X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/8ad349bb6ed4a0be06e34c92be0d98b92e078db4..e2d2fc5c71f7d145cba7267989251af45e3bb5ba:/osfmk/i386/commpage/commpage.c diff --git a/osfmk/i386/commpage/commpage.c b/osfmk/i386/commpage/commpage.c index 62d0af6a5..cc52576c5 100644 --- a/osfmk/i386/commpage/commpage.c +++ b/osfmk/i386/commpage/commpage.c @@ -1,48 +1,46 @@ /* - * Copyright (c) 2003 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2003-2010 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * This file contains Original Code and/or Modifications of Original Code - * as defined in and that are subject to the Apple Public Source License - * Version 2.0 (the 'License'). You may not use this file except in - * compliance with the License. The rights granted to you under the - * License may not be used to create, or enable the creation or - * redistribution of, unlawful or unlicensed copies of an Apple operating - * system, or to circumvent, violate, or enable the circumvention or - * violation of, any terms of an Apple operating system software license - * agreement. - * - * Please obtain a copy of the License at - * http://www.opensource.apple.com/apsl/ and read it before using this - * file. - * - * The Original Code and all software distributed under the License are - * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER - * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, - * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. - * Please see the License for the specific language governing rights and + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and * limitations under the License. - * - * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Here's what to do if you want to add a new routine to the comm page: * - * 1. Add a definition for it's address in osfmk/ppc/cpu_capabilities.h, + * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h, * being careful to reserve room for future expansion. * * 2. Write one or more versions of the routine, each with it's own * commpage_descriptor. The tricky part is getting the "special", * "musthave", and "canthave" fields right, so that exactly one * version of the routine is selected for every machine. - * The source files should be in osfmk/ppc/commpage/. + * The source files should be in osfmk/i386/commpage/. * * 3. Add a ptr to your new commpage_descriptor(s) in the "routines" - * array in commpage_populate(). Of course, you'll also have to - * declare them "extern" in commpage_populate(). + * array in osfmk/i386/commpage/commpage_asm.s. There are two + * arrays, one for the 32-bit and one for the 64-bit commpage. * * 4. Write the code in Libc to use the new routine. */ @@ -50,24 +48,52 @@ #include #include #include +#include +#include +#include +#include +#include +#include #include +#include +#include #include #include #include #include #include + #include +#include +#include -extern vm_map_t com_region_map32; // the shared submap, set up in vm init +/* the lists of commpage routines are in commpage_asm.s */ +extern commpage_descriptor* commpage_32_routines[]; +extern commpage_descriptor* commpage_64_routines[]; -static uintptr_t next = 0; // next available byte in comm page -static int cur_routine = 0; // comm page address of "current" routine -static int matched; // true if we've found a match for "current" routine +extern vm_map_t commpage32_map; // the shared submap, set up in vm init +extern vm_map_t commpage64_map; // the shared submap, set up in vm init -int _cpu_capabilities = 0; // define the capability vector +char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage +char *commPagePtr64 = NULL; // ...and of 64-bit commpage +uint32_t _cpu_capabilities = 0; // define the capability vector -char *commPagePtr = NULL; // virtual address of comm page in kernel map +int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */ + +typedef uint32_t commpage_address_t; + +static commpage_address_t next; // next available address in comm page +static commpage_address_t cur_routine; // comm page address of "current" routine +static boolean_t matched; // true if we've found a match for "current" routine + +static char *commPagePtr; // virtual addr in kernel map of commpage we are working on +static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map + +static commpage_time_data *time_data32 = NULL; +static commpage_time_data *time_data64 = NULL; + +decl_simple_lock_data(static,commpage_active_cpus_lock); /* Allocate the commpage and add to the shared submap created by vm: * 1. allocate a page in the kernel map (RW) @@ -77,68 +103,77 @@ char *commPagePtr = NULL; // virtual address of comm page in kerne */ static void* -commpage_allocate( void ) +commpage_allocate( + vm_map_t submap, // commpage32_map or commpage_map64 + size_t area_used ) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED { - vm_offset_t kernel_addr; // address of commpage in kernel map - vm_offset_t zero = 0; - vm_size_t size = _COMM_PAGE_AREA_LENGTH; - vm_map_entry_t entry; - ipc_port_t handle; - - if (com_region_map32 == NULL) - panic("commpage map is null"); - - if (vm_allocate(kernel_map,&kernel_addr,_COMM_PAGE_AREA_LENGTH,VM_FLAGS_ANYWHERE)) - panic("cannot allocate commpage"); - - if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+_COMM_PAGE_AREA_LENGTH,VM_PROT_DEFAULT,FALSE)) - panic("cannot wire commpage"); - - /* - * Now that the object is created and wired into the kernel map, mark it so that no delay - * copy-on-write will ever be performed on it as a result of mapping it into user-space. - * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and - * that would be a real disaster. - * - * JMM - What we really need is a way to create it like this in the first place. - */ - if (!vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map) - panic("cannot find commpage entry"); - entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; - - if (mach_make_memory_entry( kernel_map, // target map - &size, // size - kernel_addr, // offset (address in kernel map) - VM_PROT_DEFAULT, // map it RW - &handle, // this is the object handle we get - NULL )) // parent_entry (what is this?) - panic("cannot make entry for commpage"); - - if (vm_map_64( com_region_map32, // target map (shared submap) - &zero, // address (map into 1st page in submap) - _COMM_PAGE_AREA_LENGTH, // size - 0, // mask - VM_FLAGS_FIXED, // flags (it must be 1st page in submap) - handle, // port is the memory entry we just made - 0, // offset (map 1st page in memory entry) - FALSE, // copy - VM_PROT_READ, // cur_protection (R-only in user map) - VM_PROT_READ, // max_protection - VM_INHERIT_SHARE )) // inheritance - panic("cannot map commpage"); - - ipc_port_release(handle); - - return (void*) kernel_addr; // return address in kernel map + vm_offset_t kernel_addr = 0; // address of commpage in kernel map + vm_offset_t zero = 0; + vm_size_t size = area_used; // size actually populated + vm_map_entry_t entry; + ipc_port_t handle; + + if (submap == NULL) + panic("commpage submap is null"); + + if (vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE)) + panic("cannot allocate commpage"); + + if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE)) + panic("cannot wire commpage"); + + /* + * Now that the object is created and wired into the kernel map, mark it so that no delay + * copy-on-write will ever be performed on it as a result of mapping it into user-space. + * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and + * that would be a real disaster. + * + * JMM - What we really need is a way to create it like this in the first place. + */ + if (!vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map) + panic("cannot find commpage entry"); + entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; + + if (mach_make_memory_entry( kernel_map, // target map + &size, // size + kernel_addr, // offset (address in kernel map) + VM_PROT_ALL, // map it RWX + &handle, // this is the object handle we get + NULL )) // parent_entry (what is this?) + panic("cannot make entry for commpage"); + + if (vm_map_64( submap, // target map (shared submap) + &zero, // address (map into 1st page in submap) + area_used, // size + 0, // mask + VM_FLAGS_FIXED, // flags (it must be 1st page in submap) + handle, // port is the memory entry we just made + 0, // offset (map 1st page in memory entry) + FALSE, // copy + VM_PROT_READ|VM_PROT_EXECUTE, // cur_protection (R-only in user map) + VM_PROT_READ|VM_PROT_EXECUTE, // max_protection + VM_INHERIT_SHARE )) // inheritance + panic("cannot map commpage"); + + ipc_port_release(handle); + + // Initialize the text section of the commpage with INT3 + char *commpage_ptr = (char*)(intptr_t)kernel_addr; + vm_size_t i; + for( i = _COMM_PAGE_TEXT_START - _COMM_PAGE_START_ADDRESS; i < size; i++ ) + // This is the hex for the X86 opcode INT3 + commpage_ptr[i] = 0xCC; + + return (void*)(intptr_t)kernel_addr; // return address in kernel map } /* Get address (in kernel map) of a commpage field. */ static void* commpage_addr_of( - int addr_at_runtime ) + commpage_address_t addr_at_runtime ) { - return (void*) ((uintptr_t)commPagePtr + addr_at_runtime - _COMM_PAGE_BASE_ADDRESS); + return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset)); } /* Determine number of CPUs on this system. We cannot rely on @@ -164,7 +199,7 @@ commpage_cpus( void ) static void commpage_init_cpu_capabilities( void ) { - int bits; + uint32_t bits; int cpus; ml_cpu_info_t cpu_info; @@ -172,6 +207,18 @@ commpage_init_cpu_capabilities( void ) ml_cpu_get_info(&cpu_info); switch (cpu_info.vector_unit) { + case 9: + bits |= kHasAVX1_0; + /* fall thru */ + case 8: + bits |= kHasSSE4_2; + /* fall thru */ + case 7: + bits |= kHasSSE4_1; + /* fall thru */ + case 6: + bits |= kHasSupplementalSSE3; + /* fall thru */ case 5: bits |= kHasSSE3; /* fall thru */ @@ -208,35 +255,40 @@ commpage_init_cpu_capabilities( void ) bits |= kFastThreadLocalStorage; // we use %gs for TLS + if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable + bits |= k64Bit; + + if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */ + bits |= kSlow; + + if (cpuid_features() & CPUID_FEATURE_AES) + bits |= kHasAES; + _cpu_capabilities = bits; // set kernel version for use by drivers etc } +int +_get_cpu_capabilities(void) +{ + return _cpu_capabilities; +} + /* Copy data into commpage. */ static void commpage_stuff( - int address, - void *source, + commpage_address_t address, + const void *source, int length ) { void *dest = commpage_addr_of(address); - if ((uintptr_t)dest < next) - panic("commpage overlap at address 0x%x, 0x%x < 0x%x", address, dest, next); + if (address < next) + panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next); bcopy(source,dest,length); - next = ((uintptr_t)dest + length); -} - - -static void -commpage_stuff2( - int address, - void *source, - int length ) -{ - commpage_stuff(address, source, length); + next = address + length; } /* Copy a routine into comm page if it matches running machine. @@ -245,11 +297,11 @@ static void commpage_stuff_routine( commpage_descriptor *rd ) { - int must,cant; + uint32_t must,cant; if (rd->commpage_address != cur_routine) { if ((cur_routine!=0) && (matched==0)) - panic("commpage no match"); + panic("commpage no match for last, next address %08x", rd->commpage_address); cur_routine = rd->commpage_address; matched = 0; } @@ -259,153 +311,330 @@ commpage_stuff_routine( if ((must == rd->musthave) && (cant == 0)) { if (matched) - panic("commpage duplicate matches"); + panic("commpage multiple matches for address %08x", rd->commpage_address); matched = 1; commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length); } } - -#define COMMPAGE_DESC(name) commpage_ ## name -#define EXTERN_COMMPAGE_DESC(name) \ - extern commpage_descriptor COMMPAGE_DESC(name) - -EXTERN_COMMPAGE_DESC(compare_and_swap32_mp); -EXTERN_COMMPAGE_DESC(compare_and_swap32_up); -EXTERN_COMMPAGE_DESC(compare_and_swap64_mp); -EXTERN_COMMPAGE_DESC(compare_and_swap64_up); -EXTERN_COMMPAGE_DESC(atomic_add32_mp); -EXTERN_COMMPAGE_DESC(atomic_add32_up); -EXTERN_COMMPAGE_DESC(mach_absolute_time); -EXTERN_COMMPAGE_DESC(spin_lock_try_mp); -EXTERN_COMMPAGE_DESC(spin_lock_try_up); -EXTERN_COMMPAGE_DESC(spin_lock_mp); -EXTERN_COMMPAGE_DESC(spin_lock_up); -EXTERN_COMMPAGE_DESC(spin_unlock); -EXTERN_COMMPAGE_DESC(pthread_getspecific); -EXTERN_COMMPAGE_DESC(gettimeofday); -EXTERN_COMMPAGE_DESC(sys_flush_dcache); -EXTERN_COMMPAGE_DESC(sys_icache_invalidate); -EXTERN_COMMPAGE_DESC(pthread_self); -EXTERN_COMMPAGE_DESC(relinquish); -EXTERN_COMMPAGE_DESC(bit_test_and_set_mp); -EXTERN_COMMPAGE_DESC(bit_test_and_set_up); -EXTERN_COMMPAGE_DESC(bit_test_and_clear_mp); -EXTERN_COMMPAGE_DESC(bit_test_and_clear_up); -EXTERN_COMMPAGE_DESC(bzero_scalar); -EXTERN_COMMPAGE_DESC(bcopy_scalar); -EXTERN_COMMPAGE_DESC(nanotime); - -static commpage_descriptor *routines[] = { - &COMMPAGE_DESC(compare_and_swap32_mp), - &COMMPAGE_DESC(compare_and_swap32_up), - &COMMPAGE_DESC(compare_and_swap64_mp), - &COMMPAGE_DESC(compare_and_swap64_up), - &COMMPAGE_DESC(atomic_add32_mp), - &COMMPAGE_DESC(atomic_add32_up), - &COMMPAGE_DESC(mach_absolute_time), - &COMMPAGE_DESC(spin_lock_try_mp), - &COMMPAGE_DESC(spin_lock_try_up), - &COMMPAGE_DESC(spin_lock_mp), - &COMMPAGE_DESC(spin_lock_up), - &COMMPAGE_DESC(spin_unlock), - &COMMPAGE_DESC(pthread_getspecific), - &COMMPAGE_DESC(gettimeofday), - &COMMPAGE_DESC(sys_flush_dcache), - &COMMPAGE_DESC(sys_icache_invalidate), - &COMMPAGE_DESC(pthread_self), - &COMMPAGE_DESC(relinquish), - &COMMPAGE_DESC(bit_test_and_set_mp), - &COMMPAGE_DESC(bit_test_and_set_up), - &COMMPAGE_DESC(bit_test_and_clear_mp), - &COMMPAGE_DESC(bit_test_and_clear_up), - &COMMPAGE_DESC(bzero_scalar), - &COMMPAGE_DESC(bcopy_scalar), - &COMMPAGE_DESC(nanotime), - NULL -}; - - -/* Fill in commpage: called once, during kernel initialization, from the - * startup thread before user-mode code is running. - * See the top of this file for a list of what you have to do to add - * a new routine to the commpage. +/* Fill in the 32- or 64-bit commpage. Called once for each. */ -void -commpage_populate( void ) +static void +commpage_populate_one( + vm_map_t submap, // commpage32_map or compage64_map + char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64 + size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED + commpage_address_t base_offset, // will become commPageBaseOffset + commpage_descriptor** commpage_routines, // list of routine ptrs for this commpage + commpage_time_data** time_data, // &time_data32 or &time_data64 + const char* signature ) // "commpage 32-bit" or "commpage 64-bit" { + uint8_t c1; short c2; - static double two52 = 1048576.0 * 1048576.0 * 4096.0; // 2**52 - static double ten6 = 1000000.0; // 10**6 + int c4; + uint64_t c8; + uint32_t cfamily; commpage_descriptor **rd; short version = _COMM_PAGE_THIS_VERSION; - commPagePtr = (char *)commpage_allocate(); + next = 0; + cur_routine = 0; + commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used ); + *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64 + commPageBaseOffset = base_offset; - commpage_init_cpu_capabilities(); + *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START ); /* Stuff in the constants. We move things into the comm page in strictly * ascending order, so we can check for overlap and panic if so. */ + commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)strlen(signature)); + commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short)); + commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(int)); - commpage_stuff2(_COMM_PAGE_VERSION,&version,sizeof(short)); - commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities, - sizeof(int)); - - if (_cpu_capabilities & kCache32) - c2 = 32; - else if (_cpu_capabilities & kCache64) + c2 = 32; // default + if (_cpu_capabilities & kCache64) c2 = 64; else if (_cpu_capabilities & kCache128) c2 = 128; commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2); + + c4 = MP_SPIN_TRIES; + commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4); - c2 = 32; + /* machine_info valid after ml_get_max_cpus() */ + c1 = machine_info.physical_cpu_max; + commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1); + c1 = machine_info.logical_cpu_max; + commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1); - commpage_stuff2(_COMM_PAGE_2_TO_52,&two52,8); + c8 = ml_cpu_cache_size(0); + commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8); - commpage_stuff2(_COMM_PAGE_10_TO_6,&ten6,8); + cfamily = cpuid_info()->cpuid_cpufamily; + commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4); - for( rd = routines; *rd != NULL ; rd++ ) + for( rd = commpage_routines; *rd != NULL ; rd++ ) commpage_stuff_routine(*rd); if (!matched) panic("commpage no match on last routine"); - if (next > (uintptr_t)_COMM_PAGE_END) - panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%08x", next, (uintptr_t)commPagePtr); + if (next > _COMM_PAGE_END) + panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr); + +} + +/* Fill in commpages: called once, during kernel initialization, from the + * startup thread before user-mode code is running. + * + * See the top of this file for a list of what you have to do to add + * a new routine to the commpage. + */ - pmap_commpage_init((vm_offset_t) commPagePtr, _COMM_PAGE_BASE_ADDRESS, - _COMM_PAGE_AREA_LENGTH/INTEL_PGBYTES); +void +commpage_populate( void ) +{ + commpage_init_cpu_capabilities(); + + commpage_populate_one( commpage32_map, + &commPagePtr32, + _COMM_PAGE32_AREA_USED, + _COMM_PAGE32_BASE_ADDRESS, + commpage_32_routines, + &time_data32, + "commpage 32-bit"); +#ifndef __LP64__ + pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS, + _COMM_PAGE32_AREA_USED/INTEL_PGBYTES); +#endif + time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */ + + if (_cpu_capabilities & k64Bit) { + commpage_populate_one( commpage64_map, + &commPagePtr64, + _COMM_PAGE64_AREA_USED, + _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */ + commpage_64_routines, + &time_data64, + "commpage 64-bit"); +#ifndef __LP64__ + pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS, + _COMM_PAGE64_AREA_USED/INTEL_PGBYTES); +#endif + } + + simple_lock_init(&commpage_active_cpus_lock, 0); + + commpage_update_active_cpus(); + rtc_nanotime_init_commpage(); } -/* - * This macro prevents compiler instruction scheduling: + +/* Update commpage nanotime information. Note that we interleave + * setting the 32- and 64-bit commpages, in order to keep nanotime more + * nearly in sync between the two environments. + * + * This routine must be serialized by some external means, ie a lock. + */ + +void +commpage_set_nanotime( + uint64_t tsc_base, + uint64_t ns_base, + uint32_t scale, + uint32_t shift ) +{ + commpage_time_data *p32 = time_data32; + commpage_time_data *p64 = time_data64; + static uint32_t generation = 0; + uint32_t next_gen; + + if (p32 == NULL) /* have commpages been allocated yet? */ + return; + + if ( generation != p32->nt_generation ) + panic("nanotime trouble 1"); /* possibly not serialized */ + if ( ns_base < p32->nt_ns_base ) + panic("nanotime trouble 2"); + if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) ) + panic("nanotime trouble 3"); + + next_gen = ++generation; + if (next_gen == 0) + next_gen = ++generation; + + p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */ + p64->nt_generation = 0; + + p32->nt_tsc_base = tsc_base; + p64->nt_tsc_base = tsc_base; + + p32->nt_ns_base = ns_base; + p64->nt_ns_base = ns_base; + + p32->nt_scale = scale; + p64->nt_scale = scale; + + p32->nt_shift = shift; + p64->nt_shift = shift; + + p32->nt_generation = next_gen; /* mark data as valid */ + p64->nt_generation = next_gen; +} + + +/* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */ + +void +commpage_disable_timestamp( void ) +{ + time_data32->gtod_generation = 0; + time_data64->gtod_generation = 0; +} + + +/* Update commpage gettimeofday() information. As with nanotime(), we interleave + * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync + * between the two environments. + * + * This routine must be serializeed by some external means, ie a lock. */ -#define NO_REORDERING asm volatile("" : : : "memory") + + void + commpage_set_timestamp( + uint64_t abstime, + uint64_t secs ) +{ + commpage_time_data *p32 = time_data32; + commpage_time_data *p64 = time_data64; + static uint32_t generation = 0; + uint32_t next_gen; + + next_gen = ++generation; + if (next_gen == 0) + next_gen = ++generation; + + p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */ + p64->gtod_generation = 0; + + p32->gtod_ns_base = abstime; + p64->gtod_ns_base = abstime; + + p32->gtod_sec_base = secs; + p64->gtod_sec_base = secs; + + p32->gtod_generation = next_gen; /* mark data as valid */ + p64->gtod_generation = next_gen; +} + + +/* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */ + +void +commpage_set_memory_pressure( + unsigned int pressure ) +{ + char *cp; + uint32_t *ip; + + cp = commPagePtr32; + if ( cp ) { + cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS); + ip = (uint32_t*) cp; + *ip = (uint32_t) pressure; + } + + cp = commPagePtr64; + if ( cp ) { + cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS); + ip = (uint32_t*) cp; + *ip = (uint32_t) pressure; + } + +} + + +/* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */ void -commpage_set_nanotime(commpage_nanotime_t *newp) +commpage_set_spin_count( + unsigned int count ) { - commpage_nanotime_t *cnp; + char *cp; + uint32_t *ip; + + if (count == 0) /* we test for 0 after decrement, not before */ + count = 1; + + cp = commPagePtr32; + if ( cp ) { + cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS); + ip = (uint32_t*) cp; + *ip = (uint32_t) count; + } + + cp = commPagePtr64; + if ( cp ) { + cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS); + ip = (uint32_t*) cp; + *ip = (uint32_t) count; + } - /* Nop if commpage not set up yet */ - if (commPagePtr == NULL) +} + +/* Updated every time a logical CPU goes offline/online */ +void +commpage_update_active_cpus(void) +{ + char *cp; + volatile uint8_t *ip; + + /* At least 32-bit commpage must be initialized */ + if (!commPagePtr32) return; - cnp = (commpage_nanotime_t *)commpage_addr_of(_COMM_PAGE_NANOTIME_INFO); + simple_lock(&commpage_active_cpus_lock); - /* - * Update in reverse order: - * check_tsc first - it's read and compared with base_tsc last. - */ - cnp->nt_check_tsc = newp->nt_base_tsc; NO_REORDERING; - cnp->nt_shift = newp->nt_shift; NO_REORDERING; - cnp->nt_scale = newp->nt_scale; NO_REORDERING; - cnp->nt_base_ns = newp->nt_base_ns; NO_REORDERING; - cnp->nt_base_tsc = newp->nt_base_tsc; + cp = commPagePtr32; + cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS); + ip = (volatile uint8_t*) cp; + *ip = (uint8_t) processor_avail_count; + + cp = commPagePtr64; + if ( cp ) { + cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS); + ip = (volatile uint8_t*) cp; + *ip = (uint8_t) processor_avail_count; + } + + simple_unlock(&commpage_active_cpus_lock); +} + + +/* Check to see if a given address is in the Preemption Free Zone (PFZ) */ + +uint32_t +commpage_is_in_pfz32(uint32_t addr32) +{ + if ( (addr32 >= _COMM_PAGE_PFZ_START) && (addr32 < _COMM_PAGE_PFZ_END)) { + return 1; + } + else + return 0; +} + +uint32_t +commpage_is_in_pfz64(addr64_t addr64) +{ + if ( (addr64 >= _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_START)) + && (addr64 < _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_END))) { + return 1; + } + else + return 0; }