X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/e5568f75972dfc723778653c11cb6b4dc825716a..c18c124eaa464aaaa5549e99e5a70fc9cbb50944:/bsd/hfs/hfs_readwrite.c diff --git a/bsd/hfs/hfs_readwrite.c b/bsd/hfs/hfs_readwrite.c index d48e7b3ba..f09bdc7d2 100644 --- a/bsd/hfs/hfs_readwrite.c +++ b/bsd/hfs/hfs_readwrite.c @@ -1,23 +1,29 @@ /* - * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2015 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. * - * @APPLE_LICENSE_HEADER_END@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* @(#)hfs_readwrite.c 1.0 * @@ -35,235 +41,341 @@ #include #include #include +#include #include +#include #include +#include #include +#include +#include +#include +#include +#include +#include +#include +#include #include #include +#include + #include +#include #include #include "hfs.h" +#include "hfs_attrlist.h" #include "hfs_endian.h" +#include "hfs_fsctl.h" #include "hfs_quota.h" #include "hfscommon/headers/FileMgrInternal.h" #include "hfscommon/headers/BTreesInternal.h" #include "hfs_cnode.h" #include "hfs_dbg.h" -extern int overflow_extents(struct filefork *fp); - #define can_cluster(size) ((((size & (4096-1))) == 0) && (size <= (MAXPHYSIO/2))) enum { MAXHFSFILESIZE = 0x7FFFFFFF /* this needs to go in the mount structure */ }; -extern u_int32_t GetLogicalBlockSize(struct vnode *vp); +/* from bsd/hfs/hfs_vfsops.c */ +extern int hfs_vfs_vget (struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context); -static int hfs_clonelink(struct vnode *, int, struct ucred *, struct proc *); -static int hfs_clonefile(struct vnode *, int, int, int, struct ucred *, struct proc *); -static int hfs_clonesysfile(struct vnode *, int, int, int, struct ucred *, struct proc *); +static int hfs_clonefile(struct vnode *, int, int, int); +static int hfs_clonesysfile(struct vnode *, int, int, int, kauth_cred_t, struct proc *); +static int hfs_minorupdate(struct vnode *vp); +static int do_hfs_truncate(struct vnode *vp, off_t length, int flags, int skip, vfs_context_t context); +/* from bsd/hfs/hfs_vnops.c */ +extern decmpfs_cnode* hfs_lazy_init_decmpfs_cnode (struct cnode *cp); -/***************************************************************************** -* -* Operations on vnodes -* -*****************************************************************************/ -/* -#% read vp L L L -# - vop_read { - IN struct vnode *vp; - INOUT struct uio *uio; - IN int ioflag; - IN struct ucred *cred; - */ +int flush_cache_on_write = 0; +SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write, CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0, "always flush the drive cache on writes to uncached files"); +/* + * Read data from a file. + */ int -hfs_read(ap) - struct vop_read_args /* { - struct vnode *a_vp; - struct uio *a_uio; - int a_ioflag; - struct ucred *a_cred; - } */ *ap; +hfs_vnop_read(struct vnop_read_args *ap) { - register struct uio *uio = ap->a_uio; - register struct vnode *vp = ap->a_vp; + /* + struct vnop_read_args { + struct vnodeop_desc *a_desc; + vnode_t a_vp; + struct uio *a_uio; + int a_ioflag; + vfs_context_t a_context; + }; + */ + + uio_t uio = ap->a_uio; + struct vnode *vp = ap->a_vp; struct cnode *cp; struct filefork *fp; - int devBlockSize = 0; + struct hfsmount *hfsmp; + off_t filesize; + off_t filebytes; + off_t start_resid = uio_resid(uio); + off_t offset = uio_offset(uio); int retval = 0; - off_t filesize; - off_t filebytes; - off_t start_resid = uio->uio_resid; - + int took_truncate_lock = 0; + int io_throttle = 0; + int throttled_count = 0; /* Preflight checks */ - if ((vp->v_type != VREG) || !UBCINFOEXISTS(vp)) - return (EPERM); /* can only read regular files */ - if (uio->uio_resid == 0) + if (!vnode_isreg(vp)) { + /* can only read regular files */ + if (vnode_isdir(vp)) + return (EISDIR); + else + return (EPERM); + } + if (start_resid == 0) return (0); /* Nothing left to do */ - if (uio->uio_offset < 0) + if (offset < 0) return (EINVAL); /* cant read from a negative offset */ + if ((ap->a_ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) == + (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) { + /* Don't allow unencrypted io request from user space */ + return EPERM; + } + + + +#if HFS_COMPRESSION + if (VNODE_IS_RSRC(vp)) { + if (hfs_hides_rsrc(ap->a_context, VTOC(vp), 1)) { /* 1 == don't take the cnode lock */ + return 0; + } + /* otherwise read the resource fork normally */ + } else { + int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ + if (compressed) { + retval = decmpfs_read_compressed(ap, &compressed, VTOCMP(vp)); + if (compressed) { + if (retval == 0) { + /* successful read, update the access time */ + VTOC(vp)->c_touch_acctime = TRUE; + + /* compressed files are not hot file candidates */ + if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { + VTOF(vp)->ff_bytesread = 0; + } + } + return retval; + } + /* otherwise the file was converted back to a regular file while we were reading it */ + retval = 0; + } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) { + int error; + + error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP); + if (error) { + return error; + } + + } + } +#endif /* HFS_COMPRESSION */ + cp = VTOC(vp); fp = VTOF(vp); - filesize = fp->ff_size; - filebytes = (off_t)fp->ff_blocks * (off_t)VTOVCB(vp)->blockSize; - if (uio->uio_offset > filesize) { - if ((!ISHFSPLUS(VTOVCB(vp))) && (uio->uio_offset > (off_t)MAXHFSFILESIZE)) - return (EFBIG); - else - return (0); + hfsmp = VTOHFS(vp); + +#if CONFIG_PROTECT + if ((retval = cp_handle_vnop (vp, CP_READ_ACCESS, ap->a_ioflag)) != 0) { + goto exit; + } +#endif + + /* + * If this read request originated from a syscall (as opposed to + * an in-kernel page fault or something), then set it up for + * throttle checks + */ + if (ap->a_ioflag & IO_SYSCALL_DISPATCH) { + io_throttle = IO_RETURN_ON_THROTTLE; } - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); +read_again: + + /* Protect against a size change. */ + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); + took_truncate_lock = 1; + + filesize = fp->ff_size; + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; + + /* + * Check the file size. Note that per POSIX spec, we return 0 at + * file EOF, so attempting a read at an offset that is too big + * should just return 0 on HFS+. Since the return value was initialized + * to 0 above, we just jump to exit. HFS Standard has its own behavior. + */ + if (offset > filesize) { + if ((hfsmp->hfs_flags & HFS_STANDARD) && + (offset > (off_t)MAXHFSFILESIZE)) { + retval = EFBIG; + } + goto exit; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, (int)filebytes, 0); + KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_START, + (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); - retval = cluster_read(vp, uio, filesize, devBlockSize, 0); + retval = cluster_read(vp, uio, filesize, ap->a_ioflag |io_throttle); - cp->c_flag |= C_ACCESS; + cp->c_touch_acctime = TRUE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, (int)filebytes, 0); + KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_END, + (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); /* * Keep track blocks read */ - if (VTOHFS(vp)->hfc_stage == HFC_RECORDING && retval == 0) { + if (hfsmp->hfc_stage == HFC_RECORDING && retval == 0) { + int took_cnode_lock = 0; + off_t bytesread; + + bytesread = start_resid - uio_resid(uio); + + /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ + if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + took_cnode_lock = 1; + } /* * If this file hasn't been seen since the start of * the current sampling period then start over. */ - if (cp->c_atime < VTOHFS(vp)->hfc_timebase) { - fp->ff_bytesread = start_resid - uio->uio_resid; - cp->c_atime = time.tv_sec; + if (cp->c_atime < hfsmp->hfc_timebase) { + struct timeval tv; + + fp->ff_bytesread = bytesread; + microtime(&tv); + cp->c_atime = tv.tv_sec; } else { - fp->ff_bytesread += start_resid - uio->uio_resid; + fp->ff_bytesread += bytesread; } + if (took_cnode_lock) + hfs_unlock(cp); } +exit: + if (took_truncate_lock) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + } + if (retval == EAGAIN) { + throttle_lowpri_io(1); + throttled_count++; + retval = 0; + goto read_again; + } + if (throttled_count) { + throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread())); + } return (retval); } /* - * Write data to a file or directory. -#% write vp L L L -# - vop_write { - IN struct vnode *vp; - INOUT struct uio *uio; - IN int ioflag; - IN struct ucred *cred; - - */ + * Write data to a file. + */ int -hfs_write(ap) - struct vop_write_args /* { - struct vnode *a_vp; - struct uio *a_uio; - int a_ioflag; - struct ucred *a_cred; - } */ *ap; +hfs_vnop_write(struct vnop_write_args *ap) { + uio_t uio = ap->a_uio; struct vnode *vp = ap->a_vp; - struct uio *uio = ap->a_uio; struct cnode *cp; struct filefork *fp; - struct proc *p; - struct timeval tv; - ExtendedVCB *vcb; - int devBlockSize = 0; - off_t origFileSize, writelimit, bytesToAdd; + struct hfsmount *hfsmp; + kauth_cred_t cred = NULL; + off_t origFileSize; + off_t writelimit; + off_t bytesToAdd = 0; off_t actualBytesAdded; - u_long resid; - int eflags, ioflag; - int retval; off_t filebytes; - struct hfsmount *hfsmp; - int started_tr = 0, grabbed_lock = 0; - - - if (uio->uio_offset < 0) - return (EINVAL); - if (uio->uio_resid == 0) - return (E_NONE); - if ((vp->v_type != VREG) || !UBCINFOEXISTS(vp)) - return (EPERM); /* Can only write regular files */ - - ioflag = ap->a_ioflag; - cp = VTOC(vp); - fp = VTOF(vp); - vcb = VTOVCB(vp); - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; - - if (ioflag & IO_APPEND) - uio->uio_offset = fp->ff_size; - if ((cp->c_flags & APPEND) && uio->uio_offset != fp->ff_size) - return (EPERM); - - // XXXdbg - don't allow modification of the journal or journal_info_block - if (VTOHFS(vp)->jnl && cp->c_datafork) { - struct HFSPlusExtentDescriptor *extd; - - extd = &cp->c_datafork->ff_extents[0]; - if (extd->startBlock == VTOVCB(vp)->vcbJinfoBlock || extd->startBlock == VTOHFS(vp)->jnl_start) { - return EPERM; + off_t offset; + ssize_t resid; + int eflags; + int ioflag = ap->a_ioflag; + int retval = 0; + int lockflags; + int cnode_locked = 0; + int partialwrite = 0; + int do_snapshot = 1; + time_t orig_ctime=VTOC(vp)->c_ctime; + int took_truncate_lock = 0; + int io_return_on_throttle = 0; + int throttled_count = 0; + struct rl_entry *invalid_range; + +#if HFS_COMPRESSION + if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ + int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); + switch(state) { + case FILE_IS_COMPRESSED: + return EACCES; + case FILE_IS_CONVERTING: + /* if FILE_IS_CONVERTING, we allow writes but do not + bother with snapshots or else we will deadlock. + */ + do_snapshot = 0; + break; + default: + printf("invalid state %d for compressed file\n", state); + /* fall through */ + } + } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) { + int error; + + error = check_for_dataless_file(vp, NAMESPACE_HANDLER_WRITE_OP); + if (error != 0) { + return error; } } - writelimit = uio->uio_offset + uio->uio_resid; - - /* - * Maybe this should be above the vnode op call, but so long as - * file servers have no limits, I don't think it matters. - */ - p = uio->uio_procp; - if (vp->v_type == VREG && p && - writelimit > p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { - psignal(p, SIGXFSZ); - return (EFBIG); + if (do_snapshot) { + check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, uio); } - p = current_proc(); - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); - - resid = uio->uio_resid; - origFileSize = fp->ff_size; - eflags = kEFDeferMask; /* defer file block allocations */ - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; +#endif - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)fp->ff_size, (int)filebytes, 0); - retval = 0; + if ((ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) == + (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) { + /* Don't allow unencrypted io request from user space */ + return EPERM; + } - /* Now test if we need to extend the file */ - /* Doing so will adjust the filebytes for us */ -#if QUOTA - if(writelimit > filebytes) { - bytesToAdd = writelimit - filebytes; + resid = uio_resid(uio); + offset = uio_offset(uio); - retval = hfs_chkdq(cp, (int64_t)(roundup(bytesToAdd, vcb->blockSize)), - ap->a_cred, 0); - if (retval) - return (retval); - } -#endif /* QUOTA */ + if (offset < 0) + return (EINVAL); + if (resid == 0) + return (E_NONE); + if (!vnode_isreg(vp)) + return (EPERM); /* Can only write regular files */ + cp = VTOC(vp); + fp = VTOF(vp); hfsmp = VTOHFS(vp); -#ifdef HFS_SPARSE_DEV +#if CONFIG_PROTECT + if ((retval = cp_handle_vnop (vp, CP_WRITE_ACCESS, 0)) != 0) { + goto exit; + } +#endif + + eflags = kEFDeferMask; /* defer file block allocations */ +#if HFS_SPARSE_DEV /* * When the underlying device is sparse and space * is low (< 8MB), stop doing delayed allocations @@ -276,85 +388,202 @@ hfs_write(ap) } #endif /* HFS_SPARSE_DEV */ - if (writelimit > filebytes) { - hfs_global_shared_lock_acquire(hfsmp); - grabbed_lock = 1; + if ((ioflag & (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) == + (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) { + io_return_on_throttle = IO_RETURN_ON_THROTTLE; } - if (hfsmp->jnl && (writelimit > filebytes)) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - hfs_global_shared_lock_release(hfsmp); - return EINVAL; + +again: + /* + * Protect against a size change. + * + * Note: If took_truncate_lock is true, then we previously got the lock shared + * but needed to upgrade to exclusive. So try getting it exclusive from the + * start. + */ + if (ioflag & IO_APPEND || took_truncate_lock) { + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + } + else { + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); + } + took_truncate_lock = 1; + + /* Update UIO */ + if (ioflag & IO_APPEND) { + uio_setoffset(uio, fp->ff_size); + offset = fp->ff_size; + } + if ((cp->c_bsdflags & APPEND) && offset != fp->ff_size) { + retval = EPERM; + goto exit; + } + + origFileSize = fp->ff_size; + writelimit = offset + resid; + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; + + /* + * We may need an exclusive truncate lock for several reasons, all + * of which are because we may be writing to a (portion of a) block + * for the first time, and we need to make sure no readers see the + * prior, uninitialized contents of the block. The cases are: + * + * 1. We have unallocated (delayed allocation) blocks. We may be + * allocating new blocks to the file and writing to them. + * (A more precise check would be whether the range we're writing + * to contains delayed allocation blocks.) + * 2. We need to extend the file. The bytes between the old EOF + * and the new EOF are not yet initialized. This is important + * even if we're not allocating new blocks to the file. If the + * old EOF and new EOF are in the same block, we still need to + * protect that range of bytes until they are written for the + * first time. + * 3. The write overlaps some invalid ranges (delayed zero fill; that + * part of the file has been allocated, but not yet written). + * + * If we had a shared lock with the above cases, we need to try to upgrade + * to an exclusive lock. If the upgrade fails, we will lose the shared + * lock, and will need to take the truncate lock again; the took_truncate_lock + * flag will still be set, causing us to try for an exclusive lock next time. + * + * NOTE: Testing for #3 (delayed zero fill) needs to be done while the cnode + * lock is held, since it protects the range lists. + */ + if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) && + ((fp->ff_unallocblocks != 0) || + (writelimit > origFileSize))) { + if (lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock) == FALSE) { + /* + * Lock upgrade failed and we lost our shared lock, try again. + * Note: we do not set took_truncate_lock=0 here. Leaving it + * set to 1 will cause us to try to get the lock exclusive. + */ + goto again; + } + else { + /* Store the owner in the c_truncatelockowner field if we successfully upgrade */ + cp->c_truncatelockowner = current_thread(); } - started_tr = 1; + } + + if ( (retval = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + goto exit; + } + cnode_locked = 1; + + /* + * Now that we have the cnode lock, see if there are delayed zero fill ranges + * overlapping our write. If so, we need the truncate lock exclusive (see above). + */ + if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) && + (rl_scan(&fp->ff_invalidranges, offset, writelimit-1, &invalid_range) != RL_NOOVERLAP)) { + /* + * When testing, it appeared that calling lck_rw_lock_shared_to_exclusive() causes + * a deadlock, rather than simply returning failure. (That is, it apparently does + * not behave like a "try_lock"). Since this condition is rare, just drop the + * cnode lock and try again. Since took_truncate_lock is set, we will + * automatically take the truncate lock exclusive. + */ + hfs_unlock(cp); + cnode_locked = 0; + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + goto again; + } + + KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_START, + (int)offset, uio_resid(uio), (int)fp->ff_size, + (int)filebytes, 0); + + /* Check if we do not need to extend the file */ + if (writelimit <= filebytes) { + goto sizeok; + } + + cred = vfs_context_ucred(ap->a_context); + bytesToAdd = writelimit - filebytes; + +#if QUOTA + retval = hfs_chkdq(cp, (int64_t)(roundup(bytesToAdd, hfsmp->blockSize)), + cred, 0); + if (retval) + goto exit; +#endif /* QUOTA */ + + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto exit; } while (writelimit > filebytes) { bytesToAdd = writelimit - filebytes; - if (ap->a_cred && suser(ap->a_cred, NULL) != 0) + if (cred && suser(cred, NULL) != 0) eflags |= kEFReserveMask; - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, current_proc()); - if (retval != E_NONE) - break; + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); /* Files that are changing size are not hot file candidates. */ if (hfsmp->hfc_stage == HFC_RECORDING) { fp->ff_bytesread = 0; } - retval = MacToVFSError(ExtendFileC (vcb, (FCB*)fp, bytesToAdd, + retval = MacToVFSError(ExtendFileC (hfsmp, (FCB*)fp, bytesToAdd, 0, eflags, &actualBytesAdded)); - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, p); + hfs_systemfile_unlock(hfsmp, lockflags); + if ((actualBytesAdded == 0) && (retval == E_NONE)) retval = ENOSPC; if (retval != E_NONE) break; - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_NONE, - (int)uio->uio_offset, uio->uio_resid, (int)fp->ff_size, (int)filebytes, 0); + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; + KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_NONE, + (int)offset, uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); } + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + (void) hfs_end_transaction(hfsmp); - // XXXdbg - if (started_tr) { - tv = time; - VOP_UPDATE(vp, &tv, &tv, 1); - - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - started_tr = 0; - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - grabbed_lock = 0; + /* + * If we didn't grow the file enough try a partial write. + * POSIX expects this behavior. + */ + if ((retval == ENOSPC) && (filebytes > offset)) { + retval = 0; + partialwrite = 1; + uio_setresid(uio, (uio_resid(uio) - bytesToAdd)); + resid -= bytesToAdd; + writelimit = filebytes; } - +sizeok: if (retval == E_NONE) { off_t filesize; off_t zero_off; off_t tail_off; off_t inval_start; off_t inval_end; - off_t io_start, io_end; + off_t io_start; int lflag; - struct rl_entry *invalid_range; if (writelimit > fp->ff_size) filesize = writelimit; else filesize = fp->ff_size; - lflag = (ioflag & IO_SYNC); + lflag = ioflag & ~(IO_TAILZEROFILL | IO_HEADZEROFILL | IO_NOZEROVALID | IO_NOZERODIRTY); - if (uio->uio_offset <= fp->ff_size) { - zero_off = uio->uio_offset & ~PAGE_MASK_64; + if (offset <= fp->ff_size) { + zero_off = offset & ~PAGE_MASK_64; /* Check to see whether the area between the zero_offset and the start of the transfer to see whether is invalid and should be zero-filled as part of the transfer: */ - if (uio->uio_offset > zero_off) { - if (rl_scan(&fp->ff_invalidranges, zero_off, uio->uio_offset - 1, &invalid_range) != RL_NOOVERLAP) + if (offset > zero_off) { + if (rl_scan(&fp->ff_invalidranges, zero_off, offset - 1, &invalid_range) != RL_NOOVERLAP) lflag |= IO_HEADZEROFILL; } } else { @@ -373,7 +602,7 @@ hfs_write(ap) will be handled by the cluser_write of the actual data. */ inval_start = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; - inval_end = uio->uio_offset & ~PAGE_MASK_64; + inval_end = offset & ~PAGE_MASK_64; zero_off = fp->ff_size; if ((fp->ff_size & PAGE_MASK_64) && @@ -397,6 +626,7 @@ hfs_write(ap) }; if (inval_start < inval_end) { + struct timeval tv; /* There's some range of data that's going to be marked invalid */ if (zero_off < inval_start) { @@ -404,20 +634,26 @@ hfs_write(ap) and the actual write will start on a page past inval_end. Now's the last chance to zero-fill the page containing the EOF: */ - retval = cluster_write(vp, (struct uio *) 0, + hfs_unlock(cp); + cnode_locked = 0; + retval = cluster_write(vp, (uio_t) 0, fp->ff_size, inval_start, - zero_off, (off_t)0, devBlockSize, + zero_off, (off_t)0, lflag | IO_HEADZEROFILL | IO_NOZERODIRTY); + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + cnode_locked = 1; if (retval) goto ioerr_exit; + offset = uio_offset(uio); }; /* Mark the remaining area of the newly allocated space as invalid: */ rl_add(inval_start, inval_end - 1 , &fp->ff_invalidranges); - cp->c_zftimeout = time.tv_sec + ZFTIMELIMIT; + microuptime(&tv); + cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; zero_off = fp->ff_size = inval_end; }; - if (uio->uio_offset > zero_off) lflag |= IO_HEADZEROFILL; + if (offset > zero_off) lflag |= IO_HEADZEROFILL; }; /* Check to see whether the area between the end of the write and the end of @@ -441,332 +677,2125 @@ hfs_write(ap) * made readable (removed from the invalid ranges) before cluster_write * tries to write it: */ - io_start = (lflag & IO_HEADZEROFILL) ? zero_off : uio->uio_offset; - io_end = (lflag & IO_TAILZEROFILL) ? tail_off : writelimit; + io_start = (lflag & IO_HEADZEROFILL) ? zero_off : offset; if (io_start < fp->ff_size) { + off_t io_end; + + io_end = (lflag & IO_TAILZEROFILL) ? tail_off : writelimit; rl_remove(io_start, io_end - 1, &fp->ff_invalidranges); }; + + hfs_unlock(cp); + cnode_locked = 0; + + /* + * We need to tell UBC the fork's new size BEFORE calling + * cluster_write, in case any of the new pages need to be + * paged out before cluster_write completes (which does happen + * in embedded systems due to extreme memory pressure). + * Similarly, we need to tell hfs_vnop_pageout what the new EOF + * will be, so that it can pass that on to cluster_pageout, and + * allow those pageouts. + * + * We don't update ff_size yet since we don't want pageins to + * be able to see uninitialized data between the old and new + * EOF, until cluster_write has completed and initialized that + * part of the file. + * + * The vnode pager relies on the file size last given to UBC via + * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or + * ff_size (whichever is larger). NOTE: ff_new_size is always + * zero, unless we are extending the file via write. + */ + if (filesize > fp->ff_size) { + fp->ff_new_size = filesize; + ubc_setsize(vp, filesize); + } retval = cluster_write(vp, uio, fp->ff_size, filesize, zero_off, - tail_off, devBlockSize, lflag | IO_NOZERODIRTY); - - if (uio->uio_offset > fp->ff_size) { - fp->ff_size = uio->uio_offset; + tail_off, lflag | IO_NOZERODIRTY | io_return_on_throttle); + if (retval) { + fp->ff_new_size = 0; /* no longer extending; use ff_size */ + + if (retval == EAGAIN) { + /* + * EAGAIN indicates that we still have I/O to do, but + * that we now need to be throttled + */ + if (resid != uio_resid(uio)) { + /* + * did manage to do some I/O before returning EAGAIN + */ + resid = uio_resid(uio); + offset = uio_offset(uio); - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ + cp->c_touch_chgtime = TRUE; + cp->c_touch_modtime = TRUE; + hfs_incr_gencount(cp); + } + if (filesize > fp->ff_size) { + /* + * we called ubc_setsize before the call to + * cluster_write... since we only partially + * completed the I/O, we need to + * re-adjust our idea of the filesize based + * on our interim EOF + */ + ubc_setsize(vp, offset); + + fp->ff_size = offset; + } + goto exit; + } + if (filesize > origFileSize) { + ubc_setsize(vp, origFileSize); + } + goto ioerr_exit; + } + + if (filesize > origFileSize) { + fp->ff_size = filesize; + + /* Files that are changing size are not hot file candidates. */ + if (hfsmp->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } } - if (resid > uio->uio_resid) - cp->c_flag |= C_CHANGE | C_UPDATE; + fp->ff_new_size = 0; /* ff_size now has the correct size */ + } + if (partialwrite) { + uio_setresid(uio, (uio_resid(uio) + bytesToAdd)); + resid += bytesToAdd; } - HFS_KNOTE(vp, NOTE_WRITE); + // XXXdbg - see radar 4871353 for more info + { + if (flush_cache_on_write && ((ioflag & IO_NOCACHE) || vnode_isnocache(vp))) { + VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL); + } + } ioerr_exit: - /* - * If we successfully wrote any data, and we are not the superuser - * we clear the setuid and setgid bits as a precaution against - * tampering. - */ - if (resid > uio->uio_resid && ap->a_cred && ap->a_cred->cr_uid != 0) - cp->c_mode &= ~(S_ISUID | S_ISGID); + if (resid > uio_resid(uio)) { + if (!cnode_locked) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + cnode_locked = 1; + } + cp->c_touch_chgtime = TRUE; + cp->c_touch_modtime = TRUE; + hfs_incr_gencount(cp); + + /* + * If we successfully wrote any data, and we are not the superuser + * we clear the setuid and setgid bits as a precaution against + * tampering. + */ + if (cp->c_mode & (S_ISUID | S_ISGID)) { + cred = vfs_context_ucred(ap->a_context); + if (cred && suser(cred, NULL)) { + cp->c_mode &= ~(S_ISUID | S_ISGID); + } + } + } if (retval) { if (ioflag & IO_UNIT) { - (void)VOP_TRUNCATE(vp, origFileSize, - ioflag & IO_SYNC, ap->a_cred, uio->uio_procp); - uio->uio_offset -= resid - uio->uio_resid; - uio->uio_resid = resid; - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + (void)hfs_truncate(vp, origFileSize, ioflag & IO_SYNC, + 0, ap->a_context); + uio_setoffset(uio, (uio_offset(uio) - (resid - uio_resid(uio)))); + uio_setresid(uio, resid); + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; } - } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { - tv = time; - retval = VOP_UPDATE(vp, &tv, &tv, 1); - } - vcb->vcbWrCnt++; + } else if ((ioflag & IO_SYNC) && (resid > uio_resid(uio))) + retval = hfs_update(vp, TRUE); + + /* Updating vcbWrCnt doesn't need to be atomic. */ + hfsmp->vcbWrCnt++; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, (int)fp->ff_size, (int)filebytes, 0); + KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_END, + (int)uio_offset(uio), uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); +exit: + if (cnode_locked) + hfs_unlock(cp); + + if (took_truncate_lock) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + } + if (retval == EAGAIN) { + throttle_lowpri_io(1); + throttled_count++; + retval = 0; + goto again; + } + if (throttled_count) { + throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread())); + } return (retval); } +/* support for the "bulk-access" fcntl */ -#ifdef HFS_SPARSE_DEV -struct hfs_backingstoreinfo { - int signature; /* == 3419115 */ - int version; /* version of this struct (1) */ - int backingfd; /* disk image file (on backing fs) */ - int bandsize; /* sparse disk image band size */ -}; +#define CACHE_LEVELS 16 +#define NUM_CACHE_ENTRIES (64*16) +#define PARENT_IDS_FLAG 0x100 -#define HFSIOC_SETBACKINGSTOREINFO _IOW('h', 7, struct hfs_backingstoreinfo) -#define HFSIOC_CLRBACKINGSTOREINFO _IO('h', 8) +struct access_cache { + int numcached; + int cachehits; /* these two for statistics gathering */ + int lookups; + unsigned int *acache; + unsigned char *haveaccess; +}; -#define HFS_SETBACKINGSTOREINFO IOCBASECMD(HFSIOC_SETBACKINGSTOREINFO) -#define HFS_CLRBACKINGSTOREINFO IOCBASECMD(HFSIOC_CLRBACKINGSTOREINFO) +struct access_t { + uid_t uid; /* IN: effective user id */ + short flags; /* IN: access requested (i.e. R_OK) */ + short num_groups; /* IN: number of groups user belongs to */ + int num_files; /* IN: number of files to process */ + int *file_ids; /* IN: array of file ids */ + gid_t *groups; /* IN: array of groups */ + short *access; /* OUT: access info for each file (0 for 'has access') */ +} __attribute__((unavailable)); // this structure is for reference purposes only + +struct user32_access_t { + uid_t uid; /* IN: effective user id */ + short flags; /* IN: access requested (i.e. R_OK) */ + short num_groups; /* IN: number of groups user belongs to */ + int num_files; /* IN: number of files to process */ + user32_addr_t file_ids; /* IN: array of file ids */ + user32_addr_t groups; /* IN: array of groups */ + user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ +}; -#endif /* HFS_SPARSE_DEV */ +struct user64_access_t { + uid_t uid; /* IN: effective user id */ + short flags; /* IN: access requested (i.e. R_OK) */ + short num_groups; /* IN: number of groups user belongs to */ + int num_files; /* IN: number of files to process */ + user64_addr_t file_ids; /* IN: array of file ids */ + user64_addr_t groups; /* IN: array of groups */ + user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ +}; -/* -#% ioctl vp U U U -# - vop_ioctl { - IN struct vnode *vp; - IN u_long command; - IN caddr_t data; - IN int fflag; - IN struct ucred *cred; - IN struct proc *p; +// these are the "extended" versions of the above structures +// note that it is crucial that they be different sized than +// the regular version +struct ext_access_t { + uint32_t flags; /* IN: access requested (i.e. R_OK) */ + uint32_t num_files; /* IN: number of files to process */ + uint32_t map_size; /* IN: size of the bit map */ + uint32_t *file_ids; /* IN: Array of file ids */ + char *bitmap; /* OUT: hash-bitmap of interesting directory ids */ + short *access; /* OUT: access info for each file (0 for 'has access') */ + uint32_t num_parents; /* future use */ + cnid_t *parents; /* future use */ +} __attribute__((unavailable)); // this structure is for reference purposes only + +struct user32_ext_access_t { + uint32_t flags; /* IN: access requested (i.e. R_OK) */ + uint32_t num_files; /* IN: number of files to process */ + uint32_t map_size; /* IN: size of the bit map */ + user32_addr_t file_ids; /* IN: Array of file ids */ + user32_addr_t bitmap; /* OUT: hash-bitmap of interesting directory ids */ + user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ + uint32_t num_parents; /* future use */ + user32_addr_t parents; /* future use */ +}; - */ +struct user64_ext_access_t { + uint32_t flags; /* IN: access requested (i.e. R_OK) */ + uint32_t num_files; /* IN: number of files to process */ + uint32_t map_size; /* IN: size of the bit map */ + user64_addr_t file_ids; /* IN: array of file ids */ + user64_addr_t bitmap; /* IN: array of groups */ + user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ + uint32_t num_parents;/* future use */ + user64_addr_t parents;/* future use */ +}; -/* ARGSUSED */ -int -hfs_ioctl(ap) - struct vop_ioctl_args /* { - struct vnode *a_vp; - int a_command; - caddr_t a_data; - int a_fflag; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; +/* + * Perform a binary search for the given parent_id. Return value is + * the index if there is a match. If no_match_indexp is non-NULL it + * will be assigned with the index to insert the item (even if it was + * not found). + */ +static int cache_binSearch(cnid_t *array, unsigned int hi, cnid_t parent_id, int *no_match_indexp) { - switch (ap->a_command) { - -#ifdef HFS_SPARSE_DEV - case HFS_SETBACKINGSTOREINFO: { - struct hfsmount * hfsmp; - struct vnode * bsfs_rootvp; - struct vnode * di_vp; - struct file * di_fp; - struct hfs_backingstoreinfo *bsdata; - int error = 0; + int index=-1; + unsigned int lo=0; + + do { + unsigned int mid = ((hi - lo)/2) + lo; + unsigned int this_id = array[mid]; - hfsmp = VTOHFS(ap->a_vp); - if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { - return (EALREADY); - } - if (ap->a_p->p_ucred->cr_uid != 0 && - ap->a_p->p_ucred->cr_uid != (HFSTOVFS(hfsmp))->mnt_stat.f_owner) { - return (EACCES); /* must be owner of file system */ - } - bsdata = (struct hfs_backingstoreinfo *)ap->a_data; - if (bsdata == NULL) { - return (EINVAL); - } - if (error = fdgetf(ap->a_p, bsdata->backingfd, &di_fp)) { - return (error); - } - if (fref(di_fp) == -1) { - return (EBADF); - } - if (di_fp->f_type != DTYPE_VNODE) { - frele(di_fp); - return (EINVAL); - } - di_vp = (struct vnode *)di_fp->f_data; - if (ap->a_vp->v_mount == di_vp->v_mount) { - frele(di_fp); - return (EINVAL); - } - - /* - * Obtain the backing fs root vnode and keep a reference - * on it. This reference will be dropped in hfs_unmount. - */ - error = VFS_ROOT(di_vp->v_mount, &bsfs_rootvp); - if (error) { - frele(di_fp); - return (error); - } - VOP_UNLOCK(bsfs_rootvp, 0, ap->a_p); /* Hold on to the reference */ - - hfsmp->hfs_backingfs_rootvp = bsfs_rootvp; - hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE; - hfsmp->hfs_sparsebandblks = bsdata->bandsize / HFSTOVCB(hfsmp)->blockSize; - hfsmp->hfs_sparsebandblks *= 4; - - frele(di_fp); - return (0); + if (parent_id == this_id) { + hi = mid; + break; } - case HFS_CLRBACKINGSTOREINFO: { - struct hfsmount * hfsmp; - struct vnode * tmpvp; + + if (parent_id < this_id) { + hi = mid; + continue; + } + + if (parent_id > this_id) { + lo = mid + 1; + continue; + } + } while(lo < hi); - hfsmp = VTOHFS(ap->a_vp); - if (ap->a_p->p_ucred->cr_uid != 0 && - ap->a_p->p_ucred->cr_uid != (HFSTOVFS(hfsmp))->mnt_stat.f_owner) { - return (EACCES); /* must be owner of file system */ - } - if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && - hfsmp->hfs_backingfs_rootvp) { + /* check if lo and hi converged on the match */ + if (parent_id == array[hi]) { + index = hi; + } + + if (no_match_indexp) { + *no_match_indexp = hi; + } + return index; +} + + +static int +lookup_bucket(struct access_cache *cache, int *indexp, cnid_t parent_id) +{ + unsigned int hi; + int matches = 0; + int index, no_match_index; + + if (cache->numcached == 0) { + *indexp = 0; + return 0; // table is empty, so insert at index=0 and report no match + } + + if (cache->numcached > NUM_CACHE_ENTRIES) { + cache->numcached = NUM_CACHE_ENTRIES; + } + + hi = cache->numcached - 1; + + index = cache_binSearch(cache->acache, hi, parent_id, &no_match_index); + + /* if no existing entry found, find index for new one */ + if (index == -1) { + index = no_match_index; + matches = 0; + } else { + matches = 1; + } + + *indexp = index; + return matches; +} + +/* + * Add a node to the access_cache at the given index (or do a lookup first + * to find the index if -1 is passed in). We currently do a replace rather + * than an insert if the cache is full. + */ +static void +add_node(struct access_cache *cache, int index, cnid_t nodeID, int access) +{ + int lookup_index = -1; + + /* need to do a lookup first if -1 passed for index */ + if (index == -1) { + if (lookup_bucket(cache, &lookup_index, nodeID)) { + if (cache->haveaccess[lookup_index] != access && cache->haveaccess[lookup_index] == ESRCH) { + // only update an entry if the previous access was ESRCH (i.e. a scope checking error) + cache->haveaccess[lookup_index] = access; + } + + /* mission accomplished */ + return; + } else { + index = lookup_index; + } + + } + + /* if the cache is full, do a replace rather than an insert */ + if (cache->numcached >= NUM_CACHE_ENTRIES) { + cache->numcached = NUM_CACHE_ENTRIES-1; + + if (index > cache->numcached) { + index = cache->numcached; + } + } + + if (index < cache->numcached && index < NUM_CACHE_ENTRIES && nodeID > cache->acache[index]) { + index++; + } + + if (index >= 0 && index < cache->numcached) { + /* only do bcopy if we're inserting */ + bcopy( cache->acache+index, cache->acache+(index+1), (cache->numcached - index)*sizeof(int) ); + bcopy( cache->haveaccess+index, cache->haveaccess+(index+1), (cache->numcached - index)*sizeof(unsigned char) ); + } + + cache->acache[index] = nodeID; + cache->haveaccess[index] = access; + cache->numcached++; +} + + +struct cinfo { + uid_t uid; + gid_t gid; + mode_t mode; + cnid_t parentcnid; + u_int16_t recflags; +}; + +static int +snoop_callback(const cnode_t *cp, void *arg) +{ + struct cinfo *cip = arg; + + cip->uid = cp->c_uid; + cip->gid = cp->c_gid; + cip->mode = cp->c_mode; + cip->parentcnid = cp->c_parentcnid; + cip->recflags = cp->c_attr.ca_recflags; + + return (0); +} + +/* + * Lookup the cnid's attr info (uid, gid, and mode) as well as its parent id. If the item + * isn't incore, then go to the catalog. + */ +static int +do_attr_lookup(struct hfsmount *hfsmp, struct access_cache *cache, cnid_t cnid, + struct cnode *skip_cp, CatalogKey *keyp, struct cat_attr *cnattrp) +{ + int error = 0; + + /* if this id matches the one the fsctl was called with, skip the lookup */ + if (cnid == skip_cp->c_cnid) { + cnattrp->ca_uid = skip_cp->c_uid; + cnattrp->ca_gid = skip_cp->c_gid; + cnattrp->ca_mode = skip_cp->c_mode; + cnattrp->ca_recflags = skip_cp->c_attr.ca_recflags; + keyp->hfsPlus.parentID = skip_cp->c_parentcnid; + } else { + struct cinfo c_info; + + /* otherwise, check the cnode hash incase the file/dir is incore */ + error = hfs_chash_snoop(hfsmp, cnid, 0, snoop_callback, &c_info); + + if (error == EACCES) { + // File is deleted + return ENOENT; + } else if (!error) { + cnattrp->ca_uid = c_info.uid; + cnattrp->ca_gid = c_info.gid; + cnattrp->ca_mode = c_info.mode; + cnattrp->ca_recflags = c_info.recflags; + keyp->hfsPlus.parentID = c_info.parentcnid; + } else { + int lockflags; + + if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp))) + throttle_lowpri_io(1); + + lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); + + /* lookup this cnid in the catalog */ + error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp); + + hfs_systemfile_unlock(hfsmp, lockflags); + + cache->lookups++; + } + } + + return (error); +} + + +/* + * Compute whether we have access to the given directory (nodeID) and all its parents. Cache + * up to CACHE_LEVELS as we progress towards the root. + */ +static int +do_access_check(struct hfsmount *hfsmp, int *err, struct access_cache *cache, HFSCatalogNodeID nodeID, + struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred, + struct vfs_context *my_context, + char *bitmap, + uint32_t map_size, + cnid_t* parents, + uint32_t num_parents) +{ + int myErr = 0; + int myResult; + HFSCatalogNodeID thisNodeID; + unsigned int myPerms; + struct cat_attr cnattr; + int cache_index = -1, scope_index = -1, scope_idx_start = -1; + CatalogKey catkey; + + int i = 0, ids_to_cache = 0; + int parent_ids[CACHE_LEVELS]; + + thisNodeID = nodeID; + while (thisNodeID >= kRootDirID) { + myResult = 0; /* default to "no access" */ + + /* check the cache before resorting to hitting the catalog */ + + /* ASSUMPTION: access info of cached entries is "final"... i.e. no need + * to look any further after hitting cached dir */ + + if (lookup_bucket(cache, &cache_index, thisNodeID)) { + cache->cachehits++; + myErr = cache->haveaccess[cache_index]; + if (scope_index != -1) { + if (myErr == ESRCH) { + myErr = 0; + } + } else { + scope_index = 0; // so we'll just use the cache result + scope_idx_start = ids_to_cache; + } + myResult = (myErr == 0) ? 1 : 0; + goto ExitThisRoutine; + } + + + if (parents) { + int tmp; + tmp = cache_binSearch(parents, num_parents-1, thisNodeID, NULL); + if (scope_index == -1) + scope_index = tmp; + if (tmp != -1 && scope_idx_start == -1 && ids_to_cache < CACHE_LEVELS) { + scope_idx_start = ids_to_cache; + } + } + + /* remember which parents we want to cache */ + if (ids_to_cache < CACHE_LEVELS) { + parent_ids[ids_to_cache] = thisNodeID; + ids_to_cache++; + } + // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"... + if (bitmap && map_size) { + bitmap[(thisNodeID/8)%(map_size)]|=(1<<(thisNodeID&7)); + } + + + /* do the lookup (checks the cnode hash, then the catalog) */ + myErr = do_attr_lookup(hfsmp, cache, thisNodeID, skip_cp, &catkey, &cnattr); + if (myErr) { + goto ExitThisRoutine; /* no access */ + } + + /* Root always gets access. */ + if (suser(myp_ucred, NULL) == 0) { + thisNodeID = catkey.hfsPlus.parentID; + myResult = 1; + continue; + } + + // if the thing has acl's, do the full permission check + if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { + struct vnode *vp; + + /* get the vnode for this cnid */ + myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0, 0); + if ( myErr ) { + myResult = 0; + goto ExitThisRoutine; + } + + thisNodeID = VTOC(vp)->c_parentcnid; + + hfs_unlock(VTOC(vp)); + + if (vnode_vtype(vp) == VDIR) { + myErr = vnode_authorize(vp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), my_context); + } else { + myErr = vnode_authorize(vp, NULL, KAUTH_VNODE_READ_DATA, my_context); + } + + vnode_put(vp); + if (myErr) { + myResult = 0; + goto ExitThisRoutine; + } + } else { + unsigned int flags; + int mode = cnattr.ca_mode & S_IFMT; + myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, cnattr.ca_mode, hfsmp->hfs_mp,myp_ucred, theProcPtr); + + if (mode == S_IFDIR) { + flags = R_OK | X_OK; + } else { + flags = R_OK; + } + if ( (myPerms & flags) != flags) { + myResult = 0; + myErr = EACCES; + goto ExitThisRoutine; /* no access */ + } + + /* up the hierarchy we go */ + thisNodeID = catkey.hfsPlus.parentID; + } + } + + /* if here, we have access to this node */ + myResult = 1; + + ExitThisRoutine: + if (parents && myErr == 0 && scope_index == -1) { + myErr = ESRCH; + } + + if (myErr) { + myResult = 0; + } + *err = myErr; + + /* cache the parent directory(ies) */ + for (i = 0; i < ids_to_cache; i++) { + if (myErr == 0 && parents && (scope_idx_start == -1 || i > scope_idx_start)) { + add_node(cache, -1, parent_ids[i], ESRCH); + } else { + add_node(cache, -1, parent_ids[i], myErr); + } + } + + return (myResult); +} + +static int +do_bulk_access_check(struct hfsmount *hfsmp, struct vnode *vp, + struct vnop_ioctl_args *ap, int arg_size, vfs_context_t context) +{ + boolean_t is64bit; + + /* + * NOTE: on entry, the vnode has an io_ref. In case this vnode + * happens to be in our list of file_ids, we'll note it + * avoid calling hfs_chashget_nowait() on that id as that + * will cause a "locking against myself" panic. + */ + Boolean check_leaf = true; + + struct user64_ext_access_t *user_access_structp; + struct user64_ext_access_t tmp_user_access; + struct access_cache cache; + + int error = 0, prev_parent_check_ok=1; + unsigned int i; + + short flags; + unsigned int num_files = 0; + int map_size = 0; + int num_parents = 0; + int *file_ids=NULL; + short *access=NULL; + char *bitmap=NULL; + cnid_t *parents=NULL; + int leaf_index; + + cnid_t cnid; + cnid_t prevParent_cnid = 0; + unsigned int myPerms; + short myaccess = 0; + struct cat_attr cnattr; + CatalogKey catkey; + struct cnode *skip_cp = VTOC(vp); + kauth_cred_t cred = vfs_context_ucred(context); + proc_t p = vfs_context_proc(context); + + is64bit = proc_is64bit(p); + + /* initialize the local cache and buffers */ + cache.numcached = 0; + cache.cachehits = 0; + cache.lookups = 0; + cache.acache = NULL; + cache.haveaccess = NULL; + + /* struct copyin done during dispatch... need to copy file_id array separately */ + if (ap->a_data == NULL) { + error = EINVAL; + goto err_exit_bulk_access; + } + + if (is64bit) { + if (arg_size != sizeof(struct user64_ext_access_t)) { + error = EINVAL; + goto err_exit_bulk_access; + } + + user_access_structp = (struct user64_ext_access_t *)ap->a_data; + + } else if (arg_size == sizeof(struct user32_access_t)) { + struct user32_access_t *accessp = (struct user32_access_t *)ap->a_data; + + // convert an old style bulk-access struct to the new style + tmp_user_access.flags = accessp->flags; + tmp_user_access.num_files = accessp->num_files; + tmp_user_access.map_size = 0; + tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); + tmp_user_access.bitmap = USER_ADDR_NULL; + tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); + tmp_user_access.num_parents = 0; + user_access_structp = &tmp_user_access; + + } else if (arg_size == sizeof(struct user32_ext_access_t)) { + struct user32_ext_access_t *accessp = (struct user32_ext_access_t *)ap->a_data; + + // up-cast from a 32-bit version of the struct + tmp_user_access.flags = accessp->flags; + tmp_user_access.num_files = accessp->num_files; + tmp_user_access.map_size = accessp->map_size; + tmp_user_access.num_parents = accessp->num_parents; + + tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); + tmp_user_access.bitmap = CAST_USER_ADDR_T(accessp->bitmap); + tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); + tmp_user_access.parents = CAST_USER_ADDR_T(accessp->parents); + + user_access_structp = &tmp_user_access; + } else { + error = EINVAL; + goto err_exit_bulk_access; + } + + map_size = user_access_structp->map_size; + + num_files = user_access_structp->num_files; + + num_parents= user_access_structp->num_parents; + + if (num_files < 1) { + goto err_exit_bulk_access; + } + if (num_files > 1024) { + error = EINVAL; + goto err_exit_bulk_access; + } + + if (num_parents > 1024) { + error = EINVAL; + goto err_exit_bulk_access; + } + + file_ids = (int *) kalloc(sizeof(int) * num_files); + access = (short *) kalloc(sizeof(short) * num_files); + if (map_size) { + bitmap = (char *) kalloc(sizeof(char) * map_size); + } + + if (num_parents) { + parents = (cnid_t *) kalloc(sizeof(cnid_t) * num_parents); + } + + cache.acache = (unsigned int *) kalloc(sizeof(int) * NUM_CACHE_ENTRIES); + cache.haveaccess = (unsigned char *) kalloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES); + + if (file_ids == NULL || access == NULL || (map_size != 0 && bitmap == NULL) || cache.acache == NULL || cache.haveaccess == NULL) { + if (file_ids) { + kfree(file_ids, sizeof(int) * num_files); + } + if (bitmap) { + kfree(bitmap, sizeof(char) * map_size); + } + if (access) { + kfree(access, sizeof(short) * num_files); + } + if (cache.acache) { + kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); + } + if (cache.haveaccess) { + kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); + } + if (parents) { + kfree(parents, sizeof(cnid_t) * num_parents); + } + return ENOMEM; + } + + // make sure the bitmap is zero'ed out... + if (bitmap) { + bzero(bitmap, (sizeof(char) * map_size)); + } + + if ((error = copyin(user_access_structp->file_ids, (caddr_t)file_ids, + num_files * sizeof(int)))) { + goto err_exit_bulk_access; + } + + if (num_parents) { + if ((error = copyin(user_access_structp->parents, (caddr_t)parents, + num_parents * sizeof(cnid_t)))) { + goto err_exit_bulk_access; + } + } + + flags = user_access_structp->flags; + if ((flags & (F_OK | R_OK | W_OK | X_OK)) == 0) { + flags = R_OK; + } + + /* check if we've been passed leaf node ids or parent ids */ + if (flags & PARENT_IDS_FLAG) { + check_leaf = false; + } + + /* Check access to each file_id passed in */ + for (i = 0; i < num_files; i++) { + leaf_index=-1; + cnid = (cnid_t) file_ids[i]; + + /* root always has access */ + if ((!parents) && (!suser(cred, NULL))) { + access[i] = 0; + continue; + } + + if (check_leaf) { + /* do the lookup (checks the cnode hash, then the catalog) */ + error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr); + if (error) { + access[i] = (short) error; + continue; + } + + if (parents) { + // Check if the leaf matches one of the parent scopes + leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL); + if (leaf_index >= 0 && parents[leaf_index] == cnid) + prev_parent_check_ok = 0; + else if (leaf_index >= 0) + prev_parent_check_ok = 1; + } + + // if the thing has acl's, do the full permission check + if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { + struct vnode *cvp; + int myErr = 0; + /* get the vnode for this cnid */ + myErr = hfs_vget(hfsmp, cnid, &cvp, 0, 0); + if ( myErr ) { + access[i] = myErr; + continue; + } + + hfs_unlock(VTOC(cvp)); + + if (vnode_vtype(cvp) == VDIR) { + myErr = vnode_authorize(cvp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), context); + } else { + myErr = vnode_authorize(cvp, NULL, KAUTH_VNODE_READ_DATA, context); + } + + vnode_put(cvp); + if (myErr) { + access[i] = myErr; + continue; + } + } else { + /* before calling CheckAccess(), check the target file for read access */ + myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, + cnattr.ca_mode, hfsmp->hfs_mp, cred, p); + + /* fail fast if no access */ + if ((myPerms & flags) == 0) { + access[i] = EACCES; + continue; + } + } + } else { + /* we were passed an array of parent ids */ + catkey.hfsPlus.parentID = cnid; + } + + /* if the last guy had the same parent and had access, we're done */ + if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) { + cache.cachehits++; + access[i] = 0; + continue; + } + + myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID, + skip_cp, p, cred, context,bitmap, map_size, parents, num_parents); + + if (myaccess || (error == ESRCH && leaf_index != -1)) { + access[i] = 0; // have access.. no errors to report + } else { + access[i] = (error != 0 ? (short) error : EACCES); + } + + prevParent_cnid = catkey.hfsPlus.parentID; + } + + /* copyout the access array */ + if ((error = copyout((caddr_t)access, user_access_structp->access, + num_files * sizeof (short)))) { + goto err_exit_bulk_access; + } + if (map_size && bitmap) { + if ((error = copyout((caddr_t)bitmap, user_access_structp->bitmap, + map_size * sizeof (char)))) { + goto err_exit_bulk_access; + } + } + + + err_exit_bulk_access: + + if (file_ids) + kfree(file_ids, sizeof(int) * num_files); + if (parents) + kfree(parents, sizeof(cnid_t) * num_parents); + if (bitmap) + kfree(bitmap, sizeof(char) * map_size); + if (access) + kfree(access, sizeof(short) * num_files); + if (cache.acache) + kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); + if (cache.haveaccess) + kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); + + return (error); +} + + +/* end "bulk-access" support */ + + +/* + * Control filesystem operating characteristics. + */ +int +hfs_vnop_ioctl( struct vnop_ioctl_args /* { + vnode_t a_vp; + long a_command; + caddr_t a_data; + int a_fflag; + vfs_context_t a_context; + } */ *ap) +{ + struct vnode * vp = ap->a_vp; + struct hfsmount *hfsmp = VTOHFS(vp); + vfs_context_t context = ap->a_context; + kauth_cred_t cred = vfs_context_ucred(context); + proc_t p = vfs_context_proc(context); + struct vfsstatfs *vfsp; + boolean_t is64bit; + off_t jnl_start, jnl_size; + struct hfs_journal_info *jip; +#if HFS_COMPRESSION + int compressed = 0; + off_t uncompressed_size = -1; + int decmpfs_error = 0; + + if (ap->a_command == F_RDADVISE) { + /* we need to inspect the decmpfs state of the file as early as possible */ + compressed = hfs_file_is_compressed(VTOC(vp), 0); + if (compressed) { + if (VNODE_IS_RSRC(vp)) { + /* if this is the resource fork, treat it as if it were empty */ + uncompressed_size = 0; + } else { + decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0); + if (decmpfs_error != 0) { + /* failed to get the uncompressed size, we'll check for this later */ + uncompressed_size = -1; + } + } + } + } +#endif /* HFS_COMPRESSION */ + + is64bit = proc_is64bit(p); + +#if CONFIG_PROTECT + { + int error = 0; + if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) { + return error; + } + } +#endif /* CONFIG_PROTECT */ + + switch (ap->a_command) { + + case HFS_GETPATH: + { + struct vnode *file_vp; + cnid_t cnid; + int outlen; + char *bufptr; + int error; + int flags = 0; + + /* Caller must be owner of file system. */ + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); + } + /* Target vnode must be file system's root. */ + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + bufptr = (char *)ap->a_data; + cnid = strtoul(bufptr, NULL, 10); + if (ap->a_fflag & HFS_GETPATH_VOLUME_RELATIVE) { + flags |= BUILDPATH_VOLUME_RELATIVE; + } + + /* We need to call hfs_vfs_vget to leverage the code that will + * fix the origin list for us if needed, as opposed to calling + * hfs_vget, since we will need the parent for build_path call. + */ + + if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) { + return (error); + } + error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, flags, context); + vnode_put(file_vp); + + return (error); + } + + case HFS_TRANSFER_DOCUMENT_ID: + { + struct cnode *cp = NULL; + int error; + u_int32_t to_fd = *(u_int32_t *)ap->a_data; + struct fileproc *to_fp; + struct vnode *to_vp; + struct cnode *to_cp; + + cp = VTOC(vp); + + if ((error = fp_getfvp(p, to_fd, &to_fp, &to_vp)) != 0) { + //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error); + return error; + } + if ( (error = vnode_getwithref(to_vp)) ) { + file_drop(to_fd); + return error; + } + + if (VTOHFS(to_vp) != hfsmp) { + error = EXDEV; + goto transfer_cleanup; + } + + int need_unlock = 1; + to_cp = VTOC(to_vp); + error = hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK); + if (error != 0) { + //printf("could not lock the pair of cnodes (error %d)\n", error); + goto transfer_cleanup; + } + + if (!(cp->c_bsdflags & UF_TRACKED)) { + error = EINVAL; + } else if (to_cp->c_bsdflags & UF_TRACKED) { + // + // if the destination is already tracked, return an error + // as otherwise it's a silent deletion of the target's + // document-id + // + error = EEXIST; + } else if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode) || S_ISLNK(cp->c_attr.ca_mode)) { + // + // we can use the FndrExtendedFileInfo because the doc-id is the first + // thing in both it and the ExtendedDirInfo struct which is fixed in + // format and can not change layout + // + struct FndrExtendedFileInfo *f_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)cp->c_finderinfo + 16); + struct FndrExtendedFileInfo *to_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)to_cp->c_finderinfo + 16); + + if (f_extinfo->document_id == 0) { + uint32_t new_id; + + hfs_unlockpair(cp, to_cp); // have to unlock to be able to get a new-id + + if ((error = hfs_generate_document_id(hfsmp, &new_id)) == 0) { + // + // re-lock the pair now that we have the document-id + // + hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK); + f_extinfo->document_id = new_id; + } else { + goto transfer_cleanup; + } + } + + to_extinfo->document_id = f_extinfo->document_id; + f_extinfo->document_id = 0; + //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid); + + // make sure the destination is also UF_TRACKED + to_cp->c_bsdflags |= UF_TRACKED; + cp->c_bsdflags &= ~UF_TRACKED; + + // mark the cnodes dirty + cp->c_flag |= C_MODIFIED | C_FORCEUPDATE; + to_cp->c_flag |= C_MODIFIED | C_FORCEUPDATE; + + int lockflags; + if ((error = hfs_start_transaction(hfsmp)) == 0) { + + lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK); + + (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL); + (void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr, NULL, NULL); + + hfs_systemfile_unlock (hfsmp, lockflags); + (void) hfs_end_transaction(hfsmp); + } + +#if CONFIG_FSE + add_fsevent(FSE_DOCID_CHANGED, context, + FSE_ARG_DEV, hfsmp->hfs_raw_dev, + FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode # + FSE_ARG_INO, (ino64_t)to_cp->c_fileid, // dst inode # + FSE_ARG_INT32, to_extinfo->document_id, + FSE_ARG_DONE); + + hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents + need_unlock = 0; + + if (need_fsevent(FSE_STAT_CHANGED, vp)) { + add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, vp, FSE_ARG_DONE); + } + if (need_fsevent(FSE_STAT_CHANGED, to_vp)) { + add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, to_vp, FSE_ARG_DONE); + } +#else + hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents + need_unlock = 0; +#endif + } + + if (need_unlock) { + hfs_unlockpair(cp, to_cp); + } + + transfer_cleanup: + vnode_put(to_vp); + file_drop(to_fd); + + return error; + } + + + + case HFS_PREV_LINK: + case HFS_NEXT_LINK: + { + cnid_t linkfileid; + cnid_t nextlinkid; + cnid_t prevlinkid; + int error; + + /* Caller must be owner of file system. */ + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); + } + /* Target vnode must be file system's root. */ + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + linkfileid = *(cnid_t *)ap->a_data; + if (linkfileid < kHFSFirstUserCatalogNodeID) { + return (EINVAL); + } + if ((error = hfs_lookup_siblinglinks(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) { + return (error); + } + if (ap->a_command == HFS_NEXT_LINK) { + *(cnid_t *)ap->a_data = nextlinkid; + } else { + *(cnid_t *)ap->a_data = prevlinkid; + } + return (0); + } + + case HFS_RESIZE_PROGRESS: { + + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + /* file system must not be mounted read-only */ + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data); + } + + case HFS_RESIZE_VOLUME: { + u_int64_t newsize; + u_int64_t cursize; + + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + + /* filesystem must not be mounted read only */ + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + newsize = *(u_int64_t *)ap->a_data; + cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize; + + if (newsize > cursize) { + return hfs_extendfs(hfsmp, *(u_int64_t *)ap->a_data, context); + } else if (newsize < cursize) { + return hfs_truncatefs(hfsmp, *(u_int64_t *)ap->a_data, context); + } else { + return (0); + } + } + case HFS_CHANGE_NEXT_ALLOCATION: { + int error = 0; /* Assume success */ + u_int32_t location; + + if (vnode_vfsisrdonly(vp)) { + return (EROFS); + } + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + hfs_lock_mount(hfsmp); + location = *(u_int32_t *)ap->a_data; + if ((location >= hfsmp->allocLimit) && + (location != HFS_NO_UPDATE_NEXT_ALLOCATION)) { + error = EINVAL; + goto fail_change_next_allocation; + } + /* Return previous value. */ + *(u_int32_t *)ap->a_data = hfsmp->nextAllocation; + if (location == HFS_NO_UPDATE_NEXT_ALLOCATION) { + /* On magic value for location, set nextAllocation to next block + * after metadata zone and set flag in mount structure to indicate + * that nextAllocation should not be updated again. + */ + if (hfsmp->hfs_metazone_end != 0) { + HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1); + } + hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION; + } else { + hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION; + HFS_UPDATE_NEXT_ALLOCATION(hfsmp, location); + } + MarkVCBDirty(hfsmp); +fail_change_next_allocation: + hfs_unlock_mount(hfsmp); + return (error); + } + +#if HFS_SPARSE_DEV + case HFS_SETBACKINGSTOREINFO: { + struct vnode * bsfs_rootvp; + struct vnode * di_vp; + struct hfs_backingstoreinfo *bsdata; + int error = 0; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { + return (EALREADY); + } + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + bsdata = (struct hfs_backingstoreinfo *)ap->a_data; + if (bsdata == NULL) { + return (EINVAL); + } + if ((error = file_vnode(bsdata->backingfd, &di_vp))) { + return (error); + } + if ((error = vnode_getwithref(di_vp))) { + file_drop(bsdata->backingfd); + return(error); + } + + if (vnode_mount(vp) == vnode_mount(di_vp)) { + (void)vnode_put(di_vp); + file_drop(bsdata->backingfd); + return (EINVAL); + } + + /* + * Obtain the backing fs root vnode and keep a reference + * on it. This reference will be dropped in hfs_unmount. + */ + error = VFS_ROOT(vnode_mount(di_vp), &bsfs_rootvp, NULL); /* XXX use context! */ + if (error) { + (void)vnode_put(di_vp); + file_drop(bsdata->backingfd); + return (error); + } + vnode_ref(bsfs_rootvp); + vnode_put(bsfs_rootvp); + + hfs_lock_mount(hfsmp); + hfsmp->hfs_backingfs_rootvp = bsfs_rootvp; + hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE; + hfsmp->hfs_sparsebandblks = bsdata->bandsize / hfsmp->blockSize * 4; + hfs_unlock_mount(hfsmp); + + /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */ + + /* + * If the sparse image is on a sparse image file (as opposed to a sparse + * bundle), then we may need to limit the free space to the maximum size + * of a file on that volume. So we query (using pathconf), and if we get + * a meaningful result, we cache the number of blocks for later use in + * hfs_freeblks(). + */ + hfsmp->hfs_backingfs_maxblocks = 0; + if (vnode_vtype(di_vp) == VREG) { + int terr; + int hostbits; + terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context); + if (terr == 0 && hostbits != 0 && hostbits < 64) { + u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits; + + hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize; + } + } + + /* The free extent cache is managed differently for sparse devices. + * There is a window between which the volume is mounted and the + * device is marked as sparse, so the free extent cache for this + * volume is currently initialized as normal volume (sorted by block + * count). Reset the cache so that it will be rebuilt again + * for sparse device (sorted by start block). + */ + ResetVCBFreeExtCache(hfsmp); + + (void)vnode_put(di_vp); + file_drop(bsdata->backingfd); + return (0); + } + case HFS_CLRBACKINGSTOREINFO: { + struct vnode * tmpvp; + + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && + hfsmp->hfs_backingfs_rootvp) { + + hfs_lock_mount(hfsmp); hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE; tmpvp = hfsmp->hfs_backingfs_rootvp; hfsmp->hfs_backingfs_rootvp = NULLVP; hfsmp->hfs_sparsebandblks = 0; - vrele(tmpvp); + hfs_unlock_mount(hfsmp); + + vnode_rele(tmpvp); + } + return (0); + } +#endif /* HFS_SPARSE_DEV */ + + /* Change the next CNID stored in the VH */ + case HFS_CHANGE_NEXTCNID: { + int error = 0; /* Assume success */ + u_int32_t fileid; + int wraparound = 0; + int lockflags = 0; + + if (vnode_vfsisrdonly(vp)) { + return (EROFS); + } + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + + fileid = *(u_int32_t *)ap->a_data; + + /* Must have catalog lock excl. to advance the CNID pointer */ + lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG , HFS_EXCLUSIVE_LOCK); + + hfs_lock_mount(hfsmp); + + /* If it is less than the current next CNID, force the wraparound bit to be set */ + if (fileid < hfsmp->vcbNxtCNID) { + wraparound=1; + } + + /* Return previous value. */ + *(u_int32_t *)ap->a_data = hfsmp->vcbNxtCNID; + + hfsmp->vcbNxtCNID = fileid; + + if (wraparound) { + hfsmp->vcbAtrb |= kHFSCatalogNodeIDsReusedMask; + } + + MarkVCBDirty(hfsmp); + hfs_unlock_mount(hfsmp); + hfs_systemfile_unlock (hfsmp, lockflags); + + return (error); + } + + case F_FREEZE_FS: { + struct mount *mp; + + mp = vnode_mount(vp); + hfsmp = VFSTOHFS(mp); + + if (!(hfsmp->jnl)) + return (ENOTSUP); + + vfsp = vfs_statfs(mp); + + if (kauth_cred_getuid(cred) != vfsp->f_owner && + !kauth_cred_issuser(cred)) + return (EACCES); + + return hfs_freeze(hfsmp); + } + + case F_THAW_FS: { + vfsp = vfs_statfs(vnode_mount(vp)); + if (kauth_cred_getuid(cred) != vfsp->f_owner && + !kauth_cred_issuser(cred)) + return (EACCES); + + return hfs_thaw(hfsmp, current_proc()); + } + + case HFS_BULKACCESS_FSCTL: { + int size; + + if (hfsmp->hfs_flags & HFS_STANDARD) { + return EINVAL; + } + + if (is64bit) { + size = sizeof(struct user64_access_t); + } else { + size = sizeof(struct user32_access_t); + } + + return do_bulk_access_check(hfsmp, vp, ap, size, context); + } + + case HFS_EXT_BULKACCESS_FSCTL: { + int size; + + if (hfsmp->hfs_flags & HFS_STANDARD) { + return EINVAL; + } + + if (is64bit) { + size = sizeof(struct user64_ext_access_t); + } else { + size = sizeof(struct user32_ext_access_t); + } + + return do_bulk_access_check(hfsmp, vp, ap, size, context); + } + + case HFS_SET_XATTREXTENTS_STATE: { + int state; + + if (ap->a_data == NULL) { + return (EINVAL); + } + + state = *(int *)ap->a_data; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + /* Super-user can enable or disable extent-based extended + * attribute support on a volume + * Note: Starting Mac OS X 10.7, extent-based extended attributes + * are enabled by default, so any change will be transient only + * till the volume is remounted. + */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return (EPERM); + } + if (state == 0 || state == 1) + return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state); + else + return (EINVAL); + } + + case F_SETSTATICCONTENT: { + int error; + int enable_static = 0; + struct cnode *cp = NULL; + /* + * lock the cnode, decorate the cnode flag, and bail out. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data) { + /* + * Note that even though ap->a_data is of type caddr_t, + * the fcntl layer at the syscall handler will pass in NULL + * or 1 depending on what the argument supplied to the fcntl + * was. So it is in fact correct to check the ap->a_data + * argument for zero or non-zero value when deciding whether or not + * to enable the static bit in the cnode. + */ + enable_static = 1; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + cp = VTOC(vp); + + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + if (enable_static) { + cp->c_flag |= C_SSD_STATIC; + } + else { + cp->c_flag &= ~C_SSD_STATIC; + } + hfs_unlock (cp); } - return (0); + return error; } -#endif /* HFS_SPARSE_DEV */ - case 6: { + case F_SET_GREEDY_MODE: { int error; + int enable_greedy_mode = 0; + struct cnode *cp = NULL; + /* + * lock the cnode, decorate the cnode flag, and bail out. + * VFS should have already authenticated the caller for us. + */ - ap->a_vp->v_flag |= VFULLFSYNC; - error = VOP_FSYNC(ap->a_vp, ap->a_cred, MNT_NOWAIT, ap->a_p); - ap->a_vp->v_flag &= ~VFULLFSYNC; + if (ap->a_data) { + /* + * Note that even though ap->a_data is of type caddr_t, + * the fcntl layer at the syscall handler will pass in NULL + * or 1 depending on what the argument supplied to the fcntl + * was. So it is in fact correct to check the ap->a_data + * argument for zero or non-zero value when deciding whether or not + * to enable the greedy mode bit in the cnode. + */ + enable_greedy_mode = 1; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + cp = VTOC(vp); + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + if (enable_greedy_mode) { + cp->c_flag |= C_SSD_GREEDY_MODE; + } + else { + cp->c_flag &= ~C_SSD_GREEDY_MODE; + } + hfs_unlock (cp); + } return error; } - case 5: { - register struct vnode *vp; - register struct cnode *cp; - struct filefork *fp; + + case F_SETIOTYPE: { int error; + uint32_t iotypeflag = 0; + + struct cnode *cp = NULL; + /* + * lock the cnode, decorate the cnode flag, and bail out. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data == NULL) { + return EINVAL; + } + + /* + * Note that even though ap->a_data is of type caddr_t, we + * can only use 32 bits of flag values. + */ + iotypeflag = (uint32_t) ap->a_data; + switch (iotypeflag) { + case F_IOTYPE_ISOCHRONOUS: + break; + default: + return EINVAL; + } + - vp = ap->a_vp; + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } cp = VTOC(vp); - fp = VTOF(vp); - if (vp->v_type != VREG) + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + switch (iotypeflag) { + case F_IOTYPE_ISOCHRONOUS: + cp->c_flag |= C_IO_ISOCHRONOUS; + break; + default: + break; + } + hfs_unlock (cp); + } + return error; + } + + case F_MAKECOMPRESSED: { + int error = 0; + uint32_t gen_counter; + struct cnode *cp = NULL; + int reset_decmp = 0; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + + /* + * acquire & lock the cnode. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data) { + /* + * Cast the pointer into a uint32_t so we can extract the + * supplied generation counter. + */ + gen_counter = *((uint32_t*)ap->a_data); + } + else { return EINVAL; - - VOP_LEASE(vp, ap->a_p, ap->a_cred, LEASE_READ); - error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, ap->a_p); - if (error) - return (error); + } + +#if HFS_COMPRESSION + cp = VTOC(vp); + /* Grab truncate lock first; we may truncate the file */ + hfs_lock_truncate (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return error; + } + + /* Are there any other usecounts/FDs? */ + if (vnode_isinuse(vp, 1)) { + hfs_unlock(cp); + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return EBUSY; + } + + /* now we have the cnode locked down; Validate arguments */ + if (cp->c_attr.ca_flags & (UF_IMMUTABLE | UF_COMPRESSED)) { + /* EINVAL if you are trying to manipulate an IMMUTABLE file */ + hfs_unlock(cp); + hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT); + return EINVAL; + } + + if ((hfs_get_gencount (cp)) == gen_counter) { + /* + * OK, the gen_counter matched. Go for it: + * Toggle state bits, truncate file, and suppress mtime update + */ + reset_decmp = 1; + cp->c_bsdflags |= UF_COMPRESSED; + + error = hfs_truncate(vp, 0, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, + ap->a_context); + } + else { + error = ESTALE; + } + + /* Unlock cnode before executing decmpfs ; they may need to get an EA */ + hfs_unlock(cp); - /* - * used by regression test to determine if - * all the dirty pages (via write) have been cleaned - * after a call to 'fsysnc'. + /* + * Reset the decmp state while still holding the truncate lock. We need to + * serialize here against a listxattr on this node which may occur at any + * time. + * + * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed, + * that will still potentially require getting the com.apple.decmpfs EA. If the + * EA is required, then we can't hold the cnode lock, because the getxattr call is + * generic(through VFS), and can't pass along any info telling it that we're already + * holding it (the lock). If we don't serialize, then we risk listxattr stopping + * and trying to fill in the hfs_file_is_compressed info during the callback + * operation, which will result in deadlock against the b-tree node. + * + * So, to serialize against listxattr (which will grab buf_t meta references on + * the b-tree blocks), we hold the truncate lock as we're manipulating the + * decmpfs payload. */ - error = is_file_clean(vp, fp->ff_size); - VOP_UNLOCK(vp, 0, ap->a_p); + if ((reset_decmp) && (error == 0)) { + decmpfs_cnode *dp = VTOCMP (vp); + if (dp != NULL) { + decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0); + } + + /* Initialize the decmpfs node as needed */ + (void) hfs_file_is_compressed (cp, 0); /* ok to take lock */ + } + + hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT); + +#endif + return error; + } + + case F_SETBACKINGSTORE: { + + int error = 0; + + /* + * See comment in F_SETSTATICCONTENT re: using + * a null check for a_data + */ + if (ap->a_data) { + error = hfs_set_backingstore (vp, 1); + } + else { + error = hfs_set_backingstore (vp, 0); + } + + return error; + } + + case F_GETPATH_MTMINFO: { + int error = 0; + + int *data = (int*) ap->a_data; + + /* Ask if this is a backingstore vnode */ + error = hfs_is_backingstore (vp, data); + + return error; + } + + case F_FULLFSYNC: { + int error; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + error = hfs_fsync(vp, MNT_WAIT, TRUE, p); + hfs_unlock(VTOC(vp)); + } + return error; + } + + case F_CHKCLEAN: { + register struct cnode *cp; + int error; + + if (!vnode_isreg(vp)) + return EINVAL; + + error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + cp = VTOC(vp); + /* + * used by regression test to determine if + * all the dirty pages (via write) have been cleaned + * after a call to 'fsysnc'. + */ + error = is_file_clean(vp, VTOF(vp)->ff_size); + hfs_unlock(cp); + } return (error); } - case 1: { - register struct vnode *vp; + case F_RDADVISE: { register struct radvisory *ra; - register struct cnode *cp; struct filefork *fp; - int devBlockSize = 0; int error; - vp = ap->a_vp; - - if (vp->v_type != VREG) + if (!vnode_isreg(vp)) return EINVAL; - VOP_LEASE(vp, ap->a_p, ap->a_cred, LEASE_READ); - error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, ap->a_p); - if (error) - return (error); - ra = (struct radvisory *)(ap->a_data); - cp = VTOC(vp); fp = VTOF(vp); + /* Protect against a size change. */ + hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + +#if HFS_COMPRESSION + if (compressed && (uncompressed_size == -1)) { + /* fetching the uncompressed size failed above, so return the error */ + error = decmpfs_error; + } else if ((compressed && (ra->ra_offset >= uncompressed_size)) || + (!compressed && (ra->ra_offset >= fp->ff_size))) { + error = EFBIG; + } +#else /* HFS_COMPRESSION */ if (ra->ra_offset >= fp->ff_size) { - VOP_UNLOCK(vp, 0, ap->a_p); - return (EFBIG); + error = EFBIG; + } +#endif /* HFS_COMPRESSION */ + else { + error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count); } - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); - - error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count, devBlockSize); - VOP_UNLOCK(vp, 0, ap->a_p); + hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT); return (error); } - case 2: /* F_READBOOTBLOCKS */ - case 3: /* F_WRITEBOOTBLOCKS */ - { - struct vnode *vp = ap->a_vp; - struct vnode *devvp = NULL; - struct fbootstraptransfer *btd = (struct fbootstraptransfer *)ap->a_data; - int devBlockSize; - int error; - struct iovec aiov; - struct uio auio; - u_long blockNumber; - u_long blockOffset; - u_long xfersize; - struct buf *bp; - - if ((vp->v_flag & VROOT) == 0) return EINVAL; - if (btd->fbt_offset + btd->fbt_length > 1024) return EINVAL; - - devvp = VTOHFS(vp)->hfs_devvp; - aiov.iov_base = btd->fbt_buffer; - aiov.iov_len = btd->fbt_length; - - auio.uio_iov = &aiov; - auio.uio_iovcnt = 1; - auio.uio_offset = btd->fbt_offset; - auio.uio_resid = btd->fbt_length; - auio.uio_segflg = UIO_USERSPACE; - auio.uio_rw = (ap->a_command == 3) ? UIO_WRITE : UIO_READ; /* F_WRITEBOOTSTRAP / F_READBOOTSTRAP */ - auio.uio_procp = ap->a_p; - - VOP_DEVBLOCKSIZE(devvp, &devBlockSize); - - while (auio.uio_resid > 0) { - blockNumber = auio.uio_offset / devBlockSize; - error = bread(devvp, blockNumber, devBlockSize, ap->a_cred, &bp); - if (error) { - if (bp) brelse(bp); - return error; - }; - - blockOffset = auio.uio_offset % devBlockSize; - xfersize = devBlockSize - blockOffset; - error = uiomove((caddr_t)bp->b_data + blockOffset, (int)xfersize, &auio); - if (error) { - brelse(bp); - return error; - }; - if (auio.uio_rw == UIO_WRITE) { - error = VOP_BWRITE(bp); - if (error) return error; - } else { - brelse(bp); - }; - }; - }; - return 0; - - case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */ - { - *(time_t *)(ap->a_data) = to_bsd_time(VTOVCB(ap->a_vp)->localCreateDate); - return 0; - } - - default: - return (ENOTTY); - } + case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */ + { + if (is64bit) { + *(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); + } + else { + *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); + } + return 0; + } + + case SPOTLIGHT_FSCTL_GET_MOUNT_TIME: + *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time; + break; + + case SPOTLIGHT_FSCTL_GET_LAST_MTIME: + *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime; + break; + + case HFS_FSCTL_GET_VERY_LOW_DISK: + *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_dangerlimit; + break; + + case HFS_FSCTL_SET_VERY_LOW_DISK: + if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) { + return EINVAL; + } + + hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data; + break; + + case HFS_FSCTL_GET_LOW_DISK: + *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_warninglimit; + break; + + case HFS_FSCTL_SET_LOW_DISK: + if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel + || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) { + + return EINVAL; + } + + hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data; + break; + + case HFS_FSCTL_GET_DESIRED_DISK: + *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_desiredlevel; + break; + + case HFS_FSCTL_SET_DESIRED_DISK: + if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) { + return EINVAL; + } + + hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data; + break; + + case HFS_VOLUME_STATUS: + *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions; + break; + + case HFS_SET_BOOT_INFO: + if (!vnode_isvroot(vp)) + return(EINVAL); + if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner)) + return(EACCES); /* must be superuser or owner of filesystem */ + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + hfs_lock_mount (hfsmp); + bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo)); + hfs_unlock_mount (hfsmp); + (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0); + break; + + case HFS_GET_BOOT_INFO: + if (!vnode_isvroot(vp)) + return(EINVAL); + hfs_lock_mount (hfsmp); + bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo)); + hfs_unlock_mount(hfsmp); + break; + + case HFS_MARK_BOOT_CORRUPT: + /* Mark the boot volume corrupt by setting + * kHFSVolumeInconsistentBit in the volume header. This will + * force fsck_hfs on next mount. + */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + + /* Allowed only on the root vnode of the boot volume */ + if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) || + !vnode_isvroot(vp)) { + return EINVAL; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n"); + hfs_mark_inconsistent(hfsmp, HFS_FSCK_FORCED); + break; + + case HFS_FSCTL_GET_JOURNAL_INFO: + jip = (struct hfs_journal_info*)ap->a_data; + + if (vp == NULLVP) + return EINVAL; + + if (hfsmp->jnl == NULL) { + jnl_start = 0; + jnl_size = 0; + } else { + jnl_start = (off_t)(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset; + jnl_size = (off_t)hfsmp->jnl_size; + } + + jip->jstart = jnl_start; + jip->jsize = jnl_size; + break; + + case HFS_SET_ALWAYS_ZEROFILL: { + struct cnode *cp = VTOC(vp); + + if (*(int *)ap->a_data) { + cp->c_flag |= C_ALWAYS_ZEROFILL; + } else { + cp->c_flag &= ~C_ALWAYS_ZEROFILL; + } + break; + } + + case HFS_DISABLE_METAZONE: { + /* Only root can disable metadata zone */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + /* Disable metadata zone now */ + (void) hfs_metadatazone_init(hfsmp, true); + printf ("hfs: Disabling metadata zone on %s\n", hfsmp->vcbVN); + break; + } + + + case HFS_FSINFO_METADATA_BLOCKS: { + int error; + struct hfsinfo_metadata *hinfo; + + hinfo = (struct hfsinfo_metadata *)ap->a_data; + + /* Get information about number of metadata blocks */ + error = hfs_getinfo_metadata_blocks(hfsmp, hinfo); + if (error) { + return error; + } + + break; + } + + case HFS_GET_FSINFO: { + hfs_fsinfo *fsinfo = (hfs_fsinfo *)ap->a_data; + + /* Only root is allowed to get fsinfo */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + + /* + * Make sure that the caller's version number matches with + * the kernel's version number. This will make sure that + * if the structures being read/written into are changed + * by the kernel, the caller will not read incorrect data. + * + * The first three fields --- request_type, version and + * flags are same for all the hfs_fsinfo structures, so + * we can access the version number by assuming any + * structure for now. + */ + if (fsinfo->header.version != HFS_FSINFO_VERSION) { + return ENOTSUP; + } + + /* Make sure that the current file system is not marked inconsistent */ + if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) { + return EIO; + } + + return hfs_get_fsinfo(hfsmp, ap->a_data); + } + + case HFS_CS_FREESPACE_TRIM: { + int error = 0; + int lockflags = 0; + + /* Only root allowed */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + + /* + * This core functionality is similar to hfs_scan_blocks(). + * The main difference is that hfs_scan_blocks() is called + * as part of mount where we are assured that the journal is + * empty to start with. This fcntl() can be called on a + * mounted volume, therefore it has to flush the content of + * the journal as well as ensure the state of summary table. + * + * This fcntl scans over the entire allocation bitmap, + * creates list of all the free blocks, and issues TRIM + * down to the underlying device. This can take long time + * as it can generate up to 512MB of read I/O. + */ + + if ((hfsmp->hfs_flags & HFS_SUMMARY_TABLE) == 0) { + error = hfs_init_summary(hfsmp); + if (error) { + printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp->vcbVN); + return error; + } + } + + /* + * The journal maintains list of recently deallocated blocks to + * issue DKIOCUNMAPs when the corresponding journal transaction is + * flushed to the disk. To avoid any race conditions, we only + * want one active trim list and only one thread issuing DKIOCUNMAPs. + * Therefore we make sure that the journal trim list is sync'ed, + * empty, and not modifiable for the duration of our scan. + * + * Take the journal lock before flushing the journal to the disk. + * We will keep on holding the journal lock till we don't get the + * bitmap lock to make sure that no new journal transactions can + * start. This will make sure that the journal trim list is not + * modified after the journal flush and before getting bitmap lock. + * We can release the journal lock after we acquire the bitmap + * lock as it will prevent any further block deallocations. + */ + hfs_journal_lock(hfsmp); + + /* Flush the journal and wait for all I/Os to finish up */ + error = hfs_journal_flush(hfsmp, TRUE); + if (error) { + hfs_journal_unlock(hfsmp); + return error; + } + + /* Take bitmap lock to ensure it is not being modified */ + lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); + + /* Release the journal lock */ + hfs_journal_unlock(hfsmp); + + /* + * ScanUnmapBlocks reads the bitmap in large block size + * (up to 1MB) unlike the runtime which reads the bitmap + * in the 4K block size. This can cause buf_t collisions + * and potential data corruption. To avoid this, we + * invalidate all the existing buffers associated with + * the bitmap vnode before scanning it. + * + * Note: ScanUnmapBlock() cleans up all the buffers + * after itself, so there won't be any large buffers left + * for us to clean up after it returns. + */ + error = buf_invalidateblks(hfsmp->hfs_allocation_vp, 0, 0, 0); + if (error) { + hfs_systemfile_unlock(hfsmp, lockflags); + return error; + } + + /* Traverse bitmap and issue DKIOCUNMAPs */ + error = ScanUnmapBlocks(hfsmp); + hfs_systemfile_unlock(hfsmp, lockflags); + if (error) { + return error; + } + + break; + } + + default: + return (ENOTTY); + } - /* Should never get here */ return 0; } -/* ARGSUSED */ +/* + * select + */ int -hfs_select(ap) - struct vop_select_args /* { - struct vnode *a_vp; +hfs_vnop_select(__unused struct vnop_select_args *ap) +/* + struct vnop_select_args { + vnode_t a_vp; int a_which; int a_fflags; - struct ucred *a_cred; void *a_wql; - struct proc *a_p; - } */ *ap; + vfs_context_t a_context; + }; +*/ { /* * We should really check to see if I/O is possible. @@ -774,192 +2803,172 @@ hfs_select(ap) return (1); } -/* - * Bmap converts a the logical block number of a file to its physical block - * number on the disk. - */ - -/* - * vp - address of vnode file the file - * bn - which logical block to convert to a physical block number. - * vpp - returns the vnode for the block special file holding the filesystem - * containing the file of interest - * bnp - address of where to return the filesystem physical block number -#% bmap vp L L L -#% bmap vpp - U - -# - vop_bmap { - IN struct vnode *vp; - IN daddr_t bn; - OUT struct vnode **vpp; - IN daddr_t *bnp; - OUT int *runp; - */ /* * Converts a logical block number to a physical block, and optionally returns * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize. * The physical block number is based on the device block size, currently its 512. * The block run is returned in logical blocks, and is the REMAINING amount of blocks */ - int -hfs_bmap(ap) - struct vop_bmap_args /* { - struct vnode *a_vp; - daddr_t a_bn; - struct vnode **a_vpp; - daddr_t *a_bnp; - int *a_runp; - } */ *ap; +hfs_bmap(struct vnode *vp, daddr_t bn, struct vnode **vpp, daddr64_t *bnp, unsigned int *runp) { - struct vnode *vp = ap->a_vp; - struct cnode *cp = VTOC(vp); struct filefork *fp = VTOF(vp); struct hfsmount *hfsmp = VTOHFS(vp); - int retval = E_NONE; - daddr_t logBlockSize; - size_t bytesContAvail = 0; - off_t blockposition; - struct proc *p = NULL; - int lockExtBtree; - struct rl_entry *invalid_range; - enum rl_overlaptype overlaptype; + int retval = E_NONE; + u_int32_t logBlockSize; + size_t bytesContAvail = 0; + off_t blockposition; + int lockExtBtree; + int lockflags = 0; /* * Check for underlying vnode requests and ensure that logical * to physical mapping is requested. */ - if (ap->a_vpp != NULL) - *ap->a_vpp = cp->c_devvp; - if (ap->a_bnp == NULL) + if (vpp != NULL) + *vpp = hfsmp->hfs_devvp; + if (bnp == NULL) return (0); - /* Only clustered I/O should have delayed allocations. */ - DBG_ASSERT(fp->ff_unallocblocks == 0); - logBlockSize = GetLogicalBlockSize(vp); - blockposition = (off_t)ap->a_bn * (off_t)logBlockSize; + blockposition = (off_t)bn * logBlockSize; lockExtBtree = overflow_extents(fp); - if (lockExtBtree) { - p = current_proc(); - retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, - LK_EXCLUSIVE | LK_CANRECURSE, p); - if (retval) - return (retval); - } + + if (lockExtBtree) + lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_EXCLUSIVE_LOCK); retval = MacToVFSError( MapFileBlockC (HFSTOVCB(hfsmp), (FCB*)fp, MAXPHYSIO, blockposition, - ap->a_bnp, + bnp, &bytesContAvail)); - if (lockExtBtree) (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); - - if (retval == E_NONE) { - /* Adjust the mapping information for invalid file ranges: */ - overlaptype = rl_scan(&fp->ff_invalidranges, - blockposition, - blockposition + MAXPHYSIO - 1, - &invalid_range); - if (overlaptype != RL_NOOVERLAP) { - switch(overlaptype) { - case RL_MATCHINGOVERLAP: - case RL_OVERLAPCONTAINSRANGE: - case RL_OVERLAPSTARTSBEFORE: - /* There's no valid block for this byte offset: */ - *ap->a_bnp = (daddr_t)-1; - bytesContAvail = invalid_range->rl_end + 1 - blockposition; - break; - - case RL_OVERLAPISCONTAINED: - case RL_OVERLAPENDSAFTER: - /* The range of interest hits an invalid block before the end: */ - if (invalid_range->rl_start == blockposition) { - /* There's actually no valid information to be had starting here: */ - *ap->a_bnp = (daddr_t)-1; - if ((fp->ff_size > (invalid_range->rl_end + 1)) && - (invalid_range->rl_end + 1 - blockposition < bytesContAvail)) { - bytesContAvail = invalid_range->rl_end + 1 - blockposition; - }; - } else { - bytesContAvail = invalid_range->rl_start - blockposition; - }; - break; - }; - if (bytesContAvail > MAXPHYSIO) bytesContAvail = MAXPHYSIO; - }; - - /* Figure out how many read ahead blocks there are */ - if (ap->a_runp != NULL) { - if (can_cluster(logBlockSize)) { - /* Make sure this result never goes negative: */ - *ap->a_runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1; - } else { - *ap->a_runp = 0; - }; - }; - }; - - return (retval); -} + if (lockExtBtree) + hfs_systemfile_unlock(hfsmp, lockflags); -/* blktooff converts logical block number to file offset */ + if (retval == E_NONE) { + /* Figure out how many read ahead blocks there are */ + if (runp != NULL) { + if (can_cluster(logBlockSize)) { + /* Make sure this result never goes negative: */ + *runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1; + } else { + *runp = 0; + } + } + } + return (retval); +} +/* + * Convert logical block number to file offset. + */ int -hfs_blktooff(ap) - struct vop_blktooff_args /* { - struct vnode *a_vp; - daddr_t a_lblkno; +hfs_vnop_blktooff(struct vnop_blktooff_args *ap) +/* + struct vnop_blktooff_args { + vnode_t a_vp; + daddr64_t a_lblkno; off_t *a_offset; - } */ *ap; + }; +*/ { if (ap->a_vp == NULL) return (EINVAL); - *ap->a_offset = (off_t)ap->a_lblkno * PAGE_SIZE_64; + *ap->a_offset = (off_t)ap->a_lblkno * (off_t)GetLogicalBlockSize(ap->a_vp); return(0); } +/* + * Convert file offset to logical block number. + */ int -hfs_offtoblk(ap) - struct vop_offtoblk_args /* { - struct vnode *a_vp; +hfs_vnop_offtoblk(struct vnop_offtoblk_args *ap) +/* + struct vnop_offtoblk_args { + vnode_t a_vp; off_t a_offset; - daddr_t *a_lblkno; - } */ *ap; + daddr64_t *a_lblkno; + }; +*/ { if (ap->a_vp == NULL) return (EINVAL); - *ap->a_lblkno = ap->a_offset / PAGE_SIZE_64; + *ap->a_lblkno = (daddr64_t)(ap->a_offset / (off_t)GetLogicalBlockSize(ap->a_vp)); return(0); } +/* + * Map file offset to physical block number. + * + * If this function is called for write operation, and if the file + * had virtual blocks allocated (delayed allocation), real blocks + * are allocated by calling ExtendFileC(). + * + * If this function is called for read operation, and if the file + * had virtual blocks allocated (delayed allocation), no change + * to the size of file is done, and if required, rangelist is + * searched for mapping. + * + * System file cnodes are expected to be locked (shared or exclusive). + */ int -hfs_cmap(ap) - struct vop_cmap_args /* { - struct vnode *a_vp; +hfs_vnop_blockmap(struct vnop_blockmap_args *ap) +/* + struct vnop_blockmap_args { + vnode_t a_vp; off_t a_foffset; size_t a_size; - daddr_t *a_bpn; + daddr64_t *a_bpn; size_t *a_run; void *a_poff; - } */ *ap; + int a_flags; + vfs_context_t a_context; + }; +*/ { - struct hfsmount *hfsmp = VTOHFS(ap->a_vp); - struct filefork *fp = VTOF(ap->a_vp); - size_t bytesContAvail = 0; - int retval = E_NONE; - int lockExtBtree = 0; - struct proc *p = NULL; - struct rl_entry *invalid_range; - enum rl_overlaptype overlaptype; - int started_tr = 0, grabbed_lock = 0; - struct timeval tv; + struct vnode *vp = ap->a_vp; + struct cnode *cp; + struct filefork *fp; + struct hfsmount *hfsmp; + size_t bytesContAvail = 0; + int retval = E_NONE; + int syslocks = 0; + int lockflags = 0; + struct rl_entry *invalid_range; + enum rl_overlaptype overlaptype; + int started_tr = 0; + int tooklock = 0; + +#if HFS_COMPRESSION + if (VNODE_IS_RSRC(vp)) { + /* allow blockmaps to the resource fork */ + } else { + if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ + int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); + switch(state) { + case FILE_IS_COMPRESSED: + return ENOTSUP; + case FILE_IS_CONVERTING: + /* if FILE_IS_CONVERTING, we allow blockmap */ + break; + default: + printf("invalid state %d for compressed file\n", state); + /* fall through */ + } + } + } +#endif /* HFS_COMPRESSION */ + + /* Do not allow blockmap operation on a directory */ + if (vnode_isdir(vp)) { + return (ENOTSUP); + } /* * Check for underlying vnode requests and ensure that logical @@ -968,56 +2977,40 @@ hfs_cmap(ap) if (ap->a_bpn == NULL) return (0); - p = current_proc(); - - if (ISSET(VTOC(ap->a_vp)->c_flag, C_NOBLKMAP)) { - /* - * File blocks are getting remapped. Wait until its finished. - */ - SET(VTOC(ap->a_vp)->c_flag, C_WBLKMAP); - (void) tsleep((caddr_t)VTOC(ap->a_vp), PINOD, "hfs_cmap", 0); - if (ISSET(VTOC(ap->a_vp)->c_flag, C_NOBLKMAP)) - panic("hfs_cmap: no mappable blocks"); - } - - retry: - if (fp->ff_unallocblocks) { - lockExtBtree = 1; - - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - grabbed_lock = 1; - - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - hfs_global_shared_lock_release(hfsmp); - return EINVAL; - } else { - started_tr = 1; - } - } + if ( !vnode_issystem(vp) && !vnode_islnk(vp) && !vnode_isswap(vp)) { + if (VTOC(vp)->c_lockowner != current_thread()) { + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + tooklock = 1; + } + } + hfsmp = VTOHFS(vp); + cp = VTOC(vp); + fp = VTOF(vp); - if (retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_EXCLUSIVE | LK_CANRECURSE, p)) { - if (started_tr) { - journal_end_transaction(hfsmp->jnl); - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - } - return (retval); +retry: + /* Check virtual blocks only when performing write operation */ + if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto exit; + } else { + started_tr = 1; } + syslocks = SFL_EXTENTS | SFL_BITMAP; + } else if (overflow_extents(fp)) { - lockExtBtree = 1; - if (retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_EXCLUSIVE | LK_CANRECURSE, p)) { - return retval; - } + syslocks = SFL_EXTENTS; } + + if (syslocks) + lockflags = hfs_systemfile_lock(hfsmp, syslocks, HFS_EXCLUSIVE_LOCK); /* * Check for any delayed allocations. */ - if (fp->ff_unallocblocks) { - SInt64 reqbytes, actbytes; + if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { + int64_t actbytes; + u_int32_t loanedBlocks; // // Make sure we have a transaction. It's possible @@ -1026,373 +3019,319 @@ hfs_cmap(ap) // btree, ff_unallocblocks became non-zero and so we // will need to start a transaction. // - if (hfsmp->jnl && started_tr == 0) { - if (lockExtBtree) { - (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); - lockExtBtree = 0; - } - - goto retry; + if (started_tr == 0) { + if (syslocks) { + hfs_systemfile_unlock(hfsmp, lockflags); + syslocks = 0; + } + goto retry; } - reqbytes = (SInt64)fp->ff_unallocblocks * - (SInt64)HFSTOVCB(hfsmp)->blockSize; /* - * Release the blocks on loan and aquire some real ones. - * Note that we can race someone else for these blocks - * (and lose) so cmap needs to handle a failure here. - * Currently this race can't occur because all allocations - * are protected by an exclusive lock on the Extents - * Overflow file. + * Note: ExtendFileC will Release any blocks on loan and + * aquire real blocks. So we ask to extend by zero bytes + * since ExtendFileC will account for the virtual blocks. */ - HFSTOVCB(hfsmp)->loanedBlocks -= fp->ff_unallocblocks; - FTOC(fp)->c_blocks -= fp->ff_unallocblocks; - fp->ff_blocks -= fp->ff_unallocblocks; - fp->ff_unallocblocks = 0; - - /* Files that are changing size are not hot file candidates. */ - if (hfsmp->hfc_stage == HFC_RECORDING) { - fp->ff_bytesread = 0; - } - while (retval == 0 && reqbytes > 0) { - retval = MacToVFSError(ExtendFileC(HFSTOVCB(hfsmp), - (FCB*)fp, reqbytes, 0, - kEFAllMask | kEFNoClumpMask, &actbytes)); - if (retval == 0 && actbytes == 0) - retval = ENOSPC; - if (retval) { - fp->ff_unallocblocks = - reqbytes / HFSTOVCB(hfsmp)->blockSize; - HFSTOVCB(hfsmp)->loanedBlocks += fp->ff_unallocblocks; - FTOC(fp)->c_blocks += fp->ff_unallocblocks; - fp->ff_blocks += fp->ff_unallocblocks; - } - reqbytes -= actbytes; - } + loanedBlocks = fp->ff_unallocblocks; + retval = ExtendFileC(hfsmp, (FCB*)fp, 0, 0, + kEFAllMask | kEFNoClumpMask, &actbytes); if (retval) { - (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); - VTOC(ap->a_vp)->c_flag |= C_MODIFIED; + fp->ff_unallocblocks = loanedBlocks; + cp->c_blocks += loanedBlocks; + fp->ff_blocks += loanedBlocks; + + hfs_lock_mount (hfsmp); + hfsmp->loanedBlocks += loanedBlocks; + hfs_unlock_mount (hfsmp); + + hfs_systemfile_unlock(hfsmp, lockflags); + cp->c_flag |= C_MODIFIED; if (started_tr) { - tv = time; - VOP_UPDATE(ap->a_vp, &tv, &tv, 1); + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); + hfs_end_transaction(hfsmp); + started_tr = 0; } - return (retval); + goto exit; } } - retval = MacToVFSError( - MapFileBlockC (HFSTOVCB(hfsmp), - (FCB *)fp, - ap->a_size, - ap->a_foffset, - ap->a_bpn, - &bytesContAvail)); - - if (lockExtBtree) - (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); + retval = MapFileBlockC(hfsmp, (FCB *)fp, ap->a_size, ap->a_foffset, + ap->a_bpn, &bytesContAvail); + if (syslocks) { + hfs_systemfile_unlock(hfsmp, lockflags); + syslocks = 0; + } - // XXXdbg if (started_tr) { - tv = time; - retval = VOP_UPDATE(ap->a_vp, &tv, &tv, 1); - - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + hfs_end_transaction(hfsmp); started_tr = 0; - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - grabbed_lock = 0; - } - - if (retval == E_NONE) { - /* Adjust the mapping information for invalid file ranges: */ - overlaptype = rl_scan(&fp->ff_invalidranges, - ap->a_foffset, - ap->a_foffset + (off_t)bytesContAvail - 1, - &invalid_range); - if (overlaptype != RL_NOOVERLAP) { - switch(overlaptype) { - case RL_MATCHINGOVERLAP: - case RL_OVERLAPCONTAINSRANGE: - case RL_OVERLAPSTARTSBEFORE: - /* There's no valid block for this byte offset: */ - *ap->a_bpn = (daddr_t)-1; - - /* There's no point limiting the amount to be returned if the - invalid range that was hit extends all the way to the EOF - (i.e. there's no valid bytes between the end of this range - and the file's EOF): - */ - if ((fp->ff_size > (invalid_range->rl_end + 1)) && - (invalid_range->rl_end + 1 - ap->a_foffset < bytesContAvail)) { - bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; - }; - break; - - case RL_OVERLAPISCONTAINED: - case RL_OVERLAPENDSAFTER: - /* The range of interest hits an invalid block before the end: */ - if (invalid_range->rl_start == ap->a_foffset) { - /* There's actually no valid information to be had starting here: */ - *ap->a_bpn = (daddr_t)-1; - if ((fp->ff_size > (invalid_range->rl_end + 1)) && - (invalid_range->rl_end + 1 - ap->a_foffset < bytesContAvail)) { - bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; - }; - } else { - bytesContAvail = invalid_range->rl_start - ap->a_foffset; - }; - break; - }; - if (bytesContAvail > ap->a_size) bytesContAvail = ap->a_size; - }; - - if (ap->a_run) *ap->a_run = bytesContAvail; - }; + } + if (retval) { + /* On write, always return error because virtual blocks, if any, + * should have been allocated in ExtendFileC(). We do not + * allocate virtual blocks on read, therefore return error + * only if no virtual blocks are allocated. Otherwise we search + * rangelist for zero-fills + */ + if ((MacToVFSError(retval) != ERANGE) || + (ap->a_flags & VNODE_WRITE) || + ((ap->a_flags & VNODE_READ) && (fp->ff_unallocblocks == 0))) { + goto exit; + } + + /* Validate if the start offset is within logical file size */ + if (ap->a_foffset >= fp->ff_size) { + goto exit; + } - if (ap->a_poff) - *(int *)ap->a_poff = 0; + /* + * At this point, we have encountered a failure during + * MapFileBlockC that resulted in ERANGE, and we are not servicing + * a write, and there are borrowed blocks. + * + * However, the cluster layer will not call blockmap for + * blocks that are borrowed and in-cache. We have to assume that + * because we observed ERANGE being emitted from MapFileBlockC, this + * extent range is not valid on-disk. So we treat this as a + * mapping that needs to be zero-filled prior to reading. + * + * Note that under certain circumstances (such as non-contiguous + * userland VM mappings in the calling process), cluster_io + * may be forced to split a large I/O driven by hfs_vnop_write + * into multiple sub-I/Os that necessitate a RMW cycle. If this is + * the case here, then we have already removed the invalid range list + * mapping prior to getting to this blockmap call, so we should not + * search the invalid rangelist for this byte range. + */ - return (retval); -} + bytesContAvail = fp->ff_size - ap->a_foffset; + /* + * Clip the contiguous available bytes to, at most, the allowable + * maximum or the amount requested. + */ + if (bytesContAvail > ap->a_size) { + bytesContAvail = ap->a_size; + } -/* - * Read or write a buffer that is not contiguous on disk. We loop over - * each device block, copying to or from caller's buffer. - * - * We could be a bit more efficient by transferring as much data as is - * contiguous. But since this routine should rarely be called, and that - * would be more complicated; best to keep it simple. - */ -static int -hfs_strategy_fragmented(struct buf *bp) -{ - register struct vnode *vp = bp->b_vp; - register struct cnode *cp = VTOC(vp); - register struct vnode *devvp = cp->c_devvp; - caddr_t ioaddr; /* Address of fragment within bp */ - struct buf *frag = NULL; /* For reading or writing a single block */ - int retval = 0; - long remaining; /* Bytes (in bp) left to transfer */ - off_t offset; /* Logical offset of current fragment in vp */ - u_long block_size; /* Size of one device block (and one I/O) */ - - /* Make sure we redo this mapping for the next I/O */ - bp->b_blkno = bp->b_lblkno; - - /* Set up the logical position and number of bytes to read/write */ - offset = (off_t) bp->b_lblkno * (off_t) GetLogicalBlockSize(vp); - block_size = VTOHFS(vp)->hfs_phys_block_size; + *ap->a_bpn = (daddr64_t) -1; + retval = 0; + + goto exit; + } + + /* MapFileC() found a valid extent in the filefork. Search the + * mapping information further for invalid file ranges + */ + overlaptype = rl_scan(&fp->ff_invalidranges, ap->a_foffset, + ap->a_foffset + (off_t)bytesContAvail - 1, + &invalid_range); + if (overlaptype != RL_NOOVERLAP) { + switch(overlaptype) { + case RL_MATCHINGOVERLAP: + case RL_OVERLAPCONTAINSRANGE: + case RL_OVERLAPSTARTSBEFORE: + /* There's no valid block for this byte offset */ + *ap->a_bpn = (daddr64_t)-1; + /* There's no point limiting the amount to be returned + * if the invalid range that was hit extends all the way + * to the EOF (i.e. there's no valid bytes between the + * end of this range and the file's EOF): + */ + if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && + ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { + bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; + } + break; - /* Get an empty buffer to do the deblocking */ - frag = geteblk(block_size); - if (ISSET(bp->b_flags, B_READ)) - SET(frag->b_flags, B_READ); - - for (ioaddr = bp->b_data, remaining = bp->b_bcount; remaining != 0; - ioaddr += block_size, offset += block_size, - remaining -= block_size) { - frag->b_resid = frag->b_bcount; - CLR(frag->b_flags, B_DONE); - - /* Map the current position to a physical block number */ - retval = VOP_CMAP(vp, offset, block_size, &frag->b_lblkno, - NULL, NULL); - if (retval != 0) + case RL_OVERLAPISCONTAINED: + case RL_OVERLAPENDSAFTER: + /* The range of interest hits an invalid block before the end: */ + if (invalid_range->rl_start == ap->a_foffset) { + /* There's actually no valid information to be had starting here: */ + *ap->a_bpn = (daddr64_t)-1; + if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && + ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { + bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; + } + } else { + bytesContAvail = invalid_range->rl_start - ap->a_foffset; + } break; - /* - * Did we try to read a hole? - * (Should never happen for metadata!) - */ - if ((long)frag->b_lblkno == -1) { - bzero(ioaddr, block_size); - continue; - } - - /* If writing, copy before I/O */ - if (!ISSET(bp->b_flags, B_READ)) - bcopy(ioaddr, frag->b_data, block_size); - - /* Call the device to do the I/O and wait for it */ - frag->b_blkno = frag->b_lblkno; - frag->b_vp = devvp; /* Used to dispatch via VOP_STRATEGY */ - frag->b_dev = devvp->v_rdev; - retval = VOP_STRATEGY(frag); - frag->b_vp = NULL; - if (retval != 0) - break; - retval = biowait(frag); - if (retval != 0) + case RL_NOOVERLAP: break; + } /* end switch */ + if (bytesContAvail > ap->a_size) + bytesContAvail = ap->a_size; + } - /* If reading, copy after the I/O */ - if (ISSET(bp->b_flags, B_READ)) - bcopy(frag->b_data, ioaddr, block_size); +exit: + if (retval == 0) { + if (ap->a_run) + *ap->a_run = bytesContAvail; + + if (ap->a_poff) + *(int *)ap->a_poff = 0; } - - frag->b_vp = NULL; - // - // XXXdbg - in the case that this is a meta-data block, it won't affect - // the journal because this bp is for a physical disk block, - // not a logical block that is part of the catalog or extents - // files. - SET(frag->b_flags, B_INVAL); - brelse(frag); - - if ((bp->b_error = retval) != 0) - SET(bp->b_flags, B_ERROR); - - biodone(bp); /* This I/O is now complete */ - return retval; -} + if (tooklock) + hfs_unlock(cp); + + return (MacToVFSError(retval)); +} /* - * Calculate the logical to physical mapping if not done already, - * then call the device strategy routine. -# -#vop_strategy { -# IN struct buf *bp; - */ + * prepare and issue the I/O + * buf_strategy knows how to deal + * with requests that require + * fragmented I/Os + */ int -hfs_strategy(ap) - struct vop_strategy_args /* { - struct buf *a_bp; - } */ *ap; +hfs_vnop_strategy(struct vnop_strategy_args *ap) { - register struct buf *bp = ap->a_bp; - register struct vnode *vp = bp->b_vp; - register struct cnode *cp = VTOC(vp); - int retval = 0; - off_t offset; - size_t bytes_contig; + buf_t bp = ap->a_bp; + vnode_t vp = buf_vnode(bp); + int error = 0; - if ( !(bp->b_flags & B_VECTORLIST)) { - if (vp->v_type == VBLK || vp->v_type == VCHR) - panic("hfs_strategy: device vnode passed!"); - - if (bp->b_flags & B_PAGELIST) { - /* - * If we have a page list associated with this bp, - * then go through cluster_bp since it knows how to - * deal with a page request that might span non- - * contiguous physical blocks on the disk... - */ - retval = cluster_bp(bp); - vp = cp->c_devvp; - bp->b_dev = vp->v_rdev; + /* Mark buffer as containing static data if cnode flag set */ + if (VTOC(vp)->c_flag & C_SSD_STATIC) { + buf_markstatic(bp); + } + + /* Mark buffer as containing static data if cnode flag set */ + if (VTOC(vp)->c_flag & C_SSD_GREEDY_MODE) { + bufattr_markgreedymode(&bp->b_attr); + } - return (retval); - } + /* mark buffer as containing burst mode data if cnode flag set */ + if (VTOC(vp)->c_flag & C_IO_ISOCHRONOUS) { + bufattr_markisochronous(&bp->b_attr); + } + +#if CONFIG_PROTECT + cnode_t *cp = NULL; + + if ((!bufattr_rawencrypted(&bp->b_attr)) && + ((cp = cp_get_protected_cnode(vp)) != NULL)) { + /* + * We rely upon the truncate lock to protect the + * CP cache key from getting tossed prior to our IO finishing here. + * Nearly all cluster io calls to manipulate file payload from HFS + * take the truncate lock before calling into the cluster + * layer to ensure the file size does not change, or that they + * have exclusive right to change the EOF of the file. + * That same guarantee protects us here since the code that + * deals with CP lock events must now take the truncate lock + * before doing anything. + * + * There is 1 exception here: + * 1) One exception should be the VM swapfile IO, because HFS will + * funnel the VNOP_PAGEOUT directly into a cluster_pageout call for the + * swapfile code only without holding the truncate lock. This is because + * individual swapfiles are maintained at fixed-length sizes by the VM code. + * In non-swapfile IO we use PAGEOUT_V2 semantics which allow us to + * create our own UPL and thus take the truncate lock before calling + * into the cluster layer. In that case, however, we are not concerned + * with the CP blob being wiped out in the middle of the IO + * because there isn't anything to toss; the VM swapfile key stays + * in-core as long as the file is open. + */ + /* - * If we don't already know the filesystem relative block - * number then get it using VOP_BMAP(). If VOP_BMAP() - * returns the block number as -1 then we've got a hole in - * the file. Although HFS filesystems don't create files with - * holes, invalidating of subranges of the file (lazy zero - * filling) may create such a situation. + * Last chance: If this data protected I/O does not have unwrapped keys + * present, then try to get them. We already know that it should, by this point. */ - if (bp->b_blkno == bp->b_lblkno) { - offset = (off_t) bp->b_lblkno * - (off_t) GetLogicalBlockSize(vp); - - if ((retval = VOP_CMAP(vp, offset, bp->b_bcount, - &bp->b_blkno, &bytes_contig, NULL))) { - bp->b_error = retval; - bp->b_flags |= B_ERROR; - biodone(bp); - return (retval); - } - if (bytes_contig < bp->b_bcount) - { + if (cp->c_cpentry->cp_flags & (CP_KEY_FLUSHED | CP_NEEDS_KEYS)) { + int io_op = ( (buf_flags(bp) & B_READ) ? CP_READ_ACCESS : CP_WRITE_ACCESS); + if ((error = cp_handle_vnop(vp, io_op, 0)) != 0) { /* - * We were asked to read a block that wasn't - * contiguous, so we have to read each of the - * pieces and copy them into the buffer. - * Since ordinary file I/O goes through - * cluster_io (which won't ask us for - * discontiguous data), this is probably an - * attempt to read or write metadata. + * We have to be careful here. By this point in the I/O path, VM or the cluster + * engine has prepared a buf_t with the proper file offsets and all the rest, + * so simply erroring out will result in us leaking this particular buf_t. + * We need to properly decorate the buf_t just as buf_strategy would so as + * to make it appear that the I/O errored out with the particular error code. */ - return hfs_strategy_fragmented(bp); + buf_seterror (bp, error); + buf_biodone(bp); + return error; } - if ((long)bp->b_blkno == -1) - clrbuf(bp); - } - if ((long)bp->b_blkno == -1) { - biodone(bp); - return (0); } - if (bp->b_validend == 0) { - /* - * Record the exact size of the I/O transfer about to - * be made: - */ - bp->b_validend = bp->b_bcount; + + /* + *NB: + * For filesystem resize, we may not have access to the underlying + * file's cache key for whatever reason (device may be locked). However, + * we do not need it since we are going to use the temporary HFS-wide resize key + * which is generated once we start relocating file content. If this file's I/O + * should be done using the resize key, it will have been supplied already, so + * do not attach the file's cp blob to the buffer. + */ + if ((cp->c_cpentry->cp_flags & CP_RELOCATION_INFLIGHT) == 0) { + buf_setcpaddr(bp, cp->c_cpentry); } } - vp = cp->c_devvp; - bp->b_dev = vp->v_rdev; - - return VOCALL (vp->v_op, VOFFSET(vop_strategy), ap); +#endif /* CONFIG_PROTECT */ + + error = buf_strategy(VTOHFS(vp)->hfs_devvp, ap); + + return error; } +static int +hfs_minorupdate(struct vnode *vp) { + struct cnode *cp = VTOC(vp); + cp->c_flag &= ~C_MODIFIED; + cp->c_touch_acctime = 0; + cp->c_touch_chgtime = 0; + cp->c_touch_modtime = 0; + + return 0; +} -static int do_hfs_truncate(ap) - struct vop_truncate_args /* { - struct vnode *a_vp; - off_t a_length; - int a_flags; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; +int +do_hfs_truncate(struct vnode *vp, off_t length, int flags, int truncateflags, vfs_context_t context) { - register struct vnode *vp = ap->a_vp; register struct cnode *cp = VTOC(vp); struct filefork *fp = VTOF(vp); - off_t length; - long vflags; - struct timeval tv; + kauth_cred_t cred = vfs_context_ucred(context); int retval; off_t bytesToAdd; off_t actualBytesAdded; off_t filebytes; - u_long fileblocks; + u_int32_t fileblocks; int blksize; struct hfsmount *hfsmp; + int lockflags; + int skipupdate = (truncateflags & HFS_TRUNCATE_SKIPUPDATE); + int suppress_times = (truncateflags & HFS_TRUNCATE_SKIPTIMES); - if (vp->v_type != VREG && vp->v_type != VLNK) - return (EISDIR); /* cannot truncate an HFS directory! */ - - length = ap->a_length; blksize = VTOVCB(vp)->blockSize; fileblocks = fp->ff_blocks; filebytes = (off_t)fileblocks * (off_t)blksize; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_START, + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_START, (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); if (length < 0) return (EINVAL); + /* This should only happen with a corrupt filesystem */ + if ((off_t)fp->ff_size < 0) + return (EINVAL); + if ((!ISHFSPLUS(VTOVCB(vp))) && (length > (off_t)MAXHFSFILESIZE)) return (EFBIG); hfsmp = VTOHFS(vp); - tv = time; retval = E_NONE; /* Files that are changing size are not hot file candidates. */ @@ -1405,7 +3344,7 @@ static int do_hfs_truncate(ap) * since there may be extra physical blocks that also need truncation. */ #if QUOTA - if (retval = hfs_getinoquota(cp)) + if ((retval = hfs_getinoquota(cp))) return(retval); #endif /* QUOTA */ @@ -1414,10 +3353,10 @@ static int do_hfs_truncate(ap) * last byte of the file is allocated. Since the smallest * value of ff_size is 0, length will be at least 1. */ - if (length > fp->ff_size) { + if (length > (off_t)fp->ff_size) { #if QUOTA retval = hfs_chkdq(cp, (int64_t)(roundup(length - filebytes, blksize)), - ap->a_cred, 0); + cred, 0); if (retval) goto Err_Exit; #endif /* QUOTA */ @@ -1427,13 +3366,14 @@ static int do_hfs_truncate(ap) */ if (length > filebytes) { int eflags; - u_long blockHint = 0; + u_int32_t blockHint = 0; /* All or nothing and don't round up to clumpsize. */ eflags = kEFAllMask | kEFNoClumpMask; - if (ap->a_cred && suser(ap->a_cred, NULL) != 0) + if (cred && (suser(cred, NULL) != 0)) { eflags |= kEFReserveMask; /* keep a reserve */ + } /* * Allocate Journal and Quota files in metadata zone. @@ -1444,26 +3384,21 @@ static int do_hfs_truncate(ap) eflags |= kEFMetadataMask; blockHint = hfsmp->hfs_metazone_start; } - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto Err_Exit; } - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - - goto Err_Exit; - } + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + /* + * Keep growing the file as long as the current EOF is + * less than the desired value. + */ while ((length > filebytes) && (retval == E_NONE)) { bytesToAdd = length - filebytes; retval = MacToVFSError(ExtendFileC(VTOVCB(vp), @@ -1481,35 +3416,42 @@ static int do_hfs_truncate(ap) } } /* endwhile */ - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); + hfs_systemfile_unlock(hfsmp, lockflags); - // XXXdbg if (hfsmp->jnl) { - tv = time; - VOP_UPDATE(vp, &tv, &tv, 1); + if (skipupdate) { + (void) hfs_minorupdate(vp); + } + else { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + } + } - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); + hfs_end_transaction(hfsmp); if (retval) goto Err_Exit; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE, + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE, (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); } - if (!(ap->a_flags & IO_NOZEROFILL)) { - if (UBCINFOEXISTS(vp) && retval == E_NONE) { + if (ISSET(flags, IO_NOZEROFILL)) { + // An optimisation for the hibernation file + if (vnode_isswap(vp)) + rl_remove_all(&fp->ff_invalidranges); + } else { + if (UBCINFOEXISTS(vp) && (vnode_issystem(vp) == 0) && retval == E_NONE) { struct rl_entry *invalid_range; - int devBlockSize; off_t zero_limit; zero_limit = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; if (length < zero_limit) zero_limit = length; - if (length > fp->ff_size) { + if (length > (off_t)fp->ff_size) { + struct timeval tv; + /* Extending the file: time to fill out the current last page w. zeroes? */ if ((fp->ff_size & PAGE_MASK_64) && (rl_scan(&fp->ff_invalidranges, fp->ff_size & ~PAGE_MASK_64, @@ -1519,292 +3461,545 @@ static int do_hfs_truncate(ap) of the file, so zero out the remainder of that page to ensure the entire page contains valid data. Since there is no invalid range possible past the (current) eof, there's no need to remove anything - from the invalid range list before calling cluster_write(): */ - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); + from the invalid range list before calling cluster_write(): */ + hfs_unlock(cp); retval = cluster_write(vp, (struct uio *) 0, fp->ff_size, zero_limit, - fp->ff_size, (off_t)0, devBlockSize, - (ap->a_flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY); + fp->ff_size, (off_t)0, + (flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY); + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); if (retval) goto Err_Exit; /* Merely invalidate the remaining area, if necessary: */ if (length > zero_limit) { + microuptime(&tv); rl_add(zero_limit, length - 1, &fp->ff_invalidranges); - cp->c_zftimeout = time.tv_sec + ZFTIMELIMIT; + cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; } } else { /* The page containing the (current) eof is invalid: just add the remainder of the page to the invalid list, along with the area being newly allocated: */ + microuptime(&tv); rl_add(fp->ff_size, length - 1, &fp->ff_invalidranges); - cp->c_zftimeout = time.tv_sec + ZFTIMELIMIT; + cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; }; } } else { panic("hfs_truncate: invoked on non-UBC object?!"); }; } - cp->c_flag |= C_UPDATE; + if (suppress_times == 0) { + cp->c_touch_modtime = TRUE; + } fp->ff_size = length; - if (UBCISVALID(vp)) - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ - } else { /* Shorten the size of the file */ - if (fp->ff_size > length) { - /* - * Any buffers that are past the truncation point need to be - * invalidated (to maintain buffer cache consistency). For - * simplicity, we invalidate all the buffers by calling vinvalbuf. - */ - if (UBCISVALID(vp)) - ubc_setsize(vp, length); /* XXX check errors */ - - vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA; - retval = vinvalbuf(vp, vflags, ap->a_cred, ap->a_p, 0, 0); - + // An optimisation for the hibernation file + if (ISSET(flags, IO_NOZEROFILL) && vnode_isswap(vp)) { + rl_remove_all(&fp->ff_invalidranges); + } else if ((off_t)fp->ff_size > length) { /* Any space previously marked as invalid is now irrelevant: */ rl_remove(length, fp->ff_size - 1, &fp->ff_invalidranges); } - /* - * Account for any unmapped blocks. Note that the new - * file length can still end up with unmapped blocks. - */ - if (fp->ff_unallocblocks > 0) { - u_int32_t finalblks; + /* + * Account for any unmapped blocks. Note that the new + * file length can still end up with unmapped blocks. + */ + if (fp->ff_unallocblocks > 0) { + u_int32_t finalblks; + u_int32_t loanedBlocks; + + hfs_lock_mount(hfsmp); + loanedBlocks = fp->ff_unallocblocks; + cp->c_blocks -= loanedBlocks; + fp->ff_blocks -= loanedBlocks; + fp->ff_unallocblocks = 0; + + hfsmp->loanedBlocks -= loanedBlocks; + + finalblks = (length + blksize - 1) / blksize; + if (finalblks > fp->ff_blocks) { + /* calculate required unmapped blocks */ + loanedBlocks = finalblks - fp->ff_blocks; + hfsmp->loanedBlocks += loanedBlocks; + + fp->ff_unallocblocks = loanedBlocks; + cp->c_blocks += loanedBlocks; + fp->ff_blocks += loanedBlocks; + } + hfs_unlock_mount (hfsmp); + } + +#if QUOTA + off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize); +#endif /* QUOTA */ + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto Err_Exit; + } + + if (fp->ff_unallocblocks == 0) { + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + retval = MacToVFSError(TruncateFileC(VTOVCB(vp), (FCB*)fp, length, 0, + FORK_IS_RSRC (fp), FTOC(fp)->c_fileid, false)); + + hfs_systemfile_unlock(hfsmp, lockflags); + } + if (hfsmp->jnl) { + if (retval == 0) { + fp->ff_size = length; + } + if (skipupdate) { + (void) hfs_minorupdate(vp); + } + else { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + } + } + hfs_end_transaction(hfsmp); + + filebytes = (off_t)fp->ff_blocks * (off_t)blksize; + if (retval) + goto Err_Exit; +#if QUOTA + /* These are bytesreleased */ + (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0); +#endif /* QUOTA */ + + /* + * Only set update flag if the logical length changes & we aren't + * suppressing modtime updates. + */ + if (((off_t)fp->ff_size != length) && (suppress_times == 0)) { + cp->c_touch_modtime = TRUE; + } + fp->ff_size = length; + } + if (cp->c_mode & (S_ISUID | S_ISGID)) { + if (!vfs_context_issuser(context)) { + cp->c_mode &= ~(S_ISUID | S_ISGID); + skipupdate = 0; + } + } + if (skipupdate) { + retval = hfs_minorupdate(vp); + } + else { + cp->c_touch_chgtime = TRUE; /* status changed */ + if (suppress_times == 0) { + cp->c_touch_modtime = TRUE; /* file data was modified */ + + /* + * If we are not suppressing the modtime update, then + * update the gen count as well. + */ + if (S_ISREG(cp->c_attr.ca_mode) || S_ISLNK (cp->c_attr.ca_mode)) { + hfs_incr_gencount(cp); + } + } + + retval = hfs_update(vp, MNT_WAIT); + } + if (retval) { + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE, + -1, -1, -1, retval, 0); + } + +Err_Exit: + + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_END, + (int)length, (int)fp->ff_size, (int)filebytes, retval, 0); + + return (retval); +} + +/* + * Preparation which must be done prior to deleting the catalog record + * of a file or directory. In order to make the on-disk as safe as possible, + * we remove the catalog entry before releasing the bitmap blocks and the + * overflow extent records. However, some work must be done prior to deleting + * the catalog record. + * + * When calling this function, the cnode must exist both in memory and on-disk. + * If there are both resource fork and data fork vnodes, this function should + * be called on both. + */ + +int +hfs_prepare_release_storage (struct hfsmount *hfsmp, struct vnode *vp) { + + struct filefork *fp = VTOF(vp); + struct cnode *cp = VTOC(vp); +#if QUOTA + int retval = 0; +#endif /* QUOTA */ + + /* Cannot truncate an HFS directory! */ + if (vnode_isdir(vp)) { + return (EISDIR); + } + + /* + * See the comment below in hfs_truncate for why we need to call + * setsize here. Essentially we want to avoid pending IO if we + * already know that the blocks are going to be released here. + * This function is only called when totally removing all storage for a file, so + * we can take a shortcut and immediately setsize (0); + */ + ubc_setsize(vp, 0); + + /* This should only happen with a corrupt filesystem */ + if ((off_t)fp->ff_size < 0) + return (EINVAL); + + /* + * We cannot just check if fp->ff_size == length (as an optimization) + * since there may be extra physical blocks that also need truncation. + */ +#if QUOTA + if ((retval = hfs_getinoquota(cp))) { + return(retval); + } +#endif /* QUOTA */ + + /* Wipe out any invalid ranges which have yet to be backed by disk */ + rl_remove(0, fp->ff_size - 1, &fp->ff_invalidranges); + + /* + * Account for any unmapped blocks. Since we're deleting the + * entire file, we don't have to worry about just shrinking + * to a smaller number of borrowed blocks. + */ + if (fp->ff_unallocblocks > 0) { + u_int32_t loanedBlocks; + + hfs_lock_mount (hfsmp); + loanedBlocks = fp->ff_unallocblocks; + cp->c_blocks -= loanedBlocks; + fp->ff_blocks -= loanedBlocks; + fp->ff_unallocblocks = 0; + + hfsmp->loanedBlocks -= loanedBlocks; + + hfs_unlock_mount (hfsmp); + } + + return 0; +} + - /* lock extents b-tree */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, - LK_EXCLUSIVE, ap->a_p); - if (retval) - goto Err_Exit; +/* + * Special wrapper around calling TruncateFileC. This function is useable + * even when the catalog record does not exist any longer, making it ideal + * for use when deleting a file. The simplification here is that we know + * that we are releasing all blocks. + * + * Note that this function may be called when there is no vnode backing + * the file fork in question. We may call this from hfs_vnop_inactive + * to clear out resource fork data (and may not want to clear out the data + * fork yet). As a result, we pointer-check both sets of inputs before + * doing anything with them. + * + * The caller is responsible for saving off a copy of the filefork(s) + * embedded within the cnode prior to calling this function. The pointers + * supplied as arguments must be valid even if the cnode is no longer valid. + */ - VTOVCB(vp)->loanedBlocks -= fp->ff_unallocblocks; - cp->c_blocks -= fp->ff_unallocblocks; - fp->ff_blocks -= fp->ff_unallocblocks; - fp->ff_unallocblocks = 0; +int +hfs_release_storage (struct hfsmount *hfsmp, struct filefork *datafork, + struct filefork *rsrcfork, u_int32_t fileid) { + + off_t filebytes; + u_int32_t fileblocks; + int blksize = 0; + int error = 0; + int lockflags; + + blksize = hfsmp->blockSize; + + /* Data Fork */ + if (datafork) { + datafork->ff_size = 0; - finalblks = (length + blksize - 1) / blksize; - if (finalblks > fp->ff_blocks) { - /* calculate required unmapped blocks */ - fp->ff_unallocblocks = finalblks - fp->ff_blocks; - VTOVCB(vp)->loanedBlocks += fp->ff_unallocblocks; - cp->c_blocks += fp->ff_unallocblocks; - fp->ff_blocks += fp->ff_unallocblocks; + fileblocks = datafork->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)blksize; + + /* We killed invalid ranges and loaned blocks before we removed the catalog entry */ + + while (filebytes > 0) { + if (filebytes > HFS_BIGFILE_SIZE) { + filebytes -= HFS_BIGFILE_SIZE; + } else { + filebytes = 0; + } + + /* Start a transaction, and wipe out as many blocks as we can in this iteration */ + if (hfs_start_transaction(hfsmp) != 0) { + error = EINVAL; + break; + } + + if (datafork->ff_unallocblocks == 0) { + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(datafork)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), datafork, filebytes, 1, 0, fileid, false)); + + hfs_systemfile_unlock(hfsmp, lockflags); + } + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + + /* Finish the transaction and start over if necessary */ + hfs_end_transaction(hfsmp); + + if (error) { + break; } - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, - LK_RELEASE, ap->a_p); } + } + + /* Resource fork */ + if (error == 0 && rsrcfork) { + rsrcfork->ff_size = 0; - /* - * For a TBE process the deallocation of the file blocks is - * delayed until the file is closed. And hfs_close calls - * truncate with the IO_NDELAY flag set. So when IO_NDELAY - * isn't set, we make sure this isn't a TBE process. - */ - if ((ap->a_flags & IO_NDELAY) || (!ISSET(ap->a_p->p_flag, P_TBE))) { -#if QUOTA - off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize); -#endif /* QUOTA */ - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } + fileblocks = rsrcfork->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)blksize; + + /* We killed invalid ranges and loaned blocks before we removed the catalog entry */ + + while (filebytes > 0) { + if (filebytes > HFS_BIGFILE_SIZE) { + filebytes -= HFS_BIGFILE_SIZE; + } else { + filebytes = 0; } - - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - goto Err_Exit; + + /* Start a transaction, and wipe out as many blocks as we can in this iteration */ + if (hfs_start_transaction(hfsmp) != 0) { + error = EINVAL; + break; } - if (fp->ff_unallocblocks == 0) - retval = MacToVFSError(TruncateFileC(VTOVCB(vp), - (FCB*)fp, length, false)); - - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); - - // XXXdbg - if (hfsmp->jnl) { - tv = time; - VOP_UPDATE(vp, &tv, &tv, 1); - - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); + if (rsrcfork->ff_unallocblocks == 0) { + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(rsrcfork)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), rsrcfork, filebytes, 1, 1, fileid, false)); + + hfs_systemfile_unlock(hfsmp, lockflags); + } + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + + /* Finish the transaction and start over if necessary */ + hfs_end_transaction(hfsmp); + + if (error) { + break; } - hfs_global_shared_lock_release(hfsmp); - - filebytes = (off_t)fp->ff_blocks * (off_t)blksize; - if (retval) - goto Err_Exit; -#if QUOTA - /* These are bytesreleased */ - (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0); -#endif /* QUOTA */ } - /* Only set update flag if the logical length changes */ - if (fp->ff_size != length) - cp->c_flag |= C_UPDATE; - fp->ff_size = length; - } - cp->c_flag |= C_CHANGE; - retval = VOP_UPDATE(vp, &tv, &tv, MNT_WAIT); - if (retval) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE, - -1, -1, -1, retval, 0); } + + return error; +} -Err_Exit: +errno_t hfs_ubc_setsize(vnode_t vp, off_t len, bool have_cnode_lock) +{ + errno_t error; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_END, - (int)length, (int)fp->ff_size, (int)filebytes, retval, 0); + /* + * Call ubc_setsize to give the VM subsystem a chance to do + * whatever it needs to with existing pages before we delete + * blocks. Note that symlinks don't use the UBC so we'll + * get back ENOENT in that case. + */ + if (have_cnode_lock) { + error = ubc_setsize_ex(vp, len, UBC_SETSIZE_NO_FS_REENTRY); + if (error == EAGAIN) { + cnode_t *cp = VTOC(vp); + + if (cp->c_truncatelockowner != current_thread()) { +#if DEVELOPMENT || DEBUG + panic("hfs: hfs_ubc_setsize called without exclusive truncate lock!"); +#else + printf("hfs: hfs_ubc_setsize called without exclusive truncate lock!\n"); +#endif + } - return (retval); -} + hfs_unlock(cp); + error = ubc_setsize_ex(vp, len, 0); + hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK); + } + } else + error = ubc_setsize_ex(vp, len, 0); + return error == ENOENT ? 0 : error; +} /* -# -#% truncate vp L L L -# -vop_truncate { - IN struct vnode *vp; - IN off_t length; - IN int flags; (IO_SYNC) - IN struct ucred *cred; - IN struct proc *p; -}; * Truncate a cnode to at most length size, freeing (or adding) the * disk blocks. */ -int hfs_truncate(ap) - struct vop_truncate_args /* { - struct vnode *a_vp; - off_t a_length; - int a_flags; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; +int +hfs_truncate(struct vnode *vp, off_t length, int flags, + int truncateflags, vfs_context_t context) { - register struct vnode *vp = ap->a_vp; - register struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - off_t length; + struct filefork *fp = VTOF(vp); off_t filebytes; - u_long fileblocks; - int blksize, error; - u_int64_t nsize; + u_int32_t fileblocks; + int blksize; + errno_t error = 0; + struct cnode *cp = VTOC(vp); - if (vp->v_type != VREG && vp->v_type != VLNK) - return (EISDIR); /* cannot truncate an HFS directory! */ + /* Cannot truncate an HFS directory! */ + if (vnode_isdir(vp)) { + return (EISDIR); + } + /* A swap file cannot change size. */ + if (vnode_isswap(vp) && length && !ISSET(flags, IO_NOAUTH)) { + return (EPERM); + } - length = ap->a_length; blksize = VTOVCB(vp)->blockSize; fileblocks = fp->ff_blocks; filebytes = (off_t)fileblocks * (off_t)blksize; + bool caller_has_cnode_lock = (cp->c_lockowner == current_thread()); + + error = hfs_ubc_setsize(vp, length, caller_has_cnode_lock); + if (error) + return error; + + if (!caller_has_cnode_lock) { + error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error) + return error; + } + // have to loop truncating or growing files that are // really big because otherwise transactions can get // enormous and consume too many kernel resources. - if (length < filebytes && (filebytes - length) > HFS_BIGFILE_SIZE) { - while (filebytes > length) { - if ((filebytes - length) > HFS_BIGFILE_SIZE) { - filebytes -= HFS_BIGFILE_SIZE; - } else { - filebytes = length; - } - ap->a_length = filebytes; - error = do_hfs_truncate(ap); - if (error) - break; - } - } else if (length > filebytes && (length - filebytes) > HFS_BIGFILE_SIZE) { - while (filebytes < length) { - if ((length - filebytes) > HFS_BIGFILE_SIZE) { - filebytes += HFS_BIGFILE_SIZE; - } else { - filebytes = (length - filebytes); + if (length < filebytes) { + while (filebytes > length) { + if ((filebytes - length) > HFS_BIGFILE_SIZE) { + filebytes -= HFS_BIGFILE_SIZE; + } else { + filebytes = length; + } + cp->c_flag |= C_FORCEUPDATE; + error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context); + if (error) + break; + } + } else if (length > filebytes) { + while (filebytes < length) { + if ((length - filebytes) > HFS_BIGFILE_SIZE) { + filebytes += HFS_BIGFILE_SIZE; + } else { + filebytes = length; + } + cp->c_flag |= C_FORCEUPDATE; + error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context); + if (error) + break; } + } else /* Same logical size */ { - ap->a_length = filebytes; - error = do_hfs_truncate(ap); - if (error) - break; - } - } else { - error = do_hfs_truncate(ap); + error = do_hfs_truncate(vp, length, flags, truncateflags, context); } + /* Files that are changing size are not hot file candidates. */ + if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } + + if (!caller_has_cnode_lock) + hfs_unlock(cp); + + // Make sure UBC's size matches up (in case we didn't completely succeed) + errno_t err2 = hfs_ubc_setsize(vp, fp->ff_size, caller_has_cnode_lock); + if (!error) + error = err2; return error; } - /* -# -#% allocate vp L L L -# -vop_allocate { - IN struct vnode *vp; - IN off_t length; - IN int flags; - OUT off_t *bytesallocated; - IN off_t offset; - IN struct ucred *cred; - IN struct proc *p; -}; - * allocate a cnode to at most length size + * Preallocate file storage space. */ -int hfs_allocate(ap) - struct vop_allocate_args /* { - struct vnode *a_vp; +int +hfs_vnop_allocate(struct vnop_allocate_args /* { + vnode_t a_vp; off_t a_length; u_int32_t a_flags; off_t *a_bytesallocated; off_t a_offset; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; + vfs_context_t a_context; + } */ *ap) { struct vnode *vp = ap->a_vp; - struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - ExtendedVCB *vcb = VTOVCB(vp); + struct cnode *cp; + struct filefork *fp; + ExtendedVCB *vcb; off_t length = ap->a_length; off_t startingPEOF; off_t moreBytesRequested; off_t actualBytesAdded; off_t filebytes; - u_long fileblocks; - long vflags; - struct timeval tv; + u_int32_t fileblocks; int retval, retval2; - UInt32 blockHint; - UInt32 extendFlags; /* For call to ExtendFileC */ + u_int32_t blockHint; + u_int32_t extendFlags; /* For call to ExtendFileC */ struct hfsmount *hfsmp; + kauth_cred_t cred = vfs_context_ucred(ap->a_context); + int lockflags; + time_t orig_ctime; + + *(ap->a_bytesallocated) = 0; + + if (!vnode_isreg(vp)) + return (EISDIR); + if (length < (off_t)0) + return (EINVAL); + + cp = VTOC(vp); + + orig_ctime = VTOC(vp)->c_ctime; + + check_for_tracked_file(vp, orig_ctime, ap->a_length == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL); + + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + goto Err_Exit; + } + + fp = VTOF(vp); hfsmp = VTOHFS(vp); + vcb = VTOVCB(vp); - *(ap->a_bytesallocated) = 0; fileblocks = fp->ff_blocks; filebytes = (off_t)fileblocks * (off_t)vcb->blockSize; - if (length < (off_t)0) - return (EINVAL); - if (vp->v_type != VREG) - return (EISDIR); - if ((ap->a_flags & ALLOCATEFROMVOL) && (length < filebytes)) - return (EINVAL); + if ((ap->a_flags & ALLOCATEFROMVOL) && (length < filebytes)) { + retval = EINVAL; + goto Err_Exit; + } /* Fill in the flags word for the call to Extend the file */ @@ -1813,10 +4008,11 @@ int hfs_allocate(ap) extendFlags |= kEFContigMask; if (ap->a_flags & ALLOCATEALL) extendFlags |= kEFAllMask; - if (ap->a_cred && suser(ap->a_cred, NULL) != 0) + if (cred && suser(cred, NULL) != 0) extendFlags |= kEFReserveMask; + if (hfs_virtualmetafile(cp)) + extendFlags |= kEFMetadataMask; - tv = time; retval = E_NONE; blockHint = 0; startingPEOF = filebytes; @@ -1836,14 +4032,16 @@ int hfs_allocate(ap) * value of filebytes is 0, length will be at least 1. */ if (length > filebytes) { - moreBytesRequested = length - filebytes; + off_t total_bytes_added = 0, orig_request_size; + + orig_request_size = moreBytesRequested = length - filebytes; #if QUOTA retval = hfs_chkdq(cp, (int64_t)(roundup(moreBytesRequested, vcb->blockSize)), - ap->a_cred, 0); + cred, 0); if (retval) - return (retval); + goto Err_Exit; #endif /* QUOTA */ /* @@ -1854,7 +4052,6 @@ int hfs_allocate(ap) * Allocate Journal and Quota files in metadata zone. */ if (hfs_virtualmetafile(cp)) { - extendFlags |= kEFMetadataMask; blockHint = hfsmp->hfs_metazone_start; } else if ((blockHint >= hfsmp->hfs_metazone_start) && (blockHint <= hfsmp->hfs_metazone_end)) { @@ -1865,50 +4062,64 @@ int hfs_allocate(ap) } } - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } - } - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); + while ((length > filebytes) && (retval == E_NONE)) { + off_t bytesRequested; + + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; goto Err_Exit; - } + } + + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + if (moreBytesRequested >= HFS_BIGFILE_SIZE) { + bytesRequested = HFS_BIGFILE_SIZE; + } else { + bytesRequested = moreBytesRequested; + } + + if (extendFlags & kEFContigMask) { + // if we're on a sparse device, this will force it to do a + // full scan to find the space needed. + hfsmp->hfs_flags &= ~HFS_DID_CONTIG_SCAN; + } - retval = MacToVFSError(ExtendFileC(vcb, + retval = MacToVFSError(ExtendFileC(vcb, (FCB*)fp, - moreBytesRequested, + bytesRequested, blockHint, extendFlags, &actualBytesAdded)); - *(ap->a_bytesallocated) = actualBytesAdded; - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; - - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); + if (retval == E_NONE) { + *(ap->a_bytesallocated) += actualBytesAdded; + total_bytes_added += actualBytesAdded; + moreBytesRequested -= actualBytesAdded; + if (blockHint != 0) { + blockHint += actualBytesAdded / vcb->blockSize; + } + } + filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + + hfs_systemfile_unlock(hfsmp, lockflags); - // XXXdbg - if (hfsmp->jnl) { - tv = time; - VOP_UPDATE(vp, &tv, &tv, 1); + if (hfsmp->jnl) { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + } - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); + hfs_end_transaction(hfsmp); } - hfs_global_shared_lock_release(hfsmp); + /* * if we get an error and no changes were made then exit - * otherwise we must do the VOP_UPDATE to reflect the changes + * otherwise we must do the hfs_update to reflect the changes */ if (retval && (startingPEOF == filebytes)) goto Err_Exit; @@ -1920,242 +4131,780 @@ int hfs_allocate(ap) * until the file is closed, when we truncate the file to allocation * block size. */ - if ((actualBytesAdded != 0) && (moreBytesRequested < actualBytesAdded)) + if (total_bytes_added != 0 && orig_request_size < total_bytes_added) *(ap->a_bytesallocated) = - roundup(moreBytesRequested, (off_t)vcb->blockSize); + roundup(orig_request_size, (off_t)vcb->blockSize); } else { /* Shorten the size of the file */ - if (fp->ff_size > length) { - /* - * Any buffers that are past the truncation point need to be - * invalidated (to maintain buffer cache consistency). For - * simplicity, we invalidate all the buffers by calling vinvalbuf. - */ - vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA; - (void) vinvalbuf(vp, vflags, ap->a_cred, ap->a_p, 0, 0); + /* + * N.B. At present, this code is never called. If and when we + * do start using it, it looks like there might be slightly + * strange semantics with the file size: it's possible for the + * file size to *increase* e.g. if current file size is 5, + * length is 1024 and filebytes is 4096, the file size will + * end up being 1024 bytes. This isn't necessarily a problem + * but it's not consistent with the code above which doesn't + * change the file size. + */ + + retval = hfs_truncate(vp, length, 0, 0, ap->a_context); + filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + + /* + * if we get an error and no changes were made then exit + * otherwise we must do the hfs_update to reflect the changes + */ + if (retval && (startingPEOF == filebytes)) goto Err_Exit; +#if QUOTA + /* These are bytesreleased */ + (void) hfs_chkdq(cp, (int64_t)-((startingPEOF - filebytes)), NOCRED,0); +#endif /* QUOTA */ + + if (fp->ff_size > filebytes) { + fp->ff_size = filebytes; + + hfs_ubc_setsize(vp, fp->ff_size, true); } + } - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } +Std_Exit: + cp->c_touch_chgtime = TRUE; + cp->c_touch_modtime = TRUE; + retval2 = hfs_update(vp, MNT_WAIT); + + if (retval == 0) + retval = retval2; +Err_Exit: + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + hfs_unlock(cp); + return (retval); +} + + +/* + * Pagein for HFS filesystem + */ +int +hfs_vnop_pagein(struct vnop_pagein_args *ap) +/* + struct vnop_pagein_args { + vnode_t a_vp, + upl_t a_pl, + vm_offset_t a_pl_offset, + off_t a_f_offset, + size_t a_size, + int a_flags + vfs_context_t a_context; + }; +*/ +{ + vnode_t vp; + struct cnode *cp; + struct filefork *fp; + int error = 0; + upl_t upl; + upl_page_info_t *pl; + off_t f_offset; + off_t page_needed_f_offset; + int offset; + int isize; + int upl_size; + int pg_index; + boolean_t truncate_lock_held = FALSE; + boolean_t file_converted = FALSE; + kern_return_t kret; + + vp = ap->a_vp; + cp = VTOC(vp); + fp = VTOF(vp); + +#if CONFIG_PROTECT + if ((error = cp_handle_vnop(vp, CP_READ_ACCESS | CP_WRITE_ACCESS, 0)) != 0) { + /* + * If we errored here, then this means that one of two things occurred: + * 1. there was a problem with the decryption of the key. + * 2. the device is locked and we are not allowed to access this particular file. + * + * Either way, this means that we need to shut down this upl now. As long as + * the pl pointer is NULL (meaning that we're supposed to create the UPL ourselves) + * then we create a upl and immediately abort it. + */ + if (ap->a_pl == NULL) { + /* create the upl */ + ubc_create_upl (vp, ap->a_f_offset, ap->a_size, &upl, &pl, + UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT); + /* mark the range as needed so it doesn't immediately get discarded upon abort */ + ubc_upl_range_needed (upl, ap->a_pl_offset / PAGE_SIZE, 1); + + /* Abort the range */ + ubc_upl_abort_range (upl, 0, ap->a_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); } - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); + + return error; + } +#endif /* CONFIG_PROTECT */ - goto Err_Exit; - } + if (ap->a_pl != NULL) { + /* + * this can only happen for swap files now that + * we're asking for V2 paging behavior... + * so don't need to worry about decompression, or + * keeping track of blocks read or taking the truncate lock + */ + error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, + ap->a_size, (off_t)fp->ff_size, ap->a_flags); + goto pagein_done; + } + + page_needed_f_offset = ap->a_f_offset + ap->a_pl_offset; + +retry_pagein: + /* + * take truncate lock (shared/recursive) to guard against + * zero-fill thru fsync interfering, but only for v2 + * + * the HFS_RECURSE_TRUNCLOCK arg indicates that we want the + * lock shared and we are allowed to recurse 1 level if this thread already + * owns the lock exclusively... this can legally occur + * if we are doing a shrinking ftruncate against a file + * that is mapped private, and the pages being truncated + * do not currently exist in the cache... in that case + * we will have to page-in the missing pages in order + * to provide them to the private mapping... we must + * also call hfs_unlock_truncate with a postive been_recursed + * arg to indicate that if we have recursed, there is no need to drop + * the lock. Allowing this simple recursion is necessary + * in order to avoid a certain deadlock... since the ftruncate + * already holds the truncate lock exclusively, if we try + * to acquire it shared to protect the pagein path, we will + * hang this thread + * + * NOTE: The if () block below is a workaround in order to prevent a + * VM deadlock. See rdar://7853471. + * + * If we are in a forced unmount, then launchd will still have the + * dyld_shared_cache file mapped as it is trying to reboot. If we + * take the truncate lock here to service a page fault, then our + * thread could deadlock with the forced-unmount. The forced unmount + * thread will try to reclaim the dyld_shared_cache vnode, but since it's + * marked C_DELETED, it will call ubc_setsize(0). As a result, the unmount + * thread will think it needs to copy all of the data out of the file + * and into a VM copy object. If we hold the cnode lock here, then that + * VM operation will not be able to proceed, because we'll set a busy page + * before attempting to grab the lock. Note that this isn't as simple as "don't + * call ubc_setsize" because doing that would just shift the problem to the + * ubc_msync done before the vnode is reclaimed. + * + * So, if a forced unmount on this volume is in flight AND the cnode is + * marked C_DELETED, then just go ahead and do the page in without taking + * the lock (thus suspending pagein_v2 semantics temporarily). Since it's on a file + * that is not going to be available on the next mount, this seems like a + * OK solution from a correctness point of view, even though it is hacky. + */ + if (vfs_isforce(vp->v_mount)) { + if (cp->c_flag & C_DELETED) { + /* If we don't get it, then just go ahead and operate without the lock */ + truncate_lock_held = hfs_try_trunclock(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); + } + } + else { + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); + truncate_lock_held = TRUE; + } + + kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT); + + if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) { + error = EINVAL; + goto pagein_done; + } + ubc_upl_range_needed(upl, ap->a_pl_offset / PAGE_SIZE, 1); + + upl_size = isize = ap->a_size; + + /* + * Scan from the back to find the last page in the UPL, so that we + * aren't looking at a UPL that may have already been freed by the + * preceding aborts/completions. + */ + for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { + if (upl_page_present(pl, --pg_index)) + break; + if (pg_index == 0) { + /* + * no absent pages were found in the range specified + * just abort the UPL to get rid of it and then we're done + */ + ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); + goto pagein_done; + } + } + /* + * initialize the offset variables before we touch the UPL. + * f_offset is the position into the file, in bytes + * offset is the position into the UPL, in bytes + * pg_index is the pg# of the UPL we're operating on + * isize is the offset into the UPL of the last page that is present. + */ + isize = ((pg_index + 1) * PAGE_SIZE); + pg_index = 0; + offset = 0; + f_offset = ap->a_f_offset; - retval = MacToVFSError( - TruncateFileC( - vcb, - (FCB*)fp, - length, - false)); - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + while (isize) { + int xsize; + int num_of_pages; - if (hfsmp->jnl) { - tv = time; - VOP_UPDATE(vp, &tv, &tv, 1); + if ( !upl_page_present(pl, pg_index)) { + /* + * we asked for RET_ONLY_ABSENT, so it's possible + * to get back empty slots in the UPL. + * just skip over them + */ + f_offset += PAGE_SIZE; + offset += PAGE_SIZE; + isize -= PAGE_SIZE; + pg_index++; - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); + continue; } - hfs_global_shared_lock_release(hfsmp); - - - /* - * if we get an error and no changes were made then exit - * otherwise we must do the VOP_UPDATE to reflect the changes + /* + * We know that we have at least one absent page. + * Now checking to see how many in a row we have */ - if (retval && (startingPEOF == filebytes)) goto Err_Exit; -#if QUOTA - /* These are bytesreleased */ - (void) hfs_chkdq(cp, (int64_t)-((startingPEOF - filebytes)), NOCRED,0); -#endif /* QUOTA */ - - if (fp->ff_size > filebytes) { - fp->ff_size = filebytes; - - if (UBCISVALID(vp)) - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ + num_of_pages = 1; + xsize = isize - PAGE_SIZE; + + while (xsize) { + if ( !upl_page_present(pl, pg_index + num_of_pages)) + break; + num_of_pages++; + xsize -= PAGE_SIZE; } - } + xsize = num_of_pages * PAGE_SIZE; -Std_Exit: - cp->c_flag |= C_CHANGE | C_UPDATE; - retval2 = VOP_UPDATE(vp, &tv, &tv, MNT_WAIT); +#if HFS_COMPRESSION + if (VNODE_IS_RSRC(vp)) { + /* allow pageins of the resource fork */ + } else { + int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ - if (retval == 0) - retval = retval2; -Err_Exit: - return (retval); -} + if (compressed) { + if (truncate_lock_held) { + /* + * can't hold the truncate lock when calling into the decmpfs layer + * since it calls back into this layer... even though we're only + * holding the lock in shared mode, and the re-entrant path only + * takes the lock shared, we can deadlock if some other thread + * tries to grab the lock exclusively in between. + */ + hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); + truncate_lock_held = FALSE; + } + ap->a_pl = upl; + ap->a_pl_offset = offset; + ap->a_f_offset = f_offset; + ap->a_size = xsize; -/* - * pagein for HFS filesystem - */ -int -hfs_pagein(ap) - struct vop_pagein_args /* { - struct vnode *a_vp, - upl_t a_pl, - vm_offset_t a_pl_offset, - off_t a_f_offset, - size_t a_size, - struct ucred *a_cred, - int a_flags - } */ *ap; -{ - register struct vnode *vp = ap->a_vp; - int devBlockSize = 0; - int error; + error = decmpfs_pagein_compressed(ap, &compressed, VTOCMP(vp)); + /* + * note that decpfs_pagein_compressed can change the state of + * 'compressed'... it will set it to 0 if the file is no longer + * compressed once the compression lock is successfully taken + * i.e. we would block on that lock while the file is being inflated + */ + if (compressed) { + if (error == 0) { + /* successful page-in, update the access time */ + VTOC(vp)->c_touch_acctime = TRUE; + + /* compressed files are not hot file candidates */ + if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } + } else if (error == EAGAIN) { + /* + * EAGAIN indicates someone else already holds the compression lock... + * to avoid deadlocking, we'll abort this range of pages with an + * indication that the pagein needs to be redriven + */ + ubc_upl_abort_range(upl, (upl_offset_t) offset, xsize, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_RESTART); + } else if (error == ENOSPC) { + + if (upl_size == PAGE_SIZE) + panic("decmpfs_pagein_compressed: couldn't ubc_upl_map a single page\n"); + + ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY); + + ap->a_size = PAGE_SIZE; + ap->a_pl = NULL; + ap->a_pl_offset = 0; + ap->a_f_offset = page_needed_f_offset; + + goto retry_pagein; + } + goto pagein_next_range; + } + else { + /* + * Set file_converted only if the file became decompressed while we were + * paging in. If it were still compressed, we would re-start the loop using the goto + * in the above block. This avoid us overloading truncate_lock_held as our retry_pagein + * condition below, since we could have avoided taking the truncate lock to prevent + * a deadlock in the force unmount case. + */ + file_converted = TRUE; + } + } + if (file_converted == TRUE) { + /* + * the file was converted back to a regular file after we first saw it as compressed + * we need to abort the upl, retake the truncate lock, recreate the UPL and start over + * reset a_size so that we consider what remains of the original request + * and null out a_upl and a_pl_offset. + * + * We should only be able to get into this block if the decmpfs_pagein_compressed + * successfully decompressed the range in question for this file. + */ + ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY); - if (vp->v_type != VREG) - panic("hfs_pagein: vp not UBC type\n"); + ap->a_size = isize; + ap->a_pl = NULL; + ap->a_pl_offset = 0; - VOP_DEVBLOCKSIZE(VTOC(vp)->c_devvp, &devBlockSize); + /* Reset file_converted back to false so that we don't infinite-loop. */ + file_converted = FALSE; + goto retry_pagein; + } + } +#endif + error = cluster_pagein(vp, upl, offset, f_offset, xsize, (off_t)fp->ff_size, ap->a_flags); - error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, - ap->a_size, (off_t)VTOF(vp)->ff_size, devBlockSize, - ap->a_flags); - /* - * Keep track blocks read - */ - if (VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) { - struct cnode *cp; - - cp = VTOC(vp); /* - * If this file hasn't been seen since the start of - * the current sampling period then start over. + * Keep track of blocks read. */ - if (cp->c_atime < VTOHFS(vp)->hfc_timebase) - VTOF(vp)->ff_bytesread = ap->a_size; - else - VTOF(vp)->ff_bytesread += ap->a_size; + if ( !vnode_isswap(vp) && VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) { + int bytesread; + int took_cnode_lock = 0; + + if (ap->a_f_offset == 0 && fp->ff_size < PAGE_SIZE) + bytesread = fp->ff_size; + else + bytesread = xsize; + + /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ + if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff && cp->c_lockowner != current_thread()) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + took_cnode_lock = 1; + } + /* + * If this file hasn't been seen since the start of + * the current sampling period then start over. + */ + if (cp->c_atime < VTOHFS(vp)->hfc_timebase) { + struct timeval tv; + + fp->ff_bytesread = bytesread; + microtime(&tv); + cp->c_atime = tv.tv_sec; + } else { + fp->ff_bytesread += bytesread; + } + cp->c_touch_acctime = TRUE; + if (took_cnode_lock) + hfs_unlock(cp); + } +pagein_next_range: + f_offset += xsize; + offset += xsize; + isize -= xsize; + pg_index += num_of_pages; + + error = 0; + } - cp->c_flag |= C_ACCESS; +pagein_done: + if (truncate_lock_held == TRUE) { + /* Note 1 is passed to hfs_unlock_truncate in been_recursed argument */ + hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); } return (error); } /* - * pageout for HFS filesystem. + * Pageout for HFS filesystem. */ int -hfs_pageout(ap) - struct vop_pageout_args /* { - struct vnode *a_vp, +hfs_vnop_pageout(struct vnop_pageout_args *ap) +/* + struct vnop_pageout_args { + vnode_t a_vp, upl_t a_pl, vm_offset_t a_pl_offset, off_t a_f_offset, size_t a_size, - struct ucred *a_cred, int a_flags - } */ *ap; + vfs_context_t a_context; + }; +*/ { - struct vnode *vp = ap->a_vp; - struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - int retval; - int devBlockSize = 0; - off_t end_of_range; + vnode_t vp = ap->a_vp; + struct cnode *cp; + struct filefork *fp; + int retval = 0; off_t filesize; + upl_t upl; + upl_page_info_t* pl; + vm_offset_t a_pl_offset; + int a_flags; + int is_pageoutv2 = 0; + kern_return_t kret; - if (UBCINVALID(vp)) - panic("hfs_pageout: Not a VREG: vp=%x", vp); - - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); + cp = VTOC(vp); + fp = VTOF(vp); + + /* + * Figure out where the file ends, for pageout purposes. If + * ff_new_size > ff_size, then we're in the middle of extending the + * file via a write, so it is safe (and necessary) that we be able + * to pageout up to that point. + */ filesize = fp->ff_size; - end_of_range = ap->a_f_offset + ap->a_size - 1; + if (fp->ff_new_size > filesize) + filesize = fp->ff_new_size; + + a_flags = ap->a_flags; + a_pl_offset = ap->a_pl_offset; + + /* + * we can tell if we're getting the new or old behavior from the UPL + */ + if ((upl = ap->a_pl) == NULL) { + int request_flags; + + is_pageoutv2 = 1; + /* + * we're in control of any UPL we commit + * make sure someone hasn't accidentally passed in UPL_NOCOMMIT + */ + a_flags &= ~UPL_NOCOMMIT; + a_pl_offset = 0; - if (cp->c_flag & C_RELOCATING) { - if (end_of_range < (filesize / 2)) { - return (EBUSY); + /* + * For V2 semantics, we want to take the cnode truncate lock + * shared to guard against the file size changing via zero-filling. + * + * However, we have to be careful because we may be invoked + * via the ubc_msync path to write out dirty mmap'd pages + * in response to a lock event on a content-protected + * filesystem (e.g. to write out class A files). + * As a result, we want to take the truncate lock 'SHARED' with + * the mini-recursion locktype so that we don't deadlock/panic + * because we may be already holding the truncate lock exclusive to force any other + * IOs to have blocked behind us. + */ + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); + + if (a_flags & UPL_MSYNC) { + request_flags = UPL_UBC_MSYNC | UPL_RET_ONLY_DIRTY; } - } + else { + request_flags = UPL_UBC_PAGEOUT | UPL_RET_ONLY_DIRTY; + } + + kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, request_flags); - if (end_of_range >= filesize) - end_of_range = (off_t)(filesize - 1); - if (ap->a_f_offset < filesize) { - rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges); - cp->c_flag |= C_MODIFIED; /* leof is dirty */ + if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) { + retval = EINVAL; + goto pageout_done; + } } + /* + * from this point forward upl points at the UPL we're working with + * it was either passed in or we succesfully created it + */ + + /* + * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own + * UPL instead of relying on the UPL passed into us. We go ahead and do that here, + * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for + * N dirty ranges in the UPL. Note that this is almost a direct copy of the + * logic in vnode_pageout except that we need to do it after grabbing the truncate + * lock in HFS so that we don't lock invert ourselves. + * + * Note that we can still get into this function on behalf of the default pager with + * non-V2 behavior (swapfiles). However in that case, we did not grab locks above + * since fsync and other writing threads will grab the locks, then mark the + * relevant pages as busy. But the pageout codepath marks the pages as busy, + * and THEN would attempt to grab the truncate lock, which would result in deadlock. So + * we do not try to grab anything for the pre-V2 case, which should only be accessed + * by the paging/VM system. + */ + + if (is_pageoutv2) { + off_t f_offset; + int offset; + int isize; + int pg_index; + int error; + int error_ret = 0; + + isize = ap->a_size; + f_offset = ap->a_f_offset; + + /* + * Scan from the back to find the last page in the UPL, so that we + * aren't looking at a UPL that may have already been freed by the + * preceding aborts/completions. + */ + for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { + if (upl_page_present(pl, --pg_index)) + break; + if (pg_index == 0) { + ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); + goto pageout_done; + } + } + + /* + * initialize the offset variables before we touch the UPL. + * a_f_offset is the position into the file, in bytes + * offset is the position into the UPL, in bytes + * pg_index is the pg# of the UPL we're operating on. + * isize is the offset into the UPL of the last non-clean page. + */ + isize = ((pg_index + 1) * PAGE_SIZE); + + offset = 0; + pg_index = 0; + + while (isize) { + int xsize; + int num_of_pages; + + if ( !upl_page_present(pl, pg_index)) { + /* + * we asked for RET_ONLY_DIRTY, so it's possible + * to get back empty slots in the UPL. + * just skip over them + */ + f_offset += PAGE_SIZE; + offset += PAGE_SIZE; + isize -= PAGE_SIZE; + pg_index++; + + continue; + } + if ( !upl_dirty_page(pl, pg_index)) { + panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index, upl); + } + + /* + * We know that we have at least one dirty page. + * Now checking to see how many in a row we have + */ + num_of_pages = 1; + xsize = isize - PAGE_SIZE; + + while (xsize) { + if ( !upl_dirty_page(pl, pg_index + num_of_pages)) + break; + num_of_pages++; + xsize -= PAGE_SIZE; + } + xsize = num_of_pages * PAGE_SIZE; + + if (!vnode_isswap(vp)) { + off_t end_of_range; + int tooklock; + + tooklock = 0; + + if (cp->c_lockowner != current_thread()) { + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + /* + * we're in the v2 path, so we are the + * owner of the UPL... we may have already + * processed some of the UPL, so abort it + * from the current working offset to the + * end of the UPL + */ + ubc_upl_abort_range(upl, + offset, + ap->a_size - offset, + UPL_ABORT_FREE_ON_EMPTY); + goto pageout_done; + } + tooklock = 1; + } + end_of_range = f_offset + xsize - 1; + + if (end_of_range >= filesize) { + end_of_range = (off_t)(filesize - 1); + } + if (f_offset < filesize) { + rl_remove(f_offset, end_of_range, &fp->ff_invalidranges); + cp->c_flag |= C_MODIFIED; /* leof is dirty */ + } + if (tooklock) { + hfs_unlock(cp); + } + } + if ((error = cluster_pageout(vp, upl, offset, f_offset, + xsize, filesize, a_flags))) { + if (error_ret == 0) + error_ret = error; + } + f_offset += xsize; + offset += xsize; + isize -= xsize; + pg_index += num_of_pages; + } + /* capture errnos bubbled out of cluster_pageout if they occurred */ + if (error_ret != 0) { + retval = error_ret; + } + } /* end block for v2 pageout behavior */ + else { + if (!vnode_isswap(vp)) { + off_t end_of_range; + int tooklock = 0; + + if (cp->c_lockowner != current_thread()) { + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + if (!(a_flags & UPL_NOCOMMIT)) { + ubc_upl_abort_range(upl, + a_pl_offset, + ap->a_size, + UPL_ABORT_FREE_ON_EMPTY); + } + goto pageout_done; + } + tooklock = 1; + } + end_of_range = ap->a_f_offset + ap->a_size - 1; + + if (end_of_range >= filesize) { + end_of_range = (off_t)(filesize - 1); + } + if (ap->a_f_offset < filesize) { + rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges); + cp->c_flag |= C_MODIFIED; /* leof is dirty */ + } - retval = cluster_pageout(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, ap->a_size, - filesize, devBlockSize, ap->a_flags); + if (tooklock) { + hfs_unlock(cp); + } + } + /* + * just call cluster_pageout for old pre-v2 behavior + */ + retval = cluster_pageout(vp, upl, a_pl_offset, ap->a_f_offset, + ap->a_size, filesize, a_flags); + } /* - * If we successfully wrote any data, and we are not the superuser - * we clear the setuid and setgid bits as a precaution against - * tampering. + * If data was written, update the modification time of the file + * but only if it's mapped writable; we will have touched the + * modifcation time for direct writes. */ - if (retval == 0 && ap->a_cred && ap->a_cred->cr_uid != 0) - cp->c_mode &= ~(S_ISUID | S_ISGID); + if (retval == 0 && (ubc_is_mapped_writable(vp) + || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING))) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + + // Check again with lock + bool mapped_writable = ubc_is_mapped_writable(vp); + if (mapped_writable + || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING)) { + cp->c_touch_modtime = TRUE; + cp->c_touch_chgtime = TRUE; + + /* + * We only need to increment the generation counter if + * it's currently mapped writable because we incremented + * the counter in hfs_vnop_mnomap. + */ + if (mapped_writable) + hfs_incr_gencount(VTOC(vp)); + + /* + * If setuid or setgid bits are set and this process is + * not the superuser then clear the setuid and setgid bits + * as a precaution against tampering. + */ + if ((cp->c_mode & (S_ISUID | S_ISGID)) && + (vfs_context_suser(ap->a_context) != 0)) { + cp->c_mode &= ~(S_ISUID | S_ISGID); + } + } + + hfs_unlock(cp); + } +pageout_done: + if (is_pageoutv2) { + /* + * Release the truncate lock. Note that because + * we may have taken the lock recursively by + * being invoked via ubc_msync due to lockdown, + * we should release it recursively, too. + */ + hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); + } return (retval); } /* * Intercept B-Tree node writes to unswap them if necessary. -# -#vop_bwrite { -# IN struct buf *bp; */ int -hfs_bwrite(ap) - struct vop_bwrite_args /* { - struct buf *a_bp; - } */ *ap; +hfs_vnop_bwrite(struct vnop_bwrite_args *ap) { int retval = 0; register struct buf *bp = ap->a_bp; - register struct vnode *vp = bp->b_vp; -#if BYTE_ORDER == LITTLE_ENDIAN + register struct vnode *vp = buf_vnode(bp); BlockDescriptor block; /* Trap B-Tree writes */ if ((VTOC(vp)->c_fileid == kHFSExtentsFileID) || - (VTOC(vp)->c_fileid == kHFSCatalogFileID)) { + (VTOC(vp)->c_fileid == kHFSCatalogFileID) || + (VTOC(vp)->c_fileid == kHFSAttributesFileID) || + (vp == VTOHFS(vp)->hfc_filevp)) { - /* Swap if the B-Tree node is in native byte order */ - if (((UInt16 *)((char *)bp->b_data + bp->b_bcount - 2))[0] == 0x000e) { + /* + * Swap and validate the node if it is in native byte order. + * This is always be true on big endian, so we always validate + * before writing here. On little endian, the node typically has + * been swapped and validated when it was written to the journal, + * so we won't do anything here. + */ + if (((u_int16_t *)((char *)buf_dataptr(bp) + buf_count(bp) - 2))[0] == 0x000e) { /* Prepare the block pointer */ block.blockHeader = bp; - block.buffer = bp->b_data; + block.buffer = (char *)buf_dataptr(bp); + block.blockNum = buf_lblkno(bp); /* not found in cache ==> came from disk */ - block.blockReadFromDisk = (bp->b_flags & B_CACHE) == 0; - block.blockSize = bp->b_bcount; + block.blockReadFromDisk = (buf_fromcache(bp) == 0); + block.blockSize = buf_count(bp); /* Endian un-swap B-Tree node */ - SWAP_BT_NODE (&block, ISHFSPLUS (VTOVCB(vp)), VTOC(vp)->c_fileid, 1); + retval = hfs_swap_BTNode (&block, vp, kSwapBTNodeHostToBig, false); + if (retval) + panic("hfs_vnop_bwrite: about to write corrupt node!\n"); } - - /* We don't check to make sure that it's 0x0e00 because it could be all zeros */ } -#endif + /* This buffer shouldn't be locked anymore but if it is clear it */ - if (ISSET(bp->b_flags, B_LOCKED)) { - // XXXdbg - if (VTOHFS(vp)->jnl) { - panic("hfs: CLEARING the lock bit on bp 0x%x\n", bp); - } - CLR(bp->b_flags, B_LOCKED); - printf("hfs_bwrite: called with lock bit set\n"); + if ((buf_flags(bp) & B_LOCKED)) { + // XXXdbg + if (VTOHFS(vp)->jnl) { + panic("hfs: CLEARING the lock bit on bp %p\n", bp); + } + buf_clearflags(bp, B_LOCKED); } retval = vn_bwrite (ap); @@ -2177,7 +4926,7 @@ hfs_bwrite(ap) * 0 N (file offset) * * ----------------- ----------------- - * |///////////////| | | STEP 1 (aquire new blocks) + * |///////////////| | | STEP 1 (acquire new blocks) * ----------------- ----------------- * 0 N N+1 2N * @@ -2194,34 +4943,32 @@ hfs_bwrite(ap) * During steps 2 and 3 page-outs to file offsets less * than or equal to N are suspended. * - * During step 3 page-ins to the file get supended. + * During step 3 page-ins to the file get suspended. */ -__private_extern__ int -hfs_relocate(vp, blockHint, cred, p) - struct vnode *vp; - u_int32_t blockHint; - struct ucred *cred; - struct proc *p; +hfs_relocate(struct vnode *vp, u_int32_t blockHint, kauth_cred_t cred, + struct proc *p) { + struct cnode *cp; struct filefork *fp; struct hfsmount *hfsmp; - ExtendedVCB *vcb; - u_int32_t headblks; u_int32_t datablks; u_int32_t blksize; - u_int32_t realsize; u_int32_t growsize; u_int32_t nextallocsave; - u_int32_t sector_a; - u_int32_t sector_b; + daddr64_t sector_a, sector_b; int eflags; - u_int32_t oldstart; /* debug only */ off_t newbytes; int retval; - - if (vp->v_type != VREG && vp->v_type != VLNK) { + int lockflags = 0; + int took_trunc_lock = 0; + int started_tr = 0; + enum vtype vnodetype; + + vnodetype = vnode_vtype(vp); + if (vnodetype != VREG) { + /* Not allowed to move symlinks. */ return (EPERM); } @@ -2230,305 +4977,336 @@ hfs_relocate(vp, blockHint, cred, p) return (ENOSPC); } + cp = VTOC(vp); fp = VTOF(vp); if (fp->ff_unallocblocks) return (EINVAL); - vcb = VTOVCB(vp); - blksize = vcb->blockSize; + +#if CONFIG_PROTECT + /* + * + * Disable HFS file relocation on content-protected filesystems + */ + if (cp_fs_protected (hfsmp->hfs_mp)) { + return EINVAL; + } +#endif + /* If it's an SSD, also disable HFS relocation */ + if (hfsmp->hfs_flags & HFS_SSD) { + return EINVAL; + } + + + blksize = hfsmp->blockSize; if (blockHint == 0) - blockHint = vcb->nextAllocation; + blockHint = hfsmp->nextAllocation; - if ((fp->ff_size > (u_int64_t)0x7fffffff) || - (vp->v_type == VLNK && fp->ff_size > blksize)) { + if (fp->ff_size > 0x7fffffff) { return (EFBIG); } + // + // We do not believe that this call to hfs_fsync() is + // necessary and it causes a journal transaction + // deadlock so we are removing it. + // + //if (vnodetype == VREG && !vnode_issystem(vp)) { + // retval = hfs_fsync(vp, MNT_WAIT, 0, p); + // if (retval) + // return (retval); + //} + + if (!vnode_issystem(vp) && (vnodetype != VLNK)) { + hfs_unlock(cp); + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + /* Force lock since callers expects lock to be held. */ + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS))) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return (retval); + } + /* No need to continue if file was removed. */ + if (cp->c_flag & C_NOEXISTS) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return (ENOENT); + } + took_trunc_lock = 1; + } headblks = fp->ff_blocks; datablks = howmany(fp->ff_size, blksize); growsize = datablks * blksize; - realsize = fp->ff_size; eflags = kEFContigMask | kEFAllMask | kEFNoClumpMask; if (blockHint >= hfsmp->hfs_metazone_start && blockHint <= hfsmp->hfs_metazone_end) eflags |= kEFMetadataMask; - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - return (EINVAL); - } + if (hfs_start_transaction(hfsmp) != 0) { + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return (EINVAL); } + started_tr = 1; + /* + * Protect the extents b-tree and the allocation bitmap + * during MapFileBlockC and ExtendFileC operations. + */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); - /* Lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_EXCLUSIVE, p); - if (retval) - goto out2; - - retval = MapFileBlockC(vcb, (FCB *)fp, 1, growsize - 1, §or_a, NULL); + retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize - 1, §or_a, NULL); if (retval) { retval = MacToVFSError(retval); goto out; } /* - * STEP 1 - aquire new allocation blocks. + * STEP 1 - acquire new allocation blocks. */ - nextallocsave = vcb->nextAllocation; - retval = ExtendFileC(vcb, (FCB*)fp, growsize, blockHint, eflags, &newbytes); - if (eflags & kEFMetadataMask) - vcb->nextAllocation = nextallocsave; + nextallocsave = hfsmp->nextAllocation; + retval = ExtendFileC(hfsmp, (FCB*)fp, growsize, blockHint, eflags, &newbytes); + if (eflags & kEFMetadataMask) { + hfs_lock_mount(hfsmp); + HFS_UPDATE_NEXT_ALLOCATION(hfsmp, nextallocsave); + MarkVCBDirty(hfsmp); + hfs_unlock_mount(hfsmp); + } retval = MacToVFSError(retval); if (retval == 0) { - VTOC(vp)->c_flag |= C_MODIFIED; + cp->c_flag |= C_MODIFIED; if (newbytes < growsize) { retval = ENOSPC; goto restore; } else if (fp->ff_blocks < (headblks + datablks)) { - printf("hfs_relocate: allocation failed"); + printf("hfs_relocate: allocation failed id=%u, vol=%s\n", cp->c_cnid, hfsmp->vcbVN); retval = ENOSPC; goto restore; } - retval = MapFileBlockC(vcb, (FCB *)fp, 1, growsize, §or_b, NULL); + retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize, §or_b, NULL); if (retval) { retval = MacToVFSError(retval); } else if ((sector_a + 1) == sector_b) { retval = ENOSPC; goto restore; } else if ((eflags & kEFMetadataMask) && - ((((u_int64_t)sector_b * hfsmp->hfs_phys_block_size) / blksize) > + ((((u_int64_t)sector_b * hfsmp->hfs_logical_block_size) / blksize) > hfsmp->hfs_metazone_end)) { - printf("hfs_relocate: didn't move into metadata zone\n"); +#if 0 + const char * filestr; + char emptystr = '\0'; + + if (cp->c_desc.cd_nameptr != NULL) { + filestr = (const char *)&cp->c_desc.cd_nameptr[0]; + } else if (vnode_name(vp) != NULL) { + filestr = vnode_name(vp); + } else { + filestr = &emptystr; + } +#endif retval = ENOSPC; goto restore; } } + /* Done with system locks and journal for now. */ + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; + hfs_end_transaction(hfsmp); + started_tr = 0; + if (retval) { /* * Check to see if failure is due to excessive fragmentation. */ - if (retval == ENOSPC && - hfs_freeblks(hfsmp, 0) > (datablks * 2)) { + if ((retval == ENOSPC) && + (hfs_freeblks(hfsmp, 0) > (datablks * 2))) { hfsmp->hfs_flags |= HFS_FRAGMENTED_FREESPACE; } goto out; } - - fp->ff_size = fp->ff_blocks * blksize; - if (UBCISVALID(vp)) - (void) ubc_setsize(vp, fp->ff_size); - /* - * STEP 2 - clone data into the new allocation blocks. + * STEP 2 - clone file data into the new allocation blocks. */ - if (vp->v_type == VLNK) - retval = hfs_clonelink(vp, blksize, cred, p); - else if (vp->v_flag & VSYSTEM) + if (vnodetype == VLNK) + retval = EPERM; + else if (vnode_issystem(vp)) retval = hfs_clonesysfile(vp, headblks, datablks, blksize, cred, p); else - retval = hfs_clonefile(vp, headblks, datablks, blksize, cred, p); + retval = hfs_clonefile(vp, headblks, datablks, blksize); + /* Start transaction for step 3 or for a restore. */ + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto out; + } + started_tr = 1; if (retval) goto restore; - - oldstart = fp->ff_extents[0].startBlock; /* - * STEP 3 - switch to clone and remove old blocks. + * STEP 3 - switch to cloned data and remove old blocks. */ - SET(VTOC(vp)->c_flag, C_NOBLKMAP); /* suspend page-ins */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); - retval = HeadTruncateFile(vcb, (FCB*)fp, headblks); + retval = HeadTruncateFile(hfsmp, (FCB*)fp, headblks); - CLR(VTOC(vp)->c_flag, C_NOBLKMAP); /* resume page-ins */ - if (ISSET(VTOC(vp)->c_flag, C_WBLKMAP)) - wakeup(VTOC(vp)); + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; if (retval) goto restore; +out: + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); - fp->ff_size = realsize; - if (UBCISVALID(vp)) { - (void) ubc_setsize(vp, realsize); - (void) vinvalbuf(vp, V_SAVE, cred, p, 0, 0); + if (lockflags) { + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; } - CLR(VTOC(vp)->c_flag, C_RELOCATING); /* Resume page-outs for this file. */ -out: - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, p); - - retval = VOP_FSYNC(vp, cred, MNT_WAIT, p); -out2: + /* Push cnode's new extent data to disk. */ + if (retval == 0) { + (void) hfs_update(vp, MNT_WAIT); + } if (hfsmp->jnl) { - if (VTOC(vp)->c_cnid < kHFSFirstUserCatalogNodeID) + if (cp->c_cnid < kHFSFirstUserCatalogNodeID) (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); else (void) hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); } - hfs_global_shared_lock_release(hfsmp); +exit: + if (started_tr) + hfs_end_transaction(hfsmp); return (retval); restore: + if (fp->ff_blocks == headblks) { + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + goto exit; + } /* * Give back any newly allocated space. */ - if (fp->ff_size != realsize) - fp->ff_size = realsize; - (void) TruncateFileC(vcb, (FCB*)fp, fp->ff_size, false); - if (UBCISVALID(vp)) - (void) ubc_setsize(vp, fp->ff_size); - CLR(VTOC(vp)->c_flag, C_RELOCATING); - goto out; -} - - -/* - * Clone a symlink. - * - */ -static int -hfs_clonelink(struct vnode *vp, int blksize, struct ucred *cred, struct proc *p) -{ - struct buf *head_bp = NULL; - struct buf *tail_bp = NULL; - int error; - + if (lockflags == 0) { + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + } - error = meta_bread(vp, 0, blksize, cred, &head_bp); - if (error) - goto out; + (void) TruncateFileC(hfsmp, (FCB*)fp, fp->ff_size, 0, FORK_IS_RSRC(fp), + FTOC(fp)->c_fileid, false); - tail_bp = getblk(vp, 1, blksize, 0, 0, BLK_META); - if (tail_bp == NULL) { - error = EIO; - goto out; - } - bcopy(head_bp->b_data, tail_bp->b_data, blksize); - error = bwrite(tail_bp); -out: - if (head_bp) { - head_bp->b_flags |= B_INVAL; - brelse(head_bp); - } - (void) vinvalbuf(vp, V_SAVE, cred, p, 0, 0); + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; - return (error); + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + goto exit; } + /* * Clone a file's data within the file. * */ static int -hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize, - struct ucred *cred, struct proc *p) +hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize) { caddr_t bufp; - size_t writebase; size_t bufsize; size_t copysize; size_t iosize; - size_t filesize; size_t offset; - struct uio auio; - struct iovec aiov; - int devblocksize; - int didhold; - int error; - - - if ((error = vinvalbuf(vp, V_SAVE, cred, p, 0, 0))) { - printf("hfs_clonefile: vinvalbuf failed - %d\n", error); - return (error); - } - - if (!ubc_clean(vp, 1)) { - printf("hfs_clonefile: not ubc_clean\n"); - return (EIO); /* XXX error code */ - } - - /* - * Suspend page-outs for this file. - */ - SET(VTOC(vp)->c_flag, C_RELOCATING); + off_t writebase; + uio_t auio; + int error = 0; - filesize = VTOF(vp)->ff_size; writebase = blkstart * blksize; copysize = blkcnt * blksize; - iosize = bufsize = MIN(copysize, 4096 * 16); + iosize = bufsize = MIN(copysize, 128 * 1024); offset = 0; + hfs_unlock(VTOC(vp)); + +#if CONFIG_PROTECT + if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) { + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + return (error); + } +#endif /* CONFIG_PROTECT */ + if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); return (ENOMEM); - } - - VOP_DEVBLOCKSIZE(VTOC(vp)->c_devvp, &devblocksize); + } - auio.uio_iov = &aiov; - auio.uio_iovcnt = 1; - auio.uio_segflg = UIO_SYSSPACE; - auio.uio_procp = p; + auio = uio_create(1, 0, UIO_SYSSPACE, UIO_READ); while (offset < copysize) { iosize = MIN(copysize - offset, iosize); - aiov.iov_base = bufp; - aiov.iov_len = iosize; - auio.uio_resid = iosize; - auio.uio_offset = offset; - auio.uio_rw = UIO_READ; + uio_reset(auio, offset, UIO_SYSSPACE, UIO_READ); + uio_addiov(auio, (uintptr_t)bufp, iosize); - error = cluster_read(vp, &auio, copysize, devblocksize, 0); + error = cluster_read(vp, auio, copysize, IO_NOCACHE); if (error) { printf("hfs_clonefile: cluster_read failed - %d\n", error); break; } - if (auio.uio_resid != 0) { - printf("clonedata: cluster_read: uio_resid = %d\n", (int)auio.uio_resid); + if (uio_resid(auio) != 0) { + printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", (int64_t)uio_resid(auio)); error = EIO; break; } + uio_reset(auio, writebase + offset, UIO_SYSSPACE, UIO_WRITE); + uio_addiov(auio, (uintptr_t)bufp, iosize); - aiov.iov_base = bufp; - aiov.iov_len = iosize; - auio.uio_resid = iosize; - auio.uio_offset = writebase + offset; - auio.uio_rw = UIO_WRITE; - - error = cluster_write(vp, &auio, filesize + offset, - filesize + offset + iosize, - auio.uio_offset, 0, devblocksize, 0); + error = cluster_write(vp, auio, writebase + offset, + writebase + offset + iosize, + uio_offset(auio), 0, IO_NOCACHE | IO_SYNC); if (error) { printf("hfs_clonefile: cluster_write failed - %d\n", error); break; } - if (auio.uio_resid != 0) { + if (uio_resid(auio) != 0) { printf("hfs_clonefile: cluster_write failed - uio_resid not zero\n"); error = EIO; break; } offset += iosize; } - if (error == 0) { - /* Clean the pages in VM. */ - didhold = ubc_hold(vp); - if (didhold) - (void) ubc_clean(vp, 1); - + uio_free(auio); + + if ((blksize & PAGE_MASK)) { /* - * Clean out all associated buffers. + * since the copy may not have started on a PAGE + * boundary (or may not have ended on one), we + * may have pages left in the cache since NOCACHE + * will let partially written pages linger... + * lets just flush the entire range to make sure + * we don't have any pages left that are beyond + * (or intersect) the real LEOF of this file + */ + ubc_msync(vp, writebase, writebase + offset, NULL, UBC_INVALIDATE | UBC_PUSHDIRTY); + } else { + /* + * No need to call ubc_msync or hfs_invalbuf + * since the file was copied using IO_NOCACHE and + * the copy was done starting and ending on a page + * boundary in the file. */ - (void) vinvalbuf(vp, V_SAVE, cred, p, 0, 0); - - if (didhold) - ubc_rele(vp); } kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); - + + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); return (error); } @@ -2538,15 +5316,17 @@ hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize, */ static int hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, - struct ucred *cred, struct proc *p) + kauth_cred_t cred, struct proc *p) { caddr_t bufp; char * offset; size_t bufsize; size_t iosize; struct buf *bp = NULL; - daddr_t blkno; - daddr_t blk; + daddr64_t blkno; + daddr64_t blk; + daddr64_t start_blk; + daddr64_t last_blk; int breadcnt; int i; int error = 0; @@ -2559,30 +5339,31 @@ hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { return (ENOMEM); } - blkstart = (blkstart * blksize) / iosize; - blkcnt = (blkcnt * blksize) / iosize; + start_blk = ((daddr64_t)blkstart * blksize) / iosize; + last_blk = ((daddr64_t)blkcnt * blksize) / iosize; blkno = 0; - while (blkno < blkcnt) { + while (blkno < last_blk) { /* * Read up to a megabyte */ offset = bufp; - for (i = 0, blk = blkno; (i < breadcnt) && (blk < blkcnt); ++i, ++blk) { - error = meta_bread(vp, blk, iosize, cred, &bp); + for (i = 0, blk = blkno; (i < breadcnt) && (blk < last_blk); ++i, ++blk) { + error = (int)buf_meta_bread(vp, blk, iosize, cred, &bp); if (error) { printf("hfs_clonesysfile: meta_bread error %d\n", error); goto out; } - if (bp->b_bcount != iosize) { - printf("hfs_clonesysfile: b_bcount is only %d\n", bp->b_bcount); + if (buf_count(bp) != iosize) { + printf("hfs_clonesysfile: b_bcount is only %d\n", buf_count(bp)); goto out; } - - bcopy(bp->b_data, offset, iosize); - bp->b_flags |= B_INVAL; - brelse(bp); + bcopy((char *)buf_dataptr(bp), offset, iosize); + + buf_markinvalid(bp); + buf_brelse(bp); bp = NULL; + offset += iosize; } @@ -2590,15 +5371,15 @@ hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, * Write up to a megabyte */ offset = bufp; - for (i = 0; (i < breadcnt) && (blkno < blkcnt); ++i, ++blkno) { - bp = getblk(vp, blkstart + blkno, iosize, 0, 0, BLK_META); + for (i = 0; (i < breadcnt) && (blkno < last_blk); ++i, ++blkno) { + bp = buf_getblk(vp, start_blk + blkno, iosize, 0, 0, BLK_META); if (bp == NULL) { - printf("hfs_clonesysfile: getblk failed on blk %d\n", blkstart + blkno); + printf("hfs_clonesysfile: getblk failed on blk %qd\n", start_blk + blkno); error = EIO; goto out; } - bcopy(offset, bp->b_data, iosize); - error = bwrite(bp); + bcopy(offset, (char *)buf_dataptr(bp), iosize); + error = (int)buf_bwrite(bp); bp = NULL; if (error) goto out; @@ -2607,13 +5388,12 @@ hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, } out: if (bp) { - brelse(bp); + buf_brelse(bp); } kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); - error = VOP_FSYNC(vp, cred, MNT_WAIT, p); + error = hfs_fsync(vp, MNT_WAIT, 0, p); return (error); } -