ $$ = new_invocation ($op, $args, @@$); @}
4618@end group
4619@end example
4620
4621@noindent
4622However, sometimes regular symbol names are not sufficient due to
4623ambiguities:
4624
4625@example
4626@group
4627exp: exp '/' exp
4628 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4629
4630exp: exp '/' exp
4631 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4632
4633exp: exp '/' exp
4634 @{ $$ = $1 / $3; @} // No error.
4635@end group
4636@end example
4637
4638@noindent
4639When ambiguity occurs, explicitly declared names may be used for values and
4640locations. Explicit names are declared as a bracketed name after a symbol
4641appearance in rule definitions. For example:
4642@example
4643@group
4644exp[result]: exp[left] '/' exp[right]
4645 @{ $result = $left / $right; @}
4646@end group
4647@end example
4648
4649@noindent
a7b15ab9
JD
4650In order to access a semantic value generated by a mid-rule action, an
4651explicit name may also be declared by putting a bracketed name after the
4652closing brace of the mid-rule action code:
378e917c
JD
4653@example
4654@group
4655exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4656 @{ $res = $left + $right; @}
4657@end group
4658@end example
4659
4660@noindent
4661
4662In references, in order to specify names containing dots and dashes, an explicit
4663bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4664@example
4665@group
762caaf6 4666if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4667 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4668@end group
4669@end example
4670
4671It often happens that named references are followed by a dot, dash or other
4672C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4673@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4674@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4675value. In order to force Bison to recognize @samp{name.suffix} in its
4676entirety as the name of a semantic value, the bracketed syntax
4677@samp{$[name.suffix]} must be used.
4678
4679The named references feature is experimental. More user feedback will help
4680to stabilize it.
378e917c 4681
342b8b6e 4682@node Declarations
bfa74976
RS
4683@section Bison Declarations
4684@cindex declarations, Bison
4685@cindex Bison declarations
4686
4687The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4688used in formulating the grammar and the data types of semantic values.
4689@xref{Symbols}.
4690
4691All token type names (but not single-character literal tokens such as
4692@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4693declared if you need to specify which data type to use for the semantic
4694value (@pxref{Multiple Types, ,More Than One Value Type}).
4695
ff7571c0
JD
4696The first rule in the grammar file also specifies the start symbol, by
4697default. If you want some other symbol to be the start symbol, you
4698must declare it explicitly (@pxref{Language and Grammar, ,Languages
4699and Context-Free Grammars}).
bfa74976
RS
4700
4701@menu
b50d2359 4702* Require Decl:: Requiring a Bison version.
bfa74976
RS
4703* Token Decl:: Declaring terminal symbols.
4704* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 4705* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4706* Initial Action Decl:: Code run before parsing starts.
72f889cc 4707* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4708* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4709* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4710* Start Decl:: Specifying the start symbol.
4711* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4712* Push Decl:: Requesting a push parser.
bfa74976 4713* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4714* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4715* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4716@end menu
4717
b50d2359
AD
4718@node Require Decl
4719@subsection Require a Version of Bison
4720@cindex version requirement
4721@cindex requiring a version of Bison
4722@findex %require
4723
4724You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4725the requirement is not met, @command{bison} exits with an error (exit
4726status 63).
b50d2359
AD
4727
4728@example
4729%require "@var{version}"
4730@end example
4731
342b8b6e 4732@node Token Decl
bfa74976
RS
4733@subsection Token Type Names
4734@cindex declaring token type names
4735@cindex token type names, declaring
931c7513 4736@cindex declaring literal string tokens
bfa74976
RS
4737@findex %token
4738
4739The basic way to declare a token type name (terminal symbol) is as follows:
4740
4741@example
4742%token @var{name}
4743@end example
4744
4745Bison will convert this into a @code{#define} directive in
4746the parser, so that the function @code{yylex} (if it is in this file)
4747can use the name @var{name} to stand for this token type's code.
4748
d78f0ac9
AD
4749Alternatively, you can use @code{%left}, @code{%right},
4750@code{%precedence}, or
14ded682
AD
4751@code{%nonassoc} instead of @code{%token}, if you wish to specify
4752associativity and precedence. @xref{Precedence Decl, ,Operator
4753Precedence}.
bfa74976
RS
4754
4755You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4756a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4757following the token name:
bfa74976
RS
4758
4759@example
4760%token NUM 300
1452af69 4761%token XNUM 0x12d // a GNU extension
bfa74976
RS
4762@end example
4763
4764@noindent
4765It is generally best, however, to let Bison choose the numeric codes for
4766all token types. Bison will automatically select codes that don't conflict
e966383b 4767with each other or with normal characters.
bfa74976
RS
4768
4769In the event that the stack type is a union, you must augment the
4770@code{%token} or other token declaration to include the data type
704a47c4
AD
4771alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4772Than One Value Type}).
bfa74976
RS
4773
4774For example:
4775
4776@example
4777@group
4778%union @{ /* define stack type */
4779 double val;
4780 symrec *tptr;
4781@}
4782%token <val> NUM /* define token NUM and its type */
4783@end group
4784@end example
4785
931c7513
RS
4786You can associate a literal string token with a token type name by
4787writing the literal string at the end of a @code{%token}
4788declaration which declares the name. For example:
4789
4790@example
4791%token arrow "=>"
4792@end example
4793
4794@noindent
4795For example, a grammar for the C language might specify these names with
4796equivalent literal string tokens:
4797
4798@example
4799%token <operator> OR "||"
4800%token <operator> LE 134 "<="
4801%left OR "<="
4802@end example
4803
4804@noindent
4805Once you equate the literal string and the token name, you can use them
4806interchangeably in further declarations or the grammar rules. The
4807@code{yylex} function can use the token name or the literal string to
4808obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4809Syntax error messages passed to @code{yyerror} from the parser will reference
4810the literal string instead of the token name.
4811
4812The token numbered as 0 corresponds to end of file; the following line
4813allows for nicer error messages referring to ``end of file'' instead
4814of ``$end'':
4815
4816@example
4817%token END 0 "end of file"
4818@end example
931c7513 4819
342b8b6e 4820@node Precedence Decl
bfa74976
RS
4821@subsection Operator Precedence
4822@cindex precedence declarations
4823@cindex declaring operator precedence
4824@cindex operator precedence, declaring
4825
d78f0ac9
AD
4826Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4827@code{%precedence} declaration to
bfa74976
RS
4828declare a token and specify its precedence and associativity, all at
4829once. These are called @dfn{precedence declarations}.
704a47c4
AD
4830@xref{Precedence, ,Operator Precedence}, for general information on
4831operator precedence.
bfa74976 4832
ab7f29f8 4833The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4834@code{%token}: either
4835
4836@example
4837%left @var{symbols}@dots{}
4838@end example
4839
4840@noindent
4841or
4842
4843@example
4844%left <@var{type}> @var{symbols}@dots{}
4845@end example
4846
4847And indeed any of these declarations serves the purposes of @code{%token}.
4848But in addition, they specify the associativity and relative precedence for
4849all the @var{symbols}:
4850
4851@itemize @bullet
4852@item
4853The associativity of an operator @var{op} determines how repeated uses
4854of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4855@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4856grouping @var{y} with @var{z} first. @code{%left} specifies
4857left-associativity (grouping @var{x} with @var{y} first) and
4858@code{%right} specifies right-associativity (grouping @var{y} with
4859@var{z} first). @code{%nonassoc} specifies no associativity, which
4860means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4861considered a syntax error.
4862
d78f0ac9
AD
4863@code{%precedence} gives only precedence to the @var{symbols}, and
4864defines no associativity at all. Use this to define precedence only,
4865and leave any potential conflict due to associativity enabled.
4866
bfa74976
RS
4867@item
4868The precedence of an operator determines how it nests with other operators.
4869All the tokens declared in a single precedence declaration have equal
4870precedence and nest together according to their associativity.
4871When two tokens declared in different precedence declarations associate,
4872the one declared later has the higher precedence and is grouped first.
4873@end itemize
4874
ab7f29f8
JD
4875For backward compatibility, there is a confusing difference between the
4876argument lists of @code{%token} and precedence declarations.
4877Only a @code{%token} can associate a literal string with a token type name.
4878A precedence declaration always interprets a literal string as a reference to a
4879separate token.
4880For example:
4881
4882@example
4883%left OR "<=" // Does not declare an alias.
4884%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4885@end example
4886
342b8b6e 4887@node Type Decl
bfa74976
RS
4888@subsection Nonterminal Symbols
4889@cindex declaring value types, nonterminals
4890@cindex value types, nonterminals, declaring
4891@findex %type
4892
4893@noindent
4894When you use @code{%union} to specify multiple value types, you must
4895declare the value type of each nonterminal symbol for which values are
4896used. This is done with a @code{%type} declaration, like this:
4897
4898@example
4899%type <@var{type}> @var{nonterminal}@dots{}
4900@end example
4901
4902@noindent
704a47c4
AD
4903Here @var{nonterminal} is the name of a nonterminal symbol, and
4904@var{type} is the name given in the @code{%union} to the alternative
e4d49586 4905that you want (@pxref{Union Decl, ,The Union Declaration}). You
704a47c4
AD
4906can give any number of nonterminal symbols in the same @code{%type}
4907declaration, if they have the same value type. Use spaces to separate
4908the symbol names.
bfa74976 4909
931c7513
RS
4910You can also declare the value type of a terminal symbol. To do this,
4911use the same @code{<@var{type}>} construction in a declaration for the
4912terminal symbol. All kinds of token declarations allow
4913@code{<@var{type}>}.
4914
18d192f0
AD
4915@node Initial Action Decl
4916@subsection Performing Actions before Parsing
4917@findex %initial-action
4918
4919Sometimes your parser needs to perform some initializations before
4920parsing. The @code{%initial-action} directive allows for such arbitrary
4921code.
4922
4923@deffn {Directive} %initial-action @{ @var{code} @}
4924@findex %initial-action
287c78f6 4925Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4926@code{yyparse} is called. The @var{code} may use @code{$$} (or
4927@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4928lookahead --- and the @code{%parse-param}.
18d192f0
AD
4929@end deffn
4930
451364ed
AD
4931For instance, if your locations use a file name, you may use
4932
4933@example
48b16bbc 4934%parse-param @{ char const *file_name @};
451364ed
AD
4935%initial-action
4936@{
4626a15d 4937 @@$.initialize (file_name);
451364ed
AD
4938@};
4939@end example
4940
18d192f0 4941
72f889cc
AD
4942@node Destructor Decl
4943@subsection Freeing Discarded Symbols
4944@cindex freeing discarded symbols
4945@findex %destructor
12e35840 4946@findex <*>
3ebecc24 4947@findex <>
a85284cf
AD
4948During error recovery (@pxref{Error Recovery}), symbols already pushed
4949on the stack and tokens coming from the rest of the file are discarded
4950until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4951or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4952symbols on the stack must be discarded. Even if the parser succeeds, it
4953must discard the start symbol.
258b75ca
PE
4954
4955When discarded symbols convey heap based information, this memory is
4956lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4957in traditional compilers, it is unacceptable for programs like shells or
4958protocol implementations that may parse and execute indefinitely.
258b75ca 4959
a85284cf
AD
4960The @code{%destructor} directive defines code that is called when a
4961symbol is automatically discarded.
72f889cc
AD
4962
4963@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4964@findex %destructor
287c78f6 4965Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4966@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4967designates the semantic value associated with the discarded symbol, and
4968@code{@@$} designates its location. The additional parser parameters are
4969also available (@pxref{Parser Function, , The Parser Function
4970@code{yyparse}}).
ec5479ce 4971
b2a0b7ca
JD
4972When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4973per-symbol @code{%destructor}.
4974You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4975tag among @var{symbols}.
b2a0b7ca 4976In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4977grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4978per-symbol @code{%destructor}.
4979
12e35840 4980Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4981(These default forms are experimental.
4982More user feedback will help to determine whether they should become permanent
4983features.)
3ebecc24 4984You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4985exactly one @code{%destructor} declaration in your grammar file.
4986The parser will invoke the @var{code} associated with one of these whenever it
4987discards any user-defined grammar symbol that has no per-symbol and no per-type
4988@code{%destructor}.
4989The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4990symbol for which you have formally declared a semantic type tag (@code{%type}
4991counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4992The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4993symbol that has no declared semantic type tag.
72f889cc
AD
4994@end deffn
4995
b2a0b7ca 4996@noindent
12e35840 4997For example:
72f889cc 4998
c93f22fc 4999@example
ec5479ce 5000%union @{ char *string; @}
d1a07886
AD
5001%token <string> STRING1 STRING2
5002%type <string> string1 string2
b2a0b7ca
JD
5003%union @{ char character; @}
5004%token <character> CHR
5005%type <character> chr
12e35840
JD
5006%token TAGLESS
5007
b2a0b7ca 5008%destructor @{ @} <character>
12e35840
JD
5009%destructor @{ free ($$); @} <*>
5010%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 5011%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 5012@end example
72f889cc
AD
5013
5014@noindent
b2a0b7ca
JD
5015guarantees that, when the parser discards any user-defined symbol that has a
5016semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 5017to @code{free} by default.
ec5479ce
JD
5018However, when the parser discards a @code{STRING1} or a @code{string1}, it also
5019prints its line number to @code{stdout}.
5020It performs only the second @code{%destructor} in this case, so it invokes
5021@code{free} only once.
12e35840
JD
5022Finally, the parser merely prints a message whenever it discards any symbol,
5023such as @code{TAGLESS}, that has no semantic type tag.
5024
5025A Bison-generated parser invokes the default @code{%destructor}s only for
5026user-defined as opposed to Bison-defined symbols.
5027For example, the parser will not invoke either kind of default
5028@code{%destructor} for the special Bison-defined symbols @code{$accept},
5029@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
5030none of which you can reference in your grammar.
5031It also will not invoke either for the @code{error} token (@pxref{Table of
5032Symbols, ,error}), which is always defined by Bison regardless of whether you
5033reference it in your grammar.
5034However, it may invoke one of them for the end token (token 0) if you
5035redefine it from @code{$end} to, for example, @code{END}:
3508ce36 5036
c93f22fc 5037@example
3508ce36 5038%token END 0
c93f22fc 5039@end example
3508ce36 5040
12e35840
JD
5041@cindex actions in mid-rule
5042@cindex mid-rule actions
5043Finally, Bison will never invoke a @code{%destructor} for an unreferenced
5044mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
5045That is, Bison does not consider a mid-rule to have a semantic value if you
5046do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
5047(where @var{n} is the right-hand side symbol position of the mid-rule) in
5048any later action in that rule. However, if you do reference either, the
5049Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
5050it discards the mid-rule symbol.
12e35840 5051
3508ce36
JD
5052@ignore
5053@noindent
5054In the future, it may be possible to redefine the @code{error} token as a
5055nonterminal that captures the discarded symbols.
5056In that case, the parser will invoke the default destructor for it as well.
5057@end ignore
5058
e757bb10
AD
5059@sp 1
5060
5061@cindex discarded symbols
5062@dfn{Discarded symbols} are the following:
5063
5064@itemize
5065@item
5066stacked symbols popped during the first phase of error recovery,
5067@item
5068incoming terminals during the second phase of error recovery,
5069@item
742e4900 5070the current lookahead and the entire stack (except the current
9d9b8b70 5071right-hand side symbols) when the parser returns immediately, and
258b75ca 5072@item
d3e4409a
AD
5073the current lookahead and the entire stack (including the current right-hand
5074side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
5075@code{parse},
5076@item
258b75ca 5077the start symbol, when the parser succeeds.
e757bb10
AD
5078@end itemize
5079
9d9b8b70
PE
5080The parser can @dfn{return immediately} because of an explicit call to
5081@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
5082exhaustion.
5083
29553547 5084Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
5085error via @code{YYERROR} are not discarded automatically. As a rule
5086of thumb, destructors are invoked only when user actions cannot manage
a85284cf 5087the memory.
e757bb10 5088
93c150b6
AD
5089@node Printer Decl
5090@subsection Printing Semantic Values
5091@cindex printing semantic values
5092@findex %printer
5093@findex <*>
5094@findex <>
5095When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
5096the parser reports its actions, such as reductions. When a symbol involved
5097in an action is reported, only its kind is displayed, as the parser cannot
5098know how semantic values should be formatted.
5099
5100The @code{%printer} directive defines code that is called when a symbol is
5101reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
5102Decl, , Freeing Discarded Symbols}).
5103
5104@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
5105@findex %printer
5106@vindex yyoutput
5107@c This is the same text as for %destructor.
5108Invoke the braced @var{code} whenever the parser displays one of the
5109@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
5110(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
5111@code{$<@var{tag}>$}) designates the semantic value associated with the
5112symbol, and @code{@@$} its location. The additional parser parameters are
5113also available (@pxref{Parser Function, , The Parser Function
5114@code{yyparse}}).
93c150b6
AD
5115
5116The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
5117Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
5118@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5119typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5120@samp{<>}).
5121@end deffn
5122
5123@noindent
5124For example:
5125
5126@example
5127%union @{ char *string; @}
d1a07886
AD
5128%token <string> STRING1 STRING2
5129%type <string> string1 string2
93c150b6
AD
5130%union @{ char character; @}
5131%token <character> CHR
5132%type <character> chr
5133%token TAGLESS
5134
5135%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5136%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5137%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5138%printer @{ fprintf (yyoutput, "<>"); @} <>
5139@end example
5140
5141@noindent
5142guarantees that, when the parser print any symbol that has a semantic type
5143tag other than @code{<character>}, it display the address of the semantic
5144value by default. However, when the parser displays a @code{STRING1} or a
5145@code{string1}, it formats it as a string in double quotes. It performs
5146only the second @code{%printer} in this case, so it prints only once.
5147Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
a3c3c6f2
AD
5148that has no semantic type tag. @xref{Mfcalc Traces, ,Enabling Debug Traces
5149for @code{mfcalc}}, for a complete example.
5150
93c150b6
AD
5151
5152
342b8b6e 5153@node Expect Decl
bfa74976
RS
5154@subsection Suppressing Conflict Warnings
5155@cindex suppressing conflict warnings
5156@cindex preventing warnings about conflicts
5157@cindex warnings, preventing
5158@cindex conflicts, suppressing warnings of
5159@findex %expect
d6328241 5160@findex %expect-rr
bfa74976
RS
5161
5162Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5163(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5164have harmless shift/reduce conflicts which are resolved in a predictable
5165way and would be difficult to eliminate. It is desirable to suppress
5166the warning about these conflicts unless the number of conflicts
5167changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5168
5169The declaration looks like this:
5170
5171@example
5172%expect @var{n}
5173@end example
5174
035aa4a0
PE
5175Here @var{n} is a decimal integer. The declaration says there should
5176be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5177Bison reports an error if the number of shift/reduce conflicts differs
5178from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5179
eb45ef3b 5180For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5181serious, and should be eliminated entirely. Bison will always report
8a4281b9 5182reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5183parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5184there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5185also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5186in GLR parsers, using the declaration:
d6328241
PH
5187
5188@example
5189%expect-rr @var{n}
5190@end example
5191
bfa74976
RS
5192In general, using @code{%expect} involves these steps:
5193
5194@itemize @bullet
5195@item
5196Compile your grammar without @code{%expect}. Use the @samp{-v} option
5197to get a verbose list of where the conflicts occur. Bison will also
5198print the number of conflicts.
5199
5200@item
5201Check each of the conflicts to make sure that Bison's default
5202resolution is what you really want. If not, rewrite the grammar and
5203go back to the beginning.
5204
5205@item
5206Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5207number which Bison printed. With GLR parsers, add an
035aa4a0 5208@code{%expect-rr} declaration as well.
bfa74976
RS
5209@end itemize
5210
93d7dde9
JD
5211Now Bison will report an error if you introduce an unexpected conflict,
5212but will keep silent otherwise.
bfa74976 5213
342b8b6e 5214@node Start Decl
bfa74976
RS
5215@subsection The Start-Symbol
5216@cindex declaring the start symbol
5217@cindex start symbol, declaring
5218@cindex default start symbol
5219@findex %start
5220
5221Bison assumes by default that the start symbol for the grammar is the first
5222nonterminal specified in the grammar specification section. The programmer
5223may override this restriction with the @code{%start} declaration as follows:
5224
5225@example
5226%start @var{symbol}
5227@end example
5228
342b8b6e 5229@node Pure Decl
bfa74976
RS
5230@subsection A Pure (Reentrant) Parser
5231@cindex reentrant parser
5232@cindex pure parser
d9df47b6 5233@findex %define api.pure
bfa74976
RS
5234
5235A @dfn{reentrant} program is one which does not alter in the course of
5236execution; in other words, it consists entirely of @dfn{pure} (read-only)
5237code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5238for example, a nonreentrant program may not be safe to call from a signal
5239handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5240program must be called only within interlocks.
5241
70811b85 5242Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5243suitable for most uses, and it permits compatibility with Yacc. (The
5244standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5245statically allocated variables for communication with @code{yylex},
5246including @code{yylval} and @code{yylloc}.)
bfa74976 5247
70811b85 5248Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5249declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5250reentrant. It looks like this:
bfa74976
RS
5251
5252@example
1f1bd572 5253%define api.pure full
bfa74976
RS
5254@end example
5255
70811b85
RS
5256The result is that the communication variables @code{yylval} and
5257@code{yylloc} become local variables in @code{yyparse}, and a different
5258calling convention is used for the lexical analyzer function
5259@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5260Parsers}, for the details of this. The variable @code{yynerrs}
5261becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5262of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5263Reporting Function @code{yyerror}}). The convention for calling
5264@code{yyparse} itself is unchanged.
5265
5266Whether the parser is pure has nothing to do with the grammar rules.
5267You can generate either a pure parser or a nonreentrant parser from any
5268valid grammar.
bfa74976 5269
9987d1b3
JD
5270@node Push Decl
5271@subsection A Push Parser
5272@cindex push parser
5273@cindex push parser
67212941 5274@findex %define api.push-pull
9987d1b3 5275
59da312b
JD
5276(The current push parsing interface is experimental and may evolve.
5277More user feedback will help to stabilize it.)
5278
f4101aa6
AD
5279A pull parser is called once and it takes control until all its input
5280is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5281each time a new token is made available.
5282
f4101aa6 5283A push parser is typically useful when the parser is part of a
9987d1b3 5284main event loop in the client's application. This is typically
f4101aa6
AD
5285a requirement of a GUI, when the main event loop needs to be triggered
5286within a certain time period.
9987d1b3 5287
d782395d
JD
5288Normally, Bison generates a pull parser.
5289The following Bison declaration says that you want the parser to be a push
35c1e5f0 5290parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5291
5292@example
cf499cff 5293%define api.push-pull push
9987d1b3
JD
5294@end example
5295
5296In almost all cases, you want to ensure that your push parser is also
5297a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5298time you should create an impure push parser is to have backwards
9987d1b3
JD
5299compatibility with the impure Yacc pull mode interface. Unless you know
5300what you are doing, your declarations should look like this:
5301
5302@example
1f1bd572 5303%define api.pure full
cf499cff 5304%define api.push-pull push
9987d1b3
JD
5305@end example
5306
f4101aa6
AD
5307There is a major notable functional difference between the pure push parser
5308and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5309many parser instances, of the same type of parser, in memory at the same time.
5310An impure push parser should only use one parser at a time.
5311
5312When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5313the generated parser. @code{yypstate} is a structure that the generated
5314parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5315function that will create a new parser instance. @code{yypstate_delete}
5316will free the resources associated with the corresponding parser instance.
f4101aa6 5317Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5318token is available to provide the parser. A trivial example
5319of using a pure push parser would look like this:
5320
5321@example
5322int status;
5323yypstate *ps = yypstate_new ();
5324do @{
5325 status = yypush_parse (ps, yylex (), NULL);
5326@} while (status == YYPUSH_MORE);
5327yypstate_delete (ps);
5328@end example
5329
5330If the user decided to use an impure push parser, a few things about
f4101aa6 5331the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5332a global variable instead of a variable in the @code{yypush_parse} function.
5333For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5334changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5335example would thus look like this:
5336
5337@example
5338extern int yychar;
5339int status;
5340yypstate *ps = yypstate_new ();
5341do @{
5342 yychar = yylex ();
5343 status = yypush_parse (ps);
5344@} while (status == YYPUSH_MORE);
5345yypstate_delete (ps);
5346@end example
5347
f4101aa6 5348That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5349for use by the next invocation of the @code{yypush_parse} function.
5350
f4101aa6 5351Bison also supports both the push parser interface along with the pull parser
9987d1b3 5352interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5353you should replace the @samp{%define api.push-pull push} declaration with the
5354@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5355the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5356and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5357would be used. However, the user should note that it is implemented in the
d782395d
JD
5358generated parser by calling @code{yypull_parse}.
5359This makes the @code{yyparse} function that is generated with the
cf499cff 5360@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5361@code{yyparse} function. If the user
5362calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5363stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5364and then @code{yypull_parse} the rest of the input stream. If you would like
5365to switch back and forth between between parsing styles, you would have to
5366write your own @code{yypull_parse} function that knows when to quit looking
5367for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5368like this:
5369
5370@example
5371yypstate *ps = yypstate_new ();
5372yypull_parse (ps); /* Will call the lexer */
5373yypstate_delete (ps);
5374@end example
5375
67501061 5376Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5377the generated parser with @samp{%define api.push-pull both} as it did for
5378@samp{%define api.push-pull push}.
9987d1b3 5379
342b8b6e 5380@node Decl Summary
bfa74976
RS
5381@subsection Bison Declaration Summary
5382@cindex Bison declaration summary
5383@cindex declaration summary
5384@cindex summary, Bison declaration
5385
d8988b2f 5386Here is a summary of the declarations used to define a grammar:
bfa74976 5387
18b519c0 5388@deffn {Directive} %union
bfa74976 5389Declare the collection of data types that semantic values may have
e4d49586 5390(@pxref{Union Decl, ,The Union Declaration}).
18b519c0 5391@end deffn
bfa74976 5392
18b519c0 5393@deffn {Directive} %token
bfa74976
RS
5394Declare a terminal symbol (token type name) with no precedence
5395or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5396@end deffn
bfa74976 5397
18b519c0 5398@deffn {Directive} %right
bfa74976
RS
5399Declare a terminal symbol (token type name) that is right-associative
5400(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5401@end deffn
bfa74976 5402
18b519c0 5403@deffn {Directive} %left
bfa74976
RS
5404Declare a terminal symbol (token type name) that is left-associative
5405(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5406@end deffn
bfa74976 5407
18b519c0 5408@deffn {Directive} %nonassoc
bfa74976 5409Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5410(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5411Using it in a way that would be associative is a syntax error.
5412@end deffn
5413
91d2c560 5414@ifset defaultprec
39a06c25 5415@deffn {Directive} %default-prec
22fccf95 5416Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5417(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5418@end deffn
91d2c560 5419@end ifset
bfa74976 5420
18b519c0 5421@deffn {Directive} %type
bfa74976
RS
5422Declare the type of semantic values for a nonterminal symbol
5423(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5424@end deffn
bfa74976 5425
18b519c0 5426@deffn {Directive} %start
89cab50d
AD
5427Specify the grammar's start symbol (@pxref{Start Decl, ,The
5428Start-Symbol}).
18b519c0 5429@end deffn
bfa74976 5430
18b519c0 5431@deffn {Directive} %expect
bfa74976
RS
5432Declare the expected number of shift-reduce conflicts
5433(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5434@end deffn
5435
bfa74976 5436
d8988b2f
AD
5437@sp 1
5438@noindent
5439In order to change the behavior of @command{bison}, use the following
5440directives:
5441
148d66d8 5442@deffn {Directive} %code @{@var{code}@}
e0c07222 5443@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5444@findex %code
e0c07222
JD
5445Insert @var{code} verbatim into the output parser source at the
5446default location or at the location specified by @var{qualifier}.
5447@xref{%code Summary}.
148d66d8
JD
5448@end deffn
5449
18b519c0 5450@deffn {Directive} %debug
60aa04a2 5451Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5452parse.trace}.
ec3bc396 5453@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5454@end deffn
d8988b2f 5455
35c1e5f0
JD
5456@deffn {Directive} %define @var{variable}
5457@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5458@deffnx {Directive} %define @var{variable} @{@var{value}@}
35c1e5f0
JD
5459@deffnx {Directive} %define @var{variable} "@var{value}"
5460Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5461@end deffn
5462
5463@deffn {Directive} %defines
5464Write a parser header file containing macro definitions for the token
5465type names defined in the grammar as well as a few other declarations.
5466If the parser implementation file is named @file{@var{name}.c} then
5467the parser header file is named @file{@var{name}.h}.
5468
5469For C parsers, the parser header file declares @code{YYSTYPE} unless
5470@code{YYSTYPE} is already defined as a macro or you have used a
5471@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5472you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5473Value Type}) with components that require other definitions, or if you
5474have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5475Type, ,Data Types of Semantic Values}), you need to arrange for these
5476definitions to be propagated to all modules, e.g., by putting them in
5477a prerequisite header that is included both by your parser and by any
5478other module that needs @code{YYSTYPE}.
5479
5480Unless your parser is pure, the parser header file declares
5481@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5482(Reentrant) Parser}.
5483
5484If you have also used locations, the parser header file declares
303834cc
JD
5485@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5486@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5487
5488This parser header file is normally essential if you wish to put the
5489definition of @code{yylex} in a separate source file, because
5490@code{yylex} typically needs to be able to refer to the
5491above-mentioned declarations and to the token type codes. @xref{Token
5492Values, ,Semantic Values of Tokens}.
5493
5494@findex %code requires
5495@findex %code provides
5496If you have declared @code{%code requires} or @code{%code provides}, the output
5497header also contains their code.
5498@xref{%code Summary}.
c9d5bcc9
AD
5499
5500@cindex Header guard
5501The generated header is protected against multiple inclusions with a C
5502preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5503@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5504,Multiple Parsers in the Same Program}) and generated file name turned
5505uppercase, with each series of non alphanumerical characters converted to a
5506single underscore.
5507
aba47f56 5508For instance with @samp{%define api.prefix @{calc@}} and @samp{%defines
c9d5bcc9
AD
5509"lib/parse.h"}, the header will be guarded as follows.
5510@example
5511#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5512# define YY_CALC_LIB_PARSE_H_INCLUDED
5513...
5514#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5515@end example
35c1e5f0
JD
5516@end deffn
5517
5518@deffn {Directive} %defines @var{defines-file}
fe65b144 5519Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5520@end deffn
5521
5522@deffn {Directive} %destructor
5523Specify how the parser should reclaim the memory associated to
5524discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5525@end deffn
5526
5527@deffn {Directive} %file-prefix "@var{prefix}"
5528Specify a prefix to use for all Bison output file names. The names
5529are chosen as if the grammar file were named @file{@var{prefix}.y}.
5530@end deffn
5531
5532@deffn {Directive} %language "@var{language}"
5533Specify the programming language for the generated parser. Currently
5534supported languages include C, C++, and Java.
5535@var{language} is case-insensitive.
5536
35c1e5f0
JD
5537@end deffn
5538
5539@deffn {Directive} %locations
5540Generate the code processing the locations (@pxref{Action Features,
5541,Special Features for Use in Actions}). This mode is enabled as soon as
5542the grammar uses the special @samp{@@@var{n}} tokens, but if your
5543grammar does not use it, using @samp{%locations} allows for more
5544accurate syntax error messages.
5545@end deffn
5546
5547@deffn {Directive} %name-prefix "@var{prefix}"
5548Rename the external symbols used in the parser so that they start with
5549@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5550in C parsers
5551is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5552@code{yylval}, @code{yychar}, @code{yydebug}, and
5553(if locations are used) @code{yylloc}. If you use a push parser,
5554@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5555@code{yypstate_new} and @code{yypstate_delete} will
5556also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5557names become @code{c_parse}, @code{c_lex}, and so on.
5558For C++ parsers, see the @samp{%define api.namespace} documentation in this
5559section.
5560@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5561@end deffn
5562
5563@ifset defaultprec
5564@deffn {Directive} %no-default-prec
5565Do not assign a precedence to rules lacking an explicit @code{%prec}
5566modifier (@pxref{Contextual Precedence, ,Context-Dependent
5567Precedence}).
5568@end deffn
5569@end ifset
5570
5571@deffn {Directive} %no-lines
5572Don't generate any @code{#line} preprocessor commands in the parser
5573implementation file. Ordinarily Bison writes these commands in the
5574parser implementation file so that the C compiler and debuggers will
5575associate errors and object code with your source file (the grammar
5576file). This directive causes them to associate errors with the parser
5577implementation file, treating it as an independent source file in its
5578own right.
5579@end deffn
5580
5581@deffn {Directive} %output "@var{file}"
fe65b144 5582Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5583@end deffn
5584
5585@deffn {Directive} %pure-parser
5586Deprecated version of @samp{%define api.pure} (@pxref{%define
5587Summary,,api.pure}), for which Bison is more careful to warn about
5588unreasonable usage.
5589@end deffn
5590
5591@deffn {Directive} %require "@var{version}"
5592Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5593Require a Version of Bison}.
5594@end deffn
5595
5596@deffn {Directive} %skeleton "@var{file}"
5597Specify the skeleton to use.
5598
5599@c You probably don't need this option unless you are developing Bison.
5600@c You should use @code{%language} if you want to specify the skeleton for a
5601@c different language, because it is clearer and because it will always choose the
5602@c correct skeleton for non-deterministic or push parsers.
5603
5604If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5605file in the Bison installation directory.
5606If it does, @var{file} is an absolute file name or a file name relative to the
5607directory of the grammar file.
5608This is similar to how most shells resolve commands.
5609@end deffn
5610
5611@deffn {Directive} %token-table
5612Generate an array of token names in the parser implementation file.
5613The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5614the name of the token whose internal Bison token code number is
5615@var{i}. The first three elements of @code{yytname} correspond to the
5616predefined tokens @code{"$end"}, @code{"error"}, and
5617@code{"$undefined"}; after these come the symbols defined in the
5618grammar file.
5619
5620The name in the table includes all the characters needed to represent
5621the token in Bison. For single-character literals and literal
5622strings, this includes the surrounding quoting characters and any
5623escape sequences. For example, the Bison single-character literal
5624@code{'+'} corresponds to a three-character name, represented in C as
5625@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5626corresponds to a five-character name, represented in C as
5627@code{"\"\\\\/\""}.
5628
5629When you specify @code{%token-table}, Bison also generates macro
5630definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5631@code{YYNRULES}, and @code{YYNSTATES}:
5632
5633@table @code
5634@item YYNTOKENS
5635The highest token number, plus one.
5636@item YYNNTS
5637The number of nonterminal symbols.
5638@item YYNRULES
5639The number of grammar rules,
5640@item YYNSTATES
5641The number of parser states (@pxref{Parser States}).
5642@end table
5643@end deffn
5644
5645@deffn {Directive} %verbose
5646Write an extra output file containing verbose descriptions of the
5647parser states and what is done for each type of lookahead token in
5648that state. @xref{Understanding, , Understanding Your Parser}, for more
5649information.
5650@end deffn
5651
5652@deffn {Directive} %yacc
5653Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5654including its naming conventions. @xref{Bison Options}, for more.
5655@end deffn
5656
5657
5658@node %define Summary
5659@subsection %define Summary
51151d91
JD
5660
5661There are many features of Bison's behavior that can be controlled by
5662assigning the feature a single value. For historical reasons, some
5663such features are assigned values by dedicated directives, such as
5664@code{%start}, which assigns the start symbol. However, newer such
5665features are associated with variables, which are assigned by the
5666@code{%define} directive:
5667
c1d19e10 5668@deffn {Directive} %define @var{variable}
cf499cff 5669@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5670@deffnx {Directive} %define @var{variable} @{@var{value}@}
c1d19e10 5671@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5672Define @var{variable} to @var{value}.
9611cfa2 5673
aba47f56
AD
5674The type of the values depend on the syntax. Braces denote value in the
5675target language (e.g., a namespace, a type, etc.). Keyword values (no
5676delimiters) denote finite choice (e.g., a variation of a feature). String
5677values denote remaining cases (e.g., a file name).
9611cfa2 5678
aba47f56
AD
5679It is an error if a @var{variable} is defined by @code{%define} multiple
5680times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
51151d91 5681@end deffn
cf499cff 5682
51151d91
JD
5683The rest of this section summarizes variables and values that
5684@code{%define} accepts.
9611cfa2 5685
51151d91
JD
5686Some @var{variable}s take Boolean values. In this case, Bison will
5687complain if the variable definition does not meet one of the following
5688four conditions:
9611cfa2
JD
5689
5690@enumerate
cf499cff 5691@item @code{@var{value}} is @code{true}
9611cfa2 5692
cf499cff
JD
5693@item @code{@var{value}} is omitted (or @code{""} is specified).
5694This is equivalent to @code{true}.
9611cfa2 5695
cf499cff 5696@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5697
5698@item @var{variable} is never defined.
c6abeab1 5699In this case, Bison selects a default value.
9611cfa2 5700@end enumerate
148d66d8 5701
c6abeab1
JD
5702What @var{variable}s are accepted, as well as their meanings and default
5703values, depend on the selected target language and/or the parser
5704skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5705Summary,,%skeleton}).
5706Unaccepted @var{variable}s produce an error.
dbf3962c 5707Some of the accepted @var{variable}s are described below.
793fbca5 5708
6574576c 5709@c ================================================== api.namespace
eb0e86ac 5710@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5711@itemize
5712@item Languages(s): C++
5713
f1b238df 5714@item Purpose: Specify the namespace for the parser class.
67501061
AD
5715For example, if you specify:
5716
c93f22fc 5717@example
eb0e86ac 5718%define api.namespace @{foo::bar@}
c93f22fc 5719@end example
67501061
AD
5720
5721Bison uses @code{foo::bar} verbatim in references such as:
5722
c93f22fc 5723@example
67501061 5724foo::bar::parser::semantic_type
c93f22fc 5725@end example
67501061
AD
5726
5727However, to open a namespace, Bison removes any leading @code{::} and then
5728splits on any remaining occurrences:
5729
c93f22fc 5730@example
67501061
AD
5731namespace foo @{ namespace bar @{
5732 class position;
5733 class location;
5734@} @}
c93f22fc 5735@end example
67501061
AD
5736
5737@item Accepted Values:
5738Any absolute or relative C++ namespace reference without a trailing
5739@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5740
5741@item Default Value:
5742The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5743This usage of @code{%name-prefix} is for backward compatibility and can
5744be confusing since @code{%name-prefix} also specifies the textual prefix
5745for the lexical analyzer function. Thus, if you specify
5746@code{%name-prefix}, it is best to also specify @samp{%define
5747api.namespace} so that @code{%name-prefix} @emph{only} affects the
5748lexical analyzer function. For example, if you specify:
5749
c93f22fc 5750@example
eb0e86ac 5751%define api.namespace @{foo@}
67501061 5752%name-prefix "bar::"
c93f22fc 5753@end example
67501061
AD
5754
5755The parser namespace is @code{foo} and @code{yylex} is referenced as
5756@code{bar::lex}.
5757@end itemize
dbf3962c
AD
5758@end deffn
5759@c api.namespace
67501061 5760
db8ab2be 5761@c ================================================== api.location.type
aba47f56 5762@deffn {Directive} {%define api.location.type} @{@var{type}@}
db8ab2be
AD
5763
5764@itemize @bullet
7287be84 5765@item Language(s): C++, Java
db8ab2be
AD
5766
5767@item Purpose: Define the location type.
5768@xref{User Defined Location Type}.
5769
5770@item Accepted Values: String
5771
5772@item Default Value: none
5773
a256496a
AD
5774@item History:
5775Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5776@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5777@end itemize
dbf3962c 5778@end deffn
67501061 5779
4b3847c3 5780@c ================================================== api.prefix
aba47f56 5781@deffn {Directive} {%define api.prefix} @{@var{prefix}@}
4b3847c3
AD
5782
5783@itemize @bullet
5784@item Language(s): All
5785
db8ab2be 5786@item Purpose: Rename exported symbols.
4b3847c3
AD
5787@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5788
5789@item Accepted Values: String
5790
5791@item Default Value: @code{yy}
e358222b
AD
5792
5793@item History: introduced in Bison 2.6
4b3847c3 5794@end itemize
dbf3962c 5795@end deffn
67501061
AD
5796
5797@c ================================================== api.pure
aba47f56 5798@deffn Directive {%define api.pure} @var{purity}
d9df47b6
JD
5799
5800@itemize @bullet
5801@item Language(s): C
5802
5803@item Purpose: Request a pure (reentrant) parser program.
5804@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5805
1f1bd572
TR
5806@item Accepted Values: @code{true}, @code{false}, @code{full}
5807
5808The value may be omitted: this is equivalent to specifying @code{true}, as is
5809the case for Boolean values.
5810
5811When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5812changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5813@code{yyerror} when the tracking of locations has been activated, as shown
5814below.
1f1bd572
TR
5815
5816The @code{true} value is very similar to the @code{full} value, the only
5817difference is in the signature of @code{yyerror} on Yacc parsers without
5818@code{%parse-param}, for historical reasons.
5819
5820I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5821@code{yyerror} are:
5822
5823@example
c949ada3
AD
5824void yyerror (char const *msg); // Yacc parsers.
5825void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5826@end example
5827
5828But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5829used, then both parsers have the same signature:
5830
5831@example
5832void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5833@end example
5834
5835(@pxref{Error Reporting, ,The Error
5836Reporting Function @code{yyerror}})
d9df47b6 5837
cf499cff 5838@item Default Value: @code{false}
1f1bd572 5839
a256496a
AD
5840@item History:
5841the @code{full} value was introduced in Bison 2.7
d9df47b6 5842@end itemize
dbf3962c 5843@end deffn
71b00ed8 5844@c api.pure
d9df47b6 5845
67501061
AD
5846
5847
5848@c ================================================== api.push-pull
dbf3962c 5849@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5850
5851@itemize @bullet
eb45ef3b 5852@item Language(s): C (deterministic parsers only)
793fbca5 5853
f1b238df 5854@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5855@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5856(The current push parsing interface is experimental and may evolve.
5857More user feedback will help to stabilize it.)
793fbca5 5858
cf499cff 5859@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5860
cf499cff 5861@item Default Value: @code{pull}
793fbca5 5862@end itemize
dbf3962c 5863@end deffn
67212941 5864@c api.push-pull
71b00ed8 5865
6b5a0de9
AD
5866
5867
e36ec1f4 5868@c ================================================== api.token.constructor
dbf3962c 5869@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5870
5871@itemize @bullet
5872@item Language(s):
5873C++
5874
5875@item Purpose:
5876When variant-based semantic values are enabled (@pxref{C++ Variants}),
5877request that symbols be handled as a whole (type, value, and possibly
5878location) in the scanner. @xref{Complete Symbols}, for details.
5879
5880@item Accepted Values:
5881Boolean.
5882
5883@item Default Value:
5884@code{false}
5885@item History:
c53b6848 5886introduced in Bison 3.0
e36ec1f4 5887@end itemize
dbf3962c 5888@end deffn
e36ec1f4
AD
5889@c api.token.constructor
5890
5891
2a6b66c5 5892@c ================================================== api.token.prefix
630a0218 5893@deffn Directive {%define api.token.prefix} @{@var{prefix}@}
4c6622c2
AD
5894
5895@itemize
5896@item Languages(s): all
5897
5898@item Purpose:
5899Add a prefix to the token names when generating their definition in the
5900target language. For instance
5901
5902@example
5903%token FILE for ERROR
630a0218 5904%define api.token.prefix @{TOK_@}
4c6622c2
AD
5905%%
5906start: FILE for ERROR;
5907@end example
5908
5909@noindent
5910generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5911and @code{TOK_ERROR} in the generated source files. In particular, the
5912scanner must use these prefixed token names, while the grammar itself
5913may still use the short names (as in the sample rule given above). The
5914generated informational files (@file{*.output}, @file{*.xml},
90b89dad
AD
5915@file{*.dot}) are not modified by this prefix.
5916
5917Bison also prefixes the generated member names of the semantic value union.
5918@xref{Type Generation,, Generating the Semantic Value Type}, for more
5919details.
5920
5921See @ref{Calc++ Parser} and @ref{Calc++ Scanner}, for a complete example.
4c6622c2
AD
5922
5923@item Accepted Values:
5924Any string. Should be a valid identifier prefix in the target language,
5925in other words, it should typically be an identifier itself (sequence of
5926letters, underscores, and ---not at the beginning--- digits).
5927
5928@item Default Value:
5929empty
2a6b66c5 5930@item History:
630a0218 5931introduced in Bison 3.0
4c6622c2 5932@end itemize
dbf3962c 5933@end deffn
2a6b66c5 5934@c api.token.prefix
4c6622c2
AD
5935
5936
ae8880de 5937@c ================================================== api.value.type
6ce4b4ff
AD
5938@deffn Directive {%define api.value.type} @var{support}
5939@deffnx Directive {%define api.value.type} @{@var{type}@}
ae8880de
AD
5940@itemize @bullet
5941@item Language(s):
6574576c 5942all
ae8880de
AD
5943
5944@item Purpose:
6574576c
AD
5945The type for semantic values.
5946
5947@item Accepted Values:
5948@table @asis
6ce4b4ff 5949@item @samp{@{@}}
6574576c
AD
5950This grammar has no semantic value at all. This is not properly supported
5951yet.
6ce4b4ff 5952@item @samp{union-directive} (C, C++)
6574576c
AD
5953The type is defined thanks to the @code{%union} directive. You don't have
5954to define @code{api.value.type} in that case, using @code{%union} suffices.
e4d49586 5955@xref{Union Decl, ,The Union Declaration}.
6574576c
AD
5956For instance:
5957@example
6ce4b4ff 5958%define api.value.type union-directive
6574576c
AD
5959%union
5960@{
5961 int ival;
5962 char *sval;
5963@}
5964%token <ival> INT "integer"
5965%token <sval> STR "string"
5966@end example
5967
6ce4b4ff 5968@item @samp{union} (C, C++)
6574576c
AD
5969The symbols are defined with type names, from which Bison will generate a
5970@code{union}. For instance:
5971@example
6ce4b4ff 5972%define api.value.type union
6574576c
AD
5973%token <int> INT "integer"
5974%token <char *> STR "string"
5975@end example
5976This feature needs user feedback to stabilize. Note that most C++ objects
5977cannot be stored in a @code{union}.
5978
6ce4b4ff 5979@item @samp{variant} (C++)
6574576c
AD
5980This is similar to @code{union}, but special storage techniques are used to
5981allow any kind of C++ object to be used. For instance:
5982@example
6ce4b4ff 5983%define api.value.type variant
6574576c
AD
5984%token <int> INT "integer"
5985%token <std::string> STR "string"
5986@end example
5987This feature needs user feedback to stabilize.
ae8880de
AD
5988@xref{C++ Variants}.
5989
6ce4b4ff
AD
5990@item @samp{@{@var{type}@}}
5991Use this @var{type} as semantic value.
6574576c
AD
5992@example
5993%code requires
5994@{
5995 struct my_value
5996 @{
5997 enum
5998 @{
5999 is_int, is_str
6000 @} kind;
6001 union
6002 @{
6003 int ival;
6004 char *sval;
6005 @} u;
6006 @};
6007@}
6ce4b4ff 6008%define api.value.type @{struct my_value@}
6574576c
AD
6009%token <u.ival> INT "integer"
6010%token <u.sval> STR "string"
6011@end example
6012@end table
6013
dbf3962c 6014@item Default Value:
6574576c
AD
6015@itemize @minus
6016@item
827bc59c 6017@code{union-directive} if @code{%union} is used, otherwise @dots{}
6574576c
AD
6018@item
6019@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
827bc59c 6020@samp{%type <@var{type}>@dots{}} is used), otherwise @dots{}
6574576c 6021@item
827bc59c 6022undefined.
6574576c
AD
6023@end itemize
6024
dbf3962c 6025@item History:
c53b6848 6026introduced in Bison 3.0. Was introduced for Java only in 2.3b as
dbf3962c
AD
6027@code{stype}.
6028@end itemize
6029@end deffn
ae8880de
AD
6030@c api.value.type
6031
a256496a 6032
827bc59c
AD
6033@c ================================================== api.value.union.name
6034@deffn Directive {%define api.value.union.name} @var{name}
6035@itemize @bullet
6036@item Language(s):
6037C
6038
6039@item Purpose:
6040The tag of the generated @code{union} (@emph{not} the name of the
6041@code{typedef}). This variable is set to @code{@var{id}} when @samp{%union
6042@var{id}} is used. There is no clear reason to give this union a name.
6043
6044@item Accepted Values:
6045Any valid identifier.
6046
6047@item Default Value:
6048@code{YYSTYPE}.
6049
6050@item History:
6051Introduced in Bison 3.0.3.
6052@end itemize
6053@end deffn
6054@c api.value.type
6055
6056
a256496a 6057@c ================================================== location_type
dbf3962c 6058@deffn Directive {%define location_type}
a256496a 6059Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 6060@end deffn
a256496a
AD
6061
6062
f3bc3386 6063@c ================================================== lr.default-reduction
6b5a0de9 6064
dbf3962c 6065@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
6066
6067@itemize @bullet
6068@item Language(s): all
6069
fcf834f9 6070@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
6071contain default reductions. @xref{Default Reductions}. (The ability to
6072specify where default reductions should be used is experimental. More user
6073feedback will help to stabilize it.)
eb45ef3b 6074
f0ad1b2f 6075@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
6076@item Default Value:
6077@itemize
cf499cff 6078@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 6079@item @code{most} otherwise.
eb45ef3b 6080@end itemize
f3bc3386 6081@item History:
c53b6848
AD
6082introduced as @code{lr.default-reductions} in 2.5, renamed as
6083@code{lr.default-reduction} in 3.0.
eb45ef3b 6084@end itemize
dbf3962c 6085@end deffn
eb45ef3b 6086
f3bc3386 6087@c ============================================ lr.keep-unreachable-state
6b5a0de9 6088
dbf3962c 6089@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
6090
6091@itemize @bullet
6092@item Language(s): all
f1b238df 6093@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 6094remain in the parser tables. @xref{Unreachable States}.
31984206 6095@item Accepted Values: Boolean
cf499cff 6096@item Default Value: @code{false}
a256496a 6097@item History:
f3bc3386 6098introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 6099@code{lr.keep-unreachable-states} in 2.5, and as
c53b6848 6100@code{lr.keep-unreachable-state} in 3.0.
dbf3962c
AD
6101@end itemize
6102@end deffn
f3bc3386 6103@c lr.keep-unreachable-state
31984206 6104
6b5a0de9
AD
6105@c ================================================== lr.type
6106
dbf3962c 6107@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
6108
6109@itemize @bullet
6110@item Language(s): all
6111
f1b238df 6112@item Purpose: Specify the type of parser tables within the
7fceb615 6113LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
6114More user feedback will help to stabilize it.)
6115
7fceb615 6116@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 6117
cf499cff 6118@item Default Value: @code{lalr}
eb45ef3b 6119@end itemize
dbf3962c 6120@end deffn
67501061
AD
6121
6122@c ================================================== namespace
eb0e86ac 6123@deffn Directive %define namespace @{@var{namespace}@}
67501061 6124Obsoleted by @code{api.namespace}
fa819509 6125@c namespace
dbf3962c 6126@end deffn
31b850d2
AD
6127
6128@c ================================================== parse.assert
dbf3962c 6129@deffn Directive {%define parse.assert}
0c90a1f5
AD
6130
6131@itemize
6132@item Languages(s): C++
6133
6134@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
6135In C++, when variants are used (@pxref{C++ Variants}), symbols must be
6136constructed and
0c90a1f5
AD
6137destroyed properly. This option checks these constraints.
6138
6139@item Accepted Values: Boolean
6140
6141@item Default Value: @code{false}
6142@end itemize
dbf3962c 6143@end deffn
0c90a1f5
AD
6144@c parse.assert
6145
31b850d2
AD
6146
6147@c ================================================== parse.error
6ce4b4ff 6148@deffn Directive {%define parse.error} @var{verbosity}
31b850d2
AD
6149@itemize
6150@item Languages(s):
fcf834f9 6151all
31b850d2
AD
6152@item Purpose:
6153Control the kind of error messages passed to the error reporting
6154function. @xref{Error Reporting, ,The Error Reporting Function
6155@code{yyerror}}.
6156@item Accepted Values:
6157@itemize
cf499cff 6158@item @code{simple}
31b850d2
AD
6159Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6160error"}}.
cf499cff 6161@item @code{verbose}
7fceb615
JD
6162Error messages report the unexpected token, and possibly the expected ones.
6163However, this report can often be incorrect when LAC is not enabled
6164(@pxref{LAC}).
31b850d2
AD
6165@end itemize
6166
6167@item Default Value:
6168@code{simple}
6169@end itemize
dbf3962c 6170@end deffn
31b850d2
AD
6171@c parse.error
6172
6173
fcf834f9 6174@c ================================================== parse.lac
6ce4b4ff 6175@deffn Directive {%define parse.lac} @var{when}
fcf834f9
JD
6176
6177@itemize
7fceb615 6178@item Languages(s): C (deterministic parsers only)
fcf834f9 6179
8a4281b9 6180@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6181syntax error handling. @xref{LAC}.
fcf834f9 6182@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6183@item Default Value: @code{none}
6184@end itemize
dbf3962c 6185@end deffn
fcf834f9
JD
6186@c parse.lac
6187
31b850d2 6188@c ================================================== parse.trace
dbf3962c 6189@deffn Directive {%define parse.trace}
fa819509
AD
6190
6191@itemize
60aa04a2 6192@item Languages(s): C, C++, Java
fa819509
AD
6193
6194@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6195@xref{Tracing, ,Tracing Your Parser}.
6196
6197In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6ce4b4ff 6198@samp{%define api.prefix @{@var{prefix}@}}), see @ref{Multiple Parsers,
60aa04a2 6199,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6200file if it is not already defined, so that the debugging facilities are
60aa04a2 6201compiled.
793fbca5 6202
fa819509
AD
6203@item Accepted Values: Boolean
6204
6205@item Default Value: @code{false}
6206@end itemize
dbf3962c 6207@end deffn
fa819509 6208@c parse.trace
592d0b1e 6209
e0c07222
JD
6210@node %code Summary
6211@subsection %code Summary
e0c07222 6212@findex %code
e0c07222 6213@cindex Prologue
51151d91
JD
6214
6215The @code{%code} directive inserts code verbatim into the output
6216parser source at any of a predefined set of locations. It thus serves
6217as a flexible and user-friendly alternative to the traditional Yacc
6218prologue, @code{%@{@var{code}%@}}. This section summarizes the
6219functionality of @code{%code} for the various target languages
6220supported by Bison. For a detailed discussion of how to use
6221@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6222is advantageous to do so, @pxref{Prologue Alternatives}.
6223
6224@deffn {Directive} %code @{@var{code}@}
6225This is the unqualified form of the @code{%code} directive. It
6226inserts @var{code} verbatim at a language-dependent default location
6227in the parser implementation.
6228
e0c07222 6229For C/C++, the default location is the parser implementation file
51151d91
JD
6230after the usual contents of the parser header file. Thus, the
6231unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6232
6233For Java, the default location is inside the parser class.
6234@end deffn
6235
6236@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6237This is the qualified form of the @code{%code} directive.
51151d91
JD
6238@var{qualifier} identifies the purpose of @var{code} and thus the
6239location(s) where Bison should insert it. That is, if you need to
6240specify location-sensitive @var{code} that does not belong at the
6241default location selected by the unqualified @code{%code} form, use
6242this form instead.
6243@end deffn
6244
6245For any particular qualifier or for the unqualified form, if there are
6246multiple occurrences of the @code{%code} directive, Bison concatenates
6247the specified code in the order in which it appears in the grammar
6248file.
e0c07222 6249
51151d91
JD
6250Not all qualifiers are accepted for all target languages. Unaccepted
6251qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6252
84072495 6253@table @code
e0c07222
JD
6254@item requires
6255@findex %code requires
6256
6257@itemize @bullet
6258@item Language(s): C, C++
6259
6260@item Purpose: This is the best place to write dependency code required for
21e3a2b5
AD
6261@code{YYSTYPE} and @code{YYLTYPE}. In other words, it's the best place to
6262define types referenced in @code{%union} directives. If you use
6263@code{#define} to override Bison's default @code{YYSTYPE} and @code{YYLTYPE}
6264definitions, then it is also the best place. However you should rather
6265@code{%define} @code{api.value.type} and @code{api.location.type}.
e0c07222
JD
6266
6267@item Location(s): The parser header file and the parser implementation file
6268before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6269definitions.
6270@end itemize
6271
6272@item provides
6273@findex %code provides
6274
6275@itemize @bullet
6276@item Language(s): C, C++
6277
6278@item Purpose: This is the best place to write additional definitions and
6279declarations that should be provided to other modules.
6280
6281@item Location(s): The parser header file and the parser implementation
6282file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6283token definitions.
6284@end itemize
6285
6286@item top
6287@findex %code top
6288
6289@itemize @bullet
6290@item Language(s): C, C++
6291
6292@item Purpose: The unqualified @code{%code} or @code{%code requires}
6293should usually be more appropriate than @code{%code top}. However,
6294occasionally it is necessary to insert code much nearer the top of the
6295parser implementation file. For example:
6296
c93f22fc 6297@example
e0c07222
JD
6298%code top @{
6299 #define _GNU_SOURCE
6300 #include <stdio.h>
6301@}
c93f22fc 6302@end example
e0c07222
JD
6303
6304@item Location(s): Near the top of the parser implementation file.
6305@end itemize
6306
6307@item imports
6308@findex %code imports
6309
6310@itemize @bullet
6311@item Language(s): Java
6312
6313@item Purpose: This is the best place to write Java import directives.
6314
6315@item Location(s): The parser Java file after any Java package directive and
6316before any class definitions.
6317@end itemize
84072495 6318@end table
e0c07222 6319
51151d91
JD
6320Though we say the insertion locations are language-dependent, they are
6321technically skeleton-dependent. Writers of non-standard skeletons
6322however should choose their locations consistently with the behavior
6323of the standard Bison skeletons.
e0c07222 6324
d8988b2f 6325
342b8b6e 6326@node Multiple Parsers
bfa74976
RS
6327@section Multiple Parsers in the Same Program
6328
6329Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6330only one Bison parser. But what if you want to parse more than one language
6331with the same program? Then you need to avoid name conflicts between
6332different definitions of functions and variables such as @code{yyparse},
6333@code{yylval}. To use different parsers from the same compilation unit, you
6334also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6335exported in the generated header.
6336
6337The easy way to do this is to define the @code{%define} variable
e358222b
AD
6338@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6339headers do not conflict when included together, and that compiled objects
6340can be linked together too. Specifying @samp{%define api.prefix
6ce4b4ff 6341@{@var{prefix}@}} (or passing the option @samp{-Dapi.prefix=@{@var{prefix}@}}, see
e358222b
AD
6342@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6343variables of the Bison parser to start with @var{prefix} instead of
6344@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6345upper-cased) instead of @samp{YY}.
4b3847c3
AD
6346
6347The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6348@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6349@code{yydebug}. If you use a push parser, @code{yypush_parse},
6350@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6351@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6352@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6353specifically --- more about this below.
4b3847c3 6354
6ce4b4ff 6355For example, if you use @samp{%define api.prefix @{c@}}, the names become
4b3847c3
AD
6356@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6357on.
6358
6359The @code{%define} variable @code{api.prefix} works in two different ways.
6360In the implementation file, it works by adding macro definitions to the
6361beginning of the parser implementation file, defining @code{yyparse} as
6362@code{@var{prefix}parse}, and so on:
6363
6364@example
6365#define YYSTYPE CTYPE
6366#define yyparse cparse
6367#define yylval clval
6368...
6369YYSTYPE yylval;
6370int yyparse (void);
6371@end example
6372
6373This effectively substitutes one name for the other in the entire parser
6374implementation file, thus the ``original'' names (@code{yylex},
6375@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6376
6377However, in the parser header file, the symbols are defined renamed, for
6378instance:
bfa74976 6379
4b3847c3
AD
6380@example
6381extern CSTYPE clval;
6382int cparse (void);
6383@end example
bfa74976 6384
e358222b
AD
6385The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6386parsers. To comply with this tradition, when @code{api.prefix} is used,
6387@code{YYDEBUG} (not renamed) is used as a default value:
6388
6389@example
4d9bdbe3 6390/* Debug traces. */
e358222b
AD
6391#ifndef CDEBUG
6392# if defined YYDEBUG
6393# if YYDEBUG
6394# define CDEBUG 1
6395# else
6396# define CDEBUG 0
6397# endif
6398# else
6399# define CDEBUG 0
6400# endif
6401#endif
6402#if CDEBUG
6403extern int cdebug;
6404#endif
6405@end example
6406
6407@sp 2
6408
6409Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6410the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6411Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6412
342b8b6e 6413@node Interface
bfa74976
RS
6414@chapter Parser C-Language Interface
6415@cindex C-language interface
6416@cindex interface
6417
6418The Bison parser is actually a C function named @code{yyparse}. Here we
6419describe the interface conventions of @code{yyparse} and the other
6420functions that it needs to use.
6421
6422Keep in mind that the parser uses many C identifiers starting with
6423@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6424identifier (aside from those in this manual) in an action or in epilogue
6425in the grammar file, you are likely to run into trouble.
bfa74976
RS
6426
6427@menu
f5f419de
DJ
6428* Parser Function:: How to call @code{yyparse} and what it returns.
6429* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6430* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6431* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6432* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6433* Lexical:: You must supply a function @code{yylex}
6434 which reads tokens.
6435* Error Reporting:: You must supply a function @code{yyerror}.
6436* Action Features:: Special features for use in actions.
6437* Internationalization:: How to let the parser speak in the user's
6438 native language.
bfa74976
RS
6439@end menu
6440
342b8b6e 6441@node Parser Function
bfa74976
RS
6442@section The Parser Function @code{yyparse}
6443@findex yyparse
6444
6445You call the function @code{yyparse} to cause parsing to occur. This
6446function reads tokens, executes actions, and ultimately returns when it
6447encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6448write an action which directs @code{yyparse} to return immediately
6449without reading further.
bfa74976 6450
2a8d363a
AD
6451
6452@deftypefun int yyparse (void)
bfa74976
RS
6453The value returned by @code{yyparse} is 0 if parsing was successful (return
6454is due to end-of-input).
6455
b47dbebe
PE
6456The value is 1 if parsing failed because of invalid input, i.e., input
6457that contains a syntax error or that causes @code{YYABORT} to be
6458invoked.
6459
6460The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6461@end deftypefun
bfa74976
RS
6462
6463In an action, you can cause immediate return from @code{yyparse} by using
6464these macros:
6465
2a8d363a 6466@defmac YYACCEPT
bfa74976
RS
6467@findex YYACCEPT
6468Return immediately with value 0 (to report success).
2a8d363a 6469@end defmac
bfa74976 6470
2a8d363a 6471@defmac YYABORT
bfa74976
RS
6472@findex YYABORT
6473Return immediately with value 1 (to report failure).
2a8d363a
AD
6474@end defmac
6475
6476If you use a reentrant parser, you can optionally pass additional
6477parameter information to it in a reentrant way. To do so, use the
6478declaration @code{%parse-param}:
6479
2055a44e 6480@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6481@findex %parse-param
2055a44e
AD
6482Declare that one or more
6483@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6484The @var{argument-declaration} is used when declaring
feeb0eda
PE
6485functions or prototypes. The last identifier in
6486@var{argument-declaration} must be the argument name.
2a8d363a
AD
6487@end deffn
6488
6489Here's an example. Write this in the parser:
6490
6491@example
2055a44e 6492%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6493@end example
6494
6495@noindent
6496Then call the parser like this:
6497
6498@example
6499@{
6500 int nastiness, randomness;
6501 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6502 value = yyparse (&nastiness, &randomness);
6503 @dots{}
6504@}
6505@end example
6506
6507@noindent
6508In the grammar actions, use expressions like this to refer to the data:
6509
6510@example
6511exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6512@end example
6513
1f1bd572
TR
6514@noindent
6515Using the following:
6516@example
6517%parse-param @{int *randomness@}
6518@end example
6519
6520Results in these signatures:
6521@example
6522void yyerror (int *randomness, const char *msg);
6523int yyparse (int *randomness);
6524@end example
6525
6526@noindent
6527Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6528and @code{%locations} are used:
6529
6530@example
6531void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6532int yyparse (int *randomness);
6533@end example
6534
9987d1b3
JD
6535@node Push Parser Function
6536@section The Push Parser Function @code{yypush_parse}
6537@findex yypush_parse
6538
59da312b
JD
6539(The current push parsing interface is experimental and may evolve.
6540More user feedback will help to stabilize it.)
6541
f4101aa6 6542You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6543function is available if either the @samp{%define api.push-pull push} or
6544@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6545@xref{Push Decl, ,A Push Parser}.
6546
a73aa764 6547@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6548The value returned by @code{yypush_parse} is the same as for yyparse with
6549the following exception: it returns @code{YYPUSH_MORE} if more input is
6550required to finish parsing the grammar.
9987d1b3
JD
6551@end deftypefun
6552
6553@node Pull Parser Function
6554@section The Pull Parser Function @code{yypull_parse}
6555@findex yypull_parse
6556
59da312b
JD
6557(The current push parsing interface is experimental and may evolve.
6558More user feedback will help to stabilize it.)
6559
f4101aa6 6560You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6561stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6562declaration is used.
9987d1b3
JD
6563@xref{Push Decl, ,A Push Parser}.
6564
a73aa764 6565@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6566The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6567@end deftypefun
6568
6569@node Parser Create Function
6570@section The Parser Create Function @code{yystate_new}
6571@findex yypstate_new
6572
59da312b
JD
6573(The current push parsing interface is experimental and may evolve.
6574More user feedback will help to stabilize it.)
6575
f4101aa6 6576You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6577This function is available if either the @samp{%define api.push-pull push} or
6578@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6579@xref{Push Decl, ,A Push Parser}.
6580
34a41a93 6581@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6582The function will return a valid parser instance if there was memory available
333e670c
JD
6583or 0 if no memory was available.
6584In impure mode, it will also return 0 if a parser instance is currently
6585allocated.
9987d1b3
JD
6586@end deftypefun
6587
6588@node Parser Delete Function
6589@section The Parser Delete Function @code{yystate_delete}
6590@findex yypstate_delete
6591
59da312b
JD
6592(The current push parsing interface is experimental and may evolve.
6593More user feedback will help to stabilize it.)
6594
9987d1b3 6595You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6596function is available if either the @samp{%define api.push-pull push} or
6597@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6598@xref{Push Decl, ,A Push Parser}.
6599
a73aa764 6600@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6601This function will reclaim the memory associated with a parser instance.
6602After this call, you should no longer attempt to use the parser instance.
6603@end deftypefun
bfa74976 6604
342b8b6e 6605@node Lexical
bfa74976
RS
6606@section The Lexical Analyzer Function @code{yylex}
6607@findex yylex
6608@cindex lexical analyzer
6609
6610The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6611the input stream and returns them to the parser. Bison does not create
6612this function automatically; you must write it so that @code{yyparse} can
6613call it. The function is sometimes referred to as a lexical scanner.
6614
ff7571c0
JD
6615In simple programs, @code{yylex} is often defined at the end of the
6616Bison grammar file. If @code{yylex} is defined in a separate source
6617file, you need to arrange for the token-type macro definitions to be
6618available there. To do this, use the @samp{-d} option when you run
6619Bison, so that it will write these macro definitions into the separate
6620parser header file, @file{@var{name}.tab.h}, which you can include in
6621the other source files that need it. @xref{Invocation, ,Invoking
6622Bison}.
bfa74976
RS
6623
6624@menu
6625* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6626* Token Values:: How @code{yylex} must return the semantic value
6627 of the token it has read.
6628* Token Locations:: How @code{yylex} must return the text location
6629 (line number, etc.) of the token, if the
6630 actions want that.
6631* Pure Calling:: How the calling convention differs in a pure parser
6632 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6633@end menu
6634
342b8b6e 6635@node Calling Convention
bfa74976
RS
6636@subsection Calling Convention for @code{yylex}
6637
72d2299c
PE
6638The value that @code{yylex} returns must be the positive numeric code
6639for the type of token it has just found; a zero or negative value
6640signifies end-of-input.
bfa74976
RS
6641
6642When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6643in the parser implementation file becomes a C macro whose definition
6644is the proper numeric code for that token type. So @code{yylex} can
6645use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6646
6647When a token is referred to in the grammar rules by a character literal,
6648the numeric code for that character is also the code for the token type.
72d2299c
PE
6649So @code{yylex} can simply return that character code, possibly converted
6650to @code{unsigned char} to avoid sign-extension. The null character
6651must not be used this way, because its code is zero and that
bfa74976
RS
6652signifies end-of-input.
6653
6654Here is an example showing these things:
6655
6656@example
13863333
AD
6657int
6658yylex (void)
bfa74976
RS
6659@{
6660 @dots{}
72d2299c 6661 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6662 return 0;
6663 @dots{}
6664 if (c == '+' || c == '-')
4c9b8f13 6665 return c; /* Assume token type for '+' is '+'. */
bfa74976 6666 @dots{}
72d2299c 6667 return INT; /* Return the type of the token. */
bfa74976
RS
6668 @dots{}
6669@}
6670@end example
6671
6672@noindent
6673This interface has been designed so that the output from the @code{lex}
6674utility can be used without change as the definition of @code{yylex}.
6675
931c7513
RS
6676If the grammar uses literal string tokens, there are two ways that
6677@code{yylex} can determine the token type codes for them:
6678
6679@itemize @bullet
6680@item
6681If the grammar defines symbolic token names as aliases for the
6682literal string tokens, @code{yylex} can use these symbolic names like
6683all others. In this case, the use of the literal string tokens in
6684the grammar file has no effect on @code{yylex}.
6685
6686@item
9ecbd125 6687@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6688table. The index of the token in the table is the token type's code.
9ecbd125 6689The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6690double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6691token's characters are escaped as necessary to be suitable as input
6692to Bison.
931c7513 6693
9e0876fb
PE
6694Here's code for looking up a multicharacter token in @code{yytname},
6695assuming that the characters of the token are stored in
6696@code{token_buffer}, and assuming that the token does not contain any
6697characters like @samp{"} that require escaping.
931c7513 6698
c93f22fc 6699@example
931c7513
RS
6700for (i = 0; i < YYNTOKENS; i++)
6701 @{
6702 if (yytname[i] != 0
6703 && yytname[i][0] == '"'
68449b3a
PE
6704 && ! strncmp (yytname[i] + 1, token_buffer,
6705 strlen (token_buffer))
931c7513
RS
6706 && yytname[i][strlen (token_buffer) + 1] == '"'
6707 && yytname[i][strlen (token_buffer) + 2] == 0)
6708 break;
6709 @}
c93f22fc 6710@end example
931c7513
RS
6711
6712The @code{yytname} table is generated only if you use the
8c9a50be 6713@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6714@end itemize
6715
342b8b6e 6716@node Token Values
bfa74976
RS
6717@subsection Semantic Values of Tokens
6718
6719@vindex yylval
9d9b8b70 6720In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6721be stored into the global variable @code{yylval}. When you are using
6722just one data type for semantic values, @code{yylval} has that type.
6723Thus, if the type is @code{int} (the default), you might write this in
6724@code{yylex}:
6725
6726@example
6727@group
6728 @dots{}
72d2299c
PE
6729 yylval = value; /* Put value onto Bison stack. */
6730 return INT; /* Return the type of the token. */
bfa74976
RS
6731 @dots{}
6732@end group
6733@end example
6734
6735When you are using multiple data types, @code{yylval}'s type is a union
704a47c4 6736made from the @code{%union} declaration (@pxref{Union Decl, ,The
e4d49586 6737Union Declaration}). So when you store a token's value, you
704a47c4
AD
6738must use the proper member of the union. If the @code{%union}
6739declaration looks like this:
bfa74976
RS
6740
6741@example
6742@group
6743%union @{
6744 int intval;
6745 double val;
6746 symrec *tptr;
6747@}
6748@end group
6749@end example
6750
6751@noindent
6752then the code in @code{yylex} might look like this:
6753
6754@example
6755@group
6756 @dots{}
72d2299c
PE
6757 yylval.intval = value; /* Put value onto Bison stack. */
6758 return INT; /* Return the type of the token. */
bfa74976
RS
6759 @dots{}
6760@end group
6761@end example
6762
95923bd6
AD
6763@node Token Locations
6764@subsection Textual Locations of Tokens
bfa74976
RS
6765
6766@vindex yylloc
303834cc
JD
6767If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6768in actions to keep track of the textual locations of tokens and groupings,
6769then you must provide this information in @code{yylex}. The function
6770@code{yyparse} expects to find the textual location of a token just parsed
6771in the global variable @code{yylloc}. So @code{yylex} must store the proper
6772data in that variable.
847bf1f5
AD
6773
6774By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6775initialize the members that are going to be used by the actions. The
6776four members are called @code{first_line}, @code{first_column},
6777@code{last_line} and @code{last_column}. Note that the use of this
6778feature makes the parser noticeably slower.
bfa74976
RS
6779
6780@tindex YYLTYPE
6781The data type of @code{yylloc} has the name @code{YYLTYPE}.
6782
342b8b6e 6783@node Pure Calling
c656404a 6784@subsection Calling Conventions for Pure Parsers
bfa74976 6785
1f1bd572 6786When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6787pure, reentrant parser, the global communication variables @code{yylval}
6788and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6789Parser}.) In such parsers the two global variables are replaced by
6790pointers passed as arguments to @code{yylex}. You must declare them as
6791shown here, and pass the information back by storing it through those
6792pointers.
bfa74976
RS
6793
6794@example
13863333
AD
6795int
6796yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6797@{
6798 @dots{}
6799 *lvalp = value; /* Put value onto Bison stack. */
6800 return INT; /* Return the type of the token. */
6801 @dots{}
6802@}
6803@end example
6804
6805If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6806textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6807this case, omit the second argument; @code{yylex} will be called with
6808only one argument.
6809
2055a44e 6810If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6811@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6812Function}). To pass additional arguments to both @code{yylex} and
6813@code{yyparse}, use @code{%param}.
e425e872 6814
2055a44e 6815@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6816@findex %lex-param
2055a44e
AD
6817Specify that @var{argument-declaration} are additional @code{yylex} argument
6818declarations. You may pass one or more such declarations, which is
6819equivalent to repeating @code{%lex-param}.
6820@end deffn
6821
6822@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6823@findex %param
6824Specify that @var{argument-declaration} are additional
6825@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6826@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6827@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6828declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6829@end deffn
e425e872 6830
1f1bd572 6831@noindent
2a8d363a 6832For instance:
e425e872
RS
6833
6834@example
2055a44e
AD
6835%lex-param @{scanner_mode *mode@}
6836%parse-param @{parser_mode *mode@}
6837%param @{environment_type *env@}
e425e872
RS
6838@end example
6839
6840@noindent
18ad57b3 6841results in the following signatures:
e425e872
RS
6842
6843@example
2055a44e
AD
6844int yylex (scanner_mode *mode, environment_type *env);
6845int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6846@end example
6847
5807bb91 6848If @samp{%define api.pure full} is added:
c656404a
RS
6849
6850@example
2055a44e
AD
6851int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6852int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6853@end example
6854
2a8d363a 6855@noindent
5807bb91
AD
6856and finally, if both @samp{%define api.pure full} and @code{%locations} are
6857used:
c656404a 6858
2a8d363a 6859@example
2055a44e
AD
6860int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6861 scanner_mode *mode, environment_type *env);
6862int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6863@end example
931c7513 6864
342b8b6e 6865@node Error Reporting
bfa74976
RS
6866@section The Error Reporting Function @code{yyerror}
6867@cindex error reporting function
6868@findex yyerror
6869@cindex parse error
6870@cindex syntax error
6871
31b850d2 6872The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6873whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6874action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6875macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6876in Actions}).
bfa74976
RS
6877
6878The Bison parser expects to report the error by calling an error
6879reporting function named @code{yyerror}, which you must supply. It is
6880called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6881receives one argument. For a syntax error, the string is normally
6882@w{@code{"syntax error"}}.
bfa74976 6883
31b850d2 6884@findex %define parse.error
7fceb615
JD
6885If you invoke @samp{%define parse.error verbose} in the Bison declarations
6886section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6887Bison provides a more verbose and specific error message string instead of
6888just plain @w{@code{"syntax error"}}. However, that message sometimes
6889contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6890
1a059451
PE
6891The parser can detect one other kind of error: memory exhaustion. This
6892can happen when the input contains constructions that are very deeply
bfa74976 6893nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6894parser normally extends its stack automatically up to a very large limit. But
6895if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6896fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6897
6898In some cases diagnostics like @w{@code{"syntax error"}} are
6899translated automatically from English to some other language before
6900they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6901
6902The following definition suffices in simple programs:
6903
6904@example
6905@group
13863333 6906void
38a92d50 6907yyerror (char const *s)
bfa74976
RS
6908@{
6909@end group
6910@group
6911 fprintf (stderr, "%s\n", s);
6912@}
6913@end group
6914@end example
6915
6916After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6917error recovery if you have written suitable error recovery grammar rules
6918(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6919immediately return 1.
6920
93724f13 6921Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6922an access to the current location. With @code{%define api.pure}, this is
6923indeed the case for the GLR parsers, but not for the Yacc parser, for
6924historical reasons, and this is the why @code{%define api.pure full} should be
6925prefered over @code{%define api.pure}.
2a8d363a 6926
1f1bd572
TR
6927When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6928following signature:
2a8d363a
AD
6929
6930@example
1f1bd572 6931void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6932@end example
6933
1c0c3e95 6934@noindent
38a92d50
PE
6935The prototypes are only indications of how the code produced by Bison
6936uses @code{yyerror}. Bison-generated code always ignores the returned
6937value, so @code{yyerror} can return any type, including @code{void}.
6938Also, @code{yyerror} can be a variadic function; that is why the
6939message is always passed last.
6940
6941Traditionally @code{yyerror} returns an @code{int} that is always
6942ignored, but this is purely for historical reasons, and @code{void} is
6943preferable since it more accurately describes the return type for
6944@code{yyerror}.
93724f13 6945
bfa74976
RS
6946@vindex yynerrs
6947The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6948reported so far. Normally this variable is global; but if you
704a47c4
AD
6949request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6950then it is a local variable which only the actions can access.
bfa74976 6951
342b8b6e 6952@node Action Features
bfa74976
RS
6953@section Special Features for Use in Actions
6954@cindex summary, action features
6955@cindex action features summary
6956
6957Here is a table of Bison constructs, variables and macros that
6958are useful in actions.
6959
18b519c0 6960@deffn {Variable} $$
bfa74976
RS
6961Acts like a variable that contains the semantic value for the
6962grouping made by the current rule. @xref{Actions}.
18b519c0 6963@end deffn
bfa74976 6964
18b519c0 6965@deffn {Variable} $@var{n}
bfa74976
RS
6966Acts like a variable that contains the semantic value for the
6967@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6968@end deffn
bfa74976 6969
18b519c0 6970@deffn {Variable} $<@var{typealt}>$
bfa74976 6971Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6972specified by the @code{%union} declaration. @xref{Action Types, ,Data
6973Types of Values in Actions}.
18b519c0 6974@end deffn
bfa74976 6975
18b519c0 6976@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6977Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6978union specified by the @code{%union} declaration.
e0c471a9 6979@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6980@end deffn
bfa74976 6981
34a41a93 6982@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6983Return immediately from @code{yyparse}, indicating failure.
6984@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6985@end deffn
bfa74976 6986
34a41a93 6987@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6988Return immediately from @code{yyparse}, indicating success.
6989@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6990@end deffn
bfa74976 6991
34a41a93 6992@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6993@findex YYBACKUP
6994Unshift a token. This macro is allowed only for rules that reduce
742e4900 6995a single value, and only when there is no lookahead token.
8a4281b9 6996It is also disallowed in GLR parsers.
742e4900 6997It installs a lookahead token with token type @var{token} and
bfa74976
RS
6998semantic value @var{value}; then it discards the value that was
6999going to be reduced by this rule.
7000
7001If the macro is used when it is not valid, such as when there is
742e4900 7002a lookahead token already, then it reports a syntax error with
bfa74976
RS
7003a message @samp{cannot back up} and performs ordinary error
7004recovery.
7005
7006In either case, the rest of the action is not executed.
18b519c0 7007@end deffn
bfa74976 7008
18b519c0 7009@deffn {Macro} YYEMPTY
742e4900 7010Value stored in @code{yychar} when there is no lookahead token.
18b519c0 7011@end deffn
bfa74976 7012
32c29292 7013@deffn {Macro} YYEOF
742e4900 7014Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
7015stream.
7016@end deffn
7017
34a41a93 7018@deffn {Macro} YYERROR @code{;}
bfa74976
RS
7019Cause an immediate syntax error. This statement initiates error
7020recovery just as if the parser itself had detected an error; however, it
7021does not call @code{yyerror}, and does not print any message. If you
7022want to print an error message, call @code{yyerror} explicitly before
7023the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 7024@end deffn
bfa74976 7025
18b519c0 7026@deffn {Macro} YYRECOVERING
02103984
PE
7027@findex YYRECOVERING
7028The expression @code{YYRECOVERING ()} yields 1 when the parser
7029is recovering from a syntax error, and 0 otherwise.
bfa74976 7030@xref{Error Recovery}.
18b519c0 7031@end deffn
bfa74976 7032
18b519c0 7033@deffn {Variable} yychar
742e4900
JD
7034Variable containing either the lookahead token, or @code{YYEOF} when the
7035lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
7036has been performed so the next token is not yet known.
7037Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
7038Actions}).
742e4900 7039@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 7040@end deffn
bfa74976 7041
34a41a93 7042@deffn {Macro} yyclearin @code{;}
742e4900 7043Discard the current lookahead token. This is useful primarily in
32c29292
JD
7044error rules.
7045Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
7046Semantic Actions}).
7047@xref{Error Recovery}.
18b519c0 7048@end deffn
bfa74976 7049
34a41a93 7050@deffn {Macro} yyerrok @code{;}
bfa74976 7051Resume generating error messages immediately for subsequent syntax
13863333 7052errors. This is useful primarily in error rules.
bfa74976 7053@xref{Error Recovery}.
18b519c0 7054@end deffn
bfa74976 7055
32c29292 7056@deffn {Variable} yylloc
742e4900 7057Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
7058to @code{YYEMPTY} or @code{YYEOF}.
7059Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
7060Actions}).
7061@xref{Actions and Locations, ,Actions and Locations}.
7062@end deffn
7063
7064@deffn {Variable} yylval
742e4900 7065Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
7066not set to @code{YYEMPTY} or @code{YYEOF}.
7067Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
7068Actions}).
7069@xref{Actions, ,Actions}.
7070@end deffn
7071
18b519c0 7072@deffn {Value} @@$
303834cc
JD
7073Acts like a structure variable containing information on the textual
7074location of the grouping made by the current rule. @xref{Tracking
7075Locations}.
bfa74976 7076
847bf1f5
AD
7077@c Check if those paragraphs are still useful or not.
7078
7079@c @example
7080@c struct @{
7081@c int first_line, last_line;
7082@c int first_column, last_column;
7083@c @};
7084@c @end example
7085
7086@c Thus, to get the starting line number of the third component, you would
7087@c use @samp{@@3.first_line}.
bfa74976 7088
847bf1f5
AD
7089@c In order for the members of this structure to contain valid information,
7090@c you must make @code{yylex} supply this information about each token.
7091@c If you need only certain members, then @code{yylex} need only fill in
7092@c those members.
bfa74976 7093
847bf1f5 7094@c The use of this feature makes the parser noticeably slower.
18b519c0 7095@end deffn
847bf1f5 7096
18b519c0 7097@deffn {Value} @@@var{n}
847bf1f5 7098@findex @@@var{n}
303834cc
JD
7099Acts like a structure variable containing information on the textual
7100location of the @var{n}th component of the current rule. @xref{Tracking
7101Locations}.
18b519c0 7102@end deffn
bfa74976 7103
f7ab6a50
PE
7104@node Internationalization
7105@section Parser Internationalization
7106@cindex internationalization
7107@cindex i18n
7108@cindex NLS
7109@cindex gettext
7110@cindex bison-po
7111
7112A Bison-generated parser can print diagnostics, including error and
7113tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
7114also supports outputting diagnostics in the user's native language. To
7115make this work, the user should set the usual environment variables.
7116@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
7117For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 7118set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
7119encoding. The exact set of available locales depends on the user's
7120installation.
7121
7122The maintainer of a package that uses a Bison-generated parser enables
7123the internationalization of the parser's output through the following
8a4281b9
JD
7124steps. Here we assume a package that uses GNU Autoconf and
7125GNU Automake.
f7ab6a50
PE
7126
7127@enumerate
7128@item
30757c8c 7129@cindex bison-i18n.m4
8a4281b9 7130Into the directory containing the GNU Autoconf macros used
c949ada3 7131by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
7132@file{bison-i18n.m4} file installed by Bison under
7133@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
7134For example:
7135
7136@example
7137cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
7138@end example
7139
7140@item
30757c8c
PE
7141@findex BISON_I18N
7142@vindex BISON_LOCALEDIR
7143@vindex YYENABLE_NLS
f7ab6a50
PE
7144In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
7145invocation, add an invocation of @code{BISON_I18N}. This macro is
7146defined in the file @file{bison-i18n.m4} that you copied earlier. It
7147causes @samp{configure} to find the value of the
30757c8c
PE
7148@code{BISON_LOCALEDIR} variable, and it defines the source-language
7149symbol @code{YYENABLE_NLS} to enable translations in the
7150Bison-generated parser.
f7ab6a50
PE
7151
7152@item
7153In the @code{main} function of your program, designate the directory
7154containing Bison's runtime message catalog, through a call to
7155@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7156For example:
7157
7158@example
7159bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7160@end example
7161
7162Typically this appears after any other call @code{bindtextdomain
7163(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7164@samp{BISON_LOCALEDIR} to be defined as a string through the
7165@file{Makefile}.
7166
7167@item
7168In the @file{Makefile.am} that controls the compilation of the @code{main}
7169function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7170either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7171
7172@example
7173DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7174@end example
7175
7176or:
7177
7178@example
7179AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7180@end example
7181
7182@item
7183Finally, invoke the command @command{autoreconf} to generate the build
7184infrastructure.
7185@end enumerate
7186
bfa74976 7187
342b8b6e 7188@node Algorithm
13863333
AD
7189@chapter The Bison Parser Algorithm
7190@cindex Bison parser algorithm
bfa74976
RS
7191@cindex algorithm of parser
7192@cindex shifting
7193@cindex reduction
7194@cindex parser stack
7195@cindex stack, parser
7196
7197As Bison reads tokens, it pushes them onto a stack along with their
7198semantic values. The stack is called the @dfn{parser stack}. Pushing a
7199token is traditionally called @dfn{shifting}.
7200
7201For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7202@samp{3} to come. The stack will have four elements, one for each token
7203that was shifted.
7204
7205But the stack does not always have an element for each token read. When
7206the last @var{n} tokens and groupings shifted match the components of a
7207grammar rule, they can be combined according to that rule. This is called
7208@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7209single grouping whose symbol is the result (left hand side) of that rule.
7210Running the rule's action is part of the process of reduction, because this
7211is what computes the semantic value of the resulting grouping.
7212
7213For example, if the infix calculator's parser stack contains this:
7214
7215@example
72161 + 5 * 3
7217@end example
7218
7219@noindent
7220and the next input token is a newline character, then the last three
7221elements can be reduced to 15 via the rule:
7222
7223@example
7224expr: expr '*' expr;
7225@end example
7226
7227@noindent
7228Then the stack contains just these three elements:
7229
7230@example
72311 + 15
7232@end example
7233
7234@noindent
7235At this point, another reduction can be made, resulting in the single value
723616. Then the newline token can be shifted.
7237
7238The parser tries, by shifts and reductions, to reduce the entire input down
7239to a single grouping whose symbol is the grammar's start-symbol
7240(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7241
7242This kind of parser is known in the literature as a bottom-up parser.
7243
7244@menu
742e4900 7245* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7246* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7247* Precedence:: Operator precedence works by resolving conflicts.
7248* Contextual Precedence:: When an operator's precedence depends on context.
7249* Parser States:: The parser is a finite-state-machine with stack.
7250* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7251* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7252* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7253* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7254* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7255@end menu
7256
742e4900
JD
7257@node Lookahead
7258@section Lookahead Tokens
7259@cindex lookahead token
bfa74976
RS
7260
7261The Bison parser does @emph{not} always reduce immediately as soon as the
7262last @var{n} tokens and groupings match a rule. This is because such a
7263simple strategy is inadequate to handle most languages. Instead, when a
7264reduction is possible, the parser sometimes ``looks ahead'' at the next
7265token in order to decide what to do.
7266
7267When a token is read, it is not immediately shifted; first it becomes the
742e4900 7268@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7269perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7270the lookahead token remains off to the side. When no more reductions
7271should take place, the lookahead token is shifted onto the stack. This
bfa74976 7272does not mean that all possible reductions have been done; depending on the
742e4900 7273token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7274application.
7275
742e4900 7276Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7277expressions which contain binary addition operators and postfix unary
7278factorial operators (@samp{!}), and allow parentheses for grouping.
7279
7280@example
7281@group
5e9b6624
AD
7282expr:
7283 term '+' expr
7284| term
7285;
bfa74976
RS
7286@end group
7287
7288@group
5e9b6624
AD
7289term:
7290 '(' expr ')'
7291| term '!'
534cee7a 7292| "number"
5e9b6624 7293;
bfa74976
RS
7294@end group
7295@end example
7296
7297Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7298should be done? If the following token is @samp{)}, then the first three
7299tokens must be reduced to form an @code{expr}. This is the only valid
7300course, because shifting the @samp{)} would produce a sequence of symbols
7301@w{@code{term ')'}}, and no rule allows this.
7302
7303If the following token is @samp{!}, then it must be shifted immediately so
7304that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7305parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7306@code{expr}. It would then be impossible to shift the @samp{!} because
7307doing so would produce on the stack the sequence of symbols @code{expr
7308'!'}. No rule allows that sequence.
7309
7310@vindex yychar
32c29292
JD
7311@vindex yylval
7312@vindex yylloc
742e4900 7313The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7314Its semantic value and location, if any, are stored in the variables
7315@code{yylval} and @code{yylloc}.
bfa74976
RS
7316@xref{Action Features, ,Special Features for Use in Actions}.
7317
342b8b6e 7318@node Shift/Reduce
bfa74976
RS
7319@section Shift/Reduce Conflicts
7320@cindex conflicts
7321@cindex shift/reduce conflicts
7322@cindex dangling @code{else}
7323@cindex @code{else}, dangling
7324
7325Suppose we are parsing a language which has if-then and if-then-else
7326statements, with a pair of rules like this:
7327
7328@example
7329@group
7330if_stmt:
534cee7a
AD
7331 "if" expr "then" stmt
7332| "if" expr "then" stmt "else" stmt
5e9b6624 7333;
bfa74976
RS
7334@end group
7335@end example
7336
7337@noindent
534cee7a
AD
7338Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7339specific keyword tokens.
bfa74976 7340
534cee7a 7341When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7342contents of the stack (assuming the input is valid) are just right for
7343reduction by the first rule. But it is also legitimate to shift the
534cee7a 7344@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7345rule.
7346
7347This situation, where either a shift or a reduction would be valid, is
7348called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7349these conflicts by choosing to shift, unless otherwise directed by
7350operator precedence declarations. To see the reason for this, let's
7351contrast it with the other alternative.
7352
534cee7a 7353Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7354the else-clause to the innermost if-statement, making these two inputs
7355equivalent:
7356
7357@example
534cee7a 7358if x then if y then win; else lose;
bfa74976 7359
534cee7a 7360if x then do; if y then win; else lose; end;
bfa74976
RS
7361@end example
7362
7363But if the parser chose to reduce when possible rather than shift, the
7364result would be to attach the else-clause to the outermost if-statement,
7365making these two inputs equivalent:
7366
7367@example
534cee7a 7368if x then if y then win; else lose;
bfa74976 7369
534cee7a 7370if x then do; if y then win; end; else lose;
bfa74976
RS
7371@end example
7372
7373The conflict exists because the grammar as written is ambiguous: either
7374parsing of the simple nested if-statement is legitimate. The established
7375convention is that these ambiguities are resolved by attaching the
7376else-clause to the innermost if-statement; this is what Bison accomplishes
7377by choosing to shift rather than reduce. (It would ideally be cleaner to
7378write an unambiguous grammar, but that is very hard to do in this case.)
7379This particular ambiguity was first encountered in the specifications of
7380Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7381
7382To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7383conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7384There will be no warning as long as the number of shift/reduce conflicts
7385is exactly @var{n}, and Bison will report an error if there is a
7386different number.
c28cd5dc
AD
7387@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7388recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7389number of conflicts does not mean that they are the @emph{same}. When
7390possible, you should rather use precedence directives to @emph{fix} the
7391conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7392Operators}).
bfa74976
RS
7393
7394The definition of @code{if_stmt} above is solely to blame for the
7395conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7396rules. Here is a complete Bison grammar file that actually manifests
7397the conflict:
bfa74976
RS
7398
7399@example
bfa74976 7400%%
bfa74976 7401@group
5e9b6624
AD
7402stmt:
7403 expr
7404| if_stmt
7405;
bfa74976
RS
7406@end group
7407
7408@group
7409if_stmt:
534cee7a
AD
7410 "if" expr "then" stmt
7411| "if" expr "then" stmt "else" stmt
5e9b6624 7412;
bfa74976
RS
7413@end group
7414
5e9b6624 7415expr:
534cee7a 7416 "identifier"
5e9b6624 7417;
bfa74976
RS
7418@end example
7419
342b8b6e 7420@node Precedence
bfa74976
RS
7421@section Operator Precedence
7422@cindex operator precedence
7423@cindex precedence of operators
7424
7425Another situation where shift/reduce conflicts appear is in arithmetic
7426expressions. Here shifting is not always the preferred resolution; the
7427Bison declarations for operator precedence allow you to specify when to
7428shift and when to reduce.
7429
7430@menu
7431* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7432* Using Precedence:: How to specify precedence and associativity.
7433* Precedence Only:: How to specify precedence only.
bfa74976
RS
7434* Precedence Examples:: How these features are used in the previous example.
7435* How Precedence:: How they work.
c28cd5dc 7436* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7437@end menu
7438
342b8b6e 7439@node Why Precedence
bfa74976
RS
7440@subsection When Precedence is Needed
7441
7442Consider the following ambiguous grammar fragment (ambiguous because the
7443input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7444
7445@example
7446@group
5e9b6624
AD
7447expr:
7448 expr '-' expr
7449| expr '*' expr
7450| expr '<' expr
7451| '(' expr ')'
7452@dots{}
7453;
bfa74976
RS
7454@end group
7455@end example
7456
7457@noindent
7458Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7459should it reduce them via the rule for the subtraction operator? It
7460depends on the next token. Of course, if the next token is @samp{)}, we
7461must reduce; shifting is invalid because no single rule can reduce the
7462token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7463the next token is @samp{*} or @samp{<}, we have a choice: either
7464shifting or reduction would allow the parse to complete, but with
7465different results.
7466
7467To decide which one Bison should do, we must consider the results. If
7468the next operator token @var{op} is shifted, then it must be reduced
7469first in order to permit another opportunity to reduce the difference.
7470The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7471hand, if the subtraction is reduced before shifting @var{op}, the result
7472is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7473reduce should depend on the relative precedence of the operators
7474@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7475@samp{<}.
bfa74976
RS
7476
7477@cindex associativity
7478What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7479@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7480operators we prefer the former, which is called @dfn{left association}.
7481The latter alternative, @dfn{right association}, is desirable for
7482assignment operators. The choice of left or right association is a
7483matter of whether the parser chooses to shift or reduce when the stack
742e4900 7484contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7485makes right-associativity.
bfa74976 7486
342b8b6e 7487@node Using Precedence
bfa74976
RS
7488@subsection Specifying Operator Precedence
7489@findex %left
bfa74976 7490@findex %nonassoc
d78f0ac9
AD
7491@findex %precedence
7492@findex %right
bfa74976
RS
7493
7494Bison allows you to specify these choices with the operator precedence
7495declarations @code{%left} and @code{%right}. Each such declaration
7496contains a list of tokens, which are operators whose precedence and
7497associativity is being declared. The @code{%left} declaration makes all
7498those operators left-associative and the @code{%right} declaration makes
7499them right-associative. A third alternative is @code{%nonassoc}, which
7500declares that it is a syntax error to find the same operator twice ``in a
7501row''.
d78f0ac9
AD
7502The last alternative, @code{%precedence}, allows to define only
7503precedence and no associativity at all. As a result, any
7504associativity-related conflict that remains will be reported as an
7505compile-time error. The directive @code{%nonassoc} creates run-time
7506error: using the operator in a associative way is a syntax error. The
7507directive @code{%precedence} creates compile-time errors: an operator
7508@emph{can} be involved in an associativity-related conflict, contrary to
7509what expected the grammar author.
bfa74976
RS
7510
7511The relative precedence of different operators is controlled by the
d78f0ac9
AD
7512order in which they are declared. The first precedence/associativity
7513declaration in the file declares the operators whose
bfa74976
RS
7514precedence is lowest, the next such declaration declares the operators
7515whose precedence is a little higher, and so on.
7516
d78f0ac9
AD
7517@node Precedence Only
7518@subsection Specifying Precedence Only
7519@findex %precedence
7520
8a4281b9 7521Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7522@code{%nonassoc}, which all defines precedence and associativity, little
7523attention is paid to the fact that precedence cannot be defined without
7524defining associativity. Yet, sometimes, when trying to solve a
7525conflict, precedence suffices. In such a case, using @code{%left},
7526@code{%right}, or @code{%nonassoc} might hide future (associativity
7527related) conflicts that would remain hidden.
7528
7529The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7530Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7531in the following situation, where the period denotes the current parsing
7532state:
7533
7534@example
7535if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7536@end example
7537
7538The conflict involves the reduction of the rule @samp{IF expr THEN
7539stmt}, which precedence is by default that of its last token
7540(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7541disambiguation (attach the @code{else} to the closest @code{if}),
7542shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7543higher than that of @code{THEN}. But neither is expected to be involved
7544in an associativity related conflict, which can be specified as follows.
7545
7546@example
7547%precedence THEN
7548%precedence ELSE
7549@end example
7550
7551The unary-minus is another typical example where associativity is
7552usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7553Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7554used to declare the precedence of @code{NEG}, which is more than needed
7555since it also defines its associativity. While this is harmless in the
7556traditional example, who knows how @code{NEG} might be used in future
7557evolutions of the grammar@dots{}
7558
342b8b6e 7559@node Precedence Examples
bfa74976
RS
7560@subsection Precedence Examples
7561
7562In our example, we would want the following declarations:
7563
7564@example
7565%left '<'
7566%left '-'
7567%left '*'
7568@end example
7569
7570In a more complete example, which supports other operators as well, we
7571would declare them in groups of equal precedence. For example, @code{'+'} is
7572declared with @code{'-'}:
7573
7574@example
534cee7a 7575%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7576%left '+' '-'
7577%left '*' '/'
7578@end example
7579
342b8b6e 7580@node How Precedence
bfa74976
RS
7581@subsection How Precedence Works
7582
7583The first effect of the precedence declarations is to assign precedence
7584levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7585precedence levels to certain rules: each rule gets its precedence from
7586the last terminal symbol mentioned in the components. (You can also
7587specify explicitly the precedence of a rule. @xref{Contextual
7588Precedence, ,Context-Dependent Precedence}.)
7589
7590Finally, the resolution of conflicts works by comparing the precedence
742e4900 7591of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7592token's precedence is higher, the choice is to shift. If the rule's
7593precedence is higher, the choice is to reduce. If they have equal
7594precedence, the choice is made based on the associativity of that
7595precedence level. The verbose output file made by @samp{-v}
7596(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7597resolved.
bfa74976
RS
7598
7599Not all rules and not all tokens have precedence. If either the rule or
742e4900 7600the lookahead token has no precedence, then the default is to shift.
bfa74976 7601
c28cd5dc
AD
7602@node Non Operators
7603@subsection Using Precedence For Non Operators
7604
7605Using properly precedence and associativity directives can help fixing
7606shift/reduce conflicts that do not involve arithmetics-like operators. For
7607instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7608Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7609
7610In the present case, the conflict is between the token @code{"else"} willing
7611to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7612for reduction. By default, the precedence of a rule is that of its last
7613token, here @code{"then"}, so the conflict will be solved appropriately
7614by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7615instance as follows:
7616
7617@example
7618@group
589149dc
AD
7619%precedence "then"
7620%precedence "else"
c28cd5dc
AD
7621@end group
7622@end example
7623
7624Alternatively, you may give both tokens the same precedence, in which case
7625associativity is used to solve the conflict. To preserve the shift action,
7626use right associativity:
7627
7628@example
7629%right "then" "else"
7630@end example
7631
7632Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7633``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7634of these keywords with respect to the other operators your grammar.
7635Therefore, instead of being warned about new conflicts you would be unaware
7636of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7637being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7638else 2) + 3}?), the conflict will be already ``fixed''.
7639
342b8b6e 7640@node Contextual Precedence
bfa74976
RS
7641@section Context-Dependent Precedence
7642@cindex context-dependent precedence
7643@cindex unary operator precedence
7644@cindex precedence, context-dependent
7645@cindex precedence, unary operator
7646@findex %prec
7647
7648Often the precedence of an operator depends on the context. This sounds
7649outlandish at first, but it is really very common. For example, a minus
7650sign typically has a very high precedence as a unary operator, and a
7651somewhat lower precedence (lower than multiplication) as a binary operator.
7652
d78f0ac9
AD
7653The Bison precedence declarations
7654can only be used once for a given token; so a token has
bfa74976
RS
7655only one precedence declared in this way. For context-dependent
7656precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7657modifier for rules.
bfa74976
RS
7658
7659The @code{%prec} modifier declares the precedence of a particular rule by
7660specifying a terminal symbol whose precedence should be used for that rule.
7661It's not necessary for that symbol to appear otherwise in the rule. The
7662modifier's syntax is:
7663
7664@example
7665%prec @var{terminal-symbol}
7666@end example
7667
7668@noindent
7669and it is written after the components of the rule. Its effect is to
7670assign the rule the precedence of @var{terminal-symbol}, overriding
7671the precedence that would be deduced for it in the ordinary way. The
7672altered rule precedence then affects how conflicts involving that rule
7673are resolved (@pxref{Precedence, ,Operator Precedence}).
7674
7675Here is how @code{%prec} solves the problem of unary minus. First, declare
7676a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7677are no tokens of this type, but the symbol serves to stand for its
7678precedence:
7679
7680@example
7681@dots{}
7682%left '+' '-'
7683%left '*'
7684%left UMINUS
7685@end example
7686
7687Now the precedence of @code{UMINUS} can be used in specific rules:
7688
7689@example
7690@group
5e9b6624
AD
7691exp:
7692 @dots{}
7693| exp '-' exp
7694 @dots{}
7695| '-' exp %prec UMINUS
bfa74976
RS
7696@end group
7697@end example
7698
91d2c560 7699@ifset defaultprec
39a06c25
PE
7700If you forget to append @code{%prec UMINUS} to the rule for unary
7701minus, Bison silently assumes that minus has its usual precedence.
7702This kind of problem can be tricky to debug, since one typically
7703discovers the mistake only by testing the code.
7704
22fccf95 7705The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7706this kind of problem systematically. It causes rules that lack a
7707@code{%prec} modifier to have no precedence, even if the last terminal
7708symbol mentioned in their components has a declared precedence.
7709
22fccf95 7710If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7711for all rules that participate in precedence conflict resolution.
7712Then you will see any shift/reduce conflict until you tell Bison how
7713to resolve it, either by changing your grammar or by adding an
7714explicit precedence. This will probably add declarations to the
7715grammar, but it helps to protect against incorrect rule precedences.
7716
22fccf95
PE
7717The effect of @code{%no-default-prec;} can be reversed by giving
7718@code{%default-prec;}, which is the default.
91d2c560 7719@end ifset
39a06c25 7720
342b8b6e 7721@node Parser States
bfa74976
RS
7722@section Parser States
7723@cindex finite-state machine
7724@cindex parser state
7725@cindex state (of parser)
7726
7727The function @code{yyparse} is implemented using a finite-state machine.
7728The values pushed on the parser stack are not simply token type codes; they
7729represent the entire sequence of terminal and nonterminal symbols at or
7730near the top of the stack. The current state collects all the information
7731about previous input which is relevant to deciding what to do next.
7732
742e4900
JD
7733Each time a lookahead token is read, the current parser state together
7734with the type of lookahead token are looked up in a table. This table
7735entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7736specifies the new parser state, which is pushed onto the top of the
7737parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7738This means that a certain number of tokens or groupings are taken off
7739the top of the stack, and replaced by one grouping. In other words,
7740that number of states are popped from the stack, and one new state is
7741pushed.
7742
742e4900 7743There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7744is erroneous in the current state. This causes error processing to begin
7745(@pxref{Error Recovery}).
7746
342b8b6e 7747@node Reduce/Reduce
bfa74976
RS
7748@section Reduce/Reduce Conflicts
7749@cindex reduce/reduce conflict
7750@cindex conflicts, reduce/reduce
7751
7752A reduce/reduce conflict occurs if there are two or more rules that apply
7753to the same sequence of input. This usually indicates a serious error
7754in the grammar.
7755
7756For example, here is an erroneous attempt to define a sequence
7757of zero or more @code{word} groupings.
7758
7759@example
d4fca427 7760@group
5e9b6624 7761sequence:
6240346a 7762 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7763| maybeword
7764| sequence word @{ printf ("added word %s\n", $2); @}
7765;
d4fca427 7766@end group
bfa74976 7767
d4fca427 7768@group
5e9b6624 7769maybeword:
6240346a
AD
7770 %empty @{ printf ("empty maybeword\n"); @}
7771| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7772;
d4fca427 7773@end group
bfa74976
RS
7774@end example
7775
7776@noindent
7777The error is an ambiguity: there is more than one way to parse a single
7778@code{word} into a @code{sequence}. It could be reduced to a
7779@code{maybeword} and then into a @code{sequence} via the second rule.
7780Alternatively, nothing-at-all could be reduced into a @code{sequence}
7781via the first rule, and this could be combined with the @code{word}
7782using the third rule for @code{sequence}.
7783
7784There is also more than one way to reduce nothing-at-all into a
7785@code{sequence}. This can be done directly via the first rule,
7786or indirectly via @code{maybeword} and then the second rule.
7787
7788You might think that this is a distinction without a difference, because it
7789does not change whether any particular input is valid or not. But it does
7790affect which actions are run. One parsing order runs the second rule's
7791action; the other runs the first rule's action and the third rule's action.
7792In this example, the output of the program changes.
7793
7794Bison resolves a reduce/reduce conflict by choosing to use the rule that
7795appears first in the grammar, but it is very risky to rely on this. Every
7796reduce/reduce conflict must be studied and usually eliminated. Here is the
7797proper way to define @code{sequence}:
7798
7799@example
51356dd2 7800@group
5e9b6624 7801sequence:
6240346a 7802 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7803| sequence word @{ printf ("added word %s\n", $2); @}
7804;
51356dd2 7805@end group
bfa74976
RS
7806@end example
7807
7808Here is another common error that yields a reduce/reduce conflict:
7809
7810@example
51356dd2 7811@group
589149dc 7812sequence:
6240346a 7813 %empty
5e9b6624
AD
7814| sequence words
7815| sequence redirects
7816;
51356dd2 7817@end group
bfa74976 7818
51356dd2 7819@group
5e9b6624 7820words:
6240346a 7821 %empty
5e9b6624
AD
7822| words word
7823;
51356dd2 7824@end group
bfa74976 7825
51356dd2 7826@group
5e9b6624 7827redirects:
6240346a 7828 %empty
5e9b6624
AD
7829| redirects redirect
7830;
51356dd2 7831@end group
bfa74976
RS
7832@end example
7833
7834@noindent
7835The intention here is to define a sequence which can contain either
7836@code{word} or @code{redirect} groupings. The individual definitions of
7837@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7838three together make a subtle ambiguity: even an empty input can be parsed
7839in infinitely many ways!
7840
7841Consider: nothing-at-all could be a @code{words}. Or it could be two
7842@code{words} in a row, or three, or any number. It could equally well be a
7843@code{redirects}, or two, or any number. Or it could be a @code{words}
7844followed by three @code{redirects} and another @code{words}. And so on.
7845
7846Here are two ways to correct these rules. First, to make it a single level
7847of sequence:
7848
7849@example
5e9b6624 7850sequence:
6240346a 7851 %empty
5e9b6624
AD
7852| sequence word
7853| sequence redirect
7854;
bfa74976
RS
7855@end example
7856
7857Second, to prevent either a @code{words} or a @code{redirects}
7858from being empty:
7859
7860@example
d4fca427 7861@group
5e9b6624 7862sequence:
6240346a 7863 %empty
5e9b6624
AD
7864| sequence words
7865| sequence redirects
7866;
d4fca427 7867@end group
bfa74976 7868
d4fca427 7869@group
5e9b6624
AD
7870words:
7871 word
7872| words word
7873;
d4fca427 7874@end group
bfa74976 7875
d4fca427 7876@group
5e9b6624
AD
7877redirects:
7878 redirect
7879| redirects redirect
7880;
d4fca427 7881@end group
bfa74976
RS
7882@end example
7883
53e2cd1e
AD
7884Yet this proposal introduces another kind of ambiguity! The input
7885@samp{word word} can be parsed as a single @code{words} composed of two
7886@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7887@code{redirect}/@code{redirects}). However this ambiguity is now a
7888shift/reduce conflict, and therefore it can now be addressed with precedence
7889directives.
7890
7891To simplify the matter, we will proceed with @code{word} and @code{redirect}
7892being tokens: @code{"word"} and @code{"redirect"}.
7893
7894To prefer the longest @code{words}, the conflict between the token
7895@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7896as a shift. To this end, we use the same techniques as exposed above, see
7897@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7898relies on precedences: use @code{%prec} to give a lower precedence to the
7899rule:
7900
7901@example
589149dc
AD
7902%precedence "word"
7903%precedence "sequence"
53e2cd1e
AD
7904%%
7905@group
7906sequence:
6240346a 7907 %empty
53e2cd1e
AD
7908| sequence word %prec "sequence"
7909| sequence redirect %prec "sequence"
7910;
7911@end group
7912
7913@group
7914words:
7915 word
7916| words "word"
7917;
7918@end group
7919@end example
7920
7921Another solution relies on associativity: provide both the token and the
7922rule with the same precedence, but make them right-associative:
7923
7924@example
7925%right "word" "redirect"
7926%%
7927@group
7928sequence:
6240346a 7929 %empty
53e2cd1e
AD
7930| sequence word %prec "word"
7931| sequence redirect %prec "redirect"
7932;
7933@end group
7934@end example
7935
cc09e5be
JD
7936@node Mysterious Conflicts
7937@section Mysterious Conflicts
7fceb615 7938@cindex Mysterious Conflicts
bfa74976
RS
7939
7940Sometimes reduce/reduce conflicts can occur that don't look warranted.
7941Here is an example:
7942
7943@example
7944@group
bfa74976 7945%%
5e9b6624 7946def: param_spec return_spec ',';
bfa74976 7947param_spec:
5e9b6624
AD
7948 type
7949| name_list ':' type
7950;
bfa74976 7951@end group
589149dc 7952
bfa74976
RS
7953@group
7954return_spec:
5e9b6624
AD
7955 type
7956| name ':' type
7957;
bfa74976 7958@end group
589149dc 7959
534cee7a 7960type: "id";
589149dc 7961
bfa74976 7962@group
534cee7a 7963name: "id";
bfa74976 7964name_list:
5e9b6624
AD
7965 name
7966| name ',' name_list
7967;
bfa74976
RS
7968@end group
7969@end example
7970
534cee7a
AD
7971It would seem that this grammar can be parsed with only a single token of
7972lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7973@code{name} if a comma or colon follows, or a @code{type} if another
7974@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7975
7fceb615
JD
7976@cindex LR
7977@cindex LALR
eb45ef3b 7978However, for historical reasons, Bison cannot by default handle all
8a4281b9 7979LR(1) grammars.
534cee7a 7980In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7981of a @code{param_spec} and likewise at the beginning of a
7982@code{return_spec}, are similar enough that Bison assumes they are the
7983same.
7984They appear similar because the same set of rules would be
bfa74976
RS
7985active---the rule for reducing to a @code{name} and that for reducing to
7986a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7987that the rules would require different lookahead tokens in the two
bfa74976
RS
7988contexts, so it makes a single parser state for them both. Combining
7989the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7990occurrence means that the grammar is not LALR(1).
bfa74976 7991
7fceb615
JD
7992@cindex IELR
7993@cindex canonical LR
7994For many practical grammars (specifically those that fall into the non-LR(1)
7995class), the limitations of LALR(1) result in difficulties beyond just
7996mysterious reduce/reduce conflicts. The best way to fix all these problems
7997is to select a different parser table construction algorithm. Either
7998IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7999and easier to debug during development. @xref{LR Table Construction}, for
8000details. (Bison's IELR(1) and canonical LR(1) implementations are
8001experimental. More user feedback will help to stabilize them.)
eb45ef3b 8002
8a4281b9 8003If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
8004can often fix a mysterious conflict by identifying the two parser states
8005that are being confused, and adding something to make them look
8006distinct. In the above example, adding one rule to
bfa74976
RS
8007@code{return_spec} as follows makes the problem go away:
8008
8009@example
8010@group
bfa74976
RS
8011@dots{}
8012return_spec:
5e9b6624
AD
8013 type
8014| name ':' type
534cee7a 8015| "id" "bogus" /* This rule is never used. */
5e9b6624 8016;
bfa74976
RS
8017@end group
8018@end example
8019
8020This corrects the problem because it introduces the possibility of an
534cee7a 8021additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
8022@code{return_spec}. This rule is not active in the corresponding context
8023in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 8024As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
8025the added rule cannot alter the way actual input is parsed.
8026
8027In this particular example, there is another way to solve the problem:
534cee7a 8028rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
8029instead of via @code{name}. This also causes the two confusing
8030contexts to have different sets of active rules, because the one for
8031@code{return_spec} activates the altered rule for @code{return_spec}
8032rather than the one for @code{name}.
8033
8034@example
589149dc 8035@group
bfa74976 8036param_spec:
5e9b6624
AD
8037 type
8038| name_list ':' type
8039;
589149dc
AD
8040@end group
8041
8042@group
bfa74976 8043return_spec:
5e9b6624 8044 type
534cee7a 8045| "id" ':' type
5e9b6624 8046;
589149dc 8047@end group
bfa74976
RS
8048@end example
8049
8a4281b9 8050For a more detailed exposition of LALR(1) parsers and parser
5e528941 8051generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 8052
7fceb615
JD
8053@node Tuning LR
8054@section Tuning LR
8055
8056The default behavior of Bison's LR-based parsers is chosen mostly for
8057historical reasons, but that behavior is often not robust. For example, in
8058the previous section, we discussed the mysterious conflicts that can be
8059produced by LALR(1), Bison's default parser table construction algorithm.
8060Another example is Bison's @code{%define parse.error verbose} directive,
8061which instructs the generated parser to produce verbose syntax error
8062messages, which can sometimes contain incorrect information.
8063
8064In this section, we explore several modern features of Bison that allow you
8065to tune fundamental aspects of the generated LR-based parsers. Some of
8066these features easily eliminate shortcomings like those mentioned above.
8067Others can be helpful purely for understanding your parser.
8068
8069Most of the features discussed in this section are still experimental. More
8070user feedback will help to stabilize them.
8071
8072@menu
8073* LR Table Construction:: Choose a different construction algorithm.
8074* Default Reductions:: Disable default reductions.
8075* LAC:: Correct lookahead sets in the parser states.
8076* Unreachable States:: Keep unreachable parser states for debugging.
8077@end menu
8078
8079@node LR Table Construction
8080@subsection LR Table Construction
8081@cindex Mysterious Conflict
8082@cindex LALR
8083@cindex IELR
8084@cindex canonical LR
8085@findex %define lr.type
8086
8087For historical reasons, Bison constructs LALR(1) parser tables by default.
8088However, LALR does not possess the full language-recognition power of LR.
8089As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 8090mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
8091Conflicts}.
8092
8093As we also demonstrated in that example, the traditional approach to
8094eliminating such mysterious behavior is to restructure the grammar.
8095Unfortunately, doing so correctly is often difficult. Moreover, merely
8096discovering that LALR causes mysterious behavior in your parser can be
8097difficult as well.
8098
8099Fortunately, Bison provides an easy way to eliminate the possibility of such
8100mysterious behavior altogether. You simply need to activate a more powerful
8101parser table construction algorithm by using the @code{%define lr.type}
8102directive.
8103
511dd971 8104@deffn {Directive} {%define lr.type} @var{type}
7fceb615 8105Specify the type of parser tables within the LR(1) family. The accepted
511dd971 8106values for @var{type} are:
7fceb615
JD
8107
8108@itemize
8109@item @code{lalr} (default)
8110@item @code{ielr}
8111@item @code{canonical-lr}
8112@end itemize
8113
8114(This feature is experimental. More user feedback will help to stabilize
8115it.)
8116@end deffn
8117
8118For example, to activate IELR, you might add the following directive to you
8119grammar file:
8120
8121@example
8122%define lr.type ielr
8123@end example
8124
cc09e5be 8125@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
8126conflict is then eliminated, so there is no need to invest time in
8127comprehending the conflict or restructuring the grammar to fix it. If,
8128during future development, the grammar evolves such that all mysterious
8129behavior would have disappeared using just LALR, you need not fear that
8130continuing to use IELR will result in unnecessarily large parser tables.
8131That is, IELR generates LALR tables when LALR (using a deterministic parsing
8132algorithm) is sufficient to support the full language-recognition power of
8133LR. Thus, by enabling IELR at the start of grammar development, you can
8134safely and completely eliminate the need to consider LALR's shortcomings.
8135
8136While IELR is almost always preferable, there are circumstances where LALR
8137or the canonical LR parser tables described by Knuth
8138(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
8139relative advantages of each parser table construction algorithm within
8140Bison:
8141
8142@itemize
8143@item LALR
8144
8145There are at least two scenarios where LALR can be worthwhile:
8146
8147@itemize
8148@item GLR without static conflict resolution.
8149
8150@cindex GLR with LALR
8151When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8152conflicts statically (for example, with @code{%left} or @code{%precedence}),
8153then
7fceb615
JD
8154the parser explores all potential parses of any given input. In this case,
8155the choice of parser table construction algorithm is guaranteed not to alter
8156the language accepted by the parser. LALR parser tables are the smallest
8157parser tables Bison can currently construct, so they may then be preferable.
8158Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8159more like a deterministic parser in the syntactic contexts where those
8160conflicts appear, and so either IELR or canonical LR can then be helpful to
8161avoid LALR's mysterious behavior.
8162
8163@item Malformed grammars.
8164
8165Occasionally during development, an especially malformed grammar with a
8166major recurring flaw may severely impede the IELR or canonical LR parser
8167table construction algorithm. LALR can be a quick way to construct parser
8168tables in order to investigate such problems while ignoring the more subtle
8169differences from IELR and canonical LR.
8170@end itemize
8171
8172@item IELR
8173
8174IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8175any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8176always accept exactly the same set of sentences. However, like LALR, IELR
8177merges parser states during parser table construction so that the number of
8178parser states is often an order of magnitude less than for canonical LR.
8179More importantly, because canonical LR's extra parser states may contain
8180duplicate conflicts in the case of non-LR grammars, the number of conflicts
8181for IELR is often an order of magnitude less as well. This effect can
8182significantly reduce the complexity of developing a grammar.
8183
8184@item Canonical LR
8185
8186@cindex delayed syntax error detection
8187@cindex LAC
8188@findex %nonassoc
8189While inefficient, canonical LR parser tables can be an interesting means to
8190explore a grammar because they possess a property that IELR and LALR tables
8191do not. That is, if @code{%nonassoc} is not used and default reductions are
8192left disabled (@pxref{Default Reductions}), then, for every left context of
8193every canonical LR state, the set of tokens accepted by that state is
8194guaranteed to be the exact set of tokens that is syntactically acceptable in
8195that left context. It might then seem that an advantage of canonical LR
8196parsers in production is that, under the above constraints, they are
8197guaranteed to detect a syntax error as soon as possible without performing
8198any unnecessary reductions. However, IELR parsers that use LAC are also
8199able to achieve this behavior without sacrificing @code{%nonassoc} or
8200default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8201@end itemize
8202
8203For a more detailed exposition of the mysterious behavior in LALR parsers
8204and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8205@ref{Bibliography,,Denny 2010 November}.
8206
8207@node Default Reductions
8208@subsection Default Reductions
8209@cindex default reductions
f3bc3386 8210@findex %define lr.default-reduction
7fceb615
JD
8211@findex %nonassoc
8212
8213After parser table construction, Bison identifies the reduction with the
8214largest lookahead set in each parser state. To reduce the size of the
8215parser state, traditional Bison behavior is to remove that lookahead set and
8216to assign that reduction to be the default parser action. Such a reduction
8217is known as a @dfn{default reduction}.
8218
8219Default reductions affect more than the size of the parser tables. They
8220also affect the behavior of the parser:
8221
8222@itemize
8223@item Delayed @code{yylex} invocations.
8224
8225@cindex delayed yylex invocations
8226@cindex consistent states
8227@cindex defaulted states
8228A @dfn{consistent state} is a state that has only one possible parser
8229action. If that action is a reduction and is encoded as a default
8230reduction, then that consistent state is called a @dfn{defaulted state}.
8231Upon reaching a defaulted state, a Bison-generated parser does not bother to
8232invoke @code{yylex} to fetch the next token before performing the reduction.
8233In other words, whether default reductions are enabled in consistent states
8234determines how soon a Bison-generated parser invokes @code{yylex} for a
8235token: immediately when it @emph{reaches} that token in the input or when it
8236eventually @emph{needs} that token as a lookahead to determine the next
8237parser action. Traditionally, default reductions are enabled, and so the
8238parser exhibits the latter behavior.
8239
8240The presence of defaulted states is an important consideration when
8241designing @code{yylex} and the grammar file. That is, if the behavior of
8242@code{yylex} can influence or be influenced by the semantic actions
8243associated with the reductions in defaulted states, then the delay of the
8244next @code{yylex} invocation until after those reductions is significant.
8245For example, the semantic actions might pop a scope stack that @code{yylex}
8246uses to determine what token to return. Thus, the delay might be necessary
8247to ensure that @code{yylex} does not look up the next token in a scope that
8248should already be considered closed.
8249
8250@item Delayed syntax error detection.
8251
8252@cindex delayed syntax error detection
8253When the parser fetches a new token by invoking @code{yylex}, it checks
8254whether there is an action for that token in the current parser state. The
8255parser detects a syntax error if and only if either (1) there is no action
8256for that token or (2) the action for that token is the error action (due to
8257the use of @code{%nonassoc}). However, if there is a default reduction in
8258that state (which might or might not be a defaulted state), then it is
8259impossible for condition 1 to exist. That is, all tokens have an action.
8260Thus, the parser sometimes fails to detect the syntax error until it reaches
8261a later state.
8262
8263@cindex LAC
8264@c If there's an infinite loop, default reductions can prevent an incorrect
8265@c sentence from being rejected.
8266While default reductions never cause the parser to accept syntactically
8267incorrect sentences, the delay of syntax error detection can have unexpected
8268effects on the behavior of the parser. However, the delay can be caused
8269anyway by parser state merging and the use of @code{%nonassoc}, and it can
8270be fixed by another Bison feature, LAC. We discuss the effects of delayed
8271syntax error detection and LAC more in the next section (@pxref{LAC}).
8272@end itemize
8273
8274For canonical LR, the only default reduction that Bison enables by default
8275is the accept action, which appears only in the accepting state, which has
8276no other action and is thus a defaulted state. However, the default accept
8277action does not delay any @code{yylex} invocation or syntax error detection
8278because the accept action ends the parse.
8279
8280For LALR and IELR, Bison enables default reductions in nearly all states by
8281default. There are only two exceptions. First, states that have a shift
8282action on the @code{error} token do not have default reductions because
8283delayed syntax error detection could then prevent the @code{error} token
8284from ever being shifted in that state. However, parser state merging can
8285cause the same effect anyway, and LAC fixes it in both cases, so future
8286versions of Bison might drop this exception when LAC is activated. Second,
8287GLR parsers do not record the default reduction as the action on a lookahead
8288token for which there is a conflict. The correct action in this case is to
8289split the parse instead.
8290
8291To adjust which states have default reductions enabled, use the
f3bc3386 8292@code{%define lr.default-reduction} directive.
7fceb615 8293
5807bb91 8294@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8295Specify the kind of states that are permitted to contain default reductions.
511dd971 8296The accepted values of @var{where} are:
7fceb615 8297@itemize
f0ad1b2f 8298@item @code{most} (default for LALR and IELR)
7fceb615
JD
8299@item @code{consistent}
8300@item @code{accepting} (default for canonical LR)
8301@end itemize
8302
8303(The ability to specify where default reductions are permitted is
8304experimental. More user feedback will help to stabilize it.)
8305@end deffn
8306
7fceb615
JD
8307@node LAC
8308@subsection LAC
8309@findex %define parse.lac
8310@cindex LAC
8311@cindex lookahead correction
8312
8313Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8314encountering a syntax error. First, the parser might perform additional
8315parser stack reductions before discovering the syntax error. Such
8316reductions can perform user semantic actions that are unexpected because
8317they are based on an invalid token, and they cause error recovery to begin
8318in a different syntactic context than the one in which the invalid token was
8319encountered. Second, when verbose error messages are enabled (@pxref{Error
8320Reporting}), the expected token list in the syntax error message can both
8321contain invalid tokens and omit valid tokens.
8322
8323The culprits for the above problems are @code{%nonassoc}, default reductions
8324in inconsistent states (@pxref{Default Reductions}), and parser state
8325merging. Because IELR and LALR merge parser states, they suffer the most.
8326Canonical LR can suffer only if @code{%nonassoc} is used or if default
8327reductions are enabled for inconsistent states.
8328
8329LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8330that solves these problems for canonical LR, IELR, and LALR without
8331sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8332enable LAC with the @code{%define parse.lac} directive.
8333
511dd971 8334@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8335Enable LAC to improve syntax error handling.
8336@itemize
8337@item @code{none} (default)
8338@item @code{full}
8339@end itemize
8340(This feature is experimental. More user feedback will help to stabilize
8341it. Moreover, it is currently only available for deterministic parsers in
8342C.)
8343@end deffn
8344
8345Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8346fetches a new token from the scanner so that it can determine the next
8347parser action, it immediately suspends normal parsing and performs an
8348exploratory parse using a temporary copy of the normal parser state stack.
8349During this exploratory parse, the parser does not perform user semantic
8350actions. If the exploratory parse reaches a shift action, normal parsing
8351then resumes on the normal parser stacks. If the exploratory parse reaches
8352an error instead, the parser reports a syntax error. If verbose syntax
8353error messages are enabled, the parser must then discover the list of
8354expected tokens, so it performs a separate exploratory parse for each token
8355in the grammar.
8356
8357There is one subtlety about the use of LAC. That is, when in a consistent
8358parser state with a default reduction, the parser will not attempt to fetch
8359a token from the scanner because no lookahead is needed to determine the
8360next parser action. Thus, whether default reductions are enabled in
8361consistent states (@pxref{Default Reductions}) affects how soon the parser
8362detects a syntax error: immediately when it @emph{reaches} an erroneous
8363token or when it eventually @emph{needs} that token as a lookahead to
8364determine the next parser action. The latter behavior is probably more
8365intuitive, so Bison currently provides no way to achieve the former behavior
8366while default reductions are enabled in consistent states.
8367
8368Thus, when LAC is in use, for some fixed decision of whether to enable
8369default reductions in consistent states, canonical LR and IELR behave almost
8370exactly the same for both syntactically acceptable and syntactically
8371unacceptable input. While LALR still does not support the full
8372language-recognition power of canonical LR and IELR, LAC at least enables
8373LALR's syntax error handling to correctly reflect LALR's
8374language-recognition power.
8375
8376There are a few caveats to consider when using LAC:
8377
8378@itemize
8379@item Infinite parsing loops.
8380
8381IELR plus LAC does have one shortcoming relative to canonical LR. Some
8382parsers generated by Bison can loop infinitely. LAC does not fix infinite
8383parsing loops that occur between encountering a syntax error and detecting
8384it, but enabling canonical LR or disabling default reductions sometimes
8385does.
8386
8387@item Verbose error message limitations.
8388
8389Because of internationalization considerations, Bison-generated parsers
8390limit the size of the expected token list they are willing to report in a
8391verbose syntax error message. If the number of expected tokens exceeds that
8392limit, the list is simply dropped from the message. Enabling LAC can
8393increase the size of the list and thus cause the parser to drop it. Of
8394course, dropping the list is better than reporting an incorrect list.
8395
8396@item Performance.
8397
8398Because LAC requires many parse actions to be performed twice, it can have a
8399performance penalty. However, not all parse actions must be performed
8400twice. Specifically, during a series of default reductions in consistent
8401states and shift actions, the parser never has to initiate an exploratory
8402parse. Moreover, the most time-consuming tasks in a parse are often the
8403file I/O, the lexical analysis performed by the scanner, and the user's
8404semantic actions, but none of these are performed during the exploratory
8405parse. Finally, the base of the temporary stack used during an exploratory
8406parse is a pointer into the normal parser state stack so that the stack is
8407never physically copied. In our experience, the performance penalty of LAC
5a321748 8408has proved insignificant for practical grammars.
7fceb615
JD
8409@end itemize
8410
709c7d11
JD
8411While the LAC algorithm shares techniques that have been recognized in the
8412parser community for years, for the publication that introduces LAC,
8413@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8414
7fceb615
JD
8415@node Unreachable States
8416@subsection Unreachable States
f3bc3386 8417@findex %define lr.keep-unreachable-state
7fceb615
JD
8418@cindex unreachable states
8419
8420If there exists no sequence of transitions from the parser's start state to
8421some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8422state}. A state can become unreachable during conflict resolution if Bison
8423disables a shift action leading to it from a predecessor state.
8424
8425By default, Bison removes unreachable states from the parser after conflict
8426resolution because they are useless in the generated parser. However,
8427keeping unreachable states is sometimes useful when trying to understand the
8428relationship between the parser and the grammar.
8429
5807bb91 8430@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8431Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8432@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8433@end deffn
8434
8435There are a few caveats to consider:
8436
8437@itemize @bullet
8438@item Missing or extraneous warnings.
8439
8440Unreachable states may contain conflicts and may use rules not used in any
8441other state. Thus, keeping unreachable states may induce warnings that are
8442irrelevant to your parser's behavior, and it may eliminate warnings that are
8443relevant. Of course, the change in warnings may actually be relevant to a
8444parser table analysis that wants to keep unreachable states, so this
8445behavior will likely remain in future Bison releases.
8446
8447@item Other useless states.
8448
8449While Bison is able to remove unreachable states, it is not guaranteed to
8450remove other kinds of useless states. Specifically, when Bison disables
8451reduce actions during conflict resolution, some goto actions may become
8452useless, and thus some additional states may become useless. If Bison were
8453to compute which goto actions were useless and then disable those actions,
8454it could identify such states as unreachable and then remove those states.
8455However, Bison does not compute which goto actions are useless.
8456@end itemize
8457
fae437e8 8458@node Generalized LR Parsing
8a4281b9
JD
8459@section Generalized LR (GLR) Parsing
8460@cindex GLR parsing
8461@cindex generalized LR (GLR) parsing
676385e2 8462@cindex ambiguous grammars
9d9b8b70 8463@cindex nondeterministic parsing
676385e2 8464
fae437e8
AD
8465Bison produces @emph{deterministic} parsers that choose uniquely
8466when to reduce and which reduction to apply
742e4900 8467based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8468As a result, normal Bison handles a proper subset of the family of
8469context-free languages.
fae437e8 8470Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8471sequence of reductions cannot have deterministic parsers in this sense.
8472The same is true of languages that require more than one symbol of
742e4900 8473lookahead, since the parser lacks the information necessary to make a
676385e2 8474decision at the point it must be made in a shift-reduce parser.
cc09e5be 8475Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8476there are languages where Bison's default choice of how to
676385e2
PH
8477summarize the input seen so far loses necessary information.
8478
8479When you use the @samp{%glr-parser} declaration in your grammar file,
8480Bison generates a parser that uses a different algorithm, called
8a4281b9 8481Generalized LR (or GLR). A Bison GLR
c827f760 8482parser uses the same basic
676385e2
PH
8483algorithm for parsing as an ordinary Bison parser, but behaves
8484differently in cases where there is a shift-reduce conflict that has not
fae437e8 8485been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8486reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8487situation, it
fae437e8 8488effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8489shift or reduction. These parsers then proceed as usual, consuming
8490tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8491and split further, with the result that instead of a sequence of states,
8a4281b9 8492a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8493
8494In effect, each stack represents a guess as to what the proper parse
8495is. Additional input may indicate that a guess was wrong, in which case
8496the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8497actions generated in each stack are saved, rather than being executed
676385e2 8498immediately. When a stack disappears, its saved semantic actions never
fae437e8 8499get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8500their sets of semantic actions are both saved with the state that
8501results from the reduction. We say that two stacks are equivalent
fae437e8 8502when they both represent the same sequence of states,
676385e2
PH
8503and each pair of corresponding states represents a
8504grammar symbol that produces the same segment of the input token
8505stream.
8506
8507Whenever the parser makes a transition from having multiple
eb45ef3b 8508states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8509algorithm, after resolving and executing the saved-up actions.
8510At this transition, some of the states on the stack will have semantic
8511values that are sets (actually multisets) of possible actions. The
8512parser tries to pick one of the actions by first finding one whose rule
8513has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8514declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8515precedence, but there the same merging function is declared for both
fae437e8 8516rules by the @samp{%merge} declaration,
676385e2
PH
8517Bison resolves and evaluates both and then calls the merge function on
8518the result. Otherwise, it reports an ambiguity.
8519
8a4281b9
JD
8520It is possible to use a data structure for the GLR parsing tree that
8521permits the processing of any LR(1) grammar in linear time (in the
c827f760 8522size of the input), any unambiguous (not necessarily
8a4281b9 8523LR(1)) grammar in
fae437e8 8524quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8525context-free grammar in cubic worst-case time. However, Bison currently
8526uses a simpler data structure that requires time proportional to the
8527length of the input times the maximum number of stacks required for any
9d9b8b70 8528prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8529grammars can require exponential time and space to process. Such badly
8530behaving examples, however, are not generally of practical interest.
9d9b8b70 8531Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8532doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8533structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8534grammar, in particular, it is only slightly slower than with the
8a4281b9 8535deterministic LR(1) Bison parser.
676385e2 8536
5e528941
JD
8537For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
85382000}.
f6481e2f 8539
1a059451
PE
8540@node Memory Management
8541@section Memory Management, and How to Avoid Memory Exhaustion
8542@cindex memory exhaustion
8543@cindex memory management
bfa74976
RS
8544@cindex stack overflow
8545@cindex parser stack overflow
8546@cindex overflow of parser stack
8547
1a059451 8548The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8549not reduced. When this happens, the parser function @code{yyparse}
1a059451 8550calls @code{yyerror} and then returns 2.
bfa74976 8551
c827f760 8552Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8553usually results from using a right recursion instead of a left
188867ac 8554recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8555
bfa74976
RS
8556@vindex YYMAXDEPTH
8557By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8558parser stack can become before memory is exhausted. Define the
bfa74976
RS
8559macro with a value that is an integer. This value is the maximum number
8560of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8561
8562The stack space allowed is not necessarily allocated. If you specify a
1a059451 8563large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8564stack at first, and then makes it bigger by stages as needed. This
8565increasing allocation happens automatically and silently. Therefore,
8566you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8567space for ordinary inputs that do not need much stack.
8568
d7e14fc0
PE
8569However, do not allow @code{YYMAXDEPTH} to be a value so large that
8570arithmetic overflow could occur when calculating the size of the stack
8571space. Also, do not allow @code{YYMAXDEPTH} to be less than
8572@code{YYINITDEPTH}.
8573
bfa74976
RS
8574@cindex default stack limit
8575The default value of @code{YYMAXDEPTH}, if you do not define it, is
857610000.
8577
8578@vindex YYINITDEPTH
8579You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8580macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8581parser in C, this value must be a compile-time constant
d7e14fc0
PE
8582unless you are assuming C99 or some other target language or compiler
8583that allows variable-length arrays. The default is 200.
8584
1a059451 8585Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8586
20be2f92 8587You can generate a deterministic parser containing C++ user code from
411614fa 8588the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8589(@pxref{C++ Parsers}). However, if you do use the default skeleton
8590and want to allow the parsing stack to grow,
8591be careful not to use semantic types or location types that require
8592non-trivial copy constructors.
8593The C skeleton bypasses these constructors when copying data to
8594new, larger stacks.
d1a1114f 8595
342b8b6e 8596@node Error Recovery
bfa74976
RS
8597@chapter Error Recovery
8598@cindex error recovery
8599@cindex recovery from errors
8600
6e649e65 8601It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8602error. For example, a compiler should recover sufficiently to parse the
8603rest of the input file and check it for errors; a calculator should accept
8604another expression.
8605
8606In a simple interactive command parser where each input is one line, it may
8607be sufficient to allow @code{yyparse} to return 1 on error and have the
8608caller ignore the rest of the input line when that happens (and then call
8609@code{yyparse} again). But this is inadequate for a compiler, because it
8610forgets all the syntactic context leading up to the error. A syntax error
8611deep within a function in the compiler input should not cause the compiler
8612to treat the following line like the beginning of a source file.
8613
8614@findex error
8615You can define how to recover from a syntax error by writing rules to
8616recognize the special token @code{error}. This is a terminal symbol that
8617is always defined (you need not declare it) and reserved for error
8618handling. The Bison parser generates an @code{error} token whenever a
8619syntax error happens; if you have provided a rule to recognize this token
13863333 8620in the current context, the parse can continue.
bfa74976
RS
8621
8622For example:
8623
8624@example
0860e383 8625stmts:
6240346a 8626 %empty
0860e383
AD
8627| stmts '\n'
8628| stmts exp '\n'
8629| stmts error '\n'
bfa74976
RS
8630@end example
8631
8632The fourth rule in this example says that an error followed by a newline
0860e383 8633makes a valid addition to any @code{stmts}.
bfa74976
RS
8634
8635What happens if a syntax error occurs in the middle of an @code{exp}? The
8636error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8637of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8638the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8639and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8640will be tokens to read before the next newline. So the rule is not
8641applicable in the ordinary way.
8642
8643But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8644the semantic context and part of the input. First it discards states
8645and objects from the stack until it gets back to a state in which the
bfa74976 8646@code{error} token is acceptable. (This means that the subexpressions
0860e383 8647already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8648At this point the @code{error} token can be shifted. Then, if the old
742e4900 8649lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8650tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8651this example, Bison reads and discards input until the next newline so
8652that the fourth rule can apply. Note that discarded symbols are
8653possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8654Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8655
8656The choice of error rules in the grammar is a choice of strategies for
8657error recovery. A simple and useful strategy is simply to skip the rest of
8658the current input line or current statement if an error is detected:
8659
8660@example
0860e383 8661stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8662@end example
8663
8664It is also useful to recover to the matching close-delimiter of an
8665opening-delimiter that has already been parsed. Otherwise the
8666close-delimiter will probably appear to be unmatched, and generate another,
8667spurious error message:
8668
8669@example
5e9b6624
AD
8670primary:
8671 '(' expr ')'
8672| '(' error ')'
8673@dots{}
8674;
bfa74976
RS
8675@end example
8676
8677Error recovery strategies are necessarily guesses. When they guess wrong,
8678one syntax error often leads to another. In the above example, the error
8679recovery rule guesses that an error is due to bad input within one
0860e383
AD
8680@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8681middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8682from the first error, another syntax error will be found straightaway,
8683since the text following the spurious semicolon is also an invalid
0860e383 8684@code{stmt}.
bfa74976
RS
8685
8686To prevent an outpouring of error messages, the parser will output no error
8687message for another syntax error that happens shortly after the first; only
8688after three consecutive input tokens have been successfully shifted will
8689error messages resume.
8690
8691Note that rules which accept the @code{error} token may have actions, just
8692as any other rules can.
8693
8694@findex yyerrok
8695You can make error messages resume immediately by using the macro
8696@code{yyerrok} in an action. If you do this in the error rule's action, no
8697error messages will be suppressed. This macro requires no arguments;
8698@samp{yyerrok;} is a valid C statement.
8699
8700@findex yyclearin
742e4900 8701The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8702this is unacceptable, then the macro @code{yyclearin} may be used to clear
8703this token. Write the statement @samp{yyclearin;} in the error rule's
8704action.
32c29292 8705@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8706
6e649e65 8707For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8708called that advances the input stream to some point where parsing should
8709once again commence. The next symbol returned by the lexical scanner is
742e4900 8710probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8711with @samp{yyclearin;}.
8712
8713@vindex YYRECOVERING
02103984
PE
8714The expression @code{YYRECOVERING ()} yields 1 when the parser
8715is recovering from a syntax error, and 0 otherwise.
8716Syntax error diagnostics are suppressed while recovering from a syntax
8717error.
bfa74976 8718
342b8b6e 8719@node Context Dependency
bfa74976
RS
8720@chapter Handling Context Dependencies
8721
8722The Bison paradigm is to parse tokens first, then group them into larger
8723syntactic units. In many languages, the meaning of a token is affected by
8724its context. Although this violates the Bison paradigm, certain techniques
8725(known as @dfn{kludges}) may enable you to write Bison parsers for such
8726languages.
8727
8728@menu
8729* Semantic Tokens:: Token parsing can depend on the semantic context.
8730* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8731* Tie-in Recovery:: Lexical tie-ins have implications for how
8732 error recovery rules must be written.
8733@end menu
8734
8735(Actually, ``kludge'' means any technique that gets its job done but is
8736neither clean nor robust.)
8737
342b8b6e 8738@node Semantic Tokens
bfa74976
RS
8739@section Semantic Info in Token Types
8740
8741The C language has a context dependency: the way an identifier is used
8742depends on what its current meaning is. For example, consider this:
8743
8744@example
8745foo (x);
8746@end example
8747
8748This looks like a function call statement, but if @code{foo} is a typedef
8749name, then this is actually a declaration of @code{x}. How can a Bison
8750parser for C decide how to parse this input?
8751
8a4281b9 8752The method used in GNU C is to have two different token types,
bfa74976
RS
8753@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8754identifier, it looks up the current declaration of the identifier in order
8755to decide which token type to return: @code{TYPENAME} if the identifier is
8756declared as a typedef, @code{IDENTIFIER} otherwise.
8757
8758The grammar rules can then express the context dependency by the choice of
8759token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8760but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8761@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8762is @emph{not} significant, such as in declarations that can shadow a
8763typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8764accepted---there is one rule for each of the two token types.
8765
8766This technique is simple to use if the decision of which kinds of
8767identifiers to allow is made at a place close to where the identifier is
8768parsed. But in C this is not always so: C allows a declaration to
8769redeclare a typedef name provided an explicit type has been specified
8770earlier:
8771
8772@example
3a4f411f
PE
8773typedef int foo, bar;
8774int baz (void)
d4fca427 8775@group
3a4f411f
PE
8776@{
8777 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8778 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8779 return foo (bar);
8780@}
d4fca427 8781@end group
bfa74976
RS
8782@end example
8783
8784Unfortunately, the name being declared is separated from the declaration
8785construct itself by a complicated syntactic structure---the ``declarator''.
8786
9ecbd125 8787As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8788all the nonterminal names changed: once for parsing a declaration in
8789which a typedef name can be redefined, and once for parsing a
8790declaration in which that can't be done. Here is a part of the
8791duplication, with actions omitted for brevity:
bfa74976
RS
8792
8793@example
d4fca427 8794@group
bfa74976 8795initdcl:
5e9b6624
AD
8796 declarator maybeasm '=' init
8797| declarator maybeasm
8798;
d4fca427 8799@end group
bfa74976 8800
d4fca427 8801@group
bfa74976 8802notype_initdcl:
5e9b6624
AD
8803 notype_declarator maybeasm '=' init
8804| notype_declarator maybeasm
8805;
d4fca427 8806@end group
bfa74976
RS
8807@end example
8808
8809@noindent
8810Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8811cannot. The distinction between @code{declarator} and
8812@code{notype_declarator} is the same sort of thing.
8813
8814There is some similarity between this technique and a lexical tie-in
8815(described next), in that information which alters the lexical analysis is
8816changed during parsing by other parts of the program. The difference is
8817here the information is global, and is used for other purposes in the
8818program. A true lexical tie-in has a special-purpose flag controlled by
8819the syntactic context.
8820
342b8b6e 8821@node Lexical Tie-ins
bfa74976
RS
8822@section Lexical Tie-ins
8823@cindex lexical tie-in
8824
8825One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8826which is set by Bison actions, whose purpose is to alter the way tokens are
8827parsed.
8828
8829For example, suppose we have a language vaguely like C, but with a special
8830construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8831an expression in parentheses in which all integers are hexadecimal. In
8832particular, the token @samp{a1b} must be treated as an integer rather than
8833as an identifier if it appears in that context. Here is how you can do it:
8834
8835@example
8836@group
8837%@{
38a92d50
PE
8838 int hexflag;
8839 int yylex (void);
8840 void yyerror (char const *);
bfa74976
RS
8841%@}
8842%%
8843@dots{}
8844@end group
8845@group
5e9b6624
AD
8846expr:
8847 IDENTIFIER
8848| constant
8849| HEX '(' @{ hexflag = 1; @}
8850 expr ')' @{ hexflag = 0; $$ = $4; @}
8851| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8852@dots{}
8853;
bfa74976
RS
8854@end group
8855
8856@group
8857constant:
5e9b6624
AD
8858 INTEGER
8859| STRING
8860;
bfa74976
RS
8861@end group
8862@end example
8863
8864@noindent
8865Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8866it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8867with letters are parsed as integers if possible.
8868
ff7571c0
JD
8869The declaration of @code{hexflag} shown in the prologue of the grammar
8870file is needed to make it accessible to the actions (@pxref{Prologue,
8871,The Prologue}). You must also write the code in @code{yylex} to obey
8872the flag.
bfa74976 8873
342b8b6e 8874@node Tie-in Recovery
bfa74976
RS
8875@section Lexical Tie-ins and Error Recovery
8876
8877Lexical tie-ins make strict demands on any error recovery rules you have.
8878@xref{Error Recovery}.
8879
8880The reason for this is that the purpose of an error recovery rule is to
8881abort the parsing of one construct and resume in some larger construct.
8882For example, in C-like languages, a typical error recovery rule is to skip
8883tokens until the next semicolon, and then start a new statement, like this:
8884
8885@example
5e9b6624
AD
8886stmt:
8887 expr ';'
8888| IF '(' expr ')' stmt @{ @dots{} @}
8889@dots{}
8890| error ';' @{ hexflag = 0; @}
8891;
bfa74976
RS
8892@end example
8893
8894If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8895construct, this error rule will apply, and then the action for the
8896completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8897remain set for the entire rest of the input, or until the next @code{hex}
8898keyword, causing identifiers to be misinterpreted as integers.
8899
8900To avoid this problem the error recovery rule itself clears @code{hexflag}.
8901
8902There may also be an error recovery rule that works within expressions.
8903For example, there could be a rule which applies within parentheses
8904and skips to the close-parenthesis:
8905
8906@example
8907@group
5e9b6624
AD
8908expr:
8909 @dots{}
8910| '(' expr ')' @{ $$ = $2; @}
8911| '(' error ')'
8912@dots{}
bfa74976
RS
8913@end group
8914@end example
8915
8916If this rule acts within the @code{hex} construct, it is not going to abort
8917that construct (since it applies to an inner level of parentheses within
8918the construct). Therefore, it should not clear the flag: the rest of
8919the @code{hex} construct should be parsed with the flag still in effect.
8920
8921What if there is an error recovery rule which might abort out of the
8922@code{hex} construct or might not, depending on circumstances? There is no
8923way you can write the action to determine whether a @code{hex} construct is
8924being aborted or not. So if you are using a lexical tie-in, you had better
8925make sure your error recovery rules are not of this kind. Each rule must
8926be such that you can be sure that it always will, or always won't, have to
8927clear the flag.
8928
ec3bc396
AD
8929@c ================================================== Debugging Your Parser
8930
342b8b6e 8931@node Debugging
bfa74976 8932@chapter Debugging Your Parser
ec3bc396 8933
93c150b6
AD
8934Developing a parser can be a challenge, especially if you don't understand
8935the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8936chapter explains how understand and debug a parser.
8937
8938The first sections focus on the static part of the parser: its structure.
8939They explain how to generate and read the detailed description of the
8940automaton. There are several formats available:
8941@itemize @minus
8942@item
8943as text, see @ref{Understanding, , Understanding Your Parser};
8944
8945@item
8946as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8947
8948@item
8949or as a markup report that can be turned, for instance, into HTML, see
8950@ref{Xml,, Visualizing your parser in multiple formats}.
8951@end itemize
8952
8953The last section focuses on the dynamic part of the parser: how to enable
8954and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8955Parser}).
ec3bc396
AD
8956
8957@menu
8958* Understanding:: Understanding the structure of your parser.
fc4fdd62 8959* Graphviz:: Getting a visual representation of the parser.
9c16d399 8960* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8961* Tracing:: Tracing the execution of your parser.
8962@end menu
8963
8964@node Understanding
8965@section Understanding Your Parser
8966
8967As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8968Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8969frequent than one would hope), looking at this automaton is required to
c949ada3 8970tune or simply fix a parser.
ec3bc396
AD
8971
8972The textual file is generated when the options @option{--report} or
e3fd1dcb 8973@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8974Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8975the parser implementation file name, and adding @samp{.output}
8976instead. Therefore, if the grammar file is @file{foo.y}, then the
8977parser implementation file is called @file{foo.tab.c} by default. As
8978a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8979
8980The following grammar file, @file{calc.y}, will be used in the sequel:
8981
8982@example
8983%token NUM STR
c949ada3 8984@group
ec3bc396
AD
8985%left '+' '-'
8986%left '*'
c949ada3 8987@end group
ec3bc396 8988%%
c949ada3 8989@group
5e9b6624
AD
8990exp:
8991 exp '+' exp
8992| exp '-' exp
8993| exp '*' exp
8994| exp '/' exp
8995| NUM
8996;
c949ada3 8997@end group
ec3bc396
AD
8998useless: STR;
8999%%
9000@end example
9001
88bce5a2
AD
9002@command{bison} reports:
9003
9004@example
8f0d265e
JD
9005calc.y: warning: 1 nonterminal useless in grammar
9006calc.y: warning: 1 rule useless in grammar
c949ada3
AD
9007calc.y:12.1-7: warning: nonterminal useless in grammar: useless
9008calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 9009calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
9010@end example
9011
9012When given @option{--report=state}, in addition to @file{calc.tab.c}, it
9013creates a file @file{calc.output} with contents detailed below. The
9014order of the output and the exact presentation might vary, but the
9015interpretation is the same.
ec3bc396 9016
ec3bc396
AD
9017@noindent
9018@cindex token, useless
9019@cindex useless token
9020@cindex nonterminal, useless
9021@cindex useless nonterminal
9022@cindex rule, useless
9023@cindex useless rule
62243aa5 9024The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
9025nonterminals and rules are removed in order to produce a smaller parser, but
9026useless tokens are preserved, since they might be used by the scanner (note
9027the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
9028
9029@example
29e20e22 9030Nonterminals useless in grammar
ec3bc396
AD
9031 useless
9032
29e20e22 9033Terminals unused in grammar
ec3bc396
AD
9034 STR
9035
29e20e22
AD
9036Rules useless in grammar
9037 6 useless: STR
ec3bc396
AD
9038@end example
9039
9040@noindent
29e20e22
AD
9041The next section lists states that still have conflicts.
9042
9043@example
9044State 8 conflicts: 1 shift/reduce
9045State 9 conflicts: 1 shift/reduce
9046State 10 conflicts: 1 shift/reduce
9047State 11 conflicts: 4 shift/reduce
9048@end example
9049
9050@noindent
9051Then Bison reproduces the exact grammar it used:
ec3bc396
AD
9052
9053@example
9054Grammar
9055
29e20e22
AD
9056 0 $accept: exp $end
9057
9058 1 exp: exp '+' exp
9059 2 | exp '-' exp
9060 3 | exp '*' exp
9061 4 | exp '/' exp
9062 5 | NUM
ec3bc396
AD
9063@end example
9064
9065@noindent
9066and reports the uses of the symbols:
9067
9068@example
d4fca427 9069@group
ec3bc396
AD
9070Terminals, with rules where they appear
9071
88bce5a2 9072$end (0) 0
ec3bc396
AD
9073'*' (42) 3
9074'+' (43) 1
9075'-' (45) 2
9076'/' (47) 4
9077error (256)
9078NUM (258) 5
29e20e22 9079STR (259)
d4fca427 9080@end group
ec3bc396 9081
d4fca427 9082@group
ec3bc396
AD
9083Nonterminals, with rules where they appear
9084
29e20e22 9085$accept (9)
ec3bc396 9086 on left: 0
29e20e22 9087exp (10)
ec3bc396 9088 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 9089@end group
ec3bc396
AD
9090@end example
9091
9092@noindent
9093@cindex item
9094@cindex pointed rule
9095@cindex rule, pointed
9096Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
9097with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
9098item is a production rule together with a point (@samp{.}) marking
9099the location of the input cursor.
ec3bc396
AD
9100
9101@example
c949ada3 9102State 0
ec3bc396 9103
29e20e22 9104 0 $accept: . exp $end
ec3bc396 9105
29e20e22 9106 NUM shift, and go to state 1
ec3bc396 9107
29e20e22 9108 exp go to state 2
ec3bc396
AD
9109@end example
9110
9111This reads as follows: ``state 0 corresponds to being at the very
9112beginning of the parsing, in the initial rule, right before the start
9113symbol (here, @code{exp}). When the parser returns to this state right
9114after having reduced a rule that produced an @code{exp}, the control
9115flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 9116symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 9117the parse stack, and the control flow jumps to state 1. Any other
742e4900 9118lookahead triggers a syntax error.''
ec3bc396
AD
9119
9120@cindex core, item set
9121@cindex item set core
9122@cindex kernel, item set
9123@cindex item set core
9124Even though the only active rule in state 0 seems to be rule 0, the
742e4900 9125report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
9126at the beginning of any rule deriving an @code{exp}. By default Bison
9127reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
9128you want to see more detail you can invoke @command{bison} with
35880c82 9129@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
9130
9131@example
c949ada3 9132State 0
ec3bc396 9133
29e20e22
AD
9134 0 $accept: . exp $end
9135 1 exp: . exp '+' exp
9136 2 | . exp '-' exp
9137 3 | . exp '*' exp
9138 4 | . exp '/' exp
9139 5 | . NUM
ec3bc396 9140
29e20e22 9141 NUM shift, and go to state 1
ec3bc396 9142
29e20e22 9143 exp go to state 2
ec3bc396
AD
9144@end example
9145
9146@noindent
29e20e22 9147In the state 1@dots{}
ec3bc396
AD
9148
9149@example
c949ada3 9150State 1
ec3bc396 9151
29e20e22 9152 5 exp: NUM .
ec3bc396 9153
29e20e22 9154 $default reduce using rule 5 (exp)
ec3bc396
AD
9155@end example
9156
9157@noindent
742e4900 9158the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9159(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9160State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9161jump to state 2 (@samp{exp: go to state 2}).
9162
9163@example
c949ada3 9164State 2
ec3bc396 9165
29e20e22
AD
9166 0 $accept: exp . $end
9167 1 exp: exp . '+' exp
9168 2 | exp . '-' exp
9169 3 | exp . '*' exp
9170 4 | exp . '/' exp
ec3bc396 9171
29e20e22
AD
9172 $end shift, and go to state 3
9173 '+' shift, and go to state 4
9174 '-' shift, and go to state 5
9175 '*' shift, and go to state 6
9176 '/' shift, and go to state 7
ec3bc396
AD
9177@end example
9178
9179@noindent
9180In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9181because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9182@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9183jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9184Since there is no default action, any lookahead not listed triggers a syntax
9185error.
ec3bc396 9186
eb45ef3b 9187@cindex accepting state
ec3bc396
AD
9188The state 3 is named the @dfn{final state}, or the @dfn{accepting
9189state}:
9190
9191@example
c949ada3 9192State 3
ec3bc396 9193
29e20e22 9194 0 $accept: exp $end .
ec3bc396 9195
29e20e22 9196 $default accept
ec3bc396
AD
9197@end example
9198
9199@noindent
29e20e22
AD
9200the initial rule is completed (the start symbol and the end-of-input were
9201read), the parsing exits successfully.
ec3bc396
AD
9202
9203The interpretation of states 4 to 7 is straightforward, and is left to
9204the reader.
9205
9206@example
c949ada3 9207State 4
ec3bc396 9208
29e20e22 9209 1 exp: exp '+' . exp
ec3bc396 9210
29e20e22
AD
9211 NUM shift, and go to state 1
9212
9213 exp go to state 8
ec3bc396 9214
ec3bc396 9215
c949ada3 9216State 5
ec3bc396 9217
29e20e22
AD
9218 2 exp: exp '-' . exp
9219
9220 NUM shift, and go to state 1
ec3bc396 9221
29e20e22 9222 exp go to state 9
ec3bc396 9223
ec3bc396 9224
c949ada3 9225State 6
ec3bc396 9226
29e20e22 9227 3 exp: exp '*' . exp
ec3bc396 9228
29e20e22
AD
9229 NUM shift, and go to state 1
9230
9231 exp go to state 10
ec3bc396 9232
ec3bc396 9233
c949ada3 9234State 7
ec3bc396 9235
29e20e22 9236 4 exp: exp '/' . exp
ec3bc396 9237
29e20e22 9238 NUM shift, and go to state 1
ec3bc396 9239
29e20e22 9240 exp go to state 11
ec3bc396
AD
9241@end example
9242
5a99098d
PE
9243As was announced in beginning of the report, @samp{State 8 conflicts:
92441 shift/reduce}:
ec3bc396
AD
9245
9246@example
c949ada3 9247State 8
ec3bc396 9248
29e20e22
AD
9249 1 exp: exp . '+' exp
9250 1 | exp '+' exp .
9251 2 | exp . '-' exp
9252 3 | exp . '*' exp
9253 4 | exp . '/' exp
ec3bc396 9254
29e20e22
AD
9255 '*' shift, and go to state 6
9256 '/' shift, and go to state 7
ec3bc396 9257
29e20e22
AD
9258 '/' [reduce using rule 1 (exp)]
9259 $default reduce using rule 1 (exp)
ec3bc396
AD
9260@end example
9261
742e4900 9262Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9263either shifting (and going to state 7), or reducing rule 1. The
9264conflict means that either the grammar is ambiguous, or the parser lacks
9265information to make the right decision. Indeed the grammar is
9266ambiguous, as, since we did not specify the precedence of @samp{/}, the
9267sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9268NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9269NUM}, which corresponds to reducing rule 1.
9270
eb45ef3b 9271Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9272arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9273Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9274square brackets.
9275
9276Note that all the previous states had a single possible action: either
9277shifting the next token and going to the corresponding state, or
9278reducing a single rule. In the other cases, i.e., when shifting
9279@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9280possible, the lookahead is required to select the action. State 8 is
9281one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9282is shifting, otherwise the action is reducing rule 1. In other words,
9283the first two items, corresponding to rule 1, are not eligible when the
742e4900 9284lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9285precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9286with some set of possible lookahead tokens. When run with
9287@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9288
9289@example
c949ada3 9290State 8
ec3bc396 9291
29e20e22
AD
9292 1 exp: exp . '+' exp
9293 1 | exp '+' exp . [$end, '+', '-', '/']
9294 2 | exp . '-' exp
9295 3 | exp . '*' exp
9296 4 | exp . '/' exp
9297
9298 '*' shift, and go to state 6
9299 '/' shift, and go to state 7
ec3bc396 9300
29e20e22
AD
9301 '/' [reduce using rule 1 (exp)]
9302 $default reduce using rule 1 (exp)
9303@end example
9304
9305Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9306the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9307solved thanks to associativity and precedence directives. If invoked with
9308@option{--report=solved}, Bison includes information about the solved
9309conflicts in the report:
ec3bc396 9310
29e20e22
AD
9311@example
9312Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9313Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9314Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9315@end example
9316
29e20e22 9317
ec3bc396
AD
9318The remaining states are similar:
9319
9320@example
d4fca427 9321@group
c949ada3 9322State 9
ec3bc396 9323
29e20e22
AD
9324 1 exp: exp . '+' exp
9325 2 | exp . '-' exp
9326 2 | exp '-' exp .
9327 3 | exp . '*' exp
9328 4 | exp . '/' exp
ec3bc396 9329
29e20e22
AD
9330 '*' shift, and go to state 6
9331 '/' shift, and go to state 7
ec3bc396 9332
29e20e22
AD
9333 '/' [reduce using rule 2 (exp)]
9334 $default reduce using rule 2 (exp)
d4fca427 9335@end group
ec3bc396 9336
d4fca427 9337@group
c949ada3 9338State 10
ec3bc396 9339
29e20e22
AD
9340 1 exp: exp . '+' exp
9341 2 | exp . '-' exp
9342 3 | exp . '*' exp
9343 3 | exp '*' exp .
9344 4 | exp . '/' exp
ec3bc396 9345
29e20e22 9346 '/' shift, and go to state 7
ec3bc396 9347
29e20e22
AD
9348 '/' [reduce using rule 3 (exp)]
9349 $default reduce using rule 3 (exp)
d4fca427 9350@end group
ec3bc396 9351
d4fca427 9352@group
c949ada3 9353State 11
ec3bc396 9354
29e20e22
AD
9355 1 exp: exp . '+' exp
9356 2 | exp . '-' exp
9357 3 | exp . '*' exp
9358 4 | exp . '/' exp
9359 4 | exp '/' exp .
9360
9361 '+' shift, and go to state 4
9362 '-' shift, and go to state 5
9363 '*' shift, and go to state 6
9364 '/' shift, and go to state 7
9365
9366 '+' [reduce using rule 4 (exp)]
9367 '-' [reduce using rule 4 (exp)]
9368 '*' [reduce using rule 4 (exp)]
9369 '/' [reduce using rule 4 (exp)]
9370 $default reduce using rule 4 (exp)
d4fca427 9371@end group
ec3bc396
AD
9372@end example
9373
9374@noindent
fa7e68c3 9375Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9376precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9377also because the associativity of @samp{/} is not specified.
ec3bc396 9378
c949ada3
AD
9379Bison may also produce an HTML version of this output, via an XML file and
9380XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9381
fc4fdd62
TR
9382@c ================================================= Graphical Representation
9383
9384@node Graphviz
9385@section Visualizing Your Parser
9386@cindex dot
9387
9388As another means to gain better understanding of the shift/reduce
9389automaton corresponding to the Bison parser, a DOT file can be generated. Note
9390that debugging a real grammar with this is tedious at best, and impractical
9391most of the times, because the generated files are huge (the generation of
9392a PDF or PNG file from it will take very long, and more often than not it will
9393fail due to memory exhaustion). This option was rather designed for beginners,
9394to help them understand LR parsers.
9395
bfdcc3a0
AD
9396This file is generated when the @option{--graph} option is specified
9397(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9398@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9399adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9400Graphviz output file is called @file{foo.dot}. A DOT file may also be
9401produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9402parser in multiple formats}).
9403
fc4fdd62
TR
9404
9405The following grammar file, @file{rr.y}, will be used in the sequel:
9406
9407@example
9408%%
9409@group
9410exp: a ";" | b ".";
9411a: "0";
9412b: "0";
9413@end group
9414@end example
9415
c949ada3
AD
9416The graphical output
9417@ifnotinfo
9418(see @ref{fig:graph})
9419@end ifnotinfo
9420is very similar to the textual one, and as such it is easier understood by
9421making direct comparisons between them. @xref{Debugging, , Debugging Your
9422Parser}, for a detailled analysis of the textual report.
9423
9424@ifnotinfo
9425@float Figure,fig:graph
9426@image{figs/example, 430pt}
9427@caption{A graphical rendering of the parser.}
9428@end float
9429@end ifnotinfo
fc4fdd62
TR
9430
9431@subheading Graphical Representation of States
9432
9433The items (pointed rules) for each state are grouped together in graph nodes.
9434Their numbering is the same as in the verbose file. See the following points,
9435about transitions, for examples
9436
9437When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9438needed, are shown next to the relevant rule between square brackets as a
9439comma separated list. This is the case in the figure for the representation of
9440reductions, below.
9441
9442@sp 1
9443
9444The transitions are represented as directed edges between the current and
9445the target states.
9446
9447@subheading Graphical Representation of Shifts
9448
9449Shifts are shown as solid arrows, labelled with the lookahead token for that
9450shift. The following describes a reduction in the @file{rr.output} file:
9451
9452@example
9453@group
c949ada3 9454State 3
fc4fdd62
TR
9455
9456 1 exp: a . ";"
9457
9458 ";" shift, and go to state 6
9459@end group
9460@end example
9461
9462A Graphviz rendering of this portion of the graph could be:
9463
9464@center @image{figs/example-shift, 100pt}
9465
9466@subheading Graphical Representation of Reductions
9467
9468Reductions are shown as solid arrows, leading to a diamond-shaped node
9469bearing the number of the reduction rule. The arrow is labelled with the
9470appropriate comma separated lookahead tokens. If the reduction is the default
9471action for the given state, there is no such label.
9472
9473This is how reductions are represented in the verbose file @file{rr.output}:
9474@example
c949ada3 9475State 1
fc4fdd62
TR
9476
9477 3 a: "0" . [";"]
9478 4 b: "0" . ["."]
9479
9480 "." reduce using rule 4 (b)
9481 $default reduce using rule 3 (a)
9482@end example
9483
9484A Graphviz rendering of this portion of the graph could be:
9485
9486@center @image{figs/example-reduce, 120pt}
9487
9488When unresolved conflicts are present, because in deterministic parsing
9489a single decision can be made, Bison can arbitrarily choose to disable a
9490reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9491are distinguished by a red filling color on these nodes, just like how they are
9492reported between square brackets in the verbose file.
9493
c949ada3
AD
9494The reduction corresponding to the rule number 0 is the acceptation
9495state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9496
9497@subheading Graphical representation of go tos
9498
9499The @samp{go to} jump transitions are represented as dotted lines bearing
9500the name of the rule being jumped to.
9501
9c16d399
TR
9502@c ================================================= XML
9503
9504@node Xml
9505@section Visualizing your parser in multiple formats
9506@cindex xml
9507
9508Bison supports two major report formats: textual output
c949ada3
AD
9509(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9510with option @option{--verbose}, and DOT
9511(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9512option @option{--graph}. However,
9c16d399
TR
9513another alternative is to output an XML file that may then be, with
9514@command{xsltproc}, rendered as either a raw text format equivalent to the
9515verbose file, or as an HTML version of the same file, with clickable
9516transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9517XSLT have no difference whatsoever with those obtained by invoking
9518@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9519
c949ada3 9520The XML file is generated when the options @option{-x} or
9c16d399
TR
9521@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9522If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9523from the parser implementation file name, and adding @samp{.xml} instead.
9524For instance, if the grammar file is @file{foo.y}, the default XML output
9525file is @file{foo.xml}.
9526
9527Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9528files to apply to the XML file. Their names are non-ambiguous:
9529
9530@table @file
9531@item xml2dot.xsl
be3517b0 9532Used to output a copy of the DOT visualization of the automaton.
9c16d399 9533@item xml2text.xsl
c949ada3 9534Used to output a copy of the @samp{.output} file.
9c16d399 9535@item xml2xhtml.xsl
c949ada3 9536Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9537@end table
9538
c949ada3 9539Sample usage (requires @command{xsltproc}):
9c16d399 9540@example
c949ada3 9541$ bison -x gr.y
9c16d399
TR
9542@group
9543$ bison --print-datadir
9544/usr/local/share/bison
9545@end group
c949ada3 9546$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9547@end example
9548
fc4fdd62 9549@c ================================================= Tracing
ec3bc396
AD
9550
9551@node Tracing
9552@section Tracing Your Parser
bfa74976
RS
9553@findex yydebug
9554@cindex debugging
9555@cindex tracing the parser
9556
93c150b6
AD
9557When a Bison grammar compiles properly but parses ``incorrectly'', the
9558@code{yydebug} parser-trace feature helps figuring out why.
9559
9560@menu
9561* Enabling Traces:: Activating run-time trace support
9562* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9563* The YYPRINT Macro:: Obsolete interface for semantic value reports
9564@end menu
bfa74976 9565
93c150b6
AD
9566@node Enabling Traces
9567@subsection Enabling Traces
3ded9a63
AD
9568There are several means to enable compilation of trace facilities:
9569
9570@table @asis
9571@item the macro @code{YYDEBUG}
9572@findex YYDEBUG
9573Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9574parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9575@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9576YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9577Prologue}).
9578
e6ae99fe 9579If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9580Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9581api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9582tracing feature (enabled if and only if nonzero); otherwise tracing is
9583enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9584
9585@item the option @option{-t} (POSIX Yacc compliant)
9586@itemx the option @option{--debug} (Bison extension)
9587Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
6ce4b4ff 9588Bison}). With @samp{%define api.prefix @{c@}}, it defines @code{CDEBUG} to 1,
e358222b 9589otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9590
9591@item the directive @samp{%debug}
9592@findex %debug
fa819509
AD
9593Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9594Summary}). This Bison extension is maintained for backward
9595compatibility with previous versions of Bison.
9596
9597@item the variable @samp{parse.trace}
9598@findex %define parse.trace
35c1e5f0
JD
9599Add the @samp{%define parse.trace} directive (@pxref{%define
9600Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9601(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9602useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9603portability matter to you, this is the preferred solution.
3ded9a63
AD
9604@end table
9605
fa819509 9606We suggest that you always enable the trace option so that debugging is
3ded9a63 9607always possible.
bfa74976 9608
93c150b6 9609@findex YYFPRINTF
02a81e05 9610The trace facility outputs messages with macro calls of the form
e2742e46 9611@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9612@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9613arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9614define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9615and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9616
9617Once you have compiled the program with trace facilities, the way to
9618request a trace is to store a nonzero value in the variable @code{yydebug}.
9619You can do this by making the C code do it (in @code{main}, perhaps), or
9620you can alter the value with a C debugger.
9621
9622Each step taken by the parser when @code{yydebug} is nonzero produces a
9623line or two of trace information, written on @code{stderr}. The trace
9624messages tell you these things:
9625
9626@itemize @bullet
9627@item
9628Each time the parser calls @code{yylex}, what kind of token was read.
9629
9630@item
9631Each time a token is shifted, the depth and complete contents of the
9632state stack (@pxref{Parser States}).
9633
9634@item
9635Each time a rule is reduced, which rule it is, and the complete contents
9636of the state stack afterward.
9637@end itemize
9638
93c150b6
AD
9639To make sense of this information, it helps to refer to the automaton
9640description file (@pxref{Understanding, ,Understanding Your Parser}).
9641This file shows the meaning of each state in terms of
704a47c4
AD
9642positions in various rules, and also what each state will do with each
9643possible input token. As you read the successive trace messages, you
9644can see that the parser is functioning according to its specification in
9645the listing file. Eventually you will arrive at the place where
9646something undesirable happens, and you will see which parts of the
9647grammar are to blame.
bfa74976 9648
93c150b6 9649The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9650debuggers on it, but it's not easy to interpret what it is doing. The
9651parser function is a finite-state machine interpreter, and aside from
9652the actions it executes the same code over and over. Only the values
9653of variables show where in the grammar it is working.
bfa74976 9654
93c150b6
AD
9655@node Mfcalc Traces
9656@subsection Enabling Debug Traces for @code{mfcalc}
9657
9658The debugging information normally gives the token type of each token read,
9659but not its semantic value. The @code{%printer} directive allows specify
9660how semantic values are reported, see @ref{Printer Decl, , Printing
9661Semantic Values}. For backward compatibility, Yacc like C parsers may also
9662use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9663Macro}), but its use is discouraged.
9664
9665As a demonstration of @code{%printer}, consider the multi-function
9666calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9667traces, and semantic value reports, insert the following directives in its
9668prologue:
9669
9670@comment file: mfcalc.y: 2
9671@example
9672/* Generate the parser description file. */
9673%verbose
9674/* Enable run-time traces (yydebug). */
9675%define parse.trace
9676
9677/* Formatting semantic values. */
9678%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9679%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
90b89dad 9680%printer @{ fprintf (yyoutput, "%g", $$); @} <double>;
93c150b6
AD
9681@end example
9682
9683The @code{%define} directive instructs Bison to generate run-time trace
9684support. Then, activation of these traces is controlled at run-time by the
9685@code{yydebug} variable, which is disabled by default. Because these traces
9686will refer to the ``states'' of the parser, it is helpful to ask for the
9687creation of a description of that parser; this is the purpose of (admittedly
9688ill-named) @code{%verbose} directive.
9689
9690The set of @code{%printer} directives demonstrates how to format the
9691semantic value in the traces. Note that the specification can be done
9692either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
90b89dad
AD
9693tag: since @code{<double>} is the type for both @code{NUM} and @code{exp},
9694this printer will be used for them.
93c150b6
AD
9695
9696Here is a sample of the information provided by run-time traces. The traces
9697are sent onto standard error.
9698
9699@example
9700$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9701Starting parse
9702Entering state 0
9703Reducing stack by rule 1 (line 34):
9704-> $$ = nterm input ()
9705Stack now 0
9706Entering state 1
9707@end example
9708
9709@noindent
9710This first batch shows a specific feature of this grammar: the first rule
9711(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9712to look for the first token. The resulting left-hand symbol (@code{$$}) is
9713a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9714
9715Then the parser calls the scanner.
9716@example
9717Reading a token: Next token is token FNCT (sin())
9718Shifting token FNCT (sin())
9719Entering state 6
9720@end example
9721
9722@noindent
9723That token (@code{token}) is a function (@code{FNCT}) whose value is
9724@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9725The parser stores (@code{Shifting}) that token, and others, until it can do
9726something about it.
9727
9728@example
9729Reading a token: Next token is token '(' ()
9730Shifting token '(' ()
9731Entering state 14
9732Reading a token: Next token is token NUM (1.000000)
9733Shifting token NUM (1.000000)
9734Entering state 4
9735Reducing stack by rule 6 (line 44):
9736 $1 = token NUM (1.000000)
9737-> $$ = nterm exp (1.000000)
9738Stack now 0 1 6 14
9739Entering state 24
9740@end example
9741
9742@noindent
9743The previous reduction demonstrates the @code{%printer} directive for
90b89dad 9744@code{<double>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9745@code{exp} have @samp{1} as value.
9746
9747@example
9748Reading a token: Next token is token '-' ()
9749Shifting token '-' ()
9750Entering state 17
9751Reading a token: Next token is token NUM (1.000000)
9752Shifting token NUM (1.000000)
9753Entering state 4
9754Reducing stack by rule 6 (line 44):
9755 $1 = token NUM (1.000000)
9756-> $$ = nterm exp (1.000000)
9757Stack now 0 1 6 14 24 17
9758Entering state 26
9759Reading a token: Next token is token ')' ()
9760Reducing stack by rule 11 (line 49):
9761 $1 = nterm exp (1.000000)
9762 $2 = token '-' ()
9763 $3 = nterm exp (1.000000)
9764-> $$ = nterm exp (0.000000)
9765Stack now 0 1 6 14
9766Entering state 24
9767@end example
9768
9769@noindent
9770The rule for the subtraction was just reduced. The parser is about to
9771discover the end of the call to @code{sin}.
9772
9773@example
9774Next token is token ')' ()
9775Shifting token ')' ()
9776Entering state 31
9777Reducing stack by rule 9 (line 47):
9778 $1 = token FNCT (sin())
9779 $2 = token '(' ()
9780 $3 = nterm exp (0.000000)
9781 $4 = token ')' ()
9782-> $$ = nterm exp (0.000000)
9783Stack now 0 1
9784Entering state 11
9785@end example
9786
9787@noindent
9788Finally, the end-of-line allow the parser to complete the computation, and
9789display its result.
9790
9791@example
9792Reading a token: Next token is token '\n' ()
9793Shifting token '\n' ()
9794Entering state 22
9795Reducing stack by rule 4 (line 40):
9796 $1 = nterm exp (0.000000)
9797 $2 = token '\n' ()
9798@result{} 0
9799-> $$ = nterm line ()
9800Stack now 0 1
9801Entering state 10
9802Reducing stack by rule 2 (line 35):
9803 $1 = nterm input ()
9804 $2 = nterm line ()
9805-> $$ = nterm input ()
9806Stack now 0
9807Entering state 1
9808@end example
9809
9810The parser has returned into state 1, in which it is waiting for the next
9811expression to evaluate, or for the end-of-file token, which causes the
9812completion of the parsing.
9813
9814@example
9815Reading a token: Now at end of input.
9816Shifting token $end ()
9817Entering state 2
9818Stack now 0 1 2
9819Cleanup: popping token $end ()
9820Cleanup: popping nterm input ()
9821@end example
9822
9823
9824@node The YYPRINT Macro
9825@subsection The @code{YYPRINT} Macro
9826
bfa74976 9827@findex YYPRINT
93c150b6
AD
9828Before @code{%printer} support, semantic values could be displayed using the
9829@code{YYPRINT} macro, which works only for terminal symbols and only with
9830the @file{yacc.c} skeleton.
9831
9832@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9833@findex YYPRINT
9834If you define @code{YYPRINT}, it should take three arguments. The parser
9835will pass a standard I/O stream, the numeric code for the token type, and
9836the token value (from @code{yylval}).
9837
9838For @file{yacc.c} only. Obsoleted by @code{%printer}.
9839@end deffn
bfa74976
RS
9840
9841Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9842calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9843
c93f22fc 9844@example
38a92d50
PE
9845%@{
9846 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9847 #define YYPRINT(File, Type, Value) \
9848 print_token_value (File, Type, Value)
38a92d50
PE
9849%@}
9850
9851@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9852
9853static void
831d3c99 9854print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9855@{
9856 if (type == VAR)
d3c4e709 9857 fprintf (file, "%s", value.tptr->name);
bfa74976 9858 else if (type == NUM)
d3c4e709 9859 fprintf (file, "%d", value.val);
bfa74976 9860@}
c93f22fc 9861@end example
bfa74976 9862
ec3bc396
AD
9863@c ================================================= Invoking Bison
9864
342b8b6e 9865@node Invocation
bfa74976
RS
9866@chapter Invoking Bison
9867@cindex invoking Bison
9868@cindex Bison invocation
9869@cindex options for invoking Bison
9870
9871The usual way to invoke Bison is as follows:
9872
9873@example
9874bison @var{infile}
9875@end example
9876
9877Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9878@samp{.y}. The parser implementation file's name is made by replacing
9879the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9880Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9881the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9882also possible, in case you are writing C++ code instead of C in your
9883grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9884output files will take an extension like the given one as input
9885(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9886feature takes effect with all options that manipulate file names like
234a3be3
AD
9887@samp{-o} or @samp{-d}.
9888
9889For example :
9890
9891@example
9892bison -d @var{infile.yxx}
9893@end example
84163231 9894@noindent
72d2299c 9895will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9896
9897@example
b56471a6 9898bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9899@end example
84163231 9900@noindent
234a3be3
AD
9901will produce @file{output.c++} and @file{outfile.h++}.
9902
8a4281b9 9903For compatibility with POSIX, the standard Bison
397ec073
PE
9904distribution also contains a shell script called @command{yacc} that
9905invokes Bison with the @option{-y} option.
9906
bfa74976 9907@menu
13863333 9908* Bison Options:: All the options described in detail,
c827f760 9909 in alphabetical order by short options.
bfa74976 9910* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9911* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9912@end menu
9913
342b8b6e 9914@node Bison Options
bfa74976
RS
9915@section Bison Options
9916
9917Bison supports both traditional single-letter options and mnemonic long
9918option names. Long option names are indicated with @samp{--} instead of
9919@samp{-}. Abbreviations for option names are allowed as long as they
9920are unique. When a long option takes an argument, like
9921@samp{--file-prefix}, connect the option name and the argument with
9922@samp{=}.
9923
9924Here is a list of options that can be used with Bison, alphabetized by
9925short option. It is followed by a cross key alphabetized by long
9926option.
9927
4c9b8f13 9928@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9929@noindent
9930Operations modes:
9931@table @option
9932@item -h
9933@itemx --help
9934Print a summary of the command-line options to Bison and exit.
bfa74976 9935
89cab50d
AD
9936@item -V
9937@itemx --version
9938Print the version number of Bison and exit.
bfa74976 9939
f7ab6a50
PE
9940@item --print-localedir
9941Print the name of the directory containing locale-dependent data.
9942
a0de5091
JD
9943@item --print-datadir
9944Print the name of the directory containing skeletons and XSLT.
9945
89cab50d
AD
9946@item -y
9947@itemx --yacc
ff7571c0
JD
9948Act more like the traditional Yacc command. This can cause different
9949diagnostics to be generated, and may change behavior in other minor
9950ways. Most importantly, imitate Yacc's output file name conventions,
9951so that the parser implementation file is called @file{y.tab.c}, and
9952the other outputs are called @file{y.output} and @file{y.tab.h}.
9953Also, if generating a deterministic parser in C, generate
9954@code{#define} statements in addition to an @code{enum} to associate
9955token numbers with token names. Thus, the following shell script can
9956substitute for Yacc, and the Bison distribution contains such a script
9957for compatibility with POSIX:
bfa74976 9958
89cab50d 9959@example
397ec073 9960#! /bin/sh
26e06a21 9961bison -y "$@@"
89cab50d 9962@end example
54662697
PE
9963
9964The @option{-y}/@option{--yacc} option is intended for use with
9965traditional Yacc grammars. If your grammar uses a Bison extension
9966like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9967this option is specified.
9968
1d5b3c08
JD
9969@item -W [@var{category}]
9970@itemx --warnings[=@var{category}]
118d4978
AD
9971Output warnings falling in @var{category}. @var{category} can be one
9972of:
9973@table @code
9974@item midrule-values
8e55b3aa
JD
9975Warn about mid-rule values that are set but not used within any of the actions
9976of the parent rule.
9977For example, warn about unused @code{$2} in:
118d4978
AD
9978
9979@example
9980exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9981@end example
9982
8e55b3aa
JD
9983Also warn about mid-rule values that are used but not set.
9984For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9985
9986@example
5e9b6624 9987exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9988@end example
9989
9990These warnings are not enabled by default since they sometimes prove to
9991be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9992@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9993
118d4978 9994@item yacc
8a4281b9 9995Incompatibilities with POSIX Yacc.
118d4978 9996
786743d5
JD
9997@item conflicts-sr
9998@itemx conflicts-rr
9999S/R and R/R conflicts. These warnings are enabled by default. However, if
10000the @code{%expect} or @code{%expect-rr} directive is specified, an
10001unexpected number of conflicts is an error, and an expected number of
10002conflicts is not reported, so @option{-W} and @option{--warning} then have
10003no effect on the conflict report.
10004
518e8830
AD
10005@item deprecated
10006Deprecated constructs whose support will be removed in future versions of
10007Bison.
10008
09add9c2
AD
10009@item empty-rule
10010Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
10011default, but enabled by uses of @code{%empty}, unless
10012@option{-Wno-empty-rule} was specified.
10013
cc2235ac
VT
10014@item precedence
10015Useless precedence and associativity directives. Disabled by default.
10016
10017Consider for instance the following grammar:
10018
10019@example
10020@group
10021%nonassoc "="
10022%left "+"
10023%left "*"
10024%precedence "("
10025@end group
10026%%
10027@group
10028stmt:
10029 exp
10030| "var" "=" exp
10031;
10032@end group
10033
10034@group
10035exp:
10036 exp "+" exp
10037| exp "*" "num"
10038| "(" exp ")"
10039| "num"
10040;
10041@end group
10042@end example
10043
10044Bison reports:
10045
10046@c cannot leave the location and the [-Wprecedence] for lack of
10047@c width in PDF.
10048@example
10049@group
10050warning: useless precedence and associativity for "="
10051 %nonassoc "="
10052 ^^^
10053@end group
10054@group
10055warning: useless associativity for "*", use %precedence
10056 %left "*"
10057 ^^^
10058@end group
10059@group
10060warning: useless precedence for "("
10061 %precedence "("
10062 ^^^
10063@end group
10064@end example
10065
10066One would get the exact same parser with the following directives instead:
10067
10068@example
10069@group
10070%left "+"
10071%precedence "*"
10072@end group
10073@end example
10074
c39014ae
JD
10075@item other
10076All warnings not categorized above. These warnings are enabled by default.
10077
10078This category is provided merely for the sake of completeness. Future
10079releases of Bison may move warnings from this category to new, more specific
10080categories.
10081
118d4978 10082@item all
f24695ef
AD
10083All the warnings except @code{yacc}.
10084
118d4978 10085@item none
8e55b3aa 10086Turn off all the warnings.
f24695ef 10087
118d4978 10088@item error
1048a1c9 10089See @option{-Werror}, below.
118d4978
AD
10090@end table
10091
10092A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 10093instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 10094POSIX Yacc incompatibilities.
1048a1c9 10095
e4678430
AD
10096@item -Werror
10097Turn enabled warnings for every @var{category} into errors, unless they are
10098explicitly disabled by @option{-Wno-error=@var{category}}.
10099
10100@item -Werror=@var{category}
10101Enable warnings falling in @var{category}, and treat them as errors.
1048a1c9
AD
10102
10103@var{category} is the same as for @option{--warnings}, with the exception that
10104it may not be prefixed with @samp{no-} (see above).
10105
1048a1c9
AD
10106Note that the precedence of the @samp{=} and @samp{,} operators is such that
10107the following commands are @emph{not} equivalent, as the first will not treat
10108S/R conflicts as errors.
10109
10110@example
10111$ bison -Werror=yacc,conflicts-sr input.y
10112$ bison -Werror=yacc,error=conflicts-sr input.y
10113@end example
f3ead217 10114
e4678430
AD
10115@item -Wno-error
10116Do not turn enabled warnings for every @var{category} into errors, unless
10117they are explicitly enabled by @option{-Werror=@var{category}}.
10118
10119@item -Wno-error=@var{category}
10120Deactivate the error treatment for this @var{category}. However, the warning
10121itself won't be disabled, or enabled, by this option.
10122
7bada535
TR
10123@item -f [@var{feature}]
10124@itemx --feature[=@var{feature}]
10125Activate miscellaneous @var{feature}. @var{feature} can be one of:
10126@table @code
10127@item caret
10128@itemx diagnostics-show-caret
10129Show caret errors, in a manner similar to GCC's
10130@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
10131location provided with the message is used to quote the corresponding line of
10132the source file, underlining the important part of it with carets (^). Here is
c949ada3 10133an example, using the following file @file{in.y}:
7bada535
TR
10134
10135@example
10136%type <ival> exp
10137%%
10138exp: exp '+' exp @{ $exp = $1 + $2; @};
10139@end example
10140
016426c1 10141When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
10142
10143@example
10144@group
c949ada3 10145in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
10146 exp: exp '+' exp @{ $exp = $1 + $2; @};
10147 ^^^^
10148@end group
10149@group
c949ada3 10150in.y:3.1-3: refers to: $exp at $$
7bada535
TR
10151 exp: exp '+' exp @{ $exp = $1 + $2; @};
10152 ^^^
10153@end group
10154@group
c949ada3 10155in.y:3.6-8: refers to: $exp at $1
7bada535
TR
10156 exp: exp '+' exp @{ $exp = $1 + $2; @};
10157 ^^^
10158@end group
10159@group
c949ada3 10160in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10161 exp: exp '+' exp @{ $exp = $1 + $2; @};
10162 ^^^
10163@end group
10164@group
c949ada3 10165in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10166 exp: exp '+' exp @{ $exp = $1 + $2; @};
10167 ^^
10168@end group
10169@end example
10170
016426c1
TR
10171Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10172
10173@example
10174@group
10175in.y:3.20-23: error: ambiguous reference: ‘$exp’
10176in.y:3.1-3: refers to: $exp at $$
10177in.y:3.6-8: refers to: $exp at $1
10178in.y:3.14-16: refers to: $exp at $3
10179in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10180@end group
10181@end example
10182
10183This option is activated by default.
10184
7bada535 10185@end table
89cab50d
AD
10186@end table
10187
10188@noindent
10189Tuning the parser:
10190
10191@table @option
10192@item -t
10193@itemx --debug
ff7571c0
JD
10194In the parser implementation file, define the macro @code{YYDEBUG} to
101951 if it is not already defined, so that the debugging facilities are
10196compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10197
58697c6d
AD
10198@item -D @var{name}[=@var{value}]
10199@itemx --define=@var{name}[=@var{value}]
17aed602 10200@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10201@itemx --force-define=@var{name}[=@var{value}]
10202Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10203(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10204definitions for the same @var{name} as follows:
10205
10206@itemize
10207@item
0b6d43c5
JD
10208Bison quietly ignores all command-line definitions for @var{name} except
10209the last.
de5ab940 10210@item
0b6d43c5
JD
10211If that command-line definition is specified by a @code{-D} or
10212@code{--define}, Bison reports an error for any @code{%define}
10213definition for @var{name}.
de5ab940 10214@item
0b6d43c5
JD
10215If that command-line definition is specified by a @code{-F} or
10216@code{--force-define} instead, Bison quietly ignores all @code{%define}
10217definitions for @var{name}.
10218@item
10219Otherwise, Bison reports an error if there are multiple @code{%define}
10220definitions for @var{name}.
de5ab940
JD
10221@end itemize
10222
10223You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10224make files unless you are confident that it is safe to quietly ignore
10225any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10226
0e021770
PE
10227@item -L @var{language}
10228@itemx --language=@var{language}
10229Specify the programming language for the generated parser, as if
10230@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10231Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10232@var{language} is case-insensitive.
0e021770 10233
89cab50d 10234@item --locations
d8988b2f 10235Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10236
10237@item -p @var{prefix}
10238@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10239Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10240Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10241Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10242
10243@item -l
10244@itemx --no-lines
ff7571c0
JD
10245Don't put any @code{#line} preprocessor commands in the parser
10246implementation file. Ordinarily Bison puts them in the parser
10247implementation file so that the C compiler and debuggers will
10248associate errors with your source file, the grammar file. This option
10249causes them to associate errors with the parser implementation file,
10250treating it as an independent source file in its own right.
bfa74976 10251
e6e704dc
JD
10252@item -S @var{file}
10253@itemx --skeleton=@var{file}
a7867f53 10254Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10255(@pxref{Decl Summary, , Bison Declaration Summary}).
10256
ed4d67dc
JD
10257@c You probably don't need this option unless you are developing Bison.
10258@c You should use @option{--language} if you want to specify the skeleton for a
10259@c different language, because it is clearer and because it will always
10260@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10261
a7867f53
JD
10262If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10263file in the Bison installation directory.
10264If it does, @var{file} is an absolute file name or a file name relative to the
10265current working directory.
10266This is similar to how most shells resolve commands.
10267
89cab50d
AD
10268@item -k
10269@itemx --token-table
d8988b2f 10270Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10271@end table
bfa74976 10272
89cab50d
AD
10273@noindent
10274Adjust the output:
bfa74976 10275
89cab50d 10276@table @option
8e55b3aa 10277@item --defines[=@var{file}]
d8988b2f 10278Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10279file containing macro definitions for the token type names defined in
4bfd5e4e 10280the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10281
8e55b3aa
JD
10282@item -d
10283This is the same as @code{--defines} except @code{-d} does not accept a
10284@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10285with other short options.
342b8b6e 10286
89cab50d
AD
10287@item -b @var{file-prefix}
10288@itemx --file-prefix=@var{prefix}
9c437126 10289Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10290for all Bison output file names. @xref{Decl Summary}.
bfa74976 10291
ec3bc396
AD
10292@item -r @var{things}
10293@itemx --report=@var{things}
10294Write an extra output file containing verbose description of the comma
10295separated list of @var{things} among:
10296
10297@table @code
10298@item state
10299Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10300parser's automaton.
ec3bc396 10301
57f8bd8d
AD
10302@item itemset
10303Implies @code{state} and augments the description of the automaton with
10304the full set of items for each state, instead of its core only.
10305
742e4900 10306@item lookahead
ec3bc396 10307Implies @code{state} and augments the description of the automaton with
742e4900 10308each rule's lookahead set.
ec3bc396 10309
57f8bd8d
AD
10310@item solved
10311Implies @code{state}. Explain how conflicts were solved thanks to
10312precedence and associativity directives.
10313
10314@item all
10315Enable all the items.
10316
10317@item none
10318Do not generate the report.
ec3bc396
AD
10319@end table
10320
1bb2bd75
JD
10321@item --report-file=@var{file}
10322Specify the @var{file} for the verbose description.
10323
bfa74976
RS
10324@item -v
10325@itemx --verbose
9c437126 10326Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10327file containing verbose descriptions of the grammar and
72d2299c 10328parser. @xref{Decl Summary}.
bfa74976 10329
fa4d969f
PE
10330@item -o @var{file}
10331@itemx --output=@var{file}
ff7571c0 10332Specify the @var{file} for the parser implementation file.
bfa74976 10333
fa4d969f 10334The other output files' names are constructed from @var{file} as
d8988b2f 10335described under the @samp{-v} and @samp{-d} options.
342b8b6e 10336
a7c09cba 10337@item -g [@var{file}]
8e55b3aa 10338@itemx --graph[=@var{file}]
eb45ef3b 10339Output a graphical representation of the parser's
35fe0834 10340automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10341@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10342@code{@var{file}} is optional.
10343If omitted and the grammar file is @file{foo.y}, the output file will be
10344@file{foo.dot}.
59da312b 10345
a7c09cba 10346@item -x [@var{file}]
8e55b3aa 10347@itemx --xml[=@var{file}]
eb45ef3b 10348Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10349@code{@var{file}} is optional.
59da312b
JD
10350If omitted and the grammar file is @file{foo.y}, the output file will be
10351@file{foo.xml}.
10352(The current XML schema is experimental and may evolve.
10353More user feedback will help to stabilize it.)
bfa74976
RS
10354@end table
10355
342b8b6e 10356@node Option Cross Key
bfa74976
RS
10357@section Option Cross Key
10358
10359Here is a list of options, alphabetized by long option, to help you find
de5ab940 10360the corresponding short option and directive.
bfa74976 10361
de5ab940 10362@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10363@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10364@include cross-options.texi
aa08666d 10365@end multitable
bfa74976 10366
93dd49ab
PE
10367@node Yacc Library
10368@section Yacc Library
10369
10370The Yacc library contains default implementations of the
10371@code{yyerror} and @code{main} functions. These default
8a4281b9 10372implementations are normally not useful, but POSIX requires
93dd49ab
PE
10373them. To use the Yacc library, link your program with the
10374@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10375library is distributed under the terms of the GNU General
93dd49ab
PE
10376Public License (@pxref{Copying}).
10377
10378If you use the Yacc library's @code{yyerror} function, you should
10379declare @code{yyerror} as follows:
10380
10381@example
10382int yyerror (char const *);
10383@end example
10384
10385Bison ignores the @code{int} value returned by this @code{yyerror}.
10386If you use the Yacc library's @code{main} function, your
10387@code{yyparse} function should have the following type signature:
10388
10389@example
10390int yyparse (void);
10391@end example
10392
12545799
AD
10393@c ================================================= C++ Bison
10394
8405b70c
PB
10395@node Other Languages
10396@chapter Parsers Written In Other Languages
12545799
AD
10397
10398@menu
10399* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10400* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10401@end menu
10402
10403@node C++ Parsers
10404@section C++ Parsers
10405
10406@menu
10407* C++ Bison Interface:: Asking for C++ parser generation
10408* C++ Semantic Values:: %union vs. C++
10409* C++ Location Values:: The position and location classes
10410* C++ Parser Interface:: Instantiating and running the parser
10411* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10412* A Complete C++ Example:: Demonstrating their use
12545799
AD
10413@end menu
10414
10415@node C++ Bison Interface
10416@subsection C++ Bison Interface
ed4d67dc 10417@c - %skeleton "lalr1.cc"
12545799
AD
10418@c - Always pure
10419@c - initial action
10420
eb45ef3b 10421The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10422@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10423@option{--skeleton=lalr1.cc}.
e6e704dc 10424@xref{Decl Summary}.
0e021770 10425
793fbca5
JD
10426When run, @command{bison} will create several entities in the @samp{yy}
10427namespace.
67501061 10428@findex %define api.namespace
35c1e5f0
JD
10429Use the @samp{%define api.namespace} directive to change the namespace name,
10430see @ref{%define Summary,,api.namespace}. The various classes are generated
10431in the following files:
aa08666d 10432
12545799
AD
10433@table @file
10434@item position.hh
10435@itemx location.hh
db8ab2be 10436The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10437location tracking when enabled. These files are not generated if the
10438@code{%define} variable @code{api.location.type} is defined. @xref{C++
10439Location Values}.
12545799
AD
10440
10441@item stack.hh
10442An auxiliary class @code{stack} used by the parser.
10443
fa4d969f
PE
10444@item @var{file}.hh
10445@itemx @var{file}.cc
ff7571c0 10446(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10447declaration and implementation of the C++ parser class. The basename
10448and extension of these two files follow the same rules as with regular C
10449parsers (@pxref{Invocation}).
12545799 10450
cd8b5791
AD
10451The header is @emph{mandatory}; you must either pass
10452@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10453@samp{%defines} directive.
10454@end table
10455
10456All these files are documented using Doxygen; run @command{doxygen}
10457for a complete and accurate documentation.
10458
10459@node C++ Semantic Values
10460@subsection C++ Semantic Values
10461@c - No objects in unions
178e123e 10462@c - YYSTYPE
12545799
AD
10463@c - Printer and destructor
10464
3cdc21cf
AD
10465Bison supports two different means to handle semantic values in C++. One is
10466alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10467practitioners know, unions are inconvenient in C++, therefore another
10468approach is provided, based on variants (@pxref{C++ Variants}).
10469
10470@menu
10471* C++ Unions:: Semantic values cannot be objects
10472* C++ Variants:: Using objects as semantic values
10473@end menu
10474
10475@node C++ Unions
10476@subsubsection C++ Unions
10477
12545799 10478The @code{%union} directive works as for C, see @ref{Union Decl, ,The
e4d49586 10479Union Declaration}. In particular it produces a genuine
3cdc21cf 10480@code{union}, which have a few specific features in C++.
12545799
AD
10481@itemize @minus
10482@item
fb9712a9
AD
10483The type @code{YYSTYPE} is defined but its use is discouraged: rather
10484you should refer to the parser's encapsulated type
10485@code{yy::parser::semantic_type}.
12545799
AD
10486@item
10487Non POD (Plain Old Data) types cannot be used. C++ forbids any
10488instance of classes with constructors in unions: only @emph{pointers}
10489to such objects are allowed.
10490@end itemize
10491
10492Because objects have to be stored via pointers, memory is not
10493reclaimed automatically: using the @code{%destructor} directive is the
10494only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10495Symbols}.
10496
3cdc21cf
AD
10497@node C++ Variants
10498@subsubsection C++ Variants
10499
ae8880de
AD
10500Bison provides a @emph{variant} based implementation of semantic values for
10501C++. This alleviates all the limitations reported in the previous section,
10502and in particular, object types can be used without pointers.
3cdc21cf
AD
10503
10504To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10505@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10506@code{%union} is ignored, and instead of using the name of the fields of the
10507@code{%union} to ``type'' the symbols, use genuine types.
10508
10509For instance, instead of
10510
10511@example
10512%union
10513@{
10514 int ival;
10515 std::string* sval;
10516@}
10517%token <ival> NUMBER;
10518%token <sval> STRING;
10519@end example
10520
10521@noindent
10522write
10523
10524@example
10525%token <int> NUMBER;
10526%token <std::string> STRING;
10527@end example
10528
10529@code{STRING} is no longer a pointer, which should fairly simplify the user
10530actions in the grammar and in the scanner (in particular the memory
10531management).
10532
10533Since C++ features destructors, and since it is customary to specialize
10534@code{operator<<} to support uniform printing of values, variants also
10535typically simplify Bison printers and destructors.
10536
10537Variants are stricter than unions. When based on unions, you may play any
10538dirty game with @code{yylval}, say storing an @code{int}, reading a
10539@code{char*}, and then storing a @code{double} in it. This is no longer
10540possible with variants: they must be initialized, then assigned to, and
10541eventually, destroyed.
10542
10543@deftypemethod {semantic_type} {T&} build<T> ()
10544Initialize, but leave empty. Returns the address where the actual value may
10545be stored. Requires that the variant was not initialized yet.
10546@end deftypemethod
10547
10548@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10549Initialize, and copy-construct from @var{t}.
10550@end deftypemethod
10551
10552
10553@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10554appeared unacceptable to require Boost on the user's machine (i.e., the
10555machine on which the generated parser will be compiled, not the machine on
10556which @command{bison} was run). Second, for each possible semantic value,
10557Boost.Variant not only stores the value, but also a tag specifying its
10558type. But the parser already ``knows'' the type of the semantic value, so
10559that would be duplicating the information.
10560
10561Therefore we developed light-weight variants whose type tag is external (so
10562they are really like @code{unions} for C++ actually). But our code is much
10563less mature that Boost.Variant. So there is a number of limitations in
10564(the current implementation of) variants:
10565@itemize
10566@item
10567Alignment must be enforced: values should be aligned in memory according to
10568the most demanding type. Computing the smallest alignment possible requires
10569meta-programming techniques that are not currently implemented in Bison, and
10570therefore, since, as far as we know, @code{double} is the most demanding
10571type on all platforms, alignments are enforced for @code{double} whatever
10572types are actually used. This may waste space in some cases.
10573
3cdc21cf
AD
10574@item
10575There might be portability issues we are not aware of.
10576@end itemize
10577
a6ca4ce2 10578As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10579is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10580
10581@node C++ Location Values
10582@subsection C++ Location Values
10583@c - %locations
10584@c - class Position
10585@c - class Location
16dc6a9e 10586@c - %define filename_type "const symbol::Symbol"
12545799
AD
10587
10588When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10589location tracking, see @ref{Tracking Locations}.
10590
10591By default, two auxiliary classes define a @code{position}, a single point
10592in a file, and a @code{location}, a range composed of a pair of
10593@code{position}s (possibly spanning several files). But if the
10594@code{%define} variable @code{api.location.type} is defined, then these
10595classes will not be generated, and the user defined type will be used.
12545799 10596
936c88d1
AD
10597@tindex uint
10598In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10599genuine code only the latter is used.
10600
10601@menu
10602* C++ position:: One point in the source file
10603* C++ location:: Two points in the source file
db8ab2be 10604* User Defined Location Type:: Required interface for locations
936c88d1
AD
10605@end menu
10606
10607@node C++ position
10608@subsubsection C++ @code{position}
10609
10610@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10611Create a @code{position} denoting a given point. Note that @code{file} is
10612not reclaimed when the @code{position} is destroyed: memory managed must be
10613handled elsewhere.
10614@end deftypeop
10615
10616@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10617Reset the position to the given values.
10618@end deftypemethod
10619
10620@deftypeivar {position} {std::string*} file
12545799
AD
10621The name of the file. It will always be handled as a pointer, the
10622parser will never duplicate nor deallocate it. As an experimental
10623feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10624filename_type "@var{type}"}.
936c88d1 10625@end deftypeivar
12545799 10626
936c88d1 10627@deftypeivar {position} {uint} line
12545799 10628The line, starting at 1.
936c88d1 10629@end deftypeivar
12545799 10630
75ae8299
AD
10631@deftypemethod {position} {void} lines (int @var{height} = 1)
10632If @var{height} is not null, advance by @var{height} lines, resetting the
10633column number. The resulting line number cannot be less than 1.
12545799
AD
10634@end deftypemethod
10635
936c88d1
AD
10636@deftypeivar {position} {uint} column
10637The column, starting at 1.
10638@end deftypeivar
12545799 10639
75ae8299
AD
10640@deftypemethod {position} {void} columns (int @var{width} = 1)
10641Advance by @var{width} columns, without changing the line number. The
10642resulting column number cannot be less than 1.
12545799
AD
10643@end deftypemethod
10644
936c88d1
AD
10645@deftypemethod {position} {position&} operator+= (int @var{width})
10646@deftypemethodx {position} {position} operator+ (int @var{width})
10647@deftypemethodx {position} {position&} operator-= (int @var{width})
10648@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10649Various forms of syntactic sugar for @code{columns}.
10650@end deftypemethod
10651
936c88d1
AD
10652@deftypemethod {position} {bool} operator== (const position& @var{that})
10653@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10654Whether @code{*this} and @code{that} denote equal/different positions.
10655@end deftypemethod
10656
10657@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10658Report @var{p} on @var{o} like this:
fa4d969f
PE
10659@samp{@var{file}:@var{line}.@var{column}}, or
10660@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10661@end deftypefun
10662
10663@node C++ location
10664@subsubsection C++ @code{location}
10665
10666@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10667Create a @code{Location} from the endpoints of the range.
10668@end deftypeop
10669
10670@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10671@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10672Create a @code{Location} denoting an empty range located at a given point.
10673@end deftypeop
10674
10675@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10676Reset the location to an empty range at the given values.
12545799
AD
10677@end deftypemethod
10678
936c88d1
AD
10679@deftypeivar {location} {position} begin
10680@deftypeivarx {location} {position} end
12545799 10681The first, inclusive, position of the range, and the first beyond.
936c88d1 10682@end deftypeivar
12545799 10683
75ae8299
AD
10684@deftypemethod {location} {void} columns (int @var{width} = 1)
10685@deftypemethodx {location} {void} lines (int @var{height} = 1)
10686Forwarded to the @code{end} position.
12545799
AD
10687@end deftypemethod
10688
56351d4c 10689@deftypemethod {location} {location} operator+ (int @var{width})
936c88d1 10690@deftypemethodx {location} {location} operator+= (int @var{width})
56351d4c 10691@deftypemethodx {location} {location} operator- (int @var{width})
75ae8299 10692@deftypemethodx {location} {location} operator-= (int @var{width})
56351d4c
AD
10693Various forms of syntactic sugar for @code{columns}.
10694@end deftypemethod
10695
10696@deftypemethod {location} {location} operator+ (const location& @var{end})
10697@deftypemethodx {location} {location} operator+= (const location& @var{end})
10698Join two locations: starts at the position of the first one, and ends at the
10699position of the second.
12545799
AD
10700@end deftypemethod
10701
10702@deftypemethod {location} {void} step ()
10703Move @code{begin} onto @code{end}.
10704@end deftypemethod
10705
936c88d1
AD
10706@deftypemethod {location} {bool} operator== (const location& @var{that})
10707@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10708Whether @code{*this} and @code{that} denote equal/different ranges of
10709positions.
10710@end deftypemethod
10711
10712@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10713Report @var{p} on @var{o}, taking care of special cases such as: no
10714@code{filename} defined, or equal filename/line or column.
10715@end deftypefun
12545799 10716
db8ab2be
AD
10717@node User Defined Location Type
10718@subsubsection User Defined Location Type
10719@findex %define api.location.type
10720
10721Instead of using the built-in types you may use the @code{%define} variable
10722@code{api.location.type} to specify your own type:
10723
10724@example
6ce4b4ff 10725%define api.location.type @{@var{LocationType}@}
db8ab2be
AD
10726@end example
10727
10728The requirements over your @var{LocationType} are:
10729@itemize
10730@item
10731it must be copyable;
10732
10733@item
10734in order to compute the (default) value of @code{@@$} in a reduction, the
10735parser basically runs
10736@example
10737@@$.begin = @@$1.begin;
10738@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10739@end example
10740@noindent
10741so there must be copyable @code{begin} and @code{end} members;
10742
10743@item
10744alternatively you may redefine the computation of the default location, in
10745which case these members are not required (@pxref{Location Default Action});
10746
10747@item
10748if traces are enabled, then there must exist an @samp{std::ostream&
10749 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10750@end itemize
10751
10752@sp 1
10753
10754In programs with several C++ parsers, you may also use the @code{%define}
10755variable @code{api.location.type} to share a common set of built-in
10756definitions for @code{position} and @code{location}. For instance, one
10757parser @file{master/parser.yy} might use:
10758
10759@example
10760%defines
10761%locations
6ce4b4ff 10762%define api.namespace @{master::@}
db8ab2be
AD
10763@end example
10764
10765@noindent
10766to generate the @file{master/position.hh} and @file{master/location.hh}
10767files, reused by other parsers as follows:
10768
10769@example
6ce4b4ff 10770%define api.location.type @{master::location@}
db8ab2be
AD
10771%code requires @{ #include <master/location.hh> @}
10772@end example
10773
12545799
AD
10774@node C++ Parser Interface
10775@subsection C++ Parser Interface
10776@c - define parser_class_name
10777@c - Ctor
10778@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10779@c debug_stream.
10780@c - Reporting errors
10781
10782The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10783declare and define the parser class in the namespace @code{yy}. The
10784class name defaults to @code{parser}, but may be changed using
6ce4b4ff 10785@samp{%define parser_class_name @{@var{name}@}}. The interface of
9d9b8b70 10786this class is detailed below. It can be extended using the
12545799
AD
10787@code{%parse-param} feature: its semantics is slightly changed since
10788it describes an additional member of the parser class, and an
10789additional argument for its constructor.
10790
3cdc21cf
AD
10791@defcv {Type} {parser} {semantic_type}
10792@defcvx {Type} {parser} {location_type}
10793The types for semantic values and locations (if enabled).
10794@end defcv
10795
86e5b440 10796@defcv {Type} {parser} {token}
aaaa2aae
AD
10797A structure that contains (only) the @code{yytokentype} enumeration, which
10798defines the tokens. To refer to the token @code{FOO},
10799use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10800@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10801(@pxref{Calc++ Scanner}).
10802@end defcv
10803
3cdc21cf
AD
10804@defcv {Type} {parser} {syntax_error}
10805This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10806from the scanner or from the user actions to raise parse errors. This is
10807equivalent with first
3cdc21cf
AD
10808invoking @code{error} to report the location and message of the syntax
10809error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10810But contrary to @code{YYERROR} which can only be invoked from user actions
10811(i.e., written in the action itself), the exception can be thrown from
10812function invoked from the user action.
8a0adb01 10813@end defcv
12545799
AD
10814
10815@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10816Build a new parser object. There are no arguments by default, unless
10817@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10818@end deftypemethod
10819
3cdc21cf
AD
10820@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10821@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10822Instantiate a syntax-error exception.
10823@end deftypemethod
10824
12545799
AD
10825@deftypemethod {parser} {int} parse ()
10826Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10827
10828@cindex exceptions
10829The whole function is wrapped in a @code{try}/@code{catch} block, so that
10830when an exception is thrown, the @code{%destructor}s are called to release
10831the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10832@end deftypemethod
10833
10834@deftypemethod {parser} {std::ostream&} debug_stream ()
10835@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10836Get or set the stream used for tracing the parsing. It defaults to
10837@code{std::cerr}.
10838@end deftypemethod
10839
10840@deftypemethod {parser} {debug_level_type} debug_level ()
10841@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10842Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10843or nonzero, full tracing.
12545799
AD
10844@end deftypemethod
10845
10846@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10847@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10848The definition for this member function must be supplied by the user:
10849the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10850described by @var{m}. If location tracking is not enabled, the second
10851signature is used.
12545799
AD
10852@end deftypemethod
10853
10854
10855@node C++ Scanner Interface
10856@subsection C++ Scanner Interface
10857@c - prefix for yylex.
10858@c - Pure interface to yylex
10859@c - %lex-param
10860
10861The parser invokes the scanner by calling @code{yylex}. Contrary to C
10862parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10863@samp{%define api.pure} directive. The actual interface with @code{yylex}
10864depends whether you use unions, or variants.
12545799 10865
3cdc21cf
AD
10866@menu
10867* Split Symbols:: Passing symbols as two/three components
10868* Complete Symbols:: Making symbols a whole
10869@end menu
10870
10871@node Split Symbols
10872@subsubsection Split Symbols
10873
5807bb91 10874The interface is as follows.
3cdc21cf 10875
86e5b440
AD
10876@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10877@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10878Return the next token. Its type is the return value, its semantic value and
10879location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10880@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10881@end deftypemethod
10882
3cdc21cf
AD
10883Note that when using variants, the interface for @code{yylex} is the same,
10884but @code{yylval} is handled differently.
10885
10886Regular union-based code in Lex scanner typically look like:
10887
10888@example
10889[0-9]+ @{
10890 yylval.ival = text_to_int (yytext);
10891 return yy::parser::INTEGER;
10892 @}
10893[a-z]+ @{
10894 yylval.sval = new std::string (yytext);
10895 return yy::parser::IDENTIFIER;
10896 @}
10897@end example
10898
10899Using variants, @code{yylval} is already constructed, but it is not
10900initialized. So the code would look like:
10901
10902@example
10903[0-9]+ @{
10904 yylval.build<int>() = text_to_int (yytext);
10905 return yy::parser::INTEGER;
10906 @}
10907[a-z]+ @{
10908 yylval.build<std::string> = yytext;
10909 return yy::parser::IDENTIFIER;
10910 @}
10911@end example
10912
10913@noindent
10914or
10915
10916@example
10917[0-9]+ @{
10918 yylval.build(text_to_int (yytext));
10919 return yy::parser::INTEGER;
10920 @}
10921[a-z]+ @{
10922 yylval.build(yytext);
10923 return yy::parser::IDENTIFIER;
10924 @}
10925@end example
10926
10927
10928@node Complete Symbols
10929@subsubsection Complete Symbols
10930
ae8880de 10931If you specified both @code{%define api.value.type variant} and
e36ec1f4 10932@code{%define api.token.constructor},
3cdc21cf
AD
10933the @code{parser} class also defines the class @code{parser::symbol_type}
10934which defines a @emph{complete} symbol, aggregating its type (i.e., the
10935traditional value returned by @code{yylex}), its semantic value (i.e., the
10936value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10937
10938@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10939Build a complete terminal symbol which token type is @var{type}, and which
10940semantic value is @var{value}. If location tracking is enabled, also pass
10941the @var{location}.
10942@end deftypemethod
10943
10944This interface is low-level and should not be used for two reasons. First,
10945it is inconvenient, as you still have to build the semantic value, which is
10946a variant, and second, because consistency is not enforced: as with unions,
10947it is still possible to give an integer as semantic value for a string.
10948
10949So for each token type, Bison generates named constructors as follows.
10950
10951@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10952@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10953Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10954including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10955@var{value} of adequate @var{value_type}. If location tracking is enabled,
10956also pass the @var{location}.
10957@end deftypemethod
10958
10959For instance, given the following declarations:
10960
10961@example
630a0218 10962%define api.token.prefix @{TOK_@}
3cdc21cf
AD
10963%token <std::string> IDENTIFIER;
10964%token <int> INTEGER;
10965%token COLON;
10966@end example
10967
10968@noindent
10969Bison generates the following functions:
10970
10971@example
10972symbol_type make_IDENTIFIER(const std::string& v,
10973 const location_type& l);
10974symbol_type make_INTEGER(const int& v,
10975 const location_type& loc);
10976symbol_type make_COLON(const location_type& loc);
10977@end example
10978
10979@noindent
10980which should be used in a Lex-scanner as follows.
10981
10982@example
10983[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10984[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10985":" return yy::parser::make_COLON(loc);
10986@end example
10987
10988Tokens that do not have an identifier are not accessible: you cannot simply
10989use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10990
10991@node A Complete C++ Example
8405b70c 10992@subsection A Complete C++ Example
12545799
AD
10993
10994This section demonstrates the use of a C++ parser with a simple but
10995complete example. This example should be available on your system,
3cdc21cf 10996ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10997focuses on the use of Bison, therefore the design of the various C++
10998classes is very naive: no accessors, no encapsulation of members etc.
10999We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 11000demonstrate the various interactions. A hand-written scanner is
12545799
AD
11001actually easier to interface with.
11002
11003@menu
11004* Calc++ --- C++ Calculator:: The specifications
11005* Calc++ Parsing Driver:: An active parsing context
11006* Calc++ Parser:: A parser class
11007* Calc++ Scanner:: A pure C++ Flex scanner
11008* Calc++ Top Level:: Conducting the band
11009@end menu
11010
11011@node Calc++ --- C++ Calculator
8405b70c 11012@subsubsection Calc++ --- C++ Calculator
12545799
AD
11013
11014Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 11015expression, possibly preceded by variable assignments. An
12545799
AD
11016environment containing possibly predefined variables such as
11017@code{one} and @code{two}, is exchanged with the parser. An example
11018of valid input follows.
11019
11020@example
11021three := 3
11022seven := one + two * three
11023seven * seven
11024@end example
11025
11026@node Calc++ Parsing Driver
8405b70c 11027@subsubsection Calc++ Parsing Driver
12545799
AD
11028@c - An env
11029@c - A place to store error messages
11030@c - A place for the result
11031
11032To support a pure interface with the parser (and the scanner) the
11033technique of the ``parsing context'' is convenient: a structure
11034containing all the data to exchange. Since, in addition to simply
11035launch the parsing, there are several auxiliary tasks to execute (open
11036the file for parsing, instantiate the parser etc.), we recommend
11037transforming the simple parsing context structure into a fully blown
11038@dfn{parsing driver} class.
11039
11040The declaration of this driver class, @file{calc++-driver.hh}, is as
11041follows. The first part includes the CPP guard and imports the
fb9712a9
AD
11042required standard library components, and the declaration of the parser
11043class.
12545799 11044
1c59e0a1 11045@comment file: calc++-driver.hh
12545799
AD
11046@example
11047#ifndef CALCXX_DRIVER_HH
11048# define CALCXX_DRIVER_HH
11049# include <string>
11050# include <map>
fb9712a9 11051# include "calc++-parser.hh"
12545799
AD
11052@end example
11053
12545799
AD
11054
11055@noindent
11056Then comes the declaration of the scanning function. Flex expects
11057the signature of @code{yylex} to be defined in the macro
11058@code{YY_DECL}, and the C++ parser expects it to be declared. We can
11059factor both as follows.
1c59e0a1
AD
11060
11061@comment file: calc++-driver.hh
12545799 11062@example
3dc5e96b 11063// Tell Flex the lexer's prototype ...
3cdc21cf
AD
11064# define YY_DECL \
11065 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
11066// ... and declare it for the parser's sake.
11067YY_DECL;
11068@end example
11069
11070@noindent
11071The @code{calcxx_driver} class is then declared with its most obvious
11072members.
11073
1c59e0a1 11074@comment file: calc++-driver.hh
12545799
AD
11075@example
11076// Conducting the whole scanning and parsing of Calc++.
11077class calcxx_driver
11078@{
11079public:
11080 calcxx_driver ();
11081 virtual ~calcxx_driver ();
11082
11083 std::map<std::string, int> variables;
11084
11085 int result;
11086@end example
11087
11088@noindent
3cdc21cf
AD
11089To encapsulate the coordination with the Flex scanner, it is useful to have
11090member functions to open and close the scanning phase.
12545799 11091
1c59e0a1 11092@comment file: calc++-driver.hh
12545799
AD
11093@example
11094 // Handling the scanner.
11095 void scan_begin ();
11096 void scan_end ();
11097 bool trace_scanning;
11098@end example
11099
11100@noindent
11101Similarly for the parser itself.
11102
1c59e0a1 11103@comment file: calc++-driver.hh
12545799 11104@example
3cdc21cf
AD
11105 // Run the parser on file F.
11106 // Return 0 on success.
bb32f4f2 11107 int parse (const std::string& f);
3cdc21cf
AD
11108 // The name of the file being parsed.
11109 // Used later to pass the file name to the location tracker.
12545799 11110 std::string file;
3cdc21cf 11111 // Whether parser traces should be generated.
12545799
AD
11112 bool trace_parsing;
11113@end example
11114
11115@noindent
11116To demonstrate pure handling of parse errors, instead of simply
11117dumping them on the standard error output, we will pass them to the
11118compiler driver using the following two member functions. Finally, we
11119close the class declaration and CPP guard.
11120
1c59e0a1 11121@comment file: calc++-driver.hh
12545799
AD
11122@example
11123 // Error handling.
11124 void error (const yy::location& l, const std::string& m);
11125 void error (const std::string& m);
11126@};
11127#endif // ! CALCXX_DRIVER_HH
11128@end example
11129
11130The implementation of the driver is straightforward. The @code{parse}
11131member function deserves some attention. The @code{error} functions
11132are simple stubs, they should actually register the located error
11133messages and set error state.
11134
1c59e0a1 11135@comment file: calc++-driver.cc
12545799
AD
11136@example
11137#include "calc++-driver.hh"
11138#include "calc++-parser.hh"
11139
11140calcxx_driver::calcxx_driver ()
11141 : trace_scanning (false), trace_parsing (false)
11142@{
11143 variables["one"] = 1;
11144 variables["two"] = 2;
11145@}
11146
11147calcxx_driver::~calcxx_driver ()
11148@{
11149@}
11150
bb32f4f2 11151int
12545799
AD
11152calcxx_driver::parse (const std::string &f)
11153@{
11154 file = f;
11155 scan_begin ();
11156 yy::calcxx_parser parser (*this);
11157 parser.set_debug_level (trace_parsing);
bb32f4f2 11158 int res = parser.parse ();
12545799 11159 scan_end ();
bb32f4f2 11160 return res;
12545799
AD
11161@}
11162
11163void
11164calcxx_driver::error (const yy::location& l, const std::string& m)
11165@{
11166 std::cerr << l << ": " << m << std::endl;
11167@}
11168
11169void
11170calcxx_driver::error (const std::string& m)
11171@{
11172 std::cerr << m << std::endl;
11173@}
11174@end example
11175
11176@node Calc++ Parser
8405b70c 11177@subsubsection Calc++ Parser
12545799 11178
ff7571c0
JD
11179The grammar file @file{calc++-parser.yy} starts by asking for the C++
11180deterministic parser skeleton, the creation of the parser header file,
11181and specifies the name of the parser class. Because the C++ skeleton
11182changed several times, it is safer to require the version you designed
11183the grammar for.
1c59e0a1
AD
11184
11185@comment file: calc++-parser.yy
12545799 11186@example
c93f22fc 11187%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11188%require "@value{VERSION}"
12545799 11189%defines
6ce4b4ff 11190%define parser_class_name @{calcxx_parser@}
fb9712a9
AD
11191@end example
11192
3cdc21cf 11193@noindent
e36ec1f4 11194@findex %define api.token.constructor
ae8880de 11195@findex %define api.value.type variant
3cdc21cf
AD
11196This example will use genuine C++ objects as semantic values, therefore, we
11197require the variant-based interface. To make sure we properly use it, we
11198enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11199definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11200
11201@comment file: calc++-parser.yy
11202@example
e36ec1f4 11203%define api.token.constructor
ae8880de 11204%define api.value.type variant
3cdc21cf 11205%define parse.assert
3cdc21cf
AD
11206@end example
11207
fb9712a9 11208@noindent
16dc6a9e 11209@findex %code requires
3cdc21cf
AD
11210Then come the declarations/inclusions needed by the semantic values.
11211Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11212to include the header of the other, which is, of course, insane. This
3cdc21cf 11213mutual dependency will be broken using forward declarations. Because the
fb9712a9 11214driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11215particular its inner types), it is the parser's header which will use a
e0c07222 11216forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11217
11218@comment file: calc++-parser.yy
11219@example
3cdc21cf
AD
11220%code requires
11221@{
12545799 11222# include <string>
fb9712a9 11223class calcxx_driver;
9bc0dd67 11224@}
12545799
AD
11225@end example
11226
11227@noindent
11228The driver is passed by reference to the parser and to the scanner.
11229This provides a simple but effective pure interface, not relying on
11230global variables.
11231
1c59e0a1 11232@comment file: calc++-parser.yy
12545799
AD
11233@example
11234// The parsing context.
2055a44e 11235%param @{ calcxx_driver& driver @}
12545799
AD
11236@end example
11237
11238@noindent
2055a44e 11239Then we request location tracking, and initialize the
f50bfcd6 11240first location's file name. Afterward new locations are computed
12545799 11241relatively to the previous locations: the file name will be
2055a44e 11242propagated.
12545799 11243
1c59e0a1 11244@comment file: calc++-parser.yy
12545799
AD
11245@example
11246%locations
11247%initial-action
11248@{
11249 // Initialize the initial location.
b47dbebe 11250 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11251@};
11252@end example
11253
11254@noindent
7fceb615
JD
11255Use the following two directives to enable parser tracing and verbose error
11256messages. However, verbose error messages can contain incorrect information
11257(@pxref{LAC}).
12545799 11258
1c59e0a1 11259@comment file: calc++-parser.yy
12545799 11260@example
fa819509 11261%define parse.trace
cf499cff 11262%define parse.error verbose
12545799
AD
11263@end example
11264
fb9712a9 11265@noindent
136a0f76
PB
11266@findex %code
11267The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11268@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11269
11270@comment file: calc++-parser.yy
11271@example
3cdc21cf
AD
11272%code
11273@{
fb9712a9 11274# include "calc++-driver.hh"
34f98f46 11275@}
fb9712a9
AD
11276@end example
11277
11278
12545799
AD
11279@noindent
11280The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11281allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11282``$end''. Similarly user friendly names are provided for each symbol. To
11283avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11284tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11285
1c59e0a1 11286@comment file: calc++-parser.yy
12545799 11287@example
630a0218 11288%define api.token.prefix @{TOK_@}
3cdc21cf
AD
11289%token
11290 END 0 "end of file"
11291 ASSIGN ":="
11292 MINUS "-"
11293 PLUS "+"
11294 STAR "*"
11295 SLASH "/"
11296 LPAREN "("
11297 RPAREN ")"
11298;
12545799
AD
11299@end example
11300
11301@noindent
3cdc21cf
AD
11302Since we use variant-based semantic values, @code{%union} is not used, and
11303both @code{%type} and @code{%token} expect genuine types, as opposed to type
11304tags.
12545799 11305
1c59e0a1 11306@comment file: calc++-parser.yy
12545799 11307@example
3cdc21cf
AD
11308%token <std::string> IDENTIFIER "identifier"
11309%token <int> NUMBER "number"
11310%type <int> exp
11311@end example
11312
11313@noindent
11314No @code{%destructor} is needed to enable memory deallocation during error
11315recovery; the memory, for strings for instance, will be reclaimed by the
11316regular destructors. All the values are printed using their
a76c741d 11317@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11318
3cdc21cf
AD
11319@comment file: calc++-parser.yy
11320@example
c5026327 11321%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11322@end example
11323
11324@noindent
3cdc21cf
AD
11325The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11326Location Tracking Calculator: @code{ltcalc}}).
12545799 11327
1c59e0a1 11328@comment file: calc++-parser.yy
12545799
AD
11329@example
11330%%
11331%start unit;
11332unit: assignments exp @{ driver.result = $2; @};
11333
99c08fb6 11334assignments:
6240346a 11335 %empty @{@}
5e9b6624 11336| assignments assignment @{@};
12545799 11337
3dc5e96b 11338assignment:
3cdc21cf 11339 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11340
3cdc21cf
AD
11341%left "+" "-";
11342%left "*" "/";
99c08fb6 11343exp:
3cdc21cf
AD
11344 exp "+" exp @{ $$ = $1 + $3; @}
11345| exp "-" exp @{ $$ = $1 - $3; @}
11346| exp "*" exp @{ $$ = $1 * $3; @}
11347| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11348| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11349| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11350| "number" @{ std::swap ($$, $1); @};
12545799
AD
11351%%
11352@end example
11353
11354@noindent
11355Finally the @code{error} member function registers the errors to the
11356driver.
11357
1c59e0a1 11358@comment file: calc++-parser.yy
12545799
AD
11359@example
11360void
3cdc21cf 11361yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11362 const std::string& m)
12545799
AD
11363@{
11364 driver.error (l, m);
11365@}
11366@end example
11367
11368@node Calc++ Scanner
8405b70c 11369@subsubsection Calc++ Scanner
12545799
AD
11370
11371The Flex scanner first includes the driver declaration, then the
11372parser's to get the set of defined tokens.
11373
1c59e0a1 11374@comment file: calc++-scanner.ll
12545799 11375@example
c93f22fc 11376%@{ /* -*- C++ -*- */
3c248d70
AD
11377# include <cerrno>
11378# include <climits>
3cdc21cf 11379# include <cstdlib>
12545799
AD
11380# include <string>
11381# include "calc++-driver.hh"
11382# include "calc++-parser.hh"
eaea13f5 11383
3cdc21cf
AD
11384// Work around an incompatibility in flex (at least versions
11385// 2.5.31 through 2.5.33): it generates code that does
11386// not conform to C89. See Debian bug 333231
11387// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11388# undef yywrap
11389# define yywrap() 1
eaea13f5 11390
3cdc21cf
AD
11391// The location of the current token.
11392static yy::location loc;
12545799
AD
11393%@}
11394@end example
11395
11396@noindent
11397Because there is no @code{#include}-like feature we don't need
11398@code{yywrap}, we don't need @code{unput} either, and we parse an
11399actual file, this is not an interactive session with the user.
3cdc21cf 11400Finally, we enable scanner tracing.
12545799 11401
1c59e0a1 11402@comment file: calc++-scanner.ll
12545799 11403@example
6908c2e1 11404%option noyywrap nounput batch debug noinput
12545799
AD
11405@end example
11406
11407@noindent
11408Abbreviations allow for more readable rules.
11409
1c59e0a1 11410@comment file: calc++-scanner.ll
12545799
AD
11411@example
11412id [a-zA-Z][a-zA-Z_0-9]*
11413int [0-9]+
11414blank [ \t]
11415@end example
11416
11417@noindent
9d9b8b70 11418The following paragraph suffices to track locations accurately. Each
12545799 11419time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11420position. Then when a pattern is matched, its width is added to the end
11421column. When matching ends of lines, the end
12545799
AD
11422cursor is adjusted, and each time blanks are matched, the begin cursor
11423is moved onto the end cursor to effectively ignore the blanks
11424preceding tokens. Comments would be treated equally.
11425
1c59e0a1 11426@comment file: calc++-scanner.ll
12545799 11427@example
d4fca427 11428@group
828c373b 11429%@{
3cdc21cf
AD
11430 // Code run each time a pattern is matched.
11431 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11432%@}
d4fca427 11433@end group
12545799 11434%%
d4fca427 11435@group
12545799 11436%@{
3cdc21cf
AD
11437 // Code run each time yylex is called.
11438 loc.step ();
12545799 11439%@}
d4fca427 11440@end group
3cdc21cf
AD
11441@{blank@}+ loc.step ();
11442[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11443@end example
11444
11445@noindent
3cdc21cf 11446The rules are simple. The driver is used to report errors.
12545799 11447
1c59e0a1 11448@comment file: calc++-scanner.ll
12545799 11449@example
3cdc21cf
AD
11450"-" return yy::calcxx_parser::make_MINUS(loc);
11451"+" return yy::calcxx_parser::make_PLUS(loc);
11452"*" return yy::calcxx_parser::make_STAR(loc);
11453"/" return yy::calcxx_parser::make_SLASH(loc);
11454"(" return yy::calcxx_parser::make_LPAREN(loc);
11455")" return yy::calcxx_parser::make_RPAREN(loc);
11456":=" return yy::calcxx_parser::make_ASSIGN(loc);
11457
d4fca427 11458@group
04098407
PE
11459@{int@} @{
11460 errno = 0;
11461 long n = strtol (yytext, NULL, 10);
11462 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11463 driver.error (loc, "integer is out of range");
11464 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11465@}
d4fca427 11466@end group
3cdc21cf
AD
11467@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11468. driver.error (loc, "invalid character");
11469<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11470%%
11471@end example
11472
11473@noindent
3cdc21cf 11474Finally, because the scanner-related driver's member-functions depend
12545799
AD
11475on the scanner's data, it is simpler to implement them in this file.
11476
1c59e0a1 11477@comment file: calc++-scanner.ll
12545799 11478@example
d4fca427 11479@group
12545799
AD
11480void
11481calcxx_driver::scan_begin ()
11482@{
11483 yy_flex_debug = trace_scanning;
93c150b6 11484 if (file.empty () || file == "-")
bb32f4f2
AD
11485 yyin = stdin;
11486 else if (!(yyin = fopen (file.c_str (), "r")))
11487 @{
aaaa2aae 11488 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11489 exit (EXIT_FAILURE);
bb32f4f2 11490 @}
12545799 11491@}
d4fca427 11492@end group
12545799 11493
d4fca427 11494@group
12545799
AD
11495void
11496calcxx_driver::scan_end ()
11497@{
11498 fclose (yyin);
11499@}
d4fca427 11500@end group
12545799
AD
11501@end example
11502
11503@node Calc++ Top Level
8405b70c 11504@subsubsection Calc++ Top Level
12545799
AD
11505
11506The top level file, @file{calc++.cc}, poses no problem.
11507
1c59e0a1 11508@comment file: calc++.cc
12545799
AD
11509@example
11510#include <iostream>
11511#include "calc++-driver.hh"
11512
d4fca427 11513@group
12545799 11514int
fa4d969f 11515main (int argc, char *argv[])
12545799 11516@{
414c76a4 11517 int res = 0;
12545799 11518 calcxx_driver driver;
93c150b6
AD
11519 for (int i = 1; i < argc; ++i)
11520 if (argv[i] == std::string ("-p"))
12545799 11521 driver.trace_parsing = true;
93c150b6 11522 else if (argv[i] == std::string ("-s"))
12545799 11523 driver.trace_scanning = true;
93c150b6 11524 else if (!driver.parse (argv[i]))
bb32f4f2 11525 std::cout << driver.result << std::endl;
414c76a4
AD
11526 else
11527 res = 1;
11528 return res;
12545799 11529@}
d4fca427 11530@end group
12545799
AD
11531@end example
11532
8405b70c
PB
11533@node Java Parsers
11534@section Java Parsers
11535
11536@menu
f5f419de
DJ
11537* Java Bison Interface:: Asking for Java parser generation
11538* Java Semantic Values:: %type and %token vs. Java
11539* Java Location Values:: The position and location classes
11540* Java Parser Interface:: Instantiating and running the parser
11541* Java Scanner Interface:: Specifying the scanner for the parser
11542* Java Action Features:: Special features for use in actions
aa94def1 11543* Java Push Parser Interface:: Instantiating and running the a push parser
f5f419de
DJ
11544* Java Differences:: Differences between C/C++ and Java Grammars
11545* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11546@end menu
11547
11548@node Java Bison Interface
11549@subsection Java Bison Interface
11550@c - %language "Java"
8405b70c 11551
59da312b
JD
11552(The current Java interface is experimental and may evolve.
11553More user feedback will help to stabilize it.)
11554
e254a580
DJ
11555The Java parser skeletons are selected using the @code{%language "Java"}
11556directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11557
e254a580 11558@c FIXME: Documented bug.
ff7571c0
JD
11559When generating a Java parser, @code{bison @var{basename}.y} will
11560create a single Java source file named @file{@var{basename}.java}
11561containing the parser implementation. Using a grammar file without a
11562@file{.y} suffix is currently broken. The basename of the parser
11563implementation file can be changed by the @code{%file-prefix}
11564directive or the @option{-p}/@option{--name-prefix} option. The
11565entire parser implementation file name can be changed by the
11566@code{%output} directive or the @option{-o}/@option{--output} option.
11567The parser implementation file contains a single class for the parser.
8405b70c 11568
e254a580 11569You can create documentation for generated parsers using Javadoc.
8405b70c 11570
e254a580
DJ
11571Contrary to C parsers, Java parsers do not use global variables; the
11572state of the parser is always local to an instance of the parser class.
11573Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11574and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11575
e254a580 11576Push parsers are currently unsupported in Java and @code{%define
67212941 11577api.push-pull} have no effect.
01b477c6 11578
8a4281b9 11579GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11580@code{glr-parser} directive.
11581
11582No header file can be generated for Java parsers. Do not use the
11583@code{%defines} directive or the @option{-d}/@option{--defines} options.
11584
11585@c FIXME: Possible code change.
fa819509
AD
11586Currently, support for tracing is always compiled
11587in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11588directives and the
e254a580
DJ
11589@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11590options have no effect. This may change in the future to eliminate
fa819509
AD
11591unused code in the generated parser, so use @samp{%define parse.trace}
11592explicitly
1979121c 11593if needed. Also, in the future the
e254a580
DJ
11594@code{%token-table} directive might enable a public interface to
11595access the token names and codes.
8405b70c 11596
09ccae9b 11597Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11598hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11599Try reducing the amount of code in actions and static initializers;
11600otherwise, report a bug so that the parser skeleton will be improved.
11601
11602
8405b70c
PB
11603@node Java Semantic Values
11604@subsection Java Semantic Values
11605@c - No %union, specify type in %type/%token.
11606@c - YYSTYPE
11607@c - Printer and destructor
11608
11609There is no @code{%union} directive in Java parsers. Instead, the
11610semantic values' types (class names) should be specified in the
11611@code{%type} or @code{%token} directive:
11612
11613@example
11614%type <Expression> expr assignment_expr term factor
11615%type <Integer> number
11616@end example
11617
11618By default, the semantic stack is declared to have @code{Object} members,
11619which means that the class types you specify can be of any class.
11620To improve the type safety of the parser, you can declare the common
4119d1ea 11621superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11622directive. For example, after the following declaration:
8405b70c
PB
11623
11624@example
6ce4b4ff 11625%define api.value.type @{ASTNode@}
8405b70c
PB
11626@end example
11627
11628@noindent
11629any @code{%type} or @code{%token} specifying a semantic type which
11630is not a subclass of ASTNode, will cause a compile-time error.
11631
e254a580 11632@c FIXME: Documented bug.
8405b70c
PB
11633Types used in the directives may be qualified with a package name.
11634Primitive data types are accepted for Java version 1.5 or later. Note
11635that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11636Generic types may not be used; this is due to a limitation in the
11637implementation of Bison, and may change in future releases.
8405b70c
PB
11638
11639Java parsers do not support @code{%destructor}, since the language
11640adopts garbage collection. The parser will try to hold references
11641to semantic values for as little time as needed.
11642
11643Java parsers do not support @code{%printer}, as @code{toString()}
11644can be used to print the semantic values. This however may change
11645(in a backwards-compatible way) in future versions of Bison.
11646
11647
11648@node Java Location Values
11649@subsection Java Location Values
11650@c - %locations
11651@c - class Position
11652@c - class Location
11653
303834cc
JD
11654When the directive @code{%locations} is used, the Java parser supports
11655location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11656class defines a @dfn{position}, a single point in a file; Bison itself
11657defines a class representing a @dfn{location}, a range composed of a pair of
11658positions (possibly spanning several files). The location class is an inner
11659class of the parser; the name is @code{Location} by default, and may also be
6ce4b4ff 11660renamed using @code{%define api.location.type @{@var{class-name}@}}.
8405b70c
PB
11661
11662The location class treats the position as a completely opaque value.
11663By default, the class name is @code{Position}, but this can be changed
6ce4b4ff 11664with @code{%define api.position.type @{@var{class-name}@}}. This class must
e254a580 11665be supplied by the user.
8405b70c
PB
11666
11667
e254a580
DJ
11668@deftypeivar {Location} {Position} begin
11669@deftypeivarx {Location} {Position} end
8405b70c 11670The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11671@end deftypeivar
11672
11673@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11674Create a @code{Location} denoting an empty range located at a given point.
e254a580 11675@end deftypeop
8405b70c 11676
e254a580
DJ
11677@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11678Create a @code{Location} from the endpoints of the range.
11679@end deftypeop
11680
11681@deftypemethod {Location} {String} toString ()
8405b70c
PB
11682Prints the range represented by the location. For this to work
11683properly, the position class should override the @code{equals} and
11684@code{toString} methods appropriately.
11685@end deftypemethod
11686
11687
11688@node Java Parser Interface
11689@subsection Java Parser Interface
11690@c - define parser_class_name
11691@c - Ctor
11692@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11693@c debug_stream.
11694@c - Reporting errors
11695
e254a580
DJ
11696The name of the generated parser class defaults to @code{YYParser}. The
11697@code{YY} prefix may be changed using the @code{%name-prefix} directive
11698or the @option{-p}/@option{--name-prefix} option. Alternatively, use
6ce4b4ff 11699@samp{%define parser_class_name @{@var{name}@}} to give a custom name to
e254a580 11700the class. The interface of this class is detailed below.
8405b70c 11701
e254a580 11702By default, the parser class has package visibility. A declaration
67501061 11703@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11704according to the Java language specification, the name of the @file{.java}
11705file should match the name of the class in this case. Similarly, you can
11706use @code{abstract}, @code{final} and @code{strictfp} with the
11707@code{%define} declaration to add other modifiers to the parser class.
6ce4b4ff 11708A single @samp{%define annotations @{@var{annotations}@}} directive can
1979121c 11709be used to add any number of annotations to the parser class.
e254a580
DJ
11710
11711The Java package name of the parser class can be specified using the
67501061 11712@samp{%define package} directive. The superclass and the implemented
e254a580 11713interfaces of the parser class can be specified with the @code{%define
67501061 11714extends} and @samp{%define implements} directives.
e254a580
DJ
11715
11716The parser class defines an inner class, @code{Location}, that is used
11717for location tracking (see @ref{Java Location Values}), and a inner
11718interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11719these inner class/interface, and the members described in the interface
11720below, all the other members and fields are preceded with a @code{yy} or
11721@code{YY} prefix to avoid clashes with user code.
11722
e254a580
DJ
11723The parser class can be extended using the @code{%parse-param}
11724directive. Each occurrence of the directive will add a @code{protected
11725final} field to the parser class, and an argument to its constructor,
11726which initialize them automatically.
11727
e254a580
DJ
11728@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11729Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11730no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11731@code{%lex-param}s are used.
1979121c
DJ
11732
11733Use @code{%code init} for code added to the start of the constructor
11734body. This is especially useful to initialize superclasses. Use
f50bfcd6 11735@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11736@end deftypeop
11737
11738@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11739Build a new parser object using the specified scanner. There are no
2055a44e
AD
11740additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11741used.
e254a580
DJ
11742
11743If the scanner is defined by @code{%code lexer}, this constructor is
11744declared @code{protected} and is called automatically with a scanner
2055a44e 11745created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11746
11747Use @code{%code init} for code added to the start of the constructor
11748body. This is especially useful to initialize superclasses. Use
5a321748 11749@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11750@end deftypeop
8405b70c
PB
11751
11752@deftypemethod {YYParser} {boolean} parse ()
11753Run the syntactic analysis, and return @code{true} on success,
11754@code{false} otherwise.
11755@end deftypemethod
11756
1979121c
DJ
11757@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11758@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11759Get or set the option to produce verbose error messages. These are only
cf499cff 11760available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11761verbose error messages.
11762@end deftypemethod
11763
11764@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11765@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11766@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11767Print an error message using the @code{yyerror} method of the scanner
11768instance in use. The @code{Location} and @code{Position} parameters are
11769available only if location tracking is active.
11770@end deftypemethod
11771
01b477c6 11772@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11773During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11774from a syntax error.
11775@xref{Error Recovery}.
8405b70c
PB
11776@end deftypemethod
11777
11778@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11779@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11780Get or set the stream used for tracing the parsing. It defaults to
11781@code{System.err}.
11782@end deftypemethod
11783
11784@deftypemethod {YYParser} {int} getDebugLevel ()
11785@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11786Get or set the tracing level. Currently its value is either 0, no trace,
11787or nonzero, full tracing.
11788@end deftypemethod
11789
1979121c
DJ
11790@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11791@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11792Identify the Bison version and skeleton used to generate this parser.
11793@end deftypecv
11794
8405b70c
PB
11795
11796@node Java Scanner Interface
11797@subsection Java Scanner Interface
01b477c6 11798@c - %code lexer
8405b70c 11799@c - %lex-param
01b477c6 11800@c - Lexer interface
8405b70c 11801
e254a580
DJ
11802There are two possible ways to interface a Bison-generated Java parser
11803with a scanner: the scanner may be defined by @code{%code lexer}, or
11804defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11805@code{Lexer} inner interface of the parser class. This interface also
11806contain constants for all user-defined token names and the predefined
11807@code{EOF} token.
e254a580
DJ
11808
11809In the first case, the body of the scanner class is placed in
11810@code{%code lexer} blocks. If you want to pass parameters from the
11811parser constructor to the scanner constructor, specify them with
11812@code{%lex-param}; they are passed before @code{%parse-param}s to the
11813constructor.
01b477c6 11814
59c5ac72 11815In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11816which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11817The constructor of the parser object will then accept an object
11818implementing the interface; @code{%lex-param} is not used in this
11819case.
11820
11821In both cases, the scanner has to implement the following methods.
11822
e254a580
DJ
11823@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11824This method is defined by the user to emit an error message. The first
11825parameter is omitted if location tracking is not active. Its type can be
6ce4b4ff 11826changed using @code{%define api.location.type @{@var{class-name}@}}.
8405b70c
PB
11827@end deftypemethod
11828
e254a580 11829@deftypemethod {Lexer} {int} yylex ()
8405b70c 11830Return the next token. Its type is the return value, its semantic
f50bfcd6 11831value and location are saved and returned by the their methods in the
e254a580
DJ
11832interface.
11833
67501061 11834Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11835Default is @code{java.io.IOException}.
8405b70c
PB
11836@end deftypemethod
11837
11838@deftypemethod {Lexer} {Position} getStartPos ()
11839@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11840Return respectively the first position of the last token that
11841@code{yylex} returned, and the first position beyond it. These
11842methods are not needed unless location tracking is active.
8405b70c 11843
7287be84 11844The return type can be changed using @code{%define api.position.type
6ce4b4ff 11845@{@var{class-name}@}}.
8405b70c
PB
11846@end deftypemethod
11847
11848@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11849Return the semantic value of the last token that yylex returned.
8405b70c 11850
4119d1ea 11851The return type can be changed using @samp{%define api.value.type
6ce4b4ff 11852@{@var{class-name}@}}.
8405b70c
PB
11853@end deftypemethod
11854
e254a580
DJ
11855@node Java Action Features
11856@subsection Special Features for Use in Java Actions
11857
11858The following special constructs can be uses in Java actions.
11859Other analogous C action features are currently unavailable for Java.
11860
67501061 11861Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11862actions, and initial actions specified by @code{%initial-action}.
11863
11864@defvar $@var{n}
11865The semantic value for the @var{n}th component of the current rule.
11866This may not be assigned to.
11867@xref{Java Semantic Values}.
11868@end defvar
11869
11870@defvar $<@var{typealt}>@var{n}
11871Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11872@xref{Java Semantic Values}.
11873@end defvar
11874
11875@defvar $$
11876The semantic value for the grouping made by the current rule. As a
11877value, this is in the base type (@code{Object} or as specified by
4119d1ea 11878@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11879casts are not allowed on the left-hand side of Java assignments.
11880Use an explicit Java cast if the correct subtype is needed.
11881@xref{Java Semantic Values}.
11882@end defvar
11883
11884@defvar $<@var{typealt}>$
11885Same as @code{$$} since Java always allow assigning to the base type.
11886Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11887for setting the value but there is currently no easy way to distinguish
11888these constructs.
11889@xref{Java Semantic Values}.
11890@end defvar
11891
11892@defvar @@@var{n}
11893The location information of the @var{n}th component of the current rule.
11894This may not be assigned to.
11895@xref{Java Location Values}.
11896@end defvar
11897
11898@defvar @@$
11899The location information of the grouping made by the current rule.
11900@xref{Java Location Values}.
11901@end defvar
11902
34a41a93 11903@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11904Return immediately from the parser, indicating failure.
11905@xref{Java Parser Interface}.
34a41a93 11906@end deftypefn
8405b70c 11907
34a41a93 11908@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11909Return immediately from the parser, indicating success.
11910@xref{Java Parser Interface}.
34a41a93 11911@end deftypefn
8405b70c 11912
34a41a93 11913@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11914Start error recovery (without printing an error message).
e254a580 11915@xref{Error Recovery}.
34a41a93 11916@end deftypefn
8405b70c 11917
e254a580
DJ
11918@deftypefn {Function} {boolean} recovering ()
11919Return whether error recovery is being done. In this state, the parser
11920reads token until it reaches a known state, and then restarts normal
11921operation.
11922@xref{Error Recovery}.
11923@end deftypefn
8405b70c 11924
1979121c
DJ
11925@deftypefn {Function} {void} yyerror (String @var{msg})
11926@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11927@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11928Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11929instance in use. The @code{Location} and @code{Position} parameters are
11930available only if location tracking is active.
e254a580 11931@end deftypefn
8405b70c 11932
aa94def1
DH
11933@node Java Push Parser Interface
11934@subsection Java Push Parser Interface
11935@c - define push_parse
11936@findex %define api.push-pull
11937
11938(The current push parsing interface is experimental and may evolve. More
11939user feedback will help to stabilize it.)
11940
11941Normally, Bison generates a pull parser for Java.
11942The following Bison declaration says that you want the parser to be a push
11943parser (@pxref{%define Summary,,api.push-pull}):
11944
11945@example
11946%define api.push-pull push
11947@end example
11948
11949Most of the discussion about the Java pull Parser Interface, (@pxref{Java
11950Parser Interface}) applies to the push parser interface as well.
11951
11952When generating a push parser, the method @code{push_parse} is created with
11953the following signature (depending on if locations are enabled).
11954
11955@deftypemethod {YYParser} {void} push_parse ({int} @var{token}, {Object} @var{yylval})
11956@deftypemethodx {YYParser} {void} push_parse ({int} @var{token}, {Object} @var{yylval}, {Location} @var{yyloc})
11957@deftypemethodx {YYParser} {void} push_parse ({int} @var{token}, {Object} @var{yylval}, {Position} @var{yypos})
11958@end deftypemethod
11959
11960The primary difference with respect to a pull parser is that the parser
11961method @code{push_parse} is invoked repeatedly to parse each token. This
11962function is available if either the "%define api.push-pull push" or "%define
11963api.push-pull both" declaration is used (@pxref{%define
11964Summary,,api.push-pull}). The @code{Location} and @code{Position}
11965parameters are available only if location tracking is active.
11966
11967The value returned by the @code{push_parse} method is one of the following
11968four constants: @code{YYABORT}, @code{YYACCEPT}, @code{YYERROR}, or
45c64fa6
AD
11969@code{YYPUSH_MORE}. This new value, @code{YYPUSH_MORE}, may be returned if
11970more input is required to finish parsing the grammar.
aa94def1
DH
11971
11972If api.push-pull is declared as @code{both}, then the generated parser class
11973will also implement the @code{parse} method. This method's body is a loop
11974that repeatedly invokes the scanner and then passes the values obtained from
11975the scanner to the @code{push_parse} method.
11976
11977There is one additional complication. Technically, the push parser does not
11978need to know about the scanner (i.e. an object implementing the
11979@code{YYParser.Lexer} interface), but it does need access to the
11980@code{yyerror} method. Currently, the @code{yyerror} method is defined in
11981the @code{YYParser.Lexer} interface. Hence, an implementation of that
11982interface is still required in order to provide an implementation of
11983@code{yyerror}. The current approach (and subject to change) is to require
11984the @code{YYParser} constructor to be given an object implementing the
11985@code{YYParser.Lexer} interface. This object need only implement the
11986@code{yyerror} method; the other methods can be stubbed since they will
11987never be invoked. The simplest way to do this is to add a trivial scanner
11988implementation to your grammar file using whatever implementation of
11989@code{yyerror} is desired. The following code sample shows a simple way to
11990accomplish this.
11991
11992@example
11993%code lexer
11994@{
11995 public Object getLVal () @{return null;@}
11996 public int yylex () @{return 0;@}
11997 public void yyerror (String s) @{System.err.println(s);@}
11998@}
11999@end example
8405b70c 12000
8405b70c
PB
12001@node Java Differences
12002@subsection Differences between C/C++ and Java Grammars
12003
12004The different structure of the Java language forces several differences
12005between C/C++ grammars, and grammars designed for Java parsers. This
29553547 12006section summarizes these differences.
8405b70c
PB
12007
12008@itemize
12009@item
01b477c6 12010Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 12011@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
12012macros. Instead, they should be preceded by @code{return} when they
12013appear in an action. The actual definition of these symbols is
8405b70c
PB
12014opaque to the Bison grammar, and it might change in the future. The
12015only meaningful operation that you can do, is to return them.
e3fd1dcb 12016@xref{Java Action Features}.
8405b70c
PB
12017
12018Note that of these three symbols, only @code{YYACCEPT} and
12019@code{YYABORT} will cause a return from the @code{yyparse}
12020method@footnote{Java parsers include the actions in a separate
12021method than @code{yyparse} in order to have an intuitive syntax that
12022corresponds to these C macros.}.
12023
e254a580
DJ
12024@item
12025Java lacks unions, so @code{%union} has no effect. Instead, semantic
12026values have a common base type: @code{Object} or as specified by
4119d1ea 12027@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
12028@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
12029an union. The type of @code{$$}, even with angle brackets, is the base
12030type since Java casts are not allow on the left-hand side of assignments.
12031Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 12032left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 12033@ref{Java Action Features}.
e254a580 12034
8405b70c 12035@item
f50bfcd6 12036The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
12037@table @asis
12038@item @code{%code imports}
12039blocks are placed at the beginning of the Java source code. They may
12040include copyright notices. For a @code{package} declarations, it is
67501061 12041suggested to use @samp{%define package} instead.
8405b70c 12042
01b477c6
PB
12043@item unqualified @code{%code}
12044blocks are placed inside the parser class.
12045
12046@item @code{%code lexer}
12047blocks, if specified, should include the implementation of the
12048scanner. If there is no such block, the scanner can be any class
e3fd1dcb 12049that implements the appropriate interface (@pxref{Java Scanner
01b477c6 12050Interface}).
29553547 12051@end table
8405b70c
PB
12052
12053Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
12054In particular, @code{%@{ @dots{} %@}} blocks should not be used
12055and may give an error in future versions of Bison.
12056
01b477c6 12057The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
12058be used to define other classes used by the parser @emph{outside}
12059the parser class.
8405b70c
PB
12060@end itemize
12061
e254a580
DJ
12062
12063@node Java Declarations Summary
12064@subsection Java Declarations Summary
12065
12066This summary only include declarations specific to Java or have special
12067meaning when used in a Java parser.
12068
12069@deffn {Directive} {%language "Java"}
12070Generate a Java class for the parser.
12071@end deffn
12072
12073@deffn {Directive} %lex-param @{@var{type} @var{name}@}
12074A parameter for the lexer class defined by @code{%code lexer}
12075@emph{only}, added as parameters to the lexer constructor and the parser
12076constructor that @emph{creates} a lexer. Default is none.
12077@xref{Java Scanner Interface}.
12078@end deffn
12079
12080@deffn {Directive} %name-prefix "@var{prefix}"
12081The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 12082@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
12083@xref{Java Bison Interface}.
12084@end deffn
12085
12086@deffn {Directive} %parse-param @{@var{type} @var{name}@}
12087A parameter for the parser class added as parameters to constructor(s)
12088and as fields initialized by the constructor(s). Default is none.
12089@xref{Java Parser Interface}.
12090@end deffn
12091
12092@deffn {Directive} %token <@var{type}> @var{token} @dots{}
12093Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
12094@xref{Java Semantic Values}.
12095@end deffn
12096
12097@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
12098Declare the type of nonterminals. Note that the angle brackets enclose
12099a Java @emph{type}.
12100@xref{Java Semantic Values}.
12101@end deffn
12102
12103@deffn {Directive} %code @{ @var{code} @dots{} @}
12104Code appended to the inside of the parser class.
12105@xref{Java Differences}.
12106@end deffn
12107
12108@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
12109Code inserted just after the @code{package} declaration.
12110@xref{Java Differences}.
12111@end deffn
12112
1979121c
DJ
12113@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
12114Code inserted at the beginning of the parser constructor body.
12115@xref{Java Parser Interface}.
12116@end deffn
12117
e254a580
DJ
12118@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
12119Code added to the body of a inner lexer class within the parser class.
12120@xref{Java Scanner Interface}.
12121@end deffn
12122
12123@deffn {Directive} %% @var{code} @dots{}
12124Code (after the second @code{%%}) appended to the end of the file,
12125@emph{outside} the parser class.
12126@xref{Java Differences}.
12127@end deffn
12128
12129@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 12130Not supported. Use @code{%code imports} instead.
e254a580
DJ
12131@xref{Java Differences}.
12132@end deffn
12133
12134@deffn {Directive} {%define abstract}
12135Whether the parser class is declared @code{abstract}. Default is false.
12136@xref{Java Bison Interface}.
12137@end deffn
12138
6ce4b4ff 12139@deffn {Directive} {%define annotations} @{@var{annotations}@}
1979121c
DJ
12140The Java annotations for the parser class. Default is none.
12141@xref{Java Bison Interface}.
12142@end deffn
12143
6ce4b4ff 12144@deffn {Directive} {%define extends} @{@var{superclass}@}
e254a580
DJ
12145The superclass of the parser class. Default is none.
12146@xref{Java Bison Interface}.
12147@end deffn
12148
12149@deffn {Directive} {%define final}
12150Whether the parser class is declared @code{final}. Default is false.
12151@xref{Java Bison Interface}.
12152@end deffn
12153
6ce4b4ff 12154@deffn {Directive} {%define implements} @{@var{interfaces}@}
e254a580
DJ
12155The implemented interfaces of the parser class, a comma-separated list.
12156Default is none.
12157@xref{Java Bison Interface}.
12158@end deffn
12159
6ce4b4ff 12160@deffn {Directive} {%define init_throws} @{@var{exceptions}@}
1979121c
DJ
12161The exceptions thrown by @code{%code init} from the parser class
12162constructor. Default is none.
12163@xref{Java Parser Interface}.
12164@end deffn
12165
6ce4b4ff 12166@deffn {Directive} {%define lex_throws} @{@var{exceptions}@}
e254a580
DJ
12167The exceptions thrown by the @code{yylex} method of the lexer, a
12168comma-separated list. Default is @code{java.io.IOException}.
12169@xref{Java Scanner Interface}.
12170@end deffn
12171
6ce4b4ff 12172@deffn {Directive} {%define api.location.type} @{@var{class}@}
e254a580
DJ
12173The name of the class used for locations (a range between two
12174positions). This class is generated as an inner class of the parser
12175class by @command{bison}. Default is @code{Location}.
7287be84 12176Formerly named @code{location_type}.
e254a580
DJ
12177@xref{Java Location Values}.
12178@end deffn
12179
6ce4b4ff 12180@deffn {Directive} {%define package} @{@var{package}@}
e254a580
DJ
12181The package to put the parser class in. Default is none.
12182@xref{Java Bison Interface}.
12183@end deffn
12184
6ce4b4ff 12185@deffn {Directive} {%define parser_class_name} @{@var{name}@}
e254a580
DJ
12186The name of the parser class. Default is @code{YYParser} or
12187@code{@var{name-prefix}Parser}.
12188@xref{Java Bison Interface}.
12189@end deffn
12190
6ce4b4ff 12191@deffn {Directive} {%define api.position.type} @{@var{class}@}
e254a580
DJ
12192The name of the class used for positions. This class must be supplied by
12193the user. Default is @code{Position}.
7287be84 12194Formerly named @code{position_type}.
e254a580
DJ
12195@xref{Java Location Values}.
12196@end deffn
12197
12198@deffn {Directive} {%define public}
12199Whether the parser class is declared @code{public}. Default is false.
12200@xref{Java Bison Interface}.
12201@end deffn
12202
6ce4b4ff 12203@deffn {Directive} {%define api.value.type} @{@var{class}@}
e254a580
DJ
12204The base type of semantic values. Default is @code{Object}.
12205@xref{Java Semantic Values}.
12206@end deffn
12207
12208@deffn {Directive} {%define strictfp}
12209Whether the parser class is declared @code{strictfp}. Default is false.
12210@xref{Java Bison Interface}.
12211@end deffn
12212
6ce4b4ff 12213@deffn {Directive} {%define throws} @{@var{exceptions}@}
e254a580
DJ
12214The exceptions thrown by user-supplied parser actions and
12215@code{%initial-action}, a comma-separated list. Default is none.
12216@xref{Java Parser Interface}.
12217@end deffn
12218
12219
12545799 12220@c ================================================= FAQ
d1a1114f
AD
12221
12222@node FAQ
12223@chapter Frequently Asked Questions
12224@cindex frequently asked questions
12225@cindex questions
12226
12227Several questions about Bison come up occasionally. Here some of them
12228are addressed.
12229
12230@menu
55ba27be
AD
12231* Memory Exhausted:: Breaking the Stack Limits
12232* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12233* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12234* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12235* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12236* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12237* I can't build Bison:: Troubleshooting
12238* Where can I find help?:: Troubleshouting
12239* Bug Reports:: Troublereporting
8405b70c 12240* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12241* Beta Testing:: Experimenting development versions
12242* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12243@end menu
12244
1a059451
PE
12245@node Memory Exhausted
12246@section Memory Exhausted
d1a1114f 12247
71b52b13 12248@quotation
1a059451 12249My parser returns with error with a @samp{memory exhausted}
d1a1114f 12250message. What can I do?
71b52b13 12251@end quotation
d1a1114f 12252
188867ac
AD
12253This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12254Rules}.
d1a1114f 12255
e64fec0a
PE
12256@node How Can I Reset the Parser
12257@section How Can I Reset the Parser
5b066063 12258
0e14ad77
PE
12259The following phenomenon has several symptoms, resulting in the
12260following typical questions:
5b066063 12261
71b52b13 12262@quotation
5b066063
AD
12263I invoke @code{yyparse} several times, and on correct input it works
12264properly; but when a parse error is found, all the other calls fail
0e14ad77 12265too. How can I reset the error flag of @code{yyparse}?
71b52b13 12266@end quotation
5b066063
AD
12267
12268@noindent
12269or
12270
71b52b13 12271@quotation
0e14ad77 12272My parser includes support for an @samp{#include}-like feature, in
5b066063 12273which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12274although I did specify @samp{%define api.pure full}.
71b52b13 12275@end quotation
5b066063 12276
0e14ad77
PE
12277These problems typically come not from Bison itself, but from
12278Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12279speed, they might not notice a change of input file. As a
12280demonstration, consider the following source file,
12281@file{first-line.l}:
12282
d4fca427
AD
12283@example
12284@group
12285%@{
5b066063
AD
12286#include <stdio.h>
12287#include <stdlib.h>
d4fca427
AD
12288%@}
12289@end group
5b066063
AD
12290%%
12291.*\n ECHO; return 1;
12292%%
d4fca427 12293@group
5b066063 12294int
0e14ad77 12295yyparse (char const *file)
d4fca427 12296@{
5b066063
AD
12297 yyin = fopen (file, "r");
12298 if (!yyin)
d4fca427
AD
12299 @{
12300 perror ("fopen");
12301 exit (EXIT_FAILURE);
12302 @}
12303@end group
12304@group
fa7e68c3 12305 /* One token only. */
5b066063 12306 yylex ();
0e14ad77 12307 if (fclose (yyin) != 0)
d4fca427
AD
12308 @{
12309 perror ("fclose");
12310 exit (EXIT_FAILURE);
12311 @}
5b066063 12312 return 0;
d4fca427
AD
12313@}
12314@end group
5b066063 12315
d4fca427 12316@group
5b066063 12317int
0e14ad77 12318main (void)
d4fca427 12319@{
5b066063
AD
12320 yyparse ("input");
12321 yyparse ("input");
12322 return 0;
d4fca427
AD
12323@}
12324@end group
12325@end example
5b066063
AD
12326
12327@noindent
12328If the file @file{input} contains
12329
71b52b13 12330@example
5b066063
AD
12331input:1: Hello,
12332input:2: World!
71b52b13 12333@end example
5b066063
AD
12334
12335@noindent
0e14ad77 12336then instead of getting the first line twice, you get:
5b066063
AD
12337
12338@example
12339$ @kbd{flex -ofirst-line.c first-line.l}
12340$ @kbd{gcc -ofirst-line first-line.c -ll}
12341$ @kbd{./first-line}
12342input:1: Hello,
12343input:2: World!
12344@end example
12345
0e14ad77
PE
12346Therefore, whenever you change @code{yyin}, you must tell the
12347Lex-generated scanner to discard its current buffer and switch to the
12348new one. This depends upon your implementation of Lex; see its
12349documentation for more. For Flex, it suffices to call
12350@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12351Flex-generated scanner needs to read from several input streams to
12352handle features like include files, you might consider using Flex
12353functions like @samp{yy_switch_to_buffer} that manipulate multiple
12354input buffers.
5b066063 12355
b165c324
AD
12356If your Flex-generated scanner uses start conditions (@pxref{Start
12357conditions, , Start conditions, flex, The Flex Manual}), you might
12358also want to reset the scanner's state, i.e., go back to the initial
12359start condition, through a call to @samp{BEGIN (0)}.
12360
fef4cb51
AD
12361@node Strings are Destroyed
12362@section Strings are Destroyed
12363
71b52b13 12364@quotation
c7e441b4 12365My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12366them. Instead of reporting @samp{"foo", "bar"}, it reports
12367@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12368@end quotation
fef4cb51
AD
12369
12370This error is probably the single most frequent ``bug report'' sent to
12371Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12372of the scanner. Consider the following Lex code:
fef4cb51 12373
71b52b13 12374@example
d4fca427 12375@group
71b52b13 12376%@{
fef4cb51
AD
12377#include <stdio.h>
12378char *yylval = NULL;
71b52b13 12379%@}
d4fca427
AD
12380@end group
12381@group
fef4cb51
AD
12382%%
12383.* yylval = yytext; return 1;
12384\n /* IGNORE */
12385%%
d4fca427
AD
12386@end group
12387@group
fef4cb51
AD
12388int
12389main ()
71b52b13 12390@{
fa7e68c3 12391 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12392 char *fst = (yylex (), yylval);
12393 char *snd = (yylex (), yylval);
12394 printf ("\"%s\", \"%s\"\n", fst, snd);
12395 return 0;
71b52b13 12396@}
d4fca427 12397@end group
71b52b13 12398@end example
fef4cb51
AD
12399
12400If you compile and run this code, you get:
12401
12402@example
12403$ @kbd{flex -osplit-lines.c split-lines.l}
12404$ @kbd{gcc -osplit-lines split-lines.c -ll}
12405$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12406"one
12407two", "two"
12408@end example
12409
12410@noindent
12411this is because @code{yytext} is a buffer provided for @emph{reading}
12412in the action, but if you want to keep it, you have to duplicate it
12413(e.g., using @code{strdup}). Note that the output may depend on how
12414your implementation of Lex handles @code{yytext}. For instance, when
12415given the Lex compatibility option @option{-l} (which triggers the
12416option @samp{%array}) Flex generates a different behavior:
12417
12418@example
12419$ @kbd{flex -l -osplit-lines.c split-lines.l}
12420$ @kbd{gcc -osplit-lines split-lines.c -ll}
12421$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12422"two", "two"
12423@end example
12424
12425
2fa09258
AD
12426@node Implementing Gotos/Loops
12427@section Implementing Gotos/Loops
a06ea4aa 12428
71b52b13 12429@quotation
a06ea4aa 12430My simple calculator supports variables, assignments, and functions,
2fa09258 12431but how can I implement gotos, or loops?
71b52b13 12432@end quotation
a06ea4aa
AD
12433
12434Although very pedagogical, the examples included in the document blur
a1c84f45 12435the distinction to make between the parser---whose job is to recover
a06ea4aa 12436the structure of a text and to transmit it to subsequent modules of
a1c84f45 12437the program---and the processing (such as the execution) of this
a06ea4aa
AD
12438structure. This works well with so called straight line programs,
12439i.e., precisely those that have a straightforward execution model:
12440execute simple instructions one after the others.
12441
12442@cindex abstract syntax tree
8a4281b9 12443@cindex AST
a06ea4aa
AD
12444If you want a richer model, you will probably need to use the parser
12445to construct a tree that does represent the structure it has
12446recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12447or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12448traversing it in various ways, will enable treatments such as its
12449execution or its translation, which will result in an interpreter or a
12450compiler.
12451
12452This topic is way beyond the scope of this manual, and the reader is
12453invited to consult the dedicated literature.
12454
12455
ed2e6384
AD
12456@node Multiple start-symbols
12457@section Multiple start-symbols
12458
71b52b13 12459@quotation
ed2e6384
AD
12460I have several closely related grammars, and I would like to share their
12461implementations. In fact, I could use a single grammar but with
12462multiple entry points.
71b52b13 12463@end quotation
ed2e6384
AD
12464
12465Bison does not support multiple start-symbols, but there is a very
12466simple means to simulate them. If @code{foo} and @code{bar} are the two
12467pseudo start-symbols, then introduce two new tokens, say
12468@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12469real start-symbol:
12470
12471@example
12472%token START_FOO START_BAR;
12473%start start;
5e9b6624
AD
12474start:
12475 START_FOO foo
12476| START_BAR bar;
ed2e6384
AD
12477@end example
12478
12479These tokens prevents the introduction of new conflicts. As far as the
12480parser goes, that is all that is needed.
12481
12482Now the difficult part is ensuring that the scanner will send these
12483tokens first. If your scanner is hand-written, that should be
12484straightforward. If your scanner is generated by Lex, them there is
12485simple means to do it: recall that anything between @samp{%@{ ... %@}}
12486after the first @code{%%} is copied verbatim in the top of the generated
12487@code{yylex} function. Make sure a variable @code{start_token} is
12488available in the scanner (e.g., a global variable or using
12489@code{%lex-param} etc.), and use the following:
12490
12491@example
12492 /* @r{Prologue.} */
12493%%
12494%@{
12495 if (start_token)
12496 @{
12497 int t = start_token;
12498 start_token = 0;
12499 return t;
12500 @}
12501%@}
12502 /* @r{The rules.} */
12503@end example
12504
12505
55ba27be
AD
12506@node Secure? Conform?
12507@section Secure? Conform?
12508
71b52b13 12509@quotation
55ba27be 12510Is Bison secure? Does it conform to POSIX?
71b52b13 12511@end quotation
55ba27be
AD
12512
12513If you're looking for a guarantee or certification, we don't provide it.
12514However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12515POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12516please send us a bug report.
12517
12518@node I can't build Bison
12519@section I can't build Bison
12520
71b52b13 12521@quotation
8c5b881d
PE
12522I can't build Bison because @command{make} complains that
12523@code{msgfmt} is not found.
55ba27be 12524What should I do?
71b52b13 12525@end quotation
55ba27be
AD
12526
12527Like most GNU packages with internationalization support, that feature
12528is turned on by default. If you have problems building in the @file{po}
12529subdirectory, it indicates that your system's internationalization
12530support is lacking. You can re-configure Bison with
12531@option{--disable-nls} to turn off this support, or you can install GNU
12532gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12533Bison. See the file @file{ABOUT-NLS} for more information.
12534
12535
12536@node Where can I find help?
12537@section Where can I find help?
12538
71b52b13 12539@quotation
55ba27be 12540I'm having trouble using Bison. Where can I find help?
71b52b13 12541@end quotation
55ba27be
AD
12542
12543First, read this fine manual. Beyond that, you can send mail to
12544@email{help-bison@@gnu.org}. This mailing list is intended to be
12545populated with people who are willing to answer questions about using
12546and installing Bison. Please keep in mind that (most of) the people on
12547the list have aspects of their lives which are not related to Bison (!),
12548so you may not receive an answer to your question right away. This can
12549be frustrating, but please try not to honk them off; remember that any
12550help they provide is purely voluntary and out of the kindness of their
12551hearts.
12552
12553@node Bug Reports
12554@section Bug Reports
12555
71b52b13 12556@quotation
55ba27be 12557I found a bug. What should I include in the bug report?
71b52b13 12558@end quotation
55ba27be
AD
12559
12560Before you send a bug report, make sure you are using the latest
12561version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12562mirrors. Be sure to include the version number in your bug report. If
12563the bug is present in the latest version but not in a previous version,
12564try to determine the most recent version which did not contain the bug.
12565
12566If the bug is parser-related, you should include the smallest grammar
12567you can which demonstrates the bug. The grammar file should also be
12568complete (i.e., I should be able to run it through Bison without having
12569to edit or add anything). The smaller and simpler the grammar, the
12570easier it will be to fix the bug.
12571
12572Include information about your compilation environment, including your
12573operating system's name and version and your compiler's name and
12574version. If you have trouble compiling, you should also include a
12575transcript of the build session, starting with the invocation of
12576`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12577send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12578
12579Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12580send a bug report just because you cannot provide a fix.
55ba27be
AD
12581
12582Send bug reports to @email{bug-bison@@gnu.org}.
12583
8405b70c
PB
12584@node More Languages
12585@section More Languages
55ba27be 12586
71b52b13 12587@quotation
8405b70c 12588Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12589favorite language here}?
71b52b13 12590@end quotation
55ba27be 12591
8405b70c 12592C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12593languages; contributions are welcome.
12594
12595@node Beta Testing
12596@section Beta Testing
12597
71b52b13 12598@quotation
55ba27be 12599What is involved in being a beta tester?
71b52b13 12600@end quotation
55ba27be
AD
12601
12602It's not terribly involved. Basically, you would download a test
12603release, compile it, and use it to build and run a parser or two. After
12604that, you would submit either a bug report or a message saying that
12605everything is okay. It is important to report successes as well as
12606failures because test releases eventually become mainstream releases,
12607but only if they are adequately tested. If no one tests, development is
12608essentially halted.
12609
12610Beta testers are particularly needed for operating systems to which the
12611developers do not have easy access. They currently have easy access to
12612recent GNU/Linux and Solaris versions. Reports about other operating
12613systems are especially welcome.
12614
12615@node Mailing Lists
12616@section Mailing Lists
12617
71b52b13 12618@quotation
55ba27be 12619How do I join the help-bison and bug-bison mailing lists?
71b52b13 12620@end quotation
55ba27be
AD
12621
12622See @url{http://lists.gnu.org/}.
a06ea4aa 12623
d1a1114f
AD
12624@c ================================================= Table of Symbols
12625
342b8b6e 12626@node Table of Symbols
bfa74976
RS
12627@appendix Bison Symbols
12628@cindex Bison symbols, table of
12629@cindex symbols in Bison, table of
12630
18b519c0 12631@deffn {Variable} @@$
3ded9a63 12632In an action, the location of the left-hand side of the rule.
303834cc 12633@xref{Tracking Locations}.
18b519c0 12634@end deffn
3ded9a63 12635
18b519c0 12636@deffn {Variable} @@@var{n}
be22823e 12637@deffnx {Symbol} @@@var{n}
303834cc
JD
12638In an action, the location of the @var{n}-th symbol of the right-hand side
12639of the rule. @xref{Tracking Locations}.
be22823e
AD
12640
12641In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12642with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12643@end deffn
3ded9a63 12644
d013372c 12645@deffn {Variable} @@@var{name}
c949ada3
AD
12646@deffnx {Variable} @@[@var{name}]
12647In an action, the location of a symbol addressed by @var{name}.
12648@xref{Tracking Locations}.
d013372c
AR
12649@end deffn
12650
be22823e
AD
12651@deffn {Symbol} $@@@var{n}
12652In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12653with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12654@end deffn
12655
18b519c0 12656@deffn {Variable} $$
3ded9a63
AD
12657In an action, the semantic value of the left-hand side of the rule.
12658@xref{Actions}.
18b519c0 12659@end deffn
3ded9a63 12660
18b519c0 12661@deffn {Variable} $@var{n}
3ded9a63
AD
12662In an action, the semantic value of the @var{n}-th symbol of the
12663right-hand side of the rule. @xref{Actions}.
18b519c0 12664@end deffn
3ded9a63 12665
d013372c 12666@deffn {Variable} $@var{name}
c949ada3
AD
12667@deffnx {Variable} $[@var{name}]
12668In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12669@xref{Actions}.
12670@end deffn
12671
dd8d9022
AD
12672@deffn {Delimiter} %%
12673Delimiter used to separate the grammar rule section from the
12674Bison declarations section or the epilogue.
12675@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12676@end deffn
bfa74976 12677
dd8d9022
AD
12678@c Don't insert spaces, or check the DVI output.
12679@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12680All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12681to the parser implementation file. Such code forms the prologue of
12682the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12683Grammar}.
18b519c0 12684@end deffn
bfa74976 12685
ca2a6d15
PH
12686@deffn {Directive} %?@{@var{expression}@}
12687Predicate actions. This is a type of action clause that may appear in
12688rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12689GLR parsers during nondeterministic operation,
ca2a6d15
PH
12690this silently causes an alternative parse to die. During deterministic
12691operation, it is the same as the effect of YYERROR.
12692@xref{Semantic Predicates}.
12693
12694This feature is experimental.
12695More user feedback will help to determine whether it should become a permanent
12696feature.
12697@end deffn
12698
c949ada3
AD
12699@deffn {Construct} /* @dots{} */
12700@deffnx {Construct} // @dots{}
12701Comments, as in C/C++.
18b519c0 12702@end deffn
bfa74976 12703
dd8d9022
AD
12704@deffn {Delimiter} :
12705Separates a rule's result from its components. @xref{Rules, ,Syntax of
12706Grammar Rules}.
18b519c0 12707@end deffn
bfa74976 12708
dd8d9022
AD
12709@deffn {Delimiter} ;
12710Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12711@end deffn
bfa74976 12712
dd8d9022
AD
12713@deffn {Delimiter} |
12714Separates alternate rules for the same result nonterminal.
12715@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12716@end deffn
bfa74976 12717
12e35840
JD
12718@deffn {Directive} <*>
12719Used to define a default tagged @code{%destructor} or default tagged
12720@code{%printer}.
85894313
JD
12721
12722This feature is experimental.
12723More user feedback will help to determine whether it should become a permanent
12724feature.
12725
12e35840
JD
12726@xref{Destructor Decl, , Freeing Discarded Symbols}.
12727@end deffn
12728
3ebecc24 12729@deffn {Directive} <>
12e35840
JD
12730Used to define a default tagless @code{%destructor} or default tagless
12731@code{%printer}.
85894313
JD
12732
12733This feature is experimental.
12734More user feedback will help to determine whether it should become a permanent
12735feature.
12736
12e35840
JD
12737@xref{Destructor Decl, , Freeing Discarded Symbols}.
12738@end deffn
12739
dd8d9022
AD
12740@deffn {Symbol} $accept
12741The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12742$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12743Start-Symbol}. It cannot be used in the grammar.
18b519c0 12744@end deffn
bfa74976 12745
136a0f76 12746@deffn {Directive} %code @{@var{code}@}
148d66d8 12747@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12748Insert @var{code} verbatim into the output parser source at the
12749default location or at the location specified by @var{qualifier}.
e0c07222 12750@xref{%code Summary}.
9bc0dd67
JD
12751@end deffn
12752
12753@deffn {Directive} %debug
12754Equip the parser for debugging. @xref{Decl Summary}.
12755@end deffn
12756
91d2c560 12757@ifset defaultprec
22fccf95
PE
12758@deffn {Directive} %default-prec
12759Assign a precedence to rules that lack an explicit @samp{%prec}
12760modifier. @xref{Contextual Precedence, ,Context-Dependent
12761Precedence}.
39a06c25 12762@end deffn
91d2c560 12763@end ifset
39a06c25 12764
7fceb615
JD
12765@deffn {Directive} %define @var{variable}
12766@deffnx {Directive} %define @var{variable} @var{value}
6ce4b4ff 12767@deffnx {Directive} %define @var{variable} @{@var{value}@}
7fceb615 12768@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12769Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12770@end deffn
12771
18b519c0 12772@deffn {Directive} %defines
ff7571c0
JD
12773Bison declaration to create a parser header file, which is usually
12774meant for the scanner. @xref{Decl Summary}.
18b519c0 12775@end deffn
6deb4447 12776
02975b9a
JD
12777@deffn {Directive} %defines @var{defines-file}
12778Same as above, but save in the file @var{defines-file}.
12779@xref{Decl Summary}.
12780@end deffn
12781
18b519c0 12782@deffn {Directive} %destructor
258b75ca 12783Specify how the parser should reclaim the memory associated to
fa7e68c3 12784discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12785@end deffn
72f889cc 12786
18b519c0 12787@deffn {Directive} %dprec
676385e2 12788Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12789time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12790GLR Parsers}.
18b519c0 12791@end deffn
676385e2 12792
09add9c2
AD
12793@deffn {Directive} %empty
12794Bison declaration to declare make explicit that a rule has an empty
12795right-hand side. @xref{Empty Rules}.
12796@end deffn
12797
dd8d9022
AD
12798@deffn {Symbol} $end
12799The predefined token marking the end of the token stream. It cannot be
12800used in the grammar.
12801@end deffn
12802
12803@deffn {Symbol} error
12804A token name reserved for error recovery. This token may be used in
12805grammar rules so as to allow the Bison parser to recognize an error in
12806the grammar without halting the process. In effect, a sentence
12807containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12808token @code{error} becomes the current lookahead token. Actions
12809corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12810token is reset to the token that originally caused the violation.
12811@xref{Error Recovery}.
18d192f0
AD
12812@end deffn
12813
18b519c0 12814@deffn {Directive} %error-verbose
7fceb615
JD
12815An obsolete directive standing for @samp{%define parse.error verbose}
12816(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12817@end deffn
2a8d363a 12818
02975b9a 12819@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12820Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12821Summary}.
18b519c0 12822@end deffn
d8988b2f 12823
18b519c0 12824@deffn {Directive} %glr-parser
8a4281b9
JD
12825Bison declaration to produce a GLR parser. @xref{GLR
12826Parsers, ,Writing GLR Parsers}.
18b519c0 12827@end deffn
676385e2 12828
dd8d9022
AD
12829@deffn {Directive} %initial-action
12830Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12831@end deffn
12832
e6e704dc
JD
12833@deffn {Directive} %language
12834Specify the programming language for the generated parser.
12835@xref{Decl Summary}.
12836@end deffn
12837
18b519c0 12838@deffn {Directive} %left
d78f0ac9 12839Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12840@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12841@end deffn
bfa74976 12842
2055a44e
AD
12843@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12844Bison declaration to specifying additional arguments that
2a8d363a
AD
12845@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12846for Pure Parsers}.
18b519c0 12847@end deffn
2a8d363a 12848
18b519c0 12849@deffn {Directive} %merge
676385e2 12850Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12851reduce/reduce conflict with a rule having the same merging function, the
676385e2 12852function is applied to the two semantic values to get a single result.
8a4281b9 12853@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12854@end deffn
676385e2 12855
02975b9a 12856@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12857Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12858Parsers, ,Multiple Parsers in the Same Program}).
12859
12860Rename the external symbols (variables and functions) used in the parser so
12861that they start with @var{prefix} instead of @samp{yy}. Contrary to
12862@code{api.prefix}, do no rename types and macros.
12863
12864The precise list of symbols renamed in C parsers is @code{yyparse},
12865@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12866@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12867push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12868@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12869example, if you use @samp{%name-prefix "c_"}, the names become
12870@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
07e65a77 12871@code{%define api.namespace} documentation in this section.
18b519c0 12872@end deffn
d8988b2f 12873
4b3847c3 12874
91d2c560 12875@ifset defaultprec
22fccf95
PE
12876@deffn {Directive} %no-default-prec
12877Do not assign a precedence to rules that lack an explicit @samp{%prec}
12878modifier. @xref{Contextual Precedence, ,Context-Dependent
12879Precedence}.
12880@end deffn
91d2c560 12881@end ifset
22fccf95 12882
18b519c0 12883@deffn {Directive} %no-lines
931c7513 12884Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12885parser implementation file. @xref{Decl Summary}.
18b519c0 12886@end deffn
931c7513 12887
18b519c0 12888@deffn {Directive} %nonassoc
d78f0ac9 12889Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12890@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12891@end deffn
bfa74976 12892
02975b9a 12893@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12894Bison declaration to set the name of the parser implementation file.
12895@xref{Decl Summary}.
18b519c0 12896@end deffn
d8988b2f 12897
2055a44e
AD
12898@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12899Bison declaration to specify additional arguments that both
12900@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12901Parser Function @code{yyparse}}.
12902@end deffn
12903
12904@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12905Bison declaration to specify additional arguments that @code{yyparse}
12906should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12907@end deffn
2a8d363a 12908
18b519c0 12909@deffn {Directive} %prec
bfa74976
RS
12910Bison declaration to assign a precedence to a specific rule.
12911@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12912@end deffn
bfa74976 12913
d78f0ac9
AD
12914@deffn {Directive} %precedence
12915Bison declaration to assign precedence to token(s), but no associativity
12916@xref{Precedence Decl, ,Operator Precedence}.
12917@end deffn
12918
18b519c0 12919@deffn {Directive} %pure-parser
35c1e5f0
JD
12920Deprecated version of @samp{%define api.pure} (@pxref{%define
12921Summary,,api.pure}), for which Bison is more careful to warn about
12922unreasonable usage.
18b519c0 12923@end deffn
bfa74976 12924
b50d2359 12925@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12926Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12927Require a Version of Bison}.
b50d2359
AD
12928@end deffn
12929
18b519c0 12930@deffn {Directive} %right
d78f0ac9 12931Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12932@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12933@end deffn
bfa74976 12934
e6e704dc
JD
12935@deffn {Directive} %skeleton
12936Specify the skeleton to use; usually for development.
12937@xref{Decl Summary}.
12938@end deffn
12939
18b519c0 12940@deffn {Directive} %start
704a47c4
AD
12941Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12942Start-Symbol}.
18b519c0 12943@end deffn
bfa74976 12944
18b519c0 12945@deffn {Directive} %token
bfa74976
RS
12946Bison declaration to declare token(s) without specifying precedence.
12947@xref{Token Decl, ,Token Type Names}.
18b519c0 12948@end deffn
bfa74976 12949
18b519c0 12950@deffn {Directive} %token-table
ff7571c0
JD
12951Bison declaration to include a token name table in the parser
12952implementation file. @xref{Decl Summary}.
18b519c0 12953@end deffn
931c7513 12954
18b519c0 12955@deffn {Directive} %type
704a47c4
AD
12956Bison declaration to declare nonterminals. @xref{Type Decl,
12957,Nonterminal Symbols}.
18b519c0 12958@end deffn
bfa74976 12959
dd8d9022
AD
12960@deffn {Symbol} $undefined
12961The predefined token onto which all undefined values returned by
12962@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12963@code{error}.
12964@end deffn
12965
18b519c0 12966@deffn {Directive} %union
bfa74976 12967Bison declaration to specify several possible data types for semantic
e4d49586 12968values. @xref{Union Decl, ,The Union Declaration}.
18b519c0 12969@end deffn
bfa74976 12970
dd8d9022
AD
12971@deffn {Macro} YYABORT
12972Macro to pretend that an unrecoverable syntax error has occurred, by
12973making @code{yyparse} return 1 immediately. The error reporting
12974function @code{yyerror} is not called. @xref{Parser Function, ,The
12975Parser Function @code{yyparse}}.
8405b70c
PB
12976
12977For Java parsers, this functionality is invoked using @code{return YYABORT;}
12978instead.
dd8d9022 12979@end deffn
3ded9a63 12980
dd8d9022
AD
12981@deffn {Macro} YYACCEPT
12982Macro to pretend that a complete utterance of the language has been
12983read, by making @code{yyparse} return 0 immediately.
12984@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12985
12986For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12987instead.
dd8d9022 12988@end deffn
bfa74976 12989
dd8d9022 12990@deffn {Macro} YYBACKUP
742e4900 12991Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12992token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12993@end deffn
bfa74976 12994
dd8d9022 12995@deffn {Variable} yychar
32c29292 12996External integer variable that contains the integer value of the
742e4900 12997lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12998@code{yyparse}.) Error-recovery rule actions may examine this variable.
12999@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 13000@end deffn
bfa74976 13001
dd8d9022
AD
13002@deffn {Variable} yyclearin
13003Macro used in error-recovery rule actions. It clears the previous
742e4900 13004lookahead token. @xref{Error Recovery}.
18b519c0 13005@end deffn
bfa74976 13006
dd8d9022
AD
13007@deffn {Macro} YYDEBUG
13008Macro to define to equip the parser with tracing code. @xref{Tracing,
13009,Tracing Your Parser}.
18b519c0 13010@end deffn
bfa74976 13011
dd8d9022
AD
13012@deffn {Variable} yydebug
13013External integer variable set to zero by default. If @code{yydebug}
13014is given a nonzero value, the parser will output information on input
13015symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 13016@end deffn
bfa74976 13017
dd8d9022
AD
13018@deffn {Macro} yyerrok
13019Macro to cause parser to recover immediately to its normal mode
13020after a syntax error. @xref{Error Recovery}.
13021@end deffn
13022
13023@deffn {Macro} YYERROR
4a11b852
AD
13024Cause an immediate syntax error. This statement initiates error
13025recovery just as if the parser itself had detected an error; however, it
13026does not call @code{yyerror}, and does not print any message. If you
13027want to print an error message, call @code{yyerror} explicitly before
13028the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
13029
13030For Java parsers, this functionality is invoked using @code{return YYERROR;}
13031instead.
dd8d9022
AD
13032@end deffn
13033
13034@deffn {Function} yyerror
13035User-supplied function to be called by @code{yyparse} on error.
71b00ed8 13036@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
13037@end deffn
13038
13039@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
13040An obsolete macro used in the @file{yacc.c} skeleton, that you define
13041with @code{#define} in the prologue to request verbose, specific error
13042message strings when @code{yyerror} is called. It doesn't matter what
13043definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 13044it. Using @samp{%define parse.error verbose} is preferred
31b850d2 13045(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
13046@end deffn
13047
93c150b6
AD
13048@deffn {Macro} YYFPRINTF
13049Macro used to output run-time traces.
13050@xref{Enabling Traces}.
13051@end deffn
13052
dd8d9022
AD
13053@deffn {Macro} YYINITDEPTH
13054Macro for specifying the initial size of the parser stack.
1a059451 13055@xref{Memory Management}.
dd8d9022
AD
13056@end deffn
13057
13058@deffn {Function} yylex
13059User-supplied lexical analyzer function, called with no arguments to get
13060the next token. @xref{Lexical, ,The Lexical Analyzer Function
13061@code{yylex}}.
13062@end deffn
13063
dd8d9022
AD
13064@deffn {Variable} yylloc
13065External variable in which @code{yylex} should place the line and column
13066numbers associated with a token. (In a pure parser, it is a local
13067variable within @code{yyparse}, and its address is passed to
32c29292
JD
13068@code{yylex}.)
13069You can ignore this variable if you don't use the @samp{@@} feature in the
13070grammar actions.
13071@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 13072In semantic actions, it stores the location of the lookahead token.
32c29292 13073@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
13074@end deffn
13075
13076@deffn {Type} YYLTYPE
13077Data type of @code{yylloc}; by default, a structure with four
13078members. @xref{Location Type, , Data Types of Locations}.
13079@end deffn
13080
13081@deffn {Variable} yylval
13082External variable in which @code{yylex} should place the semantic
13083value associated with a token. (In a pure parser, it is a local
13084variable within @code{yyparse}, and its address is passed to
32c29292
JD
13085@code{yylex}.)
13086@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 13087In semantic actions, it stores the semantic value of the lookahead token.
32c29292 13088@xref{Actions, ,Actions}.
dd8d9022
AD
13089@end deffn
13090
13091@deffn {Macro} YYMAXDEPTH
1a059451
PE
13092Macro for specifying the maximum size of the parser stack. @xref{Memory
13093Management}.
dd8d9022
AD
13094@end deffn
13095
13096@deffn {Variable} yynerrs
8a2800e7 13097Global variable which Bison increments each time it reports a syntax error.
f4101aa6 13098(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 13099pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
13100@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
13101@end deffn
13102
13103@deffn {Function} yyparse
13104The parser function produced by Bison; call this function to start
13105parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
13106@end deffn
13107
93c150b6
AD
13108@deffn {Macro} YYPRINT
13109Macro used to output token semantic values. For @file{yacc.c} only.
13110Obsoleted by @code{%printer}.
13111@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
13112@end deffn
13113
9987d1b3 13114@deffn {Function} yypstate_delete
f4101aa6 13115The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 13116call this function to delete the memory associated with a parser.
f4101aa6 13117@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 13118@code{yypstate_delete}}.
59da312b
JD
13119(The current push parsing interface is experimental and may evolve.
13120More user feedback will help to stabilize it.)
9987d1b3
JD
13121@end deffn
13122
13123@deffn {Function} yypstate_new
f4101aa6 13124The function to create a parser instance, produced by Bison in push mode;
9987d1b3 13125call this function to create a new parser.
f4101aa6 13126@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 13127@code{yypstate_new}}.
59da312b
JD
13128(The current push parsing interface is experimental and may evolve.
13129More user feedback will help to stabilize it.)
9987d1b3
JD
13130@end deffn
13131
13132@deffn {Function} yypull_parse
f4101aa6
AD
13133The parser function produced by Bison in push mode; call this function to
13134parse the rest of the input stream.
13135@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 13136@code{yypull_parse}}.
59da312b
JD
13137(The current push parsing interface is experimental and may evolve.
13138More user feedback will help to stabilize it.)
9987d1b3
JD
13139@end deffn
13140
13141@deffn {Function} yypush_parse
f4101aa6
AD
13142The parser function produced by Bison in push mode; call this function to
13143parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 13144@code{yypush_parse}}.
59da312b
JD
13145(The current push parsing interface is experimental and may evolve.
13146More user feedback will help to stabilize it.)
9987d1b3
JD
13147@end deffn
13148
dd8d9022 13149@deffn {Macro} YYRECOVERING
02103984
PE
13150The expression @code{YYRECOVERING ()} yields 1 when the parser
13151is recovering from a syntax error, and 0 otherwise.
13152@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
13153@end deffn
13154
13155@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
13156Macro used to control the use of @code{alloca} when the
13157deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
13158the parser will use @code{malloc} to extend its stacks. If defined to
131591, the parser will use @code{alloca}. Values other than 0 and 1 are
13160reserved for future Bison extensions. If not defined,
13161@code{YYSTACK_USE_ALLOCA} defaults to 0.
13162
55289366 13163In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
13164limited stack and with unreliable stack-overflow checking, you should
13165set @code{YYMAXDEPTH} to a value that cannot possibly result in
13166unchecked stack overflow on any of your target hosts when
13167@code{alloca} is called. You can inspect the code that Bison
13168generates in order to determine the proper numeric values. This will
13169require some expertise in low-level implementation details.
dd8d9022
AD
13170@end deffn
13171
13172@deffn {Type} YYSTYPE
21e3a2b5 13173Deprecated in favor of the @code{%define} variable @code{api.value.type}.
dd8d9022
AD
13174Data type of semantic values; @code{int} by default.
13175@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 13176@end deffn
bfa74976 13177
342b8b6e 13178@node Glossary
bfa74976
RS
13179@appendix Glossary
13180@cindex glossary
13181
13182@table @asis
7fceb615 13183@item Accepting state
eb45ef3b
JD
13184A state whose only action is the accept action.
13185The accepting state is thus a consistent state.
c949ada3 13186@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 13187
8a4281b9 13188@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
13189Formal method of specifying context-free grammars originally proposed
13190by John Backus, and slightly improved by Peter Naur in his 1960-01-02
13191committee document contributing to what became the Algol 60 report.
13192@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 13193
7fceb615
JD
13194@item Consistent state
13195A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 13196
bfa74976
RS
13197@item Context-free grammars
13198Grammars specified as rules that can be applied regardless of context.
13199Thus, if there is a rule which says that an integer can be used as an
13200expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
13201permitted. @xref{Language and Grammar, ,Languages and Context-Free
13202Grammars}.
bfa74976 13203
7fceb615 13204@item Default reduction
110ef36a 13205The reduction that a parser should perform if the current parser state
35c1e5f0 13206contains no other action for the lookahead token. In permitted parser
7fceb615
JD
13207states, Bison declares the reduction with the largest lookahead set to be
13208the default reduction and removes that lookahead set. @xref{Default
13209Reductions}.
13210
13211@item Defaulted state
13212A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 13213
bfa74976
RS
13214@item Dynamic allocation
13215Allocation of memory that occurs during execution, rather than at
13216compile time or on entry to a function.
13217
13218@item Empty string
13219Analogous to the empty set in set theory, the empty string is a
13220character string of length zero.
13221
13222@item Finite-state stack machine
13223A ``machine'' that has discrete states in which it is said to exist at
13224each instant in time. As input to the machine is processed, the
13225machine moves from state to state as specified by the logic of the
13226machine. In the case of the parser, the input is the language being
13227parsed, and the states correspond to various stages in the grammar
c827f760 13228rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 13229
8a4281b9 13230@item Generalized LR (GLR)
676385e2 13231A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 13232that are not LR(1). It resolves situations that Bison's
eb45ef3b 13233deterministic parsing
676385e2
PH
13234algorithm cannot by effectively splitting off multiple parsers, trying all
13235possible parsers, and discarding those that fail in the light of additional
c827f760 13236right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13237LR Parsing}.
676385e2 13238
bfa74976
RS
13239@item Grouping
13240A language construct that is (in general) grammatically divisible;
c827f760 13241for example, `expression' or `declaration' in C@.
bfa74976
RS
13242@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13243
7fceb615
JD
13244@item IELR(1) (Inadequacy Elimination LR(1))
13245A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13246context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13247language-recognition power of canonical LR(1) but with nearly the same
13248number of parser states as LALR(1). This reduction in parser states is
13249often an order of magnitude. More importantly, because canonical LR(1)'s
13250extra parser states may contain duplicate conflicts in the case of non-LR(1)
13251grammars, the number of conflicts for IELR(1) is often an order of magnitude
13252less as well. This can significantly reduce the complexity of developing a
13253grammar. @xref{LR Table Construction}.
eb45ef3b 13254
bfa74976
RS
13255@item Infix operator
13256An arithmetic operator that is placed between the operands on which it
13257performs some operation.
13258
13259@item Input stream
13260A continuous flow of data between devices or programs.
13261
8a4281b9 13262@item LAC (Lookahead Correction)
fcf834f9 13263A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13264detection, which is caused by LR state merging, default reductions, and the
13265use of @code{%nonassoc}. Delayed syntax error detection results in
13266unexpected semantic actions, initiation of error recovery in the wrong
13267syntactic context, and an incorrect list of expected tokens in a verbose
13268syntax error message. @xref{LAC}.
fcf834f9 13269
bfa74976
RS
13270@item Language construct
13271One of the typical usage schemas of the language. For example, one of
13272the constructs of the C language is the @code{if} statement.
13273@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13274
13275@item Left associativity
13276Operators having left associativity are analyzed from left to right:
13277@samp{a+b+c} first computes @samp{a+b} and then combines with
13278@samp{c}. @xref{Precedence, ,Operator Precedence}.
13279
13280@item Left recursion
89cab50d
AD
13281A rule whose result symbol is also its first component symbol; for
13282example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13283Rules}.
bfa74976
RS
13284
13285@item Left-to-right parsing
13286Parsing a sentence of a language by analyzing it token by token from
c827f760 13287left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13288
13289@item Lexical analyzer (scanner)
13290A function that reads an input stream and returns tokens one by one.
13291@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13292
13293@item Lexical tie-in
13294A flag, set by actions in the grammar rules, which alters the way
13295tokens are parsed. @xref{Lexical Tie-ins}.
13296
931c7513 13297@item Literal string token
14ded682 13298A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13299
742e4900
JD
13300@item Lookahead token
13301A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13302Tokens}.
bfa74976 13303
8a4281b9 13304@item LALR(1)
bfa74976 13305The class of context-free grammars that Bison (like most other parser
8a4281b9 13306generators) can handle by default; a subset of LR(1).
cc09e5be 13307@xref{Mysterious Conflicts}.
bfa74976 13308
8a4281b9 13309@item LR(1)
bfa74976 13310The class of context-free grammars in which at most one token of
742e4900 13311lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13312
13313@item Nonterminal symbol
13314A grammar symbol standing for a grammatical construct that can
13315be expressed through rules in terms of smaller constructs; in other
13316words, a construct that is not a token. @xref{Symbols}.
13317
bfa74976
RS
13318@item Parser
13319A function that recognizes valid sentences of a language by analyzing
13320the syntax structure of a set of tokens passed to it from a lexical
13321analyzer.
13322
13323@item Postfix operator
13324An arithmetic operator that is placed after the operands upon which it
13325performs some operation.
13326
13327@item Reduction
13328Replacing a string of nonterminals and/or terminals with a single
89cab50d 13329nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13330Parser Algorithm}.
bfa74976
RS
13331
13332@item Reentrant
13333A reentrant subprogram is a subprogram which can be in invoked any
13334number of times in parallel, without interference between the various
13335invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13336
13337@item Reverse polish notation
13338A language in which all operators are postfix operators.
13339
13340@item Right recursion
89cab50d
AD
13341A rule whose result symbol is also its last component symbol; for
13342example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13343Rules}.
bfa74976
RS
13344
13345@item Semantics
13346In computer languages, the semantics are specified by the actions
13347taken for each instance of the language, i.e., the meaning of
13348each statement. @xref{Semantics, ,Defining Language Semantics}.
13349
13350@item Shift
13351A parser is said to shift when it makes the choice of analyzing
13352further input from the stream rather than reducing immediately some
c827f760 13353already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13354
13355@item Single-character literal
13356A single character that is recognized and interpreted as is.
13357@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13358
13359@item Start symbol
13360The nonterminal symbol that stands for a complete valid utterance in
13361the language being parsed. The start symbol is usually listed as the
13863333 13362first nonterminal symbol in a language specification.
bfa74976
RS
13363@xref{Start Decl, ,The Start-Symbol}.
13364
13365@item Symbol table
13366A data structure where symbol names and associated data are stored
13367during parsing to allow for recognition and use of existing
13368information in repeated uses of a symbol. @xref{Multi-function Calc}.
13369
6e649e65
PE
13370@item Syntax error
13371An error encountered during parsing of an input stream due to invalid
13372syntax. @xref{Error Recovery}.
13373
bfa74976
RS
13374@item Token
13375A basic, grammatically indivisible unit of a language. The symbol
13376that describes a token in the grammar is a terminal symbol.
13377The input of the Bison parser is a stream of tokens which comes from
13378the lexical analyzer. @xref{Symbols}.
13379
13380@item Terminal symbol
89cab50d
AD
13381A grammar symbol that has no rules in the grammar and therefore is
13382grammatically indivisible. The piece of text it represents is a token.
13383@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13384
13385@item Unreachable state
13386A parser state to which there does not exist a sequence of transitions from
13387the parser's start state. A state can become unreachable during conflict
13388resolution. @xref{Unreachable States}.
bfa74976
RS
13389@end table
13390
342b8b6e 13391@node Copying This Manual
f2b5126e 13392@appendix Copying This Manual
f2b5126e
PB
13393@include fdl.texi
13394
5e528941
JD
13395@node Bibliography
13396@unnumbered Bibliography
13397
13398@table @asis
13399@item [Denny 2008]
13400Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13401for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
134022008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13403pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13404
13405@item [Denny 2010 May]
13406Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13407Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13408University, Clemson, SC, USA (May 2010).
13409@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13410
13411@item [Denny 2010 November]
13412Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13413Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13414in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
134152010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13416
13417@item [DeRemer 1982]
13418Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13419Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13420Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13421615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13422
13423@item [Knuth 1965]
13424Donald E. Knuth, On the Translation of Languages from Left to Right, in
13425@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13426607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13427
13428@item [Scott 2000]
13429Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13430@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13431London, Department of Computer Science, TR-00-12 (December 2000).
13432@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13433@end table
13434
f9b86351
AD
13435@node Index of Terms
13436@unnumbered Index of Terms
bfa74976
RS
13437
13438@printindex cp
13439
bfa74976 13440@bye
a06ea4aa 13441
6b5a0de9
AD
13442@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13443@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13444@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13445@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13446@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13447@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13448@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13449@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13450@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13451@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13452@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13453@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13454@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13455@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13456@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13457@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13458@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13459@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13460@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13461@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13462@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13463@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13464@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13465@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13466@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13467@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13468@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13469@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13470@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13471@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13472@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13473@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13474@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13475@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13476@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13477@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13478@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13479@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13480@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13481@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13482@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13483@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13484@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13485@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13486@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13487@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13488@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13489@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13490@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13491@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13492@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13493@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13494@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13495@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13496@c LocalWords: parsers parser's
13497@c LocalWords: associativity subclasses precedences unresolvable runnable
13498@c LocalWords: allocators subunit initializations unreferenced untyped
13499@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13500
13501@c Local Variables:
13502@c ispell-dictionary: "american"
13503@c fill-column: 76
13504@c End: