X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/7ddcb079202367355dddccdfa4318e57d50318be..cb3231590a3c94ab4375e2228bd5e86b0cf1ad7e:/osfmk/i386/commpage/commpage.c diff --git a/osfmk/i386/commpage/commpage.c b/osfmk/i386/commpage/commpage.c index 01f8b409e..2c4a40d83 100644 --- a/osfmk/i386/commpage/commpage.c +++ b/osfmk/i386/commpage/commpage.c @@ -1,8 +1,8 @@ /* - * Copyright (c) 2003-2010 Apple Inc. All rights reserved. + * Copyright (c) 2003-2019 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ - * + * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in @@ -11,10 +11,10 @@ * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. - * + * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. - * + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -22,7 +22,7 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * + * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ @@ -62,67 +62,102 @@ #include #include #include +#include #include #include #include +#include + +#if CONFIG_ATM +#include +#endif + /* the lists of commpage routines are in commpage_asm.s */ -extern commpage_descriptor* commpage_32_routines[]; -extern commpage_descriptor* commpage_64_routines[]; +extern commpage_descriptor* commpage_32_routines[]; +extern commpage_descriptor* commpage_64_routines[]; + +extern vm_map_t commpage32_map; // the shared submap, set up in vm init +extern vm_map_t commpage64_map; // the shared submap, set up in vm init +extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init +extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init -extern vm_map_t commpage32_map; // the shared submap, set up in vm init -extern vm_map_t commpage64_map; // the shared submap, set up in vm init -char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage -char *commPagePtr64 = NULL; // ...and of 64-bit commpage -uint32_t _cpu_capabilities = 0; // define the capability vector +char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage +char *commPagePtr64 = NULL; // ...and of 64-bit commpage +char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage +char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage -int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */ +uint64_t _cpu_capabilities = 0; // define the capability vector typedef uint32_t commpage_address_t; -static commpage_address_t next; // next available address in comm page -static commpage_address_t cur_routine; // comm page address of "current" routine -static boolean_t matched; // true if we've found a match for "current" routine +static commpage_address_t next; // next available address in comm page -static char *commPagePtr; // virtual addr in kernel map of commpage we are working on -static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map +static char *commPagePtr; // virtual addr in kernel map of commpage we are working on +static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map -static commpage_time_data *time_data32 = NULL; -static commpage_time_data *time_data64 = NULL; +static commpage_time_data *time_data32 = NULL; +static commpage_time_data *time_data64 = NULL; +static new_commpage_timeofday_data_t *gtod_time_data32 = NULL; +static new_commpage_timeofday_data_t *gtod_time_data64 = NULL; -decl_simple_lock_data(static,commpage_active_cpus_lock); + +decl_simple_lock_data(static, commpage_active_cpus_lock); /* Allocate the commpage and add to the shared submap created by vm: - * 1. allocate a page in the kernel map (RW) + * 1. allocate a page in the kernel map (RW) * 2. wire it down * 3. make a memory entry out of it * 4. map that entry into the shared comm region map (R-only) */ static void* -commpage_allocate( - vm_map_t submap, // commpage32_map or commpage_map64 - size_t area_used ) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED +commpage_allocate( + vm_map_t submap, // commpage32_map or commpage_map64 + size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED + vm_prot_t uperm) { - vm_offset_t kernel_addr = 0; // address of commpage in kernel map - vm_offset_t zero = 0; - vm_size_t size = area_used; // size actually populated - vm_map_entry_t entry; - ipc_port_t handle; - - if (submap == NULL) + vm_offset_t kernel_addr = 0; // address of commpage in kernel map + vm_offset_t zero = 0; + vm_size_t size = area_used; // size actually populated + vm_map_entry_t entry; + ipc_port_t handle; + kern_return_t kr; + vm_map_kernel_flags_t vmk_flags; + + if (submap == NULL) { panic("commpage submap is null"); + } - if (vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE)) - panic("cannot allocate commpage"); + kr = vm_map_kernel(kernel_map, + &kernel_addr, + area_used, + 0, + VM_FLAGS_ANYWHERE, + VM_MAP_KERNEL_FLAGS_NONE, + VM_KERN_MEMORY_OSFMK, + NULL, + 0, + FALSE, + VM_PROT_ALL, + VM_PROT_ALL, + VM_INHERIT_NONE); + if (kr != KERN_SUCCESS) { + panic("cannot allocate commpage %d", kr); + } - if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE)) - panic("cannot wire commpage"); + if ((kr = vm_map_wire_kernel(kernel_map, + kernel_addr, + kernel_addr + area_used, + VM_PROT_DEFAULT, VM_KERN_MEMORY_OSFMK, + FALSE))) { + panic("cannot wire commpage: %d", kr); + } - /* + /* * Now that the object is created and wired into the kernel map, mark it so that no delay * copy-on-write will ever be performed on it as a result of mapping it into user-space. * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and @@ -130,39 +165,55 @@ commpage_allocate( * * JMM - What we really need is a way to create it like this in the first place. */ - if (!vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map) - panic("cannot find commpage entry"); - entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; - - if (mach_make_memory_entry( kernel_map, // target map - &size, // size - kernel_addr, // offset (address in kernel map) - VM_PROT_ALL, // map it RWX - &handle, // this is the object handle we get - NULL )) // parent_entry (what is this?) - panic("cannot make entry for commpage"); - - if (vm_map_64( submap, // target map (shared submap) - &zero, // address (map into 1st page in submap) - area_used, // size - 0, // mask - VM_FLAGS_FIXED, // flags (it must be 1st page in submap) - handle, // port is the memory entry we just made - 0, // offset (map 1st page in memory entry) - FALSE, // copy - VM_PROT_READ|VM_PROT_EXECUTE, // cur_protection (R-only in user map) - VM_PROT_READ|VM_PROT_EXECUTE, // max_protection - VM_INHERIT_SHARE )) // inheritance - panic("cannot map commpage"); + if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map)) { + panic("cannot find commpage entry %d", kr); + } + VME_OBJECT(entry)->copy_strategy = MEMORY_OBJECT_COPY_NONE; + + if ((kr = mach_make_memory_entry( kernel_map, // target map + &size, // size + kernel_addr, // offset (address in kernel map) + uperm, // protections as specified + &handle, // this is the object handle we get + NULL ))) { // parent_entry (what is this?) + panic("cannot make entry for commpage %d", kr); + } + + vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + if (uperm == (VM_PROT_READ | VM_PROT_EXECUTE)) { + /* + * Mark this unsigned executable mapping as "jit" to avoid + * code-signing violations when attempting to execute unsigned + * code. + */ + vmk_flags.vmkf_map_jit = TRUE; + } + + kr = vm_map_64_kernel( + submap, // target map (shared submap) + &zero, // address (map into 1st page in submap) + area_used, // size + 0, // mask + VM_FLAGS_FIXED, // flags (it must be 1st page in submap) + vmk_flags, + VM_KERN_MEMORY_NONE, + handle, // port is the memory entry we just made + 0, // offset (map 1st page in memory entry) + FALSE, // copy + uperm, // cur_protection (R-only in user map) + uperm, // max_protection + VM_INHERIT_SHARE); // inheritance + if (kr != KERN_SUCCESS) { + panic("cannot map commpage %d", kr); + } ipc_port_release(handle); - - // Initialize the text section of the commpage with INT3 - char *commpage_ptr = (char*)(intptr_t)kernel_addr; - vm_size_t i; - for( i = _COMM_PAGE_TEXT_START - _COMM_PAGE_START_ADDRESS; i < size; i++ ) - // This is the hex for the X86 opcode INT3 - commpage_ptr[i] = 0xCC; + /* Make the kernel mapping non-executable. This cannot be done + * at the time of map entry creation as mach_make_memory_entry + * cannot handle disjoint permissions at this time. + */ + kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE); + assert(kr == KERN_SUCCESS); return (void*)(intptr_t)kernel_addr; // return address in kernel map } @@ -171,9 +222,23 @@ commpage_allocate( static void* commpage_addr_of( - commpage_address_t addr_at_runtime ) + commpage_address_t addr_at_runtime ) { - return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset)); + return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset)); +} + +/* + * Calculate address of data within 32- and 64-bit commpages (not to be used with commpage + * text). + */ +static void* +commpage_specific_addr_of(char *commPageBase, commpage_address_t addr_at_runtime) +{ + /* + * Note that the base address (_COMM_PAGE32_BASE_ADDRESS) is the same for + * 32- and 64-bit commpages + */ + return (void*) ((uintptr_t)commPageBase + (addr_at_runtime - _COMM_PAGE32_BASE_ADDRESS)); } /* Determine number of CPUs on this system. We cannot rely on @@ -186,10 +251,12 @@ commpage_cpus( void ) cpus = ml_get_max_cpus(); // NB: this call can block - if (cpus == 0) + if (cpus == 0) { panic("commpage cpus==0"); - if (cpus > 0xFF) + } + if (cpus > 0xFF) { cpus = 0xFF; + } return cpus; } @@ -199,74 +266,178 @@ commpage_cpus( void ) static void commpage_init_cpu_capabilities( void ) { - uint32_t bits; + uint64_t bits; int cpus; ml_cpu_info_t cpu_info; bits = 0; ml_cpu_get_info(&cpu_info); - + switch (cpu_info.vector_unit) { - case 9: - bits |= kHasAVX1_0; - /* fall thru */ - case 8: - bits |= kHasSSE4_2; - /* fall thru */ - case 7: - bits |= kHasSSE4_1; - /* fall thru */ - case 6: - bits |= kHasSupplementalSSE3; - /* fall thru */ - case 5: - bits |= kHasSSE3; - /* fall thru */ - case 4: - bits |= kHasSSE2; - /* fall thru */ - case 3: - bits |= kHasSSE; - /* fall thru */ - case 2: - bits |= kHasMMX; - default: - break; + case 9: + bits |= kHasAVX1_0; + /* fall thru */ + case 8: + bits |= kHasSSE4_2; + /* fall thru */ + case 7: + bits |= kHasSSE4_1; + /* fall thru */ + case 6: + bits |= kHasSupplementalSSE3; + /* fall thru */ + case 5: + bits |= kHasSSE3; + /* fall thru */ + case 4: + bits |= kHasSSE2; + /* fall thru */ + case 3: + bits |= kHasSSE; + /* fall thru */ + case 2: + bits |= kHasMMX; + default: + break; } switch (cpu_info.cache_line_size) { - case 128: - bits |= kCache128; - break; - case 64: - bits |= kCache64; - break; - case 32: - bits |= kCache32; - break; - default: - break; - } - cpus = commpage_cpus(); // how many CPUs do we have - - if (cpus == 1) - bits |= kUP; + case 128: + bits |= kCache128; + break; + case 64: + bits |= kCache64; + break; + case 32: + bits |= kCache32; + break; + default: + break; + } + cpus = commpage_cpus(); // how many CPUs do we have bits |= (cpus << kNumCPUsShift); - bits |= kFastThreadLocalStorage; // we use %gs for TLS + bits |= kFastThreadLocalStorage; // we use %gs for TLS + +#define setif(_bits, _bit, _condition) \ + if (_condition) _bits |= _bit + + setif(bits, kUP, cpus == 1); + setif(bits, k64Bit, cpu_mode_is64bit()); + setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD); + + setif(bits, kHasAES, cpuid_features() & + CPUID_FEATURE_AES); + setif(bits, kHasF16C, cpuid_features() & + CPUID_FEATURE_F16C); + setif(bits, kHasRDRAND, cpuid_features() & + CPUID_FEATURE_RDRAND); + setif(bits, kHasFMA, cpuid_features() & + CPUID_FEATURE_FMA); + + setif(bits, kHasBMI1, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_BMI1); + setif(bits, kHasBMI2, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_BMI2); + /* Do not advertise RTM and HLE if the TSX FORCE ABORT WA is required */ + if (cpuid_wa_required(CPU_INTEL_TSXFA) & CWA_OFF) { + setif(bits, kHasRTM, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_RTM); + setif(bits, kHasHLE, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_HLE); + } + setif(bits, kHasAVX2_0, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX2); + setif(bits, kHasRDSEED, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_RDSEED); + setif(bits, kHasADX, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_ADX); + +#if 0 /* The kernel doesn't support MPX or SGX */ + setif(bits, kHasMPX, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_MPX); + setif(bits, kHasSGX, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_SGX); +#endif + + if (ml_fpu_avx512_enabled()) { + setif(bits, kHasAVX512F, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512F); + setif(bits, kHasAVX512CD, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512CD); + setif(bits, kHasAVX512DQ, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512DQ); + setif(bits, kHasAVX512BW, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512BW); + setif(bits, kHasAVX512VL, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512VL); + setif(bits, kHasAVX512IFMA, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512IFMA); + setif(bits, kHasAVX512VBMI, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512VBMI); + setif(bits, kHasVAES, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_VAES); + setif(bits, kHasVPCLMULQDQ, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_VPCLMULQDQ); + setif(bits, kHasAVX512VNNI, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512VNNI); + setif(bits, kHasAVX512BITALG, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512BITALG); + setif(bits, kHasAVX512VPOPCNTDQ, cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_AVX512VPCDQ); + } + + uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE); + setif(bits, kHasENFSTRG, (misc_enable & 1ULL) && + (cpuid_leaf7_features() & + CPUID_LEAF7_FEATURE_ERMS)); - if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable - bits |= k64Bit; + _cpu_capabilities = bits; // set kernel version for use by drivers etc +} - if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */ - bits |= kSlow; +/* initialize the approx_time_supported flag and set the approx time to 0. + * Called during initial commpage population. + */ +static void +commpage_mach_approximate_time_init(void) +{ + char *cp = commPagePtr32; + uint8_t supported; + +#ifdef CONFIG_MACH_APPROXIMATE_TIME + supported = 1; +#else + supported = 0; +#endif + if (cp) { + cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_BASE_ADDRESS); + *(boolean_t *)cp = supported; + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_START_ADDRESS); + *(boolean_t *)cp = supported; + } + commpage_update_mach_approximate_time(0); +} - bits |= (cpuid_features() & CPUID_FEATURE_AES) ? kHasAES : 0; +static void +commpage_mach_continuous_time_init(void) +{ + commpage_update_mach_continuous_time(0); +} - _cpu_capabilities = bits; // set kernel version for use by drivers etc +static void +commpage_boottime_init(void) +{ + clock_sec_t secs; + clock_usec_t microsecs; + clock_get_boottime_microtime(&secs, µsecs); + commpage_update_boottime(secs * USEC_PER_SEC + microsecs); } -int +uint64_t _get_cpu_capabilities(void) { return _cpu_capabilities; @@ -276,98 +447,107 @@ _get_cpu_capabilities(void) static void commpage_stuff( - commpage_address_t address, - const void *source, - int length ) -{ - void *dest = commpage_addr_of(address); - - if (address < next) - panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next); - - bcopy(source,dest,length); - - next = address + length; + commpage_address_t address, + const void *source, + int length ) +{ + void *dest = commpage_addr_of(address); + + if (address < next) { + panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next); + } + + bcopy(source, dest, length); + + next = address + length; +} + +/* + * Updates both the 32-bit and 64-bit commpages with the new data. + */ +static void +commpage_update(commpage_address_t address, const void *source, int length) +{ + void *dest = commpage_specific_addr_of(commPagePtr32, address); + bcopy(source, dest, length); + + dest = commpage_specific_addr_of(commPagePtr64, address); + bcopy(source, dest, length); +} + +void +commpage_post_ucode_update(void) +{ + commpage_init_cpu_capabilities(); + commpage_update(_COMM_PAGE_CPU_CAPABILITIES64, &_cpu_capabilities, sizeof(_cpu_capabilities)); + commpage_update(_COMM_PAGE_CPU_CAPABILITIES, &_cpu_capabilities, sizeof(uint32_t)); } /* Copy a routine into comm page if it matches running machine. */ static void commpage_stuff_routine( - commpage_descriptor *rd ) + commpage_descriptor *rd ) { - uint32_t must,cant; - - if (rd->commpage_address != cur_routine) { - if ((cur_routine!=0) && (matched==0)) - panic("commpage no match for last, next address %08x", rd->commpage_address); - cur_routine = rd->commpage_address; - matched = 0; - } - - must = _cpu_capabilities & rd->musthave; - cant = _cpu_capabilities & rd->canthave; - - if ((must == rd->musthave) && (cant == 0)) { - if (matched) - panic("commpage multiple matches for address %08x", rd->commpage_address); - matched = 1; - - commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length); - } + commpage_stuff(rd->commpage_address, rd->code_address, rd->code_length); } + /* Fill in the 32- or 64-bit commpage. Called once for each. */ static void -commpage_populate_one( - vm_map_t submap, // commpage32_map or compage64_map - char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64 - size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED - commpage_address_t base_offset, // will become commPageBaseOffset - commpage_descriptor** commpage_routines, // list of routine ptrs for this commpage - commpage_time_data** time_data, // &time_data32 or &time_data64 - const char* signature ) // "commpage 32-bit" or "commpage 64-bit" +commpage_populate_one( + vm_map_t submap, // commpage32_map or compage64_map + char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64 + size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED + commpage_address_t base_offset, // will become commPageBaseOffset + commpage_time_data** time_data, // &time_data32 or &time_data64 + new_commpage_timeofday_data_t** gtod_time_data, // >od_time_data32 or >od_time_data64 + const char* signature, // "commpage 32-bit" or "commpage 64-bit" + vm_prot_t uperm) { - uint8_t c1; - short c2; - int c4; - uint64_t c8; - uint32_t cfamily; - commpage_descriptor **rd; + uint8_t c1; + uint16_t c2; + int c4; + uint64_t c8; + uint32_t cfamily; short version = _COMM_PAGE_THIS_VERSION; next = 0; - cur_routine = 0; - commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used ); - *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64 + commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm ); + *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64 commPageBaseOffset = base_offset; *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START ); + *gtod_time_data = commpage_addr_of( _COMM_PAGE_NEWTIMEOFDAY_DATA ); /* Stuff in the constants. We move things into the comm page in strictly - * ascending order, so we can check for overlap and panic if so. - */ - commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)strlen(signature)); - commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short)); - commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(int)); + * ascending order, so we can check for overlap and panic if so. + * Note: the 32-bit cpu_capabilities vector is retained in addition to + * the expanded 64-bit vector. + */ + commpage_stuff(_COMM_PAGE_SIGNATURE, signature, (int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature))); + commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64, &_cpu_capabilities, sizeof(_cpu_capabilities)); + commpage_stuff(_COMM_PAGE_VERSION, &version, sizeof(short)); + commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES, &_cpu_capabilities, sizeof(uint32_t)); c2 = 32; // default - if (_cpu_capabilities & kCache64) + if (_cpu_capabilities & kCache64) { c2 = 64; - else if (_cpu_capabilities & kCache128) + } else if (_cpu_capabilities & kCache128) { c2 = 128; - commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2); - + } + commpage_stuff(_COMM_PAGE_CACHE_LINESIZE, &c2, 2); + c4 = MP_SPIN_TRIES; - commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4); + commpage_stuff(_COMM_PAGE_SPIN_COUNT, &c4, 4); /* machine_info valid after ml_get_max_cpus() */ c1 = machine_info.physical_cpu_max; - commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1); + commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS, &c1, 1); c1 = machine_info.logical_cpu_max; - commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1); + commpage_stuff(_COMM_PAGE_LOGICAL_CPUS, &c1, 1); c8 = ml_cpu_cache_size(0); commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8); @@ -375,15 +555,9 @@ commpage_populate_one( cfamily = cpuid_info()->cpuid_cpufamily; commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4); - for( rd = commpage_routines; *rd != NULL ; rd++ ) - commpage_stuff_routine(*rd); - - if (!matched) - panic("commpage no match on last routine"); - - if (next > _COMM_PAGE_END) + if (next > _COMM_PAGE_END) { panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr); - + } } @@ -392,168 +566,223 @@ commpage_populate_one( * * See the top of this file for a list of what you have to do to add * a new routine to the commpage. - */ + */ void commpage_populate( void ) { commpage_init_cpu_capabilities(); - - commpage_populate_one( commpage32_map, - &commPagePtr32, - _COMM_PAGE32_AREA_USED, - _COMM_PAGE32_BASE_ADDRESS, - commpage_32_routines, - &time_data32, - "commpage 32-bit"); + + commpage_populate_one( commpage32_map, + &commPagePtr32, + _COMM_PAGE32_AREA_USED, + _COMM_PAGE32_BASE_ADDRESS, + &time_data32, + >od_time_data32, + _COMM_PAGE32_SIGNATURE_STRING, + VM_PROT_READ); #ifndef __LP64__ - pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS, - _COMM_PAGE32_AREA_USED/INTEL_PGBYTES); -#endif - time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */ + pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS, + _COMM_PAGE32_AREA_USED / INTEL_PGBYTES); +#endif + time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */ + gtod_time_data64 = gtod_time_data32; if (_cpu_capabilities & k64Bit) { - commpage_populate_one( commpage64_map, - &commPagePtr64, - _COMM_PAGE64_AREA_USED, - _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */ - commpage_64_routines, - &time_data64, - "commpage 64-bit"); + commpage_populate_one( commpage64_map, + &commPagePtr64, + _COMM_PAGE64_AREA_USED, + _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */ + &time_data64, + >od_time_data64, + _COMM_PAGE64_SIGNATURE_STRING, + VM_PROT_READ); #ifndef __LP64__ - pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS, - _COMM_PAGE64_AREA_USED/INTEL_PGBYTES); + pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS, + _COMM_PAGE64_AREA_USED / INTEL_PGBYTES); #endif } simple_lock_init(&commpage_active_cpus_lock, 0); commpage_update_active_cpus(); + commpage_mach_approximate_time_init(); + commpage_mach_continuous_time_init(); + commpage_boottime_init(); rtc_nanotime_init_commpage(); + commpage_update_kdebug_state(); +#if CONFIG_ATM + commpage_update_atm_diagnostic_config(atm_get_diagnostic_config()); +#endif } +/* Fill in the common routines during kernel initialization. + * This is called before user-mode code is running. + */ +void +commpage_text_populate( void ) +{ + commpage_descriptor **rd; + + next = 0; + commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE); + commPageTextPtr32 = commPagePtr; + + char *cptr = commPagePtr; + int i = 0; + for (; i < _COMM_PAGE_TEXT_AREA_USED; i++) { + cptr[i] = 0xCC; + } + + commPageBaseOffset = _COMM_PAGE_TEXT_START; + for (rd = commpage_32_routines; *rd != NULL; rd++) { + commpage_stuff_routine(*rd); + } + +#ifndef __LP64__ + pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START, + _COMM_PAGE_TEXT_AREA_USED / INTEL_PGBYTES); +#endif + + if (_cpu_capabilities & k64Bit) { + next = 0; + commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE); + commPageTextPtr64 = commPagePtr; + + cptr = commPagePtr; + for (i = 0; i < _COMM_PAGE_TEXT_AREA_USED; i++) { + cptr[i] = 0xCC; + } + + for (rd = commpage_64_routines; *rd != NULL; rd++) { + commpage_stuff_routine(*rd); + } + +#ifndef __LP64__ + pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START, + _COMM_PAGE_TEXT_AREA_USED / INTEL_PGBYTES); +#endif + } + + if (next > _COMM_PAGE_TEXT_END) { + panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr); + } +} -/* Update commpage nanotime information. Note that we interleave - * setting the 32- and 64-bit commpages, in order to keep nanotime more - * nearly in sync between the two environments. +/* Update commpage nanotime information. * * This routine must be serialized by some external means, ie a lock. */ void commpage_set_nanotime( - uint64_t tsc_base, - uint64_t ns_base, - uint32_t scale, - uint32_t shift ) + uint64_t tsc_base, + uint64_t ns_base, + uint32_t scale, + uint32_t shift ) { - commpage_time_data *p32 = time_data32; - commpage_time_data *p64 = time_data64; - static uint32_t generation = 0; - uint32_t next_gen; - - if (p32 == NULL) /* have commpages been allocated yet? */ + commpage_time_data *p32 = time_data32; + commpage_time_data *p64 = time_data64; + static uint32_t generation = 0; + uint32_t next_gen; + + if (p32 == NULL) { /* have commpages been allocated yet? */ return; - - if ( generation != p32->nt_generation ) - panic("nanotime trouble 1"); /* possibly not serialized */ - if ( ns_base < p32->nt_ns_base ) + } + + if (generation != p32->nt_generation) { + panic("nanotime trouble 1"); /* possibly not serialized */ + } + if (ns_base < p32->nt_ns_base) { panic("nanotime trouble 2"); - if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) ) + } + if ((shift != 0) && ((_cpu_capabilities & kSlow) == 0)) { panic("nanotime trouble 3"); - + } + next_gen = ++generation; - if (next_gen == 0) + if (next_gen == 0) { next_gen = ++generation; - - p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */ + } + + p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */ p64->nt_generation = 0; - + p32->nt_tsc_base = tsc_base; p64->nt_tsc_base = tsc_base; - + p32->nt_ns_base = ns_base; p64->nt_ns_base = ns_base; - + p32->nt_scale = scale; p64->nt_scale = scale; - + p32->nt_shift = shift; p64->nt_shift = shift; - - p32->nt_generation = next_gen; /* mark data as valid */ - p64->nt_generation = next_gen; -} - -/* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */ - -void -commpage_disable_timestamp( void ) -{ - time_data32->gtod_generation = 0; - time_data64->gtod_generation = 0; + p32->nt_generation = next_gen; /* mark data as valid */ + p64->nt_generation = next_gen; } - /* Update commpage gettimeofday() information. As with nanotime(), we interleave - * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync + * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync * between the two environments. * * This routine must be serializeed by some external means, ie a lock. */ - - void - commpage_set_timestamp( - uint64_t abstime, - uint64_t secs ) + +void +commpage_set_timestamp( + uint64_t abstime, + uint64_t sec, + uint64_t frac, + uint64_t scale, + uint64_t tick_per_sec) { - commpage_time_data *p32 = time_data32; - commpage_time_data *p64 = time_data64; - static uint32_t generation = 0; - uint32_t next_gen; - - next_gen = ++generation; - if (next_gen == 0) - next_gen = ++generation; - - p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */ - p64->gtod_generation = 0; - - p32->gtod_ns_base = abstime; - p64->gtod_ns_base = abstime; - - p32->gtod_sec_base = secs; - p64->gtod_sec_base = secs; - - p32->gtod_generation = next_gen; /* mark data as valid */ - p64->gtod_generation = next_gen; -} + new_commpage_timeofday_data_t *p32 = gtod_time_data32; + new_commpage_timeofday_data_t *p64 = gtod_time_data64; + p32->TimeStamp_tick = 0x0ULL; + p64->TimeStamp_tick = 0x0ULL; + + p32->TimeStamp_sec = sec; + p64->TimeStamp_sec = sec; + + p32->TimeStamp_frac = frac; + p64->TimeStamp_frac = frac; + + p32->Ticks_scale = scale; + p64->Ticks_scale = scale; + + p32->Ticks_per_sec = tick_per_sec; + p64->Ticks_per_sec = tick_per_sec; + + p32->TimeStamp_tick = abstime; + p64->TimeStamp_tick = abstime; +} /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */ void commpage_set_memory_pressure( - unsigned int pressure ) + unsigned int pressure ) { - char *cp; + char *cp; uint32_t *ip; - + cp = commPagePtr32; - if ( cp ) { + if (cp) { cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS); - ip = (uint32_t*) cp; + ip = (uint32_t*) (void *) cp; *ip = (uint32_t) pressure; } - + cp = commPagePtr64; - if ( cp ) { + if (cp) { cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS); - ip = (uint32_t*) cp; + ip = (uint32_t*) (void *) cp; *ip = (uint32_t) pressure; } - } @@ -561,79 +790,258 @@ commpage_set_memory_pressure( void commpage_set_spin_count( - unsigned int count ) + unsigned int count ) { - char *cp; + char *cp; uint32_t *ip; - - if (count == 0) /* we test for 0 after decrement, not before */ - count = 1; - + + if (count == 0) { /* we test for 0 after decrement, not before */ + count = 1; + } + cp = commPagePtr32; - if ( cp ) { + if (cp) { cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS); - ip = (uint32_t*) cp; + ip = (uint32_t*) (void *) cp; *ip = (uint32_t) count; } - + cp = commPagePtr64; - if ( cp ) { + if (cp) { cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS); - ip = (uint32_t*) cp; + ip = (uint32_t*) (void *) cp; *ip = (uint32_t) count; } - } /* Updated every time a logical CPU goes offline/online */ void commpage_update_active_cpus(void) { - char *cp; + char *cp; volatile uint8_t *ip; - + /* At least 32-bit commpage must be initialized */ - if (!commPagePtr32) + if (!commPagePtr32) { return; + } - simple_lock(&commpage_active_cpus_lock); + simple_lock(&commpage_active_cpus_lock, LCK_GRP_NULL); cp = commPagePtr32; cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS); ip = (volatile uint8_t*) cp; - *ip = (uint8_t) processor_avail_count; - + *ip = (uint8_t) processor_avail_count_user; + cp = commPagePtr64; - if ( cp ) { + if (cp) { cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS); ip = (volatile uint8_t*) cp; - *ip = (uint8_t) processor_avail_count; + *ip = (uint8_t) processor_avail_count_user; } simple_unlock(&commpage_active_cpus_lock); } +/* + * Update the commpage with current kdebug state. This currently has bits for + * global trace state, and typefilter enablement. It is likely additional state + * will be tracked in the future. + * + * INVARIANT: This value will always be 0 if global tracing is disabled. This + * allows simple guard tests of "if (*_COMM_PAGE_KDEBUG_ENABLE) { ... }" + */ +void +commpage_update_kdebug_state(void) +{ + volatile uint32_t *saved_data_ptr; + char *cp; + + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_BASE_ADDRESS); + saved_data_ptr = (volatile uint32_t *)cp; + *saved_data_ptr = kdebug_commpage_state(); + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_START_ADDRESS); + saved_data_ptr = (volatile uint32_t *)cp; + *saved_data_ptr = kdebug_commpage_state(); + } +} + +/* Ditto for atm_diagnostic_config */ +void +commpage_update_atm_diagnostic_config(uint32_t diagnostic_config) +{ + volatile uint32_t *saved_data_ptr; + char *cp; + + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_BASE_ADDRESS); + saved_data_ptr = (volatile uint32_t *)cp; + *saved_data_ptr = diagnostic_config; + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_START_ADDRESS); + saved_data_ptr = (volatile uint32_t *)cp; + *saved_data_ptr = diagnostic_config; + } +} + +/* + * update the commpage with if dtrace user land probes are enabled + */ +void +commpage_update_dof(boolean_t enabled) +{ +#if CONFIG_DTRACE + char *cp; + + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_DTRACE_DOF_ENABLED - _COMM_PAGE32_BASE_ADDRESS); + *cp = (enabled ? 1 : 0); + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_DTRACE_DOF_ENABLED - _COMM_PAGE32_START_ADDRESS); + *cp = (enabled ? 1 : 0); + } +#else + (void)enabled; +#endif +} + + +/* + * update the dyld global config flags + */ +void +commpage_update_dyld_flags(uint64_t value) +{ + char *cp; + + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_DYLD_SYSTEM_FLAGS - _COMM_PAGE32_BASE_ADDRESS); + *(uint64_t *)cp = value; + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_DYLD_SYSTEM_FLAGS - _COMM_PAGE32_BASE_ADDRESS); + *(uint64_t *)cp = value; + } +} + + +/* + * update the commpage data for last known value of mach_absolute_time() + */ + +void +commpage_update_mach_approximate_time(uint64_t abstime) +{ +#ifdef CONFIG_MACH_APPROXIMATE_TIME + uint64_t saved_data; + char *cp; + + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_BASE_ADDRESS); + saved_data = atomic_load_explicit((_Atomic uint64_t *)(uintptr_t)cp, memory_order_relaxed); + if (saved_data < abstime) { + /* ignoring the success/fail return value assuming that + * if the value has been updated since we last read it, + * "someone" has a newer timestamp than us and ours is + * now invalid. */ + atomic_compare_exchange_strong_explicit((_Atomic uint64_t *)(uintptr_t)cp, + &saved_data, abstime, memory_order_relaxed, memory_order_relaxed); + } + } + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_START_ADDRESS); + saved_data = atomic_load_explicit((_Atomic uint64_t *)(uintptr_t)cp, memory_order_relaxed); + if (saved_data < abstime) { + /* ignoring the success/fail return value assuming that + * if the value has been updated since we last read it, + * "someone" has a newer timestamp than us and ours is + * now invalid. */ + atomic_compare_exchange_strong_explicit((_Atomic uint64_t *)(uintptr_t)cp, + &saved_data, abstime, memory_order_relaxed, memory_order_relaxed); + } + } +#else +#pragma unused (abstime) +#endif +} + +void +commpage_update_mach_continuous_time(uint64_t sleeptime) +{ + char *cp; + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS); + *(uint64_t *)cp = sleeptime; + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS); + *(uint64_t *)cp = sleeptime; + } +} + +void +commpage_update_boottime(uint64_t boottime) +{ + char *cp; + cp = commPagePtr32; + if (cp) { + cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS); + *(uint64_t *)cp = boottime; + } + + cp = commPagePtr64; + if (cp) { + cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS); + *(uint64_t *)cp = boottime; + } +} + + +extern user32_addr_t commpage_text32_location; +extern user64_addr_t commpage_text64_location; /* Check to see if a given address is in the Preemption Free Zone (PFZ) */ uint32_t commpage_is_in_pfz32(uint32_t addr32) { - if ( (addr32 >= _COMM_PAGE_PFZ_START) && (addr32 < _COMM_PAGE_PFZ_END)) { + if ((addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET)) + && (addr32 < (commpage_text32_location + _COMM_TEXT_PFZ_END_OFFSET))) { return 1; - } - else + } else { return 0; + } } uint32_t commpage_is_in_pfz64(addr64_t addr64) { - if ( (addr64 >= _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_START)) - && (addr64 < _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_END))) { + if ((addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET)) + && (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) { return 1; - } - else + } else { return 0; + } } -