X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/c910b4d9d2451126ae3917b931cd4390c11e1d52..cb3231590a3c94ab4375e2228bd5e86b0cf1ad7e:/osfmk/i386/i386_vm_init.c diff --git a/osfmk/i386/i386_vm_init.c b/osfmk/i386/i386_vm_init.c index 40086ffd1..a4edd4259 100644 --- a/osfmk/i386/i386_vm_init.c +++ b/osfmk/i386/i386_vm_init.c @@ -1,8 +1,8 @@ /* - * Copyright (c) 2003-2006 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2003-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ - * + * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in @@ -11,10 +11,10 @@ * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. - * + * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. - * + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -22,40 +22,38 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * + * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ */ -/* +/* * Mach Operating System * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University * All Rights Reserved. - * + * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. - * + * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. - * + * * Carnegie Mellon requests users of this software to return to - * + * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 - * + * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ -#include -#include #include @@ -74,121 +72,320 @@ #include #include #include -#include #include -#include #include #include #include -#include "i386_lowmem.h" +#include +#include +#include +#include -vm_size_t mem_size = 0; -vm_offset_t first_avail = 0;/* first after page tables */ +#include +#include -uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */ -uint64_t mem_actual; -uint64_t sane_size = 0; /* Memory size to use for defaults calculations */ -#define MAXBOUNCEPOOL (128 * 1024 * 1024) -#define MAXLORESERVE ( 32 * 1024 * 1024) +vm_size_t mem_size = 0; +pmap_paddr_t first_avail = 0;/* first after page tables */ -extern int bsd_mbuf_cluster_reserve(void); +uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */ +uint64_t mem_actual; +uint64_t sane_size = 0; /* Memory size for defaults calculations */ +/* + * KASLR parameters + */ +ppnum_t vm_kernel_base_page; +vm_offset_t vm_kernel_base; +vm_offset_t vm_kernel_top; +vm_offset_t vm_kernel_stext; +vm_offset_t vm_kernel_etext; +vm_offset_t vm_kernel_slide; +vm_offset_t vm_kernel_slid_base; +vm_offset_t vm_kernel_slid_top; +vm_offset_t vm_hib_base; +vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS; +vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS; + +vm_offset_t vm_prelink_stext; +vm_offset_t vm_prelink_etext; +vm_offset_t vm_prelink_sinfo; +vm_offset_t vm_prelink_einfo; +vm_offset_t vm_slinkedit; +vm_offset_t vm_elinkedit; + +vm_offset_t vm_kernel_builtinkmod_text; +vm_offset_t vm_kernel_builtinkmod_text_end; + +#define MAXLORESERVE (32 * 1024 * 1024) + +ppnum_t max_ppnum = 0; -uint32_t bounce_pool_base = 0; -uint32_t bounce_pool_size = 0; +/* + * pmap_high_used* are the highest range of physical memory used for kernel + * internals (page tables, vm_pages) via pmap_steal_memory() that don't + * need to be encrypted in hibernation images. There can be one gap in + * the middle of this due to fragmentation when using a mix of small + * and large pages. In that case, the fragment lives between the high + * and middle ranges. + */ +ppnum_t pmap_high_used_top = 0; +ppnum_t pmap_high_used_bottom = 0; +ppnum_t pmap_middle_used_top = 0; +ppnum_t pmap_middle_used_bottom = 0; -static void reserve_bouncepool(uint32_t); +enum {PMAP_MAX_RESERVED_RANGES = 32}; +uint32_t pmap_reserved_pages_allocated = 0; +uint32_t pmap_reserved_range_indices[PMAP_MAX_RESERVED_RANGES]; +uint32_t pmap_last_reserved_range_index = 0; +uint32_t pmap_reserved_ranges = 0; +extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *); pmap_paddr_t avail_start, avail_end; -vm_offset_t virtual_avail, virtual_end; -static pmap_paddr_t avail_remaining; +vm_offset_t virtual_avail, virtual_end; +static pmap_paddr_t avail_remaining; vm_offset_t static_memory_end = 0; -#include -vm_offset_t edata, etext, end; +vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end, sconst, econst; /* - * _mh_execute_header is the mach_header for the currently executing - * 32 bit kernel + * _mh_execute_header is the mach_header for the currently executing kernel */ -extern struct mach_header _mh_execute_header; -void *sectTEXTB; int sectSizeTEXT; -void *sectDATAB; int sectSizeDATA; -void *sectOBJCB; int sectSizeOBJC; -void *sectLINKB; int sectSizeLINK; -void *sectPRELINKB; int sectSizePRELINK; -void *sectHIBB; int sectSizeHIB; +vm_offset_t segTEXTB; unsigned long segSizeTEXT; +vm_offset_t segDATAB; unsigned long segSizeDATA; +vm_offset_t segLINKB; unsigned long segSizeLINK; +vm_offset_t segPRELINKTEXTB; unsigned long segSizePRELINKTEXT; +vm_offset_t segPRELINKINFOB; unsigned long segSizePRELINKINFO; +vm_offset_t segHIBB; unsigned long segSizeHIB; +unsigned long segSizeConst; + +static kernel_segment_command_t *segTEXT, *segDATA; +static kernel_section_t *cursectTEXT, *lastsectTEXT; +static kernel_segment_command_t *segCONST; + +extern uint64_t firmware_Conventional_bytes; +extern uint64_t firmware_RuntimeServices_bytes; +extern uint64_t firmware_ACPIReclaim_bytes; +extern uint64_t firmware_ACPINVS_bytes; +extern uint64_t firmware_PalCode_bytes; +extern uint64_t firmware_Reserved_bytes; +extern uint64_t firmware_Unusable_bytes; +extern uint64_t firmware_other_bytes; +uint64_t firmware_MMIO_bytes; -extern void *getsegdatafromheader(struct mach_header *, const char *, int *); -extern struct segment_command *getsegbyname(const char *); -extern struct section *firstsect(struct segment_command *); -extern struct section *nextsect(struct segment_command *, struct section *); +/* + * Linker magic to establish the highest address in the kernel. + */ +extern void *last_kernel_symbol; +#define LG_PPNUM_PAGES (I386_LPGBYTES >> PAGE_SHIFT) +#define LG_PPNUM_MASK (I386_LPGMASK >> PAGE_SHIFT) -void -i386_macho_zerofill(void) +/* set so no region large page fragment pages exist */ +#define RESET_FRAG(r) (((r)->alloc_frag_up = 1), ((r)->alloc_frag_down = 0)) + +boolean_t memmap = FALSE; +#if DEBUG || DEVELOPMENT +static void +kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) { - struct segment_command *sgp; - struct section *sp; - - sgp = getsegbyname("__DATA"); - if (sgp) { - sp = firstsect(sgp); - if (sp) { - do { - if ((sp->flags & S_ZEROFILL)) - bzero((char *) sp->addr, sp->size); - } while ((sp = nextsect(sgp, sp))); + unsigned int i; + unsigned int j; + pmap_memory_region_t *p = pmap_memory_regions; + EfiMemoryRange *mptr; + addr64_t region_start, region_end; + addr64_t efi_start, efi_end; + + for (j = 0; j < pmap_memory_region_count; j++, p++) { + kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx" + " alloc_frag_up 0x%llx alloc_frag_down 0x%llx top 0x%llx\n", + j, p->type, + (addr64_t) p->base << I386_PGSHIFT, + (addr64_t) p->alloc_up << I386_PGSHIFT, + (addr64_t) p->alloc_down << I386_PGSHIFT, + (addr64_t) p->alloc_frag_up << I386_PGSHIFT, + (addr64_t) p->alloc_frag_down << I386_PGSHIFT, + (addr64_t) p->end << I386_PGSHIFT); + region_start = (addr64_t) p->base << I386_PGSHIFT; + region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1; + mptr = (EfiMemoryRange *) maddr; + for (i = 0; + i < mcount; + i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { + if (mptr->Type != kEfiLoaderCode && + mptr->Type != kEfiLoaderData && + mptr->Type != kEfiBootServicesCode && + mptr->Type != kEfiBootServicesData && + mptr->Type != kEfiConventionalMemory) { + efi_start = (addr64_t)mptr->PhysicalStart; + efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1; + if ((efi_start >= region_start && efi_start <= region_end) || + (efi_end >= region_start && efi_end <= region_end)) { + kprintf(" *** Overlapping region with EFI runtime region %d\n", i); + } + } } } +} +#define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0) + +#else - return; +static void +kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) +{ +#pragma unused(maddr, msize, mcount) } +#define DPRINTF(x...) +#endif /* DEBUG */ + /* * Basic VM initialization. */ void -i386_vm_init(uint64_t maxmem, - boolean_t IA32e, - boot_args *args) +i386_vm_init(uint64_t maxmem, + boolean_t IA32e, + boot_args *args) { pmap_memory_region_t *pmptr; - pmap_memory_region_t *prev_pmptr; + pmap_memory_region_t *prev_pmptr; EfiMemoryRange *mptr; - unsigned int mcount; - unsigned int msize; + unsigned int mcount; + unsigned int msize; + vm_offset_t maddr; ppnum_t fap; unsigned int i; - unsigned int safeboot; ppnum_t maxpg = 0; - uint32_t pmap_type; - uint32_t maxbouncepoolsize; + uint32_t pmap_type; uint32_t maxloreserve; uint32_t maxdmaaddr; + uint32_t mbuf_reserve = 0; + boolean_t mbuf_override = FALSE; + boolean_t coalescing_permitted; + vm_kernel_base_page = i386_btop(args->kaddr); + vm_offset_t base_address; + vm_offset_t static_base_address; + + PE_parse_boot_argn("memmap", &memmap, sizeof(memmap)); + + /* + * Establish the KASLR parameters. + */ + static_base_address = ml_static_ptovirt(KERNEL_BASE_OFFSET); + base_address = ml_static_ptovirt(args->kaddr); + vm_kernel_slide = base_address - static_base_address; + if (args->kslide) { + kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide); + if (vm_kernel_slide != ((vm_offset_t)args->kslide)) { + panic("Kernel base inconsistent with slide - rebased?"); + } + } else { + /* No slide relative to on-disk symbols */ + kprintf("KASLR slide: 0x%016lx static and ignored\n", + vm_kernel_slide); + vm_kernel_slide = 0; + } + + /* + * Zero out local relocations to avoid confusing kxld. + * TODO: might be better to move this code to OSKext::initialize + */ + if (_mh_execute_header.flags & MH_PIE) { + struct load_command *loadcmd; + uint32_t cmd; + + loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header + + sizeof(_mh_execute_header)); + + for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) { + if (loadcmd->cmd == LC_DYSYMTAB) { + struct dysymtab_command *dysymtab; + + dysymtab = (struct dysymtab_command *)loadcmd; + dysymtab->nlocrel = 0; + dysymtab->locreloff = 0; + kprintf("Hiding local relocations\n"); + break; + } + loadcmd = (struct load_command *)((uintptr_t)loadcmd + loadcmd->cmdsize); + } + } /* - * Now retrieve addresses for end, edata, and etext + * Now retrieve addresses for end, edata, and etext * from MACH-O headers. */ + segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, + "__TEXT", &segSizeTEXT); + segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, + "__DATA", &segSizeDATA); + segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, + "__LINKEDIT", &segSizeLINK); + segHIBB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, + "__HIB", &segSizeHIB); + segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, + "__PRELINK_TEXT", &segSizePRELINKTEXT); + segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, + "__PRELINK_INFO", &segSizePRELINKINFO); + segTEXT = getsegbynamefromheader(&_mh_execute_header, + "__TEXT"); + segDATA = getsegbynamefromheader(&_mh_execute_header, + "__DATA"); + segCONST = getsegbynamefromheader(&_mh_execute_header, + "__DATA_CONST"); + cursectTEXT = lastsectTEXT = firstsect(segTEXT); + /* Discover the last TEXT section within the TEXT segment */ + while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) { + lastsectTEXT = cursectTEXT; + } - sectTEXTB = (void *) getsegdatafromheader( - &_mh_execute_header, "__TEXT", §SizeTEXT); - sectDATAB = (void *) getsegdatafromheader( - &_mh_execute_header, "__DATA", §SizeDATA); - sectOBJCB = (void *) getsegdatafromheader( - &_mh_execute_header, "__OBJC", §SizeOBJC); - sectLINKB = (void *) getsegdatafromheader( - &_mh_execute_header, "__LINKEDIT", §SizeLINK); - sectHIBB = (void *)getsegdatafromheader( - &_mh_execute_header, "__HIB", §SizeHIB); - sectPRELINKB = (void *) getsegdatafromheader( - &_mh_execute_header, "__PRELINK", §SizePRELINK); - - etext = (vm_offset_t) sectTEXTB + sectSizeTEXT; - edata = (vm_offset_t) sectDATAB + sectSizeDATA; + sHIB = segHIBB; + eHIB = segHIBB + segSizeHIB; + vm_hib_base = sHIB; + /* Zero-padded from ehib to stext if text is 2M-aligned */ + stext = segTEXTB; + lowGlo.lgStext = stext; + etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size); + /* Zero-padded from etext to sdata if text is 2M-aligned */ + sdata = segDATAB; + edata = segDATAB + segSizeDATA; + + sconst = segCONST->vmaddr; + segSizeConst = segCONST->vmsize; + econst = sconst + segSizeConst; + + assert(((sconst | econst) & PAGE_MASK) == 0); + + DPRINTF("segTEXTB = %p\n", (void *) segTEXTB); + DPRINTF("segDATAB = %p\n", (void *) segDATAB); + DPRINTF("segLINKB = %p\n", (void *) segLINKB); + DPRINTF("segHIBB = %p\n", (void *) segHIBB); + DPRINTF("segPRELINKTEXTB = %p\n", (void *) segPRELINKTEXTB); + DPRINTF("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB); + DPRINTF("sHIB = %p\n", (void *) sHIB); + DPRINTF("eHIB = %p\n", (void *) eHIB); + DPRINTF("stext = %p\n", (void *) stext); + DPRINTF("etext = %p\n", (void *) etext); + DPRINTF("sdata = %p\n", (void *) sdata); + DPRINTF("edata = %p\n", (void *) edata); + DPRINTF("sconst = %p\n", (void *) sconst); + DPRINTF("econst = %p\n", (void *) econst); + DPRINTF("kernel_top = %p\n", (void *) &last_kernel_symbol); + + vm_kernel_base = sHIB; + vm_kernel_top = (vm_offset_t) &last_kernel_symbol; + vm_kernel_stext = stext; + vm_kernel_etext = etext; + vm_prelink_stext = segPRELINKTEXTB; + vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT; + vm_prelink_sinfo = segPRELINKINFOB; + vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO; + vm_slinkedit = segLINKB; + vm_elinkedit = segLINKB + segSizeLINK; + vm_kernel_slid_base = vm_kext_base + vm_kernel_slide; + vm_kernel_slid_top = vm_prelink_einfo; vm_set_page_size(); @@ -196,33 +393,69 @@ i386_vm_init(uint64_t maxmem, * Compute the memory size. */ - if ((1 == vm_himemory_mode) || PE_parse_boot_argn("-x", &safeboot, sizeof (safeboot))) { - maxpg = 1 << (32 - I386_PGSHIFT); - } avail_remaining = 0; avail_end = 0; pmptr = pmap_memory_regions; - prev_pmptr = 0; + prev_pmptr = 0; pmap_memory_region_count = pmap_memory_region_current = 0; fap = (ppnum_t) i386_btop(first_avail); - mptr = (EfiMemoryRange *)args->MemoryMap; - if (args->MemoryMapDescriptorSize == 0) - panic("Invalid memory map descriptor size"); - msize = args->MemoryMapDescriptorSize; - mcount = args->MemoryMapSize / msize; + maddr = ml_static_ptovirt((vm_offset_t)args->MemoryMap); + mptr = (EfiMemoryRange *)maddr; + if (args->MemoryMapDescriptorSize == 0) { + panic("Invalid memory map descriptor size"); + } + msize = args->MemoryMapDescriptorSize; + mcount = args->MemoryMapSize / msize; #define FOURGIG 0x0000000100000000ULL +#define ONEGIG 0x0000000040000000ULL for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { - ppnum_t base, top; + ppnum_t base, top; + uint64_t region_bytes = 0; if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) { - kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count); + kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count); break; } base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT); - top = (ppnum_t) ((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1; + top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1); + + if (base == 0) { + /* + * Avoid having to deal with the edge case of the + * very first possible physical page and the roll-over + * to -1; just ignore that page. + */ + kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top); + base++; + } + if (top + 1 == 0) { + /* + * Avoid having to deal with the edge case of the + * very last possible physical page and the roll-over + * to 0; just ignore that page. + */ + kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top); + top--; + } + if (top < base) { + /* + * That was the only page in that region, so + * ignore the whole region. + */ + continue; + } + +#if MR_RSV_TEST + static uint32_t nmr = 0; + if ((base > 0x20000) && (nmr++ < 4)) { + mptr->Attribute |= EFI_MEMORY_KERN_RESERVED; + } +#endif + region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT); + pmap_type = mptr->Type; switch (mptr->Type) { case kEfiLoaderCode: @@ -230,40 +463,66 @@ i386_vm_init(uint64_t maxmem, case kEfiBootServicesCode: case kEfiBootServicesData: case kEfiConventionalMemory: - /* + /* * Consolidate usable memory types into one. */ - pmap_type = kEfiConventionalMemory; - sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT); + pmap_type = kEfiConventionalMemory; + sane_size += region_bytes; + firmware_Conventional_bytes += region_bytes; break; + /* + * sane_size should reflect the total amount of physical + * RAM in the system, not just the amount that is + * available for the OS to use. + * We now get this value from SMBIOS tables + * rather than reverse engineering the memory map. + * But the legacy computation of "sane_size" is kept + * for diagnostic information. + */ case kEfiRuntimeServicesCode: case kEfiRuntimeServicesData: + firmware_RuntimeServices_bytes += region_bytes; + sane_size += region_bytes; + break; case kEfiACPIReclaimMemory: + firmware_ACPIReclaim_bytes += region_bytes; + sane_size += region_bytes; + break; case kEfiACPIMemoryNVS: + firmware_ACPINVS_bytes += region_bytes; + sane_size += region_bytes; + break; case kEfiPalCode: - /* - * sane_size should reflect the total amount of physical ram - * in the system, not just the amount that is available for - * the OS to use - */ - sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT); - /* fall thru */ + firmware_PalCode_bytes += region_bytes; + sane_size += region_bytes; + break; + case kEfiReservedMemoryType: + firmware_Reserved_bytes += region_bytes; + break; case kEfiUnusableMemory: + firmware_Unusable_bytes += region_bytes; + break; case kEfiMemoryMappedIO: case kEfiMemoryMappedIOPortSpace: - case kEfiReservedMemoryType: + firmware_MMIO_bytes += region_bytes; + break; default: - pmap_type = mptr->Type; + firmware_other_bytes += region_bytes; + break; } - kprintf("EFI region: type = %u/%d, base = 0x%x, top = 0x%x\n", mptr->Type, pmap_type, base, top); + DPRINTF("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n", + i, mptr->Type, pmap_type, base, top, + (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)? "RESERVED" : + (mptr->Attribute & EFI_MEMORY_RUNTIME)? "RUNTIME" : ""); if (maxpg) { - if (base >= maxpg) + if (base >= maxpg) { break; - top = (top > maxpg) ? maxpg : top; + } + top = (top > maxpg) ? maxpg : top; } /* @@ -271,169 +530,196 @@ i386_vm_init(uint64_t maxmem, */ if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME || pmap_type != kEfiConventionalMemory) { - prev_pmptr = 0; + prev_pmptr = 0; continue; } else { - /* + /* * Usable memory region */ - if (top < I386_LOWMEM_RESERVED) { - prev_pmptr = 0; + if (top < I386_LOWMEM_RESERVED || + !pal_is_usable_memory(base, top)) { + prev_pmptr = 0; continue; } + /* + * A range may be marked with with the + * EFI_MEMORY_KERN_RESERVED attribute + * on some systems, to indicate that the range + * must not be made available to devices. + */ + + if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) { + if (++pmap_reserved_ranges > PMAP_MAX_RESERVED_RANGES) { + panic("Too many reserved ranges %u\n", pmap_reserved_ranges); + } + } + if (top < fap) { - /* + /* * entire range below first_avail - * salvage some low memory pages + * salvage some low memory pages * we use some very low memory at startup * mark as already allocated here */ - if (base >= I386_LOWMEM_RESERVED) - pmptr->base = base; - else - pmptr->base = I386_LOWMEM_RESERVED; - /* - * mark as already mapped - */ - pmptr->alloc = pmptr->end = top; + if (base >= I386_LOWMEM_RESERVED) { + pmptr->base = base; + } else { + pmptr->base = I386_LOWMEM_RESERVED; + } + + pmptr->end = top; + + + if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) && + (top < vm_kernel_base_page)) { + pmptr->alloc_up = pmptr->base; + pmptr->alloc_down = pmptr->end; + RESET_FRAG(pmptr); + pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; + } else { + /* + * mark as already mapped + */ + pmptr->alloc_up = top + 1; + pmptr->alloc_down = top; + RESET_FRAG(pmptr); + } pmptr->type = pmap_type; - } - else if ( (base < fap) && (top > fap) ) { - /* + pmptr->attribute = mptr->Attribute; + } else if ((base < fap) && (top > fap)) { + /* * spans first_avail * put mem below first avail in table but * mark already allocated */ - pmptr->base = base; - pmptr->alloc = pmptr->end = (fap - 1); + pmptr->base = base; + pmptr->end = (fap - 1); + pmptr->alloc_up = pmptr->end + 1; + pmptr->alloc_down = pmptr->end; + RESET_FRAG(pmptr); pmptr->type = pmap_type; + pmptr->attribute = mptr->Attribute; /* * we bump these here inline so the accounting * below works correctly */ pmptr++; pmap_memory_region_count++; - pmptr->alloc = pmptr->base = fap; + + pmptr->alloc_up = pmptr->base = fap; pmptr->type = pmap_type; - pmptr->end = top; - } - else { - /* + pmptr->attribute = mptr->Attribute; + pmptr->alloc_down = pmptr->end = top; + RESET_FRAG(pmptr); + + if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) { + pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; + } + } else { + /* * entire range useable */ - pmptr->alloc = pmptr->base = base; + pmptr->alloc_up = pmptr->base = base; pmptr->type = pmap_type; - pmptr->end = top; + pmptr->attribute = mptr->Attribute; + pmptr->alloc_down = pmptr->end = top; + RESET_FRAG(pmptr); + if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) { + pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; + } } - if (i386_ptob(pmptr->end) > avail_end ) - avail_end = i386_ptob(pmptr->end); + if (i386_ptob(pmptr->end) > avail_end) { + avail_end = i386_ptob(pmptr->end); + } avail_remaining += (pmptr->end - pmptr->base); - + coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0)); /* * Consolidate contiguous memory regions, if possible */ if (prev_pmptr && - pmptr->type == prev_pmptr->type && - pmptr->base == pmptr->alloc && - pmptr->base == (prev_pmptr->end + 1)) { - prev_pmptr->end = pmptr->end; + (pmptr->type == prev_pmptr->type) && + (coalescing_permitted) && + (pmptr->base == pmptr->alloc_up) && + (prev_pmptr->end == prev_pmptr->alloc_down) && + (pmptr->base == (prev_pmptr->end + 1))) { + prev_pmptr->end = pmptr->end; + prev_pmptr->alloc_down = pmptr->alloc_down; + RESET_FRAG(pmptr); } else { - pmap_memory_region_count++; + pmap_memory_region_count++; prev_pmptr = pmptr; pmptr++; } } } - -#ifdef PRINT_PMAP_MEMORY_TABLE - { - unsigned int j; - pmap_memory_region_t *p = pmap_memory_regions; - vm_offset_t region_start, region_end; - vm_offset_t efi_start, efi_end; - for (j=0;jtype, - p->base << I386_PGSHIFT, p->alloc << I386_PGSHIFT, p->end << I386_PGSHIFT); - region_start = p->base << I386_PGSHIFT; - region_end = (p->end << I386_PGSHIFT) - 1; - mptr = args->MemoryMap; - for (i=0; iType != kEfiLoaderCode && - mptr->Type != kEfiLoaderData && - mptr->Type != kEfiBootServicesCode && - mptr->Type != kEfiBootServicesData && - mptr->Type != kEfiConventionalMemory) { - efi_start = (vm_offset_t)mptr->PhysicalStart; - efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1; - if ((efi_start >= region_start && efi_start <= region_end) || - (efi_end >= region_start && efi_end <= region_end)) { - kprintf(" *** Overlapping region with EFI runtime region %d\n", i); - } - } - - } - } + if (memmap) { + kprint_memmap(maddr, msize, mcount); } -#endif avail_start = first_avail; - mem_actual = sane_size; - -#define MEG (1024*1024ULL) -#define GIG (1024*MEG) + mem_actual = args->PhysicalMemorySize; /* - * For user visible memory size, round up to 128 Mb - accounting for the various stolen memory - * not reported by EFI. + * For user visible memory size, round up to 128 Mb + * - accounting for the various stolen memory not reported by EFI. + * This is maintained for historical, comparison purposes but + * we now use the memory size reported by EFI/Booter. */ + sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1)); + if (sane_size != mem_actual) { + printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n", + mem_actual, sane_size); + } + sane_size = mem_actual; - sane_size = (sane_size + 128 * MEG - 1) & ~((uint64_t)(128 * MEG - 1)); - -#if defined(__i386__) -#define K32_MAXMEM (32*GIG) /* - * For K32 we cap at K32_MAXMEM GB (currently 32GB). + * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64). * Unless overriden by the maxmem= boot-arg * -- which is a non-zero maxmem argument to this function. */ - if (maxmem == 0 && sane_size > K32_MAXMEM) { - maxmem = K32_MAXMEM; - printf("Physical memory %lld bytes capped at %dGB for 32-bit kernel\n", - sane_size, (uint32_t) (K32_MAXMEM/GIG)); + if (maxmem == 0 && sane_size > KERNEL_MAXMEM) { + maxmem = KERNEL_MAXMEM; + printf("Physical memory %lld bytes capped at %dGB\n", + sane_size, (uint32_t) (KERNEL_MAXMEM / GB)); } -#endif + /* * if user set maxmem, reduce memory sizes */ - if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) { - ppnum_t discarded_pages = (sane_size - maxmem) >> I386_PGSHIFT; - ppnum_t highest_pn = 0; - ppnum_t cur_alloc = 0; - uint64_t pages_to_use; - unsigned cur_region = 0; + if ((maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) { + ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT); + ppnum_t highest_pn = 0; + ppnum_t cur_end = 0; + uint64_t pages_to_use; + unsigned cur_region = 0; sane_size = maxmem; - if (avail_remaining > discarded_pages) + if (avail_remaining > discarded_pages) { avail_remaining -= discarded_pages; - else + } else { avail_remaining = 0; - + } + pages_to_use = avail_remaining; while (cur_region < pmap_memory_region_count && pages_to_use) { - for (cur_alloc = pmap_memory_regions[cur_region].alloc; - cur_alloc < pmap_memory_regions[cur_region].end && pages_to_use; - cur_alloc++) { - if (cur_alloc > highest_pn) - highest_pn = cur_alloc; + for (cur_end = pmap_memory_regions[cur_region].base; + cur_end < pmap_memory_regions[cur_region].end && pages_to_use; + cur_end++) { + if (cur_end > highest_pn) { + highest_pn = cur_end; + } pages_to_use--; } - if (pages_to_use == 0) - pmap_memory_regions[cur_region].end = cur_alloc; + if (pages_to_use == 0) { + pmap_memory_regions[cur_region].end = cur_end; + pmap_memory_regions[cur_region].alloc_down = cur_end; + RESET_FRAG(&pmap_memory_regions[cur_region]); + } cur_region++; } @@ -446,47 +732,63 @@ i386_vm_init(uint64_t maxmem, * mem_size is only a 32 bit container... follow the PPC route * and pin it to a 2 Gbyte maximum */ - if (sane_size > (FOURGIG >> 1)) - mem_size = (vm_size_t)(FOURGIG >> 1); - else - mem_size = (vm_size_t)sane_size; + if (sane_size > (FOURGIG >> 1)) { + mem_size = (vm_size_t)(FOURGIG >> 1); + } else { + mem_size = (vm_size_t)sane_size; + } max_mem = sane_size; - kprintf("Physical memory %llu MB\n", sane_size/MEG); + kprintf("Physical memory %llu MB\n", sane_size / MB); - if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) - max_valid_dma_address = 1024ULL * 1024ULL * 4096ULL; - else - max_valid_dma_address = ((uint64_t) maxdmaaddr) * 1024ULL * 1024ULL; + max_valid_low_ppnum = (2 * GB) / PAGE_SIZE; - if (!PE_parse_boot_argn("maxbouncepool", &maxbouncepoolsize, sizeof (maxbouncepoolsize))) - maxbouncepoolsize = MAXBOUNCEPOOL; - else - maxbouncepoolsize = maxbouncepoolsize * (1024 * 1024); + if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof(maxdmaaddr))) { + max_valid_dma_address = (uint64_t)4 * (uint64_t)GB; + } else { + max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB; - /* - * bsd_mbuf_cluster_reserve depends on sane_size being set - * in order to correctly determine the size of the mbuf pool - * that will be reserved - */ - if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) - maxloreserve = MAXLORESERVE + bsd_mbuf_cluster_reserve(); - else - maxloreserve = maxloreserve * (1024 * 1024); + if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum) { + max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE); + } + } + if (avail_end >= max_valid_dma_address) { + if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof(maxloreserve))) { + if (sane_size >= (ONEGIG * 15)) { + maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4; + } else if (sane_size >= (ONEGIG * 7)) { + maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2; + } else { + maxloreserve = MAXLORESERVE / PAGE_SIZE; + } +#if SOCKETS + mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE; +#endif + } else { + maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE; + } - if (avail_end >= max_valid_dma_address) { - if (maxbouncepoolsize) - reserve_bouncepool(maxbouncepoolsize); + if (maxloreserve) { + vm_lopage_free_limit = maxloreserve; - if (maxloreserve) - vm_lopage_poolsize = maxloreserve / PAGE_SIZE; + if (mbuf_override == TRUE) { + vm_lopage_free_limit += mbuf_reserve; + vm_lopage_lowater = 0; + } else { + vm_lopage_lowater = vm_lopage_free_limit / 16; + } + + vm_lopage_refill = TRUE; + vm_lopage_needed = TRUE; + } } - + /* * Initialize kernel physical map. * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS. */ + kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining); pmap_bootstrap(0, IA32e); } @@ -494,67 +796,241 @@ i386_vm_init(uint64_t maxmem, unsigned int pmap_free_pages(void) { - return avail_remaining; + return (unsigned int)avail_remaining; } +boolean_t pmap_next_page_reserved(ppnum_t *); +/* + * Pick a page from a "kernel private" reserved range; works around + * errata on some hardware. EFI marks pages which can't be used for + * certain kinds of I/O-ish activities as reserved. We reserve them for + * kernel internal usage and prevent them from ever going on regular + * free list. + */ boolean_t -pmap_next_page( - ppnum_t *pn) +pmap_next_page_reserved( + ppnum_t *pn) { - - if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) { - if (pmap_memory_regions[pmap_memory_region_current].alloc == - pmap_memory_regions[pmap_memory_region_current].end) { - pmap_memory_region_current++; + uint32_t n; + pmap_memory_region_t *region; + uint32_t reserved_index; + + if (pmap_reserved_ranges) { + for (n = 0; n < pmap_last_reserved_range_index; n++) { + reserved_index = pmap_reserved_range_indices[n]; + region = &pmap_memory_regions[reserved_index]; + if (region->alloc_up <= region->alloc_down) { + *pn = region->alloc_up++; + } else if (region->alloc_frag_up <= region->alloc_frag_down) { + *pn = region->alloc_frag_up++; + } else { + continue; + } + avail_remaining--; + + if (*pn > max_ppnum) { + max_ppnum = *pn; + } + + pmap_reserved_pages_allocated++; +#if DEBUG + if (region->alloc_up > region->alloc_down) { + kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute); + } +#endif + return TRUE; + } + } + return FALSE; +} + +/* + * Return the highest large page available. Fails once there are no more large pages. + */ +kern_return_t +pmap_next_page_large( + ppnum_t *pn) +{ + int r; + pmap_memory_region_t *region; + ppnum_t frag_start; + ppnum_t lgpg; + + if (avail_remaining < LG_PPNUM_PAGES) { + return KERN_FAILURE; + } + + for (r = pmap_memory_region_count - 1; r >= 0; r--) { + region = &pmap_memory_regions[r]; + + /* + * First check if there is enough memory. + */ + if (region->alloc_down < region->alloc_up || + (region->alloc_down - region->alloc_up + 1) < LG_PPNUM_PAGES) { continue; } - *pn = pmap_memory_regions[pmap_memory_region_current].alloc++; - avail_remaining--; + /* + * Find the starting large page, creating a fragment if needed. + */ + if ((region->alloc_down & LG_PPNUM_MASK) == LG_PPNUM_MASK) { + lgpg = (region->alloc_down & ~LG_PPNUM_MASK); + } else { + /* Can only have 1 fragment per region at a time */ + if (region->alloc_frag_up <= region->alloc_frag_down) { + continue; + } + + /* Check for enough room below any fragment. */ + frag_start = (region->alloc_down & ~LG_PPNUM_MASK); + if (frag_start < region->alloc_up || + frag_start - region->alloc_up < LG_PPNUM_PAGES) { + continue; + } + + lgpg = frag_start - LG_PPNUM_PAGES; + region->alloc_frag_up = frag_start; + region->alloc_frag_down = region->alloc_down; + } + + *pn = lgpg; + region->alloc_down = lgpg - 1; + + + avail_remaining -= LG_PPNUM_PAGES; + if (*pn + LG_PPNUM_MASK > max_ppnum) { + max_ppnum = *pn + LG_PPNUM_MASK; + } + + return KERN_SUCCESS; + } + return KERN_FAILURE; +} + +boolean_t +pmap_next_page_hi( + ppnum_t *pn, + boolean_t might_free) +{ + pmap_memory_region_t *region; + int n; + + if (!might_free && pmap_next_page_reserved(pn)) { return TRUE; } + + if (avail_remaining) { + for (n = pmap_memory_region_count - 1; n >= 0; n--) { + region = &pmap_memory_regions[n]; + if (region->alloc_frag_up <= region->alloc_frag_down) { + *pn = region->alloc_frag_down--; + } else if (region->alloc_down >= region->alloc_up) { + *pn = region->alloc_down--; + } else { + continue; + } + + avail_remaining--; + + if (*pn > max_ppnum) { + max_ppnum = *pn; + } + + return TRUE; + } + } return FALSE; } +/* + * Record which high pages have been allocated so far, + * so that pmap_init() can mark them PMAP_NOENCRYPT, which + * makes hibernation faster. + * + * Because of the code in pmap_next_page_large(), we could + * theoretically have fragments in several regions. + * In practice that just doesn't happen. The last pmap region + * is normally the largest and will satisfy all pmap_next_hi/large() + * allocations. Since this information is used as an optimization + * and it's ok to be conservative, we'll just record the information + * for the final region. + */ +void +pmap_hi_pages_done(void) +{ + pmap_memory_region_t *r; + + r = &pmap_memory_regions[pmap_memory_region_count - 1]; + pmap_high_used_top = r->end; + if (r->alloc_frag_up <= r->alloc_frag_down) { + pmap_high_used_bottom = r->alloc_frag_down + 1; + pmap_middle_used_top = r->alloc_frag_up - 1; + if (r->alloc_up <= r->alloc_down) { + pmap_middle_used_bottom = r->alloc_down + 1; + } else { + pmap_high_used_bottom = r->base; + } + } else { + if (r->alloc_up <= r->alloc_down) { + pmap_high_used_bottom = r->alloc_down + 1; + } else { + pmap_high_used_bottom = r->base; + } + } +#if DEBUG || DEVELOPMENT + kprintf("pmap_high_used_top 0x%x\n", pmap_high_used_top); + kprintf("pmap_high_used_bottom 0x%x\n", pmap_high_used_bottom); + kprintf("pmap_middle_used_top 0x%x\n", pmap_middle_used_top); + kprintf("pmap_middle_used_bottom 0x%x\n", pmap_middle_used_bottom); +#endif +} +/* + * Return the next available page from lowest memory for general use. + */ boolean_t -pmap_valid_page( - ppnum_t pn) +pmap_next_page( + ppnum_t *pn) { - unsigned int i; - pmap_memory_region_t *pmptr = pmap_memory_regions; + pmap_memory_region_t *region; + + if (avail_remaining) { + while (pmap_memory_region_current < pmap_memory_region_count) { + region = &pmap_memory_regions[pmap_memory_region_current]; + if (region->alloc_up <= region->alloc_down) { + *pn = region->alloc_up++; + } else if (region->alloc_frag_up <= region->alloc_frag_down) { + *pn = region->alloc_frag_up++; + } else { + pmap_memory_region_current++; + continue; + } + avail_remaining--; - assert(pn); - for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { - if ( (pn >= pmptr->base) && (pn <= pmptr->end) ) - return TRUE; + if (*pn > max_ppnum) { + max_ppnum = *pn; + } + + return TRUE; + } } return FALSE; } -static void -reserve_bouncepool(uint32_t bounce_pool_wanted) +boolean_t +pmap_valid_page( + ppnum_t pn) { - pmap_memory_region_t *pmptr = pmap_memory_regions; - pmap_memory_region_t *lowest = NULL; - unsigned int i; - unsigned int pages_needed; - - pages_needed = bounce_pool_wanted / PAGE_SIZE; + unsigned int i; + pmap_memory_region_t *pmptr = pmap_memory_regions; for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { - if ( (pmptr->end - pmptr->alloc) >= pages_needed ) { - if ( (lowest == NULL) || (pmptr->alloc < lowest->alloc) ) - lowest = pmptr; + if ((pn >= pmptr->base) && (pn <= pmptr->end)) { + return TRUE; } } - if ( (lowest != NULL) ) { - bounce_pool_base = lowest->alloc * PAGE_SIZE; - bounce_pool_size = bounce_pool_wanted; - - lowest->alloc += pages_needed; - avail_remaining -= pages_needed; - } + return FALSE; }