X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/6d2010ae8f7a6078e10b361c6962983bab233e0f..7e41aa883dd258f888d0470250eead40a53ef1f5:/tools/tests/zero-to-n/zero-to-n.c diff --git a/tools/tests/zero-to-n/zero-to-n.c b/tools/tests/zero-to-n/zero-to-n.c index 0d4dcfe16..2f36c2635 100644 --- a/tools/tests/zero-to-n/zero-to-n.c +++ b/tools/tests/zero-to-n/zero-to-n.c @@ -28,16 +28,21 @@ #include #include #include -#include -#include -#include -#include -#include +#include #include #include -#include #include +#include #include +#include +#include +#include +#include + +#include +#include +#include +#include #include @@ -46,10 +51,14 @@ #include #include -typedef enum wake_type { WAKE_BROADCAST_ONESEM, WAKE_BROADCAST_PERTHREAD, WAKE_CHAIN } wake_type_t; +#include + +typedef enum wake_type { WAKE_BROADCAST_ONESEM, WAKE_BROADCAST_PERTHREAD, WAKE_CHAIN, WAKE_HOP } wake_type_t; typedef enum my_policy_type { MY_POLICY_REALTIME, MY_POLICY_TIMESHARE, MY_POLICY_FIXEDPRI } my_policy_type_t; -#define assert(truth, label) do { if(!(truth)) { printf("Thread %p: failure on line %d\n", pthread_self(), __LINE__); goto label; } } while (0) +#define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0) +#define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0) +#define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0) #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */ #define COMPUTATION_NANOS (10000000ll) /* 10 ms */ @@ -62,43 +71,67 @@ typedef enum my_policy_type { MY_POLICY_REALTIME, MY_POLICY_TIMESHARE, MY_POLICY #endif /* Declarations */ -void* child_thread_func(void *arg); -void print_usage(); -int thread_setup(); -my_policy_type_t parse_thread_policy(const char *str); -int thread_finish_iteration(); +static void* worker_thread(void *arg); +static void usage(); +static int thread_setup(uint32_t my_id); +static my_policy_type_t parse_thread_policy(const char *str); +static void selfexec_with_apptype(int argc, char *argv[]); +static void parse_args(int argc, char *argv[]); /* Global variables (general) */ -int g_numthreads; -wake_type_t g_waketype; -policy_t g_policy; -int g_iterations; -struct mach_timebase_info g_mti; -semaphore_t g_main_sem; -uint64_t *g_thread_endtimes_abs; -volatile int32_t g_done_threads; -boolean_t g_do_spin = FALSE; -boolean_t g_verbose = FALSE; -uint64_t g_starttime_abs; -#if MIMIC_DIGI_LEAD_TIME -int g_long_spinid; -uint64_t g_spinlength_abs; -#endif /* MIMIC_DIGI_LEAD_TIME */ +static uint32_t g_numcpus; +static uint32_t g_numthreads; +static wake_type_t g_waketype; +static policy_t g_policy; +static uint32_t g_iterations; +static struct mach_timebase_info g_mti; +static semaphore_t g_main_sem; +static uint64_t *g_thread_endtimes_abs; +static volatile uint32_t g_done_threads; +static boolean_t g_verbose = FALSE; +static boolean_t g_do_affinity = FALSE; +static uint64_t g_starttime_abs; +static uint32_t g_iteration_sleeptime_us = 0; + +/* Threshold for dropping a 'bad run' tracepoint */ +static uint64_t g_traceworthy_latency_ns = TRACEWORTHY_NANOS; + +/* Have we re-execed to set apptype? */ +static boolean_t g_seen_apptype = FALSE; + +/* usleep in betweeen iterations */ +static boolean_t g_do_sleep = TRUE; + +/* Every thread spins until all threads have checked in */ +static boolean_t g_do_all_spin = FALSE; + +/* One randomly chosen thread holds up the train for a certain duration. */ +static boolean_t g_do_one_long_spin = FALSE; +static uint32_t g_one_long_spin_id = 0; +static uint64_t g_one_long_spin_length_abs = 0; +static uint64_t g_one_long_spin_length_ns = 0; + +/* Each thread spins for a certain duration after waking up before blocking again. */ +static boolean_t g_do_each_spin = FALSE; +static uint64_t g_each_spin_duration_abs = 0; +static uint64_t g_each_spin_duration_ns = 0; /* Global variables (broadcast) */ -semaphore_t g_machsem; -semaphore_t g_leadersem; +static semaphore_t g_broadcastsem; +static semaphore_t g_leadersem; +static semaphore_t g_readysem; +static semaphore_t g_donesem; /* Global variables (chain) */ -semaphore_t *g_semarr; +static semaphore_t *g_semarr; -uint64_t +static uint64_t abs_to_nanos(uint64_t abstime) { return (uint64_t)(abstime * (((double)g_mti.numer) / ((double)g_mti.denom))); } -uint64_t +static uint64_t nanos_to_abs(uint64_t ns) { return (uint64_t)(ns * (((double)g_mti.denom) / ((double)g_mti.numer))); @@ -107,7 +140,7 @@ nanos_to_abs(uint64_t ns) /* * Figure out what thread policy to use */ -my_policy_type_t +static my_policy_type_t parse_thread_policy(const char *str) { if (strcmp(str, "timeshare") == 0) { @@ -117,250 +150,273 @@ parse_thread_policy(const char *str) } else if (strcmp(str, "fixed") == 0) { return MY_POLICY_FIXEDPRI; } else { - printf("Invalid thread policy %s\n", str); - exit(1); + errx(EX_USAGE, "Invalid thread policy \"%s\"", str); } } /* * Figure out what wakeup pattern to use */ -wake_type_t +static wake_type_t parse_wakeup_pattern(const char *str) { if (strcmp(str, "chain") == 0) { return WAKE_CHAIN; + } else if (strcmp(str, "hop") == 0) { + return WAKE_HOP; } else if (strcmp(str, "broadcast-single-sem") == 0) { return WAKE_BROADCAST_ONESEM; } else if (strcmp(str, "broadcast-per-thread") == 0) { return WAKE_BROADCAST_PERTHREAD; } else { - print_usage(); - exit(1); + errx(EX_USAGE, "Invalid wakeup pattern \"%s\"", str); } } /* * Set policy */ -int -thread_setup() +static int +thread_setup(uint32_t my_id) { - int res; + kern_return_t kr; + errno_t ret; + thread_time_constraint_policy_data_t pol; switch (g_policy) { case MY_POLICY_TIMESHARE: - { - return 0; - } - case MY_POLICY_REALTIME: - { - thread_time_constraint_policy_data_t pol; - + break; + case MY_POLICY_REALTIME: /* Hard-coded realtime parameters (similar to what Digi uses) */ - pol.period = 100000; - pol.constraint = nanos_to_abs(CONSTRAINT_NANOS); - pol.computation = nanos_to_abs(COMPUTATION_NANOS); + pol.period = 100000; + pol.constraint = (uint32_t) nanos_to_abs(CONSTRAINT_NANOS); + pol.computation = (uint32_t) nanos_to_abs(COMPUTATION_NANOS); pol.preemptible = 0; /* Ignored by OS */ - res = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); - assert(res == 0, fail); + kr = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, + (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); + mach_assert_zero_t(my_id, kr); break; - } - case MY_POLICY_FIXEDPRI: - { - thread_extended_policy_data_t pol; - pol.timeshare = 0; - - res = thread_policy_set(mach_thread_self(), THREAD_EXTENDED_POLICY, (thread_policy_t) &pol, THREAD_EXTENDED_POLICY_COUNT); - assert(res == 0, fail); + case MY_POLICY_FIXEDPRI: + ret = pthread_set_fixedpriority_self(); + if (ret) errc(EX_OSERR, ret, "pthread_set_fixedpriority_self"); break; - } default: - { - printf("invalid policy type\n"); - return 1; - } + errx(EX_USAGE, "invalid policy type %d", g_policy); } - return 0; -fail: - return 1; -} - -/* - * Wake up main thread if everyone's done - */ -int -thread_finish_iteration(int id) -{ - int32_t new; - int res = 0; - volatile float x = 0.0; - volatile float y = 0.0; + if (g_do_affinity) { + thread_affinity_policy_data_t affinity; - debug_log("Thread %p finished iteration.\n", pthread_self()); - -#if MIMIC_DIGI_LEAD_TIME - /* - * One randomly chosen thread determines when everybody gets to stop. - */ - if (g_do_spin) { - if (g_long_spinid == id) { - uint64_t endspin; + affinity.affinity_tag = my_id % 2; - /* This thread took up fully half of his computation */ - endspin = g_starttime_abs + g_spinlength_abs; - while (mach_absolute_time() < endspin) { - y = y + 1.5 + x; - x = sqrt(y); - } - } + kr = thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY, + (thread_policy_t)&affinity, THREAD_AFFINITY_POLICY_COUNT); + mach_assert_zero_t(my_id, kr); } -#endif /* MIMIC_DIGI_LEAD_TIME */ - - new = OSAtomicIncrement32(&g_done_threads); - debug_log("New value is %d\n", new); - - /* - * When the last thread finishes, everyone gets to go back to sleep. - */ - if (new == g_numthreads) { - debug_log("Thread %p signalling main thread.\n", pthread_self()); - res = semaphore_signal(g_main_sem); - } else { - if (g_do_spin) { - while (g_done_threads < g_numthreads) { - y = y + 1.5 + x; - x = sqrt(y); - } - } - } - - return res; + return 0; } /* * Wait for a wakeup, potentially wake up another of the "0-N" threads, * and notify the main thread when done. */ -void* -child_thread_func(void *arg) +static void* +worker_thread(void *arg) { - int my_id = (int)(uintptr_t)arg; - int res; - int i, j; - int32_t new; + uint32_t my_id = (uint32_t)(uintptr_t)arg; + kern_return_t kr; + + volatile double x = 0.0; + volatile double y = 0.0; /* Set policy and so forth */ - thread_setup(); + thread_setup(my_id); - /* Tell main thread when everyone has set up */ - new = OSAtomicIncrement32(&g_done_threads); - if (new == g_numthreads) { - semaphore_signal(g_main_sem); - } + for (uint32_t i = 0; i < g_iterations; i++) { + if (my_id == 0) { + /* + * Leader thread either wakes everyone up or starts the chain going. + */ + + /* Give the worker threads undisturbed time to finish before waiting on them */ + if (g_do_sleep) + usleep(g_iteration_sleeptime_us); + + debug_log("%d Leader thread wait for ready\n", i); + + /* + * Wait for everyone else to declare ready + * Is there a better way to do this that won't interfere with the rest of the chain? + * TODO: Invent 'semaphore wait for N signals' + */ + + for (uint32_t j = 0 ; j < g_numthreads - 1; j++) { + kr = semaphore_wait(g_readysem); + mach_assert_zero_t(my_id, kr); + } + + debug_log("%d Leader thread wait\n", i); + + /* Signal main thread and wait for start of iteration */ + + kr = semaphore_wait_signal(g_leadersem, g_main_sem); + mach_assert_zero_t(my_id, kr); - /* For each iteration */ - for (i = 0; i < g_iterations; i++) { - /* - * Leader thread either wakes everyone up or starts the chain going. - */ - if (my_id == 0) { - res = semaphore_wait(g_leadersem); - assert(res == 0, fail); - g_thread_endtimes_abs[my_id] = mach_absolute_time(); -#if MIMIC_DIGI_LEAD_TIME - g_long_spinid = rand() % g_numthreads; -#endif /* MIMIC_DIGI_LEAD_TIME */ + debug_log("%d Leader thread go\n", i); + + assert_zero_t(my_id, g_done_threads); switch (g_waketype) { - case WAKE_CHAIN: - semaphore_signal(g_semarr[my_id + 1]); - break; - case WAKE_BROADCAST_ONESEM: - semaphore_signal_all(g_machsem); + case WAKE_BROADCAST_ONESEM: + kr = semaphore_signal_all(g_broadcastsem); + mach_assert_zero_t(my_id, kr); break; case WAKE_BROADCAST_PERTHREAD: - for (j = 1; j < g_numthreads; j++) { - semaphore_signal(g_semarr[j]); + for (uint32_t j = 1; j < g_numthreads; j++) { + kr = semaphore_signal(g_semarr[j]); + mach_assert_zero_t(my_id, kr); } break; - default: - printf("Invalid wakeup type?!\n"); - exit(1); + case WAKE_CHAIN: + kr = semaphore_signal(g_semarr[my_id + 1]); + mach_assert_zero_t(my_id, kr); + break; + case WAKE_HOP: + kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]); + mach_assert_zero_t(my_id, kr); + break; } } else { /* * Everyone else waits to be woken up, - * records when she wake up, and possibly + * records when she wakes up, and possibly * wakes up a friend. */ switch(g_waketype) { case WAKE_BROADCAST_ONESEM: - res = semaphore_wait(g_machsem); - assert(res == KERN_SUCCESS, fail); + kr = semaphore_wait_signal(g_broadcastsem, g_readysem); + mach_assert_zero_t(my_id, kr); g_thread_endtimes_abs[my_id] = mach_absolute_time(); - break; - /* - * For the chain wakeup case: - * wait, record time, signal next thread if appropriate - */ + case WAKE_BROADCAST_PERTHREAD: - res = semaphore_wait(g_semarr[my_id]); - assert(res == 0, fail); + kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); + mach_assert_zero_t(my_id, kr); g_thread_endtimes_abs[my_id] = mach_absolute_time(); break; case WAKE_CHAIN: - res = semaphore_wait(g_semarr[my_id]); - assert(res == 0, fail); + kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); + mach_assert_zero_t(my_id, kr); + + /* Signal the next thread *after* recording wake time */ g_thread_endtimes_abs[my_id] = mach_absolute_time(); if (my_id < (g_numthreads - 1)) { - res = semaphore_signal(g_semarr[my_id + 1]); - assert(res == 0, fail); + kr = semaphore_signal(g_semarr[my_id + 1]); + mach_assert_zero_t(my_id, kr); } break; - default: - printf("Invalid wake type.\n"); - goto fail; + + case WAKE_HOP: + kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); + mach_assert_zero_t(my_id, kr); + + /* Signal the next thread *after* recording wake time */ + + g_thread_endtimes_abs[my_id] = mach_absolute_time(); + + if (my_id < (g_numthreads - 1)) { + kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]); + mach_assert_zero_t(my_id, kr); + } else { + kr = semaphore_signal_all(g_donesem); + mach_assert_zero_t(my_id, kr); + } + + break; + } + } + + debug_log("Thread %p woke up for iteration %d.\n", pthread_self(), i); + + if (g_do_one_long_spin && g_one_long_spin_id == my_id) { + /* One randomly chosen thread holds up the train for a while. */ + + uint64_t endspin = g_starttime_abs + g_one_long_spin_length_abs; + while (mach_absolute_time() < endspin) { + y = y + 1.5 + x; + x = sqrt(y); } } - res = thread_finish_iteration(my_id); - assert(res == 0, fail); + if (g_do_each_spin) { + /* Each thread spins for a certain duration after waking up before blocking again. */ + + uint64_t endspin = mach_absolute_time() + g_each_spin_duration_abs; + while (mach_absolute_time() < endspin) { + y = y + 1.5 + x; + x = sqrt(y); + } + } + + int32_t new = OSAtomicIncrement32((volatile int32_t *)&g_done_threads); + (void)new; + + debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), new, i); + + if (g_do_all_spin) { + /* Everyone spins until the last thread checks in. */ + + while (g_done_threads < g_numthreads) { + y = y + 1.5 + x; + x = sqrt(y); + } + } + + debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i); } - return 0; -fail: - exit(1); -} + if (my_id == 0) { + /* Give the worker threads undisturbed time to finish before waiting on them */ + if (g_do_sleep) + usleep(g_iteration_sleeptime_us); -/* - * Admittedly not very attractive. - */ -void -print_usage() -{ - printf("Usage: zn [-trace ] [-spin] [-verbose]\n"); + /* Wait for the worker threads to finish */ + for (uint32_t i = 0 ; i < g_numthreads - 1; i++) { + kr = semaphore_wait(g_readysem); + mach_assert_zero_t(my_id, kr); + } + + /* Tell everyone and the main thread that the last iteration is done */ + debug_log("%d Leader thread done\n", i); + + kr = semaphore_signal_all(g_main_sem); + mach_assert_zero_t(my_id, kr); + } else { + /* Hold up thread teardown so it doesn't affect the last iteration */ + kr = semaphore_wait_signal(g_main_sem, g_readysem); + mach_assert_zero_t(my_id, kr); + } + + return 0; } /* * Given an array of uint64_t values, compute average, max, min, and standard deviation */ -void +static void compute_stats(uint64_t *values, uint64_t count, float *averagep, uint64_t *maxp, uint64_t *minp, float *stddevp) { - int i; + uint32_t i; uint64_t _sum = 0; uint64_t _max = 0; uint64_t _min = UINT64_MAX; @@ -392,124 +448,159 @@ compute_stats(uint64_t *values, uint64_t count, float *averagep, uint64_t *maxp, int main(int argc, char **argv) { - int i; - int res; + errno_t ret; + kern_return_t kr; + pthread_t *threads; uint64_t *worst_latencies_ns; uint64_t *worst_latencies_from_first_ns; - uint64_t last_end; uint64_t max, min; - uint64_t traceworthy_latency_ns = TRACEWORTHY_NANOS; float avg, stddev; - srand(time(NULL)); + for (int i = 0; i < argc; i++) + if (strcmp(argv[i], "--switched_apptype") == 0) + g_seen_apptype = TRUE; - if (argc < 5 || argc > 9) { - print_usage(); - goto fail; - } + if (!g_seen_apptype) + selfexec_with_apptype(argc, argv); - /* How many threads? */ - g_numthreads = atoi(argv[1]); + parse_args(argc, argv); - /* What wakeup pattern? */ - g_waketype = parse_wakeup_pattern(argv[2]); + srand((unsigned int)time(NULL)); - /* Policy */ - g_policy = parse_thread_policy(argv[3]); + mach_timebase_info(&g_mti); - /* Iterations */ - g_iterations = atoi(argv[4]); - - /* Optional args */ - for (i = 5; i < argc; i++) { - if (strcmp(argv[i], "-spin") == 0) { - g_do_spin = TRUE; - } else if (strcmp(argv[i], "-verbose") == 0) { - g_verbose = TRUE; - } else if ((strcmp(argv[i], "-trace") == 0) && - (i < (argc - 1))) { - traceworthy_latency_ns = strtoull(argv[++i], NULL, 10); - } else { - print_usage(); - goto fail; - } + size_t ncpu_size = sizeof(g_numcpus); + ret = sysctlbyname("hw.ncpu", &g_numcpus, &ncpu_size, NULL, 0); + if (ret) err(EX_OSERR, "Failed sysctlbyname(hw.ncpu)"); + + if (g_do_each_spin) + g_each_spin_duration_abs = nanos_to_abs(g_each_spin_duration_ns); + + /* Configure the long-spin thread to take up half of its computation */ + if (g_do_one_long_spin) { + g_one_long_spin_length_ns = COMPUTATION_NANOS / 2; + g_one_long_spin_length_abs = nanos_to_abs(g_one_long_spin_length_ns); } - mach_timebase_info(&g_mti); + /* Estimate the amount of time the cleanup phase needs to back off */ + g_iteration_sleeptime_us = g_numthreads * 20; -#if MIMIC_DIGI_LEAD_TIME - g_spinlength_abs = nanos_to_abs(COMPUTATION_NANOS) / 2; -#endif /* MIMIC_DIGI_LEAD_TIME */ + uint32_t threads_per_core = (g_numthreads / g_numcpus) + 1; + if (g_do_each_spin) + g_iteration_sleeptime_us += threads_per_core * (g_each_spin_duration_ns / NSEC_PER_USEC); + if (g_do_one_long_spin) + g_iteration_sleeptime_us += g_one_long_spin_length_ns / NSEC_PER_USEC; /* Arrays for threads and their wakeup times */ - threads = (pthread_t*) malloc(sizeof(pthread_t) * g_numthreads); - assert(threads, fail); + threads = (pthread_t*) valloc(sizeof(pthread_t) * g_numthreads); + assert(threads); + + size_t endtimes_size = sizeof(uint64_t) * g_numthreads; + + g_thread_endtimes_abs = (uint64_t*) valloc(endtimes_size); + assert(g_thread_endtimes_abs); + + /* Ensure the allocation is pre-faulted */ + ret = memset_s(g_thread_endtimes_abs, endtimes_size, 0, endtimes_size); + if (ret) errc(EX_OSERR, ret, "memset_s endtimes"); - g_thread_endtimes_abs = (uint64_t*) malloc(sizeof(uint64_t) * g_numthreads); - assert(g_thread_endtimes_abs, fail); + size_t latencies_size = sizeof(uint64_t) * g_iterations; - worst_latencies_ns = (uint64_t*) malloc(sizeof(uint64_t) * g_iterations); - assert(worst_latencies_ns, fail); + worst_latencies_ns = (uint64_t*) valloc(latencies_size); + assert(worst_latencies_ns); - worst_latencies_from_first_ns = (uint64_t*) malloc(sizeof(uint64_t) * g_iterations); - assert(worst_latencies_from_first_ns, fail); - res = semaphore_create(mach_task_self(), &g_main_sem, SYNC_POLICY_FIFO, 0); - assert(res == KERN_SUCCESS, fail); + /* Ensure the allocation is pre-faulted */ + ret = memset_s(worst_latencies_ns, latencies_size, 0, latencies_size); + if (ret) errc(EX_OSERR, ret, "memset_s latencies"); + + worst_latencies_from_first_ns = (uint64_t*) valloc(latencies_size); + assert(worst_latencies_from_first_ns); + + /* Ensure the allocation is pre-faulted */ + ret = memset_s(worst_latencies_from_first_ns, latencies_size, 0, latencies_size); + if (ret) errc(EX_OSERR, ret, "memset_s latencies_from_first"); + + kr = semaphore_create(mach_task_self(), &g_main_sem, SYNC_POLICY_FIFO, 0); + mach_assert_zero(kr); /* Either one big semaphore or one per thread */ - if (g_waketype == WAKE_CHAIN || g_waketype == WAKE_BROADCAST_PERTHREAD) { - g_semarr = malloc(sizeof(semaphore_t) * g_numthreads); - assert(g_semarr != NULL, fail); + if (g_waketype == WAKE_CHAIN || + g_waketype == WAKE_BROADCAST_PERTHREAD || + g_waketype == WAKE_HOP) { + + g_semarr = valloc(sizeof(semaphore_t) * g_numthreads); + assert(g_semarr); - for (i = 0; i < g_numthreads; i++) { - res = semaphore_create(mach_task_self(), &g_semarr[i], SYNC_POLICY_FIFO, 0); - assert(res == KERN_SUCCESS, fail); + for (uint32_t i = 0; i < g_numthreads; i++) { + kr = semaphore_create(mach_task_self(), &g_semarr[i], SYNC_POLICY_FIFO, 0); + mach_assert_zero(kr); } - + g_leadersem = g_semarr[0]; } else { - res = semaphore_create(mach_task_self(), &g_machsem, SYNC_POLICY_FIFO, 0); - assert(res == KERN_SUCCESS, fail); - res = semaphore_create(mach_task_self(), &g_leadersem, SYNC_POLICY_FIFO, 0); - assert(res == KERN_SUCCESS, fail); + kr = semaphore_create(mach_task_self(), &g_broadcastsem, SYNC_POLICY_FIFO, 0); + mach_assert_zero(kr); + kr = semaphore_create(mach_task_self(), &g_leadersem, SYNC_POLICY_FIFO, 0); + mach_assert_zero(kr); } + if (g_waketype == WAKE_HOP) { + kr = semaphore_create(mach_task_self(), &g_donesem, SYNC_POLICY_FIFO, 0); + mach_assert_zero(kr); + } + + kr = semaphore_create(mach_task_self(), &g_readysem, SYNC_POLICY_FIFO, 0); + mach_assert_zero(kr); + /* Create the threads */ g_done_threads = 0; - for (i = 0; i < g_numthreads; i++) { - res = pthread_create(&threads[i], NULL, child_thread_func, (void*)(uintptr_t)i); - assert(res == 0, fail); + for (uint32_t i = 0; i < g_numthreads; i++) { + ret = pthread_create(&threads[i], NULL, worker_thread, (void*)(uintptr_t)i); + if (ret) errc(EX_OSERR, ret, "pthread_create %d", i); } + ret = setpriority(PRIO_DARWIN_ROLE, 0, PRIO_DARWIN_ROLE_UI_FOCAL); + if (ret) errc(EX_OSERR, ret, "setpriority"); + + thread_setup(0); + /* Let everyone get settled */ - semaphore_wait(g_main_sem); - sleep(1); + kr = semaphore_wait(g_main_sem); + mach_assert_zero(kr); + + /* Give the system a bit more time to settle */ + if (g_do_sleep) + usleep(g_iteration_sleeptime_us); /* Go! */ - for (i = 0; i < g_iterations; i++) { - int j; + for (uint32_t i = 0; i < g_iterations; i++) { + uint32_t j; uint64_t worst_abs = 0, best_abs = UINT64_MAX; + if (g_do_one_long_spin) + g_one_long_spin_id = (uint32_t)rand() % g_numthreads; + + debug_log("%d Main thread reset\n", i); + g_done_threads = 0; OSMemoryBarrier(); g_starttime_abs = mach_absolute_time(); - /* Fire them off */ - semaphore_signal(g_leadersem); + /* Fire them off and wait for worker threads to finish */ + kr = semaphore_wait_signal(g_main_sem, g_leadersem); + mach_assert_zero(kr); - /* Wait for worker threads to finish */ - semaphore_wait(g_main_sem); - assert(res == KERN_SUCCESS, fail); + debug_log("%d Main thread return\n", i); - /* + /* * We report the worst latencies relative to start time * and relative to the lead worker thread. */ for (j = 0; j < g_numthreads; j++) { uint64_t latency_abs; - + latency_abs = g_thread_endtimes_abs[j] - g_starttime_abs; worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; } @@ -530,25 +621,23 @@ main(int argc, char **argv) /* * In the event of a bad run, cut a trace point. */ - if (worst_latencies_from_first_ns[i] > traceworthy_latency_ns) { - int _tmp; + if (worst_latencies_from_first_ns[i] > g_traceworthy_latency_ns) { + /* Ariadne's ad-hoc test signpost */ + kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns[i], g_traceworthy_latency_ns, 0, 0); - if (g_verbose) { + if (g_verbose) printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns[i]) / 1000.0); - } - - _tmp = syscall(SYS_kdebug_trace, 0xEEEEEEEE, 0, 0, 0, 0); } - /* Let worker threads get back to sleep... */ - usleep(g_numthreads * 10); + /* Give the system a bit more time to settle */ + if (g_do_sleep) + usleep(g_iteration_sleeptime_us); } /* Rejoin threads */ - last_end = 0; - for (i = 0; i < g_numthreads; i++) { - res = pthread_join(threads[i], NULL); - assert(res == 0, fail); + for (uint32_t i = 0; i < g_numthreads; i++) { + ret = pthread_join(threads[i], NULL); + if (ret) errc(EX_OSERR, ret, "pthread_join %d", i); } compute_stats(worst_latencies_ns, g_iterations, &avg, &max, &min, &stddev); @@ -568,12 +657,165 @@ main(int argc, char **argv) printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); #if 0 - for (i = 0; i < g_iterations; i++) { + for (uint32_t i = 0; i < g_iterations; i++) { printf("Iteration %d: %f us\n", i, worst_latencies_ns[i] / 1000.0); } -#endif +#endif + + free(threads); + free(g_thread_endtimes_abs); + free(worst_latencies_ns); + free(worst_latencies_from_first_ns); return 0; -fail: - return 1; } + +/* + * WARNING: This is SPI specifically intended for use by launchd to start UI + * apps. We use it here for a test tool only to opt into QoS using the same + * policies. Do not use this outside xnu or libxpc/launchd. + */ +static void +selfexec_with_apptype(int argc, char *argv[]) +{ + int ret; + posix_spawnattr_t attr; + extern char **environ; + char *new_argv[argc + 1 + 1 /* NULL */]; + int i; + char prog[PATH_MAX]; + uint32_t prog_size = PATH_MAX; + + ret = _NSGetExecutablePath(prog, &prog_size); + if (ret) err(EX_OSERR, "_NSGetExecutablePath"); + + for (i=0; i < argc; i++) { + new_argv[i] = argv[i]; + } + + new_argv[i] = "--switched_apptype"; + new_argv[i+1] = NULL; + + ret = posix_spawnattr_init(&attr); + if (ret) errc(EX_OSERR, ret, "posix_spawnattr_init"); + + ret = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETEXEC); + if (ret) errc(EX_OSERR, ret, "posix_spawnattr_setflags"); + + ret = posix_spawnattr_setprocesstype_np(&attr, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT); + if (ret) errc(EX_OSERR, ret, "posix_spawnattr_setprocesstype_np"); + + ret = posix_spawn(NULL, prog, NULL, &attr, new_argv, environ); + if (ret) errc(EX_OSERR, ret, "posix_spawn"); +} + +/* + * Admittedly not very attractive. + */ +static void __attribute__((noreturn)) +usage() +{ + errx(EX_USAGE, "Usage: zn " + " [--trace ] " + "[--spin-one] [--spin-all] [--spin-time ] [--affinity] [--no-sleep] [--verbose]"); +} + +static void +parse_args(int argc, char *argv[]) +{ + int ch, option_index = 0; + char *cp; + + static struct option longopts[] = { + { "spin-time", required_argument, NULL, 2 }, + { "trace", required_argument, NULL, 3 }, + { "switched_apptype", no_argument, (int*)&g_seen_apptype, TRUE }, + { "spin-one", no_argument, (int*)&g_do_one_long_spin, TRUE }, + { "spin-all", no_argument, (int*)&g_do_all_spin, TRUE }, + { "affinity", no_argument, (int*)&g_do_affinity, TRUE }, + { "no-sleep", no_argument, (int*)&g_do_sleep, FALSE }, + { "verbose", no_argument, (int*)&g_verbose, TRUE }, + { "help", no_argument, NULL, 'h' }, + { NULL, 0, NULL, 0 } + }; + + while ((ch = getopt_long(argc, argv, "h", longopts, &option_index)) != -1) { + switch (ch) { + case 0: + /* getopt_long set a variable */ + break; + case 2: + /* spin-time */ + g_do_each_spin = TRUE; + g_each_spin_duration_ns = strtoull(optarg, &cp, 10); + + if (cp == optarg || *cp) + errx(EX_USAGE, "arg --%s requires a decimal number, found \"%s\"", + longopts[option_index].name, optarg); + break; + case 3: + /* trace */ + g_traceworthy_latency_ns = strtoull(optarg, &cp, 10); + + if (cp == optarg || *cp) + errx(EX_USAGE, "arg --%s requires a decimal number, found \"%s\"", + longopts[option_index].name, optarg); + break; + case '?': + case 'h': + default: + usage(); + /* NORETURN */ + } + } + + /* + * getopt_long reorders all the options to the beginning of the argv array. + * Jump past them to the non-option arguments. + */ + + argc -= optind; + argv += optind; + + if (argc > 4) { + warnx("Too many non-option arguments passed"); + usage(); + } + + if (argc != 4) { + warnx("Missing required arguments"); + usage(); + } + + /* How many threads? */ + g_numthreads = (uint32_t)strtoull(argv[0], &cp, 10); + + if (cp == argv[0] || *cp) + errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[0]); + + if (g_numthreads < 1) + errx(EX_USAGE, "Must use at least one thread"); + + /* What wakeup pattern? */ + g_waketype = parse_wakeup_pattern(argv[1]); + + /* Policy */ + g_policy = parse_thread_policy(argv[2]); + + /* Iterations */ + g_iterations = (uint32_t)strtoull(argv[3], &cp, 10); + + if (cp == argv[3] || *cp) + errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[3]); + + if (g_iterations < 1) + errx(EX_USAGE, "Must have at least one iteration"); + + if (g_numthreads == 1 && g_waketype == WAKE_CHAIN) + errx(EX_USAGE, "chain mode requires more than one thread"); + + if (g_numthreads == 1 && g_waketype == WAKE_HOP) + errx(EX_USAGE, "hop mode requires more than one thread"); +} + +