X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/c910b4d9d2451126ae3917b931cd4390c11e1d52..4d15aeb193b2c68f1d38666c317f8d3734f5f083:/osfmk/i386/machine_routines.c?ds=inline diff --git a/osfmk/i386/machine_routines.c b/osfmk/i386/machine_routines.c index 019d7f82f..76652946c 100644 --- a/osfmk/i386/machine_routines.c +++ b/osfmk/i386/machine_routines.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2000-2008 Apple Inc. All rights reserved. + * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * @@ -33,46 +33,59 @@ #include #include #include -#include + #include #include -#include +#include +#include + +#include #include #include +#include #include -#include -#include #include -#include +#include #include #include +#include #include -#if MACH_KDB -#include -#include -#include -#include -#include -#include -#include -#include +#include +#include +#include +#include +#if KPC +#include #endif - +#include +#include #if DEBUG #define DBG(x...) kprintf("DBG: " x) #else #define DBG(x...) #endif -extern thread_t Shutdown_context(thread_t thread, void (*doshutdown)(processor_t),processor_t processor); extern void wakeup(void *); -extern unsigned KernelRelocOffset; static int max_cpus_initialized = 0; -unsigned int LockTimeOut; -unsigned int LockTimeOutTSC; -unsigned int MutexSpin; +uint64_t LockTimeOut; +uint64_t TLBTimeOut; +uint64_t LockTimeOutTSC; +uint32_t LockTimeOutUsec; +uint64_t MutexSpin; +uint64_t LastDebuggerEntryAllowance; +uint64_t delay_spin_threshold; + +extern uint64_t panic_restart_timeout; + +boolean_t virtualized = FALSE; + +decl_simple_lock_data(static, ml_timer_evaluation_slock); +uint32_t ml_timer_eager_evaluations; +uint64_t ml_timer_eager_evaluation_max; +static boolean_t ml_timer_evaluation_in_progress = FALSE; + #define MAX_CPUS_SET 0x1 #define MAX_CPUS_WAIT 0x2 @@ -97,23 +110,20 @@ vm_offset_t ml_static_malloc( void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size) { - *phys_addr = bounce_pool_base; - *size = bounce_pool_size; + *phys_addr = 0; + *size = 0; } -vm_offset_t -ml_boot_ptovirt( - vm_offset_t paddr) -{ - return (vm_offset_t)((paddr-KernelRelocOffset) | LINEAR_KERNEL_ADDRESS); -} - vm_offset_t ml_static_ptovirt( vm_offset_t paddr) { - return (vm_offset_t)((unsigned) paddr | LINEAR_KERNEL_ADDRESS); +#if defined(__x86_64__) + return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS); +#else + return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS); +#endif } @@ -126,17 +136,17 @@ ml_static_mfree( vm_offset_t vaddr, vm_size_t size) { - vm_offset_t vaddr_cur; + addr64_t vaddr_cur; ppnum_t ppn; - -// if (vaddr < VM_MIN_KERNEL_ADDRESS) return; + uint32_t freed_pages = 0; + assert(vaddr >= VM_MIN_KERNEL_ADDRESS); assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */ for (vaddr_cur = vaddr; - vaddr_cur < round_page_32(vaddr+size); + vaddr_cur < round_page_64(vaddr+size); vaddr_cur += PAGE_SIZE) { - ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur); + ppn = pmap_find_phys(kernel_pmap, vaddr_cur); if (ppn != (vm_offset_t)NULL) { kernel_pmap->stats.resident_count++; if (kernel_pmap->stats.resident_count > @@ -144,11 +154,22 @@ ml_static_mfree( kernel_pmap->stats.resident_max = kernel_pmap->stats.resident_count; } - pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE)); - vm_page_create(ppn,(ppn+1)); - vm_page_wire_count--; + pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE); + assert(pmap_valid_page(ppn)); + if (IS_MANAGED_PAGE(ppn)) { + vm_page_create(ppn,(ppn+1)); + freed_pages++; + } } } + vm_page_lockspin_queues(); + vm_page_wire_count -= freed_pages; + vm_page_wire_count_initial -= freed_pages; + vm_page_unlock_queues(); + +#if DEBUG + kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn); +#endif } @@ -156,7 +177,7 @@ ml_static_mfree( vm_offset_t ml_vtophys( vm_offset_t vaddr) { - return kvtophys(vaddr); + return (vm_offset_t)kvtophys(vaddr); } /* @@ -182,11 +203,11 @@ vm_size_t ml_nofault_copy( break; if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src))) break; - count = PAGE_SIZE - (cur_phys_src & PAGE_MASK); + count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK)); if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) - count = PAGE_SIZE - (cur_phys_dst & PAGE_MASK); + count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK)); if (count > size) - count = size; + count = (uint32_t)size; bcopy_phys(cur_phys_src, cur_phys_dst, count); @@ -199,6 +220,38 @@ vm_size_t ml_nofault_copy( return nbytes; } +/* + * Routine: ml_validate_nofault + * Function: Validate that ths address range has a valid translations + * in the kernel pmap. If translations are present, they are + * assumed to be wired; i.e. no attempt is made to guarantee + * that the translation persist after the check. + * Returns: TRUE if the range is mapped and will not cause a fault, + * FALSE otherwise. + */ + +boolean_t ml_validate_nofault( + vm_offset_t virtsrc, vm_size_t size) +{ + addr64_t cur_phys_src; + uint32_t count; + + while (size > 0) { + if (!(cur_phys_src = kvtophys(virtsrc))) + return FALSE; + if (!pmap_valid_page(i386_btop(cur_phys_src))) + return FALSE; + count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK)); + if (count > size) + count = (uint32_t)size; + + virtsrc += count; + size -= count; + } + + return TRUE; +} + /* Interrupt handling */ /* Initialize Interrupts */ @@ -207,39 +260,40 @@ void ml_init_interrupt(void) (void) ml_set_interrupts_enabled(TRUE); } + /* Get Interrupts Enabled */ boolean_t ml_get_interrupts_enabled(void) { unsigned long flags; - __asm__ volatile("pushf; popl %0" : "=r" (flags)); + __asm__ volatile("pushf; pop %0" : "=r" (flags)); return (flags & EFL_IF) != 0; } /* Set Interrupts Enabled */ boolean_t ml_set_interrupts_enabled(boolean_t enable) { - unsigned long flags; + unsigned long flags; + boolean_t istate; + + __asm__ volatile("pushf; pop %0" : "=r" (flags)); - __asm__ volatile("pushf; popl %0" : "=r" (flags)); + assert(get_interrupt_level() ? (enable == FALSE) : TRUE); - if (enable) { - ast_t *myast; + istate = ((flags & EFL_IF) != 0); - myast = ast_pending(); + if (enable) { + __asm__ volatile("sti;nop"); - if ( (get_preemption_level() == 0) && (*myast & AST_URGENT) ) { - __asm__ volatile("sti"); - __asm__ volatile ("int $0xff"); - } else { - __asm__ volatile ("sti"); + if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT)) + __asm__ volatile ("int %0" :: "N" (T_PREEMPT)); + } + else { + if (istate) + __asm__ volatile("cli"); } - } - else { - __asm__ volatile("cli"); - } - return (flags & EFL_IF) != 0; + return istate; } /* Check if running at interrupt context */ @@ -248,26 +302,40 @@ boolean_t ml_at_interrupt_context(void) return get_interrupt_level() != 0; } +void ml_get_power_state(boolean_t *icp, boolean_t *pidlep) { + *icp = (get_interrupt_level() != 0); + /* These will be technically inaccurate for interrupts that occur + * successively within a single "idle exit" event, but shouldn't + * matter statistically. + */ + *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage); +} + /* Generate a fake interrupt */ void ml_cause_interrupt(void) { panic("ml_cause_interrupt not defined yet on Intel"); } +/* + * TODO: transition users of this to kernel_thread_start_priority + * ml_thread_policy is an unsupported KPI + */ void ml_thread_policy( thread_t thread, __unused unsigned policy_id, unsigned policy_info) { if (policy_info & MACHINE_NETWORK_WORKLOOP) { - spl_t s = splsched(); - - thread_lock(thread); + thread_precedence_policy_data_t info; + __assert_only kern_return_t kret; - set_priority(thread, thread->priority + 1); + info.importance = 1; - thread_unlock(thread); - splx(s); + kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY, + (thread_policy_t)&info, + THREAD_PRECEDENCE_POLICY_COUNT); + assert(kret == KERN_SUCCESS); } } @@ -296,27 +364,28 @@ void machine_signal_idle( processor_t processor) { - cpu_interrupt(processor->cpu_num); + cpu_interrupt(processor->cpu_id); } -thread_t -machine_processor_shutdown( - thread_t thread, - void (*doshutdown)(processor_t), - processor_t processor) +void +machine_signal_idle_deferred( + __unused processor_t processor) { - vmx_suspend(); - fpu_save_context(thread); - return(Shutdown_context(thread, doshutdown, processor)); + panic("Unimplemented"); } -kern_return_t -ml_processor_register( - cpu_id_t cpu_id, - uint32_t lapic_id, - processor_t *processor_out, - ipi_handler_t *ipi_handler, - boolean_t boot_cpu) +void +machine_signal_idle_cancel( + __unused processor_t processor) +{ + panic("Unimplemented"); +} + +static kern_return_t +register_cpu( + uint32_t lapic_id, + processor_t *processor_out, + boolean_t boot_cpu ) { int target_cpu; cpu_data_t *this_cpu_datap; @@ -331,7 +400,9 @@ ml_processor_register( lapic_cpu_map(lapic_id, target_cpu); - this_cpu_datap->cpu_id = cpu_id; + /* The cpu_id is not known at registration phase. Just do + * lapic_id for now + */ this_cpu_datap->cpu_phys_number = lapic_id; this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu); @@ -342,16 +413,21 @@ ml_processor_register( if (this_cpu_datap->cpu_chud == NULL) goto failed; +#if KPC + if (kpc_register_cpu(this_cpu_datap) != TRUE) + goto failed; +#endif + if (!boot_cpu) { cpu_thread_alloc(this_cpu_datap->cpu_number); if (this_cpu_datap->lcpu.core == NULL) goto failed; - pmCPUStateInit(); - +#if NCOPY_WINDOWS > 0 this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu); if (this_cpu_datap->cpu_pmap == NULL) goto failed; +#endif this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu); if (this_cpu_datap->cpu_processor == NULL) @@ -364,27 +440,83 @@ ml_processor_register( } *processor_out = this_cpu_datap->cpu_processor; - *ipi_handler = NULL; - - if (target_cpu == machine_info.max_cpus - 1) { - /* - * All processors are now registered but not started (except - * for this "in-limbo" boot processor). We call to the machine - * topology code to finalize and activate the topology. - */ - cpu_topology_start(); - } return KERN_SUCCESS; failed: cpu_processor_free(this_cpu_datap->cpu_processor); +#if NCOPY_WINDOWS > 0 pmap_cpu_free(this_cpu_datap->cpu_pmap); +#endif chudxnu_cpu_free(this_cpu_datap->cpu_chud); console_cpu_free(this_cpu_datap->cpu_console_buf); +#if KPC + kpc_unregister_cpu(this_cpu_datap); +#endif + return KERN_FAILURE; } + +kern_return_t +ml_processor_register( + cpu_id_t cpu_id, + uint32_t lapic_id, + processor_t *processor_out, + boolean_t boot_cpu, + boolean_t start ) +{ + static boolean_t done_topo_sort = FALSE; + static uint32_t num_registered = 0; + + /* Register all CPUs first, and track max */ + if( start == FALSE ) + { + num_registered++; + + DBG( "registering CPU lapic id %d\n", lapic_id ); + + return register_cpu( lapic_id, processor_out, boot_cpu ); + } + + /* Sort by topology before we start anything */ + if( !done_topo_sort ) + { + DBG( "about to start CPUs. %d registered\n", num_registered ); + + cpu_topology_sort( num_registered ); + done_topo_sort = TRUE; + } + + /* Assign the cpu ID */ + uint32_t cpunum = -1; + cpu_data_t *this_cpu_datap = NULL; + + /* find cpu num and pointer */ + cpunum = ml_get_cpuid( lapic_id ); + + if( cpunum == 0xFFFFFFFF ) /* never heard of it? */ + panic( "trying to start invalid/unregistered CPU %d\n", lapic_id ); + + this_cpu_datap = cpu_datap(cpunum); + + /* fix the CPU id */ + this_cpu_datap->cpu_id = cpu_id; + + /* allocate and initialize other per-cpu structures */ + if (!boot_cpu) { + mp_cpus_call_cpu_init(cpunum); + prng_cpu_init(cpunum); + } + + /* output arg */ + *processor_out = this_cpu_datap->cpu_processor; + + /* OK, try and start this CPU */ + return cpu_topology_start_cpu( cpunum ); +} + + void ml_cpu_get_info(ml_cpu_info_t *cpu_infop) { @@ -398,8 +530,11 @@ ml_cpu_get_info(ml_cpu_info_t *cpu_infop) * Are we supporting MMX/SSE/SSE2/SSE3? * As distinct from whether the cpu has these capabilities. */ - os_supports_sse = get_cr4() & CR4_XMM; - if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) + os_supports_sse = !!(get_cr4() & CR4_OSXMM); + + if (ml_fpu_avx_enabled()) + cpu_infop->vector_unit = 9; + else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) cpu_infop->vector_unit = 8; else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse) cpu_infop->vector_unit = 7; @@ -454,7 +589,7 @@ ml_init_max_cpus(unsigned long max_cpus) * that the kernel supports or that the "cpus=" * boot-arg has set. Here we take int minimum. */ - machine_info.max_cpus = MIN(max_cpus, max_ncpus); + machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus); } if (max_cpus_initialized == MAX_CPUS_WAIT) wakeup((event_t)&max_cpus_initialized); @@ -477,7 +612,6 @@ ml_get_max_cpus(void) (void) ml_set_interrupts_enabled(current_state); return(machine_info.max_cpus); } - /* * Routine: ml_init_lock_timeout * Function: @@ -486,12 +620,49 @@ void ml_init_lock_timeout(void) { uint64_t abstime; - uint32_t mtxspin; + uint32_t mtxspin; +#if DEVELOPMENT || DEBUG + uint64_t default_timeout_ns = NSEC_PER_SEC>>2; +#else + uint64_t default_timeout_ns = NSEC_PER_SEC>>1; +#endif + uint32_t slto; + uint32_t prt; + + if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto))) + default_timeout_ns = slto * NSEC_PER_USEC; - /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */ - nanoseconds_to_absolutetime(NSEC_PER_SEC>>2, &abstime); - LockTimeOut = (uint32_t) abstime; - LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t); + /* + * LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks, + * and LockTimeOutUsec is in microseconds and it's 32-bits. + */ + LockTimeOutUsec = (uint32_t) (default_timeout_ns / NSEC_PER_USEC); + nanoseconds_to_absolutetime(default_timeout_ns, &abstime); + LockTimeOut = abstime; + LockTimeOutTSC = tmrCvt(abstime, tscFCvtn2t); + + /* + * TLBTimeOut dictates the TLB flush timeout period. It defaults to + * LockTimeOut but can be overriden separately. In particular, a + * zero value inhibits the timeout-panic and cuts a trace evnt instead + * - see pmap_flush_tlbs(). + */ + if (PE_parse_boot_argn("tlbto_us", &slto, sizeof (slto))) { + default_timeout_ns = slto * NSEC_PER_USEC; + nanoseconds_to_absolutetime(default_timeout_ns, &abstime); + TLBTimeOut = (uint32_t) abstime; + } else { + TLBTimeOut = LockTimeOut; + } + +#if DEVELOPMENT || DEBUG + reportphyreaddelayabs = LockTimeOut; +#endif + if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof (slto))) { + default_timeout_ns = slto * NSEC_PER_USEC; + nanoseconds_to_absolutetime(default_timeout_ns, &abstime); + reportphyreaddelayabs = abstime; + } if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) { if (mtxspin > USEC_PER_SEC>>4) @@ -501,10 +672,65 @@ ml_init_lock_timeout(void) nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime); } MutexSpin = (unsigned int)abstime; + + nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance); + if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt))) + nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout); + + virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0); + if (virtualized) { + int vti; + + if (!PE_parse_boot_argn("vti", &vti, sizeof (vti))) + vti = 6; + printf("Timeouts adjusted for virtualization (<<%d)\n", vti); + kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti); +#define VIRTUAL_TIMEOUT_INFLATE64(_timeout) \ +MACRO_BEGIN \ + kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \ + _timeout <<= vti; \ + kprintf("-> 0x%016llx\n", _timeout); \ +MACRO_END +#define VIRTUAL_TIMEOUT_INFLATE32(_timeout) \ +MACRO_BEGIN \ + kprintf("%24s: 0x%08x ", #_timeout, _timeout); \ + if ((_timeout <> vti == _timeout) \ + _timeout <<= vti; \ + else \ + _timeout = ~0; /* cap rather than overflow */ \ + kprintf("-> 0x%08x\n", _timeout); \ +MACRO_END + VIRTUAL_TIMEOUT_INFLATE32(LockTimeOutUsec); + VIRTUAL_TIMEOUT_INFLATE64(LockTimeOut); + VIRTUAL_TIMEOUT_INFLATE64(LockTimeOutTSC); + VIRTUAL_TIMEOUT_INFLATE64(TLBTimeOut); + VIRTUAL_TIMEOUT_INFLATE64(MutexSpin); + VIRTUAL_TIMEOUT_INFLATE64(reportphyreaddelayabs); + } + + interrupt_latency_tracker_setup(); + simple_lock_init(&ml_timer_evaluation_slock, 0); } /* - * This is called from the machine-independent routine cpu_up() + * Threshold above which we should attempt to block + * instead of spinning for clock_delay_until(). + */ + +void +ml_init_delay_spin_threshold(int threshold_us) +{ + nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold); +} + +boolean_t +ml_delay_should_spin(uint64_t interval) +{ + return (interval < delay_spin_threshold) ? TRUE : FALSE; +} + +/* + * This is called from the machine-independent layer * to perform machine-dependent info updates. Defer to cpu_thread_init(). */ void @@ -514,12 +740,14 @@ ml_cpu_up(void) } /* - * This is called from the machine-independent routine cpu_down() + * This is called from the machine-independent layer * to perform machine-dependent info updates. */ void ml_cpu_down(void) { + i386_deactivate_cpu(); + return; } @@ -570,14 +798,8 @@ void ml_cpu_set_ldt(int selector) current_cpu_datap()->cpu_ldt == KERNEL_LDT) return; - /* - * If 64bit this requires a mode switch (and back). - */ - if (cpu_mode_is64bit()) - ml_64bit_lldt(selector); - else - lldt(selector); - current_cpu_datap()->cpu_ldt = selector; + lldt(selector); + current_cpu_datap()->cpu_ldt = selector; } void ml_fp_setvalid(boolean_t value) @@ -590,45 +812,120 @@ uint64_t ml_cpu_int_event_time(void) return current_cpu_datap()->cpu_int_event_time; } +vm_offset_t ml_stack_remaining(void) +{ + uintptr_t local = (uintptr_t) &local; -#if MACH_KDB + if (ml_at_interrupt_context() != 0) { + return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE)); + } else { + return (local - current_thread()->kernel_stack); + } +} -/* - * Display the global msrs - * * - * ms - */ -void -db_msr(__unused db_expr_t addr, - __unused int have_addr, - __unused db_expr_t count, - __unused char *modif) +void +kernel_preempt_check(void) { + boolean_t intr; + unsigned long flags; - uint32_t i, msrlow, msrhigh; + assert(get_preemption_level() == 0); - /* Try all of the first 4096 msrs */ - for (i = 0; i < 4096; i++) { - if (!rdmsr_carefully(i, &msrlow, &msrhigh)) { - db_printf("%08X - %08X.%08X\n", i, msrhigh, msrlow); - } - } + __asm__ volatile("pushf; pop %0" : "=r" (flags)); - /* Try all of the 4096 msrs at 0x0C000000 */ - for (i = 0; i < 4096; i++) { - if (!rdmsr_carefully(0x0C000000 | i, &msrlow, &msrhigh)) { - db_printf("%08X - %08X.%08X\n", - 0x0C000000 | i, msrhigh, msrlow); - } - } + intr = ((flags & EFL_IF) != 0); - /* Try all of the 4096 msrs at 0xC0000000 */ - for (i = 0; i < 4096; i++) { - if (!rdmsr_carefully(0xC0000000 | i, &msrlow, &msrhigh)) { - db_printf("%08X - %08X.%08X\n", - 0xC0000000 | i, msrhigh, msrlow); - } + if ((*ast_pending() & AST_URGENT) && intr == TRUE) { + /* + * can handle interrupts and preemptions + * at this point + */ + + /* + * now cause the PRE-EMPTION trap + */ + __asm__ volatile ("int %0" :: "N" (T_PREEMPT)); } } -#endif +boolean_t machine_timeout_suspended(void) { + return (pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake()); +} + +/* Eagerly evaluate all pending timer and thread callouts + */ +void ml_timer_evaluate(void) { + KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_START, 0, 0, 0, 0, 0); + + uint64_t te_end, te_start = mach_absolute_time(); + simple_lock(&ml_timer_evaluation_slock); + ml_timer_evaluation_in_progress = TRUE; + thread_call_delayed_timer_rescan_all(); + mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL); + ml_timer_evaluation_in_progress = FALSE; + ml_timer_eager_evaluations++; + te_end = mach_absolute_time(); + ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start)); + simple_unlock(&ml_timer_evaluation_slock); + + KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_END, 0, 0, 0, 0, 0); +} + +boolean_t +ml_timer_forced_evaluation(void) { + return ml_timer_evaluation_in_progress; +} + +/* 32-bit right-rotate n bits */ +static inline uint32_t ror32(uint32_t val, const unsigned int n) +{ + __asm__ volatile("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n)); + return val; +} + +void +ml_entropy_collect(void) +{ + uint32_t tsc_lo, tsc_hi; + uint32_t *ep; + + assert(cpu_number() == master_cpu); + + /* update buffer pointer cyclically */ + if (EntropyData.index_ptr - EntropyData.buffer == ENTROPY_BUFFER_SIZE) + ep = EntropyData.index_ptr = EntropyData.buffer; + else + ep = EntropyData.index_ptr++; + + rdtsc_nofence(tsc_lo, tsc_hi); + *ep = ror32(*ep, 9) ^ tsc_lo; +} + +uint64_t +ml_energy_stat(__unused thread_t t) { + return 0; +} + +void +ml_gpu_stat_update(uint64_t gpu_ns_delta) { + current_thread()->machine.thread_gpu_ns += gpu_ns_delta; +} + +uint64_t +ml_gpu_stat(thread_t t) { + return t->machine.thread_gpu_ns; +} + +int plctrace_enabled = 0; + +void _disable_preemption(void) { + disable_preemption_internal(); +} + +void _enable_preemption(void) { + enable_preemption_internal(); +} + +void plctrace_disable(void) { + plctrace_enabled = 0; +}