X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/e5568f75972dfc723778653c11cb6b4dc825716a..a991bd8d3e7fe02dbca0644054bab73c5b75324a:/bsd/netinet/ip_dummynet.c diff --git a/bsd/netinet/ip_dummynet.c b/bsd/netinet/ip_dummynet.c index 0979e45d3..0b4cdd095 100644 --- a/bsd/netinet/ip_dummynet.c +++ b/bsd/netinet/ip_dummynet.c @@ -1,25 +1,32 @@ /* - * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2019 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ - * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. - * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. - * - * @APPLE_LICENSE_HEADER_END@ + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ - * Copyright (c) 1998-2001 Luigi Rizzo, Universita` di Pisa +/* + * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa * Portions Copyright (c) 2000 Akamba Corp. * All rights reserved * @@ -44,15 +51,13 @@ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * - * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.11 2001/02/09 23:18:08 luigi Exp $ + * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $ */ -#define DEB(x) -#define DDB(x) x +#define DUMMYNET_DEBUG /* * This module implements IP dummynet, a bandwidth limiter/delay emulator - * used in conjunction with the ipfw package. * Description of the data structures used is in ip_dummynet.h * Here you mainly find the following blocks of code: * + variable declarations; @@ -60,10 +65,7 @@ * + scheduler and dummynet functions; * + configuration and initialization. * - * NOTA BENE: critical sections are protected by splimp()/splx() - * pairs. One would think that splnet() is enough as for most of - * the netinet code, but it is not so because when used with - * bridging, dummynet is invoked at splimp(). + * NOTA BENE: critical sections are protected by the "dummynet lock". * * Most important Changes: * @@ -80,44 +82,54 @@ #include #include #include -#include /* XXX */ +#include /* XXX */ #include +#include #include #include #include #include #include #include +#include +#if DUMMYNET +#include +#endif /* DUMMYNET */ +#include +#include #include #include #include #include -#include #include #include -#if BRIDGE -#include /* for struct arpcom */ -#include -#endif +#include /* for ip6_input, ip6_output prototypes */ +#include /* * We keep a private variable for the simulation time, but we could * probably use an existing one ("softticks" in sys/kern/kern_timer.c) */ -static dn_key curr_time = 0 ; /* current simulation time */ +static dn_key curr_time = 0; /* current simulation time */ -static int dn_hash_size = 64 ; /* default hash size */ +/* this is for the timer that fires to call dummynet() - we only enable the timer when + * there are packets to process, otherwise it's disabled */ +static int timer_enabled = 0; + +static int dn_hash_size = 64; /* default hash size */ /* statistics on number of queue searches and search steps */ -static int searches, search_steps ; -static int pipe_expire = 1 ; /* expire queue if empty */ -static int dn_max_ratio = 16 ; /* max queues/buckets ratio */ +static int searches, search_steps; +static int pipe_expire = 1; /* expire queue if empty */ +static int dn_max_ratio = 16; /* max queues/buckets ratio */ -static int red_lookup_depth = 256; /* RED - default lookup table depth */ +static int red_lookup_depth = 256; /* RED - default lookup table depth */ static int red_avg_pkt_size = 512; /* RED - default medium packet size */ static int red_max_pkt_size = 1500; /* RED - default max packet size */ +static int serialize = 0; + /* * Three heaps contain queues and pipes that the scheduler handles: * @@ -128,69 +140,108 @@ static int red_max_pkt_size = 1500; /* RED - default max packet size */ * extract_heap contains pipes associated with delay lines. * */ -static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ; +static struct dn_heap ready_heap, extract_heap, wfq_ready_heap; -static int heap_init(struct dn_heap *h, int size) ; -static int heap_insert (struct dn_heap *h, dn_key key1, void *p); +static int heap_init(struct dn_heap *h, int size); +static int heap_insert(struct dn_heap *h, dn_key key1, void *p); static void heap_extract(struct dn_heap *h, void *obj); -static void transmit_event(struct dn_pipe *pipe); -static void ready_event(struct dn_flow_queue *q); -static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */ -static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */ +static void transmit_event(struct dn_pipe *pipe, struct mbuf **head, + struct mbuf **tail); +static void ready_event(struct dn_flow_queue *q, struct mbuf **head, + struct mbuf **tail); +static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head, + struct mbuf **tail); + +/* + * Packets are retrieved from queues in Dummynet in chains instead of + * packet-by-packet. The entire list of packets is first dequeued and + * sent out by the following function. + */ +static void dummynet_send(struct mbuf *m); + +#define HASHSIZE 16 +#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f) +static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */ +static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */ -#if SYSCTL_NODE +#ifdef SYSCTL_NODE SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, - CTLFLAG_RW, 0, "Dummynet"); + CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, - CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size"); -SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time, - CTLFLAG_RD, &curr_time, 0, "Current tick"); + CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size"); +SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time, + CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, - CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap"); + CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, - CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap"); + CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, - CTLFLAG_RD, &searches, 0, "Number of queue searches"); + CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, - CTLFLAG_RD, &search_steps, 0, "Number of queue search steps"); + CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, - CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty"); + CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, - CTLFLAG_RW, &dn_max_ratio, 0, - "Max ratio between dynamic queues and buckets"); + CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0, + "Max ratio between dynamic queues and buckets"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, - CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table"); + CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, - CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size"); + CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, - CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size"); + CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size"); #endif +#ifdef DUMMYNET_DEBUG +int dummynet_debug = 0; +#ifdef SYSCTL_NODE +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug, + 0, "control debugging printfs"); +#endif +#define DPRINTF(X) if (dummynet_debug) printf X +#else +#define DPRINTF(X) +#endif + +/* dummynet lock */ +static lck_grp_t *dn_mutex_grp; +static lck_grp_attr_t *dn_mutex_grp_attr; +static lck_attr_t *dn_mutex_attr; +decl_lck_mtx_data(static, dn_mutex_data); +static lck_mtx_t *dn_mutex = &dn_mutex_data; + static int config_pipe(struct dn_pipe *p); static int ip_dn_ctl(struct sockopt *sopt); -static void rt_unref(struct rtentry *); static void dummynet(void *); static void dummynet_flush(void); void dummynet_drain(void); -int if_tx_rdy(struct ifnet *ifp); +static ip_dn_io_t dummynet_io; -/* - * ip_fw_chain is used when deleting a pipe, because ipfw rules can - * hold references to the pipe. - */ -extern LIST_HEAD (ip_fw_head, ip_fw_chain) ip_fw_chain_head; +static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp); +static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp); +static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp); +static char* dn_copy_set_64(struct dn_flow_set *set, char *bp); +static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p ); -static void -rt_unref(struct rtentry *rt) +static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp); +static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp); +static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp); +static char* dn_copy_set_32(struct dn_flow_set *set, char *bp); +static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p ); + +struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt; + +uint32_t +my_random(void) { - if (rt == NULL) - return ; - if (rt->rt_refcnt <= 0) - printf("-- warning, refcnt now %ld, decreasing\n", rt->rt_refcnt); - rtfree(rt); + uint32_t val; + read_frandom(&val, sizeof(val)); + val &= 0x7FFFFFFF; + + return val; } /* @@ -209,32 +260,314 @@ rt_unref(struct rtentry *rt) #define HEAP_LEFT(x) ( 2*(x) + 1 ) #define HEAP_IS_LEFT(x) ( (x) & 1 ) #define HEAP_RIGHT(x) ( 2*(x) + 2 ) -#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } -#define HEAP_INCREMENT 15 +#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } +#define HEAP_INCREMENT 15 + + +int +cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p ) +{ + struct dn_pipe_32 user_pipe_32; + int error = 0; + + error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32)); + if (!error) { + p->pipe_nr = user_pipe_32.pipe_nr; + p->bandwidth = user_pipe_32.bandwidth; + p->delay = user_pipe_32.delay; + p->V = user_pipe_32.V; + p->sum = user_pipe_32.sum; + p->numbytes = user_pipe_32.numbytes; + p->sched_time = user_pipe_32.sched_time; + bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ); + p->ready = user_pipe_32.ready; + + p->fs.fs_nr = user_pipe_32.fs.fs_nr; + p->fs.flags_fs = user_pipe_32.fs.flags_fs; + p->fs.parent_nr = user_pipe_32.fs.parent_nr; + p->fs.weight = user_pipe_32.fs.weight; + p->fs.qsize = user_pipe_32.fs.qsize; + p->fs.plr = user_pipe_32.fs.plr; + p->fs.flow_mask = user_pipe_32.fs.flow_mask; + p->fs.rq_size = user_pipe_32.fs.rq_size; + p->fs.rq_elements = user_pipe_32.fs.rq_elements; + p->fs.last_expired = user_pipe_32.fs.last_expired; + p->fs.backlogged = user_pipe_32.fs.backlogged; + p->fs.w_q = user_pipe_32.fs.w_q; + p->fs.max_th = user_pipe_32.fs.max_th; + p->fs.min_th = user_pipe_32.fs.min_th; + p->fs.max_p = user_pipe_32.fs.max_p; + p->fs.c_1 = user_pipe_32.fs.c_1; + p->fs.c_2 = user_pipe_32.fs.c_2; + p->fs.c_3 = user_pipe_32.fs.c_3; + p->fs.c_4 = user_pipe_32.fs.c_4; + p->fs.lookup_depth = user_pipe_32.fs.lookup_depth; + p->fs.lookup_step = user_pipe_32.fs.lookup_step; + p->fs.lookup_weight = user_pipe_32.fs.lookup_weight; + p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size; + p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size; + } + return error; +} + + +int +cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p ) +{ + struct dn_pipe_64 user_pipe_64; + int error = 0; + + error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64)); + if (!error) { + p->pipe_nr = user_pipe_64.pipe_nr; + p->bandwidth = user_pipe_64.bandwidth; + p->delay = user_pipe_64.delay; + p->V = user_pipe_64.V; + p->sum = user_pipe_64.sum; + p->numbytes = user_pipe_64.numbytes; + p->sched_time = user_pipe_64.sched_time; + bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ); + p->ready = user_pipe_64.ready; + + p->fs.fs_nr = user_pipe_64.fs.fs_nr; + p->fs.flags_fs = user_pipe_64.fs.flags_fs; + p->fs.parent_nr = user_pipe_64.fs.parent_nr; + p->fs.weight = user_pipe_64.fs.weight; + p->fs.qsize = user_pipe_64.fs.qsize; + p->fs.plr = user_pipe_64.fs.plr; + p->fs.flow_mask = user_pipe_64.fs.flow_mask; + p->fs.rq_size = user_pipe_64.fs.rq_size; + p->fs.rq_elements = user_pipe_64.fs.rq_elements; + p->fs.last_expired = user_pipe_64.fs.last_expired; + p->fs.backlogged = user_pipe_64.fs.backlogged; + p->fs.w_q = user_pipe_64.fs.w_q; + p->fs.max_th = user_pipe_64.fs.max_th; + p->fs.min_th = user_pipe_64.fs.min_th; + p->fs.max_p = user_pipe_64.fs.max_p; + p->fs.c_1 = user_pipe_64.fs.c_1; + p->fs.c_2 = user_pipe_64.fs.c_2; + p->fs.c_3 = user_pipe_64.fs.c_3; + p->fs.c_4 = user_pipe_64.fs.c_4; + p->fs.lookup_depth = user_pipe_64.fs.lookup_depth; + p->fs.lookup_step = user_pipe_64.fs.lookup_step; + p->fs.lookup_weight = user_pipe_64.fs.lookup_weight; + p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size; + p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size; + } + return error; +} + +static void +cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp) +{ + fs_bp->fs_nr = set->fs_nr; + fs_bp->flags_fs = set->flags_fs; + fs_bp->parent_nr = set->parent_nr; + fs_bp->weight = set->weight; + fs_bp->qsize = set->qsize; + fs_bp->plr = set->plr; + fs_bp->flow_mask = set->flow_mask; + fs_bp->rq_size = set->rq_size; + fs_bp->rq_elements = set->rq_elements; + fs_bp->last_expired = set->last_expired; + fs_bp->backlogged = set->backlogged; + fs_bp->w_q = set->w_q; + fs_bp->max_th = set->max_th; + fs_bp->min_th = set->min_th; + fs_bp->max_p = set->max_p; + fs_bp->c_1 = set->c_1; + fs_bp->c_2 = set->c_2; + fs_bp->c_3 = set->c_3; + fs_bp->c_4 = set->c_4; + fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup); + fs_bp->lookup_depth = set->lookup_depth; + fs_bp->lookup_step = set->lookup_step; + fs_bp->lookup_weight = set->lookup_weight; + fs_bp->avg_pkt_size = set->avg_pkt_size; + fs_bp->max_pkt_size = set->max_pkt_size; +} + +static void +cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp) +{ + fs_bp->fs_nr = set->fs_nr; + fs_bp->flags_fs = set->flags_fs; + fs_bp->parent_nr = set->parent_nr; + fs_bp->weight = set->weight; + fs_bp->qsize = set->qsize; + fs_bp->plr = set->plr; + fs_bp->flow_mask = set->flow_mask; + fs_bp->rq_size = set->rq_size; + fs_bp->rq_elements = set->rq_elements; + fs_bp->last_expired = set->last_expired; + fs_bp->backlogged = set->backlogged; + fs_bp->w_q = set->w_q; + fs_bp->max_th = set->max_th; + fs_bp->min_th = set->min_th; + fs_bp->max_p = set->max_p; + fs_bp->c_1 = set->c_1; + fs_bp->c_2 = set->c_2; + fs_bp->c_3 = set->c_3; + fs_bp->c_4 = set->c_4; + fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup); + fs_bp->lookup_depth = set->lookup_depth; + fs_bp->lookup_step = set->lookup_step; + fs_bp->lookup_weight = set->lookup_weight; + fs_bp->avg_pkt_size = set->avg_pkt_size; + fs_bp->max_pkt_size = set->max_pkt_size; +} + +static +void +cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp) +{ + qp->id = q->id; + qp->len = q->len; + qp->len_bytes = q->len_bytes; + qp->numbytes = q->numbytes; + qp->tot_pkts = q->tot_pkts; + qp->tot_bytes = q->tot_bytes; + qp->drops = q->drops; + qp->hash_slot = q->hash_slot; + qp->avg = q->avg; + qp->count = q->count; + qp->random = q->random; + qp->q_time = q->q_time; + qp->heap_pos = q->heap_pos; + qp->sched_time = q->sched_time; + qp->S = q->S; + qp->F = q->F; +} + +static +void +cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp) +{ + qp->id = q->id; + qp->len = q->len; + qp->len_bytes = q->len_bytes; + qp->numbytes = q->numbytes; + qp->tot_pkts = q->tot_pkts; + qp->tot_bytes = q->tot_bytes; + qp->drops = q->drops; + qp->hash_slot = q->hash_slot; + qp->avg = q->avg; + qp->count = q->count; + qp->random = q->random; + qp->q_time = q->q_time; + qp->heap_pos = q->heap_pos; + qp->sched_time = q->sched_time; + qp->S = q->S; + qp->F = q->F; +} + +static +char * +cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp) +{ + char *bp; + + pipe_bp->pipe_nr = p->pipe_nr; + pipe_bp->bandwidth = p->bandwidth; + pipe_bp->delay = p->delay; + bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32)); + pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p); + bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32)); + pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p); + bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32)); + pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p); + pipe_bp->V = p->V; + pipe_bp->sum = p->sum; + pipe_bp->numbytes = p->numbytes; + pipe_bp->sched_time = p->sched_time; + bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ); + pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp); + pipe_bp->ready = p->ready; + + cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs)); + + pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10); + /* + * XXX the following is a hack based on ->next being the + * first field in dn_pipe and dn_flow_set. The correct + * solution would be to move the dn_flow_set to the beginning + * of struct dn_pipe. + */ + pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE ); + /* clean pointers */ + pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0; + pipe_bp->fs.next = (user32_addr_t)0; + pipe_bp->fs.pipe = (user32_addr_t)0; + pipe_bp->fs.rq = (user32_addr_t)0; + bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32); + return dn_copy_set_32( &(p->fs), bp); +} + +static +char * +cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp) +{ + char *bp; + + pipe_bp->pipe_nr = p->pipe_nr; + pipe_bp->bandwidth = p->bandwidth; + pipe_bp->delay = p->delay; + bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64)); + pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p); + bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64)); + pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p); + bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64)); + pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p); + pipe_bp->V = p->V; + pipe_bp->sum = p->sum; + pipe_bp->numbytes = p->numbytes; + pipe_bp->sched_time = p->sched_time; + bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ); + pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp); + pipe_bp->ready = p->ready; + + cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs)); + + pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10); + /* + * XXX the following is a hack based on ->next being the + * first field in dn_pipe and dn_flow_set. The correct + * solution would be to move the dn_flow_set to the beginning + * of struct dn_pipe. + */ + pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE ); + /* clean pointers */ + pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL; + pipe_bp->fs.next = USER_ADDR_NULL; + pipe_bp->fs.pipe = USER_ADDR_NULL; + pipe_bp->fs.rq = USER_ADDR_NULL; + bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64); + return dn_copy_set_64( &(p->fs), bp); +} static int heap_init(struct dn_heap *h, int new_size) -{ - struct dn_heap_entry *p; - - if (h->size >= new_size ) { - printf("heap_init, Bogus call, have %d want %d\n", - h->size, new_size); - return 0 ; - } - new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ; - p = _MALLOC(new_size * sizeof(*p), M_IPFW, M_DONTWAIT ); - if (p == NULL) { - printf(" heap_init, resize %d failed\n", new_size ); - return 1 ; /* error */ - } - if (h->size > 0) { - bcopy(h->p, p, h->size * sizeof(*p) ); - FREE(h->p, M_IPFW); - } - h->p = p ; - h->size = new_size ; - return 0 ; +{ + struct dn_heap_entry *p; + + if (h->size >= new_size) { + printf("dummynet: heap_init, Bogus call, have %d want %d\n", + h->size, new_size); + return 0; + } + new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT; + p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT ); + if (p == NULL) { + printf("dummynet: heap_init, resize %d failed\n", new_size ); + return 1; /* error */ + } + if (h->size > 0) { + bcopy(h->p, p, h->size * sizeof(*p)); + FREE(h->p, M_DUMMYNET); + } + h->p = p; + h->size = new_size; + return 0; } /* @@ -258,33 +591,36 @@ heap_init(struct dn_heap *h, int new_size) *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ; static int heap_insert(struct dn_heap *h, dn_key key1, void *p) -{ - int son = h->elements ; - - if (p == NULL) /* data already there, set starting point */ - son = key1 ; - else { /* insert new element at the end, possibly resize */ - son = h->elements ; - if (son == h->size) /* need resize... */ - if (heap_init(h, h->elements+1) ) - return 1 ; /* failure... */ - h->p[son].object = p ; - h->p[son].key = key1 ; - h->elements++ ; - } - while (son > 0) { /* bubble up */ - int father = HEAP_FATHER(son) ; - struct dn_heap_entry tmp ; - - if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) - break ; /* found right position */ - /* son smaller than father, swap and repeat */ - HEAP_SWAP(h->p[son], h->p[father], tmp) ; +{ + int son = h->elements; + + if (p == NULL) { /* data already there, set starting point */ + son = key1; + } else { /* insert new element at the end, possibly resize */ + son = h->elements; + if (son == h->size) { /* need resize... */ + if (heap_init(h, h->elements + 1)) { + return 1; /* failure... */ + } + } + h->p[son].object = p; + h->p[son].key = key1; + h->elements++; + } + while (son > 0) { /* bubble up */ + int father = HEAP_FATHER(son); + struct dn_heap_entry tmp; + + if (DN_KEY_LT( h->p[father].key, h->p[son].key )) { + break; /* found right position */ + } + /* son smaller than father, swap and repeat */ + HEAP_SWAP(h->p[son], h->p[father], tmp); + SET_OFFSET(h, son); + son = father; + } SET_OFFSET(h, son); - son = father ; - } - SET_OFFSET(h, son); - return 0 ; + return 0; } /* @@ -292,84 +628,46 @@ heap_insert(struct dn_heap *h, dn_key key1, void *p) */ static void heap_extract(struct dn_heap *h, void *obj) -{ - int child, father, max = h->elements - 1 ; - - if (max < 0) { - printf("warning, extract from empty heap 0x%p\n", h); - return ; - } - father = 0 ; /* default: move up smallest child */ - if (obj != NULL) { /* extract specific element, index is at offset */ - if (h->offset <= 0) - panic("*** heap_extract from middle not supported on this heap!!!\n"); - father = *((int *)((char *)obj + h->offset)) ; - if (father < 0 || father >= h->elements) { - printf("dummynet: heap_extract, father %d out of bound 0..%d\n", - father, h->elements); - panic("heap_extract"); - } - } - RESET_OFFSET(h, father); - child = HEAP_LEFT(father) ; /* left child */ - while (child <= max) { /* valid entry */ - if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) - child = child+1 ; /* take right child, otherwise left */ - h->p[father] = h->p[child] ; - SET_OFFSET(h, father); - father = child ; - child = HEAP_LEFT(child) ; /* left child for next loop */ - } - h->elements-- ; - if (father != max) { - /* - * Fill hole with last entry and bubble up, reusing the insert code - */ - h->p[father] = h->p[max] ; - heap_insert(h, father, NULL); /* this one cannot fail */ - } -} - -#if 0 -/* - * change object position and update references - * XXX this one is never used! - */ -static void -heap_move(struct dn_heap *h, dn_key new_key, void *object) { - int temp; - int i ; - int max = h->elements-1 ; - struct dn_heap_entry buf ; - - if (h->offset <= 0) - panic("cannot move items on this heap"); - - i = *((int *)((char *)object + h->offset)); - if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */ - h->p[i].key = new_key ; - for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ; - i = temp ) { /* bubble up */ - HEAP_SWAP(h->p[i], h->p[temp], buf) ; - SET_OFFSET(h, i); - } - } else { /* must move down */ - h->p[i].key = new_key ; - while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */ - if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key)) - temp++ ; /* select child with min key */ - if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */ - HEAP_SWAP(h->p[i], h->p[temp], buf) ; - SET_OFFSET(h, i); - } else - break ; - i = temp ; - } - } - SET_OFFSET(h, i); + int child, father, maxelt = h->elements - 1; + + if (maxelt < 0) { + printf("dummynet: warning, extract from empty heap 0x%llx\n", + (uint64_t)VM_KERNEL_ADDRPERM(h)); + return; + } + father = 0; /* default: move up smallest child */ + if (obj != NULL) { /* extract specific element, index is at offset */ + if (h->offset <= 0) { + panic("dummynet: heap_extract from middle not supported on this heap!!!\n"); + } + father = *((int *)((char *)obj + h->offset)); + if (father < 0 || father >= h->elements) { + printf("dummynet: heap_extract, father %d out of bound 0..%d\n", + father, h->elements); + panic("dummynet: heap_extract"); + } + } + RESET_OFFSET(h, father); + child = HEAP_LEFT(father); /* left child */ + while (child <= maxelt) { /* valid entry */ + if (child != maxelt && DN_KEY_LT(h->p[child + 1].key, h->p[child].key)) { + child = child + 1; /* take right child, otherwise left */ + } + h->p[father] = h->p[child]; + SET_OFFSET(h, father); + father = child; + child = HEAP_LEFT(child); /* left child for next loop */ + } + h->elements--; + if (father != maxelt) { + /* + * Fill hole with last entry and bubble up, reusing the insert code + */ + h->p[father] = h->p[maxelt]; + heap_insert(h, father, NULL); /* this one cannot fail */ + } } -#endif /* heap_move, unused */ /* * heapify() will reorganize data inside an array to maintain the @@ -378,10 +676,11 @@ heap_move(struct dn_heap *h, dn_key new_key, void *object) static void heapify(struct dn_heap *h) { - int i ; + int i; - for (i = 0 ; i < h->elements ; i++ ) - heap_insert(h, i , NULL) ; + for (i = 0; i < h->elements; i++) { + heap_insert(h, i, NULL); + } } /* @@ -390,15 +689,36 @@ heapify(struct dn_heap *h) static void heap_free(struct dn_heap *h) { - if (h->size >0 ) - FREE(h->p, M_IPFW); - bzero(h, sizeof(*h) ); + if (h->size > 0) { + FREE(h->p, M_DUMMYNET); + } + bzero(h, sizeof(*h)); } /* * --- end of heap management functions --- */ +/* + * Return the mbuf tag holding the dummynet state. As an optimization + * this is assumed to be the first tag on the list. If this turns out + * wrong we'll need to search the list. + */ +static struct dn_pkt_tag * +dn_tag_get(struct mbuf *m) +{ + struct m_tag *mtag = m_tag_first(m); + + if (!(mtag != NULL && + mtag->m_tag_id == KERNEL_MODULE_TAG_ID && + mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET)) { + panic("packet on dummynet queue w/o dummynet tag: 0x%llx", + (uint64_t)VM_KERNEL_ADDRPERM(m)); + } + + return (struct dn_pkt_tag *)(mtag + 1); +} + /* * Scheduler functions: * @@ -418,78 +738,46 @@ heap_free(struct dn_heap *h) * invocations of the procedures. */ static void -transmit_event(struct dn_pipe *pipe) +transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail) { - struct dn_pkt *pkt ; - - while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) { - /* - * first unlink, then call procedures, since ip_input() can invoke - * ip_output() and viceversa, thus causing nested calls - */ - pipe->head = DN_NEXT(pkt) ; + struct mbuf *m; + struct dn_pkt_tag *pkt = NULL; + u_int64_t schedule_time; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + ASSERT(serialize >= 0); + if (serialize == 0) { + while ((m = pipe->head) != NULL) { + pkt = dn_tag_get(m); + if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time)) { + break; + } + + pipe->head = m->m_nextpkt; + if (*tail != NULL) { + (*tail)->m_nextpkt = m; + } else { + *head = m; + } + *tail = m; + } + + if (*tail != NULL) { + (*tail)->m_nextpkt = NULL; + } + } - /* - * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf - * (NOT A REAL one, just a small block of malloc'ed memory) with - * m_type = MT_DUMMYNET - * m_next = actual mbuf to be processed by ip_input/output - * m_data = the matching rule - * and some other fields. - * The block IS FREED HERE because it contains parameters passed - * to the called routine. - */ - switch (pkt->dn_dir) { - case DN_TO_IP_OUT: - (void)ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL); - rt_unref (pkt->ro.ro_rt) ; - break ; - - case DN_TO_IP_IN : - ip_input((struct mbuf *)pkt) ; - break ; - -#if BRIDGE - case DN_TO_BDG_FWD : { - struct mbuf *m = (struct mbuf *)pkt ; - struct ether_header *eh; - - if (pkt->dn_m->m_len < ETHER_HDR_LEN - && (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) { - printf("dummynet/bridge: pullup fail, dropping pkt\n"); - break; - } - /* - * same as ether_input, make eh be a pointer into the mbuf - */ - eh = mtod(pkt->dn_m, struct ether_header *); - m_adj(pkt->dn_m, ETHER_HDR_LEN); - /* - * bdg_forward() wants a pointer to the pseudo-mbuf-header, but - * on return it will supply the pointer to the actual packet - * (originally pkt->dn_m, but could be something else now) if - * it has not consumed it. - */ - m = bdg_forward(m, eh, pkt->ifp); - if (m) - m_freem(m); - } - break ; -#endif + schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ? + curr_time + 1 : pkt->dn_output_time; - default: - printf("dummynet: bad switch %d!\n", pkt->dn_dir); - m_freem(pkt->dn_m); - break ; - } - FREE(pkt, M_IPFW); - } - /* if there are leftover packets, put into the heap for next event */ - if ( (pkt = pipe->head) ) - heap_insert(&extract_heap, pkt->output_time, pipe ) ; - /* XXX should check errors on heap_insert, by draining the - * whole pipe p and hoping in the future we are more successful - */ + /* if there are leftover packets, put the pipe into the heap for next ready event */ + if ((m = pipe->head) != NULL) { + pkt = dn_tag_get(m); + /* XXX should check errors on heap_insert, by draining the + * whole pipe p and hoping in the future we are more successful + */ + heap_insert(&extract_heap, schedule_time, pipe); + } } /* @@ -497,8 +785,15 @@ transmit_event(struct dn_pipe *pipe) * before being able to transmit a packet. The credit is taken from * either a pipe (WF2Q) or a flow_queue (per-flow queueing) */ -#define SET_TICKS(pkt, q, p) \ - (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \ + +/* hz is 100, which gives a granularity of 10ms in the old timer. + * The timer has been changed to fire every 1ms, so the use of + * hz has been modified here. All instances of hz have been left + * in place but adjusted by a factor of 10 so that hz is functionally + * equal to 1000. + */ +#define SET_TICKS(_m, q, p) \ + ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \ p->bandwidth ; /* @@ -506,21 +801,24 @@ transmit_event(struct dn_pipe *pipe) * and put into delay line (p_queue) */ static void -move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q, - struct dn_pipe *p, int len) +move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, + struct dn_pipe *p, int len) { - q->head = DN_NEXT(pkt) ; - q->len-- ; - q->len_bytes -= len ; - - pkt->output_time = curr_time + p->delay ; - - if (p->head == NULL) - p->head = pkt; - else - DN_NEXT(p->tail) = pkt; - p->tail = pkt; - DN_NEXT(p->tail) = NULL; + struct dn_pkt_tag *dt = dn_tag_get(pkt); + + q->head = pkt->m_nextpkt; + q->len--; + q->len_bytes -= len; + + dt->dn_output_time = curr_time + p->delay; + + if (p->head == NULL) { + p->head = pkt; + } else { + p->tail->m_nextpkt = pkt; + } + p->tail = pkt; + p->tail->m_nextpkt = NULL; } /* @@ -531,57 +829,63 @@ move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q, * if there are leftover packets reinsert the pkt in the scheduler. */ static void -ready_event(struct dn_flow_queue *q) +ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail) { - struct dn_pkt *pkt; - struct dn_pipe *p = q->fs->pipe ; - int p_was_empty ; - - if (p == NULL) { - printf("ready_event- pipe is gone\n"); - return ; - } - p_was_empty = (p->head == NULL) ; - - /* - * schedule fixed-rate queues linked to this pipe: - * Account for the bw accumulated since last scheduling, then - * drain as many pkts as allowed by q->numbytes and move to - * the delay line (in p) computing output time. - * bandwidth==0 (no limit) means we can drain the whole queue, - * setting len_scaled = 0 does the job. - */ - q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth; - while ( (pkt = q->head) != NULL ) { - int len = pkt->dn_m->m_pkthdr.len; - int len_scaled = p->bandwidth ? len*8*hz : 0 ; - if (len_scaled > q->numbytes ) - break ; - q->numbytes -= len_scaled ; - move_pkt(pkt, q, p, len); - } - /* - * If we have more packets queued, schedule next ready event - * (can only occur when bandwidth != 0, otherwise we would have - * flushed the whole queue in the previous loop). - * To this purpose we record the current time and compute how many - * ticks to go for the finish time of the packet. - */ - if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */ - dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */ - q->sched_time = curr_time ; - heap_insert(&ready_heap, curr_time + t, (void *)q ); - /* XXX should check errors on heap_insert, and drain the whole - * queue on error hoping next time we are luckier. + struct mbuf *pkt; + struct dn_pipe *p = q->fs->pipe; + int p_was_empty; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + if (p == NULL) { + printf("dummynet: ready_event pipe is gone\n"); + return; + } + p_was_empty = (p->head == NULL); + + /* + * schedule fixed-rate queues linked to this pipe: + * Account for the bw accumulated since last scheduling, then + * drain as many pkts as allowed by q->numbytes and move to + * the delay line (in p) computing output time. + * bandwidth==0 (no limit) means we can drain the whole queue, + * setting len_scaled = 0 does the job. + */ + q->numbytes += (curr_time - q->sched_time) * p->bandwidth; + while ((pkt = q->head) != NULL) { + int len = pkt->m_pkthdr.len; + int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0; + if (len_scaled > q->numbytes) { + break; + } + q->numbytes -= len_scaled; + move_pkt(pkt, q, p, len); + } + /* + * If we have more packets queued, schedule next ready event + * (can only occur when bandwidth != 0, otherwise we would have + * flushed the whole queue in the previous loop). + * To this purpose we record the current time and compute how many + * ticks to go for the finish time of the packet. + */ + if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */ + dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */ + q->sched_time = curr_time; + heap_insert(&ready_heap, curr_time + t, (void *)q ); + /* XXX should check errors on heap_insert, and drain the whole + * queue on error hoping next time we are luckier. + */ + } else { /* RED needs to know when the queue becomes empty */ + q->q_time = curr_time; + q->numbytes = 0; + } + /* + * If the delay line was empty call transmit_event(p) now. + * Otherwise, the scheduler will take care of it. */ - } else /* RED needs to know when the queue becomes empty */ - q->q_time = curr_time; - /* - * If the delay line was empty call transmit_event(p) now. - * Otherwise, the scheduler will take care of it. - */ - if (p_was_empty) - transmit_event(p); + if (p_was_empty) { + transmit_event(p, head, tail); + } } /* @@ -593,201 +897,279 @@ ready_event(struct dn_flow_queue *q) * there is an additional delay. */ static void -ready_event_wfq(struct dn_pipe *p) +ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail) { - int p_was_empty = (p->head == NULL) ; - struct dn_heap *sch = &(p->scheduler_heap); - struct dn_heap *neh = &(p->not_eligible_heap) ; - - if (p->if_name[0] == 0) /* tx clock is simulated */ - p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth; - else { /* tx clock is for real, the ifq must be empty or this is a NOP */ - if (p->ifp && p->ifp->if_snd.ifq_head != NULL) - return ; - else { - DEB(printf("pipe %d ready from %s --\n", - p->pipe_nr, p->if_name);) - } - } - - /* - * While we have backlogged traffic AND credit, we need to do - * something on the queue. - */ - while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) { - if (sch->elements > 0) { /* have some eligible pkts to send out */ - struct dn_flow_queue *q = sch->p[0].object ; - struct dn_pkt *pkt = q->head; - struct dn_flow_set *fs = q->fs; - u_int64_t len = pkt->dn_m->m_pkthdr.len; - int len_scaled = p->bandwidth ? len*8*hz : 0 ; - - heap_extract(sch, NULL); /* remove queue from heap */ - p->numbytes -= len_scaled ; - move_pkt(pkt, q, p, len); - - p->V += (len<sum ; /* update V */ - q->S = q->F ; /* update start time */ - if (q->len == 0) { /* Flow not backlogged any more */ - fs->backlogged-- ; - heap_insert(&(p->idle_heap), q->F, q); - } else { /* still backlogged */ + int p_was_empty = (p->head == NULL); + struct dn_heap *sch = &(p->scheduler_heap); + struct dn_heap *neh = &(p->not_eligible_heap); + int64_t p_numbytes = p->numbytes; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + if (p->if_name[0] == 0) { /* tx clock is simulated */ + p_numbytes += (curr_time - p->sched_time) * p->bandwidth; + } else { /* tx clock is for real, the ifq must be empty or this is a NOP */ + if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd)) { + return; + } else { + DPRINTF(("dummynet: pipe %d ready from %s --\n", + p->pipe_nr, p->if_name)); + } + } + + /* + * While we have backlogged traffic AND credit, we need to do + * something on the queue. + */ + while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) { + if (sch->elements > 0) { /* have some eligible pkts to send out */ + struct dn_flow_queue *q = sch->p[0].object; + struct mbuf *pkt = q->head; + struct dn_flow_set *fs = q->fs; + u_int64_t len = pkt->m_pkthdr.len; + int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0; + + heap_extract(sch, NULL); /* remove queue from heap */ + p_numbytes -= len_scaled; + move_pkt(pkt, q, p, len); + + p->V += (len << MY_M) / p->sum; /* update V */ + q->S = q->F; /* update start time */ + if (q->len == 0) { /* Flow not backlogged any more */ + fs->backlogged--; + heap_insert(&(p->idle_heap), q->F, q); + } else { /* still backlogged */ + /* + * update F and position in backlogged queue, then + * put flow in not_eligible_heap (we will fix this later). + */ + len = (q->head)->m_pkthdr.len; + q->F += (len << MY_M) / (u_int64_t) fs->weight; + if (DN_KEY_LEQ(q->S, p->V)) { + heap_insert(neh, q->S, q); + } else { + heap_insert(sch, q->F, q); + } + } + } + /* + * now compute V = max(V, min(S_i)). Remember that all elements in sch + * have by definition S_i <= V so if sch is not empty, V is surely + * the max and we must not update it. Conversely, if sch is empty + * we only need to look at neh. + */ + if (sch->elements == 0 && neh->elements > 0) { + p->V = MAX64( p->V, neh->p[0].key ); + } + /* move from neh to sch any packets that have become eligible */ + while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) { + struct dn_flow_queue *q = neh->p[0].object; + heap_extract(neh, NULL); + heap_insert(sch, q->F, q); + } + + if (p->if_name[0] != '\0') {/* tx clock is from a real thing */ + p_numbytes = -1; /* mark not ready for I/O */ + break; + } + } + if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0 + && p->idle_heap.elements > 0) { /* - * update F and position in backlogged queue, then - * put flow in not_eligible_heap (we will fix this later). + * no traffic and no events scheduled. We can get rid of idle-heap. */ - len = (q->head)->dn_m->m_pkthdr.len; - q->F += (len<weight ; - if (DN_KEY_LEQ(q->S, p->V)) - heap_insert(neh, q->S, q); - else - heap_insert(sch, q->F, q); - } + int i; + + for (i = 0; i < p->idle_heap.elements; i++) { + struct dn_flow_queue *q = p->idle_heap.p[i].object; + + q->F = 0; + q->S = q->F + 1; + } + p->sum = 0; + p->V = 0; + p->idle_heap.elements = 0; } /* - * now compute V = max(V, min(S_i)). Remember that all elements in sch - * have by definition S_i <= V so if sch is not empty, V is surely - * the max and we must not update it. Conversely, if sch is empty - * we only need to look at neh. + * If we are getting clocks from dummynet (not a real interface) and + * If we are under credit, schedule the next ready event. + * Also fix the delivery time of the last packet. */ - if (sch->elements == 0 && neh->elements > 0) - p->V = MAX64 ( p->V, neh->p[0].key ); - /* move from neh to sch any packets that have become eligible */ - while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) { - struct dn_flow_queue *q = neh->p[0].object ; - heap_extract(neh, NULL); - heap_insert(sch, q->F, q); + if (p->if_name[0] == 0 && p_numbytes < 0) { /* this implies bandwidth >0 */ + dn_key t = 0; /* number of ticks i have to wait */ + + if (p->bandwidth > 0) { + t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth; + } + dn_tag_get(p->tail)->dn_output_time += t; + p->sched_time = curr_time; + heap_insert(&wfq_ready_heap, curr_time + t, (void *)p); + /* XXX should check errors on heap_insert, and drain the whole + * queue on error hoping next time we are luckier. + */ } - if (p->if_name[0] != '\0') {/* tx clock is from a real thing */ - p->numbytes = -1 ; /* mark not ready for I/O */ - break ; + /* Fit (adjust if necessary) 64bit result into 32bit variable. */ + if (p_numbytes > INT_MAX) { + p->numbytes = INT_MAX; + } else if (p_numbytes < INT_MIN) { + p->numbytes = INT_MIN; + } else { + p->numbytes = p_numbytes; } - } - if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0 - && p->idle_heap.elements > 0) { + /* - * no traffic and no events scheduled. We can get rid of idle-heap. - */ - int i ; - - for (i = 0 ; i < p->idle_heap.elements ; i++) { - struct dn_flow_queue *q = p->idle_heap.p[i].object ; - - q->F = 0 ; - q->S = q->F + 1 ; - } - p->sum = 0 ; - p->V = 0 ; - p->idle_heap.elements = 0 ; - } - /* - * If we are getting clocks from dummynet (not a real interface) and - * If we are under credit, schedule the next ready event. - * Also fix the delivery time of the last packet. - */ - if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */ - dn_key t=0 ; /* number of ticks i have to wait */ - - if (p->bandwidth > 0) - t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ; - p->tail->output_time += t ; - p->sched_time = curr_time ; - heap_insert(&wfq_ready_heap, curr_time + t, (void *)p); - /* XXX should check errors on heap_insert, and drain the whole - * queue on error hoping next time we are luckier. + * If the delay line was empty call transmit_event(p) now. + * Otherwise, the scheduler will take care of it. */ - } - /* - * If the delay line was empty call transmit_event(p) now. - * Otherwise, the scheduler will take care of it. - */ - if (p_was_empty) - transmit_event(p); + if (p_was_empty) { + transmit_event(p, head, tail); + } } /* - * This is called once per tick, or HZ times per second. It is used to + * This is called every 1ms. It is used to * increment the current tick counter and schedule expired events. */ static void -dummynet(void * __unused unused) +dummynet(__unused void * unused) { - void *p ; /* generic parameter to handler */ - struct dn_heap *h ; - int s ; - struct dn_heap *heaps[3]; - int i; - struct dn_pipe *pe ; - - heaps[0] = &ready_heap ; /* fixed-rate queues */ - heaps[1] = &wfq_ready_heap ; /* wfq queues */ - heaps[2] = &extract_heap ; /* delay line */ - s = splimp(); /* see note on top, splnet() is not enough */ - curr_time++ ; - for (i=0; i < 3 ; i++) { - h = heaps[i]; - while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) { - DDB(if (h->p[0].key > curr_time) - printf("-- dummynet: warning, heap %d is %d ticks late\n", - i, (int)(curr_time - h->p[0].key));) - p = h->p[0].object ; /* store a copy before heap_extract */ - heap_extract(h, NULL); /* need to extract before processing */ - if (i == 0) - ready_event(p) ; - else if (i == 1) { - struct dn_pipe *pipe = p; - if (pipe->if_name[0] != '\0') - printf("*** bad ready_event_wfq for pipe %s\n", - pipe->if_name); - else - ready_event_wfq(p) ; - } else - transmit_event(p); - } - } - /* sweep pipes trying to expire idle flow_queues */ - for (pe = all_pipes; pe ; pe = pe->next ) - if (pe->idle_heap.elements > 0 && - DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) { - struct dn_flow_queue *q = pe->idle_heap.p[0].object ; - - heap_extract(&(pe->idle_heap), NULL); - q->S = q->F + 1 ; /* mark timestamp as invalid */ - pe->sum -= q->fs->weight ; - } - splx(s); - timeout(dummynet, NULL, 1); + void *p; /* generic parameter to handler */ + struct dn_heap *h; + struct dn_heap *heaps[3]; + struct mbuf *head = NULL, *tail = NULL; + int i; + struct dn_pipe *pe; + struct timespec ts; + struct timeval tv; + + heaps[0] = &ready_heap; /* fixed-rate queues */ + heaps[1] = &wfq_ready_heap; /* wfq queues */ + heaps[2] = &extract_heap; /* delay line */ + + lck_mtx_lock(dn_mutex); + + /* make all time measurements in milliseconds (ms) - + * here we convert secs and usecs to msecs (just divide the + * usecs and take the closest whole number). + */ + microuptime(&tv); + curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); + + for (i = 0; i < 3; i++) { + h = heaps[i]; + while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) { + if (h->p[0].key > curr_time) { + printf("dummynet: warning, heap %d is %d ticks late\n", + i, (int)(curr_time - h->p[0].key)); + } + p = h->p[0].object; /* store a copy before heap_extract */ + heap_extract(h, NULL); /* need to extract before processing */ + if (i == 0) { + ready_event(p, &head, &tail); + } else if (i == 1) { + struct dn_pipe *pipe = p; + if (pipe->if_name[0] != '\0') { + printf("dummynet: bad ready_event_wfq for pipe %s\n", + pipe->if_name); + } else { + ready_event_wfq(p, &head, &tail); + } + } else { + transmit_event(p, &head, &tail); + } + } + } + /* sweep pipes trying to expire idle flow_queues */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(pe, &pipehash[i], next) { + if (pe->idle_heap.elements > 0 && + DN_KEY_LT(pe->idle_heap.p[0].key, pe->V)) { + struct dn_flow_queue *q = pe->idle_heap.p[0].object; + + heap_extract(&(pe->idle_heap), NULL); + q->S = q->F + 1; /* mark timestamp as invalid */ + pe->sum -= q->fs->weight; + } + } + } + + /* check the heaps to see if there's still stuff in there, and + * only set the timer if there are packets to process + */ + timer_enabled = 0; + for (i = 0; i < 3; i++) { + h = heaps[i]; + if (h->elements > 0) { // set the timer + ts.tv_sec = 0; + ts.tv_nsec = 1 * 1000000; // 1ms + timer_enabled = 1; + bsd_timeout(dummynet, NULL, &ts); + break; + } + } + + if (head != NULL) { + serialize++; + } + + lck_mtx_unlock(dn_mutex); + + /* Send out the de-queued list of ready-to-send packets */ + if (head != NULL) { + dummynet_send(head); + lck_mtx_lock(dn_mutex); + serialize--; + lck_mtx_unlock(dn_mutex); + } } - -/* - * called by an interface when tx_rdy occurs. - */ -int -if_tx_rdy(struct ifnet *ifp) + + +static void +dummynet_send(struct mbuf *m) { - struct dn_pipe *p; - - for (p = all_pipes; p ; p = p->next ) - if (p->ifp == ifp) - break ; - if (p == NULL) { - char buf[32]; - sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit); - for (p = all_pipes; p ; p = p->next ) - if (!strcmp(p->if_name, buf) ) { - p->ifp = ifp ; - DEB(printf("++ tx rdy from %s (now found)\n", buf);) - break ; - } - } - if (p != NULL) { - DEB(printf("++ tx rdy from %s%d - qlen %d\n", ifp->if_name, - ifp->if_unit, ifp->if_snd.ifq_len);) - p->numbytes = 0 ; /* mark ready for I/O */ - ready_event_wfq(p); - } - return 0; + struct dn_pkt_tag *pkt; + struct mbuf *n; + + for (; m != NULL; m = n) { + n = m->m_nextpkt; + m->m_nextpkt = NULL; + pkt = dn_tag_get(m); + + DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n", + (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir, + pkt->dn_flags)); + + switch (pkt->dn_dir) { + case DN_TO_IP_OUT: { + struct route tmp_rt; + + /* route is already in the packet's dn_ro */ + bzero(&tmp_rt, sizeof(tmp_rt)); + + /* Force IP_RAWOUTPUT as the IP header is fully formed */ + pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING; + (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL); + ROUTE_RELEASE(&tmp_rt); + break; + } + case DN_TO_IP_IN: + proto_inject(PF_INET, m); + break; + case DN_TO_IP6_OUT: { + /* routes already in the packet's dn_{ro6,pmtu} */ + ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); + break; + } + case DN_TO_IP6_IN: + proto_inject(PF_INET6, m); + break; + default: + printf("dummynet: bad switch %d!\n", pkt->dn_dir); + m_freem(m); + break; + } + } } /* @@ -797,28 +1179,36 @@ if_tx_rdy(struct ifnet *ifp) static int expire_queues(struct dn_flow_set *fs) { - struct dn_flow_queue *q, *prev ; - int i, initial_elements = fs->rq_elements ; - - if (fs->last_expired == time_second) - return 0 ; - fs->last_expired = time_second ; - for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */ - for (prev=NULL, q = fs->rq[i] ; q != NULL ; ) - if (q->head != NULL || q->S != q->F+1) { - prev = q ; - q = q->next ; - } else { /* entry is idle, expire it */ - struct dn_flow_queue *old_q = q ; - - if (prev != NULL) - prev->next = q = q->next ; - else - fs->rq[i] = q = q->next ; - fs->rq_elements-- ; - FREE(old_q, M_IPFW); - } - return initial_elements - fs->rq_elements ; + struct dn_flow_queue *q, *prev; + int i, initial_elements = fs->rq_elements; + struct timeval timenow; + + /* reviewed for getmicrotime usage */ + getmicrotime(&timenow); + + if (fs->last_expired == timenow.tv_sec) { + return 0; + } + fs->last_expired = timenow.tv_sec; + for (i = 0; i <= fs->rq_size; i++) { /* last one is overflow */ + for (prev = NULL, q = fs->rq[i]; q != NULL;) { + if (q->head != NULL || q->S != q->F + 1) { + prev = q; + q = q->next; + } else { /* entry is idle, expire it */ + struct dn_flow_queue *old_q = q; + + if (prev != NULL) { + prev->next = q = q->next; + } else { + fs->rq[i] = q = q->next; + } + fs->rq_elements--; + FREE(old_q, M_DUMMYNET); + } + } + } + return initial_elements - fs->rq_elements; } /* @@ -828,30 +1218,30 @@ expire_queues(struct dn_flow_set *fs) static struct dn_flow_queue * create_queue(struct dn_flow_set *fs, int i) { - struct dn_flow_queue *q ; + struct dn_flow_queue *q; - if (fs->rq_elements > fs->rq_size * dn_max_ratio && + if (fs->rq_elements > fs->rq_size * dn_max_ratio && expire_queues(fs) == 0) { - /* - * No way to get room, use or create overflow queue. - */ - i = fs->rq_size ; - if ( fs->rq[i] != NULL ) - return fs->rq[i] ; - } - q = _MALLOC(sizeof(*q), M_IPFW, M_DONTWAIT) ; - if (q == NULL) { - printf("sorry, cannot allocate queue for new flow\n"); - return NULL ; - } - bzero(q, sizeof(*q) ); /* needed */ - q->fs = fs ; - q->hash_slot = i ; - q->next = fs->rq[i] ; - q->S = q->F + 1; /* hack - mark timestamp as invalid */ - fs->rq[i] = q ; - fs->rq_elements++ ; - return q ; + /* + * No way to get room, use or create overflow queue. + */ + i = fs->rq_size; + if (fs->rq[i] != NULL) { + return fs->rq[i]; + } + } + q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (q == NULL) { + printf("dummynet: sorry, cannot allocate queue for new flow\n"); + return NULL; + } + q->fs = fs; + q->hash_slot = i; + q->next = fs->rq[i]; + q->S = q->F + 1; /* hack - mark timestamp as invalid */ + fs->rq[i] = q; + fs->rq_elements++; + return q; } /* @@ -860,375 +1250,540 @@ create_queue(struct dn_flow_set *fs, int i) * so that further searches take less time. */ static struct dn_flow_queue * -find_queue(struct dn_flow_set *fs) +find_queue(struct dn_flow_set *fs, struct ip_flow_id *id) { - int i = 0 ; /* we need i and q for new allocations */ - struct dn_flow_queue *q, *prev; - - if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) ) - q = fs->rq[0] ; - else { - /* first, do the masking */ - last_pkt.dst_ip &= fs->flow_mask.dst_ip ; - last_pkt.src_ip &= fs->flow_mask.src_ip ; - last_pkt.dst_port &= fs->flow_mask.dst_port ; - last_pkt.src_port &= fs->flow_mask.src_port ; - last_pkt.proto &= fs->flow_mask.proto ; - last_pkt.flags = 0 ; /* we don't care about this one */ - /* then, hash function */ - i = ( (last_pkt.dst_ip) & 0xffff ) ^ - ( (last_pkt.dst_ip >> 15) & 0xffff ) ^ - ( (last_pkt.src_ip << 1) & 0xffff ) ^ - ( (last_pkt.src_ip >> 16 ) & 0xffff ) ^ - (last_pkt.dst_port << 1) ^ (last_pkt.src_port) ^ - (last_pkt.proto ); - i = i % fs->rq_size ; - /* finally, scan the current list for a match */ - searches++ ; - for (prev=NULL, q = fs->rq[i] ; q ; ) { - search_steps++; - if (bcmp(&last_pkt, &(q->id), sizeof(q->id) ) == 0) - break ; /* found */ - else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) { - /* entry is idle and not in any heap, expire it */ - struct dn_flow_queue *old_q = q ; - - if (prev != NULL) - prev->next = q = q->next ; - else - fs->rq[i] = q = q->next ; - fs->rq_elements-- ; - FREE(old_q, M_IPFW); - continue ; - } - prev = q ; - q = q->next ; - } - if (q && prev != NULL) { /* found and not in front */ - prev->next = q->next ; - q->next = fs->rq[i] ; - fs->rq[i] = q ; - } - } - if (q == NULL) { /* no match, need to allocate a new entry */ - q = create_queue(fs, i); - if (q != NULL) - q->id = last_pkt ; - } - return q ; + int i = 0; /* we need i and q for new allocations */ + struct dn_flow_queue *q, *prev; + int is_v6 = IS_IP6_FLOW_ID(id); + + if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) { + q = fs->rq[0]; + } else { + /* first, do the masking, then hash */ + id->dst_port &= fs->flow_mask.dst_port; + id->src_port &= fs->flow_mask.src_port; + id->proto &= fs->flow_mask.proto; + id->flags = 0; /* we don't care about this one */ + if (is_v6) { + APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6); + APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6); + id->flow_id6 &= fs->flow_mask.flow_id6; + + i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff) ^ + ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff) ^ + ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff) ^ + ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff) ^ + + ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff) ^ + ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff) ^ + ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff) ^ + ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff) ^ + + ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff) ^ + ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff) ^ + ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff) ^ + ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff) ^ + + ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff) ^ + ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff) ^ + ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff) ^ + ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff) ^ + + (id->dst_port << 1) ^ (id->src_port) ^ + (id->proto) ^ + (id->flow_id6); + } else { + id->dst_ip &= fs->flow_mask.dst_ip; + id->src_ip &= fs->flow_mask.src_ip; + + i = ((id->dst_ip) & 0xffff) ^ + ((id->dst_ip >> 15) & 0xffff) ^ + ((id->src_ip << 1) & 0xffff) ^ + ((id->src_ip >> 16) & 0xffff) ^ + (id->dst_port << 1) ^ (id->src_port) ^ + (id->proto); + } + i = i % fs->rq_size; + /* finally, scan the current list for a match */ + searches++; + for (prev = NULL, q = fs->rq[i]; q;) { + search_steps++; + if (is_v6 && + IN6_ARE_ADDR_EQUAL(&id->dst_ip6, &q->id.dst_ip6) && + IN6_ARE_ADDR_EQUAL(&id->src_ip6, &q->id.src_ip6) && + id->dst_port == q->id.dst_port && + id->src_port == q->id.src_port && + id->proto == q->id.proto && + id->flags == q->id.flags && + id->flow_id6 == q->id.flow_id6) { + break; /* found */ + } + if (!is_v6 && id->dst_ip == q->id.dst_ip && + id->src_ip == q->id.src_ip && + id->dst_port == q->id.dst_port && + id->src_port == q->id.src_port && + id->proto == q->id.proto && + id->flags == q->id.flags) { + break; /* found */ + } + /* No match. Check if we can expire the entry */ + if (pipe_expire && q->head == NULL && q->S == q->F + 1) { + /* entry is idle and not in any heap, expire it */ + struct dn_flow_queue *old_q = q; + + if (prev != NULL) { + prev->next = q = q->next; + } else { + fs->rq[i] = q = q->next; + } + fs->rq_elements--; + FREE(old_q, M_DUMMYNET); + continue; + } + prev = q; + q = q->next; + } + if (q && prev != NULL) { /* found and not in front */ + prev->next = q->next; + q->next = fs->rq[i]; + fs->rq[i] = q; + } + } + if (q == NULL) { /* no match, need to allocate a new entry */ + q = create_queue(fs, i); + if (q != NULL) { + q->id = *id; + } + } + return q; } static int red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len) { - /* - * RED algorithm - * - * RED calculates the average queue size (avg) using a low-pass filter - * with an exponential weighted (w_q) moving average: - * avg <- (1-w_q) * avg + w_q * q_size - * where q_size is the queue length (measured in bytes or * packets). - * - * If q_size == 0, we compute the idle time for the link, and set - * avg = (1 - w_q)^(idle/s) - * where s is the time needed for transmitting a medium-sized packet. - * - * Now, if avg < min_th the packet is enqueued. - * If avg > max_th the packet is dropped. Otherwise, the packet is - * dropped with probability P function of avg. - * - */ - - int64_t p_b = 0; - /* queue in bytes or packets ? */ - u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len; - - DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);) - - /* average queue size estimation */ - if (q_size != 0) { /* - * queue is not empty, avg <- avg + (q_size - avg) * w_q + * RED algorithm + * + * RED calculates the average queue size (avg) using a low-pass filter + * with an exponential weighted (w_q) moving average: + * avg <- (1-w_q) * avg + w_q * q_size + * where q_size is the queue length (measured in bytes or * packets). + * + * If q_size == 0, we compute the idle time for the link, and set + * avg = (1 - w_q)^(idle/s) + * where s is the time needed for transmitting a medium-sized packet. + * + * Now, if avg < min_th the packet is enqueued. + * If avg > max_th the packet is dropped. Otherwise, the packet is + * dropped with probability P function of avg. + * */ - int diff = SCALE(q_size) - q->avg; - int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q); - q->avg += (int) v; - } else { - /* - * queue is empty, find for how long the queue has been - * empty and use a lookup table for computing - * (1 - * w_q)^(idle_time/s) where s is the time to send a - * (small) packet. - * XXX check wraps... - */ - if (q->avg) { - u_int t = (curr_time - q->q_time) / fs->lookup_step; - - q->avg = (t < fs->lookup_depth) ? - SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; - } - } - DEB(printf("avg: %u ", SCALE_VAL(q->avg));) - - /* should i drop ? */ - - if (q->avg < fs->min_th) { - q->count = -1; - return 0; /* accept packet ; */ - } - if (q->avg >= fs->max_th) { /* average queue >= max threshold */ - if (fs->flags_fs & DN_IS_GENTLE_RED) { - /* - * According to Gentle-RED, if avg is greater than max_th the - * packet is dropped with a probability - * p_b = c_3 * avg - c_4 - * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p - */ - p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4; + int64_t p_b = 0; + /* queue in bytes or packets ? */ + u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len; + + DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size)); + + /* average queue size estimation */ + if (q_size != 0) { + /* + * queue is not empty, avg <- avg + (q_size - avg) * w_q + */ + int diff = SCALE(q_size) - q->avg; + int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q); + + q->avg += (int) v; } else { - q->count = -1; - printf("- drop"); - return 1 ; + /* + * queue is empty, find for how long the queue has been + * empty and use a lookup table for computing + * (1 - * w_q)^(idle_time/s) where s is the time to send a + * (small) packet. + * XXX check wraps... + */ + if (q->avg) { + u_int t = (curr_time - q->q_time) / fs->lookup_step; + + q->avg = (t < fs->lookup_depth) ? + SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; + } } - } else if (q->avg > fs->min_th) { - /* - * we compute p_b using the linear dropping function p_b = c_1 * - * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 = - * max_p * min_th / (max_th - min_th) - */ - p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2; - } - if (fs->flags_fs & DN_QSIZE_IS_BYTES) - p_b = (p_b * len) / fs->max_pkt_size; - if (++q->count == 0) - q->random = random() & 0xffff; - else { - /* - * q->count counts packets arrived since last drop, so a greater - * value of q->count means a greater packet drop probability. - */ - if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) { - q->count = 0; - DEB(printf("- red drop");) - /* after a drop we calculate a new random value */ - q->random = random() & 0xffff; - return 1; /* drop */ - } - } - /* end of RED algorithm */ - return 0 ; /* accept */ + DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg))); + + /* should i drop ? */ + + if (q->avg < fs->min_th) { + q->count = -1; + return 0; /* accept packet ; */ + } + if (q->avg >= fs->max_th) { /* average queue >= max threshold */ + if (fs->flags_fs & DN_IS_GENTLE_RED) { + /* + * According to Gentle-RED, if avg is greater than max_th the + * packet is dropped with a probability + * p_b = c_3 * avg - c_4 + * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p + */ + p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4; + } else { + q->count = -1; + DPRINTF(("dummynet: - drop")); + return 1; + } + } else if (q->avg > fs->min_th) { + /* + * we compute p_b using the linear dropping function p_b = c_1 * + * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 = + * max_p * min_th / (max_th - min_th) + */ + p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2; + } + if (fs->flags_fs & DN_QSIZE_IS_BYTES) { + p_b = (p_b * len) / fs->max_pkt_size; + } + if (++q->count == 0) { + q->random = (my_random() & 0xffff); + } else { + /* + * q->count counts packets arrived since last drop, so a greater + * value of q->count means a greater packet drop probability. + */ + if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) { + q->count = 0; + DPRINTF(("dummynet: - red drop")); + /* after a drop we calculate a new random value */ + q->random = (my_random() & 0xffff); + return 1; /* drop */ + } + } + /* end of RED algorithm */ + return 0; /* accept */ } static __inline struct dn_flow_set * -locate_flowset(int pipe_nr, struct ip_fw_chain *rule) +locate_flowset(int fs_nr) +{ + struct dn_flow_set *fs; + SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) { + if (fs->fs_nr == fs_nr) { + return fs; + } + } + + return NULL; +} + +static __inline struct dn_pipe * +locate_pipe(int pipe_nr) { - struct dn_flow_set *fs = NULL ; - - if ( (rule->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE ) - for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next) - ; - else { - struct dn_pipe *p1; - for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next) - ; - if (p1 != NULL) - fs = &(p1->fs) ; - } - if (fs != NULL) - rule->rule->pipe_ptr = fs ; /* record for the future */ - return fs ; + struct dn_pipe *pipe; + + SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) { + if (pipe->pipe_nr == pipe_nr) { + return pipe; + } + } + + return NULL; } + + /* * dummynet hook for packets. Below 'pipe' is a pipe or a queue * depending on whether WF2Q or fixed bw is used. + * + * pipe_nr pipe or queue the packet is destined for. + * dir where shall we send the packet after dummynet. + * m the mbuf with the packet + * ifp the 'ifp' parameter from the caller. + * NULL in ip_input, destination interface in ip_output, + * real_dst in bdg_forward + * ro route parameter (only used in ip_output, NULL otherwise) + * dst destination address, only used by ip_output + * rule matching rule, in case of multiple passes + * flags flags from the caller, only used in ip_output + * */ -int -dummynet_io(int pipe_nr, int dir, /* pipe_nr can also be a fs_nr */ - struct mbuf *m, struct ifnet *ifp, struct route *ro, - struct sockaddr_in *dst, - struct ip_fw_chain *rule, int flags) +static int +dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa) { - struct dn_pkt *pkt; - struct dn_flow_set *fs; - struct dn_pipe *pipe ; - u_int64_t len = m->m_pkthdr.len ; - struct dn_flow_queue *q = NULL ; - int s ; - - s = splimp(); - - pipe_nr &= 0xffff ; - - if ( (fs = rule->rule->pipe_ptr) == NULL ) { - fs = locate_flowset(pipe_nr, rule); - if (fs == NULL) - goto dropit ; /* this queue/pipe does not exist! */ - } - pipe = fs->pipe ; - if (pipe == NULL) { /* must be a queue, try find a matching pipe */ - for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr; - pipe = pipe->next) - ; - if (pipe != NULL) - fs->pipe = pipe ; - else { - printf("No pipe %d for queue %d, drop pkt\n", - fs->parent_nr, fs->fs_nr); - goto dropit ; - } - } - q = find_queue(fs); - if ( q == NULL ) - goto dropit ; /* cannot allocate queue */ - /* - * update statistics, then check reasons to drop pkt - */ - q->tot_bytes += len ; - q->tot_pkts++ ; - if ( fs->plr && random() < fs->plr ) - goto dropit ; /* random pkt drop */ - if ( fs->flags_fs & DN_QSIZE_IS_BYTES) { - if (q->len_bytes > fs->qsize) - goto dropit ; /* queue size overflow */ - } else { - if (q->len >= fs->qsize) - goto dropit ; /* queue count overflow */ - } - if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) ) - goto dropit ; - - pkt = (struct dn_pkt *)_MALLOC(sizeof (*pkt), M_IPFW, M_NOWAIT) ; - if ( pkt == NULL ) - goto dropit ; /* cannot allocate packet header */ - /* ok, i can handle the pkt now... */ - bzero(pkt, sizeof(*pkt) ); /* XXX expensive, see if we can remove it*/ - /* build and enqueue packet + parameters */ - pkt->hdr.mh_type = MT_DUMMYNET ; - (struct ip_fw_chain *)pkt->hdr.mh_data = rule ; - DN_NEXT(pkt) = NULL; - pkt->dn_m = m; - pkt->dn_dir = dir ; - - pkt->ifp = ifp; - if (dir == DN_TO_IP_OUT) { - /* - * We need to copy *ro because for ICMP pkts (and maybe others) - * the caller passed a pointer into the stack; dst might also be - * a pointer into *ro so it needs to be updated. + struct mbuf *head = NULL, *tail = NULL; + struct dn_pkt_tag *pkt; + struct m_tag *mtag; + struct dn_flow_set *fs = NULL; + struct dn_pipe *pipe; + u_int64_t len = m->m_pkthdr.len; + struct dn_flow_queue *q = NULL; + int is_pipe = 0; + struct timespec ts; + struct timeval tv; + + DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d\n", + (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir)); + + +#if DUMMYNET + is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0; +#endif /* DUMMYNET */ + + pipe_nr &= 0xffff; + + lck_mtx_lock(dn_mutex); + + /* make all time measurements in milliseconds (ms) - + * here we convert secs and usecs to msecs (just divide the + * usecs and take the closest whole number). */ - pkt->ro = *ro; - if (ro->ro_rt) - rtref(ro->ro_rt); - if (dst == (struct sockaddr_in *)&ro->ro_dst) /* dst points into ro */ - dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ; - - pkt->dn_dst = dst; - pkt->flags = flags ; - } - if (q->head == NULL) - q->head = pkt; - else - DN_NEXT(q->tail) = pkt; - q->tail = pkt; - q->len++; - q->len_bytes += len ; - - if ( q->head != pkt ) /* flow was not idle, we are done */ - goto done; - /* - * If we reach this point the flow was previously idle, so we need - * to schedule it. This involves different actions for fixed-rate or - * WF2Q queues. - */ - if ( (rule->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE ) { + microuptime(&tv); + curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); + /* - * Fixed-rate queue: just insert into the ready_heap. + * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule. */ - dn_key t = 0 ; - if (pipe->bandwidth) - t = SET_TICKS(pkt, q, pipe); - q->sched_time = curr_time ; - if (t == 0) /* must process it now */ - ready_event( q ); - else - heap_insert(&ready_heap, curr_time + t , q ); - } else { + if (is_pipe) { + pipe = locate_pipe(pipe_nr); + if (pipe != NULL) { + fs = &(pipe->fs); + } + } else { + fs = locate_flowset(pipe_nr); + } + + + if (fs == NULL) { + goto dropit; /* this queue/pipe does not exist! */ + } + pipe = fs->pipe; + if (pipe == NULL) { /* must be a queue, try find a matching pipe */ + pipe = locate_pipe(fs->parent_nr); + + if (pipe != NULL) { + fs->pipe = pipe; + } else { + printf("dummynet: no pipe %d for queue %d, drop pkt\n", + fs->parent_nr, fs->fs_nr); + goto dropit; + } + } + q = find_queue(fs, &(fwa->fwa_id)); + if (q == NULL) { + goto dropit; /* cannot allocate queue */ + } /* - * WF2Q. First, compute start time S: if the flow was idle (S=F+1) - * set S to the virtual time V for the controlling pipe, and update - * the sum of weights for the pipe; otherwise, remove flow from - * idle_heap and set S to max(F,V). - * Second, compute finish time F = S + len/weight. - * Third, if pipe was idle, update V=max(S, V). - * Fourth, count one more backlogged flow. + * update statistics, then check reasons to drop pkt */ - if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */ - q->S = pipe->V ; - pipe->sum += fs->weight ; /* add weight of new queue */ + q->tot_bytes += len; + q->tot_pkts++; + if (fs->plr && (my_random() < fs->plr)) { + goto dropit; /* random pkt drop */ + } + if (fs->flags_fs & DN_QSIZE_IS_BYTES) { + if (q->len_bytes > fs->qsize) { + goto dropit; /* queue size overflow */ + } + } else { + if (q->len >= fs->qsize) { + goto dropit; /* queue count overflow */ + } + } + if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) { + goto dropit; + } + + /* XXX expensive to zero, see if we can remove it*/ + mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, + sizeof(struct dn_pkt_tag), M_NOWAIT, m); + if (mtag == NULL) { + goto dropit; /* cannot allocate packet header */ + } + m_tag_prepend(m, mtag); /* attach to mbuf chain */ + + pkt = (struct dn_pkt_tag *)(mtag + 1); + bzero(pkt, sizeof(struct dn_pkt_tag)); + /* ok, i can handle the pkt now... */ + /* build and enqueue packet + parameters */ + pkt->dn_pf_rule = fwa->fwa_pf_rule; + pkt->dn_dir = dir; + + pkt->dn_ifp = fwa->fwa_oif; + if (dir == DN_TO_IP_OUT) { + /* + * We need to copy *ro because for ICMP pkts (and maybe others) + * the caller passed a pointer into the stack; dst might also be + * a pointer into *ro so it needs to be updated. + */ + if (fwa->fwa_ro) { + route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof(pkt->dn_ro)); + } + if (fwa->fwa_dst) { + if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) { /* dst points into ro */ + fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst); + } + + bcopy(fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst)); + } + } else if (dir == DN_TO_IP6_OUT) { + if (fwa->fwa_ro6) { + route_copyout((struct route *)&pkt->dn_ro6, + (struct route *)fwa->fwa_ro6, sizeof(pkt->dn_ro6)); + } + if (fwa->fwa_ro6_pmtu) { + route_copyout((struct route *)&pkt->dn_ro6_pmtu, + (struct route *)fwa->fwa_ro6_pmtu, sizeof(pkt->dn_ro6_pmtu)); + } + if (fwa->fwa_dst6) { + if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) { /* dst points into ro */ + fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst); + } + + bcopy(fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6)); + } + pkt->dn_origifp = fwa->fwa_origifp; + pkt->dn_mtu = fwa->fwa_mtu; + pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen; + if (fwa->fwa_exthdrs) { + bcopy(fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs)); + /* + * Need to zero out the source structure so the mbufs + * won't be freed by ip6_output() + */ + bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs)); + } + } + if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) { + pkt->dn_flags = fwa->fwa_oflags; + if (fwa->fwa_ipoa != NULL) { + pkt->dn_ipoa = *(fwa->fwa_ipoa); + } + } + if (q->head == NULL) { + q->head = m; } else { - heap_extract(&(pipe->idle_heap), q); - q->S = MAX64(q->F, pipe->V ) ; + q->tail->m_nextpkt = m; } - q->F = q->S + ( len<weight; + q->tail = m; + q->len++; + q->len_bytes += len; - if (pipe->not_eligible_heap.elements == 0 && - pipe->scheduler_heap.elements == 0) - pipe->V = MAX64 ( q->S, pipe->V ); - fs->backlogged++ ; + if (q->head != m) { /* flow was not idle, we are done */ + goto done; + } /* - * Look at eligibility. A flow is not eligibile if S>V (when - * this happens, it means that there is some other flow already - * scheduled for the same pipe, so the scheduler_heap cannot be - * empty). If the flow is not eligible we just store it in the - * not_eligible_heap. Otherwise, we store in the scheduler_heap - * and possibly invoke ready_event_wfq() right now if there is - * leftover credit. - * Note that for all flows in scheduler_heap (SCH), S_i <= V, - * and for all flows in not_eligible_heap (NEH), S_i > V . - * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH, - * we only need to look into NEH. + * If we reach this point the flow was previously idle, so we need + * to schedule it. This involves different actions for fixed-rate or + * WF2Q queues. */ - if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */ - if (pipe->scheduler_heap.elements == 0) - printf("++ ouch! not eligible but empty scheduler!\n"); - heap_insert(&(pipe->not_eligible_heap), q->S, q); + if (is_pipe) { + /* + * Fixed-rate queue: just insert into the ready_heap. + */ + dn_key t = 0; + if (pipe->bandwidth) { + t = SET_TICKS(m, q, pipe); + } + q->sched_time = curr_time; + if (t == 0) { /* must process it now */ + ready_event( q, &head, &tail ); + } else { + heap_insert(&ready_heap, curr_time + t, q ); + } } else { - heap_insert(&(pipe->scheduler_heap), q->F, q); - if (pipe->numbytes >= 0) { /* pipe is idle */ - if (pipe->scheduler_heap.elements != 1) - printf("*** OUCH! pipe should have been idle!\n"); - DEB(printf("Waking up pipe %d at %d\n", - pipe->pipe_nr, (int)(q->F >> MY_M)); ) - pipe->sched_time = curr_time ; - ready_event_wfq(pipe); - } - } - } + /* + * WF2Q. First, compute start time S: if the flow was idle (S=F+1) + * set S to the virtual time V for the controlling pipe, and update + * the sum of weights for the pipe; otherwise, remove flow from + * idle_heap and set S to max(F,V). + * Second, compute finish time F = S + len/weight. + * Third, if pipe was idle, update V=max(S, V). + * Fourth, count one more backlogged flow. + */ + if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */ + q->S = pipe->V; + pipe->sum += fs->weight; /* add weight of new queue */ + } else { + heap_extract(&(pipe->idle_heap), q); + q->S = MAX64(q->F, pipe->V ); + } + q->F = q->S + (len << MY_M) / (u_int64_t) fs->weight; + + if (pipe->not_eligible_heap.elements == 0 && + pipe->scheduler_heap.elements == 0) { + pipe->V = MAX64( q->S, pipe->V ); + } + fs->backlogged++; + /* + * Look at eligibility. A flow is not eligibile if S>V (when + * this happens, it means that there is some other flow already + * scheduled for the same pipe, so the scheduler_heap cannot be + * empty). If the flow is not eligible we just store it in the + * not_eligible_heap. Otherwise, we store in the scheduler_heap + * and possibly invoke ready_event_wfq() right now if there is + * leftover credit. + * Note that for all flows in scheduler_heap (SCH), S_i <= V, + * and for all flows in not_eligible_heap (NEH), S_i > V . + * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH, + * we only need to look into NEH. + */ + if (DN_KEY_GT(q->S, pipe->V)) { /* not eligible */ + if (pipe->scheduler_heap.elements == 0) { + printf("dummynet: ++ ouch! not eligible but empty scheduler!\n"); + } + heap_insert(&(pipe->not_eligible_heap), q->S, q); + } else { + heap_insert(&(pipe->scheduler_heap), q->F, q); + if (pipe->numbytes >= 0) { /* pipe is idle */ + if (pipe->scheduler_heap.elements != 1) { + printf("dummynet: OUCH! pipe should have been idle!\n"); + } + DPRINTF(("dummynet: waking up pipe %d at %d\n", + pipe->pipe_nr, (int)(q->F >> MY_M))); + pipe->sched_time = curr_time; + ready_event_wfq(pipe, &head, &tail); + } + } + } done: - splx(s); - return 0; + /* start the timer and set global if not already set */ + if (!timer_enabled) { + ts.tv_sec = 0; + ts.tv_nsec = 1 * 1000000; // 1ms + timer_enabled = 1; + bsd_timeout(dummynet, NULL, &ts); + } + + lck_mtx_unlock(dn_mutex); + + if (head != NULL) { + dummynet_send(head); + } + + return 0; dropit: - splx(s); - if (q) - q->drops++ ; - m_freem(m); - return ENOBUFS ; + if (q) { + q->drops++; + } + lck_mtx_unlock(dn_mutex); + m_freem(m); + return (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS; } /* - * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT) + * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT) * Doing this would probably save us the initial bzero of dn_pkt */ -#define DN_FREE_PKT(pkt) { \ - struct dn_pkt *n = pkt ; \ - rt_unref ( n->ro.ro_rt ) ; \ - m_freem(n->dn_m); \ - pkt = DN_NEXT(n) ; \ - FREE(n, M_IPFW) ; } +#define DN_FREE_PKT(_m) do { \ + struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \ + if (tag) { \ + struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \ + ROUTE_RELEASE(&n->dn_ro); \ + } \ + m_tag_delete(_m, tag); \ + m_freem(_m); \ +} while (0) /* * Dispose all packets and flow_queues on a flow_set. @@ -1239,30 +1794,39 @@ dropit: static void purge_flow_set(struct dn_flow_set *fs, int all) { - struct dn_pkt *pkt ; - struct dn_flow_queue *q, *qn ; - int i ; - - for (i = 0 ; i <= fs->rq_size ; i++ ) { - for (q = fs->rq[i] ; q ; q = qn ) { - for (pkt = q->head ; pkt ; ) - DN_FREE_PKT(pkt) ; - qn = q->next ; - FREE(q, M_IPFW); - } - fs->rq[i] = NULL ; - } - fs->rq_elements = 0 ; - if (all) { - /* RED - free lookup table */ - if (fs->w_q_lookup) - FREE(fs->w_q_lookup, M_IPFW); - if (fs->rq) - FREE(fs->rq, M_IPFW); - /* if this fs is not part of a pipe, free it */ - if (fs->pipe && fs != &(fs->pipe->fs) ) - FREE(fs, M_IPFW); - } + struct dn_flow_queue *q, *qn; + int i; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + for (i = 0; i <= fs->rq_size; i++) { + for (q = fs->rq[i]; q; q = qn) { + struct mbuf *m, *mnext; + + mnext = q->head; + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + DN_FREE_PKT(m); + } + qn = q->next; + FREE(q, M_DUMMYNET); + } + fs->rq[i] = NULL; + } + fs->rq_elements = 0; + if (all) { + /* RED - free lookup table */ + if (fs->w_q_lookup) { + FREE(fs->w_q_lookup, M_DUMMYNET); + } + if (fs->rq) { + FREE(fs->rq, M_DUMMYNET); + } + /* if this fs is not part of a pipe, free it */ + if (fs->pipe && fs != &(fs->pipe->fs)) { + FREE(fs, M_DUMMYNET); + } + } } /* @@ -1273,316 +1837,301 @@ purge_flow_set(struct dn_flow_set *fs, int all) static void purge_pipe(struct dn_pipe *pipe) { - struct dn_pkt *pkt ; + struct mbuf *m, *mnext; - purge_flow_set( &(pipe->fs), 1 ); + purge_flow_set( &(pipe->fs), 1 ); - for (pkt = pipe->head ; pkt ; ) - DN_FREE_PKT(pkt) ; + mnext = pipe->head; + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + DN_FREE_PKT(m); + } - heap_free( &(pipe->scheduler_heap) ); - heap_free( &(pipe->not_eligible_heap) ); - heap_free( &(pipe->idle_heap) ); + heap_free( &(pipe->scheduler_heap)); + heap_free( &(pipe->not_eligible_heap)); + heap_free( &(pipe->idle_heap)); } /* - * Delete all pipes and heaps returning memory. Must also - * remove references from all ipfw rules to all pipes. + * Delete all pipes and heaps returning memory. */ static void -dummynet_flush() +dummynet_flush(void) { - struct dn_pipe *curr_p, *p ; - struct ip_fw_chain *chain ; - struct dn_flow_set *fs, *curr_fs; - int s ; - - s = splimp() ; - - /* remove all references to pipes ...*/ - LIST_FOREACH(chain, &ip_fw_chain_head, next) - chain->rule->pipe_ptr = NULL ; - /* prevent future matches... */ - p = all_pipes ; - all_pipes = NULL ; - fs = all_flow_sets ; - all_flow_sets = NULL ; - /* and free heaps so we don't have unwanted events */ - heap_free(&ready_heap); - heap_free(&wfq_ready_heap); - heap_free(&extract_heap); - splx(s) ; - /* - * Now purge all queued pkts and delete all pipes - */ - /* scan and purge all flow_sets. */ - for ( ; fs ; ) { - curr_fs = fs ; - fs = fs->next ; - purge_flow_set(curr_fs, 1); - } - for ( ; p ; ) { - purge_pipe(p); - curr_p = p ; - p = p->next ; - FREE(q, M_IPFW); - } -} + struct dn_pipe *pipe, *pipe1; + struct dn_flow_set *fs, *fs1; + int i; + lck_mtx_lock(dn_mutex); -extern struct ip_fw_chain *ip_fw_default_rule ; -static void -dn_rule_delete_fs(struct dn_flow_set *fs, void *r) -{ - int i ; - struct dn_flow_queue *q ; - struct dn_pkt *pkt ; - - for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */ - for (q = fs->rq[i] ; q ; q = q->next ) - for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) ) - if (pkt->hdr.mh_data == r) - pkt->hdr.mh_data = (void *)ip_fw_default_rule ; -} -/* - * when a firewall rule is deleted, scan all queues and remove the flow-id - * from packets matching this rule. - */ -void -dn_rule_delete(void *r) -{ - struct dn_pipe *p ; - struct dn_pkt *pkt ; - struct dn_flow_set *fs ; - - /* - * If the rule references a queue (dn_flow_set), then scan - * the flow set, otherwise scan pipes. Should do either, but doing - * both does not harm. - */ - for ( fs = all_flow_sets ; fs ; fs = fs->next ) - dn_rule_delete_fs(fs, r); - for ( p = all_pipes ; p ; p = p->next ) { - fs = &(p->fs) ; - dn_rule_delete_fs(fs, r); - for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) ) - if (pkt->hdr.mh_data == r) - pkt->hdr.mh_data = (void *)ip_fw_default_rule ; - } + + /* Free heaps so we don't have unwanted events. */ + heap_free(&ready_heap); + heap_free(&wfq_ready_heap); + heap_free(&extract_heap); + + /* + * Now purge all queued pkts and delete all pipes. + * + * XXXGL: can we merge the for(;;) cycles into one or not? + */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) { + SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next); + purge_flow_set(fs, 1); + } + } + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) { + SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next); + purge_pipe(pipe); + FREE(pipe, M_DUMMYNET); + } + } + lck_mtx_unlock(dn_mutex); } /* * setup RED parameters */ static int -config_red(struct dn_flow_set *p, struct dn_flow_set * x) +config_red(struct dn_flow_set *p, struct dn_flow_set * x) { - int i; - - x->w_q = p->w_q; - x->min_th = SCALE(p->min_th); - x->max_th = SCALE(p->max_th); - x->max_p = p->max_p; - - x->c_1 = p->max_p / (p->max_th - p->min_th); - x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); - if (x->flags_fs & DN_IS_GENTLE_RED) { - x->c_3 = (SCALE(1) - p->max_p) / p->max_th; - x->c_4 = (SCALE(1) - 2 * p->max_p); - } - - /* if the lookup table already exist, free and create it again */ - if (x->w_q_lookup) - FREE(x->w_q_lookup, M_IPFW); - if (red_lookup_depth == 0) { - printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0"); - FREE(x, M_IPFW); - return EINVAL; - } - x->lookup_depth = red_lookup_depth; - x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int), - M_IPFW, M_DONTWAIT); - if (x->w_q_lookup == NULL) { - printf("sorry, cannot allocate red lookup table\n"); - FREE(x, M_IPFW); - return ENOSPC; - } - - /* fill the lookup table with (1 - w_q)^x */ - x->lookup_step = p->lookup_step ; - x->lookup_weight = p->lookup_weight ; - x->w_q_lookup[0] = SCALE(1) - x->w_q; - for (i = 1; i < x->lookup_depth; i++) - x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); - if (red_avg_pkt_size < 1) - red_avg_pkt_size = 512 ; - x->avg_pkt_size = red_avg_pkt_size ; - if (red_max_pkt_size < 1) - red_max_pkt_size = 1500 ; - x->max_pkt_size = red_max_pkt_size ; - return 0 ; + int i; + + x->w_q = p->w_q; + x->min_th = SCALE(p->min_th); + x->max_th = SCALE(p->max_th); + x->max_p = p->max_p; + + x->c_1 = p->max_p / (p->max_th - p->min_th); + x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); + if (x->flags_fs & DN_IS_GENTLE_RED) { + x->c_3 = (SCALE(1) - p->max_p) / p->max_th; + x->c_4 = (SCALE(1) - 2 * p->max_p); + } + + /* if the lookup table already exist, free and create it again */ + if (x->w_q_lookup) { + FREE(x->w_q_lookup, M_DUMMYNET); + x->w_q_lookup = NULL; + } + if (red_lookup_depth == 0) { + printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n"); + FREE(x, M_DUMMYNET); + return EINVAL; + } + x->lookup_depth = red_lookup_depth; + x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int), + M_DUMMYNET, M_DONTWAIT); + if (x->w_q_lookup == NULL) { + printf("dummynet: sorry, cannot allocate red lookup table\n"); + FREE(x, M_DUMMYNET); + return ENOSPC; + } + + /* fill the lookup table with (1 - w_q)^x */ + x->lookup_step = p->lookup_step; + x->lookup_weight = p->lookup_weight; + x->w_q_lookup[0] = SCALE(1) - x->w_q; + for (i = 1; i < x->lookup_depth; i++) { + x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); + } + if (red_avg_pkt_size < 1) { + red_avg_pkt_size = 512; + } + x->avg_pkt_size = red_avg_pkt_size; + if (red_max_pkt_size < 1) { + red_max_pkt_size = 1500; + } + x->max_pkt_size = red_max_pkt_size; + return 0; } static int alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs) { - if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ - int l = pfs->rq_size; - - if (l == 0) - l = dn_hash_size; - if (l < 4) - l = 4; - else if (l > 1024) - l = 1024; - x->rq_size = l; - } else /* one is enough for null mask */ - x->rq_size = 1; - x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *), - M_IPFW, M_DONTWAIT); - if (x->rq == NULL) { - printf("sorry, cannot allocate queue\n"); - return ENOSPC; - } - bzero(x->rq, (1+x->rq_size) * sizeof(struct dn_flow_queue *)); - x->rq_elements = 0; - return 0 ; + if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ + int l = pfs->rq_size; + + if (l == 0) { + l = dn_hash_size; + } + if (l < 4) { + l = 4; + } else if (l > DN_MAX_HASH_SIZE) { + l = DN_MAX_HASH_SIZE; + } + x->rq_size = l; + } else { /* one is enough for null mask */ + x->rq_size = 1; + } + x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *), + M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (x->rq == NULL) { + printf("dummynet: sorry, cannot allocate queue\n"); + return ENOSPC; + } + x->rq_elements = 0; + return 0; } static void set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src) { - x->flags_fs = src->flags_fs; - x->qsize = src->qsize; - x->plr = src->plr; - x->flow_mask = src->flow_mask; - if (x->flags_fs & DN_QSIZE_IS_BYTES) { - if (x->qsize > 1024*1024) - x->qsize = 1024*1024 ; - } else { - if (x->qsize == 0) - x->qsize = 50 ; - if (x->qsize > 100) - x->qsize = 50 ; - } - /* configuring RED */ - if ( x->flags_fs & DN_IS_RED ) - config_red(src, x) ; /* XXX should check errors */ + x->flags_fs = src->flags_fs; + x->qsize = src->qsize; + x->plr = src->plr; + x->flow_mask = src->flow_mask; + if (x->flags_fs & DN_QSIZE_IS_BYTES) { + if (x->qsize > 1024 * 1024) { + x->qsize = 1024 * 1024; + } + } else { + if (x->qsize == 0) { + x->qsize = 50; + } + if (x->qsize > 100) { + x->qsize = 50; + } + } + /* configuring RED */ + if (x->flags_fs & DN_IS_RED) { + config_red(src, x); /* XXX should check errors */ + } } /* * setup pipe or queue parameters. */ - -static int +static int config_pipe(struct dn_pipe *p) { - int s ; - struct dn_flow_set *pfs = &(p->fs); + int i, r; + struct dn_flow_set *pfs = &(p->fs); + struct dn_flow_queue *q; /* * The config program passes parameters as follows: - * bw = bits/second (0 means no limits), - * delay = ms, must be translated into ticks. - * qsize = slots/bytes + * bw = bits/second (0 means no limits), + * delay = ms, must be translated into ticks. + * qsize = slots/bytes */ - p->delay = ( p->delay * hz ) / 1000 ; - /* We need either a pipe number or a flow_set number */ - if (p->pipe_nr == 0 && pfs->fs_nr == 0) - return EINVAL ; - if (p->pipe_nr != 0 && pfs->fs_nr != 0) - return EINVAL ; - if (p->pipe_nr != 0) { /* this is a pipe */ - struct dn_pipe *x, *a, *b; - /* locate pipe */ - for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ; - a = b , b = b->next) ; - - if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */ - x = _MALLOC(sizeof(struct dn_pipe), M_IPFW, M_DONTWAIT) ; - if (x == NULL) { - printf("ip_dummynet.c: no memory for new pipe\n"); - return ENOSPC; - } - bzero(x, sizeof(struct dn_pipe)); - x->pipe_nr = p->pipe_nr; - x->fs.pipe = x ; - /* idle_heap is the only one from which we extract from the middle. - */ - x->idle_heap.size = x->idle_heap.elements = 0 ; - x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos); - } else - x = b; - - x->bandwidth = p->bandwidth ; - x->numbytes = 0; /* just in case... */ - bcopy(p->if_name, x->if_name, sizeof(p->if_name) ); - x->ifp = NULL ; /* reset interface ptr */ - x->delay = p->delay ; - set_fs_parms(&(x->fs), pfs); - - - if ( x->fs.rq == NULL ) { /* a new pipe */ - s = alloc_hash(&(x->fs), pfs) ; - if (s) { - FREE(x, M_IPFW); - return s ; - } - s = splimp() ; - x->next = b ; - if (a == NULL) - all_pipes = x ; - else - a->next = x ; - splx(s); - } - } else { /* config queue */ - struct dn_flow_set *x, *a, *b ; - - /* locate flow_set */ - for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ; - a = b , b = b->next) ; - - if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */ - if (pfs->parent_nr == 0) /* need link to a pipe */ - return EINVAL ; - x = _MALLOC(sizeof(struct dn_flow_set), M_IPFW, M_DONTWAIT); - if (x == NULL) { - printf("ip_dummynet.c: no memory for new flow_set\n"); - return ENOSPC; - } - bzero(x, sizeof(struct dn_flow_set)); - x->fs_nr = pfs->fs_nr; - x->parent_nr = pfs->parent_nr; - x->weight = pfs->weight ; - if (x->weight == 0) - x->weight = 1 ; - else if (x->weight > 100) - x->weight = 100 ; - } else { - /* Change parent pipe not allowed; must delete and recreate */ - if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) - return EINVAL ; - x = b; - } - set_fs_parms(x, pfs); - - if ( x->rq == NULL ) { /* a new flow_set */ - s = alloc_hash(x, pfs) ; - if (s) { - FREE(x, M_IPFW); - return s ; - } - s = splimp() ; - x->next = b; - if (a == NULL) - all_flow_sets = x; - else - a->next = x; - splx(s); - } - } - return 0 ; + p->delay = (p->delay * (hz * 10)) / 1000; + /* We need either a pipe number or a flow_set number */ + if (p->pipe_nr == 0 && pfs->fs_nr == 0) { + return EINVAL; + } + if (p->pipe_nr != 0 && pfs->fs_nr != 0) { + return EINVAL; + } + if (p->pipe_nr != 0) { /* this is a pipe */ + struct dn_pipe *x, *b; + struct dummynet_event dn_event; + lck_mtx_lock(dn_mutex); + + /* locate pipe */ + b = locate_pipe(p->pipe_nr); + + if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */ + x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (x == NULL) { + lck_mtx_unlock(dn_mutex); + printf("dummynet: no memory for new pipe\n"); + return ENOSPC; + } + x->pipe_nr = p->pipe_nr; + x->fs.pipe = x; + /* idle_heap is the only one from which we extract from the middle. + */ + x->idle_heap.size = x->idle_heap.elements = 0; + x->idle_heap.offset = offsetof(struct dn_flow_queue, heap_pos); + } else { + x = b; + /* Flush accumulated credit for all queues */ + for (i = 0; i <= x->fs.rq_size; i++) { + for (q = x->fs.rq[i]; q; q = q->next) { + q->numbytes = 0; + } + } + } + + x->bandwidth = p->bandwidth; + x->numbytes = 0; /* just in case... */ + bcopy(p->if_name, x->if_name, sizeof(p->if_name)); + x->ifp = NULL; /* reset interface ptr */ + x->delay = p->delay; + set_fs_parms(&(x->fs), pfs); + + + if (x->fs.rq == NULL) { /* a new pipe */ + r = alloc_hash(&(x->fs), pfs); + if (r) { + lck_mtx_unlock(dn_mutex); + FREE(x, M_DUMMYNET); + return r; + } + SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)], + x, next); + } + lck_mtx_unlock(dn_mutex); + + bzero(&dn_event, sizeof(dn_event)); + dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG; + dn_event.dn_event_pipe_config.bandwidth = p->bandwidth; + dn_event.dn_event_pipe_config.delay = p->delay; + dn_event.dn_event_pipe_config.plr = pfs->plr; + + dummynet_event_enqueue_nwk_wq_entry(&dn_event); + } else { /* config queue */ + struct dn_flow_set *x, *b; + + lck_mtx_lock(dn_mutex); + /* locate flow_set */ + b = locate_flowset(pfs->fs_nr); + + if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */ + if (pfs->parent_nr == 0) { /* need link to a pipe */ + lck_mtx_unlock(dn_mutex); + return EINVAL; + } + x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (x == NULL) { + lck_mtx_unlock(dn_mutex); + printf("dummynet: no memory for new flow_set\n"); + return ENOSPC; + } + x->fs_nr = pfs->fs_nr; + x->parent_nr = pfs->parent_nr; + x->weight = pfs->weight; + if (x->weight == 0) { + x->weight = 1; + } else if (x->weight > 100) { + x->weight = 100; + } + } else { + /* Change parent pipe not allowed; must delete and recreate */ + if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) { + lck_mtx_unlock(dn_mutex); + return EINVAL; + } + x = b; + } + set_fs_parms(x, pfs); + + if (x->rq == NULL) { /* a new flow_set */ + r = alloc_hash(x, pfs); + if (r) { + lck_mtx_unlock(dn_mutex); + FREE(x, M_DUMMYNET); + return r; + } + SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)], + x, next); + } + lck_mtx_unlock(dn_mutex); + } + return 0; } /* @@ -1592,16 +2141,19 @@ config_pipe(struct dn_pipe *p) static void fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) { - int i = 0, found = 0 ; - for (; i < h->elements ;) - if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) { - h->elements-- ; - h->p[i] = h->p[h->elements] ; - found++ ; - } else - i++ ; - if (found) - heapify(h); + int i = 0, found = 0; + for (; i < h->elements;) { + if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) { + h->elements--; + h->p[i] = h->p[h->elements]; + found++; + } else { + i++; + } + } + if (found) { + heapify(h); + } } /* @@ -1610,222 +2162,324 @@ fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) static void pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p) { - if (h->elements > 0) { - int i = 0 ; - for (i=0; i < h->elements ; i++ ) { - if (h->p[i].object == p) { /* found it */ - h->elements-- ; - h->p[i] = h->p[h->elements] ; - heapify(h); - break ; - } + if (h->elements > 0) { + int i = 0; + for (i = 0; i < h->elements; i++) { + if (h->p[i].object == p) { /* found it */ + h->elements--; + h->p[i] = h->p[h->elements]; + heapify(h); + break; + } + } } - } } /* * drain all queues. Called in case of severe mbuf shortage. */ void -dummynet_drain() +dummynet_drain(void) { - struct dn_flow_set *fs; - struct dn_pipe *p; - struct dn_pkt *pkt; - - heap_free(&ready_heap); - heap_free(&wfq_ready_heap); - heap_free(&extract_heap); - /* remove all references to this pipe from flow_sets */ - for (fs = all_flow_sets; fs; fs= fs->next ) - purge_flow_set(fs, 0); - - for (p = all_pipes; p; p= p->next ) { - purge_flow_set(&(p->fs), 0); - for (pkt = p->head ; pkt ; ) - DN_FREE_PKT(pkt) ; - p->head = p->tail = NULL ; - } + struct dn_flow_set *fs; + struct dn_pipe *p; + struct mbuf *m, *mnext; + int i; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + heap_free(&ready_heap); + heap_free(&wfq_ready_heap); + heap_free(&extract_heap); + /* remove all references to this pipe from flow_sets */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(fs, &flowsethash[i], next) { + purge_flow_set(fs, 0); + } + } + + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(p, &pipehash[i], next) { + purge_flow_set(&(p->fs), 0); + + mnext = p->head; + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + DN_FREE_PKT(m); + } + p->head = p->tail = NULL; + } + } } /* * Fully delete a pipe or a queue, cleaning up associated info. */ -static int +static int delete_pipe(struct dn_pipe *p) { - int s ; - struct ip_fw_chain *chain ; - - if (p->pipe_nr == 0 && p->fs.fs_nr == 0) - return EINVAL ; - if (p->pipe_nr != 0 && p->fs.fs_nr != 0) - return EINVAL ; - if (p->pipe_nr != 0) { /* this is an old-style pipe */ - struct dn_pipe *a, *b; - struct dn_flow_set *fs; - - /* locate pipe */ - for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ; - a = b , b = b->next) ; - if (b == NULL || (b->pipe_nr != p->pipe_nr) ) - return EINVAL ; /* not found */ - - s = splimp() ; - - /* unlink from list of pipes */ - if (a == NULL) - all_pipes = b->next ; - else - a->next = b->next ; - /* remove references to this pipe from the ip_fw rules. */ - LIST_FOREACH(chain, &ip_fw_chain_head, next) - if (chain->rule->pipe_ptr == &(b->fs)) - chain->rule->pipe_ptr = NULL ; - - /* remove all references to this pipe from flow_sets */ - for (fs = all_flow_sets; fs; fs= fs->next ) - if (fs->pipe == b) { - printf("++ ref to pipe %d from fs %d\n", - p->pipe_nr, fs->fs_nr); - fs->pipe = NULL ; - purge_flow_set(fs, 0); - } - fs_remove_from_heap(&ready_heap, &(b->fs)); - purge_pipe(b); /* remove all data associated to this pipe */ - /* remove reference to here from extract_heap and wfq_ready_heap */ - pipe_remove_from_heap(&extract_heap, b); - pipe_remove_from_heap(&wfq_ready_heap, b); - splx(s); - FREE(b, M_IPFW); - } else { /* this is a WF2Q queue (dn_flow_set) */ - struct dn_flow_set *a, *b; - - /* locate set */ - for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ; - a = b , b = b->next) ; - if (b == NULL || (b->fs_nr != p->fs.fs_nr) ) - return EINVAL ; /* not found */ - - s = splimp() ; - if (a == NULL) - all_flow_sets = b->next ; - else - a->next = b->next ; - /* remove references to this flow_set from the ip_fw rules. */ - LIST_FOREACH(chain, &ip_fw_chain_head, next) - if (chain->rule->pipe_ptr == b) - chain->rule->pipe_ptr = NULL ; - - if (b->pipe != NULL) { - /* Update total weight on parent pipe and cleanup parent heaps */ - b->pipe->sum -= b->weight * b->backlogged ; - fs_remove_from_heap(&(b->pipe->not_eligible_heap), b); - fs_remove_from_heap(&(b->pipe->scheduler_heap), b); -#if 1 /* XXX should i remove from idle_heap as well ? */ - fs_remove_from_heap(&(b->pipe->idle_heap), b); + if (p->pipe_nr == 0 && p->fs.fs_nr == 0) { + return EINVAL; + } + if (p->pipe_nr != 0 && p->fs.fs_nr != 0) { + return EINVAL; + } + if (p->pipe_nr != 0) { /* this is an old-style pipe */ + struct dn_pipe *b; + struct dn_flow_set *fs; + int i; + + lck_mtx_lock(dn_mutex); + /* locate pipe */ + b = locate_pipe(p->pipe_nr); + if (b == NULL) { + lck_mtx_unlock(dn_mutex); + return EINVAL; /* not found */ + } + + /* Unlink from list of pipes. */ + SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next); + + + /* Remove all references to this pipe from flow_sets. */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(fs, &flowsethash[i], next) { + if (fs->pipe == b) { + printf("dummynet: ++ ref to pipe %d from fs %d\n", + p->pipe_nr, fs->fs_nr); + fs->pipe = NULL; + purge_flow_set(fs, 0); + } + } + } + fs_remove_from_heap(&ready_heap, &(b->fs)); + + purge_pipe(b); /* remove all data associated to this pipe */ + /* remove reference to here from extract_heap and wfq_ready_heap */ + pipe_remove_from_heap(&extract_heap, b); + pipe_remove_from_heap(&wfq_ready_heap, b); + lck_mtx_unlock(dn_mutex); + + FREE(b, M_DUMMYNET); + } else { /* this is a WF2Q queue (dn_flow_set) */ + struct dn_flow_set *b; + + lck_mtx_lock(dn_mutex); + /* locate set */ + b = locate_flowset(p->fs.fs_nr); + if (b == NULL) { + lck_mtx_unlock(dn_mutex); + return EINVAL; /* not found */ + } + + + /* Unlink from list of flowsets. */ + SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next); + + if (b->pipe != NULL) { + /* Update total weight on parent pipe and cleanup parent heaps */ + b->pipe->sum -= b->weight * b->backlogged; + fs_remove_from_heap(&(b->pipe->not_eligible_heap), b); + fs_remove_from_heap(&(b->pipe->scheduler_heap), b); +#if 1 /* XXX should i remove from idle_heap as well ? */ + fs_remove_from_heap(&(b->pipe->idle_heap), b); #endif + } + purge_flow_set(b, 1); + lck_mtx_unlock(dn_mutex); } - purge_flow_set(b, 1); - splx(s); - } - return 0 ; + return 0; } /* * helper function used to copy data from kernel in DUMMYNET_GET */ -static char * -dn_copy_set(struct dn_flow_set *set, char *bp) +static +char* +dn_copy_set_32(struct dn_flow_set *set, char *bp) { - int i, copied = 0 ; - struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp; - - for (i = 0 ; i <= set->rq_size ; i++) - for (q = set->rq[i] ; q ; q = q->next, qp++ ) { - if (q->hash_slot != i) - printf("++ at %d: wrong slot (have %d, " - "should be %d)\n", copied, q->hash_slot, i); - if (q->fs != set) - printf("++ at %d: wrong fs ptr (have %p, should be %p)\n", - i, q->fs, set); - copied++ ; - bcopy(q, qp, sizeof( *q ) ); - /* cleanup pointers */ - qp->next = NULL ; - qp->head = qp->tail = NULL ; - qp->fs = NULL ; - } - if (copied != set->rq_elements) - printf("++ wrong count, have %d should be %d\n", - copied, set->rq_elements); - return (char *)qp ; + int i, copied = 0; + struct dn_flow_queue *q; + struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + for (i = 0; i <= set->rq_size; i++) { + for (q = set->rq[i]; q; q = q->next, qp++) { + if (q->hash_slot != i) { + printf("dummynet: ++ at %d: wrong slot (have %d, " + "should be %d)\n", copied, q->hash_slot, i); + } + if (q->fs != set) { + printf("dummynet: ++ at %d: wrong fs ptr " + "(have 0x%llx, should be 0x%llx)\n", i, + (uint64_t)VM_KERNEL_ADDRPERM(q->fs), + (uint64_t)VM_KERNEL_ADDRPERM(set)); + } + copied++; + cp_queue_to_32_user( q, qp ); + /* cleanup pointers */ + qp->next = (user32_addr_t)0; + qp->head = qp->tail = (user32_addr_t)0; + qp->fs = (user32_addr_t)0; + } + } + if (copied != set->rq_elements) { + printf("dummynet: ++ wrong count, have %d should be %d\n", + copied, set->rq_elements); + } + return (char *)qp; } -static int -dummynet_get(struct sockopt *sopt) +static +char* +dn_copy_set_64(struct dn_flow_set *set, char *bp) { - char *buf, *bp ; /* bp is the "copy-pointer" */ - size_t size ; - struct dn_flow_set *set ; - struct dn_pipe *p ; - int s, error=0 ; - - s = splimp(); - /* - * compute size of data structures: list of pipes and flow_sets. - */ - for (p = all_pipes, size = 0 ; p ; p = p->next ) - size += sizeof( *p ) + - p->fs.rq_elements * sizeof(struct dn_flow_queue); - for (set = all_flow_sets ; set ; set = set->next ) - size += sizeof ( *set ) + - set->rq_elements * sizeof(struct dn_flow_queue); - buf = _MALLOC(size, M_TEMP, M_DONTWAIT); - if (buf == 0) { - splx(s); - return ENOBUFS ; - } - for (p = all_pipes, bp = buf ; p ; p = p->next ) { - struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ; + int i, copied = 0; + struct dn_flow_queue *q; + struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + for (i = 0; i <= set->rq_size; i++) { + for (q = set->rq[i]; q; q = q->next, qp++) { + if (q->hash_slot != i) { + printf("dummynet: ++ at %d: wrong slot (have %d, " + "should be %d)\n", copied, q->hash_slot, i); + } + if (q->fs != set) { + printf("dummynet: ++ at %d: wrong fs ptr " + "(have 0x%llx, should be 0x%llx)\n", i, + (uint64_t)VM_KERNEL_ADDRPERM(q->fs), + (uint64_t)VM_KERNEL_ADDRPERM(set)); + } + copied++; + //bcopy(q, qp, sizeof(*q)); + cp_queue_to_64_user( q, qp ); + /* cleanup pointers */ + qp->next = USER_ADDR_NULL; + qp->head = qp->tail = USER_ADDR_NULL; + qp->fs = USER_ADDR_NULL; + } + } + if (copied != set->rq_elements) { + printf("dummynet: ++ wrong count, have %d should be %d\n", + copied, set->rq_elements); + } + return (char *)qp; +} +static size_t +dn_calc_size(int is64user) +{ + struct dn_flow_set *set; + struct dn_pipe *p; + size_t size = 0; + size_t pipesize; + size_t queuesize; + size_t setsize; + int i; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + if (is64user) { + pipesize = sizeof(struct dn_pipe_64); + queuesize = sizeof(struct dn_flow_queue_64); + setsize = sizeof(struct dn_flow_set_64); + } else { + pipesize = sizeof(struct dn_pipe_32); + queuesize = sizeof(struct dn_flow_queue_32); + setsize = sizeof(struct dn_flow_set_32); + } /* - * copy pipe descriptor into *bp, convert delay back to ms, - * then copy the flow_set descriptor(s) one at a time. - * After each flow_set, copy the queue descriptor it owns. + * compute size of data structures: list of pipes and flow_sets. */ - bcopy(p, bp, sizeof( *p ) ); - pipe_bp->delay = (pipe_bp->delay * 1000) / hz ; + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(p, &pipehash[i], next) { + size += sizeof(*p) + + p->fs.rq_elements * sizeof(struct dn_flow_queue); + } + SLIST_FOREACH(set, &flowsethash[i], next) { + size += sizeof(*set) + + set->rq_elements * sizeof(struct dn_flow_queue); + } + } + return size; +} + +static int +dummynet_get(struct sockopt *sopt) +{ + char *buf = NULL, *bp = NULL; /* bp is the "copy-pointer" */ + size_t size = 0; + struct dn_flow_set *set; + struct dn_pipe *p; + int error = 0, i; + int is64user = 0; + + /* XXX lock held too long */ + lck_mtx_lock(dn_mutex); /* - * XXX the following is a hack based on ->next being the - * first field in dn_pipe and dn_flow_set. The correct - * solution would be to move the dn_flow_set to the beginning - * of struct dn_pipe. + * XXX: Ugly, but we need to allocate memory with M_WAITOK flag + * and we cannot use this flag while holding a mutex. */ - pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ; - /* clean pointers */ - pipe_bp->head = pipe_bp->tail = NULL ; - pipe_bp->fs.next = NULL ; - pipe_bp->fs.pipe = NULL ; - pipe_bp->fs.rq = NULL ; - - bp += sizeof( *p ) ; - bp = dn_copy_set( &(p->fs), bp ); - } - for (set = all_flow_sets ; set ; set = set->next ) { - struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ; - bcopy(set, bp, sizeof( *set ) ); - /* XXX same hack as above */ - fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ; - fs_bp->pipe = NULL ; - fs_bp->rq = NULL ; - bp += sizeof( *set ) ; - bp = dn_copy_set( set, bp ); - } - splx(s); - error = sooptcopyout(sopt, buf, size); - FREE(buf, M_TEMP); - return error ; + if (proc_is64bit(sopt->sopt_p)) { + is64user = 1; + } + for (i = 0; i < 10; i++) { + size = dn_calc_size(is64user); + lck_mtx_unlock(dn_mutex); + buf = _MALLOC(size, M_TEMP, M_WAITOK | M_ZERO); + if (buf == NULL) { + return ENOBUFS; + } + lck_mtx_lock(dn_mutex); + if (size == dn_calc_size(is64user)) { + break; + } + FREE(buf, M_TEMP); + buf = NULL; + } + if (buf == NULL) { + lck_mtx_unlock(dn_mutex); + return ENOBUFS; + } + + bp = buf; + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(p, &pipehash[i], next) { + /* + * copy pipe descriptor into *bp, convert delay + * back to ms, then copy the flow_set descriptor(s) + * one at a time. After each flow_set, copy the + * queue descriptor it owns. + */ + if (is64user) { + bp = cp_pipe_to_64_user(p, + (struct dn_pipe_64 *)bp); + } else { + bp = cp_pipe_to_32_user(p, + (struct dn_pipe_32 *)bp); + } + } + } + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(set, &flowsethash[i], next) { + struct dn_flow_set_64 *fs_bp = + (struct dn_flow_set_64 *)bp; + cp_flow_set_to_64_user(set, fs_bp); + /* XXX same hack as above */ + fs_bp->next = CAST_DOWN(user64_addr_t, + DN_IS_QUEUE); + fs_bp->pipe = USER_ADDR_NULL; + fs_bp->rq = USER_ADDR_NULL; + bp += sizeof(struct dn_flow_set_64); + bp = dn_copy_set_64( set, bp ); + } + } + lck_mtx_unlock(dn_mutex); + error = sooptcopyout(sopt, buf, size); + FREE(buf, M_TEMP); + return error; } /* @@ -1834,91 +2488,113 @@ dummynet_get(struct sockopt *sopt) static int ip_dn_ctl(struct sockopt *sopt) { - int error = 0 ; - struct dn_pipe *p, tmp_pipe; - - /* Disallow sets in really-really secure mode. */ - if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) - return (EPERM); - - switch (sopt->sopt_name) { - default : - printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name); - return EINVAL ; - - case IP_DUMMYNET_GET : - error = dummynet_get(sopt); - break ; - - case IP_DUMMYNET_FLUSH : - dummynet_flush() ; - break ; - case IP_DUMMYNET_CONFIGURE : - p = &tmp_pipe ; - error = sooptcopyin(sopt, p, sizeof *p, sizeof *p); - if (error) - break ; - error = config_pipe(p); - break ; - - case IP_DUMMYNET_DEL : /* remove a pipe or queue */ - p = &tmp_pipe ; - error = sooptcopyin(sopt, p, sizeof *p, sizeof *p); - if (error) - break ; - - error = delete_pipe(p); - break ; - } - return error ; + int error = 0; + struct dn_pipe *p, tmp_pipe; + + /* Disallow sets in really-really secure mode. */ + if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) { + return EPERM; + } + + switch (sopt->sopt_name) { + default: + printf("dummynet: -- unknown option %d", sopt->sopt_name); + return EINVAL; + + case IP_DUMMYNET_GET: + error = dummynet_get(sopt); + break; + + case IP_DUMMYNET_FLUSH: + dummynet_flush(); + break; + + case IP_DUMMYNET_CONFIGURE: + p = &tmp_pipe; + if (proc_is64bit(sopt->sopt_p)) { + error = cp_pipe_from_user_64( sopt, p ); + } else { + error = cp_pipe_from_user_32( sopt, p ); + } + + if (error) { + break; + } + error = config_pipe(p); + break; + + case IP_DUMMYNET_DEL: /* remove a pipe or queue */ + p = &tmp_pipe; + if (proc_is64bit(sopt->sopt_p)) { + error = cp_pipe_from_user_64( sopt, p ); + } else { + error = cp_pipe_from_user_32( sopt, p ); + } + if (error) { + break; + } + + error = delete_pipe(p); + break; + } + return error; } -static void +void +dummynet_init(void) +{ + eventhandler_lists_ctxt_init(&dummynet_evhdlr_ctxt); +} + +void ip_dn_init(void) { - printf("DUMMYNET initialized (010124)\n"); - all_pipes = NULL ; - all_flow_sets = NULL ; - ready_heap.size = ready_heap.elements = 0 ; - ready_heap.offset = 0 ; - - wfq_ready_heap.size = wfq_ready_heap.elements = 0 ; - wfq_ready_heap.offset = 0 ; - - extract_heap.size = extract_heap.elements = 0 ; - extract_heap.offset = 0 ; - ip_dn_ctl_ptr = ip_dn_ctl; - timeout(dummynet, NULL, 1); + /* setup locks */ + dn_mutex_grp_attr = lck_grp_attr_alloc_init(); + dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr); + dn_mutex_attr = lck_attr_alloc_init(); + lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr); + + ready_heap.size = ready_heap.elements = 0; + ready_heap.offset = 0; + + wfq_ready_heap.size = wfq_ready_heap.elements = 0; + wfq_ready_heap.offset = 0; + + extract_heap.size = extract_heap.elements = 0; + extract_heap.offset = 0; + ip_dn_ctl_ptr = ip_dn_ctl; + ip_dn_io_ptr = dummynet_io; } -static ip_dn_ctl_t *old_dn_ctl_ptr ; +struct dn_event_nwk_wq_entry { + struct nwk_wq_entry nwk_wqe; + struct dummynet_event dn_ev_arg; +}; -static int -dummynet_modevent(module_t mod, int type, void *data) +static void +dummynet_event_callback(void *arg) { - int s ; - switch (type) { - case MOD_LOAD: - s = splimp(); - old_dn_ctl_ptr = ip_dn_ctl_ptr; - ip_dn_init(); - splx(s); - break; - case MOD_UNLOAD: - s = splimp(); - ip_dn_ctl_ptr = old_dn_ctl_ptr; - splx(s); - dummynet_flush(); - break ; - default: - break ; - } - return 0 ; + struct dummynet_event *p_dn_ev = (struct dummynet_event *)arg; + + EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt, dummynet_event, p_dn_ev); + return; } -static moduledata_t dummynet_mod = { - "dummynet", - dummynet_modevent, - NULL -} ; -DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); +void +dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *p_dn_event) +{ + struct dn_event_nwk_wq_entry *p_dn_ev = NULL; + + MALLOC(p_dn_ev, struct dn_event_nwk_wq_entry *, + sizeof(struct dn_event_nwk_wq_entry), + M_NWKWQ, M_WAITOK | M_ZERO); + + p_dn_ev->nwk_wqe.func = dummynet_event_callback; + p_dn_ev->nwk_wqe.is_arg_managed = TRUE; + p_dn_ev->nwk_wqe.arg = &p_dn_ev->dn_ev_arg; + + bcopy(p_dn_event, &(p_dn_ev->dn_ev_arg), + sizeof(struct dummynet_event)); + nwk_wq_enqueue((struct nwk_wq_entry*)p_dn_ev); +}