X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/a3d08fcd5120d2aa8303b6349ca8b14e3f284af3..c6bf4f310a33a9262d455ea4d3f0630b1255e3fe:/bsd/kern/kern_fork.c diff --git a/bsd/kern/kern_fork.c b/bsd/kern/kern_fork.c index 40a2275c1..c25c85ad2 100644 --- a/bsd/kern/kern_fork.c +++ b/bsd/kern/kern_fork.c @@ -1,23 +1,29 @@ /* - * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. - * - * @APPLE_LICENSE_HEADER_START@ - * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. - * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * Copyright (c) 2000-2019 Apple Inc. All rights reserved. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. - * - * @APPLE_LICENSE_HEADER_END@ + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ /* @@ -59,6 +65,18 @@ * * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 */ +/* + * NOTICE: This file was modified by McAfee Research in 2004 to introduce + * support for mandatory and extensible security protections. This notice + * is included in support of clause 2.2 (b) of the Apple Public License, + * Version 2.0. + */ +/* + * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce + * support for mandatory and extensible security protections. This notice + * is included in support of clause 2.2 (b) of the Apple Public License, + * Version 2.0. + */ #include #include @@ -66,62 +84,308 @@ #include #include #include -#include +#include +#include #include +#include #include -#include -#include +#include +#include #include -#include +#include +#include +#if CONFIG_PERSONAS +#include +#endif +#include +#if CONFIG_DTRACE +/* Do not include dtrace.h, it redefines kmem_[alloc/free] */ +extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t); +extern void dtrace_proc_fork(proc_t, proc_t, int); -#include +/* + * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c, + * we will store its value before actually calling it. + */ +static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL; -#if KTRACE -#include -#include +#include #endif +#include + #include +#include +#include +#include #include +#include +#include +#include +#include -#include +#include -thread_act_t cloneproc(struct proc *, int); -struct proc * forkproc(struct proc *, int); -thread_act_t procdup(); +#include -#define DOFORK 0x1 /* fork() system call */ -#define DOVFORK 0x2 /* vfork() system call */ -static int fork1(struct proc *, long, register_t *); +#if CONFIG_MACF +#include +#include +#endif + +#include +#include +#include + +#include /* for shmfork() */ +#include /* for thread_create() */ +#include /* for thread_resume() */ + +#include + +#if CONFIG_MEMORYSTATUS +#include +#endif + +/* XXX routines which should have Mach prototypes, but don't */ +void thread_set_parent(thread_t parent, int pid); +extern void act_thread_catt(void *ctx); +void thread_set_child(thread_t child, int pid); +void *act_thread_csave(void); +extern boolean_t task_is_exec_copy(task_t); +int nextpidversion = 0; + + +thread_t cloneproc(task_t, coalition_t *, proc_t, int, int); +proc_t forkproc(proc_t); +void forkproc_free(proc_t); +thread_t fork_create_child(task_t parent_task, + coalition_t *parent_coalitions, + proc_t child, + int inherit_memory, + int is_64bit_addr, + int is_64bit_data, + int in_exec); +void proc_vfork_begin(proc_t parent_proc); +void proc_vfork_end(proc_t parent_proc); + +#define DOFORK 0x1 /* fork() system call */ +#define DOVFORK 0x2 /* vfork() system call */ /* - * fork system call. + * proc_vfork_begin + * + * Description: start a vfork on a process + * + * Parameters: parent_proc process (re)entering vfork state + * + * Returns: (void) + * + * Notes: Although this function increments a count, a count in + * excess of 1 is not currently supported. According to the + * POSIX standard, calling anything other than execve() or + * _exit() following a vfork(), including calling vfork() + * itself again, will result in undefined behaviour + */ +void +proc_vfork_begin(proc_t parent_proc) +{ + proc_lock(parent_proc); + parent_proc->p_lflag |= P_LVFORK; + parent_proc->p_vforkcnt++; + proc_unlock(parent_proc); +} + +/* + * proc_vfork_end + * + * Description: stop a vfork on a process + * + * Parameters: parent_proc process leaving vfork state + * + * Returns: (void) + * + * Notes: Decrements the count; currently, reentrancy of vfork() + * is unsupported on the current process + */ +void +proc_vfork_end(proc_t parent_proc) +{ + proc_lock(parent_proc); + parent_proc->p_vforkcnt--; + if (parent_proc->p_vforkcnt < 0) { + panic("vfork cnt is -ve"); + } + if (parent_proc->p_vforkcnt == 0) { + parent_proc->p_lflag &= ~P_LVFORK; + } + proc_unlock(parent_proc); +} + + +/* + * vfork + * + * Description: vfork system call + * + * Parameters: void [no arguments] + * + * Retval: 0 (to child process) + * !0 pid of child (to parent process) + * -1 error (see "Returns:") + * + * Returns: EAGAIN Administrative limit reached + * EINVAL vfork() called during vfork() + * ENOMEM Failed to allocate new process + * + * Note: After a successful call to this function, the parent process + * has its task, thread, and uthread lent to the child process, + * and control is returned to the caller; if this function is + * invoked as a system call, the return is to user space, and + * is effectively running on the child process. + * + * Subsequent calls that operate on process state are permitted, + * though discouraged, and will operate on the child process; any + * operations on the task, thread, or uthread will result in + * changes in the parent state, and, if inheritable, the child + * state, when a task, thread, and uthread are realized for the + * child process at execve() time, will also be effected. Given + * this, it's recemmended that people use the posix_spawn() call + * instead. + * + * BLOCK DIAGRAM OF VFORK + * + * Before: + * + * ,----------------. ,-------------. + * | | task | | + * | parent_thread | ------> | parent_task | + * | | <.list. | | + * `----------------' `-------------' + * uthread | ^ bsd_info | ^ + * v | vc_thread v | task + * ,----------------. ,-------------. + * | | | | + * | parent_uthread | <.list. | parent_proc | <-- current_proc() + * | | | | + * `----------------' `-------------' + * uu_proc | + * v + * NULL + * + * After: + * + * ,----------------. ,-------------. + * | | task | | + * ,----> | parent_thread | ------> | parent_task | + * | | | <.list. | | + * | `----------------' `-------------' + * | uthread | ^ bsd_info | ^ + * | v | vc_thread v | task + * | ,----------------. ,-------------. + * | | | | | + * | | parent_uthread | <.list. | parent_proc | + * | | | | | + * | `----------------' `-------------' + * | uu_proc | . list + * | v v + * | ,----------------. + * `----- | | + * p_vforkact | child_proc | <-- current_proc() + * | | + * `----------------' */ int -fork(p, uap, retval) - struct proc *p; - void *uap; - register_t *retval; +vfork(proc_t parent_proc, __unused struct vfork_args *uap, int32_t *retval) { - return (fork1(p, (long)DOFORK, retval)); + thread_t child_thread; + int err; + + if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_VFORK, NULL)) != 0) { + retval[1] = 0; + } else { + uthread_t ut = get_bsdthread_info(current_thread()); + proc_t child_proc = ut->uu_proc; + + retval[0] = child_proc->p_pid; + retval[1] = 1; /* flag child return for user space */ + + /* + * Drop the signal lock on the child which was taken on our + * behalf by forkproc()/cloneproc() to prevent signals being + * received by the child in a partially constructed state. + */ + proc_signalend(child_proc, 0); + proc_transend(child_proc, 0); + + proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid); + DTRACE_PROC1(create, proc_t, child_proc); + ut->uu_flag &= ~UT_VFORKING; + } + + return err; } + /* - * vfork system call + * fork1 + * + * Description: common code used by all new process creation other than the + * bootstrap of the initial process on the system + * + * Parameters: parent_proc parent process of the process being + * child_threadp pointer to location to receive the + * Mach thread_t of the child process + * created + * kind kind of creation being requested + * coalitions if spawn, the set of coalitions the + * child process should join, or NULL to + * inherit the parent's. On non-spawns, + * this param is ignored and the child + * always inherits the parent's + * coalitions. + * + * Notes: Permissable values for 'kind': + * + * PROC_CREATE_FORK Create a complete process which will + * return actively running in both the + * parent and the child; the child copies + * the parent address space. + * PROC_CREATE_SPAWN Create a complete process which will + * return actively running in the parent + * only after returning actively running + * in the child; the child address space + * is newly created by an image activator, + * after which the child is run. + * PROC_CREATE_VFORK Creates a partial process which will + * borrow the parent task, thread, and + * uthread to return running in the child; + * the child address space and other parts + * are lazily created at execve() time, or + * the child is terminated, and the parent + * does not actively run until that + * happens. + * + * At first it may seem strange that we return the child thread + * address rather than process structure, since the process is + * the only part guaranteed to be "new"; however, since we do + * not actualy adjust other references between Mach and BSD (see + * the block diagram above the implementation of vfork()), this + * is the only method which guarantees us the ability to get + * back to the other information. */ int -vfork(p, uap, retval) - struct proc *p; - void *uap; - register_t *retval; +fork1(proc_t parent_proc, thread_t *child_threadp, int kind, coalition_t *coalitions) { - register struct proc * newproc; - register uid_t uid; - thread_act_t cur_act = (thread_act_t)current_act(); + thread_t parent_thread = (thread_t)current_thread(); + uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread); + proc_t child_proc = NULL; /* set in switch, but compiler... */ + thread_t child_thread = NULL; + uid_t uid; int count; - task_t t; - uthread_t ut; - + int err = 0; + int spawn = 0; + /* * Although process entries are dynamically created, we still keep * a global limit on the maximum number we will create. Don't allow @@ -129,292 +393,828 @@ vfork(p, uap, retval) * exceed the limit. The variable nprocs is the current number of * processes, maxproc is the limit. */ - uid = p->p_cred->p_ruid; + uid = kauth_getruid(); + proc_list_lock(); if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { +#if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED + /* + * On the development kernel, panic so that the fact that we hit + * the process limit is obvious, as this may very well wedge the + * system. + */ + panic("The process table is full; parent pid=%d", parent_proc->p_pid); +#endif + proc_list_unlock(); tablefull("proc"); - retval[1] = 0; - return (EAGAIN); + return EAGAIN; } + proc_list_unlock(); /* * Increment the count of procs running with this uid. Don't allow - * a nonprivileged user to exceed their current limit. + * a nonprivileged user to exceed their current limit, which is + * always less than what an rlim_t can hold. + * (locking protection is provided by list lock held in chgproccnt) */ count = chgproccnt(uid, 1); - if (uid != 0 && count > p->p_rlimit[RLIMIT_NPROC].rlim_cur) { - (void)chgproccnt(uid, -1); - return (EAGAIN); + if (uid != 0 && + (rlim_t)count > parent_proc->p_rlimit[RLIMIT_NPROC].rlim_cur) { +#if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED + /* + * On the development kernel, panic so that the fact that we hit + * the per user process limit is obvious. This may be less dire + * than hitting the global process limit, but we cannot rely on + * that. + */ + panic("The per-user process limit has been hit; parent pid=%d, uid=%d", parent_proc->p_pid, uid); +#endif + err = EAGAIN; + goto bad; } - ut = (struct uthread *)get_bsdthread_info(cur_act); - if (ut->uu_flag & P_VFORK) { - printf("vfork called recursively by %s\n", p->p_comm); - (void)chgproccnt(uid, -1); - return (EINVAL); +#if CONFIG_MACF + /* + * Determine if MAC policies applied to the process will allow + * it to fork. This is an advisory-only check. + */ + err = mac_proc_check_fork(parent_proc); + if (err != 0) { + goto bad; } - p->p_flag |= P_VFORK; - p->p_vforkcnt++; +#endif - /* The newly created process comes with signal lock held */ - newproc = (struct proc *)forkproc(p,1); + switch (kind) { + case PROC_CREATE_VFORK: + /* + * Prevent a vfork while we are in vfork(); we should + * also likely preventing a fork here as well, and this + * check should then be outside the switch statement, + * since the proc struct contents will copy from the + * child and the tash/thread/uthread from the parent in + * that case. We do not support vfork() in vfork() + * because we don't have to; the same non-requirement + * is true of both fork() and posix_spawn() and any + * call other than execve() amd _exit(), but we've + * been historically lenient, so we continue to be so + * (for now). + * + * Probably a source of random panics + */ + if (parent_uthread->uu_flag & UT_VFORK) { + printf("fork1 called within vfork by %s\n", parent_proc->p_comm); + err = EINVAL; + goto bad; + } + + /* + * Flag us in progress; if we chose to support vfork() in + * vfork(), we would chain our parent at this point (in + * effect, a stack push). We don't, since we actually want + * to disallow everything not specified in the standard + */ + proc_vfork_begin(parent_proc); + + /* The newly created process comes with signal lock held */ + if ((child_proc = forkproc(parent_proc)) == NULL) { + /* Failed to allocate new process */ + proc_vfork_end(parent_proc); + err = ENOMEM; + goto bad; + } + +// XXX BEGIN: wants to move to be common code (and safe) +#if CONFIG_MACF + /* + * allow policies to associate the credential/label that + * we referenced from the parent ... with the child + * JMM - this really isn't safe, as we can drop that + * association without informing the policy in other + * situations (keep long enough to get policies changed) + */ + mac_cred_label_associate_fork(child_proc->p_ucred, child_proc); +#endif - AUDIT_ARG(pid, newproc->p_pid); + /* + * Propogate change of PID - may get new cred if auditing. + * + * NOTE: This has no effect in the vfork case, since + * child_proc->task != current_task(), but we duplicate it + * because this is probably, ultimately, wrong, since we + * will be running in the "child" which is the parent task + * with the wrong token until we get to the execve() or + * _exit() call; a lot of "undefined" can happen before + * that. + * + * disallow everything but exeve()/_exit()? + */ + set_security_token(child_proc); - LIST_INSERT_AFTER(p, newproc, p_pglist); - newproc->p_pptr = p; - newproc->task = p->task; - LIST_INSERT_HEAD(&p->p_children, newproc, p_sibling); - LIST_INIT(&newproc->p_children); - LIST_INSERT_HEAD(&allproc, newproc, p_list); - LIST_INSERT_HEAD(PIDHASH(newproc->p_pid), newproc, p_hash); - TAILQ_INIT(& newproc->p_evlist); - newproc->p_stat = SRUN; - newproc->p_flag |= P_INVFORK; - newproc->p_vforkact = cur_act; + AUDIT_ARG(pid, child_proc->p_pid); - ut->uu_flag |= P_VFORK; - ut->uu_proc = newproc; - ut->uu_userstate = (void *)act_thread_csave(); - ut->uu_vforkmask = ut->uu_sigmask; +// XXX END: wants to move to be common code (and safe) - thread_set_child(cur_act, newproc->p_pid); + /* + * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD + * + * Note: this is where we would "push" state instead of setting + * it for nested vfork() support (see proc_vfork_end() for + * description if issues here). + */ + child_proc->task = parent_proc->task; - newproc->p_stats->p_start = time; - newproc->p_acflag = AFORK; + child_proc->p_lflag |= P_LINVFORK; + child_proc->p_vforkact = parent_thread; + child_proc->p_stat = SRUN; - /* - * Preserve synchronization semantics of vfork. If waiting for - * child to exec or exit, set P_PPWAIT on child, and sleep on our - * proc (in case of exit). - */ - newproc->p_flag |= P_PPWAIT; + /* + * Until UT_VFORKING is cleared at the end of the vfork + * syscall, the process identity of this thread is slightly + * murky. + * + * As long as UT_VFORK and it's associated field (uu_proc) + * is set, current_proc() will always return the child process. + * + * However dtrace_proc_selfpid() returns the parent pid to + * ensure that e.g. the proc:::create probe actions accrue + * to the parent. (Otherwise the child magically seems to + * have created itself!) + */ + parent_uthread->uu_flag |= UT_VFORK | UT_VFORKING; + parent_uthread->uu_proc = child_proc; + parent_uthread->uu_userstate = (void *)act_thread_csave(); + parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask; + + /* temporarily drop thread-set-id state */ + if (parent_uthread->uu_flag & UT_SETUID) { + parent_uthread->uu_flag |= UT_WASSETUID; + parent_uthread->uu_flag &= ~UT_SETUID; + } - /* drop the signal lock on the child */ - signal_unlock(newproc); + /* blow thread state information */ + /* XXX is this actually necessary, given syscall return? */ + thread_set_child(parent_thread, child_proc->p_pid); - retval[0] = newproc->p_pid; - retval[1] = 1; /* mark child */ + child_proc->p_acflag = AFORK; /* forked but not exec'ed */ - return (0); + /* + * Preserve synchronization semantics of vfork. If + * waiting for child to exec or exit, set P_PPWAIT + * on child, and sleep on our proc (in case of exit). + */ + child_proc->p_lflag |= P_LPPWAIT; + pinsertchild(parent_proc, child_proc); /* set visible */ + + break; + + case PROC_CREATE_SPAWN: + /* + * A spawned process differs from a forked process in that + * the spawned process does not carry around the parents + * baggage with regard to address space copying, dtrace, + * and so on. + */ + spawn = 1; + + /* FALLSTHROUGH */ + + case PROC_CREATE_FORK: + /* + * When we clone the parent process, we are going to inherit + * its task attributes and memory, since when we fork, we + * will, in effect, create a duplicate of it, with only minor + * differences. Contrarily, spawned processes do not inherit. + */ + if ((child_thread = cloneproc(parent_proc->task, + spawn ? coalitions : NULL, + parent_proc, + spawn ? FALSE : TRUE, + FALSE)) == NULL) { + /* Failed to create thread */ + err = EAGAIN; + goto bad; + } + + /* copy current thread state into the child thread (only for fork) */ + if (!spawn) { + thread_dup(child_thread); + } + + /* child_proc = child_thread->task->proc; */ + child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread))); + +// XXX BEGIN: wants to move to be common code (and safe) +#if CONFIG_MACF + /* + * allow policies to associate the credential/label that + * we referenced from the parent ... with the child + * JMM - this really isn't safe, as we can drop that + * association without informing the policy in other + * situations (keep long enough to get policies changed) + */ + mac_cred_label_associate_fork(child_proc->p_ucred, child_proc); +#endif + + /* + * Propogate change of PID - may get new cred if auditing. + * + * NOTE: This has no effect in the vfork case, since + * child_proc->task != current_task(), but we duplicate it + * because this is probably, ultimately, wrong, since we + * will be running in the "child" which is the parent task + * with the wrong token until we get to the execve() or + * _exit() call; a lot of "undefined" can happen before + * that. + * + * disallow everything but exeve()/_exit()? + */ + set_security_token(child_proc); + + AUDIT_ARG(pid, child_proc->p_pid); + +// XXX END: wants to move to be common code (and safe) + + /* + * Blow thread state information; this is what gives the child + * process its "return" value from a fork() call. + * + * Note: this should probably move to fork() proper, since it + * is not relevent to spawn, and the value won't matter + * until we resume the child there. If you are in here + * refactoring code, consider doing this at the same time. + */ + thread_set_child(child_thread, child_proc->p_pid); + + child_proc->p_acflag = AFORK; /* forked but not exec'ed */ + +#if CONFIG_DTRACE + dtrace_proc_fork(parent_proc, child_proc, spawn); +#endif /* CONFIG_DTRACE */ + if (!spawn) { + /* + * Of note, we need to initialize the bank context behind + * the protection of the proc_trans lock to prevent a race with exit. + */ + task_bank_init(get_threadtask(child_thread)); + } + + break; + + default: + panic("fork1 called with unknown kind %d", kind); + break; + } + + + /* return the thread pointer to the caller */ + *child_threadp = child_thread; + +bad: + /* + * In the error case, we return a 0 value for the returned pid (but + * it is ignored in the trampoline due to the error return); this + * is probably not necessary. + */ + if (err) { + (void)chgproccnt(uid, -1); + } + + return err; } + /* - * Return to parent vfork ehread() + * vfork_return + * + * Description: "Return" to parent vfork thread() following execve/_exit; + * this is done by reassociating the parent process structure + * with the task, thread, and uthread. + * + * Refer to the ASCII art above vfork() to figure out the + * state we're undoing. + * + * Parameters: child_proc Child process + * retval System call return value array + * rval Return value to present to parent + * + * Returns: void + * + * Notes: The caller resumes or exits the parent, as appropriate, after + * calling this function. */ void -vfork_return(th_act, p, p2, retval) - thread_act_t th_act; - struct proc * p; - struct proc *p2; - register_t *retval; +vfork_return(proc_t child_proc, int32_t *retval, int rval) { - long flags; - register uid_t uid; - int s, count; - task_t t; - uthread_t ut; - - ut = (struct uthread *)get_bsdthread_info(th_act); - - act_thread_catt(ut->uu_userstate); - - /* Make sure only one at this time */ - if (p) { - p->p_vforkcnt--; - if (p->p_vforkcnt <0) - panic("vfork cnt is -ve"); - if (p->p_vforkcnt <=0) - p->p_flag &= ~P_VFORK; - } - ut->uu_userstate = 0; - ut->uu_flag &= ~P_VFORK; - ut->uu_proc = 0; - ut->uu_sigmask = ut->uu_vforkmask; - p2->p_flag &= ~P_INVFORK; - p2->p_vforkact = (void *)0; - - thread_set_parent(th_act, p2->p_pid); + task_t parent_task = get_threadtask(child_proc->p_vforkact); + proc_t parent_proc = get_bsdtask_info(parent_task); + thread_t th = current_thread(); + uthread_t uth = get_bsdthread_info(th); + + act_thread_catt(uth->uu_userstate); + + /* clear vfork state in parent proc structure */ + proc_vfork_end(parent_proc); + + /* REPATRIATE PARENT TASK, THREAD, UTHREAD */ + uth->uu_userstate = 0; + uth->uu_flag &= ~UT_VFORK; + /* restore thread-set-id state */ + if (uth->uu_flag & UT_WASSETUID) { + uth->uu_flag |= UT_SETUID; + uth->uu_flag &= ~UT_WASSETUID; + } + uth->uu_proc = 0; + uth->uu_sigmask = uth->uu_vforkmask; + + proc_lock(child_proc); + child_proc->p_lflag &= ~P_LINVFORK; + child_proc->p_vforkact = 0; + proc_unlock(child_proc); + + thread_set_parent(th, rval); if (retval) { - retval[0] = p2->p_pid; - retval[1] = 0; /* mark parent */ + retval[0] = rval; + retval[1] = 0; /* mark parent */ } - - return; } -thread_act_t -procdup( - struct proc *child, - struct proc *parent) + +/* + * fork_create_child + * + * Description: Common operations associated with the creation of a child + * process + * + * Parameters: parent_task parent task + * parent_coalitions parent's set of coalitions + * child_proc child process + * inherit_memory TRUE, if the parents address space is + * to be inherited by the child + * is_64bit_addr TRUE, if the child being created will + * be associated with a 64 bit address space + * is_64bit_data TRUE if the child being created will use a + * 64-bit register state + * in_exec TRUE, if called from execve or posix spawn set exec + * FALSE, if called from fork or vfexec + * + * Note: This code is called in the fork() case, from the execve() call + * graph, if implementing an execve() following a vfork(), from + * the posix_spawn() call graph (which implicitly includes a + * vfork() equivalent call, and in the system bootstrap case. + * + * It creates a new task and thread (and as a side effect of the + * thread creation, a uthread) in the parent coalition set, which is + * then associated with the process 'child'. If the parent + * process address space is to be inherited, then a flag + * indicates that the newly created task should inherit this from + * the child task. + * + * As a special concession to bootstrapping the initial process + * in the system, it's possible for 'parent_task' to be TASK_NULL; + * in this case, 'inherit_memory' MUST be FALSE. + */ +thread_t +fork_create_child(task_t parent_task, + coalition_t *parent_coalitions, + proc_t child_proc, + int inherit_memory, + int is_64bit_addr, + int is_64bit_data, + int in_exec) { - thread_act_t thread; - task_t task; - kern_return_t result; - pmap_t pmap; - extern task_t kernel_task; - - if (parent->task == kernel_task) - result = task_create_internal(TASK_NULL, FALSE, &task); - else - result = task_create_internal(parent->task, TRUE, &task); - if (result != KERN_SUCCESS) - printf("fork/procdup: task_create failed. Code: 0x%x\n", result); - child->task = task; - /* task->proc = child; */ - set_bsdtask_info(task, child); - if (child->p_nice != 0) - resetpriority(child); - - result = thread_create(task, &thread); - if (result != KERN_SUCCESS) - printf("fork/procdup: thread_create failed. Code: 0x%x\n", result); - - return(thread); -} + thread_t child_thread = NULL; + task_t child_task; + kern_return_t result; + + /* Create a new task for the child process */ + result = task_create_internal(parent_task, + parent_coalitions, + inherit_memory, + is_64bit_addr, + is_64bit_data, + TF_NONE, + in_exec ? TPF_EXEC_COPY : TPF_NONE, /* Mark the task exec copy if in execve */ + (TRW_LRETURNWAIT | TRW_LRETURNWAITER), /* All created threads will wait in task_wait_to_return */ + &child_task); + if (result != KERN_SUCCESS) { + printf("%s: task_create_internal failed. Code: %d\n", + __func__, result); + goto bad; + } + if (!in_exec) { + /* + * Set the child process task to the new task if not in exec, + * will set the task for exec case in proc_exec_switch_task after image activation. + */ + child_proc->task = child_task; + } -static int -fork1(p1, flags, retval) - struct proc *p1; - long flags; - register_t *retval; -{ - register struct proc *p2; - register uid_t uid; - thread_act_t newth; - int s, count; - task_t t; + /* Set child task process to child proc */ + set_bsdtask_info(child_task, child_proc); + + /* Propagate CPU limit timer from parent */ + if (timerisset(&child_proc->p_rlim_cpu)) { + task_vtimer_set(child_task, TASK_VTIMER_RLIM); + } /* - * Although process entries are dynamically created, we still keep - * a global limit on the maximum number we will create. Don't allow - * a nonprivileged user to use the last process; don't let root - * exceed the limit. The variable nprocs is the current number of - * processes, maxproc is the limit. + * Set child process BSD visible scheduler priority if nice value + * inherited from parent */ - uid = p1->p_cred->p_ruid; - if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { - tablefull("proc"); - retval[1] = 0; - return (EAGAIN); + if (child_proc->p_nice != 0) { + resetpriority(child_proc); } /* - * Increment the count of procs running with this uid. Don't allow - * a nonprivileged user to exceed their current limit. + * Create a new thread for the child process + * The new thread is waiting on the event triggered by 'task_clear_return_wait' */ - count = chgproccnt(uid, 1); - if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) { - (void)chgproccnt(uid, -1); - return (EAGAIN); + result = thread_create_waiting(child_task, + (thread_continue_t)task_wait_to_return, + task_get_return_wait_event(child_task), + &child_thread); + + if (result != KERN_SUCCESS) { + printf("%s: thread_create failed. Code: %d\n", + __func__, result); + task_deallocate(child_task); + child_task = NULL; } - /* The newly created process comes with signal lock held */ - newth = cloneproc(p1, 1); - thread_dup(newth); - /* p2 = newth->task->proc; */ - p2 = (struct proc *)(get_bsdtask_info(get_threadtask(newth))); - set_security_token(p2); /* propagate change of PID */ + /* + * Tag thread as being the first thread in its task. + */ + thread_set_tag(child_thread, THREAD_TAG_MAINTHREAD); - AUDIT_ARG(pid, p2->p_pid); +bad: + thread_yield_internal(1); - thread_set_child(newth, p2->p_pid); + return child_thread; +} - s = splhigh(); - p2->p_stats->p_start = time; - splx(s); - p2->p_acflag = AFORK; - /* - * Preserve synchronization semantics of vfork. If waiting for - * child to exec or exit, set P_PPWAIT on child, and sleep on our - * proc (in case of exit). - */ - if (flags == DOVFORK) - p2->p_flag |= P_PPWAIT; - /* drop the signal lock on the child */ - signal_unlock(p2); +/* + * fork + * + * Description: fork system call. + * + * Parameters: parent Parent process to fork + * uap (void) [unused] + * retval Return value + * + * Returns: 0 Success + * EAGAIN Resource unavailable, try again + * + * Notes: Attempts to create a new child process which inherits state + * from the parent process. If successful, the call returns + * having created an initially suspended child process with an + * extra Mach task and thread reference, for which the thread + * is initially suspended. Until we resume the child process, + * it is not yet running. + * + * The return information to the child is contained in the + * thread state structure of the new child, and does not + * become visible to the child through a normal return process, + * since it never made the call into the kernel itself in the + * first place. + * + * After resuming the thread, this function returns directly to + * the parent process which invoked the fork() system call. + * + * Important: The child thread_resume occurs before the parent returns; + * depending on scheduling latency, this means that it is not + * deterministic as to whether the parent or child is scheduled + * to run first. It is entirely possible that the child could + * run to completion prior to the parent running. + */ +int +fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval) +{ + thread_t child_thread; + int err; + + retval[1] = 0; /* flag parent return for user space */ - (void) thread_resume(newth); + if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_FORK, NULL)) == 0) { + task_t child_task; + proc_t child_proc; - /* drop the extra references we got during the creation */ - if (t = (task_t)get_threadtask(newth)) { - task_deallocate(t); - } - act_deallocate(newth); + /* Return to the parent */ + child_proc = (proc_t)get_bsdthreadtask_info(child_thread); + retval[0] = child_proc->p_pid; - KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid); + /* + * Drop the signal lock on the child which was taken on our + * behalf by forkproc()/cloneproc() to prevent signals being + * received by the child in a partially constructed state. + */ + proc_signalend(child_proc, 0); + proc_transend(child_proc, 0); - while (p2->p_flag & P_PPWAIT) - tsleep(p1, PWAIT, "ppwait", 0); + /* flag the fork has occurred */ + proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid); + DTRACE_PROC1(create, proc_t, child_proc); - retval[0] = p2->p_pid; - retval[1] = 0; /* mark parent */ +#if CONFIG_DTRACE + if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) { + (*dtrace_proc_waitfor_hook)(child_proc); + } +#endif - return (0); + /* "Return" to the child */ + task_clear_return_wait(get_threadtask(child_thread), TCRW_CLEAR_ALL_WAIT); + + /* drop the extra references we got during the creation */ + if ((child_task = (task_t)get_threadtask(child_thread)) != NULL) { + task_deallocate(child_task); + } + thread_deallocate(child_thread); + } + + return err; } + /* - * cloneproc() + * cloneproc + * + * Description: Create a new process from a specified process. + * + * Parameters: parent_task The parent task to be cloned, or + * TASK_NULL is task characteristics + * are not to be inherited + * be cloned, or TASK_NULL if the new + * task is not to inherit the VM + * characteristics of the parent + * parent_proc The parent process to be cloned + * inherit_memory True if the child is to inherit + * memory from the parent; if this is + * non-NULL, then the parent_task must + * also be non-NULL + * memstat_internal Whether to track the process in the + * jetsam priority list (if configured) + * + * Returns: !NULL pointer to new child thread + * NULL Failure (unspecified) + * + * Note: On return newly created child process has signal lock held + * to block delivery of signal to it if called with lock set. + * fork() code needs to explicity remove this lock before + * signals can be delivered * - * Create a new process from a specified process. - * On return newly created child process has signal - * lock held to block delivery of signal to it if called with - * lock set. fork() code needs to explicity remove this lock - * before signals can be delivered + * In the case of bootstrap, this function can be called from + * bsd_utaskbootstrap() in order to bootstrap the first process; + * the net effect is to provide a uthread structure for the + * kernel process associated with the kernel task. + * + * XXX: Tristating using the value parent_task as the major key + * and inherit_memory as the minor key is something we should + * refactor later; we owe the current semantics, ultimately, + * to the semantics of task_create_internal. For now, we will + * live with this being somewhat awkward. */ -thread_act_t -cloneproc(p1, lock) - register struct proc *p1; - register int lock; +thread_t +cloneproc(task_t parent_task, coalition_t *parent_coalitions, proc_t parent_proc, int inherit_memory, int memstat_internal) { - register struct proc *p2; - thread_act_t th; +#if !CONFIG_MEMORYSTATUS +#pragma unused(memstat_internal) +#endif + task_t child_task; + proc_t child_proc; + thread_t child_thread = NULL; - p2 = (struct proc *)forkproc(p1,lock); + if ((child_proc = forkproc(parent_proc)) == NULL) { + /* Failed to allocate new process */ + goto bad; + } + /* + * In the case where the parent_task is TASK_NULL (during the init path) + * we make the assumption that the register size will be the same as the + * address space size since there's no way to determine the possible + * register size until an image is exec'd. + * + * The only architecture that has different address space and register sizes + * (arm64_32) isn't being used within kernel-space, so the above assumption + * always holds true for the init path. + */ + const int parent_64bit_addr = parent_proc->p_flag & P_LP64; + const int parent_64bit_data = (parent_task == TASK_NULL) ? parent_64bit_addr : task_get_64bit_data(parent_task); + + child_thread = fork_create_child(parent_task, + parent_coalitions, + child_proc, + inherit_memory, + parent_64bit_addr, + parent_64bit_data, + FALSE); + + if (child_thread == NULL) { + /* + * Failed to create thread; now we must deconstruct the new + * process previously obtained from forkproc(). + */ + forkproc_free(child_proc); + goto bad; + } + + child_task = get_threadtask(child_thread); + if (parent_64bit_addr) { + OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag); + } else { + OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag); + } + +#if CONFIG_MEMORYSTATUS + if (memstat_internal) { + proc_list_lock(); + child_proc->p_memstat_state |= P_MEMSTAT_INTERNAL; + proc_list_unlock(); + } +#endif - th = procdup(p2, p1); /* child, parent */ + /* make child visible */ + pinsertchild(parent_proc, child_proc); - LIST_INSERT_AFTER(p1, p2, p_pglist); - p2->p_pptr = p1; - LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); - LIST_INIT(&p2->p_children); - LIST_INSERT_HEAD(&allproc, p2, p_list); - LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); - TAILQ_INIT(&p2->p_evlist); /* * Make child runnable, set start time. */ - p2->p_stat = SRUN; + child_proc->p_stat = SRUN; +bad: + return child_thread; +} + + +/* + * Destroy a process structure that resulted from a call to forkproc(), but + * which must be returned to the system because of a subsequent failure + * preventing it from becoming active. + * + * Parameters: p The incomplete process from forkproc() + * + * Returns: (void) + * + * Note: This function should only be used in an error handler following + * a call to forkproc(). + * + * Operations occur in reverse order of those in forkproc(). + */ +void +forkproc_free(proc_t p) +{ +#if CONFIG_PERSONAS + persona_proc_drop(p); +#endif /* CONFIG_PERSONAS */ + +#if PSYNCH + pth_proc_hashdelete(p); +#endif /* PSYNCH */ + + /* We held signal and a transition locks; drop them */ + proc_signalend(p, 0); + proc_transend(p, 0); + + /* + * If we have our own copy of the resource limits structure, we + * need to free it. If it's a shared copy, we need to drop our + * reference on it. + */ + proc_limitdrop(p, 0); + p->p_limit = NULL; + +#if SYSV_SHM + /* Need to drop references to the shared memory segment(s), if any */ + if (p->vm_shm) { + /* + * Use shmexec(): we have no address space, so no mappings + * + * XXX Yes, the routine is badly named. + */ + shmexec(p); + } +#endif + + /* Need to undo the effects of the fdcopy(), if any */ + fdfree(p); + + /* + * Drop the reference on a text vnode pointer, if any + * XXX This code is broken in forkproc(); see ; + * XXX if anyone ever uses this field, we will be extremely unhappy. + */ + if (p->p_textvp) { + vnode_rele(p->p_textvp); + p->p_textvp = NULL; + } - return(th); + /* Update the audit session proc count */ + AUDIT_SESSION_PROCEXIT(p); + + lck_mtx_destroy(&p->p_mlock, proc_mlock_grp); + lck_mtx_destroy(&p->p_fdmlock, proc_fdmlock_grp); + lck_mtx_destroy(&p->p_ucred_mlock, proc_ucred_mlock_grp); +#if CONFIG_DTRACE + lck_mtx_destroy(&p->p_dtrace_sprlock, proc_lck_grp); +#endif + lck_spin_destroy(&p->p_slock, proc_slock_grp); + + /* Release the credential reference */ + kauth_cred_unref(&p->p_ucred); + + proc_list_lock(); + /* Decrement the count of processes in the system */ + nprocs--; + + /* Take it out of process hash */ + LIST_REMOVE(p, p_hash); + + proc_list_unlock(); + + thread_call_free(p->p_rcall); + + /* Free allocated memory */ + FREE_ZONE(p->p_sigacts, sizeof *p->p_sigacts, M_SIGACTS); + p->p_sigacts = NULL; + FREE_ZONE(p->p_stats, sizeof *p->p_stats, M_PSTATS); + p->p_stats = NULL; + + proc_checkdeadrefs(p); + FREE_ZONE(p, sizeof *p, M_PROC); } -struct proc * -forkproc(p1, lock) - register struct proc *p1; - register int lock; + +/* + * forkproc + * + * Description: Create a new process structure, given a parent process + * structure. + * + * Parameters: parent_proc The parent process + * + * Returns: !NULL The new process structure + * NULL Error (insufficient free memory) + * + * Note: When successful, the newly created process structure is + * partially initialized; if a caller needs to deconstruct the + * returned structure, they must call forkproc_free() to do so. + */ +proc_t +forkproc(proc_t parent_proc) { - register struct proc *p2, *newproc; - static int nextpid = 0, pidchecked = 0; - thread_t th; - - /* Allocate new proc. */ - MALLOC_ZONE(newproc, struct proc *, - sizeof *newproc, M_PROC, M_WAITOK); - MALLOC_ZONE(newproc->p_cred, struct pcred *, - sizeof *newproc->p_cred, M_SUBPROC, M_WAITOK); - MALLOC_ZONE(newproc->p_stats, struct pstats *, - sizeof *newproc->p_stats, M_SUBPROC, M_WAITOK); - MALLOC_ZONE(newproc->p_sigacts, struct sigacts *, - sizeof *newproc->p_sigacts, M_SUBPROC, M_WAITOK); + proc_t child_proc; /* Our new process */ + static int nextpid = 0, pidwrap = 0; + static uint64_t nextuniqueid = 0; + int error = 0; + struct session *sessp; + uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread()); + + MALLOC_ZONE(child_proc, proc_t, sizeof *child_proc, M_PROC, M_WAITOK); + if (child_proc == NULL) { + printf("forkproc: M_PROC zone exhausted\n"); + goto bad; + } + /* zero it out as we need to insert in hash */ + bzero(child_proc, sizeof *child_proc); + + MALLOC_ZONE(child_proc->p_stats, struct pstats *, + sizeof *child_proc->p_stats, M_PSTATS, M_WAITOK); + if (child_proc->p_stats == NULL) { + printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n"); + FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); + child_proc = NULL; + goto bad; + } + MALLOC_ZONE(child_proc->p_sigacts, struct sigacts *, + sizeof *child_proc->p_sigacts, M_SIGACTS, M_WAITOK); + if (child_proc->p_sigacts == NULL) { + printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n"); + FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS); + child_proc->p_stats = NULL; + FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); + child_proc = NULL; + goto bad; + } + + /* allocate a callout for use by interval timers */ + child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc); + if (child_proc->p_rcall == NULL) { + FREE_ZONE(child_proc->p_sigacts, sizeof *child_proc->p_sigacts, M_SIGACTS); + child_proc->p_sigacts = NULL; + FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS); + child_proc->p_stats = NULL; + FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); + child_proc = NULL; + goto bad; + } + /* - * Find an unused process ID. We remember a range of unused IDs - * ready to use (from nextpid+1 through pidchecked-1). + * Find an unused PID. */ + + proc_list_lock(); + nextpid++; retry: /* @@ -424,227 +1224,451 @@ retry: */ if (nextpid >= PID_MAX) { nextpid = 100; - pidchecked = 0; + pidwrap = 1; } - if (nextpid >= pidchecked) { - int doingzomb = 0; + if (pidwrap != 0) { + /* if the pid stays in hash both for zombie and runniing state */ + if (pfind_locked(nextpid) != PROC_NULL) { + nextpid++; + goto retry; + } - pidchecked = PID_MAX; - /* - * Scan the active and zombie procs to check whether this pid - * is in use. Remember the lowest pid that's greater - * than nextpid, so we can avoid checking for a while. - */ - p2 = allproc.lh_first; -again: - for (; p2 != 0; p2 = p2->p_list.le_next) { - while (p2->p_pid == nextpid || - p2->p_pgrp->pg_id == nextpid || - p2->p_session->s_sid == nextpid) { - nextpid++; - if (nextpid >= pidchecked) - goto retry; - } - if (p2->p_pid > nextpid && pidchecked > p2->p_pid) - pidchecked = p2->p_pid; - if (p2->p_pgrp && p2->p_pgrp->pg_id > nextpid && - pidchecked > p2->p_pgrp->pg_id) - pidchecked = p2->p_pgrp->pg_id; - if (p2->p_session->s_sid > nextpid && - pidchecked > p2->p_session->s_sid) - pidchecked = p2->p_session->s_sid; + if (pgfind_internal(nextpid) != PGRP_NULL) { + nextpid++; + goto retry; } - if (!doingzomb) { - doingzomb = 1; - p2 = zombproc.lh_first; - goto again; + if (session_find_internal(nextpid) != SESSION_NULL) { + nextpid++; + goto retry; } } - nprocs++; - p2 = newproc; - p2->p_stat = SIDL; - p2->p_pid = nextpid; + child_proc->p_pid = nextpid; + child_proc->p_idversion = OSIncrementAtomic(&nextpidversion); + /* kernel process is handcrafted and not from fork, so start from 1 */ + child_proc->p_uniqueid = ++nextuniqueid; +#if 1 + if (child_proc->p_pid != 0) { + if (pfind_locked(child_proc->p_pid) != PROC_NULL) { + panic("proc in the list already\n"); + } + } +#endif + /* Insert in the hash */ + child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE); + LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash); + proc_list_unlock(); + + if (child_proc->p_uniqueid == startup_serial_num_procs) { + /* + * Turn off startup serial logging now that we have reached + * the defined number of startup processes. + */ + startup_serial_logging_active = false; + } - p2->p_shutdownstate = 0; /* - * Make a proc table entry for the new process. - * Start by zeroing the section of proc that is zero-initialized, - * then copy the section that is copied directly from the parent. + * We've identified the PID we are going to use; initialize the new + * process structure. */ - bzero(&p2->p_startzero, - (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero)); - bcopy(&p1->p_startcopy, &p2->p_startcopy, - (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy)); - p2->vm_shm = (void *)NULL; /* Make sure it is zero */ + child_proc->p_stat = SIDL; + child_proc->p_pgrpid = PGRPID_DEAD; /* - * Copy the audit info. + * The zero'ing of the proc was at the allocation time due to need + * for insertion to hash. Copy the section that is to be copied + * directly from the parent. */ - audit_proc_fork(p1, p2); + __nochk_bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy, + (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy)); /* + * Some flags are inherited from the parent. * Duplicate sub-structures as needed. * Increase reference counts on shared objects. * The p_stats and p_sigacts substructs are set in vm_fork. */ - p2->p_flag = P_INMEM; - p2->p_flag |= (p1->p_flag & P_CLASSIC); // copy from parent - p2->p_flag |= (p1->p_flag & P_AFFINITY); // copy from parent - if (p1->p_flag & P_PROFIL) - startprofclock(p2); - bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred)); - p2->p_cred->p_refcnt = 1; - crhold(p1->p_ucred); - lockinit(&p2->p_cred->pc_lock, PLOCK, "proc cred", 0, 0); - klist_init(&p2->p_klist); - - /* bump references to the text vnode */ - p2->p_textvp = p1->p_textvp; - if (p2->p_textvp) - VREF(p2->p_textvp); - - p2->p_fd = fdcopy(p1); - if (p1->vm_shm) { - shmfork(p1,p2); +#if !CONFIG_EMBEDDED + child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_DISABLE_ASLR | P_DELAYIDLESLEEP | P_SUGID)); +#else /* !CONFIG_EMBEDDED */ + child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_DISABLE_ASLR | P_SUGID)); +#endif /* !CONFIG_EMBEDDED */ + + child_proc->p_vfs_iopolicy = (parent_proc->p_vfs_iopolicy & (P_VFS_IOPOLICY_VALID_MASK)); + + child_proc->p_responsible_pid = parent_proc->p_responsible_pid; + + /* + * Note that if the current thread has an assumed identity, this + * credential will be granted to the new process. + */ + child_proc->p_ucred = kauth_cred_get_with_ref(); + /* update cred on proc */ + PROC_UPDATE_CREDS_ONPROC(child_proc); + /* update audit session proc count */ + AUDIT_SESSION_PROCNEW(child_proc); + + lck_mtx_init(&child_proc->p_mlock, proc_mlock_grp, proc_lck_attr); + lck_mtx_init(&child_proc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr); + lck_mtx_init(&child_proc->p_ucred_mlock, proc_ucred_mlock_grp, proc_lck_attr); +#if CONFIG_DTRACE + lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr); +#endif + lck_spin_init(&child_proc->p_slock, proc_slock_grp, proc_lck_attr); + + klist_init(&child_proc->p_klist); + + if (child_proc->p_textvp != NULLVP) { + /* bump references to the text vnode */ + /* Need to hold iocount across the ref call */ + if ((error = vnode_getwithref(child_proc->p_textvp)) == 0) { + error = vnode_ref(child_proc->p_textvp); + vnode_put(child_proc->p_textvp); + } + + if (error != 0) { + child_proc->p_textvp = NULLVP; + } } + /* - * If p_limit is still copy-on-write, bump refcnt, - * otherwise get a copy that won't be modified. - * (If PL_SHAREMOD is clear, the structure is shared - * copy-on-write.) + * Copy the parents per process open file table to the child; if + * there is a per-thread current working directory, set the childs + * per-process current working directory to that instead of the + * parents. + * + * XXX may fail to copy descriptors to child */ - if (p1->p_limit->p_lflags & PL_SHAREMOD) - p2->p_limit = limcopy(p1->p_limit); - else { - p2->p_limit = p1->p_limit; - p2->p_limit->p_refcnt++; - } - - bzero(&p2->p_stats->pstat_startzero, - (unsigned) ((caddr_t)&p2->p_stats->pstat_endzero - - (caddr_t)&p2->p_stats->pstat_startzero)); - bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy, - ((caddr_t)&p2->p_stats->pstat_endcopy - - (caddr_t)&p2->p_stats->pstat_startcopy)); - - if (p1->p_sigacts != NULL) - (void)memcpy(p2->p_sigacts, - p1->p_sigacts, sizeof *p2->p_sigacts); - else - (void)memset(p2->p_sigacts, 0, sizeof *p2->p_sigacts); - - if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) - p2->p_flag |= P_CONTROLT; - - p2->p_argslen = p1->p_argslen; - p2->p_argc = p1->p_argc; - p2->p_xstat = 0; - p2->p_ru = NULL; - - p2->p_debugger = 0; /* don't inherit */ - lockinit(&p2->signal_lock, PVM, "signal", 0, 0); - /* block all signals to reach the process */ - if (lock) - signal_lock(p2); - p2->sigwait = FALSE; - p2->sigwait_thread = NULL; - p2->exit_thread = NULL; - p2->user_stack = p1->user_stack; - p2->p_vforkcnt = 0; - p2->p_vforkact = 0; - TAILQ_INIT(&p2->p_uthlist); - TAILQ_INIT(&p2->aio_activeq); - TAILQ_INIT(&p2->aio_doneq); - p2->aio_active_count = 0; - p2->aio_done_count = 0; - -#if KTRACE + child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir); + +#if SYSV_SHM + if (parent_proc->vm_shm) { + /* XXX may fail to attach shm to child */ + (void)shmfork(parent_proc, child_proc); + } +#endif /* - * Copy traceflag and tracefile if enabled. - * If not inherited, these were zeroed above. + * inherit the limit structure to child */ - if (p1->p_traceflag&KTRFAC_INHERIT) { - p2->p_traceflag = p1->p_traceflag; - if ((p2->p_tracep = p1->p_tracep) != NULL) { - if (UBCINFOEXISTS(p2->p_tracep)) - ubc_hold(p2->p_tracep); - VREF(p2->p_tracep); - } + proc_limitfork(parent_proc, child_proc); + + if (child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { + uint64_t rlim_cur = child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur; + child_proc->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur; + } + + /* Intialize new process stats, including start time */ + /* non-zeroed portion contains garbage AFAICT */ + bzero(child_proc->p_stats, sizeof(*child_proc->p_stats)); + microtime_with_abstime(&child_proc->p_start, &child_proc->p_stats->ps_start); + + if (parent_proc->p_sigacts != NULL) { + (void)memcpy(child_proc->p_sigacts, + parent_proc->p_sigacts, sizeof *child_proc->p_sigacts); + } else { + (void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts); + } + + sessp = proc_session(parent_proc); + if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT) { + OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag); + } + session_rele(sessp); + + /* + * block all signals to reach the process. + * no transition race should be occuring with the child yet, + * but indicate that the process is in (the creation) transition. + */ + proc_signalstart(child_proc, 0); + proc_transstart(child_proc, 0, 0); + + child_proc->p_pcaction = 0; + + TAILQ_INIT(&child_proc->p_uthlist); + TAILQ_INIT(&child_proc->p_aio_activeq); + TAILQ_INIT(&child_proc->p_aio_doneq); + + /* Inherit the parent flags for code sign */ + child_proc->p_csflags = (parent_proc->p_csflags & ~CS_KILLED); + + /* + * Copy work queue information + * + * Note: This should probably only happen in the case where we are + * creating a child that is a copy of the parent; since this + * routine is called in the non-duplication case of vfork() + * or posix_spawn(), then this information should likely not + * be duplicated. + * + * Work queue pointers that no longer point to code + */ + child_proc->p_wqthread = parent_proc->p_wqthread; + child_proc->p_threadstart = parent_proc->p_threadstart; + child_proc->p_pthsize = parent_proc->p_pthsize; + if ((parent_proc->p_lflag & P_LREGISTER) != 0) { + child_proc->p_lflag |= P_LREGISTER; + } + child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset; + child_proc->p_dispatchqueue_serialno_offset = parent_proc->p_dispatchqueue_serialno_offset; + child_proc->p_dispatchqueue_label_offset = parent_proc->p_dispatchqueue_label_offset; + child_proc->p_return_to_kernel_offset = parent_proc->p_return_to_kernel_offset; + child_proc->p_mach_thread_self_offset = parent_proc->p_mach_thread_self_offset; + child_proc->p_pth_tsd_offset = parent_proc->p_pth_tsd_offset; +#if PSYNCH + pth_proc_hashinit(child_proc); +#endif /* PSYNCH */ + +#if CONFIG_PERSONAS + child_proc->p_persona = NULL; + error = persona_proc_inherit(child_proc, parent_proc); + if (error != 0) { + printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc->p_persona)); + forkproc_free(child_proc); + child_proc = NULL; + goto bad; } #endif - return(p2); +#if CONFIG_MEMORYSTATUS + /* Memorystatus init */ + child_proc->p_memstat_state = 0; + child_proc->p_memstat_effectivepriority = JETSAM_PRIORITY_DEFAULT; + child_proc->p_memstat_requestedpriority = JETSAM_PRIORITY_DEFAULT; + child_proc->p_memstat_assertionpriority = 0; + child_proc->p_memstat_userdata = 0; + child_proc->p_memstat_idle_start = 0; + child_proc->p_memstat_idle_delta = 0; + child_proc->p_memstat_memlimit = 0; + child_proc->p_memstat_memlimit_active = 0; + child_proc->p_memstat_memlimit_inactive = 0; + child_proc->p_memstat_relaunch_flags = P_MEMSTAT_RELAUNCH_UNKNOWN; +#if CONFIG_FREEZE + child_proc->p_memstat_freeze_sharedanon_pages = 0; +#endif + child_proc->p_memstat_dirty = 0; + child_proc->p_memstat_idledeadline = 0; +#endif /* CONFIG_MEMORYSTATUS */ + +bad: + return child_proc; } -#include +void +proc_lock(proc_t p) +{ + LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED); + lck_mtx_lock(&p->p_mlock); +} + +void +proc_unlock(proc_t p) +{ + lck_mtx_unlock(&p->p_mlock); +} -struct zone *uthread_zone; -int uthread_zone_inited = 0; +void +proc_spinlock(proc_t p) +{ + lck_spin_lock_grp(&p->p_slock, proc_slock_grp); +} void -uthread_zone_init() +proc_spinunlock(proc_t p) { - if (!uthread_zone_inited) { - uthread_zone = zinit(sizeof(struct uthread), - THREAD_MAX * sizeof(struct uthread), - THREAD_CHUNK * sizeof(struct uthread), - "uthreads"); - uthread_zone_inited = 1; - } + lck_spin_unlock(&p->p_slock); +} + +void +proc_list_lock(void) +{ + lck_mtx_lock(proc_list_mlock); +} + +void +proc_list_unlock(void) +{ + lck_mtx_unlock(proc_list_mlock); +} + +void +proc_ucred_lock(proc_t p) +{ + lck_mtx_lock(&p->p_ucred_mlock); +} + +void +proc_ucred_unlock(proc_t p) +{ + lck_mtx_unlock(&p->p_ucred_mlock); +} + +#include + +struct zone *uthread_zone = NULL; + +static lck_grp_t *rethrottle_lock_grp; +static lck_attr_t *rethrottle_lock_attr; +static lck_grp_attr_t *rethrottle_lock_grp_attr; + +static void +uthread_zone_init(void) +{ + assert(uthread_zone == NULL); + + rethrottle_lock_grp_attr = lck_grp_attr_alloc_init(); + rethrottle_lock_grp = lck_grp_alloc_init("rethrottle", rethrottle_lock_grp_attr); + rethrottle_lock_attr = lck_attr_alloc_init(); + + uthread_zone = zinit(sizeof(struct uthread), + thread_max * sizeof(struct uthread), + THREAD_CHUNK * sizeof(struct uthread), + "uthreads"); } void * -uthread_alloc(task_t task, thread_act_t thr_act ) +uthread_alloc(task_t task, thread_t thread, int noinherit) { - struct proc *p; - struct uthread *uth, *uth_parent; + proc_t p; + uthread_t uth; + uthread_t uth_parent; void *ut; - extern task_t kernel_task; - boolean_t funnel_state; - if (!uthread_zone_inited) + if (uthread_zone == NULL) { uthread_zone_init(); + } ut = (void *)zalloc(uthread_zone); bzero(ut, sizeof(struct uthread)); - if (task != kernel_task) { - uth = (struct uthread *)ut; - p = (struct proc *) get_bsdtask_info(task); + p = (proc_t) get_bsdtask_info(task); + uth = (uthread_t)ut; + uth->uu_thread = thread; + + lck_spin_init(&uth->uu_rethrottle_lock, rethrottle_lock_grp, + rethrottle_lock_attr); + + /* + * Thread inherits credential from the creating thread, if both + * are in the same task. + * + * If the creating thread has no credential or is from another + * task we can leave the new thread credential NULL. If it needs + * one later, it will be lazily assigned from the task's process. + */ + uth_parent = (uthread_t)get_bsdthread_info(current_thread()); + if ((noinherit == 0) && task == current_task() && + uth_parent != NULL && + IS_VALID_CRED(uth_parent->uu_ucred)) { + /* + * XXX The new thread is, in theory, being created in context + * XXX of parent thread, so a direct reference to the parent + * XXX is OK. + */ + kauth_cred_ref(uth_parent->uu_ucred); + uth->uu_ucred = uth_parent->uu_ucred; + /* the credential we just inherited is an assumed credential */ + if (uth_parent->uu_flag & UT_SETUID) { + uth->uu_flag |= UT_SETUID; + } + } else { + /* sometimes workqueue threads are created out task context */ + if ((task != kernel_task) && (p != PROC_NULL)) { + uth->uu_ucred = kauth_cred_proc_ref(p); + } else { + uth->uu_ucred = NOCRED; + } + } + - funnel_state = thread_funnel_set(kernel_flock, TRUE); - uth_parent = (struct uthread *)get_bsdthread_info(current_act()); - if (uth_parent) { - if (uth_parent->uu_flag & USAS_OLDMASK) + if ((task != kernel_task) && p) { + proc_lock(p); + if (noinherit != 0) { + /* workq threads will not inherit masks */ + uth->uu_sigmask = ~workq_threadmask; + } else if (uth_parent) { + if (uth_parent->uu_flag & UT_SAS_OLDMASK) { uth->uu_sigmask = uth_parent->uu_oldmask; - else + } else { uth->uu_sigmask = uth_parent->uu_sigmask; + } } - uth->uu_act = thr_act; - //signal_lock(p); - if (p) + uth->uu_context.vc_thread = thread; + /* + * Do not add the uthread to proc uthlist for exec copy task, + * since they do not hold a ref on proc. + */ + if (!task_is_exec_copy(task)) { TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list); - //signal_unlock(p); - (void)thread_funnel_set(kernel_flock, funnel_state); + } + proc_unlock(p); + +#if CONFIG_DTRACE + if (p->p_dtrace_ptss_pages != NULL && !task_is_exec_copy(task)) { + uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p); + } +#endif } - return (ut); + return ut; } +/* + * This routine frees the thread name field of the uthread_t structure. Split out of + * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork. + */ +void +uthread_cleanup_name(void *uthread) +{ + uthread_t uth = (uthread_t)uthread; + + /* + * + * Set pth_name to NULL before calling free(). + * Previously there was a race condition in the + * case this code was executing during a stackshot + * where the stackshot could try and copy pth_name + * after it had been freed and before if was marked + * as null. + */ + if (uth->pth_name != NULL) { + void *pth_name = uth->pth_name; + uth->pth_name = NULL; + kfree(pth_name, MAXTHREADNAMESIZE); + } + return; +} +/* + * This routine frees all the BSD context in uthread except the credential. + * It does not free the uthread structure as well + */ void -uthread_free(task_t task, thread_t act, void *uthread, void * bsd_info) +uthread_cleanup(task_t task, void *uthread, void * bsd_info) { struct _select *sel; - struct uthread *uth = (struct uthread *)uthread; - struct proc * p = (struct proc *)bsd_info; - extern task_t kernel_task; - int size; - boolean_t funnel_state; - struct nlminfo *nlmp; - struct proc * vproc; + uthread_t uth = (uthread_t)uthread; + proc_t p = (proc_t)bsd_info; + +#if PROC_REF_DEBUG + if (__improbable(uthread_get_proc_refcount(uthread) != 0)) { + panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread); + } +#endif + if (uth->uu_lowpri_window || uth->uu_throttle_info) { + /* + * task is marked as a low priority I/O type + * and we've somehow managed to not dismiss the throttle + * through the normal exit paths back to user space... + * no need to throttle this thread since its going away + * but we do need to update our bookeeping w/r to throttled threads + * + * Calling this routine will clean up any throttle info reference + * still inuse by the thread. + */ + throttle_lowpri_io(0); + } /* * Per-thread audit state should never last beyond system * call return. Since we don't audit the thread creation/ @@ -653,40 +1677,90 @@ uthread_free(task_t task, thread_t act, void *uthread, void * bsd_info) */ assert(uth->uu_ar == NULL); - sel = &uth->uu_state.ss_select; + if (uth->uu_kqr_bound) { + kqueue_threadreq_unbind(p, uth->uu_kqr_bound); + } + + sel = &uth->uu_select; /* cleanup the select bit space */ if (sel->nbytes) { FREE(sel->ibits, M_TEMP); FREE(sel->obits, M_TEMP); + sel->nbytes = 0; } - if (sel->allocsize && uth->uu_wqsub){ - kfree(uth->uu_wqsub, sel->allocsize); - sel->count = sel->nfcount = 0; - sel->allocsize = 0; - uth->uu_wqsub = 0; - sel->wql = 0; + if (uth->uu_cdir) { + vnode_rele(uth->uu_cdir); + uth->uu_cdir = NULLVP; } - if ((nlmp = uth->uu_nlminfo)) { - uth->uu_nlminfo = 0; - FREE(nlmp, M_LOCKF); + if (uth->uu_wqset) { + if (waitq_set_is_valid(uth->uu_wqset)) { + waitq_set_deinit(uth->uu_wqset); + } + FREE(uth->uu_wqset, M_SELECT); + uth->uu_wqset = NULL; + uth->uu_wqstate_sz = 0; } - if ((task != kernel_task) ) { - int vfork_exit(struct proc *, int); + os_reason_free(uth->uu_exit_reason); - funnel_state = thread_funnel_set(kernel_flock, TRUE); - if (p) - TAILQ_REMOVE(&p->p_uthlist, uth, uu_list); - if ((uth->uu_flag & P_VFORK) && (vproc = uth->uu_proc) - && (vproc->p_flag & P_INVFORK)) { - if (!vfork_exit(vproc, W_EXITCODE(0, SIGKILL))) - vfork_return(act, p, vproc, NULL); + if ((task != kernel_task) && p) { + if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL)) { + vfork_exit_internal(uth->uu_proc, 0, 1); + } + /* + * Remove the thread from the process list and + * transfer [appropriate] pending signals to the process. + * Do not remove the uthread from proc uthlist for exec + * copy task, since they does not have a ref on proc and + * would not have been added to the list. + */ + if (get_bsdtask_info(task) == p && !task_is_exec_copy(task)) { + proc_lock(p); + TAILQ_REMOVE(&p->p_uthlist, uth, uu_list); + p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask)); + proc_unlock(p); + } +#if CONFIG_DTRACE + struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch; + uth->t_dtrace_scratch = NULL; + if (tmpptr != NULL && !task_is_exec_copy(task)) { + dtrace_ptss_release_entry(p, tmpptr); } - (void)thread_funnel_set(kernel_flock, funnel_state); +#endif + } +} + +/* This routine releases the credential stored in uthread */ +void +uthread_cred_free(void *uthread) +{ + uthread_t uth = (uthread_t)uthread; + + /* and free the uthread itself */ + if (IS_VALID_CRED(uth->uu_ucred)) { + kauth_cred_t oldcred = uth->uu_ucred; + uth->uu_ucred = NOCRED; + kauth_cred_unref(&oldcred); } +} + +/* This routine frees the uthread structure held in thread structure */ +void +uthread_zone_free(void *uthread) +{ + uthread_t uth = (uthread_t)uthread; + + if (uth->t_tombstone) { + kfree(uth->t_tombstone, sizeof(struct doc_tombstone)); + uth->t_tombstone = NULL; + } + + lck_spin_destroy(&uth->uu_rethrottle_lock, rethrottle_lock_grp); + + uthread_cleanup_name(uthread); /* and free the uthread itself */ - zfree(uthread_zone, (vm_offset_t)uthread); + zfree(uthread_zone, uthread); }