X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/5d5c5d0d5b79ade9a973d55186ffda2638ba2b6e..e2fac8b15b12a7979f72090454d850e612fc5b13:/osfmk/chud/i386/chud_thread_i386.c?ds=inline diff --git a/osfmk/chud/i386/chud_thread_i386.c b/osfmk/chud/i386/chud_thread_i386.c index 6cd0d18d8..c2b36c794 100644 --- a/osfmk/chud/i386/chud_thread_i386.c +++ b/osfmk/chud/i386/chud_thread_i386.c @@ -1,31 +1,29 @@ /* - * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2003-2007 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * This file contains Original Code and/or Modifications of Original Code - * as defined in and that are subject to the Apple Public Source License - * Version 2.0 (the 'License'). You may not use this file except in - * compliance with the License. The rights granted to you under the - * License may not be used to create, or enable the creation or - * redistribution of, unlawful or unlicensed copies of an Apple operating - * system, or to circumvent, violate, or enable the circumvention or - * violation of, any terms of an Apple operating system software license - * agreement. - * - * Please obtain a copy of the License at - * http://www.opensource.apple.com/apsl/ and read it before using this - * file. - * - * The Original Code and all software distributed under the License are - * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER - * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, - * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. - * Please see the License for the specific language governing rights and + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and * limitations under the License. - * - * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include @@ -57,11 +55,11 @@ chudxnu_thread_user_state_available(thread_t thread) __private_extern__ kern_return_t chudxnu_thread_get_state( - thread_t thread, - thread_flavor_t flavor, - thread_state_t tstate, - mach_msg_type_number_t *count, - boolean_t user_only) + thread_t thread, + thread_flavor_t flavor, + thread_state_t tstate, + mach_msg_type_number_t *count, + boolean_t user_only) { if (user_only) { /* We can't get user state for kernel threads */ @@ -73,7 +71,7 @@ chudxnu_thread_get_state( // i386 machine_thread_get_kern_state() is different from the PPC version which returns // the previous save area - user or kernel - rather than kernel or NULL if no kernel // interrupt state available - + // the real purpose of this branch is the following: // the user doesn't care if the thread states are user or kernel, he // just wants the thread state, so we need to determine the proper one @@ -83,7 +81,7 @@ chudxnu_thread_get_state( // state. we still need to determine if this interrupt happened in // kernel or user context if(USER_STATE(thread) == current_cpu_datap()->cpu_int_state && - current_cpu_datap()->cpu_interrupt_level == 1) { + current_cpu_datap()->cpu_interrupt_level == 1) { // interrupt happened in user land return machine_thread_get_state(thread, flavor, tstate, count); } else { @@ -99,32 +97,39 @@ chudxnu_thread_get_state( __private_extern__ kern_return_t chudxnu_thread_set_state( - thread_t thread, - thread_flavor_t flavor, - thread_state_t tstate, - mach_msg_type_number_t count, - boolean_t user_only) + thread_t thread, + thread_flavor_t flavor, + thread_state_t tstate, + mach_msg_type_number_t count, + boolean_t user_only) { #pragma unused (user_only) return machine_thread_set_state(thread, flavor, tstate, count); } #pragma mark **** task memory read/write **** - + __private_extern__ kern_return_t chudxnu_task_read( - task_t task, - void *kernaddr, - uint64_t usraddr, - vm_size_t size) + task_t task, + void *kernaddr, + uint64_t usraddr, + vm_size_t size) { kern_return_t ret = KERN_SUCCESS; - - if(current_task()==task) { - if(ml_at_interrupt_context()) { - return KERN_FAILURE; // can't do copyin on interrupt stack - } + boolean_t old_level; + + if(ml_at_interrupt_context()) { + return KERN_FAILURE; // Can't look at tasks on interrupt stack + } + + /* + * pmap layer requires interrupts to be on + */ + old_level = ml_set_interrupts_enabled(TRUE); + if(current_task()==task) { + if(copyin(usraddr, kernaddr, size)) { ret = KERN_FAILURE; } @@ -133,23 +138,32 @@ chudxnu_task_read( ret = vm_map_read_user(map, usraddr, kernaddr, size); } + ml_set_interrupts_enabled(old_level); + return ret; } - + __private_extern__ kern_return_t chudxnu_task_write( - task_t task, - uint64_t useraddr, - void *kernaddr, - vm_size_t size) + task_t task, + uint64_t useraddr, + void *kernaddr, + vm_size_t size) { kern_return_t ret = KERN_SUCCESS; - - if(current_task()==task) { - if(ml_at_interrupt_context()) { - return KERN_FAILURE; // can't do copyout on interrupt stack - } + boolean_t old_level; + if(ml_at_interrupt_context()) { + return KERN_FAILURE; // can't poke into tasks on interrupt stack + } + + /* + * pmap layer requires interrupts to be on + */ + old_level = ml_set_interrupts_enabled(TRUE); + + if(current_task()==task) { + if(copyout(kernaddr, useraddr, size)) { ret = KERN_FAILURE; } @@ -157,102 +171,34 @@ chudxnu_task_write( vm_map_t map = get_task_map(task); ret = vm_map_write_user(map, kernaddr, useraddr, size); } - + + ml_set_interrupts_enabled(old_level); + return ret; } __private_extern__ kern_return_t chudxnu_kern_read(void *dstaddr, vm_offset_t srcaddr, vm_size_t size) { - while(size>0) { - ppnum_t pp; - addr64_t phys_addr; - - /* Get the page number */ - pp = pmap_find_phys(kernel_pmap, srcaddr); - if(!pp) { - return KERN_FAILURE; /* Not mapped... */ - } - - /* Shove in the page offset */ - phys_addr = ((addr64_t)pp << 12) | - (srcaddr & 0x0000000000000FFFULL); - if(phys_addr >= mem_actual) { - return KERN_FAILURE; /* out of range */ - } - - if((phys_addr&0x1) || size==1) { - *((uint8_t *)dstaddr) = - ml_phys_read_byte_64(phys_addr); - dstaddr = ((uint8_t *)dstaddr) + 1; - srcaddr += sizeof(uint8_t); - size -= sizeof(uint8_t); - } else if((phys_addr&0x3) || size<=2) { - *((uint16_t *)dstaddr) = - ml_phys_read_half_64(phys_addr); - dstaddr = ((uint16_t *)dstaddr) + 1; - srcaddr += sizeof(uint16_t); - size -= sizeof(uint16_t); - } else { - *((uint32_t *)dstaddr) = - ml_phys_read_word_64(phys_addr); - dstaddr = ((uint32_t *)dstaddr) + 1; - srcaddr += sizeof(uint32_t); - size -= sizeof(uint32_t); - } - } - return KERN_SUCCESS; + return (ml_nofault_copy(srcaddr, (vm_offset_t) dstaddr, size) == size ? + KERN_SUCCESS: KERN_FAILURE); } __private_extern__ kern_return_t chudxnu_kern_write( - vm_offset_t dstaddr, - void *srcaddr, - vm_size_t size) + vm_offset_t dstaddr, + void *srcaddr, + vm_size_t size) { - while(size>0) { - ppnum_t pp; - addr64_t phys_addr; - - /* Get the page number */ - pp = pmap_find_phys(kernel_pmap, dstaddr); - if(!pp) { - return KERN_FAILURE; /* Not mapped... */ - } - - /* Shove in the page offset */ - phys_addr = ((addr64_t)pp << 12) | - (dstaddr & 0x0000000000000FFFULL); - if(phys_addr > mem_actual) { - return KERN_FAILURE; /* out of range */ - } - - if((phys_addr&0x1) || size==1) { - ml_phys_write_byte_64(phys_addr, *((uint8_t *)srcaddr)); - srcaddr = ((uint8_t *)srcaddr) + 1; - dstaddr += sizeof(uint8_t); - size -= sizeof(uint8_t); - } else if((phys_addr&0x3) || size<=2) { - ml_phys_write_half_64(phys_addr, *((uint16_t *)srcaddr)); - srcaddr = ((uint16_t *)srcaddr) + 1; - dstaddr += sizeof(uint16_t); - size -= sizeof(uint16_t); - } else { - ml_phys_write_word_64(phys_addr, *((uint32_t *)srcaddr)); - srcaddr = ((uint32_t *)srcaddr) + 1; - dstaddr += sizeof(uint32_t); - size -= sizeof(uint32_t); - } - } - - return KERN_SUCCESS; + return (ml_nofault_copy((vm_offset_t) srcaddr, dstaddr, size) == size ? + KERN_SUCCESS: KERN_FAILURE); } #define VALID_STACK_ADDRESS(supervisor, addr, minKernAddr, maxKernAddr) (supervisor ? (addr>=minKernAddr && addr<=maxKernAddr) : TRUE) // don't try to read in the hole #define VALID_STACK_ADDRESS64(supervisor, addr, minKernAddr, maxKernAddr) \ - (supervisor ? (addr >= minKernAddr && addr <= maxKernAddr) : \ - (addr != 0 && (addr <= 0x00007FFFFFFFFFFFULL || addr >= 0xFFFF800000000000ULL))) +(supervisor ? (addr >= minKernAddr && addr <= maxKernAddr) : \ +(addr != 0 && (addr <= 0x00007FFFFFFFFFFFULL || addr >= 0xFFFF800000000000ULL))) typedef struct _cframe64_t { uint64_t prevFP; // can't use a real pointer here until we're a 64 bit kernel @@ -267,6 +213,164 @@ typedef struct _cframe_t { uint32_t args[0]; } cframe_t; +extern void * find_user_regs(thread_t); +extern x86_saved_state32_t *find_kern_regs(thread_t); + +static kern_return_t do_backtrace32( + task_t task, + thread_t thread, + x86_saved_state32_t *regs, + uint64_t *frames, + mach_msg_type_number_t *start_idx, + mach_msg_type_number_t max_idx, + boolean_t supervisor) +{ + uint32_t tmpWord = 0UL; + uint64_t currPC = (uint64_t) regs->eip; + uint64_t currFP = (uint64_t) regs->ebp; + uint64_t prevPC = 0ULL; + uint64_t prevFP = 0ULL; + uint64_t kernStackMin = thread->kernel_stack; + uint64_t kernStackMax = kernStackMin + KERNEL_STACK_SIZE; + mach_msg_type_number_t ct = *start_idx; + kern_return_t kr = KERN_FAILURE; + + if(ct >= max_idx) + return KERN_RESOURCE_SHORTAGE; // no frames traced + + frames[ct++] = currPC; + + // build a backtrace of this 32 bit state. + while(VALID_STACK_ADDRESS(supervisor, currFP, kernStackMin, kernStackMax)) { + cframe_t *fp = (cframe_t *) (uint32_t) currFP; + + if(!currFP) { + currPC = 0; + break; + } + + if(ct >= max_idx) { + *start_idx = ct; + return KERN_RESOURCE_SHORTAGE; + } + + /* read our caller */ + if(supervisor) { + kr = chudxnu_kern_read(&tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); + } else { + kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); + } + + if(kr != KERN_SUCCESS) { + currPC = 0ULL; + break; + } + + currPC = (uint64_t) tmpWord; // promote 32 bit address + + /* + * retrive contents of the frame pointer and advance to the next stack + * frame if it's valid + */ + prevFP = 0; + if(supervisor) { + kr = chudxnu_kern_read(&tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); + } else { + kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); + } + prevFP = (uint64_t) tmpWord; // promote 32 bit address + + if(prevFP) { + frames[ct++] = currPC; + prevPC = currPC; + } + if(prevFP < currFP) { + break; + } else { + currFP = prevFP; + } + } + + *start_idx = ct; + return KERN_SUCCESS; +} + +static kern_return_t do_backtrace64( + task_t task, + thread_t thread, + x86_saved_state64_t *regs, + uint64_t *frames, + mach_msg_type_number_t *start_idx, + mach_msg_type_number_t max_idx, + boolean_t supervisor) +{ + uint64_t currPC = regs->isf.rip; + uint64_t currFP = regs->rbp; + uint64_t prevPC = 0ULL; + uint64_t prevFP = 0ULL; + uint64_t kernStackMin = (uint64_t)thread->kernel_stack; + uint64_t kernStackMax = (uint64_t)kernStackMin + KERNEL_STACK_SIZE; + mach_msg_type_number_t ct = *start_idx; + kern_return_t kr = KERN_FAILURE; + + if(*start_idx >= max_idx) + return KERN_RESOURCE_SHORTAGE; // no frames traced + + frames[ct++] = currPC; + + // build a backtrace of this 32 bit state. + while(VALID_STACK_ADDRESS64(supervisor, currFP, kernStackMin, kernStackMax)) { + // this is the address where caller lives in the user thread + uint64_t caller = currFP + sizeof(uint64_t); + + if(!currFP) { + currPC = 0; + break; + } + + if(ct >= max_idx) { + *start_idx = ct; + return KERN_RESOURCE_SHORTAGE; + } + + /* read our caller */ + if(supervisor) { + kr = KERN_FAILURE; + } else { + kr = chudxnu_task_read(task, &currPC, caller, sizeof(uint64_t)); + } + + if(kr != KERN_SUCCESS) { + currPC = 0ULL; + break; + } + + /* + * retrive contents of the frame pointer and advance to the next stack + * frame if it's valid + */ + prevFP = 0; + if(supervisor) { + kr = KERN_FAILURE; + } else { + kr = chudxnu_task_read(task, &prevFP, currFP, sizeof(uint64_t)); + } + + if(VALID_STACK_ADDRESS64(supervisor, prevFP, kernStackMin, kernStackMax)) { + frames[ct++] = currPC; + prevPC = currPC; + } + if(prevFP < currFP) { + break; + } else { + currFP = prevFP; + } + } + + *start_idx = ct; + return KERN_SUCCESS; +} + __private_extern__ kern_return_t chudxnu_thread_get_callstack64( thread_t thread, @@ -274,249 +378,177 @@ kern_return_t chudxnu_thread_get_callstack64( mach_msg_type_number_t *count, boolean_t user_only) { - kern_return_t kr = KERN_FAILURE; - kern_return_t ret = KERN_SUCCESS; + kern_return_t kr = KERN_FAILURE; task_t task = thread->task; uint64_t currPC = 0; - uint64_t prevPC = 0; - uint64_t currFP = 0; - uint64_t prevFP = 0; - uint64_t rsp = 0; - uint64_t kernStackMin = min_valid_stack_address(); - uint64_t kernStackMax = max_valid_stack_address(); - uint64_t *buffer = callstack; - int bufferIndex = 0; - int bufferMaxIndex = *count; - boolean_t supervisor = FALSE; - boolean_t is64bit = FALSE; - void * t_regs; - - if (user_only) { - /* We can't get user state for kernel threads */ - if (task == kernel_task) { + boolean_t supervisor = FALSE; + mach_msg_type_number_t bufferIndex = 0; + mach_msg_type_number_t bufferMaxIndex = *count; + x86_saved_state_t *tagged_regs = NULL; // kernel register state + x86_saved_state64_t *regs64 = NULL; + x86_saved_state32_t *regs32 = NULL; + x86_saved_state32_t *u_regs32 = NULL; + x86_saved_state64_t *u_regs64 = NULL; + + if(ml_at_interrupt_context()) { + + if(user_only) { + /* can't backtrace user state on interrupt stack. */ return KERN_FAILURE; } - t_regs = USER_STATE(thread); - - if(is_saved_state64(t_regs)) { - void *int_state = current_cpu_datap()->cpu_int_state; - x86_saved_state64_t *s64 = saved_state64(t_regs); + + /* backtracing at interrupt context? */ + if(thread == current_thread() && current_cpu_datap()->cpu_int_state) { + /* + * Locate the registers for the interrupted thread, assuming it is + * current_thread(). + */ + tagged_regs = current_cpu_datap()->cpu_int_state; - if(int_state) { // are we on an interrupt that happened in user land - supervisor = !(t_regs == int_state && current_cpu_datap()->cpu_interrupt_level == 1); + if(is_saved_state64(tagged_regs)) { + /* 64 bit registers */ + regs64 = saved_state64(tagged_regs); + supervisor = ((regs64->isf.cs & SEL_PL) != SEL_PL_U); } else { - if(s64) { - supervisor = ((s64->isf.cs & SEL_PL) != SEL_PL_U); - } else { - // assume 32 bit kernel - supervisor = FALSE; - } + /* 32 bit registers */ + regs32 = saved_state32(tagged_regs); + supervisor = ((regs32->cs & SEL_PL) != SEL_PL_U); } - is64bit = TRUE; - } else { - x86_saved_state32_t *regs; + } + } - regs = saved_state32(t_regs); - - // find out if we're in supervisor mode - supervisor = ((regs->cs & SEL_PL) != SEL_PL_U); - is64bit = FALSE; + if(!tagged_regs) { + /* + * not at interrupt context, or tracing a different thread than + * current_thread() at interrupt context + */ + tagged_regs = USER_STATE(thread); + if(is_saved_state64(tagged_regs)) { + /* 64 bit registers */ + regs64 = saved_state64(tagged_regs); + supervisor = ((regs64->isf.cs & SEL_PL) != SEL_PL_U); + } else { + /* 32 bit registers */ + regs32 = saved_state32(tagged_regs); + supervisor = ((regs32->cs & SEL_PL) != SEL_PL_U); } - } else { - t_regs = current_cpu_datap()->cpu_int_state; - x86_saved_state32_t *regs; + } - regs = saved_state32(t_regs); - - // find out if we're in supervisor mode - supervisor = ((regs->cs & SEL_PL) != SEL_PL_U); - is64bit = FALSE; - } - - if(is64bit) { - x86_saved_state64_t *regs = saved_state64(t_regs); - + *count = 0; + + if(supervisor) { + // the caller only wants a user callstack. if(user_only) { - /* cant get user state for kernel threads */ - if(task == kernel_task) { - return KERN_FAILURE; - } - regs = USER_REGS64(thread); - } - - currPC = regs->isf.rip; - currFP = regs->rbp; - - if(!currPC) - { - *count = 0; + // bail - we've only got kernel state return KERN_FAILURE; } - - bufferIndex = 0; - - //allot space for saving %rsp on the - //bottom of the stack for user callstacks - if(!supervisor) - bufferMaxIndex = bufferMaxIndex - 1; - - if(bufferMaxIndex < 1) { - *count = 0; - return KERN_RESOURCE_SHORTAGE; + } else { + // regs32(64) is not in supervisor mode. + u_regs32 = regs32; + u_regs64 = regs64; + regs32 = NULL; + regs64 = NULL; + } + + if (user_only) { + /* we only want to backtrace the user mode */ + if(!(u_regs32 || u_regs64)) { + /* no user state to look at */ + return KERN_FAILURE; } - buffer[bufferIndex++] = currPC; // save RIP on the top of the stack - - // now make a 64bit back trace - while (VALID_STACK_ADDRESS64(supervisor, currFP, kernStackMin, kernStackMax)) - { - // this is the address where caller lives in the user thread - uint64_t caller = currFP + sizeof(uint64_t); - if(!currFP) { - currPC = 0; - break; - } - - if(bufferIndex >= bufferMaxIndex) { - *count = bufferMaxIndex; - return KERN_RESOURCE_SHORTAGE; - } + } - /* read our caller */ - kr = chudxnu_task_read(task, &currPC, caller, sizeof(uint64_t)); - - if(kr != KERN_SUCCESS) { - currPC = 0; - break; - } - - /* - * retrive contents of the frame pointer and advance to the next stack - * frame if it's valid - */ - prevFP = 0; - kr = chudxnu_task_read(task, &prevFP, currFP, sizeof(uint64_t)); - - if(kr != KERN_SUCCESS) { - currPC = 0; - break; - } + /* + * Order of preference for top of stack: + * 64 bit kernel state (not likely) + * 32 bit kernel state + * 64 bit user land state + * 32 bit user land state + */ + + if(regs64) { + currPC = regs64->isf.rip; + } else if(regs32) { + currPC = (uint64_t) regs32->eip; + } else if(u_regs64) { + currPC = u_regs64->isf.rip; + } else if(u_regs32) { + currPC = (uint64_t) u_regs32->eip; + } - if(VALID_STACK_ADDRESS64(supervisor, prevFP, kernStackMin, kernStackMax)) { - buffer[bufferIndex++] = currPC; - prevPC = currPC; - } - if(prevFP < currFP) { - break; - } else { - currFP = prevFP; - } - } + if(!currPC) { + /* no top of the stack, bail out */ + return KERN_FAILURE; + } - // append (rsp) on the bottom of the callstack - kr = chudxnu_task_read(task, &rsp, (addr64_t) regs->isf.rsp, sizeof(uint64_t)); - if(kr == KERN_SUCCESS) { - buffer[bufferIndex++] = rsp; - } - } else { - /* !thread_is_64bit() */ - /* we grab 32 bit frames and silently promote them to 64 bits */ - uint32_t tmpWord = 0; - x86_saved_state32_t *regs = NULL; - - if(user_only) { - /* cant get user state for kernel threads */ - if(task == kernel_task || supervisor) { - return 0x11; - } - regs = USER_REGS32(thread); - } else { - regs = saved_state32(current_cpu_datap()->cpu_int_state); - } + bufferIndex = 0; - if(regs == NULL) { - *count = 0; - return 0x12; + if(bufferMaxIndex < 1) { + *count = 0; + return KERN_RESOURCE_SHORTAGE; + } + + /* backtrace kernel */ + if(regs64) { + uint64_t rsp = 0ULL; + + // backtrace the 64bit side. + kr = do_backtrace64(task, thread, regs64, callstack, &bufferIndex, + bufferMaxIndex, TRUE); + + if(KERN_SUCCESS == chudxnu_kern_read(&rsp, (addr64_t) regs64->isf.rsp, sizeof(uint64_t)) && + bufferIndex < bufferMaxIndex) { + callstack[bufferIndex++] = rsp; } - currPC = (uint64_t) regs->eip; - currFP = (uint64_t) regs->ebp; + } else if(regs32) { + uint32_t esp = 0UL; + + // backtrace the 32bit side. + kr = do_backtrace32(task, thread, regs32, callstack, &bufferIndex, + bufferMaxIndex, TRUE); - bufferIndex = 0; - //if(!supervisor) - // bufferMaxIndex = bufferMaxIndex - 1; //allot space for saving %rsp on the stack for user callstacks - if(bufferMaxIndex < 1) { - *count = 0; - return KERN_RESOURCE_SHORTAGE; + if(KERN_SUCCESS == chudxnu_kern_read(&esp, (addr64_t) regs32->uesp, sizeof(uint32_t)) && + bufferIndex < bufferMaxIndex) { + callstack[bufferIndex++] = (uint64_t) esp; } - buffer[bufferIndex++] = currPC; // save EIP on the top of the stack + } else if(u_regs64) { + /* backtrace user land */ + uint64_t rsp = 0ULL; + + kr = do_backtrace64(task, thread, u_regs64, callstack, &bufferIndex, + bufferMaxIndex, FALSE); - // now make a 64bit back trace from 32 bit stack frames - while (VALID_STACK_ADDRESS(supervisor, currFP, kernStackMin, kernStackMax)) - { - cframe_t *fp = (cframe_t *) (uint32_t) currFP; + if(KERN_SUCCESS == chudxnu_task_read(task, &rsp, (addr64_t) u_regs64->isf.rsp, sizeof(uint64_t)) && + bufferIndex < bufferMaxIndex) { + callstack[bufferIndex++] = rsp; + } - if(bufferIndex >= bufferMaxIndex) { - *count = bufferMaxIndex; - return KERN_RESOURCE_SHORTAGE; - } + } else if(u_regs32) { + uint32_t esp = 0UL; + + kr = do_backtrace32(task, thread, u_regs32, callstack, &bufferIndex, + bufferMaxIndex, FALSE); - /* read the next frame */ - if(supervisor) { - kr = chudxnu_kern_read(&tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); - } else { - kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); - } - - if(kr != KERN_SUCCESS) { - currPC = 0; - break; - } - - currPC = (uint64_t) tmpWord; // promote 32 bit address - - /* - * retrive contents of the frame pointer and advance to the next stack - * frame if it's valid - */ - prevFP = 0; - if(supervisor) { - kr = chudxnu_kern_read(&tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); - } else { - kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); - } - prevFP = (uint64_t) tmpWord; // promote 32 bit address - - if(prevFP) { - buffer[bufferIndex++] = currPC; - prevPC = currPC; - } - if(prevFP < currFP) { - break; - } else { - currFP = prevFP; - } + if(KERN_SUCCESS == chudxnu_task_read(task, &esp, (addr64_t) u_regs32->uesp, sizeof(uint32_t)) && + bufferIndex < bufferMaxIndex) { + callstack[bufferIndex++] = (uint64_t) esp; } + } - // append (esp) on the bottom of the callstack - if(!supervisor) { - kr = chudxnu_task_read(task, &tmpWord, regs->uesp, sizeof(uint32_t)); - if(kr == KERN_SUCCESS) { - rsp = (uint64_t) tmpWord; // promote 32 bit address - buffer[bufferIndex++] = rsp; - } - } - } - *count = bufferIndex; - return ret; + return kr; } +#pragma mark **** DEPRECATED **** + +// DEPRECATED __private_extern__ kern_return_t chudxnu_thread_get_callstack( - thread_t thread, - uint32_t *callStack, - mach_msg_type_number_t *count, - boolean_t user_only) + thread_t thread, + uint32_t *callStack, + mach_msg_type_number_t *count, + boolean_t user_only) { kern_return_t kr; task_t task = thread->task; @@ -525,14 +557,14 @@ chudxnu_thread_get_callstack( uint32_t prevFP = 0; uint32_t prevPC = 0; uint32_t esp = 0; - uint32_t kernStackMin = min_valid_stack_address(); - uint32_t kernStackMax = max_valid_stack_address(); + uint32_t kernStackMin = thread->kernel_stack; + uint32_t kernStackMax = kernStackMin + KERNEL_STACK_SIZE; uint32_t *buffer = callStack; int bufferIndex = 0; int bufferMaxIndex = *count; boolean_t supervisor; x86_saved_state32_t *regs = NULL; - + if (user_only) { /* We can't get user state for kernel threads */ if (task == kernel_task) { @@ -542,7 +574,7 @@ chudxnu_thread_get_callstack( } else { regs = saved_state32(current_cpu_datap()->cpu_int_state); } - + if (regs == NULL) { *count = 0; return KERN_FAILURE; @@ -561,45 +593,45 @@ chudxnu_thread_get_callstack( return KERN_RESOURCE_SHORTAGE; } buffer[bufferIndex++] = currPC; //save PC in position 0. - + // Now, fill buffer with stack backtraces. while (VALID_STACK_ADDRESS(supervisor, currFP, kernStackMin, kernStackMax)) { cframe_t *fp = (cframe_t *) currFP; - + if (bufferIndex >= bufferMaxIndex) { *count = bufferMaxIndex; return KERN_RESOURCE_SHORTAGE; } - + if (supervisor) { kr = chudxnu_kern_read( - &currPC, - (vm_offset_t) &fp->caller, - sizeof(currPC)); + &currPC, + (vm_offset_t) &fp->caller, + sizeof(currPC)); } else { kr = chudxnu_task_read( - task, - &currPC, - (vm_offset_t) &fp->caller, - sizeof(currPC)); + task, + &currPC, + (vm_offset_t) &fp->caller, + sizeof(currPC)); } if (kr != KERN_SUCCESS) break; - + //retrieve the contents of the frame pointer // and advance to the prev stack frame if it's valid prevFP = 0; if (supervisor) { kr = chudxnu_kern_read( - &prevFP, - (vm_offset_t) &fp->prev, - sizeof(prevFP)); + &prevFP, + (vm_offset_t) &fp->prev, + sizeof(prevFP)); } else { kr = chudxnu_task_read( - task, - &prevFP, - (vm_offset_t) &fp->prev, - sizeof(prevFP)); + task, + &prevFP, + (vm_offset_t) &fp->prev, + sizeof(prevFP)); } if (prevFP) { buffer[bufferIndex++] = currPC; @@ -611,7 +643,7 @@ chudxnu_thread_get_callstack( currFP = prevFP; } } - + // put the stack pointer on the bottom of the backtrace if(!supervisor) { kr = chudxnu_task_read(task, &esp, regs->uesp, sizeof(uint32_t)); @@ -619,41 +651,8 @@ chudxnu_thread_get_callstack( buffer[bufferIndex++] = esp; } } - + *count = bufferIndex; return KERN_SUCCESS; } - -#pragma mark **** DEPRECATED **** - -// DEPRECATED -__private_extern__ -kern_return_t chudxnu_bind_current_thread(int cpu) -{ - return chudxnu_bind_thread(current_thread(), cpu); -} - -// DEPRECATED -kern_return_t chudxnu_unbind_current_thread(void) -{ - return chudxnu_unbind_thread(current_thread()); -} - -// DEPRECATED -__private_extern__ -kern_return_t chudxnu_current_thread_get_callstack( - uint32_t *callStack, - mach_msg_type_number_t *count, - boolean_t user_only) -{ - return chudxnu_thread_get_callstack( - current_thread(), callStack, count, user_only); -} - -// DEPRECATED -__private_extern__ -thread_t chudxnu_current_act(void) -{ - return chudxnu_current_thread(); -}