X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/d7e50217d7adf6e52786a38bcaa4cd698cb9a79e..8ad349bb6ed4a0be06e34c92be0d98b92e078db4:/bsd/vfs/vfs_cluster.c diff --git a/bsd/vfs/vfs_cluster.c b/bsd/vfs/vfs_cluster.c index ec2eaf7f4..630ebf3ac 100644 --- a/bsd/vfs/vfs_cluster.c +++ b/bsd/vfs/vfs_cluster.c @@ -1,26 +1,31 @@ /* - * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved. - * - * @APPLE_LICENSE_HEADER_START@ + * Copyright (c) 2006 Apple Computer, Inc. All Rights Reserved. * - * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. + * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ * - * This file contains Original Code and/or Modifications of Original Code - * as defined in and that are subject to the Apple Public Source License - * Version 2.0 (the 'License'). You may not use this file except in - * compliance with the License. Please obtain a copy of the License at - * http://www.opensource.apple.com/apsl/ and read it before using this + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the + * License may not be used to create, or enable the creation or + * redistribution of, unlawful or unlicensed copies of an Apple operating + * system, or to circumvent, violate, or enable the circumvention or + * violation of, any terms of an Apple operating system software license + * agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this * file. - * - * The Original Code and all software distributed under the License are - * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER - * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, - * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. - * Please see the License for the specific language governing rights and + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and * limitations under the License. - * - * @APPLE_LICENSE_HEADER_END@ + * + * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* @@ -59,20 +64,33 @@ */ #include -#include -#include -#include -#include +#include +#include +#include +#include #include #include +#include +#include #include +#include #include +#include + +#include + +#include +#include +#include +#include -#include +#include +#include #include #include + #define CL_READ 0x01 #define CL_ASYNC 0x02 #define CL_COMMIT 0x04 @@ -83,6 +101,8 @@ #define CL_PAGEIN 0x100 #define CL_DEV_MEMORY 0x200 #define CL_PRESERVE 0x400 +#define CL_THROTTLE 0x800 +#define CL_KEEPCACHED 0x1000 struct clios { @@ -92,57 +112,224 @@ struct clios { int io_wanted; /* someone is sleeping waiting for a change in state */ }; +static lck_grp_t *cl_mtx_grp; +static lck_attr_t *cl_mtx_attr; +static lck_grp_attr_t *cl_mtx_grp_attr; +static lck_mtx_t *cl_mtxp; + + +static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, + int flags, buf_t real_bp, struct clios *iostate); +static int cluster_iodone(buf_t bp, void *dummy); +static int cluster_rd_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize); +static int cluster_hard_throttle_on(vnode_t vp); + +static int cluster_read_x(vnode_t vp, struct uio *uio, off_t filesize, int flags); +static int cluster_write_x(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, + off_t headOff, off_t tailOff, int flags); +static int cluster_nocopy_read(vnode_t vp, struct uio *uio, off_t filesize); +static int cluster_nocopy_write(vnode_t vp, struct uio *uio, off_t newEOF); +static int cluster_phys_read(vnode_t vp, struct uio *uio, off_t filesize); +static int cluster_phys_write(vnode_t vp, struct uio *uio, off_t newEOF); +static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, int xsize, int flags); + +static void cluster_rd_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra); + +static int cluster_push_x(vnode_t vp, struct cl_extent *, off_t EOF, int flags); +static void cluster_push_EOF(vnode_t vp, off_t EOF); + +static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int can_delay, int push_all); + +static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF); +static void sparse_cluster_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_all); +static void sparse_cluster_add(struct cl_writebehind *, vnode_t vp, struct cl_extent *, off_t EOF); -static void cluster_zero(upl_t upl, vm_offset_t upl_offset, - int size, struct buf *bp); -static int cluster_read_x(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_write_x(struct vnode *vp, struct uio *uio, - off_t oldEOF, off_t newEOF, off_t headOff, - off_t tailOff, int devblocksize, int flags); -static int cluster_nocopy_read(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_nocopy_write(struct vnode *vp, struct uio *uio, - off_t newEOF, int devblocksize, int flags); -static int cluster_phys_read(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_phys_write(struct vnode *vp, struct uio *uio, - off_t newEOF, int devblocksize, int flags); -static int cluster_align_phys_io(struct vnode *vp, struct uio *uio, - addr64_t usr_paddr, int xsize, int devblocksize, int flags); -static int cluster_push_x(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last, int can_delay); -static int cluster_try_push(struct vnode *vp, off_t newEOF, int can_delay, int push_all); +static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp); +static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); +static kern_return_t vfs_drt_control(void **cmapp, int op_type); +int is_file_clean(vnode_t, off_t); /* * throttle the number of async writes that * can be outstanding on a single vnode * before we issue a synchronous write */ -#define ASYNC_THROTTLE 9 +#define HARD_THROTTLE_MAXCNT 0 +#define HARD_THROTTLE_MAXSIZE (64 * 1024) + +int hard_throttle_on_root = 0; +struct timeval priority_IO_timestamp_for_root; + + +void +cluster_init(void) { + /* + * allocate lock group attribute and group + */ + cl_mtx_grp_attr = lck_grp_attr_alloc_init(); + //lck_grp_attr_setstat(cl_mtx_grp_attr); + cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); + + /* + * allocate the lock attribute + */ + cl_mtx_attr = lck_attr_alloc_init(); + //lck_attr_setdebug(clf_mtx_attr); + + /* + * allocate and initialize mutex's used to protect updates and waits + * on the cluster_io context + */ + cl_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); + + if (cl_mtxp == NULL) + panic("cluster_init: failed to allocate cl_mtxp"); +} + + + +#define CLW_ALLOCATE 0x01 +#define CLW_RETURNLOCKED 0x02 +/* + * if the read ahead context doesn't yet exist, + * allocate and initialize it... + * the vnode lock serializes multiple callers + * during the actual assignment... first one + * to grab the lock wins... the other callers + * will release the now unnecessary storage + * + * once the context is present, try to grab (but don't block on) + * the lock associated with it... if someone + * else currently owns it, than the read + * will run without read-ahead. this allows + * multiple readers to run in parallel and + * since there's only 1 read ahead context, + * there's no real loss in only allowing 1 + * reader to have read-ahead enabled. + */ +static struct cl_readahead * +cluster_get_rap(vnode_t vp) +{ + struct ubc_info *ubc; + struct cl_readahead *rap; + + ubc = vp->v_ubcinfo; + + if ((rap = ubc->cl_rahead) == NULL) { + MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); + + bzero(rap, sizeof *rap); + rap->cl_lastr = -1; + lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); + + vnode_lock(vp); + + if (ubc->cl_rahead == NULL) + ubc->cl_rahead = rap; + else { + lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); + FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); + rap = ubc->cl_rahead; + } + vnode_unlock(vp); + } + if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) + return(rap); + + return ((struct cl_readahead *)NULL); +} + + +/* + * if the write behind context doesn't yet exist, + * and CLW_ALLOCATE is specified, allocate and initialize it... + * the vnode lock serializes multiple callers + * during the actual assignment... first one + * to grab the lock wins... the other callers + * will release the now unnecessary storage + * + * if CLW_RETURNLOCKED is set, grab (blocking if necessary) + * the lock associated with the write behind context before + * returning + */ + +static struct cl_writebehind * +cluster_get_wbp(vnode_t vp, int flags) +{ + struct ubc_info *ubc; + struct cl_writebehind *wbp; + + ubc = vp->v_ubcinfo; + + if ((wbp = ubc->cl_wbehind) == NULL) { + + if ( !(flags & CLW_ALLOCATE)) + return ((struct cl_writebehind *)NULL); + + MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); + + bzero(wbp, sizeof *wbp); + lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); + + vnode_lock(vp); + + if (ubc->cl_wbehind == NULL) + ubc->cl_wbehind = wbp; + else { + lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); + FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); + wbp = ubc->cl_wbehind; + } + vnode_unlock(vp); + } + if (flags & CLW_RETURNLOCKED) + lck_mtx_lock(&wbp->cl_lockw); + + return (wbp); +} + + +static int +cluster_hard_throttle_on(vnode_t vp) +{ + static struct timeval hard_throttle_maxelapsed = { 0, 200000 }; + + if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) { + struct timeval elapsed; + + if (hard_throttle_on_root) + return(1); + + microuptime(&elapsed); + timevalsub(&elapsed, &priority_IO_timestamp_for_root); + + if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <)) + return(1); + } + return(0); +} + static int -cluster_iodone(bp) - struct buf *bp; +cluster_iodone(buf_t bp, __unused void *dummy) { - int b_flags; - int error; - int total_size; - int total_resid; - int upl_offset; - int zero_offset; - upl_t upl; - struct buf *cbp; - struct buf *cbp_head; - struct buf *cbp_next; - struct buf *real_bp; - struct vnode *vp; - struct clios *iostate; - int commit_size; - int pg_offset; - - - cbp_head = (struct buf *)(bp->b_trans_head); + int b_flags; + int error; + int total_size; + int total_resid; + int upl_offset; + int zero_offset; + upl_t upl; + buf_t cbp; + buf_t cbp_head; + buf_t cbp_next; + buf_t real_bp; + struct clios *iostate; + int commit_size; + int pg_offset; + + cbp_head = (buf_t)(bp->b_trans_head); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, (int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); @@ -166,13 +353,15 @@ cluster_iodone(bp) cbp = cbp_head; upl_offset = cbp->b_uploffset; - upl = cbp->b_pagelist; + upl = cbp->b_upl; b_flags = cbp->b_flags; real_bp = cbp->b_real_bp; - vp = cbp->b_vp; zero_offset= cbp->b_validend; iostate = (struct clios *)cbp->b_iostate; + if (real_bp) + real_bp->b_dev = cbp->b_dev; + while (cbp) { if ((cbp->b_flags & B_ERROR) && error == 0) error = cbp->b_error; @@ -189,15 +378,15 @@ cluster_iodone(bp) if (zero_offset) cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); - if ((vp->v_flag & VTHROTTLED) && (vp->v_numoutput <= (ASYNC_THROTTLE / 3))) { - vp->v_flag &= ~VTHROTTLED; - wakeup((caddr_t)&vp->v_numoutput); - } if (iostate) { + int need_wakeup = 0; + /* * someone has issued multiple I/Os asynchrounsly * and is waiting for them to complete (streaming) */ + lck_mtx_lock(cl_mtxp); + if (error && iostate->io_error == 0) iostate->io_error = error; @@ -209,8 +398,12 @@ cluster_iodone(bp) * this io stream to change */ iostate->io_wanted = 0; - wakeup((caddr_t)&iostate->io_wanted); + need_wakeup = 1; } + lck_mtx_unlock(cl_mtxp); + + if (need_wakeup) + wakeup((caddr_t)&iostate->io_wanted); } if ((b_flags & B_NEED_IODONE) && real_bp) { if (error) { @@ -219,30 +412,38 @@ cluster_iodone(bp) } real_bp->b_resid = total_resid; - biodone(real_bp); + buf_biodone(real_bp); } if (error == 0 && total_resid) error = EIO; if (b_flags & B_COMMIT_UPL) { pg_offset = upl_offset & PAGE_MASK; - commit_size = (((pg_offset + total_size) + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE; + commit_size = (pg_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (error || (b_flags & B_NOCACHE) || ((b_flags & B_PHYS) && !(b_flags & B_READ))) { + if (error || (b_flags & B_NOCACHE)) { int upl_abort_code; + int page_in = 0; + int page_out = 0; - if (b_flags & B_PHYS) + if (b_flags & B_PAGEIO) { + if (b_flags & B_READ) + page_in = 1; + else + page_out = 1; + } + if (b_flags & B_CACHE) /* leave pages in the cache unchanged on error */ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */ + else if (page_out && (error != ENXIO)) /* transient error */ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if (b_flags & B_PGIN) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; + else if (page_in) + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; else upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; ubc_upl_abort_range(upl, upl_offset - pg_offset, commit_size, - upl_abort_code); - + upl_abort_code); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, (int)upl, upl_offset - pg_offset, commit_size, 0x80000000|upl_abort_code, 0); @@ -250,10 +451,9 @@ cluster_iodone(bp) } else { int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY; - if (b_flags & B_PHYS) + if ((b_flags & B_PHYS) && (b_flags & B_READ)) upl_commit_flags |= UPL_COMMIT_SET_DIRTY; - else if ( !(b_flags & B_PAGEOUT)) - upl_commit_flags |= UPL_COMMIT_CLEAR_DIRTY; + if (b_flags & B_AGE) upl_commit_flags |= UPL_COMMIT_INACTIVATE; @@ -264,111 +464,145 @@ cluster_iodone(bp) (int)upl, upl_offset - pg_offset, commit_size, upl_commit_flags, 0); } - } else + } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, (int)upl, upl_offset, 0, error, 0); + } return (error); } -static void -cluster_zero(upl, upl_offset, size, bp) - upl_t upl; - vm_offset_t upl_offset; - int size; - struct buf *bp; +void +cluster_zero(upl_t upl, vm_offset_t upl_offset, int size, buf_t bp) { - vm_offset_t io_addr = 0; - int must_unmap = 0; - kern_return_t kret; + upl_page_info_t *pl; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE, + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, upl_offset, size, (int)bp, 0, 0); - if (bp == NULL || bp->b_data == NULL) { - kret = ubc_upl_map(upl, &io_addr); - - if (kret != KERN_SUCCESS) - panic("cluster_zero: ubc_upl_map() failed with (%d)", kret); - if (io_addr == 0) - panic("cluster_zero: ubc_upl_map() mapped 0"); + if (bp == NULL || bp->b_datap == 0) { + + pl = ubc_upl_pageinfo(upl); + + while (size) { + int page_offset; + int page_index; + addr64_t zero_addr; + int zero_cnt; + + page_index = upl_offset / PAGE_SIZE; + page_offset = upl_offset & PAGE_MASK; + + zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset; + zero_cnt = min(PAGE_SIZE - page_offset, size); - must_unmap = 1; + bzero_phys(zero_addr, zero_cnt); + + size -= zero_cnt; + upl_offset += zero_cnt; + } } else - io_addr = (vm_offset_t)bp->b_data; - bzero((caddr_t)(io_addr + upl_offset), size); - - if (must_unmap) { - kret = ubc_upl_unmap(upl); + bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); - if (kret != KERN_SUCCESS) - panic("cluster_zero: kernel_upl_unmap failed"); - } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, + upl_offset, size, 0, 0, 0); } + static int -cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, real_bp, iostate) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int non_rounded_size; - int devblocksize; - int flags; - struct buf *real_bp; - struct clios *iostate; +cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, + int flags, buf_t real_bp, struct clios *iostate) { - struct buf *cbp; - u_int size; - u_int io_size; - int io_flags; - int error = 0; - int retval = 0; - struct buf *cbp_head = 0; - struct buf *cbp_tail = 0; - upl_page_info_t *pl; - int buf_count = 0; - int pg_count; - int pg_offset; - u_int max_iosize; - u_int max_vectors; - int priv; - int zero_offset = 0; - u_int first_lblkno; + buf_t cbp; + u_int size; + u_int io_size; + int io_flags; + int bmap_flags; + int error = 0; + int retval = 0; + buf_t cbp_head = NULL; + buf_t cbp_tail = NULL; + int trans_count = 0; + u_int pg_count; + int pg_offset; + u_int max_iosize; + u_int max_vectors; + int priv; + int zero_offset = 0; + int async_throttle = 0; + mount_t mp; + + mp = vp->v_mount; + + if (mp->mnt_devblocksize > 1) { + /* + * round the requested size up so that this I/O ends on a + * page boundary in case this is a 'write'... if the filesystem + * has blocks allocated to back the page beyond the EOF, we want to + * make sure to write out the zero's that are sitting beyond the EOF + * so that in case the filesystem doesn't explicitly zero this area + * if a hole is created via a lseek/write beyond the current EOF, + * it will return zeros when it's read back from the disk. If the + * physical allocation doesn't extend for the whole page, we'll + * only write/read from the disk up to the end of this allocation + * via the extent info returned from the VNOP_BLOCKMAP call. + */ + pg_offset = upl_offset & PAGE_MASK; + + size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; + } else { + /* + * anyone advertising a blocksize of 1 byte probably + * can't deal with us rounding up the request size + * AFP is one such filesystem/device + */ + size = non_rounded_size; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, + (int)f_offset, size, upl_offset, flags, 0); if (flags & CL_READ) { - io_flags = (B_VECTORLIST | B_READ); + io_flags = (B_READ); + bmap_flags = VNODE_READ; - vfs_io_attributes(vp, B_READ, &max_iosize, &max_vectors); + max_iosize = mp->mnt_maxreadcnt; + max_vectors = mp->mnt_segreadcnt; } else { - io_flags = (B_VECTORLIST | B_WRITEINPROG); + io_flags = 0; + bmap_flags = VNODE_WRITE; - vfs_io_attributes(vp, B_WRITE, &max_iosize, &max_vectors); + max_iosize = mp->mnt_maxwritecnt; + max_vectors = mp->mnt_segwritecnt; } - pl = ubc_upl_pageinfo(upl); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); + /* + * make sure the maximum iosize is a + * multiple of the page size + */ + max_iosize &= ~PAGE_MASK; + + if (flags & CL_THROTTLE) { + if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp)) { + if (max_iosize > HARD_THROTTLE_MAXSIZE) + max_iosize = HARD_THROTTLE_MAXSIZE; + async_throttle = HARD_THROTTLE_MAXCNT; + } else + async_throttle = VNODE_ASYNC_THROTTLE; + } if (flags & CL_AGE) io_flags |= B_AGE; if (flags & CL_DUMP) io_flags |= B_NOCACHE; - if (flags & CL_PAGEIN) - io_flags |= B_PGIN; - if (flags & CL_PAGEOUT) - io_flags |= B_PAGEOUT; + if (flags & (CL_PAGEIN | CL_PAGEOUT)) + io_flags |= B_PAGEIO; if (flags & CL_COMMIT) io_flags |= B_COMMIT_UPL; if (flags & CL_PRESERVE) io_flags |= B_PHYS; - - if (devblocksize) - size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1); - else - size = non_rounded_size; - - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, - (int)f_offset, size, upl_offset, flags, 0); + if (flags & CL_KEEPCACHED) + io_flags |= B_CACHE; if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { /* @@ -381,65 +615,129 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, zero_offset = upl_offset + non_rounded_size; } while (size) { - int i; - int pl_index; - int pg_resid; - int num_contig; - daddr_t lblkno; - daddr_t blkno; + int pg_resid; + daddr64_t blkno; + daddr64_t lblkno; if (size > max_iosize) io_size = max_iosize; else io_size = size; - - if (error = VOP_CMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL)) { - if (error == EOPNOTSUPP) - panic("VOP_CMAP Unimplemented"); + + if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL, bmap_flags, NULL))) { break; } + if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) + real_bp->b_blkno = blkno; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, (int)f_offset, (int)blkno, io_size, zero_offset, 0); - if ( (!(flags & CL_READ) && (long)blkno == -1) || io_size == 0) { + if (io_size == 0) { + /* + * vnop_blockmap didn't return an error... however, it did + * return an extent size of 0 which means we can't + * make forward progress on this I/O... a hole in the + * file would be returned as a blkno of -1 with a non-zero io_size + * a real extent is returned with a blkno != -1 and a non-zero io_size + */ + error = EINVAL; + break; + } + if ( !(flags & CL_READ) && blkno == -1) { + off_t e_offset; + + /* + * we're writing into a 'hole' + */ if (flags & CL_PAGEOUT) { + /* + * if we got here via cluster_pageout + * then just error the request and return + * the 'hole' should already have been covered + */ error = EINVAL; break; - }; - - /* Try paging out the page individually before - giving up entirely and dumping it (it could - be mapped in a "hole" and require allocation - before the I/O: + } + if ( !(flags & CL_COMMIT)) { + /* + * currently writes always request the commit to happen + * as part of the io completion... however, if the CL_COMMIT + * flag isn't specified, than we can't issue the abort_range + * since the call site is going to abort or commit the same upl.. + * in this case we can only return an error + */ + error = EINVAL; + break; + } + /* + * we can get here if the cluster code happens to + * pick up a page that was dirtied via mmap vs + * a 'write' and the page targets a 'hole'... + * i.e. the writes to the cluster were sparse + * and the file was being written for the first time + * + * we can also get here if the filesystem supports + * 'holes' that are less than PAGE_SIZE.... because + * we can't know if the range in the page that covers + * the 'hole' has been dirtied via an mmap or not, + * we have to assume the worst and try to push the + * entire page to storage. + * + * Try paging out the page individually before + * giving up entirely and dumping it (the pageout + * path will insure that the zero extent accounting + * has been taken care of before we get back into cluster_io) */ - ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE_64, UPL_ABORT_FREE_ON_EMPTY); - if (ubc_pushdirty_range(vp, f_offset, PAGE_SIZE_64) == 0) { - error = EINVAL; + ubc_upl_abort_range(upl, trunc_page(upl_offset), PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); + + e_offset = round_page_64(f_offset + 1); + + if (ubc_sync_range(vp, f_offset, e_offset, UBC_PUSHDIRTY) == 0) { + error = EINVAL; break; - }; - - upl_offset += PAGE_SIZE_64; - f_offset += PAGE_SIZE_64; - size -= PAGE_SIZE_64; + } + io_size = e_offset - f_offset; + + f_offset += io_size; + upl_offset += io_size; + + if (size >= io_size) + size -= io_size; + else + size = 0; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; + + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } continue; } - lblkno = (daddr_t)(f_offset / PAGE_SIZE_64); + lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64); /* * we have now figured out how much I/O we can do - this is in 'io_size' - * pl_index represents the first page in the 'upl' that the I/O will occur for * pg_offset is the starting point in the first page for the I/O * pg_count is the number of full and partial pages that 'io_size' encompasses */ - pl_index = upl_offset / PAGE_SIZE; pg_offset = upl_offset & PAGE_MASK; - pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; if (flags & CL_DEV_MEMORY) { /* * currently, can't deal with reading 'holes' in file */ - if ((long)blkno == -1) { + if (blkno == -1) { error = EINVAL; break; } @@ -447,8 +745,10 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, * treat physical requests as one 'giant' page */ pg_count = 1; - } - if ((flags & CL_READ) && (long)blkno == -1) { + } else + pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; + + if ((flags & CL_READ) && blkno == -1) { int bytes_to_zero; /* @@ -460,7 +760,7 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, /* * if this upl contains the EOF and it is not a multiple of PAGE_SIZE * than 'zero_offset' will be non-zero - * if the 'hole' returned by VOP_CMAP extends all the way to the eof + * if the 'hole' returned by vnop_blockmap extends all the way to the eof * (indicated by the io_size finishing off the I/O request for this UPL) * than we're not going to issue an I/O for the * last page in this upl... we need to zero both the hole and the tail @@ -516,78 +816,94 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, upl_offset += io_size; f_offset += io_size; size -= io_size; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } if (cbp_head && pg_count) goto start_io; continue; - } else if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { - real_bp->b_blkno = blkno; } - if (pg_count > max_vectors) { - io_size -= (pg_count - max_vectors) * PAGE_SIZE; - - if (io_size < 0) { + if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { io_size = PAGE_SIZE - pg_offset; pg_count = 1; - } else + } else { + io_size -= (pg_count - max_vectors) * PAGE_SIZE; pg_count = max_vectors; + } } - /* Throttle the speculative IO */ - if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) + if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) + /* + * if we're not targeting a virtual device i.e. a disk image + * it's safe to dip into the reserve pool since real devices + * can complete this I/O request without requiring additional + * bufs from the alloc_io_buf pool + */ + priv = 1; + else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) + /* + * Throttle the speculative IO + */ priv = 0; else priv = 1; cbp = alloc_io_buf(vp, priv); - if (flags & CL_PAGEOUT) { + u_int i; + for (i = 0; i < pg_count; i++) { - int s; - struct buf *bp; - - s = splbio(); - if (bp = incore(vp, lblkno + i)) { - if (!ISSET(bp->b_flags, B_BUSY)) { - bremfree(bp); - SET(bp->b_flags, (B_BUSY | B_INVAL)); - splx(s); - brelse(bp); - } else - panic("BUSY bp found in cluster_io"); - } - splx(s); + if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) + panic("BUSY bp found in cluster_io"); } } if (flags & CL_ASYNC) { - cbp->b_flags |= (B_CALL | B_ASYNC); - cbp->b_iodone = (void *)cluster_iodone; + if (buf_setcallback(cbp, (void *)cluster_iodone, NULL)) + panic("buf_setcallback failed\n"); } cbp->b_flags |= io_flags; cbp->b_lblkno = lblkno; cbp->b_blkno = blkno; cbp->b_bcount = io_size; - cbp->b_pagelist = upl; - cbp->b_uploffset = upl_offset; - cbp->b_trans_next = (struct buf *)0; - if (cbp->b_iostate = (void *)iostate) + if (buf_setupl(cbp, upl, upl_offset)) + panic("buf_setupl failed\n"); + + cbp->b_trans_next = (buf_t)NULL; + + if ((cbp->b_iostate = (void *)iostate)) /* * caller wants to track the state of this * io... bump the amount issued against this stream */ iostate->io_issued += io_size; - if (flags & CL_READ) + if (flags & CL_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, - cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0); - else + (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); + } + else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, - cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0); + (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); + } if (cbp_head) { cbp_tail->b_trans_next = cbp; @@ -596,14 +912,30 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, cbp_head = cbp; cbp_tail = cbp; } - (struct buf *)(cbp->b_trans_head) = cbp_head; - buf_count++; + (buf_t)(cbp->b_trans_head) = cbp_head; + trans_count++; upl_offset += io_size; f_offset += io_size; size -= io_size; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; - if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || buf_count > 8)) || size == 0) { + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } + if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || trans_count > 8)) || size == 0) { /* * if we have no more I/O to issue or * the current I/O we've prepared fully @@ -619,7 +951,7 @@ start_io: cbp_head->b_flags |= B_NEED_IODONE; cbp_head->b_real_bp = real_bp; } else - cbp_head->b_real_bp = (struct buf *)NULL; + cbp_head->b_real_bp = (buf_t)NULL; if (size == 0) { /* @@ -632,33 +964,40 @@ start_io: } else cbp_head->b_validend = 0; + if (flags & CL_THROTTLE) + (void)vnode_waitforwrites(vp, async_throttle, 0, 0, (char *)"cluster_io"); + for (cbp = cbp_head; cbp;) { - struct buf * cbp_next; + buf_t cbp_next; - if (io_flags & B_WRITEINPROG) - cbp->b_vp->v_numoutput++; + if ( !(io_flags & B_READ)) + vnode_startwrite(vp); cbp_next = cbp->b_trans_next; - (void) VOP_STRATEGY(cbp); + (void) VNOP_STRATEGY(cbp); cbp = cbp_next; } if ( !(flags & CL_ASYNC)) { + int dummy; + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) - biowait(cbp); - - if (error = cluster_iodone(cbp_head)) { - if ((flags & CL_PAGEOUT) && (error == ENXIO)) - retval = 0; /* drop the error */ - else - retval = error; - error = 0; + buf_biowait(cbp); + + if ((error = cluster_iodone(cbp_head, (void *)&dummy))) { + if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) == CL_PAGEOUT) && (error == ENXIO)) + error = 0; /* drop the error */ + else { + if (retval == 0) + retval = error; + error = 0; + } } } - cbp_head = (struct buf *)0; - cbp_tail = (struct buf *)0; + cbp_head = (buf_t)NULL; + cbp_tail = (buf_t)NULL; - buf_count = 0; + trans_count = 0; } } if (error) { @@ -667,7 +1006,7 @@ start_io: io_size = 0; for (cbp = cbp_head; cbp;) { - struct buf * cbp_next; + buf_t cbp_next; upl_offset -= cbp->b_bcount; size += cbp->b_bcount; @@ -678,11 +1017,15 @@ start_io: cbp = cbp_next; } if (iostate) { + int need_wakeup = 0; + /* * update the error condition for this stream * since we never really issued the io * just go ahead and adjust it back */ + lck_mtx_lock(cl_mtxp); + if (iostate->io_error == 0) iostate->io_error = error; iostate->io_issued -= io_size; @@ -693,27 +1036,33 @@ start_io: * this io stream to change */ iostate->io_wanted = 0; - wakeup((caddr_t)&iostate->io_wanted); + need_wakeup = 0; } + lck_mtx_unlock(cl_mtxp); + + if (need_wakeup) + wakeup((caddr_t)&iostate->io_wanted); } pg_offset = upl_offset & PAGE_MASK; - abort_size = ((size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE; + abort_size = (size + pg_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; if (flags & CL_COMMIT) { int upl_abort_code; - if (flags & CL_PRESERVE) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */ - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if (flags & CL_PAGEIN) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; - else - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + if (flags & CL_PRESERVE) { + ubc_upl_commit_range(upl, upl_offset - pg_offset, abort_size, + UPL_COMMIT_FREE_ON_EMPTY); + } else { + if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */ + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; + else if (flags & CL_PAGEIN) + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; + else + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; - ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size, + ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size, upl_abort_code); - + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, (int)upl, upl_offset - pg_offset, abort_size, error, 0); } @@ -721,7 +1070,7 @@ start_io: real_bp->b_flags |= B_ERROR; real_bp->b_error = error; - biodone(real_bp); + buf_biodone(real_bp); } if (retval == 0) retval = error; @@ -734,15 +1083,9 @@ start_io: static int -cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize) - struct vnode *vp; - off_t f_offset; - u_int size; - off_t filesize; - int devblocksize; +cluster_rd_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize) { - int pages_to_fetch; - int skipped_pages; + int pages_in_prefetch; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, (int)f_offset, size, (int)filesize, 0, 0); @@ -753,112 +1096,121 @@ cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize) return(0); } if (size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - size = MAX_UPL_TRANSFER * PAGE_SIZE; + size = (MAX_UPL_TRANSFER * PAGE_SIZE); else - size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1); + size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; if ((off_t)size > (filesize - f_offset)) size = filesize - f_offset; - - pages_to_fetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; + pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; - for (skipped_pages = 0; skipped_pages < pages_to_fetch; skipped_pages++) { - if (ubc_page_op(vp, f_offset, 0, 0, 0) != KERN_SUCCESS) - break; - f_offset += PAGE_SIZE; - size -= PAGE_SIZE; - } - if (skipped_pages < pages_to_fetch) - advisory_read(vp, filesize, f_offset, size, devblocksize); + advisory_read(vp, filesize, f_offset, size); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, - (int)f_offset + (pages_to_fetch * PAGE_SIZE), skipped_pages, 0, 1, 0); + (int)f_offset + size, pages_in_prefetch, 0, 1, 0); - return (pages_to_fetch); + return (pages_in_prefetch); } static void -cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize) - struct vnode *vp; - daddr_t b_lblkno; - daddr_t e_lblkno; - off_t filesize; - int devblocksize; +cluster_rd_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap) { - daddr_t r_lblkno; - off_t f_offset; - int size_of_prefetch; - int max_pages; + daddr64_t r_addr; + off_t f_offset; + int size_of_prefetch; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, - b_lblkno, e_lblkno, vp->v_lastr, 0, 0); + (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); - if (b_lblkno == vp->v_lastr && b_lblkno == e_lblkno) { + if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 0, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); return; } - - if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) && - (b_lblkno != (vp->v_maxra + 1) || vp->v_ralen == 0))) { - vp->v_ralen = 0; - vp->v_maxra = 0; + if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1) && + (extent->b_addr != (rap->cl_maxra + 1) || rap->cl_ralen == 0))) { + rap->cl_ralen = 0; + rap->cl_maxra = 0; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 1, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); return; } - max_pages = MAX_UPL_TRANSFER; - - vp->v_ralen = vp->v_ralen ? min(max_pages, vp->v_ralen << 1) : 1; - - if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen) - vp->v_ralen = min(max_pages, (e_lblkno + 1) - b_lblkno); - - if (e_lblkno < vp->v_maxra) { - if ((vp->v_maxra - e_lblkno) > max(max_pages / 16, 4)) { + if (extent->e_addr < rap->cl_maxra) { + if ((rap->cl_maxra - extent->e_addr) > (MAX_UPL_TRANSFER / 4)) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); return; } } - r_lblkno = max(e_lblkno, vp->v_maxra) + 1; - f_offset = (off_t)r_lblkno * PAGE_SIZE_64; + r_addr = max(extent->e_addr, rap->cl_maxra) + 1; + f_offset = (off_t)(r_addr * PAGE_SIZE_64); + size_of_prefetch = 0; + + ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); + + if (size_of_prefetch) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); + return; + } if (f_offset < filesize) { - size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize); + daddr64_t read_size; + + rap->cl_ralen = rap->cl_ralen ? min(MAX_UPL_TRANSFER, rap->cl_ralen << 1) : 1; + + read_size = (extent->e_addr + 1) - extent->b_addr; + + if (read_size > rap->cl_ralen) { + if (read_size > MAX_UPL_TRANSFER) + rap->cl_ralen = MAX_UPL_TRANSFER; + else + rap->cl_ralen = read_size; + } + size_of_prefetch = cluster_rd_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize); if (size_of_prefetch) - vp->v_maxra = (r_lblkno + size_of_prefetch) - 1; + rap->cl_maxra = (r_addr + size_of_prefetch) - 1; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); } int -cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int size; - off_t filesize; - int devblocksize; - int flags; +cluster_pageout(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags) { int io_size; - int pg_size; + int rounded_size; off_t max_size; - int local_flags = CL_PAGEOUT; + int local_flags; + struct cl_writebehind *wbp; + + if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) + /* + * if we know we're issuing this I/O to a virtual device (i.e. disk image) + * then we don't want to enforce this throttle... if we do, we can + * potentially deadlock since we're stalling the pageout thread at a time + * when the disk image might need additional memory (which won't be available + * if the pageout thread can't run)... instead we'll just depend on the throttle + * that the pageout thread now has in place to deal with external files + */ + local_flags = CL_PAGEOUT; + else + local_flags = CL_PAGEOUT | CL_THROTTLE; if ((flags & UPL_IOSYNC) == 0) local_flags |= CL_ASYNC; if ((flags & UPL_NOCOMMIT) == 0) local_flags |= CL_COMMIT; + if ((flags & UPL_KEEPCACHED)) + local_flags |= CL_KEEPCACHED; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, @@ -896,32 +1248,23 @@ cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, fla else io_size = max_size; - pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (size > pg_size) { + if (size > rounded_size) { if (local_flags & CL_COMMIT) - ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size, + ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, UPL_ABORT_FREE_ON_EMPTY); } - while (vp->v_numoutput >= ASYNC_THROTTLE) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_pageout", 0); - } + if ((wbp = cluster_get_wbp(vp, 0)) != NULL) + wbp->cl_hasbeenpaged = 1; - return (cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize, - local_flags, (struct buf *)0, (struct clios *)0)); + return (cluster_io(vp, upl, upl_offset, f_offset, io_size, + local_flags, (buf_t)NULL, (struct clios *)NULL)); } int -cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int size; - off_t filesize; - int devblocksize; - int flags; +cluster_pagein(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags) { u_int io_size; int rounded_size; @@ -964,44 +1307,47 @@ cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flag if (size > rounded_size && (local_flags & CL_COMMIT)) ubc_upl_abort_range(upl, upl_offset + rounded_size, - size - (upl_offset + rounded_size), UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); + size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); - retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize, - local_flags | CL_READ | CL_PAGEIN, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, + local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL); - if (retval == 0) { - int b_lblkno; - int e_lblkno; + if (retval == 0 && !(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF)) { + struct cl_readahead *rap; - b_lblkno = (int)(f_offset / PAGE_SIZE_64); - e_lblkno = (int) - ((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64); + rap = cluster_get_rap(vp); - if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF) && rounded_size == PAGE_SIZE) { - /* - * we haven't read the last page in of the file yet - * so let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); + if (rap != NULL) { + struct cl_extent extent; + + extent.b_addr = (daddr64_t)(f_offset / PAGE_SIZE_64); + extent.e_addr = (daddr64_t)((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64); + + if (rounded_size == PAGE_SIZE) { + /* + * we haven't read the last page in of the file yet + * so let's try to read ahead if we're in + * a sequential access pattern + */ + cluster_rd_ahead(vp, &extent, filesize, rap); + } + rap->cl_lastr = extent.e_addr; + + lck_mtx_unlock(&rap->cl_lockr); } - vp->v_lastr = e_lblkno; } return (retval); } int -cluster_bp(bp) - struct buf *bp; +cluster_bp(buf_t bp) { off_t f_offset; int flags; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, - (int)bp, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); + (int)bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); - if (bp->b_pagelist == (upl_t) 0) - panic("cluster_bp: can't handle NULL upl yet\n"); if (bp->b_flags & B_READ) flags = CL_ASYNC | CL_READ; else @@ -1009,174 +1355,192 @@ cluster_bp(bp) f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); - return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, 0, flags, bp, (struct clios *)0)); + return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL)); } int -cluster_write(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t oldEOF; - off_t newEOF; - off_t headOff; - off_t tailOff; - int devblocksize; - int flags; +cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) { int prev_resid; - int clip_size; + u_int clip_size; off_t max_io_size; - struct iovec *iov; - vm_offset_t upl_offset; int upl_size; - int pages_in_pl; - upl_page_info_t *pl; int upl_flags; upl_t upl; int retval = 0; + int flags; + flags = xflags; - if ( (!(vp->v_flag & VNOCACHE_DATA)) || (!uio) || (uio->uio_segflg != UIO_USERSPACE)) - { - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - return(retval); - } - - while (uio->uio_resid && uio->uio_offset < newEOF && retval == 0) - { - /* we know we have a resid, so this is safe */ - iov = uio->uio_iov; - while (iov->iov_len == 0) { - uio->uio_iov++; - uio->uio_iovcnt--; - iov = uio->uio_iov; - } - - /* - * We check every vector target and if it is physically - * contiguous space, we skip the sanity checks. - */ - - upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK; - upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK; - pages_in_pl = 0; - upl_flags = UPL_QUERY_OBJECT_TYPE; - if ((vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS) - { - /* - * the user app must have passed in an invalid address + if (vp->v_flag & VNOCACHE_DATA) + flags |= IO_NOCACHE; + + if ( (!(flags & IO_NOCACHE)) || (!uio) || (!UIO_SEG_IS_USER_SPACE(uio->uio_segflg))) { + /* + * go do a write through the cache if one of the following is true.... + * NOCACHE is not true + * there is no uio structure or it doesn't target USERSPACE */ - return (EFAULT); - } + return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags)); + } - if (upl_flags & UPL_PHYS_CONTIG) - { - if (flags & IO_HEADZEROFILL) - { - flags &= ~IO_HEADZEROFILL; +#if LP64_DEBUG + if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { + panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); + } +#endif /* LP64_DEBUG */ + + while (uio_resid(uio) && uio->uio_offset < newEOF && retval == 0) { + user_size_t iov_len; + user_addr_t iov_base; - if (retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, devblocksize, IO_HEADZEROFILL)) - return(retval); - } - - retval = cluster_phys_write(vp, uio, newEOF, devblocksize, flags); - - if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL)) - { - retval = cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL); - return(retval); - } - } - else if ((uio->uio_resid < 4 * PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) - { /* - * We set a threshhold of 4 pages to decide if the nocopy - * write loop is worth the trouble... - * we also come here if we're trying to zero the head and/or tail - * of a partially written page, and the user source is not a physically contiguous region - */ - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - return(retval); - } - else if (uio->uio_offset & PAGE_MASK_64) - { - /* Bring the file offset write up to a pagesize boundary */ - clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64)); - if (uio->uio_resid < clip_size) - clip_size = uio->uio_resid; - /* - * Fake the resid going into the cluster_write_x call - * and restore it on the way out. + * we know we have a resid, so this is safe + * skip over any emtpy vectors */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else if ((int)iov->iov_base & PAGE_MASK_64) - { - clip_size = iov->iov_len; - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* - * If we come in here, we know the offset into - * the file is on a pagesize boundary + uio_update(uio, (user_size_t)0); + + iov_len = uio_curriovlen(uio); + iov_base = uio_curriovbase(uio); + + upl_size = PAGE_SIZE; + upl_flags = UPL_QUERY_OBJECT_TYPE; + + // LP64todo - fix this! + if ((vm_map_get_upl(current_map(), + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { + /* + * the user app must have passed in an invalid address + */ + return (EFAULT); + } + + /* + * We check every vector target but if it is physically + * contiguous space, we skip the sanity checks. */ + if (upl_flags & UPL_PHYS_CONTIG) { + int zflags; + + zflags = flags & ~IO_TAILZEROFILL; + zflags |= IO_HEADZEROFILL; + + if (flags & IO_HEADZEROFILL) { + /* + * in case we have additional vectors, we don't want to do this again + */ + flags &= ~IO_HEADZEROFILL; + + if ((retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, zflags))) + return(retval); + } + retval = cluster_phys_write(vp, uio, newEOF); + + if (uio_resid(uio) == 0 && (flags & IO_TAILZEROFILL)) { + return (cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, zflags)); + } + } + else if ((uio_resid(uio) < PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) { + /* + * we're here because we're don't have a physically contiguous target buffer + * go do a write through the cache if one of the following is true.... + * the total xfer size is less than a page... + * we're being asked to ZEROFILL either the head or the tail of the I/O... + */ + return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags)); + } + // LP64todo - fix this! + else if (((int)uio->uio_offset & PAGE_MASK) || (CAST_DOWN(int, iov_base) & PAGE_MASK)) { + if (((int)uio->uio_offset & PAGE_MASK) == (CAST_DOWN(int, iov_base) & PAGE_MASK)) { + /* + * Bring the file offset write up to a pagesize boundary + * this will also bring the base address to a page boundary + * since they both are currently on the same offset within a page + * note: if we get here, uio->uio_resid is greater than PAGE_SIZE + * so the computed clip_size must always be less than the current uio_resid + */ + clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64)); + + /* + * Fake the resid going into the cluster_write_x call + * and restore it on the way out. + */ + // LP64todo - fix this + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); + + retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } else { + /* + * can't get both the file offset and the buffer offset aligned to a page boundary + * so fire an I/O through the cache for this entire vector + */ + // LP64todo - fix this + clip_size = iov_len; + // LP64todo - fix this + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); + + retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } + } else { + /* + * If we come in here, we know the offset into + * the file is on a pagesize boundary and the + * target buffer address is also on a page boundary + */ + max_io_size = newEOF - uio->uio_offset; + // LP64todo - fix this + clip_size = uio_resid(uio); + if (iov_len < clip_size) + // LP64todo - fix this! + clip_size = iov_len; + if (max_io_size < clip_size) + clip_size = max_io_size; + + if (clip_size < PAGE_SIZE) { + /* + * Take care of tail end of write in this vector + */ + // LP64todo - fix this + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); + + retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } else { + /* round clip_size down to a multiple of pagesize */ + clip_size = clip_size & ~(PAGE_MASK); + // LP64todo - fix this + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); + + retval = cluster_nocopy_write(vp, uio, newEOF); + + if ((retval == 0) && uio_resid(uio)) + retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } + } /* end else */ + } /* end while */ - max_io_size = newEOF - uio->uio_offset; - clip_size = uio->uio_resid; - if (iov->iov_len < clip_size) - clip_size = iov->iov_len; - if (max_io_size < clip_size) - clip_size = max_io_size; - - if (clip_size < PAGE_SIZE) - { - /* - * Take care of tail end of write in this vector - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* round clip_size down to a multiple of pagesize */ - clip_size = clip_size & ~(PAGE_MASK); - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags); - if ((retval == 0) && uio->uio_resid) - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } /* end else */ - } /* end while */ return(retval); } static int -cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t newEOF; - int devblocksize; - int flags; +cluster_nocopy_write(vnode_t vp, struct uio *uio, off_t newEOF) { upl_t upl; upl_page_info_t *pl; - off_t upl_f_offset; vm_offset_t upl_offset; - off_t max_io_size; int io_size; int io_flag; int upl_size; @@ -1184,16 +1548,16 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) int pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; int i; - int first = 1; int force_data_sync; int error = 0; struct clios iostate; + struct cl_writebehind *wbp; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, - (int)uio->uio_offset, (int)uio->uio_resid, - (int)newEOF, devblocksize, 0); + (int)uio->uio_offset, (int)uio_resid(uio), + (int)newEOF, 0, 0); /* * When we enter this routine, we know @@ -1201,40 +1565,45 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) * -- the resid is a page multiple * -- the resid will not exceed iov_len */ - cluster_try_push(vp, newEOF, 0, 1); + + if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) != NULL) { + + cluster_try_push(wbp, vp, newEOF, 0, 1); + lck_mtx_unlock(&wbp->cl_lockw); + } iostate.io_completed = 0; iostate.io_issued = 0; iostate.io_error = 0; iostate.io_wanted = 0; - iov = uio->uio_iov; + while (uio_resid(uio) && uio->uio_offset < newEOF && error == 0) { + user_addr_t iov_base; - while (uio->uio_resid && uio->uio_offset < newEOF && error == 0) { - io_size = uio->uio_resid; + io_size = uio_resid(uio); if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) io_size = MAX_UPL_TRANSFER * PAGE_SIZE; - if (first) { - if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4) - io_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 8; - first = 0; - } - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; + iov_base = uio_curriovbase(uio); + + // LP64todo - fix this! + upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK; + upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, - (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0); + (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { pages_in_pl = 0; upl_size = upl_needed_size; upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | - UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + // LP64todo - fix this! kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), &upl_size, &upl, NULL, @@ -1245,7 +1614,6 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) if (kret != KERN_SUCCESS) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, 0, 0, 0, kret, 0); - /* * cluster_nocopy_write: failed to get pagelist * @@ -1275,7 +1643,6 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) if (force_data_sync >= 3) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, i, pages_in_pl, upl_size, kret, 0); - /* * for some reason, we couldn't acquire a hold on all * the pages needed in the user's address space @@ -1294,12 +1661,11 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, - (int)upl_offset, upl_size, (int)iov->iov_base, io_size, 0); + (int)upl_offset, upl_size, (int)iov_base, io_size, 0); if (io_size == 0) { ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, UPL_ABORT_FREE_ON_EMPTY); - /* * we may have already spun some portion of this request * off as async requests... we need to wait for the I/O @@ -1310,33 +1676,25 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) /* * Now look for pages already in the cache * and throw them away. + * uio->uio_offset is page aligned within the file + * io_size is a multiple of PAGE_SIZE */ + ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL); - upl_f_offset = uio->uio_offset; /* this is page aligned in the file */ - max_io_size = io_size; - - while (max_io_size) { - /* - * Flag UPL_POP_DUMP says if the page is found - * in the page cache it must be thrown away. - */ - ubc_page_op(vp, - upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY | UPL_POP_DUMP, - 0, 0); - max_io_size -= PAGE_SIZE_64; - upl_f_offset += PAGE_SIZE_64; - } /* * we want push out these writes asynchronously so that we can overlap * the preparation of the next I/O * if there are already too many outstanding writes * wait until some complete before issuing the next */ + lck_mtx_lock(cl_mtxp); + while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) { iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_write", 0); + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_write", 0); } + lck_mtx_unlock(cl_mtxp); + if (iostate.io_error) { /* * one of the earlier writes we issued ran into a hard error @@ -1350,21 +1708,18 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) goto wait_for_writes; } - io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT; + io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, devblocksize, io_flag, (struct buf *)0, &iostate); + io_size, io_flag, (buf_t)NULL, &iostate); - iov->iov_len -= io_size; - iov->iov_base += io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; + uio_update(uio, (user_size_t)io_size); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, - (int)upl_offset, (int)uio->uio_offset, (int)uio->uio_resid, error, 0); + (int)upl_offset, (int)uio->uio_offset, (int)uio_resid(uio), error, 0); } /* end while */ @@ -1373,10 +1728,14 @@ wait_for_writes: * make sure all async writes issued as part of this stream * have completed before we return */ + lck_mtx_lock(cl_mtxp); + while (iostate.io_issued != iostate.io_completed) { iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_write", 0); + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_write", 0); } + lck_mtx_unlock(cl_mtxp); + if (iostate.io_error) error = iostate.io_error; @@ -1388,15 +1747,10 @@ wait_for_writes: static int -cluster_phys_write(vp, uio, newEOF, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t newEOF; - int devblocksize; - int flags; +cluster_phys_write(vnode_t vp, struct uio *uio, off_t newEOF) { upl_page_info_t *pl; - addr64_t src_paddr; + addr64_t src_paddr; upl_t upl; vm_offset_t upl_offset; int tail_size; @@ -1406,28 +1760,44 @@ cluster_phys_write(vp, uio, newEOF, devblocksize, flags) int pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; int error = 0; + user_addr_t iov_base; + int devblocksize; + struct cl_writebehind *wbp; + devblocksize = vp->v_mount->mnt_devblocksize; /* * When we enter this routine, we know * -- the resid will not exceed iov_len * -- the vector target address is physcially contiguous */ - cluster_try_push(vp, newEOF, 0, 1); + if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) != NULL) { + + cluster_try_push(wbp, vp, newEOF, 0, 1); + + lck_mtx_unlock(&wbp->cl_lockw); + } +#if LP64_DEBUG + if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { + panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); + } +#endif /* LP64_DEBUG */ - iov = uio->uio_iov; - io_size = iov->iov_len; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; + // LP64todo - fix this! + io_size = (int)uio_curriovlen(uio); + iov_base = uio_curriovbase(uio); + + upl_offset = CAST_DOWN(upl_offset_t, iov_base) & PAGE_MASK; upl_needed_size = upl_offset + io_size; pages_in_pl = 0; upl_size = upl_needed_size; upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | - UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + // LP64todo - fix this! kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); if (kret != KERN_SUCCESS) { @@ -1442,12 +1812,12 @@ cluster_phys_write(vp, uio, newEOF, devblocksize, flags) * This is a failure in the physical memory case. */ if (upl_size < upl_needed_size) { - kernel_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); return(EINVAL); } pl = ubc_upl_pageinfo(upl); - src_paddr = (((addr64_t)(int)upl_phys_page(pl, 0)) << 12) + ((addr64_t)iov->iov_base & PAGE_MASK); + src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { int head_size; @@ -1457,7 +1827,7 @@ cluster_phys_write(vp, uio, newEOF, devblocksize, flags) if (head_size > io_size) head_size = io_size; - error = cluster_align_phys_io(vp, uio, src_paddr, head_size, devblocksize, 0); + error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0); if (error) { ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); @@ -1476,21 +1846,19 @@ cluster_phys_write(vp, uio, newEOF, devblocksize, flags) * issue a synchronous write to cluster_io */ error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, 0, CL_DEV_MEMORY, (struct buf *)0, (struct clios *)0); + io_size, CL_DEV_MEMORY, (buf_t)NULL, (struct clios *)NULL); } if (error == 0) { /* * The cluster_io write completed successfully, * update the uio structure */ - uio->uio_resid -= io_size; - iov->iov_len -= io_size; - iov->iov_base += io_size; - uio->uio_offset += io_size; - src_paddr += io_size; + uio_update(uio, (user_size_t)io_size); + + src_paddr += io_size; if (tail_size) - error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, devblocksize, 0); + error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0); } /* * just release our hold on the physically contiguous @@ -1503,54 +1871,71 @@ cluster_phys_write(vp, uio, newEOF, devblocksize, flags) static int -cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t oldEOF; - off_t newEOF; - off_t headOff; - off_t tailOff; - int devblocksize; - int flags; +cluster_write_x(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int flags) { upl_page_info_t *pl; upl_t upl; - vm_offset_t upl_offset; + vm_offset_t upl_offset = 0; int upl_size; off_t upl_f_offset; int pages_in_upl; int start_offset; int xfer_resid; int io_size; - int io_flags; - vm_offset_t io_address; int io_offset; int bytes_to_zero; int bytes_to_move; kern_return_t kret; int retval = 0; - int uio_resid; + int io_resid; long long total_size; long long zero_cnt; off_t zero_off; long long zero_cnt1; off_t zero_off1; - daddr_t start_blkno; - daddr_t last_blkno; + struct cl_extent cl; + int intersection; + struct cl_writebehind *wbp; + + if ((wbp = cluster_get_wbp(vp, 0)) != NULL) + { + if (wbp->cl_hasbeenpaged) { + /* + * this vnode had pages cleaned to it by + * the pager which indicates that either + * it's not very 'hot', or the system is + * being overwhelmed by a lot of dirty + * data being delayed in the VM cache... + * in either event, we'll push our remaining + * delayed data at this point... this will + * be more efficient than paging out 1 page at + * a time, and will also act as a throttle + * by delaying this client from writing any + * more data until all his delayed data has + * at least been queued to the uderlying driver. + */ + if (wbp->cl_number || wbp->cl_scmap) + cluster_push_EOF(vp, newEOF); + wbp->cl_hasbeenpaged = 0; + } + } if (uio) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)oldEOF, (int)newEOF, 0); + (int)uio->uio_offset, uio_resid(uio), (int)oldEOF, (int)newEOF, 0); - uio_resid = uio->uio_resid; + // LP64todo - fix this + io_resid = uio_resid(uio); } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, 0, 0, (int)oldEOF, (int)newEOF, 0); - uio_resid = 0; + io_resid = 0; } zero_cnt = 0; zero_cnt1 = 0; + zero_off = 0; + zero_off1 = 0; if (flags & IO_HEADZEROFILL) { /* @@ -1572,27 +1957,27 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) } if (flags & IO_TAILZEROFILL) { if (uio) { - zero_off1 = uio->uio_offset + uio->uio_resid; + // LP64todo - fix this + zero_off1 = uio->uio_offset + uio_resid(uio); if (zero_off1 < tailOff) zero_cnt1 = tailOff - zero_off1; } } - if (zero_cnt == 0 && uio == (struct uio *) 0) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, - retval, 0, 0, 0, 0); - return (0); - } + if (zero_cnt == 0 && uio == (struct uio *) 0) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, + retval, 0, 0, 0, 0); + return (0); + } - while ((total_size = (uio_resid + zero_cnt + zero_cnt1)) && retval == 0) { + while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { /* * for this iteration of the loop, figure out where our starting point is */ if (zero_cnt) { start_offset = (int)(zero_off & PAGE_MASK_64); upl_f_offset = zero_off - start_offset; - } else if (uio_resid) { + } else if (io_resid) { start_offset = (int)(uio->uio_offset & PAGE_MASK_64); upl_f_offset = uio->uio_offset - start_offset; } else { @@ -1605,6 +1990,44 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) total_size = MAX_UPL_TRANSFER * PAGE_SIZE; + cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); + + if (uio && ((flags & (IO_NOCACHE | IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { + /* + * assumption... total_size <= io_resid + * because IO_HEADZEROFILL and IO_TAILZEROFILL not set + */ + if ((start_offset + total_size) > (MAX_UPL_TRANSFER * PAGE_SIZE)) + total_size -= start_offset; + xfer_resid = total_size; + + retval = cluster_copy_ubc_data(vp, uio, &xfer_resid, 1); + + if (retval) + break; + + io_resid -= (total_size - xfer_resid); + total_size = xfer_resid; + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + upl_f_offset = uio->uio_offset - start_offset; + + if (total_size == 0) { + if (start_offset) { + /* + * the write did not finish on a page boundary + * which will leave upl_f_offset pointing to the + * beginning of the last page written instead of + * the page beyond it... bump it in this case + * so that the cluster code records the last page + * written as dirty + */ + upl_f_offset += PAGE_SIZE_64; + } + upl_size = 0; + + goto check_cluster; + } + } /* * compute the size of the upl needed to encompass * the requested write... limit each call to cluster_io @@ -1624,20 +2047,25 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) if ((long long)io_size > total_size) io_size = total_size; - start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64); - last_blkno = start_blkno + pages_in_upl; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); + + /* + * Gather the pages from the buffer cache. + * The UPL_WILL_MODIFY flag lets the UPL subsystem know + * that we intend to modify these pages. + */ kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_FLAGS_NONE); + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_SET_LITE | UPL_WILL_MODIFY); if (kret != KERN_SUCCESS) panic("cluster_write: failed to get pagelist"); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_NONE, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, + (int)upl, (int)upl_f_offset, start_offset, 0, 0); if (start_offset && !upl_valid_page(pl, 0)) { int read_size; @@ -1652,8 +2080,8 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) if ((upl_f_offset + read_size) > newEOF) read_size = newEOF - upl_f_offset; - retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, devblocksize, - CL_READ, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, + CL_READ, (buf_t)NULL, (struct clios *)NULL); if (retval) { /* * we had an error during the read which causes us to abort @@ -1662,7 +2090,9 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * there state and mark the failed page in error */ ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + + if (upl_size > PAGE_SIZE) + ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, (int)upl, 0, 0, retval, 0); @@ -1686,8 +2116,8 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) if ((upl_f_offset + upl_offset + read_size) > newEOF) read_size = newEOF - (upl_f_offset + upl_offset); - retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, devblocksize, - CL_READ, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, + CL_READ, (buf_t)NULL, (struct clios *)NULL); if (retval) { /* * we had an error during the read which causes us to abort @@ -1696,7 +2126,9 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * modifying there state and mark the failed page in error */ ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + + if (upl_size > PAGE_SIZE) + ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, (int)upl, 0, 0, retval, 0); @@ -1704,8 +2136,6 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) } } } - if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS) - panic("cluster_write: ubc_upl_map failed\n"); xfer_resid = io_size; io_offset = start_offset; @@ -1717,11 +2147,7 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) bytes_to_zero = xfer_resid; if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, bytes_to_zero, - (int)io_offset, xfer_resid, 0); + cluster_zero(upl, io_offset, bytes_to_zero, NULL); } else { int zero_pg_index; @@ -1729,19 +2155,11 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); if ( !upl_valid_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, bytes_to_zero, - (int)io_offset, xfer_resid, 0); + cluster_zero(upl, io_offset, bytes_to_zero, NULL); } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && !upl_dirty_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, bytes_to_zero, - (int)io_offset, xfer_resid, 0); + cluster_zero(upl, io_offset, bytes_to_zero, NULL); } } xfer_resid -= bytes_to_zero; @@ -1749,25 +2167,19 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) zero_off += bytes_to_zero; io_offset += bytes_to_zero; } - if (xfer_resid && uio_resid) { - bytes_to_move = min(uio_resid, xfer_resid); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 42)) | DBG_FUNC_NONE, - (int)uio->uio_offset, bytes_to_move, uio_resid, xfer_resid, 0); - - retval = uiomove((caddr_t)(io_address + io_offset), bytes_to_move, uio); + if (xfer_resid && io_resid) { + bytes_to_move = min(io_resid, xfer_resid); + retval = cluster_copy_upl_data(uio, upl, io_offset, bytes_to_move); if (retval) { - if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS) - panic("cluster_write: kernel_upl_unmap failed\n"); ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, (int)upl, 0, 0, retval, 0); } else { - uio_resid -= bytes_to_move; + io_resid -= bytes_to_move; xfer_resid -= bytes_to_move; io_offset += bytes_to_move; } @@ -1780,11 +2192,7 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) bytes_to_zero = xfer_resid; if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, - bytes_to_zero, (int)io_offset, xfer_resid, 0); + cluster_zero(upl, io_offset, bytes_to_zero, NULL); } else { int zero_pg_index; @@ -1792,19 +2200,10 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64); if ( !upl_valid_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, - bytes_to_zero, (int)io_offset, xfer_resid, 0); - + cluster_zero(upl, io_offset, bytes_to_zero, NULL); } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && !upl_dirty_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, - bytes_to_zero, (int)io_offset, xfer_resid, 0); + cluster_zero(upl, io_offset, bytes_to_zero, NULL); } } xfer_resid -= bytes_to_zero; @@ -1826,15 +2225,8 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * if the file gets extended again in such a way as to leave a * hole starting at this EOF, we'll have zero's in the correct spot */ - bzero((caddr_t)(io_address + io_size), upl_size - io_size); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_size, - upl_size - io_size, 0, 0, 0); + cluster_zero(upl, io_size, upl_size - io_size, NULL); } - if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS) - panic("cluster_write: kernel_upl_unmap failed\n"); - if (flags & IO_SYNC) /* * if the IO_SYNC flag is set than we need to @@ -1842,78 +2234,163 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * the I/O */ goto issue_io; +check_cluster: + /* + * take the lock to protect our accesses + * of the writebehind and sparse cluster state + */ + wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); + + /* + * calculate the last logical block number + * that this delayed I/O encompassed + */ + cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); + + if (wbp->cl_scmap) { + + if ( !(flags & IO_NOCACHE)) { + /* + * we've fallen into the sparse + * cluster method of delaying dirty pages + * first, we need to release the upl if we hold one + * since pages in it may be present in the sparse cluster map + * and may span 2 separate buckets there... if they do and + * we happen to have to flush a bucket to make room and it intersects + * this upl, a deadlock may result on page BUSY + */ + if (upl_size) + ubc_upl_commit_range(upl, 0, upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + + sparse_cluster_add(wbp, vp, &cl, newEOF); + + lck_mtx_unlock(&wbp->cl_lockw); + + continue; + } + /* + * must have done cached writes that fell into + * the sparse cluster mechanism... we've switched + * to uncached writes on the file, so go ahead + * and push whatever's in the sparse map + * and switch back to normal clustering + * + * see the comment above concerning a possible deadlock... + */ + if (upl_size) { + ubc_upl_commit_range(upl, 0, upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + /* + * setting upl_size to 0 keeps us from committing a + * second time in the start_new_cluster path + */ + upl_size = 0; + } + sparse_cluster_push(wbp, vp, newEOF, 1); - if (vp->v_clen == 0) + wbp->cl_number = 0; + /* + * no clusters of either type present at this point + * so just go directly to start_new_cluster since + * we know we need to delay this I/O since we've + * already released the pages back into the cache + * to avoid the deadlock with sparse_cluster_push + */ + goto start_new_cluster; + } + upl_offset = 0; + + if (wbp->cl_number == 0) /* * no clusters currently present */ goto start_new_cluster; - /* - * keep track of the overall dirty page - * range we've developed - * in case we have to fall back to the - * VHASDIRTY method of flushing - */ - if (vp->v_flag & VHASDIRTY) - goto delay_io; - - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { /* - * we have an existing cluster... see if this write will extend it nicely + * check each cluster that we currently hold + * try to merge some or all of this write into + * one or more of the existing clusters... if + * any portion of the write remains, start a + * new cluster */ - if (start_blkno >= vp->v_clusters[cl_index].start_pg) { + if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { /* * the current write starts at or after the current cluster */ - if (last_blkno <= (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) { + if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER)) { /* * we have a write that fits entirely * within the existing cluster limits */ - if (last_blkno > vp->v_clusters[cl_index].last_pg) + if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) /* * update our idea of where the cluster ends */ - vp->v_clusters[cl_index].last_pg = last_blkno; + wbp->cl_clusters[cl_index].e_addr = cl.e_addr; break; } - if (start_blkno < (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) { + if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER)) { /* * we have a write that starts in the middle of the current cluster - * but extends beyond the cluster's limit - * we'll clip the current cluster if we actually - * overlap with the new write - * and start a new cluster with the current write + * but extends beyond the cluster's limit... we know this because + * of the previous checks + * we'll extend the current cluster to the max + * and update the b_addr for the current write to reflect that + * the head of it was absorbed into this cluster... + * note that we'll always have a leftover tail in this case since + * full absorbtion would have occurred in the clause above */ - if (vp->v_clusters[cl_index].last_pg > start_blkno) - vp->v_clusters[cl_index].last_pg = start_blkno; + wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER; + + if (upl_size) { + daddr64_t start_pg_in_upl; + + start_pg_in_upl = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); + + if (start_pg_in_upl < wbp->cl_clusters[cl_index].e_addr) { + intersection = (int)((wbp->cl_clusters[cl_index].e_addr - start_pg_in_upl) * PAGE_SIZE); + + ubc_upl_commit_range(upl, upl_offset, intersection, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + upl_f_offset += intersection; + upl_offset += intersection; + upl_size -= intersection; + } + } + cl.b_addr = wbp->cl_clusters[cl_index].e_addr; } /* - * we also get here for the case where the current write starts - * beyond the limit of the existing cluster + * we come here for the case where the current write starts + * beyond the limit of the existing cluster or we have a leftover + * tail after a partial absorbtion * * in either case, we'll check the remaining clusters before * starting a new one */ } else { /* - * the current write starts in front of the current cluster + * the current write starts in front of the cluster we're currently considering */ - if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) { + if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= MAX_UPL_TRANSFER) { /* - * we can just merge the old cluster - * with the new request and leave it - * in the cache + * we can just merge the new request into + * this cluster and leave it in the cache + * since the resulting cluster is still + * less than the maximum allowable size */ - vp->v_clusters[cl_index].start_pg = start_blkno; + wbp->cl_clusters[cl_index].b_addr = cl.b_addr; - if (last_blkno > vp->v_clusters[cl_index].last_pg) { + if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { /* * the current write completely - * envelops the existing cluster + * envelops the existing cluster and since + * each write is limited to at most MAX_UPL_TRANSFER bytes + * we can just use the start and last blocknos of the write + * to generate the cluster limits */ - vp->v_clusters[cl_index].last_pg = last_blkno; + wbp->cl_clusters[cl_index].e_addr = cl.e_addr; } break; } @@ -1922,32 +2399,53 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * if we were to combine this write with the current cluster * we would exceed the cluster size limit.... so, * let's see if there's any overlap of the new I/O with - * the existing cluster... + * the cluster we're currently considering... in fact, we'll + * stretch the cluster out to it's full limit and see if we + * get an intersection with the current write * */ - if (last_blkno > vp->v_clusters[cl_index].start_pg) + if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - MAX_UPL_TRANSFER) { /* - * the current write extends into the existing cluster - * clip the current cluster by moving the start position - * to where the current write ends + * the current write extends into the proposed cluster + * clip the length of the current write after first combining it's + * tail with the newly shaped cluster */ - vp->v_clusters[cl_index].start_pg = last_blkno; + wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - MAX_UPL_TRANSFER; + + if (upl_size) { + intersection = (int)((cl.e_addr - wbp->cl_clusters[cl_index].b_addr) * PAGE_SIZE); + + if (intersection > upl_size) + /* + * because the current write may consist of a number of pages found in the cache + * which are not part of the UPL, we may have an intersection that exceeds + * the size of the UPL that is also part of this write + */ + intersection = upl_size; + + ubc_upl_commit_range(upl, upl_offset + (upl_size - intersection), intersection, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + upl_size -= intersection; + } + cl.e_addr = wbp->cl_clusters[cl_index].b_addr; + } /* * if we get here, there was no way to merge - * the new I/O with this cluster and - * keep it under our maximum cluster length + * any portion of this write with this cluster + * or we could only merge part of it which + * will leave a tail... * we'll check the remaining clusters before starting a new one */ } } - if (cl_index < vp->v_clen) + if (cl_index < wbp->cl_number) /* - * we found an existing cluster that we - * could merger this I/O into + * we found an existing cluster(s) that we + * could entirely merge this I/O into */ goto delay_io; - if (vp->v_clen < MAX_CLUSTERS && !(vp->v_flag & VNOCACHE_DATA)) + if (wbp->cl_number < MAX_CLUSTERS && !(flags & IO_NOCACHE)) /* * we didn't find an existing cluster to * merge into, but there's room to start @@ -1958,235 +2456,265 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) /* * no exisitng cluster to merge with and no * room to start a new one... we'll try - * pushing the existing ones... if none of - * them are able to be pushed, we'll have - * to fall back on the VHASDIRTY mechanism - * cluster_try_push will set v_clen to the - * number of remaining clusters if it is - * unable to push all of them + * pushing one of the existing ones... if none of + * them are able to be pushed, we'll switch + * to the sparse cluster mechanism + * cluster_try_push updates cl_number to the + * number of remaining clusters... and + * returns the number of currently unused clusters */ - if (vp->v_flag & VNOCACHE_DATA) - can_delay = 0; - else - can_delay = 1; - - if (cluster_try_push(vp, newEOF, 0, 0) == 0) { - vp->v_flag |= VHASDIRTY; - goto delay_io; + int ret_cluster_try_push = 0; + /* if writes are not deferred, call cluster push immediately */ + if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { + if (flags & IO_NOCACHE) + can_delay = 0; + else + can_delay = 1; + + ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, can_delay, 0); } -start_new_cluster: - if (vp->v_clen == 0) { - vp->v_ciosiz = devblocksize; - vp->v_cstart = start_blkno; - vp->v_lastw = last_blkno; + + /* execute following regardless writes are deferred or not */ + if (ret_cluster_try_push == 0) { + /* + * no more room in the normal cluster mechanism + * so let's switch to the more expansive but expensive + * sparse mechanism.... + * first, we need to release the upl if we hold one + * since pages in it may be present in the sparse cluster map (after the cluster_switch) + * and may span 2 separate buckets there... if they do and + * we happen to have to flush a bucket to make room and it intersects + * this upl, a deadlock may result on page BUSY + */ + if (upl_size) + ubc_upl_commit_range(upl, upl_offset, upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + + sparse_cluster_switch(wbp, vp, newEOF); + sparse_cluster_add(wbp, vp, &cl, newEOF); + + lck_mtx_unlock(&wbp->cl_lockw); + + continue; } - vp->v_clusters[vp->v_clen].start_pg = start_blkno; - vp->v_clusters[vp->v_clen].last_pg = last_blkno; - vp->v_clen++; -delay_io: /* - * make sure we keep v_cstart and v_lastw up to - * date in case we have to fall back on the - * V_HASDIRTY mechanism (or we've already entered it) + * we pushed one cluster successfully, so we must be sequentially writing this file + * otherwise, we would have failed and fallen into the sparse cluster support + * so let's take the opportunity to push out additional clusters as long as we + * remain below the throttle... this will give us better I/O locality if we're + * in a copy loop (i.e. we won't jump back and forth between the read and write points + * however, we don't want to push so much out that the write throttle kicks in and + * hangs this thread up until some of the I/O completes... */ - if (start_blkno < vp->v_cstart) - vp->v_cstart = start_blkno; - if (last_blkno > vp->v_lastw) - vp->v_lastw = last_blkno; + if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { + while (wbp->cl_number && (vp->v_numoutput <= (VNODE_ASYNC_THROTTLE / 2))) + cluster_try_push(wbp, vp, newEOF, 0, 0); + } + +start_new_cluster: + wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; + wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; + + if (flags & IO_NOCACHE) + wbp->cl_clusters[wbp->cl_number].io_nocache = 1; + else + wbp->cl_clusters[wbp->cl_number].io_nocache = 0; + wbp->cl_number++; +delay_io: + if (upl_size) + ubc_upl_commit_range(upl, upl_offset, upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + + lck_mtx_unlock(&wbp->cl_lockw); - ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); continue; issue_io: /* + * we don't hold the vnode lock at this point + * + * because we had to ask for a UPL that provides currenty non-present pages, the + * UPL has been automatically set to clear the dirty flags (both software and hardware) + * upon committing it... this is not the behavior we want since it's possible for + * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. * in order to maintain some semblance of coherency with mapped writes - * we need to write the cluster back out as a multiple of the PAGESIZE - * unless the cluster encompasses the last page of the file... in this - * case we'll round out to the nearest device block boundary + * we need to drop the current upl and pick it back up with COPYOUT_FROM set + * so that we correctly deal with a change in state of the hardware modify bit... + * we do this via cluster_push_x... by passing along the IO_SYNC flag, we force + * cluster_push_x to wait until all the I/Os have completed... cluster_push_x is also + * responsible for generating the correct sized I/O(s) */ - io_size = upl_size; - - if ((upl_f_offset + io_size) > newEOF) { - io_size = newEOF - upl_f_offset; - io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1); - } - - if (flags & IO_SYNC) - io_flags = CL_COMMIT | CL_AGE; - else - io_flags = CL_COMMIT | CL_AGE | CL_ASYNC; + ubc_upl_commit_range(upl, 0, upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); - if (vp->v_flag & VNOCACHE_DATA) - io_flags |= CL_DUMP; + cl.e_addr = (upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64; - while (vp->v_numoutput >= ASYNC_THROTTLE) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_write", 0); - } - retval = cluster_io(vp, upl, 0, upl_f_offset, io_size, devblocksize, - io_flags, (struct buf *)0, (struct clios *)0); + retval = cluster_push_x(vp, &cl, newEOF, flags); } } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, - retval, 0, 0, 0, 0); + retval, 0, io_resid, 0, 0); return (retval); } int -cluster_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) { int prev_resid; - int clip_size; + u_int clip_size; off_t max_io_size; - struct iovec *iov; - vm_offset_t upl_offset; int upl_size; - int pages_in_pl; - upl_page_info_t *pl; int upl_flags; upl_t upl; int retval = 0; + int flags; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0); + flags = xflags; - /* - * We set a threshhold of 4 pages to decide if the nocopy - * read loop is worth the trouble... - */ + if (vp->v_flag & VNOCACHE_DATA) + flags |= IO_NOCACHE; + if (vp->v_flag & VRAOFF) + flags |= IO_RAOFF; - if (!((vp->v_flag & VNOCACHE_DATA) && (uio->uio_segflg == UIO_USERSPACE))) - { - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); - return(retval); - } - - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) - { - /* we know we have a resid, so this is safe */ - iov = uio->uio_iov; - while (iov->iov_len == 0) { - uio->uio_iov++; - uio->uio_iovcnt--; - iov = uio->uio_iov; - } - - /* - * We check every vector target and if it is physically - * contiguous space, we skip the sanity checks. - */ - - upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK; - upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK; - pages_in_pl = 0; - upl_flags = UPL_QUERY_OBJECT_TYPE; - if((vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS) - { - /* - * the user app must have passed in an invalid address + if (!((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg))) { + /* + * go do a read through the cache if one of the following is true.... + * NOCACHE is not true + * the uio request doesn't target USERSPACE */ - return (EFAULT); - } - - if (upl_flags & UPL_PHYS_CONTIG) - { - retval = cluster_phys_read(vp, uio, filesize, devblocksize, flags); - } - else if (uio->uio_resid < 4 * PAGE_SIZE) - { + return (cluster_read_x(vp, uio, filesize, flags)); + } + +#if LP64_DEBUG + if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { + panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); + } +#endif /* LP64_DEBUG */ + + while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) { + user_size_t iov_len; + user_addr_t iov_base; + /* - * We set a threshhold of 4 pages to decide if the nocopy - * read loop is worth the trouble... + * we know we have a resid, so this is safe + * skip over any emtpy vectors */ - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); - return(retval); - } - else if (uio->uio_offset & PAGE_MASK_64) - { - /* Bring the file offset read up to a pagesize boundary */ - clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64)); - if (uio->uio_resid < clip_size) - clip_size = uio->uio_resid; - /* - * Fake the resid going into the cluster_read_x call - * and restore it on the way out. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else if ((int)iov->iov_base & PAGE_MASK_64) - { - clip_size = iov->iov_len; - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* - * If we come in here, we know the offset into - * the file is on a pagesize boundary + uio_update(uio, (user_size_t)0); + + iov_len = uio_curriovlen(uio); + iov_base = uio_curriovbase(uio); + + upl_size = PAGE_SIZE; + upl_flags = UPL_QUERY_OBJECT_TYPE; + + // LP64todo - fix this! + if ((vm_map_get_upl(current_map(), + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { + /* + * the user app must have passed in an invalid address + */ + return (EFAULT); + } + + /* + * We check every vector target but if it is physically + * contiguous space, we skip the sanity checks. */ + if (upl_flags & UPL_PHYS_CONTIG) { + retval = cluster_phys_read(vp, uio, filesize); + } + else if (uio_resid(uio) < PAGE_SIZE) { + /* + * we're here because we're don't have a physically contiguous target buffer + * go do a read through the cache if + * the total xfer size is less than a page... + */ + return (cluster_read_x(vp, uio, filesize, flags)); + } + // LP64todo - fix this! + else if (((int)uio->uio_offset & PAGE_MASK) || (CAST_DOWN(int, iov_base) & PAGE_MASK)) { + if (((int)uio->uio_offset & PAGE_MASK) == (CAST_DOWN(int, iov_base) & PAGE_MASK)) { + /* + * Bring the file offset read up to a pagesize boundary + * this will also bring the base address to a page boundary + * since they both are currently on the same offset within a page + * note: if we get here, uio->uio_resid is greater than PAGE_SIZE + * so the computed clip_size must always be less than the current uio_resid + */ + clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64)); + + /* + * Fake the resid going into the cluster_read_x call + * and restore it on the way out. + */ + prev_resid = uio_resid(uio); + // LP64todo - fix this + uio_setresid(uio, clip_size); + + retval = cluster_read_x(vp, uio, filesize, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } else { + /* + * can't get both the file offset and the buffer offset aligned to a page boundary + * so fire an I/O through the cache for this entire vector + */ + // LP64todo - fix this! + clip_size = iov_len; + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); + + retval = cluster_read_x(vp, uio, filesize, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } + } else { + /* + * If we come in here, we know the offset into + * the file is on a pagesize boundary + */ + max_io_size = filesize - uio->uio_offset; + // LP64todo - fix this + clip_size = uio_resid(uio); + if (iov_len < clip_size) + clip_size = iov_len; + if (max_io_size < clip_size) + clip_size = (int)max_io_size; + + if (clip_size < PAGE_SIZE) { + /* + * Take care of the tail end of the read in this vector. + */ + // LP64todo - fix this + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); - max_io_size = filesize - uio->uio_offset; - clip_size = uio->uio_resid; - if (iov->iov_len < clip_size) - clip_size = iov->iov_len; - if (max_io_size < clip_size) - clip_size = (int)max_io_size; - - if (clip_size < PAGE_SIZE) - { - /* - * Take care of the tail end of the read in this vector. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* round clip_size down to a multiple of pagesize */ - clip_size = clip_size & ~(PAGE_MASK); - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_nocopy_read(vp, uio, filesize, devblocksize, flags); - if ((retval==0) && uio->uio_resid) - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } /* end else */ - } /* end while */ - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); + retval = cluster_read_x(vp, uio, filesize, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } else { + /* round clip_size down to a multiple of pagesize */ + clip_size = clip_size & ~(PAGE_MASK); + // LP64todo - fix this + prev_resid = uio_resid(uio); + uio_setresid(uio, clip_size); + + retval = cluster_nocopy_read(vp, uio, filesize); + + if ((retval==0) && uio_resid(uio)) + retval = cluster_read_x(vp, uio, filesize, flags); + + uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio))); + } + } /* end else */ + } /* end while */ return(retval); } - static int -cluster_read_x(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_read_x(vnode_t vp, struct uio *uio, off_t filesize, int flags) { upl_page_info_t *pl; upl_t upl; @@ -2196,21 +2724,66 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) int start_offset; int start_pg; int last_pg; - int uio_last; + int uio_last = 0; int pages_in_upl; off_t max_size; - int io_size; - vm_offset_t io_address; + off_t last_ioread_offset; + off_t last_request_offset; + u_int size_of_prefetch; + u_int io_size; kern_return_t kret; - int segflg; int error = 0; int retval = 0; - int b_lblkno; - int e_lblkno; + u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; + u_int rd_ahead_enabled = 1; + u_int prefetch_enabled = 1; + struct cl_readahead * rap; + struct clios iostate; + struct cl_extent extent; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, + (int)uio->uio_offset, uio_resid(uio), (int)filesize, 0, 0); + + // LP64todo - fix this + last_request_offset = uio->uio_offset + uio_resid(uio); + + if ((flags & (IO_RAOFF|IO_NOCACHE)) || + ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { + rd_ahead_enabled = 0; + rap = NULL; + } else { + if (cluster_hard_throttle_on(vp)) { + rd_ahead_enabled = 0; + prefetch_enabled = 0; - b_lblkno = (int)(uio->uio_offset / PAGE_SIZE_64); + max_rd_size = HARD_THROTTLE_MAXSIZE; + } + if ((rap = cluster_get_rap(vp)) == NULL) + rd_ahead_enabled = 0; + } + if (last_request_offset > filesize) + last_request_offset = filesize; + extent.b_addr = uio->uio_offset / PAGE_SIZE_64; + extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; + + if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { + /* + * determine if we already have a read-ahead in the pipe courtesy of the + * last read systemcall that was issued... + * if so, pick up it's extent to determine where we should start + * with respect to any read-ahead that might be necessary to + * garner all the data needed to complete this read systemcall + */ + last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; + + if (last_ioread_offset < uio->uio_offset) + last_ioread_offset = (off_t)0; + else if (last_ioread_offset > last_request_offset) + last_ioread_offset = last_request_offset; + } else + last_ioread_offset = (off_t)0; - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) { + while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) { /* * compute the size of the upl needed to encompass * the requested read... limit each call to cluster_io @@ -2223,86 +2796,109 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) upl_f_offset = uio->uio_offset - (off_t)start_offset; max_size = filesize - uio->uio_offset; - if ((off_t)((unsigned int)uio->uio_resid) < max_size) - io_size = uio->uio_resid; + // LP64todo - fix this! + if ((off_t)((unsigned int)uio_resid(uio)) < max_size) + io_size = uio_resid(uio); else io_size = max_size; - if (uio->uio_segflg == UIO_USERSPACE && !(vp->v_flag & VNOCACHE_DATA)) { - segflg = uio->uio_segflg; + if (!(flags & IO_NOCACHE)) { - uio->uio_segflg = UIO_PHYS_USERSPACE; + while (io_size) { + u_int io_resid; + u_int io_requested; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, - (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0); + /* + * if we keep finding the pages we need already in the cache, then + * don't bother to call cluster_rd_prefetch since it costs CPU cycles + * to determine that we have all the pages we need... once we miss in + * the cache and have issued an I/O, than we'll assume that we're likely + * to continue to miss in the cache and it's to our advantage to try and prefetch + */ + if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { + if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { + /* + * we've already issued I/O for this request and + * there's still work to do and + * our prefetch stream is running dry, so issue a + * pre-fetch I/O... the I/O latency will overlap + * with the copying of the data + */ + if (size_of_prefetch > max_rd_size) + size_of_prefetch = max_rd_size; - while (io_size && retval == 0) { - int xsize; - ppnum_t paddr; + size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize); - if (ubc_page_op(vp, - upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY, - &paddr, 0) != KERN_SUCCESS) - break; + last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); + + if (last_ioread_offset > last_request_offset) + last_ioread_offset = last_request_offset; + } + } + /* + * limit the size of the copy we're about to do so that + * we can notice that our I/O pipe is running dry and + * get the next I/O issued before it does go dry + */ + if (last_ioread_offset && io_size > ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4)) + io_resid = ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4); + else + io_resid = io_size; - xsize = PAGE_SIZE - start_offset; - - if (xsize > io_size) - xsize = io_size; + io_requested = io_resid; - retval = uiomove64((addr64_t)(((addr64_t)paddr << 12) + start_offset), xsize, uio); + retval = cluster_copy_ubc_data(vp, uio, &io_resid, 0); - ubc_page_op(vp, upl_f_offset, - UPL_POP_CLR | UPL_POP_BUSY, 0, 0); + io_size -= (io_requested - io_resid); - io_size -= xsize; - start_offset = (int) - (uio->uio_offset & PAGE_MASK_64); - upl_f_offset = uio->uio_offset - start_offset; + if (retval || io_resid) + /* + * if we run into a real error or + * a page that is not in the cache + * we need to leave streaming mode + */ + break; + + if ((io_size == 0 || last_ioread_offset == last_request_offset) && rd_ahead_enabled) { + /* + * we're already finished the I/O for this read request + * let's see if we should do a read-ahead + */ + cluster_rd_ahead(vp, &extent, filesize, rap); + } } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0); - - uio->uio_segflg = segflg; - if (retval) break; - if (io_size == 0) { - /* - * we're already finished with this read request - * let's see if we should do a read-ahead - */ - e_lblkno = (int) - ((uio->uio_offset - 1) / PAGE_SIZE_64); - - if (!(vp->v_flag & VRAOFF)) - /* - * let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); - vp->v_lastr = e_lblkno; - + if (rap != NULL) { + if (extent.e_addr < rap->cl_lastr) + rap->cl_maxra = 0; + rap->cl_lastr = extent.e_addr; + } break; } - max_size = filesize - uio->uio_offset; + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + upl_f_offset = uio->uio_offset - (off_t)start_offset; + max_size = filesize - uio->uio_offset; } + if (io_size > max_rd_size) + io_size = max_rd_size; + upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; + + if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4) + upl_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 4; pages_in_upl = upl_size / PAGE_SIZE; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_FLAGS_NONE); + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_SET_LITE); if (kret != KERN_SUCCESS) panic("cluster_read: failed to get pagelist"); @@ -2330,6 +2926,10 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (upl_valid_page(pl, last_pg)) break; } + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; if (start_pg < last_pg) { /* @@ -2345,21 +2945,20 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) io_size = filesize - (upl_f_offset + upl_offset); /* - * issue a synchronous read to cluster_io + * issue an asynchronous read to cluster_io */ error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, - io_size, devblocksize, CL_READ, (struct buf *)0, (struct clios *)0); + io_size, CL_READ | CL_ASYNC, (buf_t)NULL, &iostate); } if (error == 0) { /* * if the read completed successfully, or there was no I/O request - * issued, than map the upl into kernel address space and - * move the data into user land.... we'll first add on any 'valid' + * issued, than copy the data into user land via 'cluster_upl_copy_data' + * we'll first add on any 'valid' * pages that were present in the upl when we acquired it. */ u_int val_size; - u_int size_of_prefetch; for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { if (!upl_valid_page(pl, uio_last)) @@ -2367,79 +2966,63 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) } /* * compute size to transfer this round, if uio->uio_resid is - * still non-zero after this uiomove, we'll loop around and + * still non-zero after this attempt, we'll loop around and * set up for another I/O. */ val_size = (uio_last * PAGE_SIZE) - start_offset; - if (max_size < val_size) + if (val_size > max_size) val_size = max_size; - if (uio->uio_resid < val_size) - val_size = uio->uio_resid; + if (val_size > uio_resid(uio)) + // LP64todo - fix this + val_size = uio_resid(uio); - e_lblkno = (int)((uio->uio_offset + ((off_t)val_size - 1)) / PAGE_SIZE_64); + if (last_ioread_offset == 0) + last_ioread_offset = uio->uio_offset + val_size; - if (size_of_prefetch = (uio->uio_resid - val_size)) { + if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { /* - * if there's still I/O left to do for this request, then issue a - * pre-fetch I/O... the I/O wait time will overlap + * if there's still I/O left to do for this request, and... + * we're not in hard throttle mode, then issue a + * pre-fetch I/O... the I/O latency will overlap * with the copying of the data */ - cluster_rd_prefetch(vp, uio->uio_offset + val_size, size_of_prefetch, filesize, devblocksize); - } else { - if (!(vp->v_flag & VRAOFF) && !(vp->v_flag & VNOCACHE_DATA)) - /* - * let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); - vp->v_lastr = e_lblkno; - } - if (uio->uio_segflg == UIO_USERSPACE) { - int offset; + size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize); - segflg = uio->uio_segflg; + last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); + + if (last_ioread_offset > last_request_offset) + last_ioread_offset = last_request_offset; - uio->uio_segflg = UIO_PHYS_USERSPACE; + } else if ((uio->uio_offset + val_size) == last_request_offset) { + /* + * this transfer will finish this request, so... + * let's try to read ahead if we're in + * a sequential access pattern and we haven't + * explicitly disabled it + */ + if (rd_ahead_enabled) + cluster_rd_ahead(vp, &extent, filesize, rap); + + if (rap != NULL) { + if (extent.e_addr < rap->cl_lastr) + rap->cl_maxra = 0; + rap->cl_lastr = extent.e_addr; + } + } + lck_mtx_lock(cl_mtxp); + while (iostate.io_issued != iostate.io_completed) { + iostate.io_wanted = 1; + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_x", 0); + } + lck_mtx_unlock(cl_mtxp); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, - (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0); - - offset = start_offset; - - while (val_size && retval == 0) { - int csize; - int i; - addr64_t paddr; - - i = offset / PAGE_SIZE; - csize = min(PAGE_SIZE - start_offset, val_size); - - paddr = ((addr64_t)upl_phys_page(pl, i) << 12) + start_offset; - - retval = uiomove64(paddr, csize, uio); - - val_size -= csize; - offset += csize; - start_offset = offset & PAGE_MASK; - } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0); - - uio->uio_segflg = segflg; - } + if (iostate.io_error) + error = iostate.io_error; else - { - if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS) - panic("cluster_read: ubc_upl_map() failed\n"); - - retval = uiomove((caddr_t)(io_address + start_offset), val_size, uio); - - if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS) - panic("cluster_read: ubc_upl_unmap() failed\n"); - } + retval = cluster_copy_upl_data(uio, upl, start_offset, val_size); } if (start_pg < last_pg) { /* @@ -2452,14 +3035,14 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); - if (error || (vp->v_flag & VNOCACHE_DATA)) + if (error || (flags & IO_NOCACHE)) ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); else ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, - UPL_COMMIT_CLEAR_DIRTY - | UPL_COMMIT_FREE_ON_EMPTY - | UPL_COMMIT_INACTIVATE); + UPL_COMMIT_CLEAR_DIRTY | + UPL_COMMIT_FREE_ON_EMPTY | + UPL_COMMIT_INACTIVATE); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); @@ -2471,7 +3054,7 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) /* * the set of pages that we issued an I/O for did not encompass * the entire upl... so just release these without modifying - * there state + * their state */ if (error) ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); @@ -2492,7 +3075,7 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (upl_dirty_page(pl, cur_pg)) commit_flags |= UPL_COMMIT_SET_DIRTY; - if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA)) + if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (flags & IO_NOCACHE)) ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); else @@ -2513,7 +3096,7 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (upl_dirty_page(pl, cur_pg)) commit_flags |= UPL_COMMIT_SET_DIRTY; - if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA)) + if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (flags & IO_NOCACHE)) ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); else @@ -2537,6 +3120,30 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) } if (retval == 0) retval = error; + + if ( uio_resid(uio) ) { + if (cluster_hard_throttle_on(vp)) { + rd_ahead_enabled = 0; + prefetch_enabled = 0; + + max_rd_size = HARD_THROTTLE_MAXSIZE; + } else { + if (rap != NULL) + rd_ahead_enabled = 1; + prefetch_enabled = 1; + + max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; + } + } + } + if (rap != NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, + (int)uio->uio_offset, uio_resid(uio), rap->cl_lastr, retval, 0); + + lck_mtx_unlock(&rap->cl_lockr); + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, + (int)uio->uio_offset, uio_resid(uio), 0, retval, 0); } return (retval); @@ -2544,36 +3151,30 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) static int -cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_nocopy_read(vnode_t vp, struct uio *uio, off_t filesize) { upl_t upl; upl_page_info_t *pl; - off_t upl_f_offset; vm_offset_t upl_offset; - off_t start_upl_f_offset; off_t max_io_size; int io_size; int upl_size; int upl_needed_size; int pages_in_pl; - ppnum_t paddr; int upl_flags; kern_return_t kret; - int segflg; - struct iovec *iov; int i; int force_data_sync; int retval = 0; - int first = 1; + int no_zero_fill = 0; + int abort_flag = 0; struct clios iostate; + u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; + u_int max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 2; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0); + (int)uio->uio_offset, uio_resid(uio), (int)filesize, 0, 0); /* * When we enter this routine, we know @@ -2587,50 +3188,29 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) iostate.io_error = 0; iostate.io_wanted = 0; - iov = uio->uio_iov; - - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) { + while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) { + user_addr_t iov_base; + if (cluster_hard_throttle_on(vp)) { + max_rd_size = HARD_THROTTLE_MAXSIZE; + max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1; + } else { + max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; + max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 8; + } max_io_size = filesize - uio->uio_offset; - if (max_io_size < (off_t)((unsigned int)uio->uio_resid)) + // LP64todo - fix this + if (max_io_size < (off_t)((unsigned int)uio_resid(uio))) io_size = max_io_size; else - io_size = uio->uio_resid; - - /* - * We don't come into this routine unless - * UIO_USERSPACE is set. - */ - segflg = uio->uio_segflg; - - uio->uio_segflg = UIO_PHYS_USERSPACE; + io_size = uio_resid(uio); /* * First look for pages already in the cache * and move them to user space. */ - while (io_size && (retval == 0)) { - upl_f_offset = uio->uio_offset; - - /* - * If this call fails, it means the page is not - * in the page cache. - */ - if (ubc_page_op(vp, upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) != KERN_SUCCESS) - break; - - retval = uiomove64((addr64_t)paddr << 12, PAGE_SIZE, uio); - - ubc_page_op(vp, upl_f_offset, - UPL_POP_CLR | UPL_POP_BUSY, 0, 0); - - io_size -= PAGE_SIZE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 71)) | DBG_FUNC_NONE, - (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0); - } - uio->uio_segflg = segflg; + retval = cluster_copy_ubc_data(vp, uio, &io_size, 0); if (retval) { /* @@ -2653,30 +3233,13 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) } max_io_size = io_size; - if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - max_io_size = MAX_UPL_TRANSFER * PAGE_SIZE; - if (first) { - if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4) - max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 8; - first = 0; - } - start_upl_f_offset = uio->uio_offset; /* this is page aligned in the file */ - upl_f_offset = start_upl_f_offset; + if (max_io_size > max_rd_size) + max_io_size = max_rd_size; + io_size = 0; - while (io_size < max_io_size) { - if (ubc_page_op(vp, upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) == KERN_SUCCESS) { - ubc_page_op(vp, upl_f_offset, - UPL_POP_CLR | UPL_POP_BUSY, 0, 0); - break; - } - /* - * Build up the io request parameters. - */ - io_size += PAGE_SIZE_64; - upl_f_offset += PAGE_SIZE_64; - } + ubc_range_op(vp, uio->uio_offset, uio->uio_offset + max_io_size, UPL_ROP_ABSENT, &io_size); + if (io_size == 0) /* * we may have already spun some portion of this request @@ -2684,26 +3247,41 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) * to complete before returning */ goto wait_for_reads; + + iov_base = uio_curriovbase(uio); - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; + // LP64todo - fix this! + upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK; upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, - (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0); + (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); + if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) { + no_zero_fill = 1; + abort_flag = UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY; + } else { + no_zero_fill = 0; + abort_flag = UPL_ABORT_FREE_ON_EMPTY; + } for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { pages_in_pl = 0; upl_size = upl_needed_size; - upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; - kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, force_data_sync); + if (no_zero_fill) + upl_flags |= UPL_NOZEROFILL; + if (force_data_sync) + upl_flags |= UPL_FORCE_DATA_SYNC; + + // LP64todo - fix this! + kret = vm_map_create_upl(current_map(), + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); if (kret != KERN_SUCCESS) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, (int)upl_offset, upl_size, io_size, kret, 0); - /* * cluster_nocopy_read: failed to get pagelist * @@ -2723,8 +3301,7 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) if (i == pages_in_pl) break; - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag); } if (force_data_sync >= 3) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, @@ -2739,8 +3316,7 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; if (io_size == 0) { - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag); goto wait_for_reads; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, @@ -2752,10 +3328,14 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) * if there are already too many outstanding reads * wait until some have completed before issuing the next read */ - while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) { + lck_mtx_lock(cl_mtxp); + + while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) { iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0); + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_read", 0); } + lck_mtx_unlock(cl_mtxp); + if (iostate.io_error) { /* * one of the earlier reads we issued ran into a hard error @@ -2764,29 +3344,24 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) * go wait for any other reads to complete before * returning the error to the caller */ - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag); goto wait_for_reads; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, - (int)upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0); + (int)upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); - retval = cluster_io(vp, upl, upl_offset, start_upl_f_offset, - io_size, devblocksize, + retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, CL_PRESERVE | CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO, - (struct buf *)0, &iostate); + (buf_t)NULL, &iostate); /* * update the uio structure */ - iov->iov_base += io_size; - iov->iov_len -= io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; + uio_update(uio, (user_size_t)io_size); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, - (int)upl, (int)uio->uio_offset, (int)uio->uio_resid, retval, 0); + (int)upl, (int)uio->uio_offset, (int)uio_resid(uio), retval, 0); } /* end while */ @@ -2795,69 +3370,80 @@ wait_for_reads: * make sure all async reads that are part of this stream * have completed before we return */ + lck_mtx_lock(cl_mtxp); + while (iostate.io_issued != iostate.io_completed) { iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0); + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_read", 0); } + lck_mtx_unlock(cl_mtxp); + if (iostate.io_error) retval = iostate.io_error; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, 6, retval, 0); + (int)uio->uio_offset, (int)uio_resid(uio), 6, retval, 0); return (retval); } static int -cluster_phys_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_phys_read(vnode_t vp, struct uio *uio, off_t filesize) { upl_page_info_t *pl; upl_t upl; vm_offset_t upl_offset; - addr64_t dst_paddr; + addr64_t dst_paddr; off_t max_size; - int io_size; + int io_size; + user_size_t iov_len; + user_addr_t iov_base; int tail_size; int upl_size; int upl_needed_size; int pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; struct clios iostate; int error; + int devblocksize; + devblocksize = vp->v_mount->mnt_devblocksize; /* * When we enter this routine, we know * -- the resid will not exceed iov_len * -- the target address is physically contiguous */ - iov = uio->uio_iov; +#if LP64_DEBUG + if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) { + panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__); + } +#endif /* LP64_DEBUG */ + + iov_len = uio_curriovlen(uio); + iov_base = uio_curriovbase(uio); max_size = filesize - uio->uio_offset; - if (max_size > (off_t)((unsigned int)iov->iov_len)) - io_size = iov->iov_len; + // LP64todo - fix this! + if (max_size < 0 || (u_int64_t)max_size > iov_len) + io_size = iov_len; else io_size = max_size; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; + // LP64todo - fix this! + upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK; upl_needed_size = upl_offset + io_size; error = 0; pages_in_pl = 0; upl_size = upl_needed_size; - upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); if (kret != KERN_SUCCESS) { @@ -2876,7 +3462,7 @@ cluster_phys_read(vp, uio, filesize, devblocksize, flags) } pl = ubc_upl_pageinfo(upl); - dst_paddr = (((addr64_t)(int)upl_phys_page(pl, 0)) << 12) + ((addr64_t)iov->iov_base & PAGE_MASK); + dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { int head_size; @@ -2886,7 +3472,7 @@ cluster_phys_read(vp, uio, filesize, devblocksize, flags) if (head_size > io_size) head_size = io_size; - error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, devblocksize, CL_READ); + error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ); if (error) { ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); @@ -2920,41 +3506,46 @@ cluster_phys_read(vp, uio, filesize, devblocksize, flags) * if there are already too many outstanding reads * wait until some have completed before issuing the next */ - while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) { + lck_mtx_lock(cl_mtxp); + + while ((iostate.io_issued - iostate.io_completed) > (8 * MAX_UPL_TRANSFER * PAGE_SIZE)) { iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_phys_read", 0); + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_phys_read", 0); } + lck_mtx_unlock(cl_mtxp); - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, xsize, 0, + error = cluster_io(vp, upl, upl_offset, uio->uio_offset, xsize, CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC, - (struct buf *)0, &iostate); + (buf_t)NULL, &iostate); /* * The cluster_io read was issued successfully, * update the uio structure */ if (error == 0) { - uio->uio_resid -= xsize; - iov->iov_len -= xsize; - iov->iov_base += xsize; - uio->uio_offset += xsize; - dst_paddr += xsize; - upl_offset += xsize; - io_size -= xsize; + uio_update(uio, (user_size_t)xsize); + + dst_paddr += xsize; + upl_offset += xsize; + io_size -= xsize; } } /* * make sure all async reads that are part of this stream * have completed before we proceed */ + lck_mtx_lock(cl_mtxp); + while (iostate.io_issued != iostate.io_completed) { iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_phys_read", 0); + msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_phys_read", 0); } - if (iostate.io_error) { + lck_mtx_unlock(cl_mtxp); + + if (iostate.io_error) error = iostate.io_error; - } + if (error == 0 && tail_size) - error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, devblocksize, CL_READ); + error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ); /* * just release our hold on the physically contiguous @@ -2971,12 +3562,7 @@ cluster_phys_read(vp, uio, filesize, devblocksize, flags) * the completed pages will be released into the VM cache */ int -advisory_read(vp, filesize, f_offset, resid, devblocksize) - struct vnode *vp; - off_t filesize; - off_t f_offset; - int resid; - int devblocksize; +advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) { upl_page_info_t *pl; upl_t upl; @@ -2992,12 +3578,13 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) kern_return_t kret; int retval = 0; int issued_io; + int skip_range; - if (!UBCINFOEXISTS(vp)) + if ( !UBCINFOEXISTS(vp)) return(EINVAL); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, - (int)f_offset, resid, (int)filesize, devblocksize, 0); + (int)f_offset, resid, (int)filesize, 0, 0); while (resid && f_offset < filesize && retval == 0) { /* @@ -3020,14 +3607,45 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; + + skip_range = 0; + /* + * return the number of contiguously present pages in the cache + * starting at upl_f_offset within the file + */ + ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); + + if (skip_range) { + /* + * skip over pages already present in the cache + */ + io_size = skip_range - start_offset; + + f_offset += io_size; + resid -= io_size; + + if (skip_range == upl_size) + continue; + /* + * have to issue some real I/O + * at this point, we know it's starting on a page boundary + * because we've skipped over at least the first page in the request + */ + start_offset = 0; + upl_f_offset += skip_range; + upl_size -= skip_range; + } pages_in_upl = upl_size / PAGE_SIZE; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, + (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_RET_ONLY_ABSENT); + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_RET_ONLY_ABSENT | UPL_SET_LITE); if (kret != KERN_SUCCESS) return(retval); issued_io = 0; @@ -3044,7 +3662,7 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) pages_in_upl = last_pg + 1; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE, + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); @@ -3087,8 +3705,8 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) /* * issue an asynchronous read to cluster_io */ - retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, devblocksize, - CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, + CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (buf_t)NULL, (struct clios *)NULL); issued_io = 1; } @@ -3112,171 +3730,275 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) int -cluster_push(vp) - struct vnode *vp; +cluster_push(vnode_t vp, int flags) { - int retval; + int retval; + struct cl_writebehind *wbp; - if (!UBCINFOEXISTS(vp) || vp->v_clen == 0) { - vp->v_flag &= ~VHASDIRTY; - return(0); + if ( !UBCINFOEXISTS(vp)) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -1, 0); + return (0); + } + /* return if deferred write is set */ + if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { + return (0); } + if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -2, 0); + return (0); + } + if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) { + lck_mtx_unlock(&wbp->cl_lockw); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -3, 0); + return(0); + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, - vp->v_flag & VHASDIRTY, vp->v_clen, 0, 0, 0); + (int)wbp->cl_scmap, wbp->cl_number, flags, 0, 0); + + if (wbp->cl_scmap) { + sparse_cluster_push(wbp, vp, ubc_getsize(vp), 1); - if (vp->v_flag & VHASDIRTY) { - daddr_t start_pg; - daddr_t last_pg; - daddr_t end_pg; + retval = 1; + } else + retval = cluster_try_push(wbp, vp, ubc_getsize(vp), 0, 1); + + lck_mtx_unlock(&wbp->cl_lockw); - start_pg = vp->v_cstart; - end_pg = vp->v_lastw; + if (flags & IO_SYNC) + (void)vnode_waitforwrites(vp, 0, 0, 0, (char *)"cluster_push"); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, + (int)wbp->cl_scmap, wbp->cl_number, retval, 0, 0); - vp->v_flag &= ~VHASDIRTY; - vp->v_clen = 0; + return (retval); +} - while (start_pg < end_pg) { - last_pg = start_pg + MAX_UPL_TRANSFER; - if (last_pg > end_pg) - last_pg = end_pg; +__private_extern__ void +cluster_release(struct ubc_info *ubc) +{ + struct cl_writebehind *wbp; + struct cl_readahead *rap; - cluster_push_x(vp, ubc_getsize(vp), start_pg, last_pg, 0); + if ((wbp = ubc->cl_wbehind)) { - start_pg = last_pg; - } - return (1); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); + + if (wbp->cl_scmap) + vfs_drt_control(&(wbp->cl_scmap), 0); + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, 0, 0, 0, 0); + } + + rap = ubc->cl_rahead; + + if (wbp != NULL) { + lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); + FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); + } + if ((rap = ubc->cl_rahead)) { + lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); + FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); } - retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1); + ubc->cl_rahead = NULL; + ubc->cl_wbehind = NULL; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, (int)ubc, (int)rap, (int)wbp, 0, 0); +} + + +static void +cluster_push_EOF(vnode_t vp, off_t EOF) +{ + struct cl_writebehind *wbp; + + wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, + (int)wbp->cl_scmap, wbp->cl_number, (int)EOF, 0, 0); + + if (wbp->cl_scmap) + sparse_cluster_push(wbp, vp, EOF, 1); + else + cluster_try_push(wbp, vp, EOF, 0, 1); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, - vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0); + (int)wbp->cl_scmap, wbp->cl_number, 0, 0, 0); - return (retval); + lck_mtx_unlock(&wbp->cl_lockw); } static int -cluster_try_push(vp, EOF, can_delay, push_all) - struct vnode *vp; - off_t EOF; - int can_delay; - int push_all; +cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int can_delay, int push_all) { int cl_index; int cl_index1; int min_index; int cl_len; - int cl_total; - int cl_pushed; - struct v_cluster l_clusters[MAX_CLUSTERS]; + int cl_pushed = 0; + struct cl_wextent l_clusters[MAX_CLUSTERS]; /* + * the write behind context exists and has + * already been locked... + * * make a local 'sorted' copy of the clusters - * and clear vp->v_clen so that new clusters can + * and clear wbp->cl_number so that new clusters can * be developed */ - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { - for (min_index = -1, cl_index1 = 0; cl_index1 < vp->v_clen; cl_index1++) { - if (vp->v_clusters[cl_index1].start_pg == vp->v_clusters[cl_index1].last_pg) + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { + if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) continue; if (min_index == -1) min_index = cl_index1; - else if (vp->v_clusters[cl_index1].start_pg < vp->v_clusters[min_index].start_pg) + else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) min_index = cl_index1; } if (min_index == -1) break; - l_clusters[cl_index].start_pg = vp->v_clusters[min_index].start_pg; - l_clusters[cl_index].last_pg = vp->v_clusters[min_index].last_pg; + l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; + l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; + l_clusters[cl_index].io_nocache = wbp->cl_clusters[min_index].io_nocache; + + wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; + } + wbp->cl_number = 0; + + cl_len = cl_index; - vp->v_clusters[min_index].start_pg = vp->v_clusters[min_index].last_pg; + if (can_delay && cl_len == MAX_CLUSTERS) { + int i; + + /* + * determine if we appear to be writing the file sequentially + * if not, by returning without having pushed any clusters + * we will cause this vnode to be pushed into the sparse cluster mechanism + * used for managing more random I/O patterns + * + * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... + * that's why we're in try_push with can_delay true... + * + * check to make sure that all the clusters except the last one are 'full'... and that each cluster + * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above + * so we can just make a simple pass through, up to, but not including the last one... + * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they + * are sequential + * + * we let the last one be partial as long as it was adjacent to the previous one... + * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out + * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... + */ + for (i = 0; i < MAX_CLUSTERS - 1; i++) { + if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != MAX_UPL_TRANSFER) + goto dont_try; + if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) + goto dont_try; + } } - cl_len = cl_index; - vp->v_clen = 0; + /* + * drop the lock while we're firing off the I/Os... + * this is safe since I'm working off of a private sorted copy + * of the clusters, and I'm going to re-evaluate the public + * state after I retake the lock + */ + lck_mtx_unlock(&wbp->cl_lockw); + + for (cl_index = 0; cl_index < cl_len; cl_index++) { + int flags; + struct cl_extent cl; - for (cl_pushed = 0, cl_index = 0; cl_index < cl_len; cl_index++) { /* - * try to push each cluster in turn... cluster_push_x may not - * push the cluster if can_delay is TRUE and the cluster doesn't - * meet the critera for an immediate push + * try to push each cluster in turn... */ - if (cluster_push_x(vp, EOF, l_clusters[cl_index].start_pg, l_clusters[cl_index].last_pg, can_delay)) { - l_clusters[cl_index].start_pg = 0; - l_clusters[cl_index].last_pg = 0; + if (l_clusters[cl_index].io_nocache) + flags = IO_NOCACHE; + else + flags = 0; + cl.b_addr = l_clusters[cl_index].b_addr; + cl.e_addr = l_clusters[cl_index].e_addr; - cl_pushed++; + cluster_push_x(vp, &cl, EOF, flags); - if (push_all == 0) - break; - } + l_clusters[cl_index].b_addr = 0; + l_clusters[cl_index].e_addr = 0; + + cl_pushed++; + + if (push_all == 0) + break; } + lck_mtx_lock(&wbp->cl_lockw); + +dont_try: if (cl_len > cl_pushed) { /* * we didn't push all of the clusters, so * lets try to merge them back in to the vnode */ - if ((MAX_CLUSTERS - vp->v_clen) < (cl_len - cl_pushed)) { + if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { /* * we picked up some new clusters while we were trying to - * push the old ones (I don't think this can happen because - * I'm holding the lock, but just in case)... the sum of the + * push the old ones... this can happen because I've dropped + * the vnode lock... the sum of the * leftovers plus the new cluster count exceeds our ability - * to represent them, so fall back to the VHASDIRTY mechanism + * to represent them, so switch to the sparse cluster mechanism + * + * collect the active public clusters... */ - for (cl_index = 0; cl_index < cl_len; cl_index++) { - if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg) + sparse_cluster_switch(wbp, vp, EOF); + + for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { + if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) continue; + wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; + wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; + wbp->cl_clusters[cl_index1].io_nocache = l_clusters[cl_index].io_nocache; - if (l_clusters[cl_index].start_pg < vp->v_cstart) - vp->v_cstart = l_clusters[cl_index].start_pg; - if (l_clusters[cl_index].last_pg > vp->v_lastw) - vp->v_lastw = l_clusters[cl_index].last_pg; + cl_index1++; } - vp->v_flag |= VHASDIRTY; + /* + * update the cluster count + */ + wbp->cl_number = cl_index1; + + /* + * and collect the original clusters that were moved into the + * local storage for sorting purposes + */ + sparse_cluster_switch(wbp, vp, EOF); + } else { /* * we've got room to merge the leftovers back in * just append them starting at the next 'hole' - * represented by vp->v_clen + * represented by wbp->cl_number */ - for (cl_index = 0, cl_index1 = vp->v_clen; cl_index < cl_len; cl_index++) { - if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg) + for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { + if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) continue; - vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg; - vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg; + wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; + wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; + wbp->cl_clusters[cl_index1].io_nocache = l_clusters[cl_index].io_nocache; - if (cl_index1 == 0) { - vp->v_cstart = l_clusters[cl_index].start_pg; - vp->v_lastw = l_clusters[cl_index].last_pg; - } else { - if (l_clusters[cl_index].start_pg < vp->v_cstart) - vp->v_cstart = l_clusters[cl_index].start_pg; - if (l_clusters[cl_index].last_pg > vp->v_lastw) - vp->v_lastw = l_clusters[cl_index].last_pg; - } cl_index1++; } /* * update the cluster count */ - vp->v_clen = cl_index1; + wbp->cl_number = cl_index1; } } - return(MAX_CLUSTERS - vp->v_clen); + return(MAX_CLUSTERS - wbp->cl_number); } static int -cluster_push_x(vp, EOF, first, last, can_delay) - struct vnode *vp; - off_t EOF; - daddr_t first; - daddr_t last; - int can_delay; +cluster_push_x(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags) { upl_page_info_t *pl; upl_t upl; @@ -3288,20 +4010,23 @@ cluster_push_x(vp, EOF, first, last, can_delay) int last_pg; int io_size; int io_flags; + int upl_flags; int size; + int error = 0; + int retval; kern_return_t kret; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, - vp->v_clen, first, last, EOF, 0); + (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); - if ((pages_in_upl = last - first) == 0) { + if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); - return (1); + return (0); } upl_size = pages_in_upl * PAGE_SIZE; - upl_f_offset = ((off_t)first) * PAGE_SIZE_64; + upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); if (upl_f_offset + upl_size >= EOF) { @@ -3313,106 +4038,253 @@ cluster_push_x(vp, EOF, first, last, can_delay) */ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); - return(1); + return(0); } size = EOF - upl_f_offset; - upl_size = (size + (PAGE_SIZE - 1) ) & ~(PAGE_SIZE - 1); + upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; pages_in_upl = upl_size / PAGE_SIZE; - } else { - if (can_delay && (pages_in_upl < (MAX_UPL_TRANSFER - (MAX_UPL_TRANSFER / 2)))) - return(0); + } else size = upl_size; - } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); + + /* + * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior + * + * - only pages that are currently dirty are returned... these are the ones we need to clean + * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set + * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page + * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if + * someone dirties this page while the I/O is in progress, we don't lose track of the new state + * + * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) + */ + + if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) + upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; + else + upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; + kret = ubc_create_upl(vp, upl_f_offset, upl_size, &upl, &pl, - UPL_RET_ONLY_DIRTY); + upl_flags); if (kret != KERN_SUCCESS) panic("cluster_push: failed to get pagelist"); - if (can_delay) { - int num_of_dirty; - - for (num_of_dirty = 0, start_pg = 0; start_pg < pages_in_upl; start_pg++) { - if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg)) - num_of_dirty++; - } - if (num_of_dirty < pages_in_upl / 2) { - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 0, 2, num_of_dirty, (pages_in_upl / 2), 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, (int)upl, upl_f_offset, 0, 0, 0); - return(0); - } + /* + * since we only asked for the dirty pages back + * it's possible that we may only get a few or even none, so... + * before we start marching forward, we must make sure we know + * where the last present page is in the UPL, otherwise we could + * end up working with a freed upl due to the FREE_ON_EMPTY semantics + * employed by commit_range and abort_range. + */ + for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { + if (upl_page_present(pl, last_pg)) + break; } - last_pg = 0; + pages_in_upl = last_pg + 1; - while (size) { + if (pages_in_upl == 0) { + ubc_upl_abort(upl, 0); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); + return(0); + } + for (last_pg = 0; last_pg < pages_in_upl; ) { + /* + * find the next dirty page in the UPL + * this will become the first page in the + * next I/O to generate + */ for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { - if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg)) + if (upl_dirty_page(pl, start_pg)) break; + if (upl_page_present(pl, start_pg)) + /* + * RET_ONLY_DIRTY will return non-dirty 'precious' pages + * just release these unchanged since we're not going + * to steal them or change their state + */ + ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); } - if (start_pg > last_pg) { - io_size = (start_pg - last_pg) * PAGE_SIZE; - - ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, io_size, - UPL_ABORT_FREE_ON_EMPTY); + if (start_pg >= pages_in_upl) + /* + * done... no more dirty pages to push + */ + break; + if (start_pg > last_pg) + /* + * skipped over some non-dirty pages + */ + size -= ((start_pg - last_pg) * PAGE_SIZE); - if (io_size < size) - size -= io_size; - else - break; - } + /* + * find a range of dirty pages to write + */ for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { - if (!upl_valid_page(pl, last_pg) || !upl_dirty_page(pl, last_pg)) + if (!upl_dirty_page(pl, last_pg)) break; } upl_offset = start_pg * PAGE_SIZE; io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); - if (vp->v_flag & VNOCACHE_DATA) - io_flags = CL_COMMIT | CL_AGE | CL_ASYNC | CL_DUMP; - else - io_flags = CL_COMMIT | CL_AGE | CL_ASYNC; + io_flags = CL_THROTTLE | CL_COMMIT; - while (vp->v_numoutput >= ASYNC_THROTTLE) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_push", 0); - } - cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, vp->v_ciosiz, io_flags, (struct buf *)0, (struct clios *)0); + if ( !(flags & IO_SYNC)) + io_flags |= CL_ASYNC; + + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, + io_flags, (buf_t)NULL, (struct clios *)NULL); + + if (error == 0 && retval) + error = retval; size -= io_size; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); - return(1); + return(error); +} + + +/* + * sparse_cluster_switch is called with the write behind lock held + */ +static void +sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF) +{ + int cl_index; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); + + if (wbp->cl_scmap == NULL) + wbp->cl_scdirty = 0; + + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + int flags; + struct cl_extent cl; + + for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { + + if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, 0, &flags) == KERN_SUCCESS) { + if (flags & UPL_POP_DIRTY) { + cl.e_addr = cl.b_addr + 1; + + sparse_cluster_add(wbp, vp, &cl, EOF); + } + } + } + } + wbp->cl_number = 0; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); +} + + +/* + * sparse_cluster_push is called with the write behind lock held + */ +static void +sparse_cluster_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_all) +{ + struct cl_extent cl; + off_t offset; + u_int length; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, push_all, 0); + + if (push_all) + vfs_drt_control(&(wbp->cl_scmap), 1); + + for (;;) { + if (vfs_drt_get_cluster(&(wbp->cl_scmap), &offset, &length) != KERN_SUCCESS) + break; + + cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); + cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); + + wbp->cl_scdirty -= (int)(cl.e_addr - cl.b_addr); + + cluster_push_x(vp, &cl, EOF, 0); + + if (push_all == 0) + break; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); } +/* + * sparse_cluster_add is called with the write behind lock held + */ +static void +sparse_cluster_add(struct cl_writebehind *wbp, vnode_t vp, struct cl_extent *cl, off_t EOF) +{ + u_int new_dirty; + u_int length; + off_t offset; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (int)wbp->cl_scmap, wbp->cl_scdirty, (int)cl->b_addr, (int)cl->e_addr, 0); + + offset = (off_t)(cl->b_addr * PAGE_SIZE_64); + length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; + + while (vfs_drt_mark_pages(&(wbp->cl_scmap), offset, length, &new_dirty) != KERN_SUCCESS) { + /* + * no room left in the map + * only a partial update was done + * push out some pages and try again + */ + wbp->cl_scdirty += new_dirty; + + sparse_cluster_push(wbp, vp, EOF, 0); + + offset += (new_dirty * PAGE_SIZE_64); + length -= (new_dirty * PAGE_SIZE); + } + wbp->cl_scdirty += new_dirty; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0); +} + static int -cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int xsize, int devblocksize, int flags) +cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, int xsize, int flags) { - struct iovec *iov; upl_page_info_t *pl; upl_t upl; - addr64_t ubc_paddr; + addr64_t ubc_paddr; kern_return_t kret; int error = 0; + int did_read = 0; + int abort_flags; + int upl_flags; - iov = uio->uio_iov; + upl_flags = UPL_SET_LITE; + if (! (flags & CL_READ)) { + /* + * "write" operation: let the UPL subsystem know + * that we intend to modify the buffer cache pages + * we're gathering. + */ + upl_flags |= UPL_WILL_MODIFY; + } kret = ubc_create_upl(vp, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, &upl, &pl, - UPL_FLAGS_NONE); + upl_flags); if (kret != KERN_SUCCESS) return(EINVAL); @@ -3421,43 +4293,931 @@ cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int /* * issue a synchronous read to cluster_io */ - error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize, - CL_READ, (struct buf *)0, (struct clios *)0); + error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, + CL_READ, (buf_t)NULL, (struct clios *)NULL); if (error) { ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); return(error); } + did_read = 1; } ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); /* - * NOTE: There is no prototype for the following in BSD. It, and the definitions - * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in - * osfmk/ppc/mappings.h. They are not included here because there appears to be no - * way to do so without exporting them to kexts as well. + * NOTE: There is no prototype for the following in BSD. It, and the definitions + * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in + * osfmk/ppc/mappings.h. They are not included here because there appears to be no + * way to do so without exporting them to kexts as well. */ - if (flags & CL_READ) -// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ - copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ - else -// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ - copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ - - if ( !(flags & CL_READ) || upl_dirty_page(pl, 0)) { - /* - * issue a synchronous write to cluster_io - */ - error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize, - 0, (struct buf *)0, (struct clios *)0); - } - if (error == 0) { - uio->uio_offset += xsize; - iov->iov_base += xsize; - iov->iov_len -= xsize; - uio->uio_resid -= xsize; - } - ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + if (flags & CL_READ) +// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ + copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ + else +// copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ + copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ - return (error); + if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { + /* + * issue a synchronous write to cluster_io + */ + error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, + 0, (buf_t)NULL, (struct clios *)NULL); + } + if (error == 0) + uio_update(uio, (user_size_t)xsize); + + if (did_read) + abort_flags = UPL_ABORT_FREE_ON_EMPTY; + else + abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + + ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); + + return (error); +} + + + +int +cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int xsize) +{ + int pg_offset; + int pg_index; + int csize; + int segflg; + int retval = 0; + upl_page_info_t *pl; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, + (int)uio->uio_offset, uio_resid(uio), upl_offset, xsize, 0); + + segflg = uio->uio_segflg; + + switch(segflg) { + + case UIO_USERSPACE32: + case UIO_USERISPACE32: + uio->uio_segflg = UIO_PHYS_USERSPACE32; + break; + + case UIO_USERSPACE: + case UIO_USERISPACE: + uio->uio_segflg = UIO_PHYS_USERSPACE; + break; + + case UIO_USERSPACE64: + case UIO_USERISPACE64: + uio->uio_segflg = UIO_PHYS_USERSPACE64; + break; + + case UIO_SYSSPACE32: + uio->uio_segflg = UIO_PHYS_SYSSPACE32; + break; + + case UIO_SYSSPACE: + uio->uio_segflg = UIO_PHYS_SYSSPACE; + break; + + case UIO_SYSSPACE64: + uio->uio_segflg = UIO_PHYS_SYSSPACE64; + break; + } + pl = ubc_upl_pageinfo(upl); + + pg_index = upl_offset / PAGE_SIZE; + pg_offset = upl_offset & PAGE_MASK; + csize = min(PAGE_SIZE - pg_offset, xsize); + + while (xsize && retval == 0) { + addr64_t paddr; + + paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset; + + retval = uiomove64(paddr, csize, uio); + + pg_index += 1; + pg_offset = 0; + xsize -= csize; + csize = min(PAGE_SIZE, xsize); + } + uio->uio_segflg = segflg; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, + (int)uio->uio_offset, uio_resid(uio), retval, segflg, 0); + + return (retval); +} + + +int +cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) +{ + int segflg; + int io_size; + int xsize; + int start_offset; + int retval = 0; + memory_object_control_t control; + + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, + (int)uio->uio_offset, uio_resid(uio), 0, *io_resid, 0); + + control = ubc_getobject(vp, UBC_FLAGS_NONE); + if (control == MEMORY_OBJECT_CONTROL_NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, + (int)uio->uio_offset, uio_resid(uio), retval, 3, 0); + + return(0); + } + segflg = uio->uio_segflg; + + switch(segflg) { + + case UIO_USERSPACE32: + case UIO_USERISPACE32: + uio->uio_segflg = UIO_PHYS_USERSPACE32; + break; + + case UIO_USERSPACE64: + case UIO_USERISPACE64: + uio->uio_segflg = UIO_PHYS_USERSPACE64; + break; + + case UIO_SYSSPACE32: + uio->uio_segflg = UIO_PHYS_SYSSPACE32; + break; + + case UIO_SYSSPACE64: + uio->uio_segflg = UIO_PHYS_SYSSPACE64; + break; + + case UIO_USERSPACE: + case UIO_USERISPACE: + uio->uio_segflg = UIO_PHYS_USERSPACE; + break; + + case UIO_SYSSPACE: + uio->uio_segflg = UIO_PHYS_SYSSPACE; + break; + } + + if ( (io_size = *io_resid) ) { + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + xsize = uio_resid(uio); + + retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, + uio, start_offset, io_size, mark_dirty); + xsize -= uio_resid(uio); + io_size -= xsize; + } + uio->uio_segflg = segflg; + *io_resid = io_size; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, + (int)uio->uio_offset, uio_resid(uio), retval, 0x80000000 | segflg, 0); + + return(retval); +} + + +int +is_file_clean(vnode_t vp, off_t filesize) +{ + off_t f_offset; + int flags; + int total_dirty = 0; + + for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { + if (ubc_page_op(vp, f_offset, 0, 0, &flags) == KERN_SUCCESS) { + if (flags & UPL_POP_DIRTY) { + total_dirty++; + } + } + } + if (total_dirty) + return(EINVAL); + + return (0); +} + + + +/* + * Dirty region tracking/clustering mechanism. + * + * This code (vfs_drt_*) provides a mechanism for tracking and clustering + * dirty regions within a larger space (file). It is primarily intended to + * support clustering in large files with many dirty areas. + * + * The implementation assumes that the dirty regions are pages. + * + * To represent dirty pages within the file, we store bit vectors in a + * variable-size circular hash. + */ + +/* + * Bitvector size. This determines the number of pages we group in a + * single hashtable entry. Each hashtable entry is aligned to this + * size within the file. + */ +#define DRT_BITVECTOR_PAGES 256 + +/* + * File offset handling. + * + * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; + * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1) + */ +#define DRT_ADDRESS_MASK (~((1 << 20) - 1)) +#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) + +/* + * Hashtable address field handling. + * + * The low-order bits of the hashtable address are used to conserve + * space. + * + * DRT_HASH_COUNT_MASK must be large enough to store the range + * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value + * to indicate that the bucket is actually unoccupied. + */ +#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) +#define DRT_HASH_SET_ADDRESS(scm, i, a) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = \ + ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ + } while (0) +#define DRT_HASH_COUNT_MASK 0x1ff +#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) +#define DRT_HASH_SET_COUNT(scm, i, c) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = \ + ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ + } while (0) +#define DRT_HASH_CLEAR(scm, i) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = 0; \ + } while (0) +#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) +#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) +#define DRT_HASH_COPY(oscm, oi, scm, i) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ + DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ + } while(0); + + +/* + * Hash table moduli. + * + * Since the hashtable entry's size is dependent on the size of + * the bitvector, and since the hashtable size is constrained to + * both being prime and fitting within the desired allocation + * size, these values need to be manually determined. + * + * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. + * + * The small hashtable allocation is 1024 bytes, so the modulus is 23. + * The large hashtable allocation is 16384 bytes, so the modulus is 401. + */ +#define DRT_HASH_SMALL_MODULUS 23 +#define DRT_HASH_LARGE_MODULUS 401 + +#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ +#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ + +/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ + +/* + * Hashtable bitvector handling. + * + * Bitvector fields are 32 bits long. + */ + +#define DRT_HASH_SET_BIT(scm, i, bit) \ + (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) + +#define DRT_HASH_CLEAR_BIT(scm, i, bit) \ + (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) + +#define DRT_HASH_TEST_BIT(scm, i, bit) \ + ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) + +#define DRT_BITVECTOR_CLEAR(scm, i) \ + bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) + +#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ + bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ + &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ + (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) + + + +/* + * Hashtable entry. + */ +struct vfs_drt_hashentry { + u_int64_t dhe_control; + u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; +}; + +/* + * Dirty Region Tracking structure. + * + * The hashtable is allocated entirely inside the DRT structure. + * + * The hash is a simple circular prime modulus arrangement, the structure + * is resized from small to large if it overflows. + */ + +struct vfs_drt_clustermap { + u_int32_t scm_magic; /* sanity/detection */ +#define DRT_SCM_MAGIC 0x12020003 + u_int32_t scm_modulus; /* current ring size */ + u_int32_t scm_buckets; /* number of occupied buckets */ + u_int32_t scm_lastclean; /* last entry we cleaned */ + u_int32_t scm_iskips; /* number of slot skips */ + + struct vfs_drt_hashentry scm_hashtable[0]; +}; + + +#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) +#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) + +/* + * Debugging codes and arguments. + */ +#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ +#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ +#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ +#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ +#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, + * dirty */ + /* 0, setcount */ + /* 1 (clean, no map) */ + /* 2 (map alloc fail) */ + /* 3, resid (partial) */ +#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) +#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, + * lastclean, iskips */ + + +static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); +static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); +static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, + u_int64_t offset, int *indexp); +static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, + u_int64_t offset, + int *indexp, + int recursed); +static kern_return_t vfs_drt_do_mark_pages( + void **cmapp, + u_int64_t offset, + u_int length, + int *setcountp, + int dirty); +static void vfs_drt_trace( + struct vfs_drt_clustermap *cmap, + int code, + int arg1, + int arg2, + int arg3, + int arg4); + + +/* + * Allocate and initialise a sparse cluster map. + * + * Will allocate a new map, resize or compact an existing map. + * + * XXX we should probably have at least one intermediate map size, + * as the 1:16 ratio seems a bit drastic. + */ +static kern_return_t +vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) +{ + struct vfs_drt_clustermap *cmap, *ocmap; + kern_return_t kret; + u_int64_t offset; + int nsize, i, active_buckets, index, copycount; + + ocmap = NULL; + if (cmapp != NULL) + ocmap = *cmapp; + + /* + * Decide on the size of the new map. + */ + if (ocmap == NULL) { + nsize = DRT_HASH_SMALL_MODULUS; + } else { + /* count the number of active buckets in the old map */ + active_buckets = 0; + for (i = 0; i < ocmap->scm_modulus; i++) { + if (!DRT_HASH_VACANT(ocmap, i) && + (DRT_HASH_GET_COUNT(ocmap, i) != 0)) + active_buckets++; + } + /* + * If we're currently using the small allocation, check to + * see whether we should grow to the large one. + */ + if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { + /* if the ring is nearly full */ + if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) { + nsize = DRT_HASH_LARGE_MODULUS; + } else { + nsize = DRT_HASH_SMALL_MODULUS; + } + } else { + /* already using the large modulus */ + nsize = DRT_HASH_LARGE_MODULUS; + /* + * If the ring is completely full, there's + * nothing useful for us to do. Behave as + * though we had compacted into the new + * array and return. + */ + if (active_buckets >= DRT_HASH_LARGE_MODULUS) + return(KERN_SUCCESS); + } + } + + /* + * Allocate and initialise the new map. + */ + + kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, + (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); + if (kret != KERN_SUCCESS) + return(kret); + cmap->scm_magic = DRT_SCM_MAGIC; + cmap->scm_modulus = nsize; + cmap->scm_buckets = 0; + cmap->scm_lastclean = 0; + cmap->scm_iskips = 0; + for (i = 0; i < cmap->scm_modulus; i++) { + DRT_HASH_CLEAR(cmap, i); + DRT_HASH_VACATE(cmap, i); + DRT_BITVECTOR_CLEAR(cmap, i); + } + + /* + * If there's an old map, re-hash entries from it into the new map. + */ + copycount = 0; + if (ocmap != NULL) { + for (i = 0; i < ocmap->scm_modulus; i++) { + /* skip empty buckets */ + if (DRT_HASH_VACANT(ocmap, i) || + (DRT_HASH_GET_COUNT(ocmap, i) == 0)) + continue; + /* get new index */ + offset = DRT_HASH_GET_ADDRESS(ocmap, i); + kret = vfs_drt_get_index(&cmap, offset, &index, 1); + if (kret != KERN_SUCCESS) { + /* XXX need to bail out gracefully here */ + panic("vfs_drt: new cluster map mysteriously too small"); + } + /* copy */ + DRT_HASH_COPY(ocmap, i, cmap, index); + copycount++; + } + } + + /* log what we've done */ + vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); + + /* + * It's important to ensure that *cmapp always points to + * a valid map, so we must overwrite it before freeing + * the old map. + */ + *cmapp = cmap; + if (ocmap != NULL) { + /* emit stats into trace buffer */ + vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, + ocmap->scm_modulus, + ocmap->scm_buckets, + ocmap->scm_lastclean, + ocmap->scm_iskips); + + vfs_drt_free_map(ocmap); + } + return(KERN_SUCCESS); +} + + +/* + * Free a sparse cluster map. + */ +static kern_return_t +vfs_drt_free_map(struct vfs_drt_clustermap *cmap) +{ + kmem_free(kernel_map, (vm_offset_t)cmap, + (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); + return(KERN_SUCCESS); +} + + +/* + * Find the hashtable slot currently occupied by an entry for the supplied offset. + */ +static kern_return_t +vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) +{ + int index, i; + + offset = DRT_ALIGN_ADDRESS(offset); + index = DRT_HASH(cmap, offset); + + /* traverse the hashtable */ + for (i = 0; i < cmap->scm_modulus; i++) { + + /* + * If the slot is vacant, we can stop. + */ + if (DRT_HASH_VACANT(cmap, index)) + break; + + /* + * If the address matches our offset, we have success. + */ + if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { + *indexp = index; + return(KERN_SUCCESS); + } + + /* + * Move to the next slot, try again. + */ + index = DRT_HASH_NEXT(cmap, index); + } + /* + * It's not there. + */ + return(KERN_FAILURE); +} + +/* + * Find the hashtable slot for the supplied offset. If we haven't allocated + * one yet, allocate one and populate the address field. Note that it will + * not have a nonzero page count and thus will still technically be free, so + * in the case where we are called to clean pages, the slot will remain free. + */ +static kern_return_t +vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) +{ + struct vfs_drt_clustermap *cmap; + kern_return_t kret; + int index, i; + + cmap = *cmapp; + + /* look for an existing entry */ + kret = vfs_drt_search_index(cmap, offset, indexp); + if (kret == KERN_SUCCESS) + return(kret); + + /* need to allocate an entry */ + offset = DRT_ALIGN_ADDRESS(offset); + index = DRT_HASH(cmap, offset); + + /* scan from the index forwards looking for a vacant slot */ + for (i = 0; i < cmap->scm_modulus; i++) { + /* slot vacant? */ + if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { + cmap->scm_buckets++; + if (index < cmap->scm_lastclean) + cmap->scm_lastclean = index; + DRT_HASH_SET_ADDRESS(cmap, index, offset); + DRT_HASH_SET_COUNT(cmap, index, 0); + DRT_BITVECTOR_CLEAR(cmap, index); + *indexp = index; + vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); + return(KERN_SUCCESS); + } + cmap->scm_iskips += i; + index = DRT_HASH_NEXT(cmap, index); + } + + /* + * We haven't found a vacant slot, so the map is full. If we're not + * already recursed, try reallocating/compacting it. + */ + if (recursed) + return(KERN_FAILURE); + kret = vfs_drt_alloc_map(cmapp); + if (kret == KERN_SUCCESS) { + /* now try to insert again */ + kret = vfs_drt_get_index(cmapp, offset, indexp, 1); + } + return(kret); +} + +/* + * Implementation of set dirty/clean. + * + * In the 'clean' case, not finding a map is OK. + */ +static kern_return_t +vfs_drt_do_mark_pages( + void **private, + u_int64_t offset, + u_int length, + int *setcountp, + int dirty) +{ + struct vfs_drt_clustermap *cmap, **cmapp; + kern_return_t kret; + int i, index, pgoff, pgcount, setcount, ecount; + + cmapp = (struct vfs_drt_clustermap **)private; + cmap = *cmapp; + + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); + + if (setcountp != NULL) + *setcountp = 0; + + /* allocate a cluster map if we don't already have one */ + if (cmap == NULL) { + /* no cluster map, nothing to clean */ + if (!dirty) { + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); + return(KERN_SUCCESS); + } + kret = vfs_drt_alloc_map(cmapp); + if (kret != KERN_SUCCESS) { + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); + return(kret); + } + } + setcount = 0; + + /* + * Iterate over the length of the region. + */ + while (length > 0) { + /* + * Get the hashtable index for this offset. + * + * XXX this will add blank entries if we are clearing a range + * that hasn't been dirtied. + */ + kret = vfs_drt_get_index(cmapp, offset, &index, 0); + cmap = *cmapp; /* may have changed! */ + /* this may be a partial-success return */ + if (kret != KERN_SUCCESS) { + if (setcountp != NULL) + *setcountp = setcount; + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); + + return(kret); + } + + /* + * Work out how many pages we're modifying in this + * hashtable entry. + */ + pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; + pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); + + /* + * Iterate over pages, dirty/clearing as we go. + */ + ecount = DRT_HASH_GET_COUNT(cmap, index); + for (i = 0; i < pgcount; i++) { + if (dirty) { + if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { + DRT_HASH_SET_BIT(cmap, index, pgoff + i); + ecount++; + setcount++; + } + } else { + if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { + DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); + ecount--; + setcount++; + } + } + } + DRT_HASH_SET_COUNT(cmap, index, ecount); + + offset += pgcount * PAGE_SIZE; + length -= pgcount * PAGE_SIZE; + } + if (setcountp != NULL) + *setcountp = setcount; + + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); + + return(KERN_SUCCESS); +} + +/* + * Mark a set of pages as dirty/clean. + * + * This is a public interface. + * + * cmapp + * Pointer to storage suitable for holding a pointer. Note that + * this must either be NULL or a value set by this function. + * + * size + * Current file size in bytes. + * + * offset + * Offset of the first page to be marked as dirty, in bytes. Must be + * page-aligned. + * + * length + * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. + * + * setcountp + * Number of pages newly marked dirty by this call (optional). + * + * Returns KERN_SUCCESS if all the pages were successfully marked. + */ +static kern_return_t +vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp) +{ + /* XXX size unused, drop from interface */ + return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); +} + +#if 0 +static kern_return_t +vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) +{ + return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); +} +#endif + +/* + * Get a cluster of dirty pages. + * + * This is a public interface. + * + * cmapp + * Pointer to storage managed by drt_mark_pages. Note that this must + * be NULL or a value set by drt_mark_pages. + * + * offsetp + * Returns the byte offset into the file of the first page in the cluster. + * + * lengthp + * Returns the length in bytes of the cluster of dirty pages. + * + * Returns success if a cluster was found. If KERN_FAILURE is returned, there + * are no dirty pages meeting the minmum size criteria. Private storage will + * be released if there are no more dirty pages left in the map + * + */ +static kern_return_t +vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) +{ + struct vfs_drt_clustermap *cmap; + u_int64_t offset; + u_int length; + int index, i, j, fs, ls; + + /* sanity */ + if ((cmapp == NULL) || (*cmapp == NULL)) + return(KERN_FAILURE); + cmap = *cmapp; + + /* walk the hashtable */ + for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { + index = DRT_HASH(cmap, offset); + + if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) + continue; + + /* scan the bitfield for a string of bits */ + fs = -1; + + for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { + if (DRT_HASH_TEST_BIT(cmap, index, i)) { + fs = i; + break; + } + } + if (fs == -1) { + /* didn't find any bits set */ + panic("vfs_drt: entry summary count > 0 but no bits set in map"); + } + for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { + if (!DRT_HASH_TEST_BIT(cmap, index, i)) + break; + } + + /* compute offset and length, mark pages clean */ + offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); + length = ls * PAGE_SIZE; + vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); + cmap->scm_lastclean = index; + + /* return successful */ + *offsetp = (off_t)offset; + *lengthp = length; + + vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); + return(KERN_SUCCESS); + } + /* + * We didn't find anything... hashtable is empty + * emit stats into trace buffer and + * then free it + */ + vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, + cmap->scm_modulus, + cmap->scm_buckets, + cmap->scm_lastclean, + cmap->scm_iskips); + + vfs_drt_free_map(cmap); + *cmapp = NULL; + + return(KERN_FAILURE); +} + + +static kern_return_t +vfs_drt_control(void **cmapp, int op_type) +{ + struct vfs_drt_clustermap *cmap; + + /* sanity */ + if ((cmapp == NULL) || (*cmapp == NULL)) + return(KERN_FAILURE); + cmap = *cmapp; + + switch (op_type) { + case 0: + /* emit stats into trace buffer */ + vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, + cmap->scm_modulus, + cmap->scm_buckets, + cmap->scm_lastclean, + cmap->scm_iskips); + + vfs_drt_free_map(cmap); + *cmapp = NULL; + break; + + case 1: + cmap->scm_lastclean = 0; + break; + } + return(KERN_SUCCESS); +} + + + +/* + * Emit a summary of the state of the clustermap into the trace buffer + * along with some caller-provided data. + */ +#if KDEBUG +static void +vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) +{ + KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); +} +#else +static void +vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, + __unused int arg1, __unused int arg2, __unused int arg3, + __unused int arg4) +{ +} +#endif + +#if 0 +/* + * Perform basic sanity check on the hash entry summary count + * vs. the actual bits set in the entry. + */ +static void +vfs_drt_sanity(struct vfs_drt_clustermap *cmap) +{ + int index, i; + int bits_on; + + for (index = 0; index < cmap->scm_modulus; index++) { + if (DRT_HASH_VACANT(cmap, index)) + continue; + + for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { + if (DRT_HASH_TEST_BIT(cmap, index, i)) + bits_on++; + } + if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) + panic("bits_on = %d, index = %d\n", bits_on, index); + } } +#endif