X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/5c9f46613a83ebfc29a5b1f099448259e96a98f0..a991bd8d3e7fe02dbca0644054bab73c5b75324a:/osfmk/kern/zalloc.c diff --git a/osfmk/kern/zalloc.c b/osfmk/kern/zalloc.c index 0a21dda6a..1ef23d043 100644 --- a/osfmk/kern/zalloc.c +++ b/osfmk/kern/zalloc.c @@ -1,8 +1,8 @@ /* - * Copyright (c) 2000-2016 Apple Inc. All rights reserved. + * Copyright (c) 2000-2020 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ - * + * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in @@ -11,10 +11,10 @@ * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. - * + * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. - * + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -22,34 +22,34 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * + * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ */ -/* +/* * Mach Operating System * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University * All Rights Reserved. - * + * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. - * + * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. - * + * * Carnegie Mellon requests users of this software to return to - * + * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 - * + * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ @@ -62,18 +62,19 @@ * Zone-based memory allocator. A zone is a collection of fixed size * data blocks for which quick allocation/deallocation is possible. */ -#include +#define ZALLOC_ALLOW_DEPRECATED 1 #include #include #include #include #include #include -#include #include +#include #include +#include #include #include #include @@ -84,7 +85,7 @@ #include #include #include -#include +#include #include #include @@ -93,30 +94,250 @@ #include #include #include +#include /* C_SLOT_PACKED_PTR* */ #include #include #include /* ml_cpu_get_info */ +#include + #include #include +#include #include #include +#if KASAN_ZALLOC +#define ZONE_ENABLE_LOGGING 0 +#elif DEBUG || DEVELOPMENT +#define ZONE_ENABLE_LOGGING 1 +#else +#define ZONE_ENABLE_LOGGING 0 +#endif + +extern void vm_pageout_garbage_collect(int collect); + +/* Returns pid of the task with the largest number of VM map entries. */ +extern pid_t find_largest_process_vm_map_entries(void); + /* - * ZONE_ALIAS_ADDR (deprecated) + * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills. + * For any other pid we try to kill that process synchronously. */ +extern boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid); -#define from_zone_map(addr, size) \ - ((vm_offset_t)(addr) >= zone_map_min_address && \ - ((vm_offset_t)(addr) + size - 1) < zone_map_max_address ) +extern zone_t vm_map_entry_zone; +extern zone_t vm_object_zone; +extern vm_offset_t kmapoff_kaddr; +extern unsigned int kmapoff_pgcnt; +extern unsigned int stack_total; +extern unsigned long long stack_allocs; + +/* + * The max # of elements in a chunk should fit into + * zone_page_metadata.free_count (uint16_t). + * + * Update this if the type of free_count changes. + */ +#define ZONE_CHUNK_MAXELEMENTS (UINT16_MAX) + +#define ZONE_PAGECOUNT_BITS 14 + +/* Zone elements must fit both a next pointer and a backup pointer */ +#define ZONE_MIN_ELEM_SIZE (2 * sizeof(vm_offset_t)) +#define ZONE_MAX_ALLOC_SIZE (32 * 1024) + +/* per-cpu zones are special because of counters */ +#define ZONE_MIN_PCPU_ELEM_SIZE (1 * sizeof(vm_offset_t)) + +struct zone_map_range { + vm_offset_t min_address; + vm_offset_t max_address; +}; + +struct zone_page_metadata { + /* The index of the zone this metadata page belongs to */ + zone_id_t zm_index; + + /* + * zm_secondary_page == 0: number of pages in this run + * zm_secondary_page == 1: offset to the chunk start + */ + uint16_t zm_page_count : ZONE_PAGECOUNT_BITS; + + /* Whether this page is part of a chunk run */ + uint16_t zm_percpu : 1; + uint16_t zm_secondary_page : 1; + + /* + * The start of the freelist can be maintained as a 16-bit + * offset instead of a pointer because the free elements would + * be at max ZONE_MAX_ALLOC_SIZE bytes away from the start + * of the allocation chunk. + * + * Offset from start of the allocation chunk to free element + * list head. + */ + uint16_t zm_freelist_offs; + + /* + * zm_secondary_page == 0: number of allocated elements in the chunk + * zm_secondary_page == 1: unused + * + * PAGE_METADATA_EMPTY_FREELIST indicates an empty freelist + */ + uint16_t zm_alloc_count; +#define PAGE_METADATA_EMPTY_FREELIST UINT16_MAX + + zone_pva_t zm_page_next; + zone_pva_t zm_page_prev; + + /* + * This is only for the sake of debuggers + */ +#define ZONE_FOREIGN_COOKIE 0x123456789abcdef + uint64_t zm_foreign_cookie[]; +}; + + +/* Align elements that use the zone page list to 32 byte boundaries. */ +#define ZONE_PAGE_FIRST_OFFSET(kind) ((kind) == ZONE_ADDR_NATIVE ? 0 : 32) + +static_assert(sizeof(struct zone_page_metadata) == 16, "validate packing"); + +static __security_const_late struct { + struct zone_map_range zi_map_range; + struct zone_map_range zi_general_range; + struct zone_map_range zi_meta_range; + struct zone_map_range zi_foreign_range; + + /* + * The metadata lives within the zi_meta_range address range. + * + * The correct formula to find a metadata index is: + * absolute_page_index - page_index(zi_meta_range.min_address) + * + * And then this index is used to dereference zi_meta_range.min_address + * as a `struct zone_page_metadata` array. + * + * To avoid doing that substraction all the time in the various fast-paths, + * zi_array_base is offset by `page_index(zi_meta_range.min_address)` + * to avoid redoing that math all the time. + */ + struct zone_page_metadata *zi_array_base; +} zone_info; + +/* + * The zone_locks_grp allows for collecting lock statistics. + * All locks are associated to this group in zinit. + * Look at tools/lockstat for debugging lock contention. + */ +LCK_GRP_DECLARE(zone_locks_grp, "zone_locks"); +LCK_MTX_EARLY_DECLARE(zone_metadata_region_lck, &zone_locks_grp); + +/* + * Exclude more than one concurrent garbage collection + */ +LCK_GRP_DECLARE(zone_gc_lck_grp, "zone_gc"); +LCK_MTX_EARLY_DECLARE(zone_gc_lock, &zone_gc_lck_grp); + +boolean_t panic_include_zprint = FALSE; +mach_memory_info_t *panic_kext_memory_info = NULL; +vm_size_t panic_kext_memory_size = 0; + +/* + * Protects zone_array, num_zones, num_zones_in_use, and + * zone_destroyed_bitmap + */ +static SIMPLE_LOCK_DECLARE(all_zones_lock, 0); +static unsigned int num_zones_in_use; +unsigned int _Atomic num_zones; +SECURITY_READ_ONLY_LATE(unsigned int) zone_view_count; + +#if KASAN_ZALLOC +#define MAX_ZONES 566 +#else /* !KASAN_ZALLOC */ +#define MAX_ZONES 402 +#endif/* !KASAN_ZALLOC */ +struct zone zone_array[MAX_ZONES]; + +/* Initialized in zone_bootstrap(), how many "copies" the per-cpu system does */ +static SECURITY_READ_ONLY_LATE(unsigned) zpercpu_early_count; + +/* Used to keep track of destroyed slots in the zone_array */ +static bitmap_t zone_destroyed_bitmap[BITMAP_LEN(MAX_ZONES)]; + +/* number of pages used by all zones */ +static long _Atomic zones_phys_page_count; + +/* number of zone mapped pages used by all zones */ +static long _Atomic zones_phys_page_mapped_count; + +/* + * Turn ZSECURITY_OPTIONS_STRICT_IOKIT_FREE off on x86 so as not + * not break third party kexts that haven't yet been recompiled + * to use the new iokit macros. + */ +#if XNU_TARGET_OS_OSX && __x86_64__ +#define ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT 0 +#else +#define ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT \ + ZSECURITY_OPTIONS_STRICT_IOKIT_FREE +#endif + +#define ZSECURITY_DEFAULT ( \ + ZSECURITY_OPTIONS_SEQUESTER | \ + ZSECURITY_OPTIONS_SUBMAP_USER_DATA | \ + ZSECURITY_OPTIONS_SEQUESTER_KEXT_KALLOC | \ + ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT | \ + 0) +TUNABLE(zone_security_options_t, zsecurity_options, "zs", ZSECURITY_DEFAULT); + +#if VM_MAX_TAG_ZONES +/* enable tags for zones that ask for it */ +TUNABLE(bool, zone_tagging_on, "-zt", false); +#endif /* VM_MAX_TAG_ZONES */ + +#if DEBUG || DEVELOPMENT +TUNABLE(bool, zalloc_disable_copyio_check, "-no-copyio-zalloc-check", false); +__options_decl(zalloc_debug_t, uint32_t, { + ZALLOC_DEBUG_ZONEGC = 0x00000001, + ZALLOC_DEBUG_ZCRAM = 0x00000002, +}); + +TUNABLE(zalloc_debug_t, zalloc_debug, "zalloc_debug", 0); +#endif /* DEBUG || DEVELOPMENT */ +#if CONFIG_ZLEAKS +/* Making pointer scanning leaks detection possible for all zones */ +TUNABLE(bool, zone_leaks_scan_enable, "-zl", false); +#else +#define zone_leaks_scan_enable false +#endif + +/* + * Async allocation of zones + * This mechanism allows for bootstrapping an empty zone which is setup with + * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call + * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free. + * This will prime the zone for the next use. + * + * Currently the thread_callout function (zalloc_async) will loop through all zones + * looking for any zone with async_pending set and do the work for it. + * + * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call, + * then zalloc_noblock to an empty zone may succeed. + */ +static void zalloc_async(thread_call_param_t p0, thread_call_param_t p1); +static thread_call_data_t call_async_alloc; +static void zcram_and_lock(zone_t zone, vm_offset_t newmem, vm_size_t size); /* * Zone Corruption Debugging * - * We use three techniques to detect modification of a zone element + * We use four techniques to detect modification of a zone element * after it's been freed. * * (1) Check the freelist next pointer for sanity. @@ -129,14 +350,18 @@ * no part of the element has been modified while it was on the freelist. * This will also help catch read-after-frees, as code will now dereference * 0xdeadbeef instead of a valid but freed pointer. + * (4) If the zfree_clear_mem flag is set clear the element on free and + * assert that it is still clear when alloc-ed. * * (1) and (2) occur for every allocation and free to a zone. * This is done to make it slightly more difficult for an attacker to * manipulate the freelist to behave in a specific way. * - * Poisoning (3) occurs periodically for every N frees (counted per-zone) - * and on every free for zones smaller than a cacheline. If -zp - * is passed as a boot arg, poisoning occurs for every free. + * Poisoning (3) occurs periodically for every N frees (counted per-zone). + * If -zp is passed as a boot arg, poisoning occurs for every free. + * + * Zeroing (4) is done for those zones that pass the ZC_ZFREE_CLEARMEM + * flag on creation or if the element size is less than one cacheline. * * Performance slowdown is inversely proportional to the frequency of poisoning, * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32 @@ -162,420 +387,693 @@ * */ -/* Returns TRUE if we rolled over the counter at factor */ -static inline boolean_t -sample_counter(volatile uint32_t * count_p, uint32_t factor) -{ - uint32_t old_count, new_count; - boolean_t rolled_over; - - do { - new_count = old_count = *count_p; - - if (++new_count >= factor) { - rolled_over = TRUE; - new_count = 0; - } else { - rolled_over = FALSE; - } - - } while (!OSCompareAndSwap(old_count, new_count, count_p)); - - return rolled_over; -} - -#if defined(__LP64__) -#define ZP_POISON 0xdeadbeefdeadbeef -#else -#define ZP_POISON 0xdeadbeef -#endif - #define ZP_DEFAULT_SAMPLING_FACTOR 16 #define ZP_DEFAULT_SCALE_FACTOR 4 /* - * A zp_factor of 0 indicates zone poisoning is disabled, - * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline). - * Passing the -no-zp boot-arg disables even this behavior. - * In all cases, we record and check the integrity of a backup pointer. + * set by zp-factor=N boot arg + * + * A zp_factor of 0 indicates zone poisoning is disabled and can also be set by + * passing the -no-zp boot-arg. + * + * A zp_factor of 1 indicates zone poisoning is on for all elements and can be + * set by passing the -zp boot-arg. */ - -/* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */ -uint32_t zp_factor = 0; +static TUNABLE(uint32_t, zp_factor, "zp-factor", ZP_DEFAULT_SAMPLING_FACTOR); /* set by zp-scale=N boot arg, scales zp_factor by zone size */ -uint32_t zp_scale = 0; +static TUNABLE(uint32_t, zp_scale, "zp-scale", ZP_DEFAULT_SCALE_FACTOR); -/* set in zp_init, zero indicates -no-zp boot-arg */ -vm_size_t zp_tiny_zone_limit = 0; +/* initialized to a per-boot random value in zp_bootstrap */ +static SECURITY_READ_ONLY_LATE(uintptr_t) zp_poisoned_cookie; +static SECURITY_READ_ONLY_LATE(uintptr_t) zp_nopoison_cookie; +static SECURITY_READ_ONLY_LATE(uintptr_t) zp_min_size; +static SECURITY_READ_ONLY_LATE(uint64_t) zone_phys_mapped_max; -/* initialized to a per-boot random value in zp_init */ -uintptr_t zp_poisoned_cookie = 0; -uintptr_t zp_nopoison_cookie = 0; - -#if VM_MAX_TAG_ZONES -boolean_t zone_tagging_on; -#endif /* VM_MAX_TAG_ZONES */ +static SECURITY_READ_ONLY_LATE(vm_map_t) zone_submaps[Z_SUBMAP_IDX_COUNT]; +static SECURITY_READ_ONLY_LATE(uint32_t) zone_last_submap_idx; static struct bool_gen zone_bool_gen; +static zone_t zone_find_largest(void); +static void zone_drop_free_elements(zone_t z); + +#define submap_for_zone(z) zone_submaps[(z)->submap_idx] +#define MAX_SUBMAP_NAME 16 +/* Globals for random boolean generator for elements in free list */ +#define MAX_ENTROPY_PER_ZCRAM 4 + +#if CONFIG_ZCACHE /* - * initialize zone poisoning - * called from zone_bootstrap before any allocations are made from zalloc + * Specifies a single zone to enable CPU caching for. + * Can be set using boot-args: zcc_enable_for_zone_name= */ -static inline void -zp_init(void) -{ - char temp_buf[16]; +static char cache_zone_name[MAX_ZONE_NAME]; +static TUNABLE(bool, zcc_kalloc, "zcc_kalloc", false); - /* - * Initialize backup pointer random cookie for poisoned elements - * Try not to call early_random() back to back, it may return - * the same value if mach_absolute_time doesn't have sufficient time - * to tick over between calls. - * (This is only a problem on embedded devices) - */ - zp_poisoned_cookie = (uintptr_t) early_random(); +__header_always_inline bool +zone_caching_enabled(zone_t z) +{ + return z->zcache.zcc_depot != NULL; +} +#else +__header_always_inline bool +zone_caching_enabled(zone_t z __unused) +{ + return false; +} +#endif /* CONFIG_ZCACHE */ - /* - * Always poison zones smaller than a cacheline, - * because it's pretty close to free - */ - ml_cpu_info_t cpu_info; - ml_cpu_get_info(&cpu_info); - zp_tiny_zone_limit = (vm_size_t) cpu_info.cache_line_size; +#pragma mark Zone metadata - zp_factor = ZP_DEFAULT_SAMPLING_FACTOR; - zp_scale = ZP_DEFAULT_SCALE_FACTOR; +__enum_closed_decl(zone_addr_kind_t, bool, { + ZONE_ADDR_NATIVE, + ZONE_ADDR_FOREIGN, +}); - //TODO: Bigger permutation? - /* - * Permute the default factor +/- 1 to make it less predictable - * This adds or subtracts ~4 poisoned objects per 1000 frees. - */ - if (zp_factor != 0) { - uint32_t rand_bits = early_random() & 0x3; +static inline zone_id_t +zone_index(zone_t z) +{ + return (zone_id_t)(z - zone_array); +} - if (rand_bits == 0x1) - zp_factor += 1; - else if (rand_bits == 0x2) - zp_factor -= 1; - /* if 0x0 or 0x3, leave it alone */ - } +static inline bool +zone_has_index(zone_t z, zone_id_t zid) +{ + return zone_array + zid == z; +} - /* -zp: enable poisoning for every alloc and free */ - if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { - zp_factor = 1; +static inline vm_size_t +zone_elem_count(zone_t zone, vm_size_t alloc_size, zone_addr_kind_t kind) +{ + if (kind == ZONE_ADDR_NATIVE) { + if (zone->percpu) { + return PAGE_SIZE / zone_elem_size(zone); + } + return alloc_size / zone_elem_size(zone); + } else { + assert(alloc_size == PAGE_SIZE); + return (PAGE_SIZE - ZONE_PAGE_FIRST_OFFSET(kind)) / zone_elem_size(zone); } +} - /* -no-zp: disable poisoning completely even for tiny zones */ - if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { - zp_factor = 0; - zp_tiny_zone_limit = 0; - printf("Zone poisoning disabled\n"); - } +__abortlike +static void +zone_metadata_corruption(zone_t zone, struct zone_page_metadata *meta, + const char *kind) +{ + panic("zone metadata corruption: %s (meta %p, zone %s%s)", + kind, meta, zone_heap_name(zone), zone->z_name); +} - /* zp-factor=XXXX: override how often to poison freed zone elements */ - if (PE_parse_boot_argn("zp-factor", &zp_factor, sizeof(zp_factor))) { - printf("Zone poisoning factor override: %u\n", zp_factor); - } +__abortlike +static void +zone_invalid_element_addr_panic(zone_t zone, vm_offset_t addr) +{ + panic("zone element pointer validation failed (addr: %p, zone %s%s)", + (void *)addr, zone_heap_name(zone), zone->z_name); +} - /* zp-scale=XXXX: override how much zone size scales zp-factor by */ - if (PE_parse_boot_argn("zp-scale", &zp_scale, sizeof(zp_scale))) { - printf("Zone poisoning scale factor override: %u\n", zp_scale); - } +__abortlike +static void +zone_page_metadata_index_confusion_panic(zone_t zone, vm_offset_t addr, + struct zone_page_metadata *meta) +{ + panic("%p not in the expected zone %s%s (%d != %d)", + (void *)addr, zone_heap_name(zone), zone->z_name, + meta->zm_index, zone_index(zone)); +} - /* Initialize backup pointer random cookie for unpoisoned elements */ - zp_nopoison_cookie = (uintptr_t) early_random(); +__abortlike +static void +zone_page_metadata_native_queue_corruption(zone_t zone, zone_pva_t *queue) +{ + panic("foreign metadata index %d enqueued in native head %p from zone %s%s", + queue->packed_address, queue, zone_heap_name(zone), + zone->z_name); +} -#if MACH_ASSERT - if (zp_poisoned_cookie == zp_nopoison_cookie) - panic("early_random() is broken: %p and %p are not random\n", - (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie); -#endif +__abortlike +static void +zone_page_metadata_list_corruption(zone_t zone, struct zone_page_metadata *meta) +{ + panic("metadata list corruption through element %p detected in zone %s%s", + meta, zone_heap_name(zone), zone->z_name); +} - /* - * Use the last bit in the backup pointer to hint poisoning state - * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so - * the low bits are zero. - */ - zp_poisoned_cookie |= (uintptr_t)0x1ULL; - zp_nopoison_cookie &= ~((uintptr_t)0x1ULL); +__abortlike +static void +zone_page_metadata_foreign_queue_corruption(zone_t zone, zone_pva_t *queue) +{ + panic("native metadata index %d enqueued in foreign head %p from zone %s%s", + queue->packed_address, queue, zone_heap_name(zone), zone->z_name); +} -#if defined(__LP64__) - /* - * Make backup pointers more obvious in GDB for 64 bit - * by making OxFFFFFF... ^ cookie = 0xFACADE... - * (0xFACADE = 0xFFFFFF ^ 0x053521) - * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011) - * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked - * by the sanity check, so it's OK for that part of the cookie to be predictable. - * - * TODO: Use #defines, xors, and shifts - */ +__abortlike +static void +zone_page_metadata_foreign_confusion_panic(zone_t zone, vm_offset_t addr) +{ + panic("manipulating foreign address %p in a native-only zone %s%s", + (void *)addr, zone_heap_name(zone), zone->z_name); +} - zp_poisoned_cookie &= 0x000000FFFFFFFFFF; - zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */ +__abortlike __unused +static void +zone_invalid_foreign_addr_panic(zone_t zone, vm_offset_t addr) +{ + panic("addr %p being freed to foreign zone %s%s not from foreign range", + (void *)addr, zone_heap_name(zone), zone->z_name); +} - zp_nopoison_cookie &= 0x000000FFFFFFFFFF; - zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */ -#endif +__abortlike +static void +zone_page_meta_accounting_panic(zone_t zone, struct zone_page_metadata *meta, + const char *kind) +{ + panic("accounting mismatch (%s) for zone %s%s, meta %p", kind, + zone_heap_name(zone), zone->z_name, meta); } -/* - * These macros are used to keep track of the number - * of pages being used by the zone currently. The - * z->page_count is not protected by the zone lock. - */ -#define ZONE_PAGE_COUNT_INCR(z, count) \ -{ \ - OSAddAtomic64(count, &(z->page_count)); \ +__abortlike +static void +zone_accounting_panic(zone_t zone, const char *kind) +{ + panic("accounting mismatch (%s) for zone %s%s", kind, + zone_heap_name(zone), zone->z_name); } -#define ZONE_PAGE_COUNT_DECR(z, count) \ -{ \ - OSAddAtomic64(-count, &(z->page_count)); \ +__abortlike +static void +zone_nofail_panic(zone_t zone) +{ + panic("zalloc(Z_NOFAIL) can't be satisfied for zone %s%s (potential leak)", + zone_heap_name(zone), zone->z_name); } -vm_map_t zone_map = VM_MAP_NULL; +#if __arm64__ +// arm64 doesn't use ldp when I'd expect it to +#define zone_range_load(r, rmin, rmax) \ + asm("ldp %[rmin], %[rmax], [%[range]]" \ + : [rmin] "=r"(rmin), [rmax] "=r"(rmax) \ + : [range] "r"(r)) +#else +#define zone_range_load(r, rmin, rmax) \ + ({ rmin = (r)->min_address; rmax = (r)->max_address; }) +#endif -/* for is_sane_zone_element and garbage collection */ +__header_always_inline bool +zone_range_contains(const struct zone_map_range *r, vm_offset_t addr, vm_offset_t size) +{ + vm_offset_t rmin, rmax; -vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */ -vm_offset_t zone_map_max_address = 0; + /* + * The `&` is not a typo: we really expect the check to pass, + * so encourage the compiler to eagerly load and test without branches + */ + zone_range_load(r, rmin, rmax); + return (addr >= rmin) & (addr + size >= rmin) & (addr + size <= rmax); +} -/* Globals for random boolean generator for elements in free list */ -#define MAX_ENTROPY_PER_ZCRAM 4 - -/* VM region for all metadata structures */ -vm_offset_t zone_metadata_region_min = 0; -vm_offset_t zone_metadata_region_max = 0; -decl_lck_mtx_data(static ,zone_metadata_region_lck) -lck_attr_t zone_metadata_lock_attr; -lck_mtx_ext_t zone_metadata_region_lck_ext; - -/* Helpful for walking through a zone's free element list. */ -struct zone_free_element { - struct zone_free_element *next; - /* ... */ - /* void *backup_ptr; */ -}; +__header_always_inline vm_size_t +zone_range_size(const struct zone_map_range *r) +{ + vm_offset_t rmin, rmax; -/* - * Protects zone_array, num_zones, num_zones_in_use, and zone_empty_bitmap - */ -decl_simple_lock_data(, all_zones_lock) -unsigned int num_zones_in_use; -unsigned int num_zones; + zone_range_load(r, rmin, rmax); + return rmax - rmin; +} -#define MAX_ZONES 320 -struct zone zone_array[MAX_ZONES]; +#define from_zone_map(addr, size) \ + zone_range_contains(&zone_info.zi_map_range, (vm_offset_t)(addr), size) -/* Used to keep track of empty slots in the zone_array */ -bitmap_t zone_empty_bitmap[BITMAP_LEN(MAX_ZONES)]; +#define from_general_submap(addr, size) \ + zone_range_contains(&zone_info.zi_general_range, (vm_offset_t)(addr), size) -#if DEBUG || DEVELOPMENT -/* - * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one thread goes through at a time. - * Or we can end up with multiple test zones (if a second zinit() comes through before zdestroy()), which could lead us to - * run out of zones. - */ -decl_simple_lock_data(, zone_test_lock) -static boolean_t zone_test_running = FALSE; -static zone_t test_zone_ptr = NULL; -#endif /* DEBUG || DEVELOPMENT */ +#define from_foreign_range(addr, size) \ + zone_range_contains(&zone_info.zi_foreign_range, (vm_offset_t)(addr), size) -#define PAGE_METADATA_GET_ZINDEX(page_meta) \ - (page_meta->zindex) +#define from_native_meta_map(addr) \ + zone_range_contains(&zone_info.zi_meta_range, (vm_offset_t)(addr), \ + sizeof(struct zone_page_metadata)) -#define PAGE_METADATA_GET_ZONE(page_meta) \ - (&(zone_array[page_meta->zindex])) +#define zone_addr_kind(addr, size) \ + (from_zone_map(addr, size) ? ZONE_ADDR_NATIVE : ZONE_ADDR_FOREIGN) -#define PAGE_METADATA_SET_ZINDEX(page_meta, index) \ - page_meta->zindex = (index); +__header_always_inline bool +zone_pva_is_null(zone_pva_t page) +{ + return page.packed_address == 0; +} -struct zone_page_metadata { - queue_chain_t pages; /* linkage pointer for metadata lists */ - - /* Union for maintaining start of element free list and real metadata (for multipage allocations) */ - union { - /* - * The start of the freelist can be maintained as a 32-bit offset instead of a pointer because - * the free elements would be at max ZONE_MAX_ALLOC_SIZE bytes away from the metadata. Offset - * from start of the allocation chunk to free element list head. - */ - uint32_t freelist_offset; - /* - * This field is used to lookup the real metadata for multipage allocations, where we mark the - * metadata for all pages except the first as "fake" metadata using MULTIPAGE_METADATA_MAGIC. - * Offset from this fake metadata to real metadata of allocation chunk (-ve offset). - */ - uint32_t real_metadata_offset; - }; +__header_always_inline bool +zone_pva_is_queue(zone_pva_t page) +{ + // actual kernel pages have the top bit set + return (int32_t)page.packed_address > 0; +} - /* - * For the first page in the allocation chunk, this represents the total number of free elements in - * the chunk. - */ - uint16_t free_count; - unsigned zindex : ZINDEX_BITS; /* Zone index within the zone_array */ - unsigned page_count : PAGECOUNT_BITS; /* Count of pages within the allocation chunk */ -}; +__header_always_inline bool +zone_pva_is_equal(zone_pva_t pva1, zone_pva_t pva2) +{ + return pva1.packed_address == pva2.packed_address; +} -/* Macro to get page index (within zone_map) of page containing element */ -#define PAGE_INDEX_FOR_ELEMENT(element) \ - (((vm_offset_t)trunc_page(element) - zone_map_min_address) / PAGE_SIZE) +__header_always_inline void +zone_queue_set_head(zone_t z, zone_pva_t queue, zone_pva_t oldv, + struct zone_page_metadata *meta) +{ + zone_pva_t *queue_head = &((zone_pva_t *)zone_array)[queue.packed_address]; -/* Macro to get metadata structure given a page index in zone_map */ -#define PAGE_METADATA_FOR_PAGE_INDEX(index) \ - (zone_metadata_region_min + ((index) * sizeof(struct zone_page_metadata))) + if (!zone_pva_is_equal(*queue_head, oldv)) { + zone_page_metadata_list_corruption(z, meta); + } + *queue_head = meta->zm_page_next; +} -/* Macro to get index (within zone_map) for given metadata */ -#define PAGE_INDEX_FOR_METADATA(page_meta) \ - (((vm_offset_t)page_meta - zone_metadata_region_min) / sizeof(struct zone_page_metadata)) +__header_always_inline zone_pva_t +zone_queue_encode(zone_pva_t *headp) +{ + return (zone_pva_t){ (uint32_t)(headp - (zone_pva_t *)zone_array) }; +} -/* Macro to get page for given page index in zone_map */ -#define PAGE_FOR_PAGE_INDEX(index) \ - (zone_map_min_address + (PAGE_SIZE * (index))) +__header_always_inline zone_pva_t +zone_pva_from_addr(vm_address_t addr) +{ + // cannot use atop() because we want to maintain the sign bit + return (zone_pva_t){ (uint32_t)((intptr_t)addr >> PAGE_SHIFT) }; +} -/* Macro to get the actual metadata for a given address */ -#define PAGE_METADATA_FOR_ELEMENT(element) \ - (struct zone_page_metadata *)(PAGE_METADATA_FOR_PAGE_INDEX(PAGE_INDEX_FOR_ELEMENT(element))) +__header_always_inline vm_address_t +zone_pva_to_addr(zone_pva_t page) +{ + // cause sign extension so that we end up with the right address + return (vm_offset_t)(int32_t)page.packed_address << PAGE_SHIFT; +} -/* Magic value to indicate empty element free list */ -#define PAGE_METADATA_EMPTY_FREELIST ((uint32_t)(~0)) +__header_always_inline struct zone_page_metadata * +zone_pva_to_meta(zone_pva_t page, zone_addr_kind_t kind) +{ + if (kind == ZONE_ADDR_NATIVE) { + return &zone_info.zi_array_base[page.packed_address]; + } else { + return (struct zone_page_metadata *)zone_pva_to_addr(page); + } +} -boolean_t is_zone_map_nearing_exhaustion(void); -extern void vm_pageout_garbage_collect(int collect); +__header_always_inline zone_pva_t +zone_pva_from_meta(struct zone_page_metadata *meta, zone_addr_kind_t kind) +{ + if (kind == ZONE_ADDR_NATIVE) { + uint32_t index = (uint32_t)(meta - zone_info.zi_array_base); + return (zone_pva_t){ index }; + } else { + return zone_pva_from_addr((vm_address_t)meta); + } +} -static inline void * -page_metadata_get_freelist(struct zone_page_metadata *page_meta) +__header_always_inline struct zone_page_metadata * +zone_meta_from_addr(vm_offset_t addr, zone_addr_kind_t kind) { - assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC); - if (page_meta->freelist_offset == PAGE_METADATA_EMPTY_FREELIST) - return NULL; - else { - if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) - return (void *)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)) + page_meta->freelist_offset); - else - return (void *)((vm_offset_t)page_meta + page_meta->freelist_offset); + if (kind == ZONE_ADDR_NATIVE) { + return zone_pva_to_meta(zone_pva_from_addr(addr), kind); + } else { + return (struct zone_page_metadata *)trunc_page(addr); } } -static inline void -page_metadata_set_freelist(struct zone_page_metadata *page_meta, void *addr) +#define zone_native_meta_from_addr(addr) \ + zone_meta_from_addr((vm_offset_t)(addr), ZONE_ADDR_NATIVE) + +__header_always_inline vm_offset_t +zone_meta_to_addr(struct zone_page_metadata *meta, zone_addr_kind_t kind) { - assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC); - if (addr == NULL) - page_meta->freelist_offset = PAGE_METADATA_EMPTY_FREELIST; - else { - if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) - page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta))); - else - page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - (vm_offset_t)page_meta); + if (kind == ZONE_ADDR_NATIVE) { + return ptoa((int)(meta - zone_info.zi_array_base)); + } else { + return (vm_offset_t)meta; } } -static inline struct zone_page_metadata * -page_metadata_get_realmeta(struct zone_page_metadata *page_meta) +__header_always_inline void +zone_meta_queue_push(zone_t z, zone_pva_t *headp, + struct zone_page_metadata *meta, zone_addr_kind_t kind) { - assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC); - return (struct zone_page_metadata *)((vm_offset_t)page_meta - page_meta->real_metadata_offset); + zone_pva_t head = *headp; + zone_pva_t queue_pva = zone_queue_encode(headp); + struct zone_page_metadata *tmp; + + meta->zm_page_next = head; + if (!zone_pva_is_null(head)) { + tmp = zone_pva_to_meta(head, kind); + if (!zone_pva_is_equal(tmp->zm_page_prev, queue_pva)) { + zone_page_metadata_list_corruption(z, meta); + } + tmp->zm_page_prev = zone_pva_from_meta(meta, kind); + } + meta->zm_page_prev = queue_pva; + *headp = zone_pva_from_meta(meta, kind); } -static inline void -page_metadata_set_realmeta(struct zone_page_metadata *page_meta, struct zone_page_metadata *real_meta) +__header_always_inline struct zone_page_metadata * +zone_meta_queue_pop(zone_t z, zone_pva_t *headp, zone_addr_kind_t kind, + vm_offset_t *page_addrp) { - assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC); - assert(PAGE_METADATA_GET_ZINDEX(real_meta) != MULTIPAGE_METADATA_MAGIC); - assert((vm_offset_t)page_meta > (vm_offset_t)real_meta); - vm_offset_t offset = (vm_offset_t)page_meta - (vm_offset_t)real_meta; - assert(offset <= UINT32_MAX); - page_meta->real_metadata_offset = (uint32_t)offset; + zone_pva_t head = *headp; + struct zone_page_metadata *meta = zone_pva_to_meta(head, kind); + vm_offset_t page_addr = zone_pva_to_addr(head); + struct zone_page_metadata *tmp; + + if (kind == ZONE_ADDR_NATIVE && !from_native_meta_map(meta)) { + zone_page_metadata_native_queue_corruption(z, headp); + } + if (kind == ZONE_ADDR_FOREIGN && from_zone_map(meta, sizeof(*meta))) { + zone_page_metadata_foreign_queue_corruption(z, headp); + } + + if (!zone_pva_is_null(meta->zm_page_next)) { + tmp = zone_pva_to_meta(meta->zm_page_next, kind); + if (!zone_pva_is_equal(tmp->zm_page_prev, head)) { + zone_page_metadata_list_corruption(z, meta); + } + tmp->zm_page_prev = meta->zm_page_prev; + } + *headp = meta->zm_page_next; + + *page_addrp = page_addr; + return meta; } -/* The backup pointer is stored in the last pointer-sized location in an element. */ -static inline vm_offset_t * -get_backup_ptr(vm_size_t elem_size, - vm_offset_t *element) +__header_always_inline void +zone_meta_requeue(zone_t z, zone_pva_t *headp, + struct zone_page_metadata *meta, zone_addr_kind_t kind) { - return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); + zone_pva_t meta_pva = zone_pva_from_meta(meta, kind); + struct zone_page_metadata *tmp; + + if (!zone_pva_is_null(meta->zm_page_next)) { + tmp = zone_pva_to_meta(meta->zm_page_next, kind); + if (!zone_pva_is_equal(tmp->zm_page_prev, meta_pva)) { + zone_page_metadata_list_corruption(z, meta); + } + tmp->zm_page_prev = meta->zm_page_prev; + } + if (zone_pva_is_queue(meta->zm_page_prev)) { + zone_queue_set_head(z, meta->zm_page_prev, meta_pva, meta); + } else { + tmp = zone_pva_to_meta(meta->zm_page_prev, kind); + if (!zone_pva_is_equal(tmp->zm_page_next, meta_pva)) { + zone_page_metadata_list_corruption(z, meta); + } + tmp->zm_page_next = meta->zm_page_next; + } + + zone_meta_queue_push(z, headp, meta, kind); } -/* +/* * Routine to populate a page backing metadata in the zone_metadata_region. - * Must be called without the zone lock held as it might potentially block. + * Must be called without the zone lock held as it might potentially block. */ -static inline void -zone_populate_metadata_page(struct zone_page_metadata *page_meta) -{ - vm_offset_t page_metadata_begin = trunc_page(page_meta); - vm_offset_t page_metadata_end = trunc_page((vm_offset_t)page_meta + sizeof(struct zone_page_metadata)); - - for(;page_metadata_begin <= page_metadata_end; page_metadata_begin += PAGE_SIZE) { - if (pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) +static void +zone_meta_populate(struct zone_page_metadata *from, struct zone_page_metadata *to) +{ + vm_offset_t page_addr = trunc_page(from); + + for (; page_addr < (vm_offset_t)to; page_addr += PAGE_SIZE) { +#if !KASAN_ZALLOC + /* + * This can race with another thread doing a populate on the same metadata + * page, where we see an updated pmap but unmapped KASan shadow, causing a + * fault in the shadow when we first access the metadata page. Avoid this + * by always synchronizing on the zone_metadata_region lock with KASan. + */ + if (pmap_find_phys(kernel_pmap, page_addr)) { continue; - /* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */ - lck_mtx_lock(&zone_metadata_region_lck); - if (0 == pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) { - kern_return_t __unused ret = kernel_memory_populate(zone_map, - page_metadata_begin, - PAGE_SIZE, - KMA_KOBJECT, - VM_KERN_MEMORY_OSFMK); - - /* should not fail with the given arguments */ - assert(ret == KERN_SUCCESS); } - lck_mtx_unlock(&zone_metadata_region_lck); +#endif + + for (;;) { + kern_return_t ret = KERN_SUCCESS; + + /* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */ + lck_mtx_lock(&zone_metadata_region_lck); + if (0 == pmap_find_phys(kernel_pmap, page_addr)) { + ret = kernel_memory_populate(kernel_map, page_addr, + PAGE_SIZE, KMA_NOPAGEWAIT | KMA_KOBJECT | KMA_ZERO, + VM_KERN_MEMORY_OSFMK); + } + lck_mtx_unlock(&zone_metadata_region_lck); + + if (ret == KERN_SUCCESS) { + break; + } + + /* + * We can't pass KMA_NOPAGEWAIT under a global lock as it leads + * to bad system deadlocks, so if the allocation failed, + * we need to do the VM_PAGE_WAIT() outside of the lock. + */ + VM_PAGE_WAIT(); + } + } +} + +static inline bool +zone_allocated_element_offset_is_valid(zone_t zone, vm_offset_t addr, + vm_offset_t page, zone_addr_kind_t kind) +{ + vm_offset_t offs = addr - page - ZONE_PAGE_FIRST_OFFSET(kind); + vm_offset_t esize = zone_elem_size(zone); + + if (esize & (esize - 1)) { /* not a power of 2 */ + return (offs % esize) == 0; + } else { + return (offs & (esize - 1)) == 0; + } +} + +__attribute__((always_inline)) +static struct zone_page_metadata * +zone_allocated_element_resolve(zone_t zone, vm_offset_t addr, + vm_offset_t *pagep, zone_addr_kind_t *kindp) +{ + struct zone_page_metadata *meta; + zone_addr_kind_t kind; + vm_offset_t page; + vm_offset_t esize = zone_elem_size(zone); + + kind = zone_addr_kind(addr, esize); + page = trunc_page(addr); + meta = zone_meta_from_addr(addr, kind); + + if (kind == ZONE_ADDR_NATIVE) { + if (meta->zm_secondary_page) { + if (meta->zm_percpu) { + zone_invalid_element_addr_panic(zone, addr); + } + page -= ptoa(meta->zm_page_count); + meta -= meta->zm_page_count; + } + } else if (!zone->allows_foreign) { + zone_page_metadata_foreign_confusion_panic(zone, addr); +#if __LP64__ + } else if (!from_foreign_range(addr, esize)) { + zone_invalid_foreign_addr_panic(zone, addr); +#else + } else if (!pmap_kernel_va(addr)) { + zone_invalid_element_addr_panic(zone, addr); +#endif + } + + if (!zone_allocated_element_offset_is_valid(zone, addr, page, kind)) { + zone_invalid_element_addr_panic(zone, addr); + } + + if (!zone_has_index(zone, meta->zm_index)) { + zone_page_metadata_index_confusion_panic(zone, addr, meta); + } + + if (kindp) { + *kindp = kind; + } + if (pagep) { + *pagep = page; } - return; + return meta; } -static inline uint16_t -get_metadata_alloc_count(struct zone_page_metadata *page_meta) +__attribute__((always_inline)) +void +zone_allocated_element_validate(zone_t zone, vm_offset_t addr) +{ + zone_allocated_element_resolve(zone, addr, NULL, NULL); +} + +__header_always_inline vm_offset_t +zone_page_meta_get_freelist(zone_t zone, struct zone_page_metadata *meta, + vm_offset_t page) +{ + assert(!meta->zm_secondary_page); + if (meta->zm_freelist_offs == PAGE_METADATA_EMPTY_FREELIST) { + return 0; + } + + vm_size_t size = ptoa(meta->zm_percpu ? 1 : meta->zm_page_count); + if (meta->zm_freelist_offs + zone_elem_size(zone) > size) { + zone_metadata_corruption(zone, meta, "freelist corruption"); + } + + return page + meta->zm_freelist_offs; +} + +__header_always_inline void +zone_page_meta_set_freelist(struct zone_page_metadata *meta, + vm_offset_t page, vm_offset_t addr) +{ + assert(!meta->zm_secondary_page); + if (addr) { + meta->zm_freelist_offs = (uint16_t)(addr - page); + } else { + meta->zm_freelist_offs = PAGE_METADATA_EMPTY_FREELIST; + } +} + +static bool +zone_page_meta_is_sane_element(zone_t zone, struct zone_page_metadata *meta, + vm_offset_t page, vm_offset_t element, zone_addr_kind_t kind) { - assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC); - struct zone *z = PAGE_METADATA_GET_ZONE(page_meta); - return ((page_meta->page_count * PAGE_SIZE) / z->elem_size); + if (element == 0) { + /* ends of the freelist are NULL */ + return true; + } + if (element < page + ZONE_PAGE_FIRST_OFFSET(kind)) { + return false; + } + vm_size_t size = ptoa(meta->zm_percpu ? 1 : meta->zm_page_count); + if (element > page + size - zone_elem_size(zone)) { + return false; + } + return true; } -/* - * Routine to lookup metadata for any given address. - * If init is marked as TRUE, this should be called without holding the zone lock - * since the initialization might block. +/* Routine to get the size of a zone allocated address. + * If the address doesnt belong to the zone maps, returns 0. */ -static inline struct zone_page_metadata * -get_zone_page_metadata(struct zone_free_element *element, boolean_t init) +vm_size_t +zone_element_size(void *addr, zone_t *z) +{ + struct zone_page_metadata *meta; + struct zone *src_zone; + + if (from_zone_map(addr, sizeof(void *))) { + meta = zone_native_meta_from_addr(addr); + src_zone = &zone_array[meta->zm_index]; + if (z) { + *z = src_zone; + } + return zone_elem_size(src_zone); + } +#if CONFIG_GZALLOC + if (__improbable(gzalloc_enabled())) { + vm_size_t gzsize; + if (gzalloc_element_size(addr, z, &gzsize)) { + return gzsize; + } + } +#endif /* CONFIG_GZALLOC */ + + return 0; +} + +/* This function just formats the reason for the panics by redoing the checks */ +__abortlike +static void +zone_require_panic(zone_t zone, void *addr) { - struct zone_page_metadata *page_meta = 0; + uint32_t zindex; + zone_t other; + + if (!from_zone_map(addr, zone_elem_size(zone))) { + panic("zone_require failed: address not in a zone (addr: %p)", addr); + } - if (from_zone_map(element, sizeof(struct zone_free_element))) { - page_meta = (struct zone_page_metadata *)(PAGE_METADATA_FOR_ELEMENT(element)); - if (init) - zone_populate_metadata_page(page_meta); + zindex = zone_native_meta_from_addr(addr)->zm_index; + other = &zone_array[zindex]; + if (zindex >= os_atomic_load(&num_zones, relaxed) || !other->z_self) { + panic("zone_require failed: invalid zone index %d " + "(addr: %p, expected: %s%s)", zindex, + addr, zone_heap_name(zone), zone->z_name); } else { - page_meta = (struct zone_page_metadata *)(trunc_page((vm_offset_t)element)); + panic("zone_require failed: address in unexpected zone id %d (%s%s) " + "(addr: %p, expected: %s%s)", + zindex, zone_heap_name(other), other->z_name, + addr, zone_heap_name(zone), zone->z_name); } - if (init) - __nosan_bzero((char *)page_meta, sizeof(struct zone_page_metadata)); - return ((PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC) ? page_meta : page_metadata_get_realmeta(page_meta)); } -/* Routine to get the page for a given metadata */ -static inline vm_offset_t -get_zone_page(struct zone_page_metadata *page_meta) +__abortlike +static void +zone_id_require_panic(zone_id_t zid, void *addr) { - if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) - return (vm_offset_t)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta))); - else - return (vm_offset_t)(trunc_page(page_meta)); + zone_require_panic(&zone_array[zid], addr); } /* - * ZTAGS + * Routines to panic if a pointer is not mapped to an expected zone. + * This can be used as a means of pinning an object to the zone it is expected + * to be a part of. Causes a panic if the address does not belong to any + * specified zone, does not belong to any zone, has been freed and therefore + * unmapped from the zone, or the pointer contains an uninitialized value that + * does not belong to any zone. + * + * Note that this can only work with collectable zones without foreign pages. */ +void +zone_require(zone_t zone, void *addr) +{ + if (__probable(from_general_submap(addr, zone_elem_size(zone)) && + (zone_has_index(zone, zone_native_meta_from_addr(addr)->zm_index)))) { + return; + } +#if CONFIG_GZALLOC + if (__probable(gzalloc_enabled())) { + return; + } +#endif + zone_require_panic(zone, addr); +} + +void +zone_id_require(zone_id_t zid, vm_size_t esize, void *addr) +{ + if (__probable(from_general_submap(addr, esize) && + (zid == zone_native_meta_from_addr(addr)->zm_index))) { + return; + } +#if CONFIG_GZALLOC + if (__probable(gzalloc_enabled())) { + return; + } +#endif + zone_id_require_panic(zid, addr); +} + +bool +zone_owns(zone_t zone, void *addr) +{ + if (__probable(from_general_submap(addr, zone_elem_size(zone)) && + (zone_has_index(zone, zone_native_meta_from_addr(addr)->zm_index)))) { + return true; + } +#if CONFIG_GZALLOC + if (__probable(gzalloc_enabled())) { + return true; + } +#endif + return false; +} +#pragma mark ZTAGS #if VM_MAX_TAG_ZONES // for zones with tagging enabled: @@ -585,19 +1083,19 @@ get_zone_page(struct zone_page_metadata *page_meta) // or two uint16_t tags if the page can only hold one or two elements #define ZTAGBASE(zone, element) \ - (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_map_min_address)]) + (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_info.zi_map_range.min_address)]) // pointer to the tag for an element #define ZTAG(zone, element) \ ({ \ - vm_tag_t * result; \ - if ((zone)->tags_inline) { \ - result = (vm_tag_t *) ZTAGBASE((zone), (element)); \ - if ((page_mask & element) >= (zone)->elem_size) result++; \ - } else { \ - result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / (zone)->elem_size]; \ - } \ - result; \ + vm_tag_t * result; \ + if ((zone)->tags_inline) { \ + result = (vm_tag_t *) ZTAGBASE((zone), (element)); \ + if ((page_mask & element) >= zone_elem_size(zone)) result++; \ + } else { \ + result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / zone_elem_size((zone))]; \ + } \ + result; \ }) @@ -613,21 +1111,20 @@ static vm_map_t zone_tags_map; // simple heap allocator for allocating the tags for new memory -decl_lck_mtx_data(,ztLock) /* heap lock */ -enum -{ - ztFreeIndexCount = 8, - ztFreeIndexMax = (ztFreeIndexCount - 1), - ztTagsPerBlock = 4 +LCK_MTX_EARLY_DECLARE(ztLock, &zone_locks_grp); /* heap lock */ + +enum{ + ztFreeIndexCount = 8, + ztFreeIndexMax = (ztFreeIndexCount - 1), + ztTagsPerBlock = 4 }; -struct ztBlock -{ +struct ztBlock { #if __LITTLE_ENDIAN__ - uint64_t free:1, - next:21, - prev:21, - size:21; + uint64_t free:1, + next:21, + prev:21, + size:21; #else // ztBlock needs free bit least significant #error !__LITTLE_ENDIAN__ @@ -642,54 +1139,56 @@ static uint32_t ztBlocksFree; static uint32_t ztLog2up(uint32_t size) { - if (1 == size) size = 0; - else size = 32 - __builtin_clz(size - 1); - return (size); + if (1 == size) { + size = 0; + } else { + size = 32 - __builtin_clz(size - 1); + } + return size; } static uint32_t ztLog2down(uint32_t size) { - size = 31 - __builtin_clz(size); - return (size); + size = 31 - __builtin_clz(size); + return size; } static void ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags) { - vm_map_offset_t addr = (vm_map_offset_t) address; - vm_map_offset_t page, end; + vm_map_offset_t addr = (vm_map_offset_t) address; + vm_map_offset_t page, end; - page = trunc_page(addr); - end = round_page(addr + size); + page = trunc_page(addr); + end = round_page(addr + size); - for (; page < end; page += page_size) - { - if (!pmap_find_phys(kernel_pmap, page)) - { - kern_return_t __unused - ret = kernel_memory_populate(map, page, PAGE_SIZE, - KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG); - assert(ret == KERN_SUCCESS); - } - } + for (; page < end; page += page_size) { + if (!pmap_find_phys(kernel_pmap, page)) { + kern_return_t __unused + ret = kernel_memory_populate(map, page, PAGE_SIZE, + KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG); + assert(ret == KERN_SUCCESS); + } + } } static boolean_t ztPresent(const void * address, size_t size) { - vm_map_offset_t addr = (vm_map_offset_t) address; - vm_map_offset_t page, end; - boolean_t result; - - page = trunc_page(addr); - end = round_page(addr + size); - for (result = TRUE; (page < end); page += page_size) - { - result = pmap_find_phys(kernel_pmap, page); - if (!result) break; - } - return (result); + vm_map_offset_t addr = (vm_map_offset_t) address; + vm_map_offset_t page, end; + boolean_t result; + + page = trunc_page(addr); + end = round_page(addr + size); + for (result = TRUE; (page < end); page += page_size) { + result = pmap_find_phys(kernel_pmap, page); + if (!result) { + break; + } + } + return result; } @@ -698,40 +1197,43 @@ ztDump(boolean_t sanity); void __unused ztDump(boolean_t sanity) { - uint32_t q, cq, p; - - for (q = 0; q <= ztFreeIndexMax; q++) - { - p = q; - do - { - if (sanity) - { - cq = ztLog2down(ztBlocks[p].size); - if (cq > ztFreeIndexMax) cq = ztFreeIndexMax; - if (!ztBlocks[p].free - || ((p != q) && (q != cq)) - || (ztBlocks[ztBlocks[p].next].prev != p) - || (ztBlocks[ztBlocks[p].prev].next != p)) - { - kprintf("zterror at %d", p); - ztDump(FALSE); - kprintf("zterror at %d", p); - assert(FALSE); - } - continue; - } - kprintf("zt[%03d]%c %d, %d, %d\n", - p, ztBlocks[p].free ? 'F' : 'A', - ztBlocks[p].next, ztBlocks[p].prev, - ztBlocks[p].size); - p = ztBlocks[p].next; - if (p == q) break; - } - while (p != q); - if (!sanity) printf("\n"); - } - if (!sanity) printf("-----------------------\n"); + uint32_t q, cq, p; + + for (q = 0; q <= ztFreeIndexMax; q++) { + p = q; + do{ + if (sanity) { + cq = ztLog2down(ztBlocks[p].size); + if (cq > ztFreeIndexMax) { + cq = ztFreeIndexMax; + } + if (!ztBlocks[p].free + || ((p != q) && (q != cq)) + || (ztBlocks[ztBlocks[p].next].prev != p) + || (ztBlocks[ztBlocks[p].prev].next != p)) { + kprintf("zterror at %d", p); + ztDump(FALSE); + kprintf("zterror at %d", p); + assert(FALSE); + } + continue; + } + kprintf("zt[%03d]%c %d, %d, %d\n", + p, ztBlocks[p].free ? 'F' : 'A', + ztBlocks[p].next, ztBlocks[p].prev, + ztBlocks[p].size); + p = ztBlocks[p].next; + if (p == q) { + break; + } + }while (p != q); + if (!sanity) { + printf("\n"); + } + } + if (!sanity) { + printf("-----------------------\n"); + } } @@ -743,277 +1245,348 @@ ztDump(boolean_t sanity) static void ztFree(zone_t zone __unused, uint32_t index, uint32_t count) { - uint32_t q, w, p, size, merge; - - assert(count); - ztBlocksFree += count; - - // merge with preceding - merge = (index + count); - if ((merge < ztBlocksCount) - && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) - && ztBlocks[merge].free) - { - ZTBDEQ(merge); - count += ztBlocks[merge].size; - } - - // merge with following - merge = (index - 1); - if ((merge > ztFreeIndexMax) - && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) - && ztBlocks[merge].free) - { - size = ztBlocks[merge].size; - count += size; - index -= size; - ZTBDEQ(index); - } - - q = ztLog2down(count); - if (q > ztFreeIndexMax) q = ztFreeIndexMax; - w = q; - // queue in order of size - while (TRUE) - { - p = ztBlocks[w].next; - if (p == q) break; - if (ztBlocks[p].size >= count) break; - w = p; - } - ztBlocks[p].prev = index; - ztBlocks[w].next = index; - - // fault in first - ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); - - // mark first & last with free flag and size - ztBlocks[index].free = TRUE; - ztBlocks[index].size = count; - ztBlocks[index].prev = w; - ztBlocks[index].next = p; - if (count > 1) - { - index += (count - 1); - // fault in last - ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); - ztBlocks[index].free = TRUE; - ztBlocks[index].size = count; - } + uint32_t q, w, p, size, merge; + + assert(count); + ztBlocksFree += count; + + // merge with preceding + merge = (index + count); + if ((merge < ztBlocksCount) + && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) + && ztBlocks[merge].free) { + ZTBDEQ(merge); + count += ztBlocks[merge].size; + } + + // merge with following + merge = (index - 1); + if ((merge > ztFreeIndexMax) + && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) + && ztBlocks[merge].free) { + size = ztBlocks[merge].size; + count += size; + index -= size; + ZTBDEQ(index); + } + + q = ztLog2down(count); + if (q > ztFreeIndexMax) { + q = ztFreeIndexMax; + } + w = q; + // queue in order of size + while (TRUE) { + p = ztBlocks[w].next; + if (p == q) { + break; + } + if (ztBlocks[p].size >= count) { + break; + } + w = p; + } + ztBlocks[p].prev = index; + ztBlocks[w].next = index; + + // fault in first + ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); + + // mark first & last with free flag and size + ztBlocks[index].free = TRUE; + ztBlocks[index].size = count; + ztBlocks[index].prev = w; + ztBlocks[index].next = p; + if (count > 1) { + index += (count - 1); + // fault in last + ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); + ztBlocks[index].free = TRUE; + ztBlocks[index].size = count; + } } static uint32_t ztAlloc(zone_t zone, uint32_t count) { - uint32_t q, w, p, leftover; - - assert(count); - - q = ztLog2up(count); - if (q > ztFreeIndexMax) q = ztFreeIndexMax; - do - { - w = q; - while (TRUE) - { - p = ztBlocks[w].next; - if (p == q) break; - if (ztBlocks[p].size >= count) - { - // dequeue, mark both ends allocated - ztBlocks[w].next = ztBlocks[p].next; - ztBlocks[ztBlocks[p].next].prev = w; - ztBlocks[p].free = FALSE; - ztBlocksFree -= ztBlocks[p].size; - if (ztBlocks[p].size > 1) ztBlocks[p + ztBlocks[p].size - 1].free = FALSE; - - // fault all the allocation - ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0); - // mark last as allocated - if (count > 1) ztBlocks[p + count - 1].free = FALSE; - // free remainder - leftover = ztBlocks[p].size - count; - if (leftover) ztFree(zone, p + ztBlocks[p].size - leftover, leftover); - - return (p); - } - w = p; - } - q++; - } - while (q <= ztFreeIndexMax); - - return (-1U); + uint32_t q, w, p, leftover; + + assert(count); + + q = ztLog2up(count); + if (q > ztFreeIndexMax) { + q = ztFreeIndexMax; + } + do{ + w = q; + while (TRUE) { + p = ztBlocks[w].next; + if (p == q) { + break; + } + if (ztBlocks[p].size >= count) { + // dequeue, mark both ends allocated + ztBlocks[w].next = ztBlocks[p].next; + ztBlocks[ztBlocks[p].next].prev = w; + ztBlocks[p].free = FALSE; + ztBlocksFree -= ztBlocks[p].size; + if (ztBlocks[p].size > 1) { + ztBlocks[p + ztBlocks[p].size - 1].free = FALSE; + } + + // fault all the allocation + ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0); + // mark last as allocated + if (count > 1) { + ztBlocks[p + count - 1].free = FALSE; + } + // free remainder + leftover = ztBlocks[p].size - count; + if (leftover) { + ztFree(zone, p + ztBlocks[p].size - leftover, leftover); + } + + return p; + } + w = p; + } + q++; + }while (q <= ztFreeIndexMax); + + return -1U; } +__startup_func static void -ztInit(vm_size_t max_zonemap_size, lck_grp_t * group) +zone_tagging_init(vm_size_t max_zonemap_size) { - kern_return_t ret; - vm_map_kernel_flags_t vmk_flags; - uint32_t idx; - - lck_mtx_init(&ztLock, group, LCK_ATTR_NULL); + kern_return_t ret; + vm_map_kernel_flags_t vmk_flags; + uint32_t idx; - // allocate submaps VM_KERN_MEMORY_DIAG + // allocate submaps VM_KERN_MEMORY_DIAG - zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t); - vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; - vmk_flags.vmkf_permanent = TRUE; - ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size, - FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, - &zone_tagbase_map); + zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t); + vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + vmk_flags.vmkf_permanent = TRUE; + ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size, + FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, + &zone_tagbase_map); - if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed"); - zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size); + if (ret != KERN_SUCCESS) { + panic("zone_init: kmem_suballoc failed"); + } + zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size); - zone_tags_map_size = 2048*1024 * sizeof(vm_tag_t); - vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; - vmk_flags.vmkf_permanent = TRUE; - ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size, - FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, - &zone_tags_map); + zone_tags_map_size = 2048 * 1024 * sizeof(vm_tag_t); + vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + vmk_flags.vmkf_permanent = TRUE; + ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size, + FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, + &zone_tags_map); - if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed"); - zone_tags_max = zone_tags_min + round_page(zone_tags_map_size); + if (ret != KERN_SUCCESS) { + panic("zone_init: kmem_suballoc failed"); + } + zone_tags_max = zone_tags_min + round_page(zone_tags_map_size); - ztBlocks = (ztBlock *) zone_tags_min; - ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock)); + ztBlocks = (ztBlock *) zone_tags_min; + ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock)); - // initialize the qheads - lck_mtx_lock(&ztLock); + // initialize the qheads + lck_mtx_lock(&ztLock); - ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0); - for (idx = 0; idx < ztFreeIndexCount; idx++) - { - ztBlocks[idx].free = TRUE; - ztBlocks[idx].next = idx; - ztBlocks[idx].prev = idx; - ztBlocks[idx].size = 0; - } - // free remaining space - ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount); + ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0); + for (idx = 0; idx < ztFreeIndexCount; idx++) { + ztBlocks[idx].free = TRUE; + ztBlocks[idx].next = idx; + ztBlocks[idx].prev = idx; + ztBlocks[idx].size = 0; + } + // free remaining space + ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount); - lck_mtx_unlock(&ztLock); + lck_mtx_unlock(&ztLock); } static void ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size) { - uint32_t * tagbase; - uint32_t count, block, blocks, idx; - size_t pages; + uint32_t * tagbase; + uint32_t count, block, blocks, idx; + size_t pages; - pages = atop(size); - tagbase = ZTAGBASE(zone, mem); + pages = atop(size); + tagbase = ZTAGBASE(zone, mem); - lck_mtx_lock(&ztLock); + lck_mtx_lock(&ztLock); - // fault tagbase - ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0); + // fault tagbase + ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0); - if (!zone->tags_inline) - { - // allocate tags - count = (uint32_t)(size / zone->elem_size); - blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); - block = ztAlloc(zone, blocks); - if (-1U == block) ztDump(false); - assert(-1U != block); - } + if (!zone->tags_inline) { + // allocate tags + count = (uint32_t)(size / zone_elem_size(zone)); + blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); + block = ztAlloc(zone, blocks); + if (-1U == block) { + ztDump(false); + } + assert(-1U != block); + } - lck_mtx_unlock(&ztLock); + lck_mtx_unlock(&ztLock); - if (!zone->tags_inline) - { - // set tag base for each page - block *= ztTagsPerBlock; - for (idx = 0; idx < pages; idx++) - { - tagbase[idx] = block + (uint32_t)((ptoa(idx) + (zone->elem_size - 1)) / zone->elem_size); - } - } + if (!zone->tags_inline) { + // set tag base for each page + block *= ztTagsPerBlock; + for (idx = 0; idx < pages; idx++) { + vm_offset_t esize = zone_elem_size(zone); + tagbase[idx] = block + (uint32_t)((ptoa(idx) + esize - 1) / esize); + } + } } static void ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size) { - uint32_t * tagbase; - uint32_t count, block, blocks, idx; - size_t pages; - - // set tag base for each page - pages = atop(size); - tagbase = ZTAGBASE(zone, mem); - block = tagbase[0]; - for (idx = 0; idx < pages; idx++) - { - tagbase[idx] = 0xFFFFFFFF; - } + uint32_t * tagbase; + uint32_t count, block, blocks, idx; + size_t pages; + + // set tag base for each page + pages = atop(size); + tagbase = ZTAGBASE(zone, mem); + block = tagbase[0]; + for (idx = 0; idx < pages; idx++) { + tagbase[idx] = 0xFFFFFFFF; + } - lck_mtx_lock(&ztLock); - if (!zone->tags_inline) - { - count = (uint32_t)(size / zone->elem_size); - blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); - assert(block != 0xFFFFFFFF); - block /= ztTagsPerBlock; - ztFree(NULL /* zone is unlocked */, block, blocks); - } + lck_mtx_lock(&ztLock); + if (!zone->tags_inline) { + count = (uint32_t)(size / zone_elem_size(zone)); + blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); + assert(block != 0xFFFFFFFF); + block /= ztTagsPerBlock; + ztFree(NULL /* zone is unlocked */, block, blocks); + } - lck_mtx_unlock(&ztLock); + lck_mtx_unlock(&ztLock); } uint32_t zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size) { - zone_t z; - uint32_t idx; + simple_lock(&all_zones_lock, &zone_locks_grp); - simple_lock(&all_zones_lock); - - for (idx = 0; idx < num_zones; idx++) - { - z = &(zone_array[idx]); - if (!z->tags) continue; - if (tag_zone_index != z->tag_zone_index) continue; - *elem_size = z->elem_size; - break; - } + zone_index_foreach(idx) { + zone_t z = &zone_array[idx]; + if (!z->tags) { + continue; + } + if (tag_zone_index != z->tag_zone_index) { + continue; + } - simple_unlock(&all_zones_lock); + *elem_size = zone_elem_size(z); + simple_unlock(&all_zones_lock); + return idx; + } - if (idx == num_zones) idx = -1U; + simple_unlock(&all_zones_lock); - return (idx); + return -1U; } #endif /* VM_MAX_TAG_ZONES */ +#pragma mark zalloc helpers -/* Routine to get the size of a zone allocated address. If the address doesnt belong to the - * zone_map, returns 0. - */ -vm_size_t -zone_element_size(void *addr, zone_t *z) +const char * +zone_name(zone_t z) { - struct zone *src_zone; - if (from_zone_map(addr, sizeof(void *))) { - struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE); - src_zone = PAGE_METADATA_GET_ZONE(page_meta); - if (z) { - *z = src_zone; - } - return (src_zone->elem_size); - } else { -#if CONFIG_GZALLOC - vm_size_t gzsize; - if (gzalloc_element_size(addr, z, &gzsize)) { - return gzsize; - } -#endif /* CONFIG_GZALLOC */ + return z->z_name; +} - return 0; +const char * +zone_heap_name(zone_t z) +{ + if (__probable(z->kalloc_heap < KHEAP_ID_COUNT)) { + return kalloc_heap_names[z->kalloc_heap]; + } + return "invalid"; +} + +static inline vm_size_t +zone_submaps_approx_size(void) +{ + vm_size_t size = 0; + + for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) { + size += zone_submaps[idx]->size; + } + + return size; +} + +bool +zone_maps_owned(vm_address_t addr, vm_size_t size) +{ + return from_zone_map(addr, size); +} + +void +zone_map_sizes( + vm_map_size_t *psize, + vm_map_size_t *pfree, + vm_map_size_t *plargest_free) +{ + vm_map_sizes(zone_submaps[Z_SUBMAP_IDX_GENERAL_MAP], psize, pfree, plargest_free); +} + +vm_map_t +zone_submap(zone_t zone) +{ + return submap_for_zone(zone); +} + +unsigned +zpercpu_count(void) +{ + return zpercpu_early_count; +} + +int +track_this_zone(const char *zonename, const char *logname) +{ + unsigned int len; + const char *zc = zonename; + const char *lc = logname; + + /* + * Compare the strings. We bound the compare by MAX_ZONE_NAME. + */ + + for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { + /* + * If the current characters don't match, check for a space in + * in the zone name and a corresponding period in the log name. + * If that's not there, then the strings don't match. + */ + + if (*zc != *lc && !(*zc == ' ' && *lc == '.')) { + break; + } + + /* + * The strings are equal so far. If we're at the end, then it's a match. + */ + + if (*zc == '\0') { + return TRUE; + } } + + return FALSE; } #if DEBUG || DEVELOPMENT @@ -1023,17 +1596,18 @@ zone_element_info(void *addr, vm_tag_t * ptag) { vm_size_t size = 0; vm_tag_t tag = VM_KERN_MEMORY_NONE; - struct zone * src_zone; + struct zone_page_metadata *meta; + struct zone *src_zone; if (from_zone_map(addr, sizeof(void *))) { - struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE); - src_zone = PAGE_METADATA_GET_ZONE(page_meta); + meta = zone_native_meta_from_addr(addr); + src_zone = &zone_array[meta->zm_index]; #if VM_MAX_TAG_ZONES - if (__improbable(src_zone->tags)) { + if (__improbable(src_zone->tags)) { tag = (ZTAG(src_zone, (vm_offset_t) addr)[0] >> 1); - } + } #endif /* VM_MAX_TAG_ZONES */ - size = src_zone->elem_size; + size = zone_elem_size(src_zone); } else { #if CONFIG_GZALLOC gzalloc_element_size(addr, NULL, &size); @@ -1045,126 +1619,91 @@ zone_element_info(void *addr, vm_tag_t * ptag) #endif /* DEBUG || DEVELOPMENT */ -/* - * Zone checking helper function. - * A pointer that satisfies these conditions is OK to be a freelist next pointer - * A pointer that doesn't satisfy these conditions indicates corruption - */ -static inline boolean_t -is_sane_zone_ptr(zone_t zone, - vm_offset_t addr, - size_t obj_size) -{ - /* Must be aligned to pointer boundary */ - if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0)) - return FALSE; - - /* Must be a kernel address */ - if (__improbable(!pmap_kernel_va(addr))) - return FALSE; - - /* Must be from zone map if the zone only uses memory from the zone_map */ - /* - * TODO: Remove the zone->collectable check when every - * zone using foreign memory is properly tagged with allows_foreign - */ - if (zone->collectable && !zone->allows_foreign) { - /* check if addr is from zone map */ - if (addr >= zone_map_min_address && - (addr + obj_size - 1) < zone_map_max_address ) - return TRUE; - - return FALSE; - } - - return TRUE; -} - -static inline boolean_t -is_sane_zone_page_metadata(zone_t zone, - vm_offset_t page_meta) +/* Someone wrote to freed memory. */ +__abortlike +static void +zone_element_was_modified_panic( + zone_t zone, + vm_offset_t element, + vm_offset_t found, + vm_offset_t expected, + vm_offset_t offset) { - /* NULL page metadata structures are invalid */ - if (page_meta == 0) - return FALSE; - return is_sane_zone_ptr(zone, page_meta, sizeof(struct zone_page_metadata)); + panic("a freed zone element has been modified in zone %s%s: " + "expected %p but found %p, bits changed %p, " + "at offset %d of %d in element %p, cookies %p %p", + zone_heap_name(zone), + zone->z_name, + (void *) expected, + (void *) found, + (void *) (expected ^ found), + (uint32_t) offset, + (uint32_t) zone_elem_size(zone), + (void *) element, + (void *) zp_nopoison_cookie, + (void *) zp_poisoned_cookie); } -static inline boolean_t -is_sane_zone_element(zone_t zone, - vm_offset_t addr) +/* The backup pointer is stored in the last pointer-sized location in an element. */ +__header_always_inline vm_offset_t * +get_backup_ptr(vm_size_t elem_size, vm_offset_t *element) { - /* NULL is OK because it indicates the tail of the list */ - if (addr == 0) - return TRUE; - return is_sane_zone_ptr(zone, addr, zone->elem_size); -} - -/* Someone wrote to freed memory. */ -static inline void /* noreturn */ -zone_element_was_modified_panic(zone_t zone, - vm_offset_t element, - vm_offset_t found, - vm_offset_t expected, - vm_offset_t offset) -{ - panic("a freed zone element has been modified in zone %s: expected %p but found %p, bits changed %p, at offset %d of %d in element %p, cookies %p %p", - zone->zone_name, - (void *) expected, - (void *) found, - (void *) (expected ^ found), - (uint32_t) offset, - (uint32_t) zone->elem_size, - (void *) element, - (void *) zp_nopoison_cookie, - (void *) zp_poisoned_cookie); + return (vm_offset_t *)((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); } /* * The primary and backup pointers don't match. * Determine which one was likely the corrupted pointer, find out what it * probably should have been, and panic. - * I would like to mark this as noreturn, but panic() isn't marked noreturn. */ -static void /* noreturn */ -backup_ptr_mismatch_panic(zone_t zone, - vm_offset_t element, - vm_offset_t primary, - vm_offset_t backup) +__abortlike +static void +backup_ptr_mismatch_panic( + zone_t zone, + struct zone_page_metadata *page_meta, + vm_offset_t page, + vm_offset_t element) { + vm_offset_t primary = *(vm_offset_t *)element; + vm_offset_t backup = *get_backup_ptr(zone_elem_size(zone), &element); vm_offset_t likely_backup; vm_offset_t likely_primary; + zone_addr_kind_t kind = zone_addr_kind(page, zone_elem_size(zone)); likely_primary = primary ^ zp_nopoison_cookie; boolean_t sane_backup; - boolean_t sane_primary = is_sane_zone_element(zone, likely_primary); - boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE; + boolean_t sane_primary = zone_page_meta_is_sane_element(zone, page_meta, + page, likely_primary, kind); + boolean_t element_was_poisoned = (backup & 0x1); #if defined(__LP64__) /* We can inspect the tag in the upper bits for additional confirmation */ - if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000) + if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000) { element_was_poisoned = TRUE; - else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000) + } else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000) { element_was_poisoned = FALSE; + } #endif if (element_was_poisoned) { likely_backup = backup ^ zp_poisoned_cookie; - sane_backup = is_sane_zone_element(zone, likely_backup); } else { likely_backup = backup ^ zp_nopoison_cookie; - sane_backup = is_sane_zone_element(zone, likely_backup); } + sane_backup = zone_page_meta_is_sane_element(zone, page_meta, + page, likely_backup, kind); /* The primary is definitely the corrupted one */ - if (!sane_primary && sane_backup) + if (!sane_primary && sane_backup) { zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); + } /* The backup is definitely the corrupted one */ - if (sane_primary && !sane_backup) + if (sane_primary && !sane_backup) { zone_element_was_modified_panic(zone, element, backup, - (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), - zone->elem_size - sizeof(vm_offset_t)); + (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), + zone_elem_size(zone) - sizeof(vm_offset_t)); + } /* * Not sure which is the corrupted one. @@ -1172,275 +1711,302 @@ backup_ptr_mismatch_panic(zone_t zone, * ( (sane address) ^ (valid cookie) ), so we'll guess that the * primary pointer has been overwritten with a sane but incorrect address. */ - if (sane_primary && sane_backup) + if (sane_primary && sane_backup) { zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); + } /* Neither are sane, so just guess. */ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); } /* - * Adds the element to the head of the zone's free list - * Keeps a backup next-pointer at the end of the element + * zone_sequestered_page_get + * z is locked */ -static inline void -free_to_zone(zone_t zone, - vm_offset_t element, - boolean_t poison) +static struct zone_page_metadata * +zone_sequestered_page_get(zone_t z, vm_offset_t *page) { - vm_offset_t old_head; - struct zone_page_metadata *page_meta; - - vm_offset_t *primary = (vm_offset_t *) element; - vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); + const zone_addr_kind_t kind = ZONE_ADDR_NATIVE; - page_meta = get_zone_page_metadata((struct zone_free_element *)element, FALSE); - assert(PAGE_METADATA_GET_ZONE(page_meta) == zone); - old_head = (vm_offset_t)page_metadata_get_freelist(page_meta); - -#if MACH_ASSERT - if (__improbable(!is_sane_zone_element(zone, old_head))) - panic("zfree: invalid head pointer %p for freelist of zone %s\n", - (void *) old_head, zone->zone_name); -#endif - - if (__improbable(!is_sane_zone_element(zone, element))) - panic("zfree: freeing invalid pointer %p to zone %s\n", - (void *) element, zone->zone_name); + if (!zone_pva_is_null(z->pages_sequester)) { + if (os_sub_overflow(z->sequester_page_count, z->alloc_pages, + &z->sequester_page_count)) { + zone_accounting_panic(z, "sequester_page_count wrap-around"); + } + return zone_meta_queue_pop(z, &z->pages_sequester, kind, page); + } - /* - * Always write a redundant next pointer - * So that it is more difficult to forge, xor it with a random cookie - * A poisoned element is indicated by using zp_poisoned_cookie - * instead of zp_nopoison_cookie - */ + return NULL; +} - *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); +/* + * zone_sequestered_page_populate + * z is unlocked + * page_meta is invalid on failure + */ +static kern_return_t +zone_sequestered_page_populate(zone_t z, struct zone_page_metadata *page_meta, + vm_offset_t space, vm_size_t alloc_size, int zflags) +{ + kern_return_t retval; - /* - * Insert this element at the head of the free list. We also xor the - * primary pointer with the zp_nopoison_cookie to make sure a free - * element does not provide the location of the next free element directly. - */ - *primary = old_head ^ zp_nopoison_cookie; - page_metadata_set_freelist(page_meta, (struct zone_free_element *)element); - page_meta->free_count++; - if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { - if (page_meta->free_count == 1) { - /* first foreign element freed on page, move from all_used */ - re_queue_tail(&zone->pages.any_free_foreign, &(page_meta->pages)); - } else { - /* no other list transitions */ - } - } else if (page_meta->free_count == get_metadata_alloc_count(page_meta)) { - /* whether the page was on the intermediate or all_used, queue, move it to free */ - re_queue_tail(&zone->pages.all_free, &(page_meta->pages)); - zone->count_all_free_pages += page_meta->page_count; - } else if (page_meta->free_count == 1) { - /* first free element on page, move from all_used */ - re_queue_tail(&zone->pages.intermediate, &(page_meta->pages)); + assert(alloc_size == ptoa(z->alloc_pages)); + retval = kernel_memory_populate(submap_for_zone(z), space, alloc_size, + zflags, VM_KERN_MEMORY_ZONE); + if (retval != KERN_SUCCESS) { + lock_zone(z); + zone_meta_queue_push(z, &z->pages_sequester, page_meta, ZONE_ADDR_NATIVE); + z->sequester_page_count += z->alloc_pages; + unlock_zone(z); } - zone->count--; - zone->countfree++; - -#if KASAN_ZALLOC - kasan_poison_range(element, zone->elem_size, ASAN_HEAP_FREED); -#endif + return retval; } +#pragma mark Zone poisoning/zeroing /* - * Removes an element from the zone's free list, returning 0 if the free list is empty. - * Verifies that the next-pointer and backup next-pointer are intact, - * and verifies that a poisoned element hasn't been modified. + * Initialize zone poisoning + * called from zone_bootstrap before any allocations are made from zalloc */ -static inline vm_offset_t -try_alloc_from_zone(zone_t zone, - vm_tag_t tag __unused, - boolean_t* check_poison) +__startup_func +static void +zp_bootstrap(void) { - vm_offset_t element; - struct zone_page_metadata *page_meta; + char temp_buf[16]; - *check_poison = FALSE; + /* + * Initialize backup pointer random cookie for poisoned elements + * Try not to call early_random() back to back, it may return + * the same value if mach_absolute_time doesn't have sufficient time + * to tick over between calls. + * (This is only a problem on embedded devices) + */ + zp_poisoned_cookie = (uintptr_t) early_random(); - /* if zone is empty, bail */ - if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) - page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); - else if (!queue_empty(&zone->pages.intermediate)) - page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); - else if (!queue_empty(&zone->pages.all_free)) { - page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); - assert(zone->count_all_free_pages >= page_meta->page_count); - zone->count_all_free_pages -= page_meta->page_count; - } else { - return 0; + /* -zp: enable poisoning for every alloc and free */ + if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { + zp_factor = 1; + } + + /* -no-zp: disable poisoning */ + if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { + zp_factor = 0; + printf("Zone poisoning disabled\n"); } - /* Check if page_meta passes is_sane_zone_element */ - if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) - panic("zalloc: invalid metadata structure %p for freelist of zone %s\n", - (void *) page_meta, zone->zone_name); - assert(PAGE_METADATA_GET_ZONE(page_meta) == zone); - element = (vm_offset_t)page_metadata_get_freelist(page_meta); - if (__improbable(!is_sane_zone_ptr(zone, element, zone->elem_size))) - panic("zfree: invalid head pointer %p for freelist of zone %s\n", - (void *) element, zone->zone_name); + /* Initialize backup pointer random cookie for unpoisoned elements */ + zp_nopoison_cookie = (uintptr_t) early_random(); - vm_offset_t *primary = (vm_offset_t *) element; - vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); +#if MACH_ASSERT + if (zp_poisoned_cookie == zp_nopoison_cookie) { + panic("early_random() is broken: %p and %p are not random\n", + (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie); + } +#endif - /* - * Since the primary next pointer is xor'ed with zp_nopoison_cookie - * for obfuscation, retrieve the original value back + /* + * Use the last bit in the backup pointer to hint poisoning state + * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so + * the low bits are zero. */ - vm_offset_t next_element = *primary ^ zp_nopoison_cookie; - vm_offset_t next_element_primary = *primary; - vm_offset_t next_element_backup = *backup; + zp_poisoned_cookie |= (uintptr_t)0x1ULL; + zp_nopoison_cookie &= ~((uintptr_t)0x1ULL); +#if defined(__LP64__) /* - * backup_ptr_mismatch_panic will determine what next_element - * should have been, and print it appropriately + * Make backup pointers more obvious in GDB for 64 bit + * by making OxFFFFFF... ^ cookie = 0xFACADE... + * (0xFACADE = 0xFFFFFF ^ 0x053521) + * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011) + * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked + * by the sanity check, so it's OK for that part of the cookie to be predictable. + * + * TODO: Use #defines, xors, and shifts */ - if (__improbable(!is_sane_zone_element(zone, next_element))) - backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup); - /* Check the backup pointer for the regular cookie */ - if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) { + zp_poisoned_cookie &= 0x000000FFFFFFFFFF; + zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */ - /* Check for the poisoned cookie instead */ - if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) - /* Neither cookie is valid, corruption has occurred */ - backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup); + zp_nopoison_cookie &= 0x000000FFFFFFFFFF; + zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */ +#endif + + /* + * Initialize zp_min_size to two cachelines. Elements smaller than this will + * be zero-ed. + */ + ml_cpu_info_t cpu_info; + ml_cpu_get_info(&cpu_info); + zp_min_size = 2 * cpu_info.cache_line_size; +} + +inline uint32_t +zone_poison_count_init(zone_t zone) +{ + return zp_factor + (((uint32_t)zone_elem_size(zone)) >> zp_scale) ^ + (mach_absolute_time() & 0x7); +} + +#if ZALLOC_ENABLE_POISONING +static bool +zfree_poison_element(zone_t zone, uint32_t *zp_count, vm_offset_t elem) +{ + bool poison = false; + uint32_t zp_count_local; + assert(!zone->percpu); + if (zp_factor != 0) { /* - * Element was marked as poisoned, so check its integrity before using it. + * Poison the memory of every zp_count-th element before it ends up + * on the freelist to catch use-after-free and use of uninitialized + * memory. + * + * Every element is poisoned when zp_factor is set to 1. + * */ - *check_poison = TRUE; - } + zp_count_local = os_atomic_load(zp_count, relaxed); + if (__improbable(zp_count_local == 0 || zp_factor == 1)) { + poison = true; - /* Make sure the page_meta is at the correct offset from the start of page */ - if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element, FALSE))) - panic("zalloc: Incorrect metadata %p found in zone %s page queue. Expected metadata: %p\n", - page_meta, zone->zone_name, get_zone_page_metadata((struct zone_free_element *)element, FALSE)); - - /* Make sure next_element belongs to the same page as page_meta */ - if (next_element) { - if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element, FALSE))) - panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n", - (void *)next_element, (void *)element, zone->zone_name); - } + os_atomic_store(zp_count, zone_poison_count_init(zone), relaxed); - /* Remove this element from the free list */ - page_metadata_set_freelist(page_meta, (struct zone_free_element *)next_element); - page_meta->free_count--; + /* memset_pattern{4|8} could help make this faster: */ + vm_offset_t *element_cursor = ((vm_offset_t *) elem); + vm_offset_t *end_cursor = (vm_offset_t *)(elem + zone_elem_size(zone)); - if (page_meta->free_count == 0) { - /* move to all used */ - re_queue_tail(&zone->pages.all_used, &(page_meta->pages)); - } else { - if (!zone->allows_foreign || from_zone_map(element, zone->elem_size)) { - if (get_metadata_alloc_count(page_meta) == page_meta->free_count + 1) { - /* remove from free, move to intermediate */ - re_queue_tail(&zone->pages.intermediate, &(page_meta->pages)); + for (; element_cursor < end_cursor; element_cursor++) { + *element_cursor = ZONE_POISON; } + } else { + os_atomic_store(zp_count, zp_count_local - 1, relaxed); + /* + * Zero first zp_min_size bytes of elements that aren't being poisoned. + * Element size is larger than zp_min_size in this path as elements + * that are smaller will always be zero-ed. + */ + bzero((void *) elem, zp_min_size); } } - zone->countfree--; - zone->count++; - zone->sum_count++; - -#if VM_MAX_TAG_ZONES - if (__improbable(zone->tags)) { - // set the tag with b0 clear so the block remains inuse - ZTAG(zone, element)[0] = (tag << 1); - } -#endif /* VM_MAX_TAG_ZONES */ - - -#if KASAN_ZALLOC - kasan_poison_range(element, zone->elem_size, ASAN_VALID); + return poison; +} +#else +static bool +zfree_poison_element(zone_t zone, uint32_t *zp_count, vm_offset_t elem) +{ +#pragma unused(zone, zp_count, elem) + assert(!zone->percpu); + return false; +} #endif - return element; -} +__attribute__((always_inline)) +static bool +zfree_clear(zone_t zone, vm_offset_t addr, vm_size_t elem_size) +{ + assert(zone->zfree_clear_mem); + if (zone->percpu) { + zpercpu_foreach_cpu(i) { + bzero((void *)(addr + ptoa(i)), elem_size); + } + } else { + bzero((void *)addr, elem_size); + } -/* - * End of zone poisoning - */ + return true; +} /* - * Zone info options + * Zero the element if zone has zfree_clear_mem flag set else poison + * the element if zp_count hits 0. */ -#define ZINFO_SLOTS MAX_ZONES /* for now */ - -zone_t zone_find_largest(void); +__attribute__((always_inline)) +bool +zfree_clear_or_poison(zone_t zone, uint32_t *zp_count, vm_offset_t addr) +{ + vm_size_t elem_size = zone_elem_size(zone); -/* - * Async allocation of zones - * This mechanism allows for bootstrapping an empty zone which is setup with - * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call - * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free. - * This will prime the zone for the next use. - * - * Currently the thread_callout function (zalloc_async) will loop through all zones - * looking for any zone with async_pending set and do the work for it. - * - * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call, - * then zalloc_noblock to an empty zone may succeed. - */ -void zalloc_async( - thread_call_param_t p0, - thread_call_param_t p1); + if (zone->zfree_clear_mem) { + return zfree_clear(zone, addr, elem_size); + } -static thread_call_data_t call_async_alloc; + return zfree_poison_element(zone, zp_count, (vm_offset_t)addr); +} /* - * Align elements that use the zone page list to 32 byte boundaries. + * Clear out the old next pointer and backup to avoid leaking the zone + * poisoning cookie and so that only values on the freelist have a valid + * cookie. */ -#define ZONE_ELEMENT_ALIGNMENT 32 - -#define zone_wakeup(zone) thread_wakeup((event_t)(zone)) -#define zone_sleep(zone) \ - (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN_ALWAYS, (event_t)(zone), THREAD_UNINT); +void +zone_clear_freelist_pointers(zone_t zone, vm_offset_t addr) +{ + vm_offset_t perm_value = 0; -/* - * The zone_locks_grp allows for collecting lock statistics. - * All locks are associated to this group in zinit. - * Look at tools/lockstat for debugging lock contention. - */ + if (!zone->zfree_clear_mem) { + perm_value = ZONE_POISON; + } -lck_grp_t zone_locks_grp; -lck_grp_attr_t zone_locks_grp_attr; + vm_offset_t *primary = (vm_offset_t *) addr; + vm_offset_t *backup = get_backup_ptr(zone_elem_size(zone), primary); -#define lock_zone_init(zone) \ -MACRO_BEGIN \ - lck_attr_setdefault(&(zone)->lock_attr); \ - lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \ - &zone_locks_grp, &(zone)->lock_attr); \ -MACRO_END + *primary = perm_value; + *backup = perm_value; +} -#define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock) +#if ZALLOC_ENABLE_POISONING +__abortlike +static void +zone_element_not_clear_panic(zone_t zone, void *addr) +{ + panic("Zone element %p was modified after free for zone %s%s: " + "Expected element to be cleared", addr, zone_heap_name(zone), + zone->z_name); +} /* - * Exclude more than one concurrent garbage collection + * Validate that the element was not tampered with while it was in the + * freelist. */ -decl_lck_mtx_data(, zone_gc_lock) - -lck_attr_t zone_gc_lck_attr; -lck_grp_t zone_gc_lck_grp; -lck_grp_attr_t zone_gc_lck_grp_attr; -lck_mtx_ext_t zone_gc_lck_ext; - -boolean_t zone_gc_allowed = TRUE; -boolean_t panic_include_zprint = FALSE; - -mach_memory_info_t *panic_kext_memory_info = NULL; -vm_size_t panic_kext_memory_size = 0; +void +zalloc_validate_element(zone_t zone, vm_offset_t addr, vm_size_t size, bool validate) +{ + if (zone->percpu) { + assert(zone->zfree_clear_mem); + zpercpu_foreach_cpu(i) { + if (memcmp_zero_ptr_aligned((void *)(addr + ptoa(i)), size)) { + zone_element_not_clear_panic(zone, (void *)(addr + ptoa(i))); + } + } + } else if (zone->zfree_clear_mem) { + if (memcmp_zero_ptr_aligned((void *)addr, size)) { + zone_element_not_clear_panic(zone, (void *)addr); + } + } else if (__improbable(validate)) { + const vm_offset_t *p = (vm_offset_t *)addr; + const vm_offset_t *end = (vm_offset_t *)(addr + size); + + for (; p < end; p++) { + if (*p != ZONE_POISON) { + zone_element_was_modified_panic(zone, addr, + *p, ZONE_POISON, (vm_offset_t)p - addr); + } + } + } else { + /* + * If element wasn't poisoned or entirely cleared, validate that the + * minimum bytes that were cleared on free haven't been corrupted. + * addr is advanced by ptr size as we have already validated and cleared + * the freelist pointer/zcache canary. + */ + if (memcmp_zero_ptr_aligned((void *) (addr + sizeof(vm_offset_t)), + zp_min_size - sizeof(vm_offset_t))) { + zone_element_not_clear_panic(zone, (void *)addr); + } + } +} +#endif /* ZALLOC_ENABLE_POISONING */ -#define ZALLOC_DEBUG_ZONEGC 0x00000001 -#define ZALLOC_DEBUG_ZCRAM 0x00000002 -uint32_t zalloc_debug = 0; +#pragma mark Zone Leak Detection /* * Zone leak debugging code @@ -1451,7 +2017,7 @@ uint32_t zalloc_debug = 0; * off by default. * * Enable the logging via the boot-args. Add the parameter "zlog=" to boot-args where - * is the name of the zone you wish to log. + * is the name of the zone you wish to log. * * This code only tracks one zone, so you need to identify which one is leaking first. * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone @@ -1472,115 +2038,180 @@ uint32_t zalloc_debug = 0; * corrupted to examine its history. This should lead to the source of the corruption. */ -static boolean_t log_records_init = FALSE; -static int log_records; /* size of the log, expressed in number of records */ - -#define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */ - -static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING; -static int num_zones_logged = 0; +/* Returns TRUE if we rolled over the counter at factor */ +__header_always_inline bool +sample_counter(volatile uint32_t *count_p, uint32_t factor) +{ + uint32_t old_count, new_count = 0; + if (count_p != NULL) { + os_atomic_rmw_loop(count_p, old_count, new_count, relaxed, { + new_count = old_count + 1; + if (new_count >= factor) { + new_count = 0; + } + }); + } -static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */ + return new_count == 0; +} +#if ZONE_ENABLE_LOGGING /* Log allocations and frees to help debug a zone element corruption */ -boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */ -/* Making pointer scanning leaks detection possible for all zones */ +TUNABLE(bool, corruption_debug_flag, "-zc", false); -#if DEBUG || DEVELOPMENT -boolean_t leak_scan_debug_flag = FALSE; /* enabled by "-zl" boot-arg */ -#endif /* DEBUG || DEVELOPMENT */ +#define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */ +static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING; +static int num_zones_logged = 0; /* - * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to + * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to * the number of records you want in the log. For example, "zrecs=10" sets it to 10 records. Since this * is the number of stacks suspected of leaking, we don't need many records. */ -#if defined(__LP64__) -#define ZRECORDS_MAX 2560 /* Max records allowed in the log */ +#if defined(__LP64__) +#define ZRECORDS_MAX 2560 /* Max records allowed in the log */ #else -#define ZRECORDS_MAX 1536 /* Max records allowed in the log */ +#define ZRECORDS_MAX 1536 /* Max records allowed in the log */ #endif -#define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */ - -/* - * Each record in the log contains a pointer to the zone element it refers to, - * and a small array to hold the pc's from the stack trace. A - * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, - * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. - * If the log fills, old records are replaced as if it were a circular buffer. - */ +#define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */ +static TUNABLE(uint32_t, log_records, "zrecs", ZRECORDS_DEFAULT); -/* - * Opcodes for the btlog operation field: - */ +static void +zone_enable_logging(zone_t z) +{ + z->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, + (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */); -#define ZOP_ALLOC 1 -#define ZOP_FREE 0 + if (z->zlog_btlog) { + printf("zone: logging started for zone %s%s\n", + zone_heap_name(z), z->z_name); + } else { + printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); + z->zone_logging = false; + } +} -/* - * Decide if we want to log this zone by doing a string compare between a zone name and the name - * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not - * possible to include spaces in strings passed in via the boot-args, a period in the logname will - * match a space in the zone name. +/** + * @function zone_setup_logging + * + * @abstract + * Optionally sets up a zone for logging. + * + * @discussion + * We recognized two boot-args: + * + * zlog= + * zrecs= + * + * The zlog arg is used to specify the zone name that should be logged, + * and zrecs is used to control the size of the log. + * + * If zrecs is not specified, a default value is used. */ - -int -track_this_zone(const char *zonename, const char *logname) +static void +zone_setup_logging(zone_t z) { - int len; - const char *zc = zonename; - const char *lc = logname; + char zone_name[MAX_ZONE_NAME]; /* Temp. buffer for the zone name */ + char zlog_name[MAX_ZONE_NAME]; /* Temp. buffer to create the strings zlog1, zlog2 etc... */ + char zlog_val[MAX_ZONE_NAME]; /* the zone name we're logging, if any */ /* - * Compare the strings. We bound the compare by MAX_ZONE_NAME. + * Don't allow more than ZRECORDS_MAX records even if the user asked for more. + * + * This prevents accidentally hogging too much kernel memory + * and making the system unusable. */ + if (log_records > ZRECORDS_MAX) { + log_records = ZRECORDS_MAX; + } - for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { + /* + * Append kalloc heap name to zone name (if zone is used by kalloc) + */ + snprintf(zone_name, MAX_ZONE_NAME, "%s%s", zone_heap_name(z), z->z_name); - /* - * If the current characters don't match, check for a space in - * in the zone name and a corresponding period in the log name. - * If that's not there, then the strings don't match. - */ + /* zlog0 isn't allowed. */ + for (int i = 1; i <= max_num_zones_to_log; i++) { + snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i); - if (*zc != *lc && !(*zc == ' ' && *lc == '.')) + if (PE_parse_boot_argn(zlog_name, zlog_val, sizeof(zlog_val)) && + track_this_zone(zone_name, zlog_val)) { + z->zone_logging = true; + num_zones_logged++; break; + } + } - /* - * The strings are equal so far. If we're at the end, then it's a match. - */ - - if (*zc == '\0') - return TRUE; + /* + * Backwards compat. with the old boot-arg used to specify single zone + * logging i.e. zlog Needs to happen after the newer zlogn checks + * because the prefix will match all the zlogn + * boot-args. + */ + if (!z->zone_logging && + PE_parse_boot_argn("zlog", zlog_val, sizeof(zlog_val)) && + track_this_zone(zone_name, zlog_val)) { + z->zone_logging = true; + num_zones_logged++; } - return FALSE; + + /* + * If we want to log a zone, see if we need to allocate buffer space for + * the log. + * + * Some vm related zones are zinit'ed before we can do a kmem_alloc, so + * we have to defer allocation in that case. + * + * zone_init() will finish the job. + * + * If we want to log one of the VM related zones that's set up early on, + * we will skip allocation of the log until zinit is called again later + * on some other zone. + */ + if (z->zone_logging && startup_phase >= STARTUP_SUB_KMEM_ALLOC) { + zone_enable_logging(z); + } } +/* + * Each record in the log contains a pointer to the zone element it refers to, + * and a small array to hold the pc's from the stack trace. A + * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, + * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. + * If the log fills, old records are replaced as if it were a circular buffer. + */ + + +/* + * Decide if we want to log this zone by doing a string compare between a zone name and the name + * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not + * possible to include spaces in strings passed in via the boot-args, a period in the logname will + * match a space in the zone name. + */ /* * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and * the buffer for the records has been allocated. */ -#define DO_LOGGING(z) (z->zone_logging == TRUE && z->zlog_btlog) - -extern boolean_t kmem_alloc_ready; +#define DO_LOGGING(z) (z->zlog_btlog != NULL) +#else /* !ZONE_ENABLE_LOGGING */ +#define DO_LOGGING(z) 0 +#endif /* !ZONE_ENABLE_LOGGING */ #if CONFIG_ZLEAKS -#pragma mark - -#pragma mark Zone Leak Detection -/* +/* * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a - * backtrace. Every free, we examine the table and determine if the allocation was being tracked, + * backtrace. Every free, we examine the table and determine if the allocation was being tracked, * and stop tracking it if it was being tracked. * - * We track the allocations in the zallocations hash table, which stores the address that was returned from + * We track the allocations in the zallocations hash table, which stores the address that was returned from * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which * stores the backtrace associated with that allocation. This provides uniquing for the relatively large * backtraces - we don't store them more than once. @@ -1588,20 +2219,20 @@ extern boolean_t kmem_alloc_ready; * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up * a large amount of virtual space. */ -#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ -#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ -#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ -#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ -uint32_t zleak_state = 0; /* State of collection, as above */ +#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ +#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ +#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ +#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ +uint32_t zleak_state = 0; /* State of collection, as above */ -boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ -vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ -vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ -unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ +boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ +vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ +vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ +unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ /* * Counters for allocation statistics. - */ + */ /* Times two active records want to occupy the same spot */ unsigned int z_alloc_collisions = 0; @@ -1612,24 +2243,22 @@ unsigned int z_alloc_overwrites = 0; unsigned int z_trace_overwrites = 0; /* Times a new alloc or trace is put into the hash table */ -unsigned int z_alloc_recorded = 0; -unsigned int z_trace_recorded = 0; +unsigned int z_alloc_recorded = 0; +unsigned int z_trace_recorded = 0; /* Times zleak_log returned false due to not being able to acquire the lock */ -unsigned int z_total_conflicts = 0; - +unsigned int z_total_conflicts = 0; -#pragma mark struct zallocation /* * Structure for keeping track of an allocation * An allocation bucket is in use if its element is not NULL */ struct zallocation { - uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ - vm_size_t za_size; /* how much memory did this allocation take up? */ - uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ + uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ + vm_size_t za_size; /* how much memory did this allocation take up? */ + uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ /* TODO: #if this out */ - uint32_t za_hit_count; /* for determining effectiveness of hash function */ + uint32_t za_hit_count; /* for determining effectiveness of hash function */ }; /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */ @@ -1639,29 +2268,28 @@ uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM; vm_size_t zleak_max_zonemap_size; /* Hashmaps of allocations and their corresponding traces */ -static struct zallocation* zallocations; -static struct ztrace* ztraces; +static struct zallocation* zallocations; +static struct ztrace* ztraces; /* not static so that panic can see this, see kern/debug.c */ -struct ztrace* top_ztrace; +struct ztrace* top_ztrace; /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */ -static lck_spin_t zleak_lock; -static lck_attr_t zleak_lock_attr; -static lck_grp_t zleak_lock_grp; -static lck_grp_attr_t zleak_lock_grp_attr; +LCK_GRP_DECLARE(zleak_lock_grp, "zleak_lock"); +LCK_SPIN_DECLARE(zleak_lock, &zleak_lock_grp); /* * Initializes the zone leak monitor. Called from zone_init() */ -static void -zleak_init(vm_size_t max_zonemap_size) +__startup_func +static void +zleak_init(vm_size_t max_zonemap_size) { - char scratch_buf[16]; - boolean_t zleak_enable_flag = FALSE; + char scratch_buf[16]; + boolean_t zleak_enable_flag = FALSE; zleak_max_zonemap_size = max_zonemap_size; - zleak_global_tracking_threshold = max_zonemap_size / 2; + zleak_global_tracking_threshold = max_zonemap_size / 2; zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; #if CONFIG_EMBEDDED @@ -1682,7 +2310,7 @@ zleak_init(vm_size_t max_zonemap_size) printf("zone leak detection enabled\n"); } #endif /* CONFIG_EMBEDDED */ - + /* zfactor=XXXX (override how often to sample the zone allocator) */ if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { printf("Zone leak factor override: %u\n", zleak_sample_factor); @@ -1692,33 +2320,25 @@ zleak_init(vm_size_t max_zonemap_size) if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) { printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets); /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ - if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) { + if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets - 1))) { printf("Override isn't a power of two, bad things might happen!\n"); } } - + /* zleak-traces=XXXX (override number of buckets in ztraces) */ if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) { printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets); /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ - if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) { + if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets - 1))) { printf("Override isn't a power of two, bad things might happen!\n"); } } - - /* allocate the zleak_lock */ - lck_grp_attr_setdefault(&zleak_lock_grp_attr); - lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr); - lck_attr_setdefault(&zleak_lock_attr); - lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr); - + if (zleak_enable_flag) { zleak_state = ZLEAK_STATE_ENABLED; } } -#if CONFIG_ZLEAKS - /* * Support for kern.zleak.active sysctl - a simplified * version of the zleak_state variable. @@ -1726,16 +2346,15 @@ zleak_init(vm_size_t max_zonemap_size) int get_zleak_state(void) { - if (zleak_state & ZLEAK_STATE_FAILED) - return (-1); - if (zleak_state & ZLEAK_STATE_ACTIVE) - return (1); - return (0); + if (zleak_state & ZLEAK_STATE_FAILED) { + return -1; + } + if (zleak_state & ZLEAK_STATE_ACTIVE) { + return 1; + } + return 0; } -#endif - - kern_return_t zleak_activate(void) { @@ -1779,7 +2398,7 @@ zleak_activate(void) ztraces = traces_ptr; /* - * Initialize the top_ztrace to the first entry in ztraces, + * Initialize the top_ztrace to the first entry in ztraces, * so we don't have to check for null in zleak_log */ top_ztrace = &ztraces[0]; @@ -1793,10 +2412,10 @@ zleak_activate(void) zleak_state |= ZLEAK_STATE_ACTIVE; zleak_state &= ~ZLEAK_STATE_ACTIVATING; lck_spin_unlock(&zleak_lock); - + return 0; -fail: +fail: /* * If we fail to allocate memory, don't further tax * the system by trying again. @@ -1818,15 +2437,15 @@ fail: } /* - * TODO: What about allocations that never get deallocated, + * TODO: What about allocations that never get deallocated, * especially ones with unique backtraces? Should we wait to record - * until after boot has completed? + * until after boot has completed? * (How many persistent zallocs are there?) */ /* - * This function records the allocation in the allocations table, - * and stores the associated backtrace in the traces table + * This function records the allocation in the allocations table, + * and stores the associated backtrace in the traces table * (or just increments the refcount if the trace is already recorded) * If the allocation slot is in use, the old allocation is replaced with the new allocation, and * the associated trace's refcount is decremented. @@ -1836,47 +2455,47 @@ fail: */ static boolean_t zleak_log(uintptr_t* bt, - uintptr_t addr, - uint32_t depth, - vm_size_t allocation_size) + uintptr_t addr, + uint32_t depth, + vm_size_t allocation_size) { /* Quit if there's someone else modifying the hash tables */ if (!lck_spin_try_lock(&zleak_lock)) { z_total_conflicts++; return FALSE; } - - struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; - + + struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; + uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets); struct ztrace* trace = &ztraces[trace_index]; - + allocation->za_hit_count++; trace->zt_hit_count++; - - /* + + /* * If the allocation bucket we want to be in is occupied, and if the occupier - * has the same trace as us, just bail. + * has the same trace as us, just bail. */ if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) { z_alloc_collisions++; - + lck_spin_unlock(&zleak_lock); return TRUE; } - + /* STEP 1: Store the backtrace in the traces array. */ /* A size of zero indicates that the trace bucket is free. */ - - if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) { - /* + + if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0) { + /* * Different unique trace with same hash! * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated * and get out of the way for later chances */ trace->zt_collisions++; z_trace_collisions++; - + lck_spin_unlock(&zleak_lock); return TRUE; } else if (trace->zt_size > 0) { @@ -1884,28 +2503,29 @@ zleak_log(uintptr_t* bt, trace->zt_size += allocation_size; } else { /* Found an unused trace bucket, record the trace here! */ - if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */ + if (trace->zt_depth != 0) { /* if this slot was previously used but not currently in use */ z_trace_overwrites++; - + } + z_trace_recorded++; - trace->zt_size = allocation_size; - memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) ); - - trace->zt_depth = depth; - trace->zt_collisions = 0; + trace->zt_size = allocation_size; + memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t))); + + trace->zt_depth = depth; + trace->zt_collisions = 0; } - + /* STEP 2: Store the allocation record in the allocations array. */ - + if (allocation->za_element != (uintptr_t) 0) { - /* + /* * Straight up replace any allocation record that was there. We don't want to do the work - * to preserve the allocation entries that were there, because we only record a subset of the + * to preserve the allocation entries that were there, because we only record a subset of the * allocations anyways. */ - + z_alloc_collisions++; - + struct ztrace* associated_trace = &ztraces[allocation->za_trace_index]; /* Knock off old allocation's size, not the new allocation */ associated_trace->zt_size -= allocation->za_size; @@ -1914,15 +2534,16 @@ zleak_log(uintptr_t* bt, z_alloc_overwrites++; } - allocation->za_element = addr; - allocation->za_trace_index = trace_index; - allocation->za_size = allocation_size; - + allocation->za_element = addr; + allocation->za_trace_index = trace_index; + allocation->za_size = allocation_size; + z_alloc_recorded++; - - if (top_ztrace->zt_size < trace->zt_size) + + if (top_ztrace->zt_size < trace->zt_size) { top_ztrace = trace; - + } + lck_spin_unlock(&zleak_lock); return TRUE; } @@ -1931,39 +2552,41 @@ zleak_log(uintptr_t* bt, * Free the allocation record and release the stacktrace. * This should be as fast as possible because it will be called for every free. */ +__attribute__((noinline)) static void zleak_free(uintptr_t addr, - vm_size_t allocation_size) + vm_size_t allocation_size) { - if (addr == (uintptr_t) 0) + if (addr == (uintptr_t) 0) { return; - + } + struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; - + /* Double-checked locking: check to find out if we're interested, lock, check to make * sure it hasn't changed, then modify it, and release the lock. */ - + if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { /* if the allocation was the one, grab the lock, check again, then delete it */ lck_spin_lock(&zleak_lock); - + if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { struct ztrace *trace; /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */ if (allocation->za_size != allocation_size) { - panic("Freeing as size %lu memory that was allocated with size %lu\n", - (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); + panic("Freeing as size %lu memory that was allocated with size %lu\n", + (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); } - + trace = &ztraces[allocation->za_trace_index]; - + /* size of 0 indicates trace bucket is unused */ if (trace->zt_size > 0) { trace->zt_size -= allocation_size; } - + /* A NULL element means the allocation bucket is unused */ allocation->za_element = 0; } @@ -1984,16 +2607,16 @@ hash_mix(uintptr_t x) #ifndef __LP64__ x += ~(x << 15); x ^= (x >> 10); - x += (x << 3 ); - x ^= (x >> 6 ); + x += (x << 3); + x ^= (x >> 6); x += ~(x << 11); x ^= (x >> 16); #else x += ~(x << 32); x ^= (x >> 22); x += ~(x << 13); - x ^= (x >> 8 ); - x += (x << 3 ); + x ^= (x >> 8); + x += (x << 3); x ^= (x >> 15); x += ~(x << 27); x ^= (x >> 31); @@ -2004,7 +2627,6 @@ hash_mix(uintptr_t x) uint32_t hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) { - uintptr_t hash = 0; uintptr_t mask = max_size - 1; @@ -2037,744 +2659,1222 @@ hashaddr(uintptr_t pt, uint32_t max_size) } /* End of all leak-detection code */ -#pragma mark - +#pragma mark zone creation, configuration, destruction -#define ZONE_MAX_ALLOC_SIZE (32 * 1024) -#define ZONE_ALLOC_FRAG_PERCENT(alloc_size, ele_size) (((alloc_size % ele_size) * 100) / alloc_size) +static zone_t +zone_init_defaults(zone_id_t zid) +{ + zone_t z = &zone_array[zid]; -/* Used to manage copying in of new zone names */ -static vm_offset_t zone_names_start; -static vm_offset_t zone_names_next; + z->page_count_max = ~0u; + z->collectable = true; + z->expandable = true; + z->submap_idx = Z_SUBMAP_IDX_GENERAL_MAP; -static vm_size_t -compute_element_size(vm_size_t requested_size) -{ - vm_size_t element_size = requested_size; + simple_lock_init(&z->lock, 0); - /* Zone elements must fit both a next pointer and a backup pointer */ - vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2; - if (element_size < minimum_element_size) - element_size = minimum_element_size; + return z; +} - /* - * Round element size to a multiple of sizeof(pointer) - * This also enforces that allocations will be aligned on pointer boundaries - */ - element_size = ((element_size-1) + sizeof(vm_offset_t)) - - ((element_size-1) % sizeof(vm_offset_t)); +static bool +zone_is_initializing(zone_t z) +{ + return !z->z_self && !z->destroyed; +} - return element_size; +static void +zone_set_max(zone_t z, vm_size_t max) +{ +#if KASAN_ZALLOC + if (z->kasan_redzone) { + /* + * Adjust the max memory for the kasan redzones + */ + max += (max / z->pcpu_elem_size) * z->kasan_redzone * 2; + } +#endif + if (max < z->percpu ? 1 : z->alloc_pages) { + max = z->percpu ? 1 : z->alloc_pages; + } else { + max = atop(round_page(max)); + } + z->page_count_max = max; } -/* - * zinit initializes a new zone. The zone data structures themselves - * are stored in a zone, which is initially a static structure that - * is initialized by zone_init. - */ +void +zone_set_submap_idx(zone_t zone, unsigned int sub_map_idx) +{ + if (!zone_is_initializing(zone)) { + panic("%s: called after zone_create()", __func__); + } + if (sub_map_idx > zone_last_submap_idx) { + panic("zone_set_submap_idx(%d) > %d", sub_map_idx, zone_last_submap_idx); + } + zone->submap_idx = sub_map_idx; +} -zone_t -zinit( - vm_size_t size, /* the size of an element */ - vm_size_t max, /* maximum memory to use */ - vm_size_t alloc, /* allocation size */ - const char *name) /* a name for the zone */ +void +zone_set_noexpand( + zone_t zone, + vm_size_t max) { - zone_t z; + if (!zone_is_initializing(zone)) { + panic("%s: called after zone_create()", __func__); + } + zone->expandable = false; + zone_set_max(zone, max); +} - size = compute_element_size(size); +void +zone_set_exhaustible( + zone_t zone, + vm_size_t max) +{ + if (!zone_is_initializing(zone)) { + panic("%s: called after zone_create()", __func__); + } + zone->expandable = false; + zone->exhaustible = true; + zone_set_max(zone, max); +} - simple_lock(&all_zones_lock); +/** + * @function zone_create_find + * + * @abstract + * Finds an unused zone for the given name and element size. + * + * @param name the zone name + * @param size the element size (including redzones, ...) + * @param flags the flags passed to @c zone_create* + * @param zid the desired zone ID or ZONE_ID_ANY + * + * @returns a zone to initialize further. + */ +static zone_t +zone_create_find( + const char *name, + vm_size_t size, + zone_create_flags_t flags, + zone_id_t zid) +{ + zone_id_t nzones; + zone_t z; - assert(num_zones < MAX_ZONES); - assert(num_zones_in_use <= num_zones); + simple_lock(&all_zones_lock, &zone_locks_grp); - /* If possible, find a previously zdestroy'ed zone in the zone_array that we can reuse instead of initializing a new zone. */ - for (int index = bitmap_first(zone_empty_bitmap, MAX_ZONES); - index >= 0 && index < (int)num_zones; - index = bitmap_next(zone_empty_bitmap, index)) { - z = &(zone_array[index]); + nzones = (zone_id_t)os_atomic_load(&num_zones, relaxed); + assert(num_zones_in_use <= nzones && nzones < MAX_ZONES); + if (__improbable(nzones < ZONE_ID__FIRST_DYNAMIC)) { /* - * If the zone name and the element size are the same, we can just reuse the old zone struct. - * Otherwise hand out a new zone from the zone_array. + * The first time around, make sure the reserved zone IDs + * have an initialized lock as zone_index_foreach() will + * enumerate them. */ - if (!strcmp(z->zone_name, name)) { - vm_size_t old_size = z->elem_size; -#if KASAN_ZALLOC - old_size -= z->kasan_redzone * 2; -#endif - if (old_size == size) { - /* Clear the empty bit for this zone, increment num_zones_in_use, and mark the zone as valid again. */ - bitmap_clear(zone_empty_bitmap, index); - num_zones_in_use++; - z->zone_valid = TRUE; - - /* All other state is already set up since the zone was previously in use. Return early. */ - simple_unlock(&all_zones_lock); - return (z); - } + while (nzones < ZONE_ID__FIRST_DYNAMIC) { + zone_init_defaults(nzones++); } + + os_atomic_store(&num_zones, nzones, release); } - /* If we're here, it means we didn't find a zone above that we could simply reuse. Set up a new zone. */ + if (zid != ZONE_ID_ANY) { + if (zid >= ZONE_ID__FIRST_DYNAMIC) { + panic("zone_create: invalid desired zone ID %d for %s", + zid, name); + } + if (flags & ZC_DESTRUCTIBLE) { + panic("zone_create: ID %d (%s) must be permanent", zid, name); + } + if (zone_array[zid].z_self) { + panic("zone_create: creating zone ID %d (%s) twice", zid, name); + } + z = &zone_array[zid]; + } else { + if (flags & ZC_DESTRUCTIBLE) { + /* + * If possible, find a previously zdestroy'ed zone in the + * zone_array that we can reuse. + */ + for (int i = bitmap_first(zone_destroyed_bitmap, MAX_ZONES); + i >= 0; i = bitmap_next(zone_destroyed_bitmap, i)) { + z = &zone_array[i]; + + /* + * If the zone name and the element size are the + * same, we can just reuse the old zone struct. + */ + if (strcmp(z->z_name, name) || zone_elem_size(z) != size) { + continue; + } + bitmap_clear(zone_destroyed_bitmap, i); + z->destroyed = false; + z->z_self = z; + zid = (zone_id_t)i; + goto out; + } + } - /* Clear the empty bit for the new zone */ - bitmap_clear(zone_empty_bitmap, num_zones); + zid = nzones++; + z = zone_init_defaults(zid); - z = &(zone_array[num_zones]); - z->index = num_zones; + /* + * The release barrier pairs with the acquire in + * zone_index_foreach() and makes sure that enumeration loops + * always see an initialized zone lock. + */ + os_atomic_store(&num_zones, nzones, release); + } - num_zones++; +out: num_zones_in_use++; + simple_unlock(&all_zones_lock); + + return z; +} + +__abortlike +static void +zone_create_panic(const char *name, const char *f1, const char *f2) +{ + panic("zone_create: creating zone %s: flag %s and %s are incompatible", + name, f1, f2); +} +#define zone_create_assert_not_both(name, flags, current_flag, forbidden_flag) \ + if ((flags) & forbidden_flag) { \ + zone_create_panic(name, #current_flag, #forbidden_flag); \ + } +/* + * Adjusts the size of the element based on minimum size, alignment + * and kasan redzones + */ +static vm_size_t +zone_elem_adjust_size( + const char *name __unused, + vm_size_t elem_size, + zone_create_flags_t flags, + vm_size_t *redzone __unused) +{ + vm_size_t size; /* - * Initialize the zone lock here before dropping the all_zones_lock. Otherwise we could race with - * zalloc_async() and try to grab the zone lock before it has been initialized, causing a panic. + * Adjust element size for minimum size and pointer alignment */ - lock_zone_init(z); - - simple_unlock(&all_zones_lock); + size = (elem_size + sizeof(vm_offset_t) - 1) & -sizeof(vm_offset_t); + if (((flags & ZC_PERCPU) == 0) && size < ZONE_MIN_ELEM_SIZE) { + size = ZONE_MIN_ELEM_SIZE; + } #if KASAN_ZALLOC - /* Expand the zone allocation size to include the redzones. For page-multiple - * zones add a full guard page because they likely require alignment. kalloc - * and fakestack handles its own KASan state, so ignore those zones. */ - /* XXX: remove this when zinit_with_options() is a thing */ - const char *kalloc_name = "kalloc."; - const char *fakestack_name = "fakestack."; - if (strncmp(name, kalloc_name, strlen(kalloc_name)) == 0) { - z->kasan_redzone = 0; - } else if (strncmp(name, fakestack_name, strlen(fakestack_name)) == 0) { - z->kasan_redzone = 0; - } else { - if ((size % PAGE_SIZE) != 0) { - z->kasan_redzone = KASAN_GUARD_SIZE; - } else { - z->kasan_redzone = PAGE_SIZE; + /* + * Expand the zone allocation size to include the redzones. + * + * For page-multiple zones add a full guard page because they + * likely require alignment. + */ + vm_size_t redzone_tmp; + if (flags & (ZC_KASAN_NOREDZONE | ZC_PERCPU)) { + redzone_tmp = 0; + } else if ((size & PAGE_MASK) == 0) { + if (size != PAGE_SIZE && (flags & ZC_ALIGNMENT_REQUIRED)) { + panic("zone_create: zone %s can't provide more than PAGE_SIZE" + "alignment", name); } - max = (max / size) * (size + z->kasan_redzone * 2); - size += z->kasan_redzone * 2; + redzone_tmp = PAGE_SIZE; + } else if (flags & ZC_ALIGNMENT_REQUIRED) { + redzone_tmp = 0; + } else { + redzone_tmp = KASAN_GUARD_SIZE; + } + size += redzone_tmp * 2; + if (redzone) { + *redzone = redzone_tmp; } #endif + return size; +} - max = round_page(max); - - vm_size_t best_alloc = PAGE_SIZE; - - if ((size % PAGE_SIZE) == 0) { +/* + * Returns the allocation chunk size that has least framentation + */ +static vm_size_t +zone_get_min_alloc_granule( + vm_size_t elem_size, + zone_create_flags_t flags) +{ + vm_size_t alloc_granule = PAGE_SIZE; + if (flags & ZC_PERCPU) { + alloc_granule = PAGE_SIZE * zpercpu_count(); + if (PAGE_SIZE % elem_size > 256) { + panic("zone_create: per-cpu zone has too much fragmentation"); + } + } else if ((elem_size & PAGE_MASK) == 0) { + /* zero fragmentation by definition */ + alloc_granule = elem_size; + } else if (alloc_granule % elem_size == 0) { /* zero fragmentation by definition */ - best_alloc = size; } else { - vm_size_t alloc_size; - for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) { - if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) { - best_alloc = alloc_size; + vm_size_t frag = (alloc_granule % elem_size) * 100 / alloc_granule; + vm_size_t alloc_tmp = PAGE_SIZE; + while ((alloc_tmp += PAGE_SIZE) <= ZONE_MAX_ALLOC_SIZE) { + vm_size_t frag_tmp = (alloc_tmp % elem_size) * 100 / alloc_tmp; + if (frag_tmp < frag) { + frag = frag_tmp; + alloc_granule = alloc_tmp; } } } + return alloc_granule; +} - alloc = best_alloc; - if (max && (max < alloc)) - max = alloc; - - z->free_elements = NULL; - queue_init(&z->pages.any_free_foreign); - queue_init(&z->pages.all_free); - queue_init(&z->pages.intermediate); - queue_init(&z->pages.all_used); - z->cur_size = 0; - z->page_count = 0; - z->max_size = max; - z->elem_size = size; - z->alloc_size = alloc; - z->count = 0; - z->countfree = 0; - z->count_all_free_pages = 0; - z->sum_count = 0LL; - z->doing_alloc_without_vm_priv = FALSE; - z->doing_alloc_with_vm_priv = FALSE; - z->exhaustible = FALSE; - z->collectable = TRUE; - z->allows_foreign = FALSE; - z->expandable = TRUE; - z->waiting = FALSE; - z->async_pending = FALSE; - z->caller_acct = TRUE; - z->noencrypt = FALSE; - z->no_callout = FALSE; - z->async_prio_refill = FALSE; - z->gzalloc_exempt = FALSE; - z->alignment_required = FALSE; - z->zone_replenishing = FALSE; - z->prio_refill_watermark = 0; - z->zone_replenish_thread = NULL; - z->zp_count = 0; - z->kasan_quarantine = TRUE; - z->zone_valid = TRUE; - -#if CONFIG_ZLEAKS - z->zleak_capture = 0; - z->zleak_on = FALSE; -#endif /* CONFIG_ZLEAKS */ - +vm_size_t +zone_get_foreign_alloc_size( + const char *name __unused, + vm_size_t elem_size, + zone_create_flags_t flags, + uint16_t min_pages) +{ + vm_size_t adjusted_size = zone_elem_adjust_size(name, elem_size, flags, + NULL); + vm_size_t alloc_granule = zone_get_min_alloc_granule(adjusted_size, + flags); + vm_size_t min_size = min_pages * PAGE_SIZE; /* - * If the VM is ready to handle kmem_alloc requests, copy the zone name passed in. - * - * Else simply maintain a pointer to the name string. The only zones we'll actually have - * to do this for would be the VM-related zones that are created very early on before any - * kexts can be loaded (unloaded). So we should be fine with just a pointer in this case. + * Round up min_size to a multiple of alloc_granule */ - if (kmem_alloc_ready) { - size_t len = MIN(strlen(name)+1, MACH_ZONE_NAME_MAX_LEN); - - if (zone_names_start == 0 || ((zone_names_next - zone_names_start) + len) > PAGE_SIZE) { - printf("zalloc: allocating memory for zone names buffer\n"); - kern_return_t retval = kmem_alloc_kobject(kernel_map, &zone_names_start, - PAGE_SIZE, VM_KERN_MEMORY_OSFMK); - if (retval != KERN_SUCCESS) { - panic("zalloc: zone_names memory allocation failed"); - } - bzero((char *)zone_names_start, PAGE_SIZE); - zone_names_next = zone_names_start; - } + return ((min_size + alloc_granule - 1) / alloc_granule) + * alloc_granule; +} - strlcpy((char *)zone_names_next, name, len); - z->zone_name = (char *)zone_names_next; - zone_names_next += len; - } else { - z->zone_name = name; - } +zone_t +zone_create_ext( + const char *name, + vm_size_t size, + zone_create_flags_t flags, + zone_id_t desired_zid, + void (^extra_setup)(zone_t)) +{ + vm_size_t alloc; + vm_size_t redzone; + zone_t z; + + if (size > ZONE_MAX_ALLOC_SIZE) { + panic("zone_create: element size too large: %zd", (size_t)size); + } + size = zone_elem_adjust_size(name, size, flags, &redzone); /* - * Check for and set up zone leak detection if requested via boot-args. We recognized two - * boot-args: - * - * zlog= - * zrecs= - * - * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to - * control the size of the log. If zrecs is not specified, a default value is used. + * Allocate the zone slot, return early if we found an older match. */ + z = zone_create_find(name, size, flags, desired_zid); + if (__improbable(z->z_self)) { + /* We found a zone to reuse */ + return z; + } - if (num_zones_logged < max_num_zones_to_log) { - - int i = 1; /* zlog0 isn't allowed. */ - boolean_t zone_logging_enabled = FALSE; - char zlog_name[MAX_ZONE_NAME] = ""; /* Temp. buffer to create the strings zlog1, zlog2 etc... */ - - while (i <= max_num_zones_to_log) { - - snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i); - - if (PE_parse_boot_argn(zlog_name, zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { - if (track_this_zone(z->zone_name, zone_name_to_log)) { - if (z->zone_valid) { - z->zone_logging = TRUE; - zone_logging_enabled = TRUE; - num_zones_logged++; - break; - } - } - } - i++; - } + /* + * Initialize the zone properly. + */ - if (zone_logging_enabled == FALSE) { - /* - * Backwards compat. with the old boot-arg used to specify single zone logging i.e. zlog - * Needs to happen after the newer zlogn checks because the prefix will match all the zlogn - * boot-args. - */ - if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { - if (track_this_zone(z->zone_name, zone_name_to_log)) { - if (z->zone_valid) { - z->zone_logging = TRUE; - zone_logging_enabled = TRUE; - num_zones_logged++; - } - } - } - } + /* + * If the kernel is post lockdown, copy the zone name passed in. + * Else simply maintain a pointer to the name string as it can only + * be a core XNU zone (no unloadable kext exists before lockdown). + */ + if (startup_phase >= STARTUP_SUB_LOCKDOWN) { + size_t nsz = MIN(strlen(name) + 1, MACH_ZONE_NAME_MAX_LEN); + char *buf = zalloc_permanent(nsz, ZALIGN_NONE); + strlcpy(buf, name, nsz); + z->z_name = buf; + } else { + z->z_name = name; + } + /* + * If zone_init() hasn't run yet, the permanent zones do not exist. + * We can limp along without properly initialized stats for a while, + * zone_init() will rebuild the missing stats when it runs. + */ + if (__probable(zone_array[ZONE_ID_PERCPU_PERMANENT].z_self)) { + z->z_stats = zalloc_percpu_permanent_type(struct zone_stats); + } - if (log_records_init == FALSE && zone_logging_enabled == TRUE) { - if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { - /* - * Don't allow more than ZRECORDS_MAX records even if the user asked for more. - * This prevents accidentally hogging too much kernel memory and making the system - * unusable. - */ + alloc = zone_get_min_alloc_granule(size, flags); - log_records = MIN(ZRECORDS_MAX, log_records); - log_records_init = TRUE; - } else { - log_records = ZRECORDS_DEFAULT; - log_records_init = TRUE; - } - } + if (flags & ZC_KALLOC_HEAP) { + size_t rem = (alloc % size) / (alloc / size); /* - * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are - * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to - * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one - * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again - * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized - * right now. + * Try to grow the elements size and spread them more if the remaining + * space is large enough. */ - if (kmem_alloc_ready) { - - zone_t curr_zone = NULL; - unsigned int max_zones = 0, zone_idx = 0; - - simple_lock(&all_zones_lock); - max_zones = num_zones; - simple_unlock(&all_zones_lock); + size += rem & ~(KALLOC_MINALIGN - 1); + } - for (zone_idx = 0; zone_idx < max_zones; zone_idx++) { + z->pcpu_elem_size = z->z_elem_size = (uint16_t)size; + z->alloc_pages = (uint16_t)atop(alloc); +#if KASAN_ZALLOC + z->kasan_redzone = redzone; + if (strncmp(name, "fakestack.", sizeof("fakestack.") - 1) == 0) { + z->kasan_fakestacks = true; + } +#endif - curr_zone = &(zone_array[zone_idx]); + /* + * Handle KPI flags + */ +#if __LP64__ + if (flags & ZC_SEQUESTER) { + z->va_sequester = true; + } +#endif + /* ZC_CACHING applied after all configuration is done */ - if (!curr_zone->zone_valid) { - continue; - } + if (flags & ZC_PERCPU) { + /* + * ZC_CACHING is disallowed because it uses per-cpu zones for its + * implementation and it would be circular. These allocations are + * also quite expensive, so caching feels dangerous memory wise too. + * + * ZC_ZFREE_CLEARMEM is forced because per-cpu zones allow for + * pointer-sized allocations which poisoning doesn't support. + */ + zone_create_assert_not_both(name, flags, ZC_PERCPU, ZC_CACHING); + zone_create_assert_not_both(name, flags, ZC_PERCPU, ZC_ALLOW_FOREIGN); + z->percpu = true; + z->gzalloc_exempt = true; + z->zfree_clear_mem = true; + z->pcpu_elem_size *= zpercpu_count(); + } + if (flags & ZC_ZFREE_CLEARMEM) { + z->zfree_clear_mem = true; + } + if (flags & ZC_NOGC) { + z->collectable = false; + } + if (flags & ZC_NOENCRYPT) { + z->noencrypt = true; + } + if (flags & ZC_ALIGNMENT_REQUIRED) { + z->alignment_required = true; + } + if (flags & ZC_NOGZALLOC) { + z->gzalloc_exempt = true; + } + if (flags & ZC_NOCALLOUT) { + z->no_callout = true; + } + if (flags & ZC_DESTRUCTIBLE) { + zone_create_assert_not_both(name, flags, ZC_DESTRUCTIBLE, ZC_CACHING); + zone_create_assert_not_both(name, flags, ZC_DESTRUCTIBLE, ZC_ALLOW_FOREIGN); + z->destructible = true; + } - /* - * We work with the zone unlocked here because we could end up needing the zone lock to - * enable logging for this zone e.g. need a VM object to allocate memory to enable logging for the - * VM objects zone. - * - * We don't expect these zones to be needed at this early a time in boot and so take this chance. - */ - if (curr_zone->zone_logging && curr_zone->zlog_btlog == NULL) { + /* + * Handle Internal flags + */ + if (flags & ZC_ALLOW_FOREIGN) { + z->allows_foreign = true; + } + if ((ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) && + (flags & ZC_DATA_BUFFERS)) { + z->submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES_MAP; + } + if (flags & ZC_KASAN_NOQUARANTINE) { + z->kasan_noquarantine = true; + } + /* ZC_KASAN_NOREDZONE already handled */ - curr_zone->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */); + /* + * Then if there's extra tuning, do it + */ + if (extra_setup) { + extra_setup(z); + } - if (curr_zone->zlog_btlog) { + /* + * Configure debugging features + */ +#if CONFIG_GZALLOC + gzalloc_zone_init(z); /* might set z->gzalloc_tracked */ +#endif +#if ZONE_ENABLE_LOGGING + if (!z->gzalloc_tracked && num_zones_logged < max_num_zones_to_log) { + /* + * Check for and set up zone leak detection if requested via boot-args. + * might set z->zone_logging + */ + zone_setup_logging(z); + } +#endif /* ZONE_ENABLE_LOGGING */ +#if VM_MAX_TAG_ZONES + if (!z->gzalloc_tracked && z->kalloc_heap && zone_tagging_on) { + static int tag_zone_index; + vm_offset_t esize = zone_elem_size(z); + z->tags = true; + z->tags_inline = (((page_size + esize - 1) / esize) <= + (sizeof(uint32_t) / sizeof(uint16_t))); + z->tag_zone_index = os_atomic_inc_orig(&tag_zone_index, relaxed); + assert(z->tag_zone_index < VM_MAX_TAG_ZONES); + } +#endif - printf("zone: logging started for zone %s\n", curr_zone->zone_name); - } else { - printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); - curr_zone->zone_logging = FALSE; - } - } + /* + * Finally, fixup properties based on security policies, boot-args, ... + */ + if ((ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) && + z->kalloc_heap == KHEAP_ID_DATA_BUFFERS) { + z->submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES_MAP; + } +#if __LP64__ + if ((ZSECURITY_OPTIONS_SEQUESTER & zsecurity_options) && + (flags & ZC_NOSEQUESTER) == 0 && + z->submap_idx == Z_SUBMAP_IDX_GENERAL_MAP) { + z->va_sequester = true; + } +#endif + /* + * Always clear zone elements smaller than a cacheline, + * because it's pretty close to free. + */ + if (size <= zp_min_size) { + z->zfree_clear_mem = true; + } + if (zp_factor != 0 && !z->zfree_clear_mem) { + z->zp_count = zone_poison_count_init(z); + } - } +#if CONFIG_ZCACHE + if ((flags & ZC_NOCACHING) == 0) { + /* + * Append kalloc heap name to zone name (if zone is used by kalloc) + */ + char temp_zone_name[MAX_ZONE_NAME] = ""; + snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", zone_heap_name(z), z->z_name); + + /* Check if boot-arg specified it should have a cache */ + if (track_this_zone(temp_zone_name, cache_zone_name)) { + flags |= ZC_CACHING; + } else if (zcc_kalloc && z->kalloc_heap) { + flags |= ZC_CACHING; } } + if ((flags & ZC_CACHING) && + !z->tags && !z->zone_logging && !z->gzalloc_tracked) { + zcache_init(z); + } +#endif /* CONFIG_ZCACHE */ -#if CONFIG_GZALLOC - gzalloc_zone_init(z); -#endif + lock_zone(z); + z->z_self = z; + unlock_zone(z); - return(z); + return z; } -unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count; -static void zone_replenish_thread(zone_t); +__startup_func +void +zone_create_startup(struct zone_create_startup_spec *spec) +{ + *spec->z_var = zone_create_ext(spec->z_name, spec->z_size, + spec->z_flags, spec->z_zid, spec->z_setup); +} -/* High priority VM privileged thread used to asynchronously refill a designated - * zone, such as the reserved VM map entry zone. +/* + * The 4 first field of a zone_view and a zone alias, so that the zone_or_view_t + * union works. trust but verify. */ -__attribute__((noreturn)) -static void -zone_replenish_thread(zone_t z) +#define zalloc_check_zov_alias(f1, f2) \ + static_assert(offsetof(struct zone, f1) == offsetof(struct zone_view, f2)) +zalloc_check_zov_alias(z_self, zv_zone); +zalloc_check_zov_alias(z_stats, zv_stats); +zalloc_check_zov_alias(z_name, zv_name); +zalloc_check_zov_alias(z_views, zv_next); +#undef zalloc_check_zov_alias + +__startup_func +void +zone_view_startup_init(struct zone_view_startup_spec *spec) { - vm_size_t free_size; - current_thread()->options |= TH_OPT_VMPRIV; - - for (;;) { - lock_zone(z); - assert(z->zone_valid); - z->zone_replenishing = TRUE; - assert(z->prio_refill_watermark != 0); - while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) { - assert(z->doing_alloc_without_vm_priv == FALSE); - assert(z->doing_alloc_with_vm_priv == FALSE); - assert(z->async_prio_refill == TRUE); - - unlock_zone(z); - int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; - vm_offset_t space, alloc_size; - kern_return_t kr; - - if (vm_pool_low()) - alloc_size = round_page(z->elem_size); - else - alloc_size = z->alloc_size; - - if (z->noencrypt) - zflags |= KMA_NOENCRYPT; - - /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */ - if (is_zone_map_nearing_exhaustion()) { - thread_wakeup((event_t) &vm_pageout_garbage_collect); - } + struct kalloc_heap *heap = NULL; + zone_view_t zv = spec->zv_view; + zone_t z; - kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); - - if (kr == KERN_SUCCESS) { - zcram(z, space, alloc_size); - } else if (kr == KERN_RESOURCE_SHORTAGE) { - VM_PAGE_WAIT(); - } else if (kr == KERN_NO_SPACE) { - kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); - if (kr == KERN_SUCCESS) { - zcram(z, space, alloc_size); - } else { - assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC); - thread_block(THREAD_CONTINUE_NULL); - } - } + switch (spec->zv_heapid) { + case KHEAP_ID_DEFAULT: + heap = KHEAP_DEFAULT; + break; + case KHEAP_ID_DATA_BUFFERS: + heap = KHEAP_DATA_BUFFERS; + break; + case KHEAP_ID_KEXT: + heap = KHEAP_KEXT; + break; + default: + heap = NULL; + } - lock_zone(z); - assert(z->zone_valid); - zone_replenish_loops++; - } + if (heap) { + z = kalloc_heap_zone_for_size(heap, spec->zv_size); + assert(z); + } else { + z = spec->zv_zone; + assert(spec->zv_size <= zone_elem_size(z)); + } - z->zone_replenishing = FALSE; - /* Signal any potential throttled consumers, terminating - * their timer-bounded waits. + zv->zv_zone = z; + zv->zv_stats = zalloc_percpu_permanent_type(struct zone_stats); + zv->zv_next = z->z_views; + if (z->z_views == NULL && z->kalloc_heap == KHEAP_ID_NONE) { + /* + * count the raw view for zones not in a heap, + * kalloc_heap_init() already counts it for its members. */ - thread_wakeup(z); - - assert_wait(&z->zone_replenish_thread, THREAD_UNINT); - unlock_zone(z); - thread_block(THREAD_CONTINUE_NULL); - zone_replenish_wakeups++; + zone_view_count += 2; + } else { + zone_view_count += 1; } + z->z_views = zv; } -void -zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) { - z->prio_refill_watermark = low_water_mark; - - z->async_prio_refill = TRUE; - OSMemoryBarrier(); - kern_return_t tres = kernel_thread_start_priority((thread_continue_t)zone_replenish_thread, z, MAXPRI_KERNEL, &z->zone_replenish_thread); - - if (tres != KERN_SUCCESS) { - panic("zone_prio_refill_configure, thread create: 0x%x", tres); - } +zone_t +zone_create( + const char *name, + vm_size_t size, + zone_create_flags_t flags) +{ + return zone_create_ext(name, size, flags, ZONE_ID_ANY, NULL); +} - thread_deallocate(z->zone_replenish_thread); +zone_t +zinit( + vm_size_t size, /* the size of an element */ + vm_size_t max, /* maximum memory to use */ + vm_size_t alloc __unused, /* allocation size */ + const char *name) /* a name for the zone */ +{ + zone_t z = zone_create(name, size, ZC_DESTRUCTIBLE); + zone_set_max(z, max); + return z; } void zdestroy(zone_t z) { - unsigned int zindex; - - assert(z != NULL); + unsigned int zindex = zone_index(z); lock_zone(z); - assert(z->zone_valid); - /* Assert that the zone does not have any allocations in flight */ - assert(z->doing_alloc_without_vm_priv == FALSE); - assert(z->doing_alloc_with_vm_priv == FALSE); - assert(z->async_pending == FALSE); - assert(z->waiting == FALSE); - assert(z->async_prio_refill == FALSE); + if (!z->destructible || zone_caching_enabled(z) || z->allows_foreign) { + panic("zdestroy: Zone %s%s isn't destructible", + zone_heap_name(z), z->z_name); + } + + if (!z->z_self || z->expanding_no_vm_priv || z->expanding_vm_priv || + z->async_pending || z->waiting) { + panic("zdestroy: Zone %s%s in an invalid state for destruction", + zone_heap_name(z), z->z_name); + } #if !KASAN_ZALLOC /* - * Unset the valid bit. We'll hit an assert failure on further operations on this zone, until zinit() is called again. - * Leave the zone valid for KASan as we will see zfree's on quarantined free elements even after the zone is destroyed. + * Unset the valid bit. We'll hit an assert failure on further operations + * on this zone, until zinit() is called again. + * + * Leave the zone valid for KASan as we will see zfree's on quarantined free + * elements even after the zone is destroyed. */ - z->zone_valid = FALSE; + z->z_self = NULL; #endif + z->destroyed = true; unlock_zone(z); /* Dump all the free elements */ - drop_free_elements(z); + zone_drop_free_elements(z); -#if CONFIG_GZALLOC - /* If the zone is gzalloc managed dump all the elements in the free cache */ - gzalloc_empty_free_cache(z); +#if CONFIG_GZALLOC + if (__improbable(z->gzalloc_tracked)) { + /* If the zone is gzalloc managed dump all the elements in the free cache */ + gzalloc_empty_free_cache(z); + } #endif lock_zone(z); + while (!zone_pva_is_null(z->pages_sequester)) { + struct zone_page_metadata *page_meta; + vm_offset_t free_addr; + + page_meta = zone_sequestered_page_get(z, &free_addr); + unlock_zone(z); + kmem_free(submap_for_zone(z), free_addr, ptoa(z->alloc_pages)); + lock_zone(z); + } + #if !KASAN_ZALLOC /* Assert that all counts are zero */ - assert(z->count == 0); - assert(z->countfree == 0); - assert(z->cur_size == 0); - assert(z->page_count == 0); - assert(z->count_all_free_pages == 0); - - /* Assert that all queues except the foreign queue are empty. The zone allocator doesn't know how to free up foreign memory. */ - assert(queue_empty(&z->pages.all_used)); - assert(queue_empty(&z->pages.intermediate)); - assert(queue_empty(&z->pages.all_free)); -#endif + if (z->countavail || z->countfree || zone_size_wired(z) || + z->allfree_page_count || z->sequester_page_count) { + panic("zdestroy: Zone %s%s isn't empty at zdestroy() time", + zone_heap_name(z), z->z_name); + } - zindex = z->index; + /* consistency check: make sure everything is indeed empty */ + assert(zone_pva_is_null(z->pages_any_free_foreign)); + assert(zone_pva_is_null(z->pages_all_used_foreign)); + assert(zone_pva_is_null(z->pages_all_free)); + assert(zone_pva_is_null(z->pages_intermediate)); + assert(zone_pva_is_null(z->pages_all_used)); + assert(zone_pva_is_null(z->pages_sequester)); +#endif unlock_zone(z); - simple_lock(&all_zones_lock); + simple_lock(&all_zones_lock, &zone_locks_grp); - assert(!bitmap_test(zone_empty_bitmap, zindex)); + assert(!bitmap_test(zone_destroyed_bitmap, zindex)); /* Mark the zone as empty in the bitmap */ - bitmap_set(zone_empty_bitmap, zindex); + bitmap_set(zone_destroyed_bitmap, zindex); num_zones_in_use--; assert(num_zones_in_use > 0); simple_unlock(&all_zones_lock); } -/* Initialize the metadata for an allocation chunk */ -static inline void -zcram_metadata_init(vm_offset_t newmem, vm_size_t size, struct zone_page_metadata *chunk_metadata) -{ - struct zone_page_metadata *page_metadata; +#pragma mark zone (re)fill, jetsam + +/* + * Dealing with zone allocations from the mach VM code. + * + * The implementation of the mach VM itself uses the zone allocator + * for things like the vm_map_entry data structure. In order to prevent + * an infinite recursion problem when adding more pages to a zone, zalloc + * uses a replenish thread to refill the VM layer's zones before they have + * too few remaining free entries. The reserved remaining free entries + * guarantee that the VM routines can get entries from already mapped pages. + * + * In order for that to work, the amount of allocations in the nested + * case have to be bounded. There are currently 2 replenish zones, and + * if each needs 1 element of each zone to add a new page to itself, that + * gives us a minumum reserve of 2 elements. + * + * There is also a deadlock issue with the zone garbage collection thread, + * or any thread that is trying to free zone pages. While holding + * the kernel's map lock they may need to allocate new VM map entries, hence + * we need enough reserve to allow them to get past the point of holding the + * map lock. After freeing that page, the GC thread will wait in drop_free_elements() + * until the replenish threads can finish. Since there's only 1 GC thread at a time, + * that adds a minimum of 1 to the reserve size. + * + * Since the minumum amount you can add to a zone is 1 page, we'll use 16K (from ARM) + * as the refill size on all platforms. + * + * When a refill zone drops to half that available, i.e. REFILL_SIZE / 2, + * zalloc_ext() will wake the replenish thread. The replenish thread runs + * until at least REFILL_SIZE worth of free elements exist, before sleeping again. + * In the meantime threads may continue to use the reserve until there are only REFILL_SIZE / 4 + * elements left. Below that point only the replenish threads themselves and the GC + * thread may continue to use from the reserve. + */ +static unsigned zone_replenish_loops; +static unsigned zone_replenish_wakeups; +static unsigned zone_replenish_wakeups_initiated; +static unsigned zone_replenish_throttle_count; - /* The first page is the real metadata for this allocation chunk. We mark the others as fake metadata */ - size -= PAGE_SIZE; - newmem += PAGE_SIZE; +#define ZONE_REPLENISH_TARGET (16 * 1024) +static unsigned zone_replenish_active = 0; /* count of zones currently replenishing */ +static unsigned zone_replenish_max_threads = 0; - for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { - page_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE); - assert(page_metadata != chunk_metadata); - PAGE_METADATA_SET_ZINDEX(page_metadata, MULTIPAGE_METADATA_MAGIC); - page_metadata_set_realmeta(page_metadata, chunk_metadata); - page_metadata->free_count = 0; - } - return; -} +LCK_GRP_DECLARE(zone_replenish_lock_grp, "zone_replenish_lock"); +LCK_SPIN_DECLARE(zone_replenish_lock, &zone_replenish_lock_grp); +__abortlike static void -random_free_to_zone( - zone_t zone, - vm_offset_t newmem, - vm_offset_t first_element_offset, - int element_count, - unsigned int *entropy_buffer) -{ - vm_offset_t last_element_offset; - vm_offset_t element_addr; - vm_size_t elem_size; - int index; - - assert(element_count <= ZONE_CHUNK_MAXELEMENTS); - elem_size = zone->elem_size; - last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size); - for (index = 0; index < element_count; index++) { - assert(first_element_offset <= last_element_offset); - if ( -#if DEBUG || DEVELOPMENT - leak_scan_debug_flag || __improbable(zone->tags) || -#endif /* DEBUG || DEVELOPMENT */ - random_bool_gen_bits(&zone_bool_gen, entropy_buffer, MAX_ENTROPY_PER_ZCRAM, 1)) { - element_addr = newmem + first_element_offset; - first_element_offset += elem_size; - } else { - element_addr = newmem + last_element_offset; - last_element_offset -= elem_size; - } - if (element_addr != (vm_offset_t)zone) { - zone->count++; /* compensate for free_to_zone */ - free_to_zone(zone, element_addr, FALSE); - } - zone->cur_size += elem_size; +zone_replenish_panic(zone_t zone, kern_return_t kr) +{ + panic_include_zprint = TRUE; +#if CONFIG_ZLEAKS + if ((zleak_state & ZLEAK_STATE_ACTIVE)) { + panic_include_ztrace = TRUE; + } +#endif /* CONFIG_ZLEAKS */ + if (kr == KERN_NO_SPACE) { + zone_t zone_largest = zone_find_largest(); + panic("zalloc: zone map exhausted while allocating from zone %s%s, " + "likely due to memory leak in zone %s%s " + "(%lu total bytes, %d elements allocated)", + zone_heap_name(zone), zone->z_name, + zone_heap_name(zone_largest), zone_largest->z_name, + (unsigned long)zone_size_wired(zone_largest), + zone_count_allocated(zone_largest)); } + panic("zalloc: %s%s (%d elements) retry fail %d", + zone_heap_name(zone), zone->z_name, + zone_count_allocated(zone), kr); } -/* - * Cram the given memory into the specified zone. Update the zone page count accordingly. - */ -void -zcram( - zone_t zone, - vm_offset_t newmem, - vm_size_t size) -{ - vm_size_t elem_size; - boolean_t from_zm = FALSE; - int element_count; - unsigned int entropy_buffer[MAX_ENTROPY_PER_ZCRAM] = { 0 }; - - /* Basic sanity checks */ - assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); - assert(!zone->collectable || zone->allows_foreign - || (from_zone_map(newmem, size))); - - elem_size = zone->elem_size; +static void +zone_replenish_locked(zone_t z, zalloc_flags_t flags, bool asynchronously) +{ + int kmaflags = KMA_KOBJECT | KMA_ZERO; + vm_offset_t space, alloc_size; + uint32_t retry = 0; + kern_return_t kr; - KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, zone->index, size); + if (z->noencrypt) { + kmaflags |= KMA_NOENCRYPT; + } + if (flags & Z_NOPAGEWAIT) { + kmaflags |= KMA_NOPAGEWAIT; + } + if (z->permanent) { + kmaflags |= KMA_PERMANENT; + } - if (from_zone_map(newmem, size)) - from_zm = TRUE; + for (;;) { + struct zone_page_metadata *page_meta = NULL; - if (!from_zm) { - /* We cannot support elements larger than page size for foreign memory because we - * put metadata on the page itself for each page of foreign memory. We need to do - * this in order to be able to reach the metadata when any element is freed + /* + * Try to allocate our regular chunk of pages, + * unless the system is under massive pressure + * and we're looking for more than 2 pages. */ - assert((zone->allows_foreign == TRUE) && (zone->elem_size <= (PAGE_SIZE - sizeof(struct zone_page_metadata)))); - } + if (!z->percpu && z->alloc_pages > 2 && (vm_pool_low() || retry > 0)) { + alloc_size = round_page(zone_elem_size(z)); + } else { + alloc_size = ptoa(z->alloc_pages); + page_meta = zone_sequestered_page_get(z, &space); + } - if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) - kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name, - (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size); + unlock_zone(z); - ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE)); +#if CONFIG_ZLEAKS + /* + * Do the zone leak activation here because zleak_activate() + * may block, and can't be done on the way out. + */ + if (__improbable(zleak_state & ZLEAK_STATE_ENABLED)) { + if (!(zleak_state & ZLEAK_STATE_ACTIVE) && + zone_submaps_approx_size() >= zleak_global_tracking_threshold) { + kr = zleak_activate(); + if (kr != KERN_SUCCESS) { + printf("Failed to activate live zone leak debugging (%d).\n", kr); + } + } + } +#endif /* CONFIG_ZLEAKS */ - /* - * Initialize the metadata for all pages. We dont need the zone lock - * here because we are not manipulating any zone related state yet. - */ + /* + * Trigger jetsams via the vm_pageout_garbage_collect thread if + * we're running out of zone memory + */ + if (is_zone_map_nearing_exhaustion()) { + thread_wakeup((event_t) &vm_pageout_garbage_collect); + } - struct zone_page_metadata *chunk_metadata; - size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); + if (page_meta) { + kr = zone_sequestered_page_populate(z, page_meta, space, + alloc_size, kmaflags); + } else { + if (z->submap_idx == Z_SUBMAP_IDX_GENERAL_MAP && z->kalloc_heap != KHEAP_ID_NONE) { + kmaflags |= KMA_KHEAP; + } + kr = kernel_memory_allocate(submap_for_zone(z), + &space, alloc_size, 0, kmaflags, VM_KERN_MEMORY_ZONE); + } - assert((newmem & PAGE_MASK) == 0); - assert((size & PAGE_MASK) == 0); +#if !__LP64__ + if (kr == KERN_NO_SPACE && z->allows_foreign) { + /* + * For zones allowing foreign pages, fallback to the kernel map + */ + kr = kernel_memory_allocate(kernel_map, &space, + alloc_size, 0, kmaflags, VM_KERN_MEMORY_ZONE); + } +#endif - chunk_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE); - chunk_metadata->pages.next = NULL; - chunk_metadata->pages.prev = NULL; - page_metadata_set_freelist(chunk_metadata, 0); - PAGE_METADATA_SET_ZINDEX(chunk_metadata, zone->index); - chunk_metadata->free_count = 0; - assert((size / PAGE_SIZE) <= ZONE_CHUNK_MAXPAGES); - chunk_metadata->page_count = (unsigned)(size / PAGE_SIZE); + if (kr == KERN_SUCCESS) { + break; + } - zcram_metadata_init(newmem, size, chunk_metadata); + if (flags & Z_NOPAGEWAIT) { + lock_zone(z); + return; + } -#if VM_MAX_TAG_ZONES - if (__improbable(zone->tags)) { - assert(from_zm); - ztMemoryAdd(zone, newmem, size); - } -#endif /* VM_MAX_TAG_ZONES */ + if (asynchronously) { + assert_wait_timeout(&z->prio_refill_count, + THREAD_UNINT, 1, 100 * NSEC_PER_USEC); + thread_block(THREAD_CONTINUE_NULL); + } else if (++retry == 3) { + zone_replenish_panic(z, kr); + } - lock_zone(zone); - assert(zone->zone_valid); - enqueue_tail(&zone->pages.all_used, &(chunk_metadata->pages)); + lock_zone(z); + } - if (!from_zm) { - /* We cannot support elements larger than page size for foreign memory because we - * put metadata on the page itself for each page of foreign memory. We need to do - * this in order to be able to reach the metadata when any element is freed - */ + zcram_and_lock(z, space, alloc_size); - for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { - vm_offset_t first_element_offset = 0; - if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){ - first_element_offset = zone_page_metadata_size; - } else { - first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); - } - element_count = (int)((PAGE_SIZE - first_element_offset) / elem_size); - random_free_to_zone(zone, newmem, first_element_offset, element_count, entropy_buffer); +#if CONFIG_ZLEAKS + if (__improbable(zleak_state & ZLEAK_STATE_ACTIVE)) { + if (!z->zleak_on && + zone_size_wired(z) >= zleak_per_zone_tracking_threshold) { + z->zleak_on = true; } - } else { - element_count = (int)(size / elem_size); - random_free_to_zone(zone, newmem, 0, element_count, entropy_buffer); } - unlock_zone(zone); - - KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zone->index); - +#endif /* CONFIG_ZLEAKS */ } /* - * Fill a zone with enough memory to contain at least nelem elements. - * Return the number of elements actually put into the zone, which may - * be more than the caller asked for since the memory allocation is - * rounded up to the next zone allocation size. + * High priority VM privileged thread used to asynchronously refill a given zone. + * These are needed for data structures used by the lower level VM itself. The + * replenish thread maintains a reserve of elements, so that the VM will never + * block in the zone allocator. */ -int -zfill( - zone_t zone, - int nelem) +__dead2 +static void +zone_replenish_thread(void *_z, wait_result_t __unused wr) { - kern_return_t kr; - vm_offset_t memory; + zone_t z = _z; - vm_size_t alloc_size = zone->alloc_size; - vm_size_t elem_per_alloc = alloc_size / zone->elem_size; - vm_size_t nalloc = (nelem + elem_per_alloc - 1) / elem_per_alloc; + current_thread()->options |= (TH_OPT_VMPRIV | TH_OPT_ZONE_PRIV); - /* Don't mix-and-match zfill with foreign memory */ - assert(!zone->allows_foreign); + for (;;) { + lock_zone(z); + assert(z->z_self == z); + assert(z->zone_replenishing); + assert(z->prio_refill_count != 0); - /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */ - if (is_zone_map_nearing_exhaustion()) { - thread_wakeup((event_t) &vm_pageout_garbage_collect); - } + while (z->countfree < z->prio_refill_count) { + assert(!z->expanding_no_vm_priv); + assert(!z->expanding_vm_priv); - kr = kernel_memory_allocate(zone_map, &memory, nalloc * alloc_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_ZONE); - if (kr != KERN_SUCCESS) { - printf("%s: kernel_memory_allocate() of %lu bytes failed\n", - __func__, (unsigned long)(nalloc * alloc_size)); - return 0; - } + zone_replenish_locked(z, Z_WAITOK, true); - for (vm_size_t i = 0; i < nalloc; i++) { - zcram(zone, memory + i * alloc_size, alloc_size); - } + assert(z->z_self == z); + zone_replenish_loops++; + } - return (int)(nalloc * elem_per_alloc); -} + /* Wakeup any potentially throttled allocations. */ + thread_wakeup(z); + + assert_wait(&z->prio_refill_count, THREAD_UNINT); + + /* + * We finished refilling the zone, so decrement the active count + * and wake up any waiting GC threads. + */ + lck_spin_lock(&zone_replenish_lock); + assert(zone_replenish_active > 0); + if (--zone_replenish_active == 0) { + thread_wakeup((event_t)&zone_replenish_active); + } + lck_spin_unlock(&zone_replenish_lock); + + z->zone_replenishing = false; + unlock_zone(z); + + thread_block(THREAD_CONTINUE_NULL); + zone_replenish_wakeups++; + } +} -/* - * Initialize the "zone of zones" which uses fixed memory allocated - * earlier in memory initialization. zone_bootstrap is called - * before zone_init. - */ void -zone_bootstrap(void) +zone_prio_refill_configure(zone_t z) { - char temp_buf[16]; + thread_t th; + kern_return_t tres; - if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug))) - zalloc_debug = 0; + lock_zone(z); + assert(!z->prio_refill_count && !z->destructible); + z->prio_refill_count = (uint16_t)(ZONE_REPLENISH_TARGET / zone_elem_size(z)); + z->zone_replenishing = true; + unlock_zone(z); - /* Set up zone element poisoning */ - zp_init(); + lck_spin_lock(&zone_replenish_lock); + ++zone_replenish_max_threads; + ++zone_replenish_active; + lck_spin_unlock(&zone_replenish_lock); + OSMemoryBarrier(); - random_bool_init(&zone_bool_gen); + tres = kernel_thread_start_priority(zone_replenish_thread, z, + MAXPRI_KERNEL, &th); + if (tres != KERN_SUCCESS) { + panic("zone_prio_refill_configure, thread create: 0x%x", tres); + } + + thread_deallocate(th); +} + +static void +zone_randomize_freelist(zone_t zone, struct zone_page_metadata *meta, + vm_offset_t size, zone_addr_kind_t kind, unsigned int *entropy_buffer) +{ + const vm_size_t elem_size = zone_elem_size(zone); + vm_offset_t left, right, head, base; + vm_offset_t element; + + left = ZONE_PAGE_FIRST_OFFSET(kind); + right = size - ((size - left) % elem_size); + head = 0; + base = zone_meta_to_addr(meta, kind); + + while (left < right) { + if (zone_leaks_scan_enable || __improbable(zone->tags) || + random_bool_gen_bits(&zone_bool_gen, entropy_buffer, MAX_ENTROPY_PER_ZCRAM, 1)) { + element = base + left; + left += elem_size; + } else { + right -= elem_size; + element = base + right; + } + + vm_offset_t *primary = (vm_offset_t *)element; + vm_offset_t *backup = get_backup_ptr(elem_size, primary); - /* should zlog log to debug zone corruption instead of leaks? */ - if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) { - corruption_debug_flag = TRUE; - } + *primary = *backup = head ^ zp_nopoison_cookie; + head = element; + } + + meta->zm_freelist_offs = (uint16_t)(head - base); +} + +/* + * Cram the given memory into the specified zone. Update the zone page count accordingly. + */ +static void +zcram_and_lock(zone_t zone, vm_offset_t newmem, vm_size_t size) +{ + unsigned int entropy_buffer[MAX_ENTROPY_PER_ZCRAM] = { 0 }; + struct zone_page_metadata *meta; + zone_addr_kind_t kind; + uint32_t pg_count = (uint32_t)atop(size); + uint32_t zindex = zone_index(zone); + uint32_t free_count; + uint16_t empty_freelist_offs = PAGE_METADATA_EMPTY_FREELIST; + + /* Basic sanity checks */ + assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); + assert((newmem & PAGE_MASK) == 0); + assert((size & PAGE_MASK) == 0); + + KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, + zindex, size); + kind = zone_addr_kind(newmem, size); #if DEBUG || DEVELOPMENT + if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) { + kprintf("zcram(%p[%s%s], 0x%lx%s, 0x%lx)\n", zone, + zone_heap_name(zone), zone->z_name, (uintptr_t)newmem, + kind == ZONE_ADDR_FOREIGN ? "[F]" : "", (uintptr_t)size); + } +#endif /* DEBUG || DEVELOPMENT */ + + /* + * Initialize the metadata for all pages. We dont need the zone lock + * here because we are not manipulating any zone related state yet. + * + * This includes randomizing the freelists as the metadata isn't + * published yet. + */ + + if (kind == ZONE_ADDR_NATIVE) { + /* + * We're being called by zfill, + * zone_replenish_thread or vm_page_more_fictitious, + * + * which will only either allocate a single page, or `alloc_pages` + * worth. + */ + assert(pg_count <= zone->alloc_pages); + + /* + * Make sure the range of metadata entries we're about to init + * have proper physical backing, then initialize them. + */ + meta = zone_meta_from_addr(newmem, kind); + zone_meta_populate(meta, meta + pg_count); + + if (zone->permanent) { + empty_freelist_offs = 0; + } + + meta[0] = (struct zone_page_metadata){ + .zm_index = zindex, + .zm_page_count = pg_count, + .zm_percpu = zone->percpu, + .zm_freelist_offs = empty_freelist_offs, + }; + + for (uint32_t i = 1; i < pg_count; i++) { + meta[i] = (struct zone_page_metadata){ + .zm_index = zindex, + .zm_page_count = i, + .zm_percpu = zone->percpu, + .zm_secondary_page = true, + .zm_freelist_offs = empty_freelist_offs, + }; + } + + if (!zone->permanent) { + zone_randomize_freelist(zone, meta, + zone->percpu ? PAGE_SIZE : size, kind, entropy_buffer); + } + } else { + if (!zone->allows_foreign || !from_foreign_range(newmem, size)) { + panic("zcram_and_lock: foreign memory [%lx] being crammed is " + "outside of foreign range", (uintptr_t)newmem); + } + + /* + * We cannot support elements larger than page size for foreign + * memory because we put metadata on the page itself for each + * page of foreign memory. + * + * We need to do this in order to be able to reach the metadata + * when any element is freed. + */ + assert(!zone->percpu && !zone->permanent); + assert(zone_elem_size(zone) <= PAGE_SIZE - sizeof(struct zone_page_metadata)); + + bzero((void *)newmem, size); + + for (vm_offset_t offs = 0; offs < size; offs += PAGE_SIZE) { + meta = (struct zone_page_metadata *)(newmem + offs); + *meta = (struct zone_page_metadata){ + .zm_index = zindex, + .zm_page_count = 1, + .zm_freelist_offs = empty_freelist_offs, + }; + meta->zm_foreign_cookie[0] = ZONE_FOREIGN_COOKIE; + zone_randomize_freelist(zone, meta, PAGE_SIZE, kind, + entropy_buffer); + } + } + #if VM_MAX_TAG_ZONES - /* enable tags for zones that ask for */ - if (PE_parse_boot_argn("-zt", temp_buf, sizeof(temp_buf))) { - zone_tagging_on = TRUE; + if (__improbable(zone->tags)) { + assert(kind == ZONE_ADDR_NATIVE && !zone->percpu); + ztMemoryAdd(zone, newmem, size); } #endif /* VM_MAX_TAG_ZONES */ - /* disable element location randomization in a page */ - if (PE_parse_boot_argn("-zl", temp_buf, sizeof(temp_buf))) { - leak_scan_debug_flag = TRUE; + + /* + * Insert the initialized pages / metadatas into the right lists. + */ + + lock_zone(zone); + assert(zone->z_self == zone); + + zone->page_count += pg_count; + if (zone->page_count_hwm < zone->page_count) { + zone->page_count_hwm = zone->page_count; } -#endif + os_atomic_add(&zones_phys_page_count, pg_count, relaxed); - simple_lock_init(&all_zones_lock, 0); + if (kind == ZONE_ADDR_NATIVE) { + os_atomic_add(&zones_phys_page_mapped_count, pg_count, relaxed); + if (zone->permanent) { + zone_meta_queue_push(zone, &zone->pages_intermediate, meta, kind); + } else { + zone_meta_queue_push(zone, &zone->pages_all_free, meta, kind); + zone->allfree_page_count += meta->zm_page_count; + } + free_count = zone_elem_count(zone, size, kind); + zone->countfree += free_count; + zone->countavail += free_count; + } else { + free_count = zone_elem_count(zone, PAGE_SIZE, kind); + for (vm_offset_t offs = 0; offs < size; offs += PAGE_SIZE) { + meta = (struct zone_page_metadata *)(newmem + offs); + zone_meta_queue_push(zone, &zone->pages_any_free_foreign, meta, kind); + zone->countfree += free_count; + zone->countavail += free_count; + } + } - num_zones_in_use = 0; - num_zones = 0; - /* Mark all zones as empty */ - bitmap_full(zone_empty_bitmap, BITMAP_LEN(MAX_ZONES)); - zone_names_next = zone_names_start = 0; + KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zindex); +} -#if DEBUG || DEVELOPMENT - simple_lock_init(&zone_test_lock, 0); -#endif /* DEBUG || DEVELOPMENT */ +void +zcram(zone_t zone, vm_offset_t newmem, vm_size_t size) +{ + zcram_and_lock(zone, newmem, size); + unlock_zone(zone); +} - thread_call_setup(&call_async_alloc, zalloc_async, NULL); +/* + * Fill a zone with enough memory to contain at least nelem elements. + * Return the number of elements actually put into the zone, which may + * be more than the caller asked for since the memory allocation is + * rounded up to the next zone allocation size. + */ +int +zfill( + zone_t zone, + int nelem) +{ + kern_return_t kr; + vm_offset_t memory; + + vm_size_t alloc_size = ptoa(zone->alloc_pages); + vm_size_t nalloc_inc = zone_elem_count(zone, alloc_size, ZONE_ADDR_NATIVE); + vm_size_t nalloc = 0, goal = MAX(0, nelem); + int kmaflags = KMA_KOBJECT | KMA_ZERO; + + if (zone->noencrypt) { + kmaflags |= KMA_NOENCRYPT; + } + + assert(!zone->allows_foreign && !zone->permanent); + + /* + * Trigger jetsams via the vm_pageout_garbage_collect thread if we're + * running out of zone memory + */ + if (is_zone_map_nearing_exhaustion()) { + thread_wakeup((event_t) &vm_pageout_garbage_collect); + } + + if (zone->va_sequester) { + lock_zone(zone); + + do { + struct zone_page_metadata *page_meta; + page_meta = zone_sequestered_page_get(zone, &memory); + if (NULL == page_meta) { + break; + } + unlock_zone(zone); + + kr = zone_sequestered_page_populate(zone, page_meta, + memory, alloc_size, kmaflags); + if (KERN_SUCCESS != kr) { + goto out_nolock; + } + + zcram_and_lock(zone, memory, alloc_size); + nalloc += nalloc_inc; + } while (nalloc < goal); + + unlock_zone(zone); + } + +out_nolock: + while (nalloc < goal) { + kr = kernel_memory_allocate(submap_for_zone(zone), &memory, + alloc_size, 0, kmaflags, VM_KERN_MEMORY_ZONE); + if (kr != KERN_SUCCESS) { + printf("%s: kernel_memory_allocate() of %lu bytes failed\n", + __func__, (unsigned long)(nalloc * alloc_size)); + break; + } - /* initializing global lock group for zones */ - lck_grp_attr_setdefault(&zone_locks_grp_attr); - lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr); + zcram(zone, memory, alloc_size); + nalloc += nalloc_inc; + } - lck_attr_setdefault(&zone_metadata_lock_attr); - lck_mtx_init_ext(&zone_metadata_region_lck, &zone_metadata_region_lck_ext, &zone_locks_grp, &zone_metadata_lock_attr); + return (int)nalloc; } /* @@ -2787,44 +3887,38 @@ zone_bootstrap(void) * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit. * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default. */ -unsigned int zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT; - -/* - * Returns pid of the task with the largest number of VM map entries. - */ -extern pid_t find_largest_process_vm_map_entries(void); - -/* - * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills. - * For any other pid we try to kill that process synchronously. - */ -boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid); +TUNABLE_WRITEABLE(unsigned int, zone_map_jetsam_limit, "zone_map_jetsam_limit", + ZONE_MAP_JETSAM_LIMIT_DEFAULT); -void get_zone_map_size(uint64_t *current_size, uint64_t *capacity) +void +get_zone_map_size(uint64_t *current_size, uint64_t *capacity) { - *current_size = zone_map->size; - *capacity = vm_map_max(zone_map) - vm_map_min(zone_map); + vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed); + *current_size = ptoa_64(phys_pages); + *capacity = zone_phys_mapped_max; } -void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size) +void +get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size) { zone_t largest_zone = zone_find_largest(); - strlcpy(zone_name, largest_zone->zone_name, zone_name_len); - *zone_size = largest_zone->cur_size; + + /* + * Append kalloc heap name to zone name (if zone is used by kalloc) + */ + snprintf(zone_name, zone_name_len, "%s%s", + zone_heap_name(largest_zone), largest_zone->z_name); + + *zone_size = zone_size_wired(largest_zone); } -boolean_t is_zone_map_nearing_exhaustion(void) +boolean_t +is_zone_map_nearing_exhaustion(void) { - uint64_t size = zone_map->size; - uint64_t capacity = vm_map_max(zone_map) - vm_map_min(zone_map); - if (size > ((capacity * zone_map_jetsam_limit) / 100)) { - return TRUE; - } - return FALSE; + vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed); + return ptoa_64(phys_pages) > (zone_phys_mapped_max * zone_map_jetsam_limit) / 100; } -extern zone_t vm_map_entry_zone; -extern zone_t vm_object_zone; #define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98 @@ -2832,32 +3926,44 @@ extern zone_t vm_object_zone; * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread * to walk through the jetsam priority bands and kill processes. */ -static void kill_process_in_largest_zone(void) +static void +kill_process_in_largest_zone(void) { pid_t pid = -1; zone_t largest_zone = zone_find_largest(); - printf("zone_map_exhaustion: Zone map size %lld, capacity %lld [jetsam limit %d%%]\n", (uint64_t)zone_map->size, - (uint64_t)(vm_map_max(zone_map) - vm_map_min(zone_map)), zone_map_jetsam_limit); - printf("zone_map_exhaustion: Largest zone %s, size %lu\n", largest_zone->zone_name, (uintptr_t)largest_zone->cur_size); + printf("zone_map_exhaustion: Zone mapped %lld of %lld, used %lld, map size %lld, capacity %lld [jetsam limit %d%%]\n", + ptoa_64(os_atomic_load(&zones_phys_page_mapped_count, relaxed)), ptoa_64(zone_phys_mapped_max), + ptoa_64(os_atomic_load(&zones_phys_page_count, relaxed)), + (uint64_t)zone_submaps_approx_size(), + (uint64_t)zone_range_size(&zone_info.zi_map_range), + zone_map_jetsam_limit); + printf("zone_map_exhaustion: Largest zone %s%s, size %lu\n", zone_heap_name(largest_zone), + largest_zone->z_name, (uintptr_t)zone_size_wired(largest_zone)); /* - * We want to make sure we don't call this function from userspace. Or we could end up trying to synchronously kill the process + * We want to make sure we don't call this function from userspace. + * Or we could end up trying to synchronously kill the process * whose context we're in, causing the system to hang. */ assert(current_task() == kernel_task); /* - * If vm_object_zone is the largest, check to see if the number of elements in vm_map_entry_zone is comparable. If so, consider - * vm_map_entry_zone as the largest. This lets us target a specific process to jetsam to quickly recover from the zone map bloat. + * If vm_object_zone is the largest, check to see if the number of + * elements in vm_map_entry_zone is comparable. + * + * If so, consider vm_map_entry_zone as the largest. This lets us target + * a specific process to jetsam to quickly recover from the zone map + * bloat. */ if (largest_zone == vm_object_zone) { - int vm_object_zone_count = vm_object_zone->count; - int vm_map_entry_zone_count = vm_map_entry_zone->count; + unsigned int vm_object_zone_count = zone_count_allocated(vm_object_zone); + unsigned int vm_map_entry_zone_count = zone_count_allocated(vm_map_entry_zone); /* Is the VM map entries zone count >= 98% of the VM objects zone count? */ if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) { largest_zone = vm_map_entry_zone; - printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", (uintptr_t)largest_zone->cur_size); + printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", + (uintptr_t)zone_size_wired(largest_zone)); } } @@ -2865,925 +3971,1543 @@ static void kill_process_in_largest_zone(void) if (largest_zone == vm_map_entry_zone) { pid = find_largest_process_vm_map_entries(); } else { - printf("zone_map_exhaustion: Nothing to do for the largest zone [%s]. Waking up memorystatus thread.\n", largest_zone->zone_name); + printf("zone_map_exhaustion: Nothing to do for the largest zone [%s%s]. " + "Waking up memorystatus thread.\n", zone_heap_name(largest_zone), + largest_zone->z_name); } if (!memorystatus_kill_on_zone_map_exhaustion(pid)) { printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid); } } -/* Global initialization of Zone Allocator. - * Runs after zone_bootstrap. +#pragma mark zalloc module init + +/* + * Initialize the "zone of zones" which uses fixed memory allocated + * earlier in memory initialization. zone_bootstrap is called + * before zone_init. */ +__startup_func void -zone_init( - vm_size_t max_zonemap_size) -{ - kern_return_t retval; - vm_offset_t zone_min; - vm_offset_t zone_max; - vm_offset_t zone_metadata_space; - unsigned int zone_pages; - vm_map_kernel_flags_t vmk_flags; +zone_bootstrap(void) +{ + /* Validate struct zone_page_metadata expectations */ + if ((1U << ZONE_PAGECOUNT_BITS) < + atop(ZONE_MAX_ALLOC_SIZE) * sizeof(struct zone_page_metadata)) { + panic("ZONE_PAGECOUNT_BITS is not large enough to hold page counts"); + } -#if VM_MAX_TAG_ZONES - if (zone_tagging_on) ztInit(max_zonemap_size, &zone_locks_grp); -#endif + /* Validate struct zone_packed_virtual_address expectations */ + static_assert((intptr_t)VM_MIN_KERNEL_ADDRESS < 0, "the top bit must be 1"); + if (VM_KERNEL_POINTER_SIGNIFICANT_BITS - PAGE_SHIFT > 31) { + panic("zone_pva_t can't pack a kernel page address in 31 bits"); + } - vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; - vmk_flags.vmkf_permanent = TRUE; - retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, - FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE, - &zone_map); + zpercpu_early_count = ml_early_cpu_max_number() + 1; - if (retval != KERN_SUCCESS) - panic("zone_init: kmem_suballoc failed"); - zone_max = zone_min + round_page(max_zonemap_size); -#if CONFIG_GZALLOC - gzalloc_init(max_zonemap_size); -#endif - /* - * Setup garbage collection information: - */ - zone_map_min_address = zone_min; - zone_map_max_address = zone_max; + /* Set up zone element poisoning */ + zp_bootstrap(); - zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); - zone_metadata_space = round_page(zone_pages * sizeof(struct zone_page_metadata)); - retval = kernel_memory_allocate(zone_map, &zone_metadata_region_min, zone_metadata_space, - 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_OSFMK); - if (retval != KERN_SUCCESS) - panic("zone_init: zone_metadata_region initialization failed!"); - zone_metadata_region_max = zone_metadata_region_min + zone_metadata_space; + random_bool_init(&zone_bool_gen); -#if defined(__LP64__) /* - * ensure that any vm_page_t that gets created from - * the vm_page zone can be packed properly (see vm_page.h - * for the packing requirements + * the KASAN quarantine for kalloc doesn't understand heaps + * and trips the heap confusion panics. At the end of the day, + * all these security measures are double duty with KASAN. + * + * On 32bit kernels, these protections are just too expensive. */ - if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_metadata_region_max))) != (vm_page_t)zone_metadata_region_max) - panic("VM_PAGE_PACK_PTR failed on zone_metadata_region_max - %p", (void *)zone_metadata_region_max); +#if !defined(__LP64__) || KASAN_ZALLOC + zsecurity_options &= ~ZSECURITY_OPTIONS_SEQUESTER; + zsecurity_options &= ~ZSECURITY_OPTIONS_SUBMAP_USER_DATA; + zsecurity_options &= ~ZSECURITY_OPTIONS_SEQUESTER_KEXT_KALLOC; +#endif + + thread_call_setup(&call_async_alloc, zalloc_async, NULL); - if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address))) != (vm_page_t)zone_map_max_address) - panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address); +#if CONFIG_ZCACHE + /* zcc_enable_for_zone_name=: enable per-cpu zone caching for . */ + if (PE_parse_boot_arg_str("zcc_enable_for_zone_name", cache_zone_name, sizeof(cache_zone_name))) { + printf("zcache: caching enabled for zone %s\n", cache_zone_name); + } +#endif /* CONFIG_ZCACHE */ +} + +#if __LP64__ +#if CONFIG_EMBEDDED +#define ZONE_MAP_VIRTUAL_SIZE_LP64 (32ULL * 1024ULL * 1024 * 1024) +#else +#define ZONE_MAP_VIRTUAL_SIZE_LP64 (128ULL * 1024ULL * 1024 * 1024) #endif +#endif /* __LP64__ */ - lck_grp_attr_setdefault(&zone_gc_lck_grp_attr); - lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr); - lck_attr_setdefault(&zone_gc_lck_attr); - lck_mtx_init_ext(&zone_gc_lock, &zone_gc_lck_ext, &zone_gc_lck_grp, &zone_gc_lck_attr); - -#if CONFIG_ZLEAKS - /* - * Initialize the zone leak monitor - */ - zleak_init(max_zonemap_size); -#endif /* CONFIG_ZLEAKS */ +#define SINGLE_GUARD 16384 +#define MULTI_GUARD (3 * SINGLE_GUARD) -#if VM_MAX_TAG_ZONES - if (zone_tagging_on) vm_allocation_zones_init(); +#if __LP64__ +static inline vm_offset_t +zone_restricted_va_max(void) +{ + vm_offset_t compressor_max = VM_PACKING_MAX_PACKABLE(C_SLOT_PACKED_PTR); + vm_offset_t vm_page_max = VM_PACKING_MAX_PACKABLE(VM_PAGE_PACKED_PTR); + + return trunc_page(MIN(compressor_max, vm_page_max)); +} #endif - int jetsam_limit_temp = 0; - if (PE_parse_boot_argn("zone_map_jetsam_limit", &jetsam_limit_temp, sizeof (jetsam_limit_temp)) && - jetsam_limit_temp > 0 && jetsam_limit_temp <= 100) - zone_map_jetsam_limit = jetsam_limit_temp; +__startup_func +static void +zone_tunables_fixup(void) +{ + if (zone_map_jetsam_limit == 0 || zone_map_jetsam_limit > 100) { + zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT; + } } +STARTUP(TUNABLES, STARTUP_RANK_MIDDLE, zone_tunables_fixup); -extern volatile SInt32 kfree_nop_count; +__startup_func +static vm_size_t +zone_phys_size_max(void) +{ + mach_vm_size_t zsize; + vm_size_t zsizearg; -#pragma mark - -#pragma mark zalloc_canblock + if (PE_parse_boot_argn("zsize", &zsizearg, sizeof(zsizearg))) { + zsize = zsizearg * (1024ULL * 1024); + } else { + zsize = sane_size >> 2; /* Set target zone size as 1/4 of physical memory */ +#if defined(__LP64__) + zsize += zsize >> 1; +#endif /* __LP64__ */ + } -extern boolean_t early_boot_complete; + if (zsize < CONFIG_ZONE_MAP_MIN) { + zsize = CONFIG_ZONE_MAP_MIN; /* Clamp to min */ + } + if (zsize > sane_size >> 1) { + zsize = sane_size >> 1; /* Clamp to half of RAM max */ + } + if (zsizearg == 0 && zsize > ZONE_MAP_MAX) { + /* if zsize boot-arg not present and zsize exceeds platform maximum, clip zsize */ + vm_size_t orig_zsize = zsize; + zsize = ZONE_MAP_MAX; + printf("NOTE: zonemap size reduced from 0x%lx to 0x%lx\n", + (uintptr_t)orig_zsize, (uintptr_t)zsize); + } -/* - * zalloc returns an element from the specified zone. - */ -static void * -zalloc_internal( - zone_t zone, - boolean_t canblock, - boolean_t nopagewait, - vm_size_t -#if !VM_MAX_TAG_ZONES - __unused -#endif - reqsize, - vm_tag_t tag) -{ - vm_offset_t addr = 0; - kern_return_t retval; - uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ - int numsaved = 0; - boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE; - thread_t thr = current_thread(); - boolean_t check_poison = FALSE; - boolean_t set_doing_alloc_with_vm_priv = FALSE; + assert((vm_size_t) zsize == zsize); + return (vm_size_t)trunc_page(zsize); +} -#if CONFIG_ZLEAKS - uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ -#endif /* CONFIG_ZLEAKS */ +__startup_func +static struct zone_map_range +zone_init_allocate_va(vm_offset_t *submap_min, vm_size_t size, bool guard) +{ + struct zone_map_range r; + kern_return_t kr; -#if KASAN - /* - * KASan uses zalloc() for fakestack, which can be called anywhere. However, - * we make sure these calls can never block. - */ - boolean_t irq_safe = FALSE; - const char *fakestack_name = "fakestack."; - if (strncmp(zone->zone_name, fakestack_name, strlen(fakestack_name)) == 0) { - irq_safe = TRUE; - } -#elif MACH_ASSERT - /* In every other case, zalloc() from interrupt context is unsafe. */ - const boolean_t irq_safe = FALSE; -#endif + if (guard) { + vm_map_offset_t addr = *submap_min; + vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; - assert(zone != ZONE_NULL); - assert(irq_safe || ml_get_interrupts_enabled() || ml_is_quiescing() || debug_mode_active() || !early_boot_complete); + vmk_flags.vmkf_permanent = TRUE; + kr = vm_map_enter(kernel_map, &addr, size, 0, + VM_FLAGS_FIXED, vmk_flags, VM_KERN_MEMORY_ZONE, kernel_object, + 0, FALSE, VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_DEFAULT); + *submap_min = (vm_offset_t)addr; + } else { + kr = kernel_memory_allocate(kernel_map, submap_min, size, + 0, KMA_KOBJECT | KMA_PAGEABLE | KMA_VAONLY, VM_KERN_MEMORY_ZONE); + } + if (kr != KERN_SUCCESS) { + panic("zone_init_allocate_va(0x%lx:0x%zx) failed: %d", + (uintptr_t)*submap_min, (size_t)size, kr); + } -#if CONFIG_GZALLOC - addr = gzalloc_alloc(zone, canblock); -#endif - /* - * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. - */ - if (__improbable(DO_LOGGING(zone))) - numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH); + r.min_address = *submap_min; + *submap_min += size; + r.max_address = *submap_min; -#if CONFIG_ZLEAKS - /* - * Zone leak detection: capture a backtrace every zleak_sample_factor - * allocations in this zone. - */ - if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { - /* Avoid backtracing twice if zone logging is on */ - if (numsaved == 0) - zleak_tracedepth = backtrace(zbt, MAX_ZTRACE_DEPTH); - else - zleak_tracedepth = numsaved; - } -#endif /* CONFIG_ZLEAKS */ + return r; +} -#if VM_MAX_TAG_ZONES - if (__improbable(zone->tags)) vm_tag_will_update_zone(tag, zone->tag_zone_index); -#endif /* VM_MAX_TAG_ZONES */ +__startup_func +static void +zone_submap_init( + vm_offset_t *submap_min, + unsigned idx, + uint64_t zone_sub_map_numer, + uint64_t *remaining_denom, + vm_offset_t *remaining_size, + vm_size_t guard_size) +{ + vm_offset_t submap_start, submap_end; + vm_size_t submap_size; + vm_map_t submap; + kern_return_t kr; - lock_zone(zone); - assert(zone->zone_valid); - - if (zone->async_prio_refill && zone->zone_replenish_thread) { - vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size)); - vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size; - zone_replenish_wakeup = (zfreec < zrefillwm); - zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0)); - - do { - if (zone_replenish_wakeup) { - zone_replenish_wakeups_initiated++; - /* Signal the potentially waiting - * refill thread. - */ - thread_wakeup(&zone->zone_replenish_thread); - - /* We don't want to wait around for zone_replenish_thread to bump up the free count - * if we're in zone_gc(). This keeps us from deadlocking with zone_replenish_thread. - */ - if (thr->options & TH_OPT_ZONE_GC) - break; - - unlock_zone(zone); - /* Scheduling latencies etc. may prevent - * the refill thread from keeping up - * with demand. Throttle consumers - * when we fall below half the - * watermark, unless VM privileged - */ - if (zone_alloc_throttle) { - zone_replenish_throttle_count++; - assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC); - thread_block(THREAD_CONTINUE_NULL); - } - lock_zone(zone); - assert(zone->zone_valid); - } - - zfreec = (zone->cur_size - (zone->count * zone->elem_size)); - zrefillwm = zone->prio_refill_watermark * zone->elem_size; - zone_replenish_wakeup = (zfreec < zrefillwm); - zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0)); - - } while (zone_alloc_throttle == TRUE); - } - - if (__probable(addr == 0)) - addr = try_alloc_from_zone(zone, tag, &check_poison); - - /* If we're here because of zone_gc(), we didn't wait for zone_replenish_thread to finish. - * So we need to ensure that we did successfully grab an element. And we only need to assert - * this for zones that have a replenish thread configured (in this case, the Reserved VM map - * entries zone). - */ - if (thr->options & TH_OPT_ZONE_GC && zone->async_prio_refill) - assert(addr != 0); + submap_size = trunc_page(zone_sub_map_numer * *remaining_size / + *remaining_denom); + submap_start = *submap_min; + submap_end = submap_start + submap_size; - while ((addr == 0) && canblock) { - /* - * zone is empty, try to expand it - * - * Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged) - * to expand the zone concurrently... this is necessary to avoid stalling - * vm_privileged threads running critical code necessary to continue compressing/swapping - * pages (i.e. making new free pages) from stalling behind non-vm_privileged threads - * waiting to acquire free pages when the vm_page_free_count is below the - * vm_page_free_reserved limit. - */ - if ((zone->doing_alloc_without_vm_priv || zone->doing_alloc_with_vm_priv) && - (((thr->options & TH_OPT_VMPRIV) == 0) || zone->doing_alloc_with_vm_priv)) { - /* - * This is a non-vm_privileged thread and a non-vm_privileged or - * a vm_privileged thread is already expanding the zone... - * OR - * this is a vm_privileged thread and a vm_privileged thread is - * already expanding the zone... - * - * In either case wait for a thread to finish, then try again. - */ - zone->waiting = TRUE; - zone_sleep(zone); - } else { - vm_offset_t space; - vm_size_t alloc_size; - int retry = 0; - - if ((zone->cur_size + zone->elem_size) > - zone->max_size) { - if (zone->exhaustible) - break; - if (zone->expandable) { - /* - * We're willing to overflow certain - * zones, but not without complaining. - * - * This is best used in conjunction - * with the collectable flag. What we - * want is an assurance we can get the - * memory back, assuming there's no - * leak. - */ - zone->max_size += (zone->max_size >> 1); - } else { - unlock_zone(zone); - - panic_include_zprint = TRUE; -#if CONFIG_ZLEAKS - if (zleak_state & ZLEAK_STATE_ACTIVE) - panic_include_ztrace = TRUE; -#endif /* CONFIG_ZLEAKS */ - panic("zalloc: zone \"%s\" empty.", zone->zone_name); - } - } - /* - * It is possible that a BG thread is refilling/expanding the zone - * and gets pre-empted during that operation. That blocks all other - * threads from making progress leading to a watchdog timeout. To - * avoid that, boost the thread priority using the rwlock boost - */ - set_thread_rwlock_boost(); - - if ((thr->options & TH_OPT_VMPRIV)) { - zone->doing_alloc_with_vm_priv = TRUE; - set_doing_alloc_with_vm_priv = TRUE; - } else { - zone->doing_alloc_without_vm_priv = TRUE; - } - unlock_zone(zone); - - for (;;) { - int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; - - if (vm_pool_low() || retry >= 1) - alloc_size = - round_page(zone->elem_size); - else - alloc_size = zone->alloc_size; - - if (zone->noencrypt) - zflags |= KMA_NOENCRYPT; - - /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */ - if (is_zone_map_nearing_exhaustion()) { - thread_wakeup((event_t) &vm_pageout_garbage_collect); - } - - retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); - if (retval == KERN_SUCCESS) { -#if CONFIG_ZLEAKS - if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) { - if (zone_map->size >= zleak_global_tracking_threshold) { - kern_return_t kr; - - kr = zleak_activate(); - if (kr != KERN_SUCCESS) { - printf("Failed to activate live zone leak debugging (%d).\n", kr); - } - } - } - - if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) { - if (zone->cur_size > zleak_per_zone_tracking_threshold) { - zone->zleak_on = TRUE; - } - } -#endif /* CONFIG_ZLEAKS */ - zcram(zone, space, alloc_size); - - break; - } else if (retval != KERN_RESOURCE_SHORTAGE) { - retry++; - - if (retry == 3) { - panic_include_zprint = TRUE; -#if CONFIG_ZLEAKS - if ((zleak_state & ZLEAK_STATE_ACTIVE)) { - panic_include_ztrace = TRUE; - } -#endif /* CONFIG_ZLEAKS */ - if (retval == KERN_NO_SPACE) { - zone_t zone_largest = zone_find_largest(); - panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)", - zone->zone_name, zone_largest->zone_name, - (unsigned long)zone_largest->cur_size, zone_largest->count); - - } - panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count); - } - } else { - break; - } - } - lock_zone(zone); - assert(zone->zone_valid); - - if (set_doing_alloc_with_vm_priv == TRUE) - zone->doing_alloc_with_vm_priv = FALSE; - else - zone->doing_alloc_without_vm_priv = FALSE; - - if (zone->waiting) { - zone->waiting = FALSE; - zone_wakeup(zone); - } - clear_thread_rwlock_boost(); - - addr = try_alloc_from_zone(zone, tag, &check_poison); - if (addr == 0 && - retval == KERN_RESOURCE_SHORTAGE) { - if (nopagewait == TRUE) - break; /* out of the main while loop */ - unlock_zone(zone); - - VM_PAGE_WAIT(); - lock_zone(zone); - assert(zone->zone_valid); - } +#if defined(__LP64__) + if (idx == Z_SUBMAP_IDX_VA_RESTRICTED_MAP) { + vm_offset_t restricted_va_max = zone_restricted_va_max(); + if (submap_end > restricted_va_max) { +#if DEBUG || DEVELOPMENT + printf("zone_init: submap[%d] clipped to %zdM of %zdM\n", idx, + (size_t)(restricted_va_max - submap_start) >> 20, + (size_t)submap_size >> 20); +#endif /* DEBUG || DEVELOPMENT */ + guard_size += submap_end - restricted_va_max; + *remaining_size -= submap_end - restricted_va_max; + submap_end = restricted_va_max; + submap_size = restricted_va_max - submap_start; } - if (addr == 0) - addr = try_alloc_from_zone(zone, tag, &check_poison); - } -#if CONFIG_ZLEAKS - /* Zone leak detection: - * If we're sampling this allocation, add it to the zleaks hash table. - */ - if (addr && zleak_tracedepth > 0) { - /* Sampling can fail if another sample is happening at the same time in a different zone. */ - if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { - /* If it failed, roll back the counter so we sample the next allocation instead. */ - zone->zleak_capture = zleak_sample_factor; - } - } -#endif /* CONFIG_ZLEAKS */ - - - if ((addr == 0) && (!canblock || nopagewait) && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) { - zone->async_pending = TRUE; - unlock_zone(zone); - thread_call_enter(&call_async_alloc); - lock_zone(zone); - assert(zone->zone_valid); - addr = try_alloc_from_zone(zone, tag, &check_poison); + vm_packing_verify_range("vm_compressor", + submap_start, submap_end, VM_PACKING_PARAMS(C_SLOT_PACKED_PTR)); + vm_packing_verify_range("vm_page", + submap_start, submap_end, VM_PACKING_PARAMS(VM_PAGE_PACKED_PTR)); } +#endif /* defined(__LP64__) */ -#if VM_MAX_TAG_ZONES - if (__improbable(zone->tags) && addr) { - if (reqsize) reqsize = zone->elem_size - reqsize; - vm_tag_update_zone_size(tag, zone->tag_zone_index, zone->elem_size, reqsize); - } -#endif /* VM_MAX_TAG_ZONES */ + vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + vmk_flags.vmkf_permanent = TRUE; + kr = kmem_suballoc(kernel_map, submap_min, submap_size, + FALSE, VM_FLAGS_FIXED, vmk_flags, + VM_KERN_MEMORY_ZONE, &submap); + if (kr != KERN_SUCCESS) { + panic("kmem_suballoc(kernel_map[%d] %p:%p) failed: %d", + idx, (void *)submap_start, (void *)submap_end, kr); + } - unlock_zone(zone); +#if DEBUG || DEVELOPMENT + printf("zone_init: submap[%d] %p:%p (%zuM)\n", + idx, (void *)submap_start, (void *)submap_end, + (size_t)submap_size >> 20); +#endif /* DEBUG || DEVELOPMENT */ - vm_offset_t inner_size = zone->elem_size; + zone_submaps[idx] = submap; + *submap_min = submap_end; + *remaining_size -= submap_size; + *remaining_denom -= zone_sub_map_numer; - if (__improbable(DO_LOGGING(zone) && addr)) { - btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved); - } + zone_init_allocate_va(submap_min, guard_size, true); +} - if (__improbable(check_poison && addr)) { - vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; - vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr); +/* Global initialization of Zone Allocator. + * Runs after zone_bootstrap. + */ +__startup_func +static void +zone_init(void) +{ + vm_size_t zone_meta_size; + vm_size_t zone_map_size; + vm_size_t remaining_size; + vm_offset_t submap_min = 0; - for ( ; element_cursor < backup ; element_cursor++) - if (__improbable(*element_cursor != ZP_POISON)) - zone_element_was_modified_panic(zone, - addr, - *element_cursor, - ZP_POISON, - ((vm_offset_t)element_cursor) - addr); + if (ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) { + zone_last_submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES_MAP; + } else { + zone_last_submap_idx = Z_SUBMAP_IDX_GENERAL_MAP; } + zone_phys_mapped_max = zone_phys_size_max(); - if (addr) { - /* - * Clear out the old next pointer and backup to avoid leaking the cookie - * and so that only values on the freelist have a valid cookie - */ +#if __LP64__ + zone_map_size = ZONE_MAP_VIRTUAL_SIZE_LP64; +#else + zone_map_size = zone_phys_mapped_max; +#endif + zone_meta_size = round_page(atop(zone_map_size) * + sizeof(struct zone_page_metadata)); + + /* + * Zone "map" setup: + * + * [ VA_RESTRICTED ] <-- LP64 only + * [ SINGLE_GUARD ] <-- LP64 only + * [ meta ] + * [ SINGLE_GUARD ] + * [ map ] \ for each extra map + * [ MULTI_GUARD ] / + */ + remaining_size = zone_map_size; +#if defined(__LP64__) + remaining_size -= SINGLE_GUARD; +#endif + remaining_size -= zone_meta_size + SINGLE_GUARD; + remaining_size -= MULTI_GUARD * (zone_last_submap_idx - + Z_SUBMAP_IDX_GENERAL_MAP + 1); - vm_offset_t *primary = (vm_offset_t *) addr; - vm_offset_t *backup = get_backup_ptr(inner_size, primary); +#if VM_MAX_TAG_ZONES + if (zone_tagging_on) { + zone_tagging_init(zone_map_size); + } +#endif - *primary = ZP_POISON; - *backup = ZP_POISON; + uint64_t remaining_denom = 0; + uint64_t zone_sub_map_numer[Z_SUBMAP_IDX_COUNT] = { +#ifdef __LP64__ + [Z_SUBMAP_IDX_VA_RESTRICTED_MAP] = 20, +#endif /* defined(__LP64__) */ + [Z_SUBMAP_IDX_GENERAL_MAP] = 40, + [Z_SUBMAP_IDX_BAG_OF_BYTES_MAP] = 40, + }; + for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) { #if DEBUG || DEVELOPMENT - if (__improbable(leak_scan_debug_flag && !(zone->elem_size & (sizeof(uintptr_t) - 1)))) { - int count, idx; - /* Fill element, from tail, with backtrace in reverse order */ - if (numsaved == 0) numsaved = backtrace(zbt, MAX_ZTRACE_DEPTH); - count = (int) (zone->elem_size / sizeof(uintptr_t)); - if (count >= numsaved) count = numsaved - 1; - for (idx = 0; idx < count; idx++) ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1]; - } -#endif /* DEBUG || DEVELOPMENT */ + char submap_name[MAX_SUBMAP_NAME]; + snprintf(submap_name, MAX_SUBMAP_NAME, "submap%d", idx); + PE_parse_boot_argn(submap_name, &zone_sub_map_numer[idx], sizeof(uint64_t)); +#endif + remaining_denom += zone_sub_map_numer[idx]; } - TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr); + /* + * And now allocate the various pieces of VA and submaps. + * + * Make a first allocation of contiguous VA, that we'll deallocate, + * and we'll carve-out memory in that range again linearly. + * The kernel is stil single threaded at this stage. + */ -#if KASAN_ZALLOC - /* Fixup the return address to skip the redzone */ - if (zone->kasan_redzone) { - addr = kasan_alloc(addr, zone->elem_size, - zone->elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone); - } -#endif + struct zone_map_range *map_range = &zone_info.zi_map_range; - return((void *)addr); -} + *map_range = zone_init_allocate_va(&submap_min, zone_map_size, false); + submap_min = map_range->min_address; + kmem_free(kernel_map, submap_min, zone_map_size); -void * -zalloc(zone_t zone) -{ - return (zalloc_internal(zone, TRUE, FALSE, 0, VM_KERN_MEMORY_NONE)); -} +#if defined(__LP64__) + /* + * Allocate `Z_SUBMAP_IDX_VA_RESTRICTED_MAP` first because its VA range + * can't go beyond RESTRICTED_VA_MAX for the vm_page_t packing to work. + */ + zone_submap_init(&submap_min, Z_SUBMAP_IDX_VA_RESTRICTED_MAP, + zone_sub_map_numer[Z_SUBMAP_IDX_VA_RESTRICTED_MAP], &remaining_denom, + &remaining_size, SINGLE_GUARD); +#endif /* defined(__LP64__) */ -void * -zalloc_noblock(zone_t zone) -{ - return (zalloc_internal(zone, FALSE, FALSE, 0, VM_KERN_MEMORY_NONE)); -} + /* + * Allocate metadata array + */ + zone_info.zi_meta_range = + zone_init_allocate_va(&submap_min, zone_meta_size, true); + zone_init_allocate_va(&submap_min, SINGLE_GUARD, true); -void * -zalloc_nopagewait(zone_t zone) -{ - return (zalloc_internal(zone, TRUE, TRUE, 0, VM_KERN_MEMORY_NONE)); -} + zone_info.zi_array_base = + (struct zone_page_metadata *)zone_info.zi_meta_range.min_address - + zone_pva_from_addr(map_range->min_address).packed_address; -void * -zalloc_canblock_tag(zone_t zone, boolean_t canblock, vm_size_t reqsize, vm_tag_t tag) -{ - return (zalloc_internal(zone, canblock, FALSE, reqsize, tag)); -} + /* + * Allocate other submaps + */ + for (unsigned idx = Z_SUBMAP_IDX_GENERAL_MAP; idx <= zone_last_submap_idx; idx++) { + zone_submap_init(&submap_min, idx, zone_sub_map_numer[idx], + &remaining_denom, &remaining_size, MULTI_GUARD); + } -void * -zalloc_canblock(zone_t zone, boolean_t canblock) -{ - return (zalloc_internal(zone, canblock, FALSE, 0, VM_KERN_MEMORY_NONE)); -} + vm_map_t general_map = zone_submaps[Z_SUBMAP_IDX_GENERAL_MAP]; + zone_info.zi_general_range.min_address = vm_map_min(general_map); + zone_info.zi_general_range.max_address = vm_map_max(general_map); + assert(submap_min == map_range->max_address); -void -zalloc_async( - __unused thread_call_param_t p0, - __unused thread_call_param_t p1) -{ - zone_t current_z = NULL; - unsigned int max_zones, i; - void *elt = NULL; - boolean_t pending = FALSE; - - simple_lock(&all_zones_lock); - max_zones = num_zones; - simple_unlock(&all_zones_lock); - for (i = 0; i < max_zones; i++) { - current_z = &(zone_array[i]); +#if CONFIG_GZALLOC + gzalloc_init(zone_map_size); +#endif - if (current_z->no_callout == TRUE) { - /* async_pending will never be set */ - continue; - } + zone_create_flags_t kma_flags = ZC_NOCACHING | + ZC_NOGC | ZC_NOENCRYPT | ZC_NOGZALLOC | ZC_NOCALLOUT | + ZC_KASAN_NOQUARANTINE | ZC_KASAN_NOREDZONE; - lock_zone(current_z); - if (current_z->zone_valid && current_z->async_pending == TRUE) { - current_z->async_pending = FALSE; - pending = TRUE; - } - unlock_zone(current_z); + (void)zone_create_ext("vm.permanent", 1, kma_flags, + ZONE_ID_PERMANENT, ^(zone_t z){ + z->permanent = true; + z->z_elem_size = 1; + z->pcpu_elem_size = 1; +#if defined(__LP64__) + z->submap_idx = Z_SUBMAP_IDX_VA_RESTRICTED_MAP; +#endif + }); + (void)zone_create_ext("vm.permanent.percpu", 1, kma_flags | ZC_PERCPU, + ZONE_ID_PERCPU_PERMANENT, ^(zone_t z){ + z->permanent = true; + z->z_elem_size = 1; + z->pcpu_elem_size = zpercpu_count(); +#if defined(__LP64__) + z->submap_idx = Z_SUBMAP_IDX_VA_RESTRICTED_MAP; +#endif + }); - if (pending == TRUE) { - elt = zalloc_canblock_tag(current_z, TRUE, 0, VM_KERN_MEMORY_OSFMK); - zfree(current_z, elt); - pending = FALSE; + /* + * Now fix the zones that are missing their zone stats + * we don't really know if zfree()s happened so our stats + * are slightly off for early boot. ¯\_(ツ)_/¯ + */ + zone_index_foreach(idx) { + zone_t tz = &zone_array[idx]; + + if (tz->z_self) { + zone_stats_t zs = zalloc_percpu_permanent_type(struct zone_stats); + + zpercpu_get_cpu(zs, 0)->zs_mem_allocated += + (tz->countavail - tz->countfree) * + zone_elem_size(tz); + assert(tz->z_stats == NULL); + tz->z_stats = zs; +#if ZONE_ENABLE_LOGGING + if (tz->zone_logging && !tz->zlog_btlog) { + zone_enable_logging(tz); + } +#endif } } + +#if CONFIG_ZLEAKS + /* + * Initialize the zone leak monitor + */ + zleak_init(zone_map_size); +#endif /* CONFIG_ZLEAKS */ + +#if VM_MAX_TAG_ZONES + if (zone_tagging_on) { + vm_allocation_zones_init(); + } +#endif } +STARTUP(ZALLOC, STARTUP_RANK_FIRST, zone_init); -/* - * zget returns an element from the specified zone - * and immediately returns nothing if there is nothing there. - */ -void * -zget( - zone_t zone) +__startup_func +static void +zone_set_foreign_range( + vm_offset_t range_min, + vm_offset_t range_max) { - return zalloc_internal(zone, FALSE, TRUE, 0, VM_KERN_MEMORY_NONE); + zone_info.zi_foreign_range.min_address = range_min; + zone_info.zi_foreign_range.max_address = range_max; } -/* Keep this FALSE by default. Large memory machine run orders of magnitude - slower in debug mode when true. Use debugger to enable if needed */ -/* static */ boolean_t zone_check = FALSE; - -static void zone_check_freelist(zone_t zone, vm_offset_t elem) +__startup_func +vm_offset_t +zone_foreign_mem_init(vm_size_t size) { - struct zone_free_element *this; - struct zone_page_metadata *thispage; - - if (zone->allows_foreign) { - for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); - !queue_end(&zone->pages.any_free_foreign, &(thispage->pages)); - thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) { - for (this = page_metadata_get_freelist(thispage); - this != NULL; - this = this->next) { - if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) - panic("zone_check_freelist"); - } - } - } - for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); - !queue_end(&zone->pages.all_free, &(thispage->pages)); - thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) { - for (this = page_metadata_get_freelist(thispage); - this != NULL; - this = this->next) { - if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) - panic("zone_check_freelist"); - } - } - for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); - !queue_end(&zone->pages.intermediate, &(thispage->pages)); - thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) { - for (this = page_metadata_get_freelist(thispage); - this != NULL; - this = this->next) { - if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) - panic("zone_check_freelist"); - } - } + vm_offset_t mem = (vm_offset_t) pmap_steal_memory(size); + zone_set_foreign_range(mem, mem + size); + return mem; } -void -zfree( - zone_t zone, - void *addr) -{ - vm_offset_t elem = (vm_offset_t) addr; - uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */ - int numsaved = 0; - boolean_t gzfreed = FALSE; - boolean_t poison = FALSE; -#if VM_MAX_TAG_ZONES - vm_tag_t tag; -#endif /* VM_MAX_TAG_ZONES */ - - assert(zone != ZONE_NULL); +#pragma mark zalloc #if KASAN_ZALLOC +/* + * Called from zfree() to add the element being freed to the KASan quarantine. + * + * Returns true if the newly-freed element made it into the quarantine without + * displacing another, false otherwise. In the latter case, addrp points to the + * address of the displaced element, which will be freed by the zone. + */ +static bool +kasan_quarantine_freed_element( + zone_t *zonep, /* the zone the element is being freed to */ + void **addrp) /* address of the element being freed */ +{ + zone_t zone = *zonep; + void *addr = *addrp; + /* * Resize back to the real allocation size and hand off to the KASan - * quarantine. `addr` may then point to a different allocation. + * quarantine. `addr` may then point to a different allocation, if the + * current element replaced another in the quarantine. The zone then + * takes ownership of the swapped out free element. */ - vm_size_t usersz = zone->elem_size - 2 * zone->kasan_redzone; + vm_size_t usersz = zone_elem_size(zone) - 2 * zone->kasan_redzone; vm_size_t sz = usersz; + if (addr && zone->kasan_redzone) { kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC); addr = (void *)kasan_dealloc((vm_address_t)addr, &sz); - assert(sz == zone->elem_size); + assert(sz == zone_elem_size(zone)); } - if (addr && zone->kasan_quarantine) { - kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, &zone, usersz, true); + if (addr && !zone->kasan_noquarantine) { + kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, zonep, usersz, true); if (!addr) { - return; + return TRUE; } } - elem = (vm_offset_t)addr; -#endif + if (addr && zone->kasan_noquarantine) { + kasan_unpoison(addr, zone_elem_size(zone)); + } + *addrp = addr; + return FALSE; +} - /* - * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. - */ +#endif /* KASAN_ZALLOC */ - if (__improbable(DO_LOGGING(zone) && corruption_debug_flag)) - numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH); +static inline bool +zone_needs_async_refill(zone_t zone) +{ + if (zone->countfree != 0 || zone->async_pending || zone->no_callout) { + return false; + } -#if MACH_ASSERT - /* Basic sanity checks */ - if (zone == ZONE_NULL || elem == (vm_offset_t)0) - panic("zfree: NULL"); -#endif + return zone->expandable || zone->page_count < zone->page_count_max; +} -#if CONFIG_GZALLOC - gzfreed = gzalloc_free(zone, addr); -#endif +__attribute__((noinline)) +static void +zone_refill_synchronously_locked( + zone_t zone, + zalloc_flags_t flags) +{ + thread_t thr = current_thread(); + bool set_expanding_vm_priv = false; + zone_pva_t orig = zone->pages_intermediate; - if (!gzfreed) { - struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE); - if (zone != PAGE_METADATA_GET_ZONE(page_meta)) { - panic("Element %p from zone %s caught being freed to wrong zone %s\n", addr, PAGE_METADATA_GET_ZONE(page_meta)->zone_name, zone->zone_name); + while ((flags & Z_NOWAIT) == 0 && (zone->permanent + ? zone_pva_is_equal(zone->pages_intermediate, orig) + : zone->countfree == 0)) { + /* + * zone is empty, try to expand it + * + * Note that we now allow up to 2 threads (1 vm_privliged and + * 1 non-vm_privliged) to expand the zone concurrently... + * + * this is necessary to avoid stalling vm_privileged threads + * running critical code necessary to continue + * compressing/swapping pages (i.e. making new free pages) from + * stalling behind non-vm_privileged threads waiting to acquire + * free pages when the vm_page_free_count is below the + * vm_page_free_reserved limit. + */ + if ((zone->expanding_no_vm_priv || zone->expanding_vm_priv) && + (((thr->options & TH_OPT_VMPRIV) == 0) || zone->expanding_vm_priv)) { + /* + * This is a non-vm_privileged thread and a non-vm_privileged or + * a vm_privileged thread is already expanding the zone... + * OR + * this is a vm_privileged thread and a vm_privileged thread is + * already expanding the zone... + * + * In either case wait for a thread to finish, then try again. + */ + zone->waiting = true; + assert_wait(zone, THREAD_UNINT); + unlock_zone(zone); + thread_block(THREAD_CONTINUE_NULL); + lock_zone(zone); + continue; } - } - TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr); + if (zone->page_count >= zone->page_count_max) { + if (zone->exhaustible) { + break; + } + if (zone->expandable) { + /* + * If we're expandable, just don't go through this again. + */ + zone->page_count_max = ~0u; + } else { + unlock_zone(zone); - if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign && - !from_zone_map(elem, zone->elem_size))) { - panic("zfree: non-allocated memory in collectable zone!"); - } + panic_include_zprint = true; +#if CONFIG_ZLEAKS + if (zleak_state & ZLEAK_STATE_ACTIVE) { + panic_include_ztrace = true; + } +#endif /* CONFIG_ZLEAKS */ + panic("zalloc: zone \"%s\" empty.", zone->z_name); + } + } - if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) { /* - * Poison the memory before it ends up on the freelist to catch - * use-after-free and use of uninitialized memory - * - * Always poison tiny zones' elements (limit is 0 if -no-zp is set) - * Also poison larger elements periodically + * It is possible that a BG thread is refilling/expanding the zone + * and gets pre-empted during that operation. That blocks all other + * threads from making progress leading to a watchdog timeout. To + * avoid that, boost the thread priority using the rwlock boost */ + set_thread_rwlock_boost(); - vm_offset_t inner_size = zone->elem_size; - - uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale); + if ((thr->options & TH_OPT_VMPRIV)) { + zone->expanding_vm_priv = true; + set_expanding_vm_priv = true; + } else { + zone->expanding_no_vm_priv = true; + } - if (inner_size <= zp_tiny_zone_limit) - poison = TRUE; - else if (zp_factor != 0 && sample_counter(&zone->zp_count, sample_factor) == TRUE) - poison = TRUE; + zone_replenish_locked(zone, flags, false); - if (__improbable(poison)) { + if (set_expanding_vm_priv == true) { + zone->expanding_vm_priv = false; + } else { + zone->expanding_no_vm_priv = false; + } - /* memset_pattern{4|8} could help make this faster: */ - /* Poison everything but primary and backup */ - vm_offset_t *element_cursor = ((vm_offset_t *) elem) + 1; - vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *)elem); + if (zone->waiting) { + zone->waiting = false; + thread_wakeup(zone); + } + clear_thread_rwlock_boost(); - for ( ; element_cursor < backup; element_cursor++) - *element_cursor = ZP_POISON; + if (zone->countfree == 0) { + assert(flags & Z_NOPAGEWAIT); + break; } } + if ((flags & (Z_NOWAIT | Z_NOPAGEWAIT)) && + zone_needs_async_refill(zone) && !vm_pool_low()) { + zone->async_pending = true; + unlock_zone(zone); + thread_call_enter(&call_async_alloc); + lock_zone(zone); + assert(zone->z_self == zone); + } +} + +__attribute__((noinline)) +static void +zone_refill_asynchronously_locked(zone_t zone) +{ + uint32_t min_free = zone->prio_refill_count / 2; + uint32_t resv_free = zone->prio_refill_count / 4; + thread_t thr = current_thread(); + /* - * See if we're doing logging on this zone. There are two styles of logging used depending on - * whether we're trying to catch a leak or corruption. See comments above in zalloc for details. + * Nothing to do if there are plenty of elements. */ + while (zone->countfree <= min_free) { + /* + * Wakeup the replenish thread if not running. + */ + if (!zone->zone_replenishing) { + lck_spin_lock(&zone_replenish_lock); + assert(zone_replenish_active < zone_replenish_max_threads); + ++zone_replenish_active; + lck_spin_unlock(&zone_replenish_lock); + zone->zone_replenishing = true; + zone_replenish_wakeups_initiated++; + thread_wakeup(&zone->prio_refill_count); + } - if (__improbable(DO_LOGGING(zone))) { - if (corruption_debug_flag) { - /* - * We're logging to catch a corruption. Add a record of this zfree operation - * to log. - */ - btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved); - } else { - /* - * We're logging to catch a leak. Remove any record we might have for this - * element since it's being freed. Note that we may not find it if the buffer - * overflowed and that's OK. Since the log is of a limited size, old records - * get overwritten if there are more zallocs than zfrees. - */ - btlog_remove_entries_for_element(zone->zlog_btlog, (void *)addr); + /* + * We'll let VM_PRIV threads to continue to allocate until the + * reserve drops to 25%. After that only TH_OPT_ZONE_PRIV threads + * may continue. + * + * TH_OPT_ZONE_PRIV threads are the GC thread and a replenish thread itself. + * Replenish threads *need* to use the reserve. GC threads need to + * get through the current allocation, but then will wait at a higher + * level after they've dropped any locks which would deadlock the + * replenish thread. + */ + if ((zone->countfree > resv_free && (thr->options & TH_OPT_VMPRIV)) || + (thr->options & TH_OPT_ZONE_PRIV)) { + break; } - } - lock_zone(zone); - assert(zone->zone_valid); + /* + * Wait for the replenish threads to add more elements for us to allocate from. + */ + zone_replenish_throttle_count++; + unlock_zone(zone); + assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC); + thread_block(THREAD_CONTINUE_NULL); + lock_zone(zone); - if (zone_check) { - zone_check_freelist(zone, elem); + assert(zone->z_self == zone); } - if (__probable(!gzfreed)) { -#if VM_MAX_TAG_ZONES - if (__improbable(zone->tags)) { - tag = (ZTAG(zone, elem)[0] >> 1); - // set the tag with b0 clear so the block remains inuse - ZTAG(zone, elem)[0] = 0xFFFE; - } -#endif /* VM_MAX_TAG_ZONES */ - free_to_zone(zone, elem, poison); + /* + * If we're here because of zone_gc(), we didn't wait for + * zone_replenish_thread to finish. So we need to ensure that + * we will successfully grab an element. + * + * zones that have a replenish thread configured. + * The value of (refill_level / 2) in the previous bit of code should have + * given us headroom even though this thread didn't wait. + */ + if (thr->options & TH_OPT_ZONE_PRIV) { + assert(zone->countfree != 0); } +} -#if MACH_ASSERT - if (zone->count < 0) - panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone", - zone->zone_name, addr); +#if ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS +__attribute__((noinline)) +static void +zalloc_log_or_trace_leaks(zone_t zone, vm_offset_t addr) +{ + uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ + unsigned int numsaved = 0; + +#if ZONE_ENABLE_LOGGING + if (DO_LOGGING(zone)) { + numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, + __builtin_frame_address(0), NULL); + btlog_add_entry(zone->zlog_btlog, (void *)addr, + ZOP_ALLOC, (void **)zbt, numsaved); + } #endif - #if CONFIG_ZLEAKS /* - * Zone leak detection: un-track the allocation + * Zone leak detection: capture a backtrace every zleak_sample_factor + * allocations in this zone. */ - if (zone->zleak_on) { - zleak_free(elem, zone->elem_size); + if (__improbable(zone->zleak_on)) { + if (sample_counter(&zone->zleak_capture, zleak_sample_factor)) { + /* Avoid backtracing twice if zone logging is on */ + if (numsaved == 0) { + numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, + __builtin_frame_address(1), NULL); + } + /* Sampling can fail if another sample is happening at the same time in a different zone. */ + if (!zleak_log(zbt, addr, numsaved, zone_elem_size(zone))) { + /* If it failed, roll back the counter so we sample the next allocation instead. */ + zone->zleak_capture = zleak_sample_factor; + } + } } -#endif /* CONFIG_ZLEAKS */ - -#if VM_MAX_TAG_ZONES - if (__improbable(zone->tags) && __probable(!gzfreed)) { - vm_tag_update_zone_size(tag, zone->tag_zone_index, -((int64_t)zone->elem_size), 0); + + if (__improbable(zone_leaks_scan_enable && + !(zone_elem_size(zone) & (sizeof(uintptr_t) - 1)))) { + unsigned int count, idx; + /* Fill element, from tail, with backtrace in reverse order */ + if (numsaved == 0) { + numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, + __builtin_frame_address(1), NULL); + } + count = (unsigned int)(zone_elem_size(zone) / sizeof(uintptr_t)); + if (count >= numsaved) { + count = numsaved - 1; + } + for (idx = 0; idx < count; idx++) { + ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1]; + } + } +#endif /* CONFIG_ZLEAKS */ +} + +static inline bool +zalloc_should_log_or_trace_leaks(zone_t zone, vm_size_t elem_size) +{ +#if ZONE_ENABLE_LOGGING + if (DO_LOGGING(zone)) { + return true; + } +#endif +#if CONFIG_ZLEAKS + /* + * Zone leak detection: capture a backtrace every zleak_sample_factor + * allocations in this zone. + */ + if (zone->zleak_on) { + return true; + } + if (zone_leaks_scan_enable && !(elem_size & (sizeof(uintptr_t) - 1))) { + return true; + } +#endif /* CONFIG_ZLEAKS */ + return false; +} +#endif /* ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS */ +#if ZONE_ENABLE_LOGGING + +__attribute__((noinline)) +static void +zfree_log_trace(zone_t zone, vm_offset_t addr) +{ + /* + * See if we're doing logging on this zone. + * + * There are two styles of logging used depending on + * whether we're trying to catch a leak or corruption. + */ + if (__improbable(DO_LOGGING(zone))) { + if (corruption_debug_flag) { + uintptr_t zbt[MAX_ZTRACE_DEPTH]; + unsigned int numsaved; + /* + * We're logging to catch a corruption. + * + * Add a record of this zfree operation to log. + */ + numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, + __builtin_frame_address(1), NULL); + btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_FREE, + (void **)zbt, numsaved); + } else { + /* + * We're logging to catch a leak. + * + * Remove any record we might have for this element + * since it's being freed. Note that we may not find it + * if the buffer overflowed and that's OK. + * + * Since the log is of a limited size, old records get + * overwritten if there are more zallocs than zfrees. + */ + btlog_remove_entries_for_element(zone->zlog_btlog, (void *)addr); + } + } +} +#endif /* ZONE_ENABLE_LOGGING */ + +/* + * Removes an element from the zone's free list, returning 0 if the free list is empty. + * Verifies that the next-pointer and backup next-pointer are intact, + * and verifies that a poisoned element hasn't been modified. + */ +vm_offset_t +zalloc_direct_locked( + zone_t zone, + zalloc_flags_t flags __unused, + vm_size_t waste __unused) +{ + struct zone_page_metadata *page_meta; + zone_addr_kind_t kind = ZONE_ADDR_NATIVE; + vm_offset_t element, page, validate_bit = 0; + + /* if zone is empty, bail */ + if (!zone_pva_is_null(zone->pages_any_free_foreign)) { + kind = ZONE_ADDR_FOREIGN; + page_meta = zone_pva_to_meta(zone->pages_any_free_foreign, kind); + page = (vm_offset_t)page_meta; + } else if (!zone_pva_is_null(zone->pages_intermediate)) { + page_meta = zone_pva_to_meta(zone->pages_intermediate, kind); + page = zone_pva_to_addr(zone->pages_intermediate); + } else if (!zone_pva_is_null(zone->pages_all_free)) { + page_meta = zone_pva_to_meta(zone->pages_all_free, kind); + page = zone_pva_to_addr(zone->pages_all_free); + if (os_sub_overflow(zone->allfree_page_count, + page_meta->zm_page_count, &zone->allfree_page_count)) { + zone_accounting_panic(zone, "allfree_page_count wrap-around"); + } + } else { + zone_accounting_panic(zone, "countfree corruption"); + } + + if (!zone_has_index(zone, page_meta->zm_index)) { + zone_page_metadata_index_confusion_panic(zone, page, page_meta); + } + + element = zone_page_meta_get_freelist(zone, page_meta, page); + + vm_offset_t *primary = (vm_offset_t *) element; + vm_offset_t *backup = get_backup_ptr(zone_elem_size(zone), primary); + + /* + * since the primary next pointer is xor'ed with zp_nopoison_cookie + * for obfuscation, retrieve the original value back + */ + vm_offset_t next_element = *primary ^ zp_nopoison_cookie; + vm_offset_t next_element_primary = *primary; + vm_offset_t next_element_backup = *backup; + + /* + * backup_ptr_mismatch_panic will determine what next_element + * should have been, and print it appropriately + */ + if (!zone_page_meta_is_sane_element(zone, page_meta, page, next_element, kind)) { + backup_ptr_mismatch_panic(zone, page_meta, page, element); + } + + /* Check the backup pointer for the regular cookie */ + if (__improbable(next_element_primary != next_element_backup)) { + /* Check for the poisoned cookie instead */ + if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) { + /* Neither cookie is valid, corruption has occurred */ + backup_ptr_mismatch_panic(zone, page_meta, page, element); + } + + /* + * Element was marked as poisoned, so check its integrity before using it. + */ + validate_bit = ZALLOC_ELEMENT_NEEDS_VALIDATION; + } else if (zone->zfree_clear_mem) { + validate_bit = ZALLOC_ELEMENT_NEEDS_VALIDATION; + } + + /* Remove this element from the free list */ + zone_page_meta_set_freelist(page_meta, page, next_element); + + if (kind == ZONE_ADDR_FOREIGN) { + if (next_element == 0) { + /* last foreign element allocated on page, move to all_used_foreign */ + zone_meta_requeue(zone, &zone->pages_all_used_foreign, page_meta, kind); + } + } else if (next_element == 0) { + zone_meta_requeue(zone, &zone->pages_all_used, page_meta, kind); + } else if (page_meta->zm_alloc_count == 0) { + /* remove from free, move to intermediate */ + zone_meta_requeue(zone, &zone->pages_intermediate, page_meta, kind); + } + + if (os_add_overflow(page_meta->zm_alloc_count, 1, + &page_meta->zm_alloc_count)) { + /* + * This will not catch a lot of errors, the proper check + * would be against the number of elements this run should + * have which is expensive to count. + * + * But zm_alloc_count is a 16 bit number which could + * theoretically be valuable to cause to wrap around, + * so catch this. + */ + zone_page_meta_accounting_panic(zone, page_meta, + "zm_alloc_count overflow"); + } + if (os_sub_overflow(zone->countfree, 1, &zone->countfree)) { + zone_accounting_panic(zone, "countfree wrap-around"); + } + +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags)) { + vm_tag_t tag = zalloc_flags_get_tag(flags); + // set the tag with b0 clear so the block remains inuse + ZTAG(zone, element)[0] = (vm_tag_t)(tag << 1); + vm_tag_update_zone_size(tag, zone->tag_zone_index, + zone_elem_size(zone), waste); } #endif /* VM_MAX_TAG_ZONES */ +#if KASAN_ZALLOC + if (zone->percpu) { + zpercpu_foreach_cpu(i) { + kasan_poison_range(element + ptoa(i), + zone_elem_size(zone), ASAN_VALID); + } + } else { + kasan_poison_range(element, zone_elem_size(zone), ASAN_VALID); + } +#endif - unlock_zone(zone); + return element | validate_bit; } -/* Change a zone's flags. - * This routine must be called immediately after zinit. +/* + * zalloc returns an element from the specified zone. + * + * The function is noinline when zlog can be used so that the backtracing can + * reliably skip the zalloc_ext() and zalloc_log_or_trace_leaks() + * boring frames. */ -void -zone_change( - zone_t zone, - unsigned int item, - boolean_t value) +#if ZONE_ENABLE_LOGGING +__attribute__((noinline)) +#endif +void * +zalloc_ext( + zone_t zone, + zone_stats_t zstats, + zalloc_flags_t flags, + vm_size_t waste) { - assert( zone != ZONE_NULL ); - assert( value == TRUE || value == FALSE ); + vm_offset_t addr = 0; + vm_size_t elem_size = zone_elem_size(zone); - switch(item){ - case Z_NOENCRYPT: - zone->noencrypt = value; - break; - case Z_EXHAUST: - zone->exhaustible = value; - break; - case Z_COLLECT: - zone->collectable = value; - break; - case Z_EXPAND: - zone->expandable = value; - break; - case Z_FOREIGN: - zone->allows_foreign = value; - break; - case Z_CALLERACCT: - zone->caller_acct = value; - break; - case Z_NOCALLOUT: - zone->no_callout = value; - break; - case Z_TAGS_ENABLED: + /* + * KASan uses zalloc() for fakestack, which can be called anywhere. + * However, we make sure these calls can never block. + */ + assert(zone->kasan_fakestacks || + ml_get_interrupts_enabled() || + ml_is_quiescing() || + debug_mode_active() || + startup_phase < STARTUP_SUB_EARLY_BOOT); + + /* + * Make sure Z_NOFAIL was not obviously misused + */ + if ((flags & Z_NOFAIL) && !zone->prio_refill_count) { + assert(!zone->exhaustible && (flags & (Z_NOWAIT | Z_NOPAGEWAIT)) == 0); + } + +#if CONFIG_ZCACHE + /* + * Note: if zone caching is on, gzalloc and tags aren't used + * so we can always check this first + */ + if (zone_caching_enabled(zone)) { + addr = zcache_alloc_from_cpu_cache(zone, zstats, waste); + if (__probable(addr)) { + goto allocated_from_cache; + } + } +#endif /* CONFIG_ZCACHE */ + +#if CONFIG_GZALLOC + if (__improbable(zone->gzalloc_tracked)) { + addr = gzalloc_alloc(zone, zstats, flags); + goto allocated_from_gzalloc; + } +#endif /* CONFIG_GZALLOC */ #if VM_MAX_TAG_ZONES - { - static int tag_zone_index; - zone->tags = TRUE; - zone->tags_inline = (((page_size + zone->elem_size - 1) / zone->elem_size) <= (sizeof(uint32_t) / sizeof(uint16_t))); - zone->tag_zone_index = OSAddAtomic(1, &tag_zone_index); - } + if (__improbable(zone->tags)) { + vm_tag_t tag = zalloc_flags_get_tag(flags); + if (tag == VM_KERN_MEMORY_NONE) { + /* + * zone views into heaps can lead to a site-less call + * and we fallback to KALLOC as a tag for those. + */ + tag = VM_KERN_MEMORY_KALLOC; + flags |= Z_VM_TAG(tag); + } + vm_tag_will_update_zone(tag, zone->tag_zone_index); + } #endif /* VM_MAX_TAG_ZONES */ - break; - case Z_GZALLOC_EXEMPT: - zone->gzalloc_exempt = value; -#if CONFIG_GZALLOC - gzalloc_reconfigure(zone); + + lock_zone(zone); + assert(zone->z_self == zone); + + /* + * Check if we need another thread to replenish the zone or + * if we have to wait for a replenish thread to finish. + * This is used for elements, like vm_map_entry, which are + * needed themselves to implement zalloc(). + */ + if (__improbable(zone->prio_refill_count && + zone->countfree <= zone->prio_refill_count / 2)) { + zone_refill_asynchronously_locked(zone); + } else if (__improbable(zone->countfree == 0)) { + zone_refill_synchronously_locked(zone, flags); + if (__improbable(zone->countfree == 0)) { + unlock_zone(zone); + if (__improbable(flags & Z_NOFAIL)) { + zone_nofail_panic(zone); + } + goto out_nomem; + } + } + + addr = zalloc_direct_locked(zone, flags, waste); + if (__probable(zstats != NULL)) { + /* + * The few vm zones used before zone_init() runs do not have + * per-cpu stats yet + */ + int cpu = cpu_number(); + zpercpu_get_cpu(zstats, cpu)->zs_mem_allocated += elem_size; +#if ZALLOC_DETAILED_STATS + if (waste) { + zpercpu_get_cpu(zstats, cpu)->zs_mem_wasted += waste; + } +#endif /* ZALLOC_DETAILED_STATS */ + } + + unlock_zone(zone); + +#if ZALLOC_ENABLE_POISONING + bool validate = addr & ZALLOC_ELEMENT_NEEDS_VALIDATION; +#endif + addr &= ~ZALLOC_ELEMENT_NEEDS_VALIDATION; + zone_clear_freelist_pointers(zone, addr); +#if ZALLOC_ENABLE_POISONING + /* + * Note: percpu zones do not respect ZONE_MIN_ELEM_SIZE, + * so we will check the first word even if we just + * cleared it. + */ + zalloc_validate_element(zone, addr, elem_size - sizeof(vm_offset_t), + validate); +#endif /* ZALLOC_ENABLE_POISONING */ + +allocated_from_cache: +#if ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS + if (__improbable(zalloc_should_log_or_trace_leaks(zone, elem_size))) { + zalloc_log_or_trace_leaks(zone, addr); + } +#endif /* ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS */ + +#if CONFIG_GZALLOC +allocated_from_gzalloc: #endif - break; - case Z_ALIGNMENT_REQUIRED: - zone->alignment_required = value; #if KASAN_ZALLOC - if (zone->kasan_redzone == KASAN_GUARD_SIZE) { - /* Don't disturb alignment with the redzone for zones with - * specific alignment requirements. */ - zone->elem_size -= zone->kasan_redzone * 2; - zone->kasan_redzone = 0; + if (zone->kasan_redzone) { + addr = kasan_alloc(addr, elem_size, + elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone); + elem_size -= 2 * zone->kasan_redzone; + } + /* + * Initialize buffer with unique pattern only if memory + * wasn't expected to be zeroed. + */ + if (!zone->zfree_clear_mem && !(flags & Z_ZERO)) { + kasan_leak_init(addr, elem_size); + } +#endif /* KASAN_ZALLOC */ + if ((flags & Z_ZERO) && !zone->zfree_clear_mem) { + bzero((void *)addr, elem_size); + } + + TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, elem_size, addr); + +out_nomem: + DTRACE_VM2(zalloc, zone_t, zone, void*, addr); + return (void *)addr; +} + +void * +zalloc(union zone_or_view zov) +{ + return zalloc_flags(zov, Z_WAITOK); +} + +void * +zalloc_noblock(union zone_or_view zov) +{ + return zalloc_flags(zov, Z_NOWAIT); +} + +void * +zalloc_flags(union zone_or_view zov, zalloc_flags_t flags) +{ + zone_t zone = zov.zov_view->zv_zone; + zone_stats_t zstats = zov.zov_view->zv_stats; + assert(!zone->percpu); + return zalloc_ext(zone, zstats, flags, 0); +} + +void * +zalloc_percpu(union zone_or_view zov, zalloc_flags_t flags) +{ + zone_t zone = zov.zov_view->zv_zone; + zone_stats_t zstats = zov.zov_view->zv_stats; + assert(zone->percpu); + return (void *)__zpcpu_mangle(zalloc_ext(zone, zstats, flags, 0)); +} + +static void * +_zalloc_permanent(zone_t zone, vm_size_t size, vm_offset_t mask) +{ + const zone_addr_kind_t kind = ZONE_ADDR_NATIVE; + struct zone_page_metadata *page_meta; + vm_offset_t offs, addr; + zone_pva_t pva; + + assert(ml_get_interrupts_enabled() || + ml_is_quiescing() || + debug_mode_active() || + startup_phase < STARTUP_SUB_EARLY_BOOT); + + size = (size + mask) & ~mask; + assert(size <= PAGE_SIZE); + + lock_zone(zone); + assert(zone->z_self == zone); + + for (;;) { + pva = zone->pages_intermediate; + while (!zone_pva_is_null(pva)) { + page_meta = zone_pva_to_meta(pva, kind); + if (page_meta->zm_freelist_offs + size <= PAGE_SIZE) { + goto found; } + pva = page_meta->zm_page_next; + } + + zone_refill_synchronously_locked(zone, Z_WAITOK); + } + +found: + offs = (page_meta->zm_freelist_offs + mask) & ~mask; + page_meta->zm_freelist_offs = offs + size; + page_meta->zm_alloc_count += size; + zone->countfree -= size; + if (__probable(zone->z_stats)) { + zpercpu_get(zone->z_stats)->zs_mem_allocated += size; + } + + if (page_meta->zm_alloc_count >= PAGE_SIZE - sizeof(vm_offset_t)) { + zone_meta_requeue(zone, &zone->pages_all_used, page_meta, kind); + } + + unlock_zone(zone); + + addr = offs + zone_pva_to_addr(pva); + + DTRACE_VM2(zalloc, zone_t, zone, void*, addr); + return (void *)addr; +} + +static void * +_zalloc_permanent_large(size_t size, vm_offset_t mask) +{ + kern_return_t kr; + vm_offset_t addr; + + kr = kernel_memory_allocate(kernel_map, &addr, size, mask, + KMA_KOBJECT | KMA_PERMANENT | KMA_ZERO, + VM_KERN_MEMORY_KALLOC); + if (kr != 0) { + panic("zalloc_permanent: unable to allocate %zd bytes (%d)", + size, kr); + } + return (void *)addr; +} + +void * +zalloc_permanent(vm_size_t size, vm_offset_t mask) +{ + if (size <= PAGE_SIZE) { + zone_t zone = &zone_array[ZONE_ID_PERMANENT]; + return _zalloc_permanent(zone, size, mask); + } + return _zalloc_permanent_large(size, mask); +} + +void * +zalloc_percpu_permanent(vm_size_t size, vm_offset_t mask) +{ + zone_t zone = &zone_array[ZONE_ID_PERCPU_PERMANENT]; + return (void *)__zpcpu_mangle(_zalloc_permanent(zone, size, mask)); +} + +void +zalloc_async(__unused thread_call_param_t p0, __unused thread_call_param_t p1) +{ + zone_index_foreach(i) { + zone_t z = &zone_array[i]; + + if (z->no_callout) { + /* async_pending will never be set */ + continue; + } + + lock_zone(z); + if (z->z_self && z->async_pending) { + z->async_pending = false; + zone_refill_synchronously_locked(z, Z_WAITOK); + } + unlock_zone(z); + } +} + +/* + * Adds the element to the head of the zone's free list + * Keeps a backup next-pointer at the end of the element + */ +void +zfree_direct_locked(zone_t zone, vm_offset_t element, bool poison) +{ + struct zone_page_metadata *page_meta; + vm_offset_t page, old_head; + zone_addr_kind_t kind; + vm_size_t elem_size = zone_elem_size(zone); + + vm_offset_t *primary = (vm_offset_t *) element; + vm_offset_t *backup = get_backup_ptr(elem_size, primary); + + page_meta = zone_allocated_element_resolve(zone, element, &page, &kind); + old_head = zone_page_meta_get_freelist(zone, page_meta, page); + + if (__improbable(old_head == element)) { + panic("zfree: double free of %p to zone %s%s\n", + (void *) element, zone_heap_name(zone), zone->z_name); + } + +#if ZALLOC_ENABLE_POISONING + if (poison && elem_size < ZONE_MIN_ELEM_SIZE) { + assert(zone->percpu); + poison = false; + } +#else + poison = false; #endif -#if CONFIG_GZALLOC - gzalloc_reconfigure(zone); + + /* + * Always write a redundant next pointer + * So that it is more difficult to forge, xor it with a random cookie + * A poisoned element is indicated by using zp_poisoned_cookie + * instead of zp_nopoison_cookie + */ + + *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); + + /* + * Insert this element at the head of the free list. We also xor the + * primary pointer with the zp_nopoison_cookie to make sure a free + * element does not provide the location of the next free element directly. + */ + *primary = old_head ^ zp_nopoison_cookie; + +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags)) { + vm_tag_t tag = (ZTAG(zone, element)[0] >> 1); + // set the tag with b0 clear so the block remains inuse + ZTAG(zone, element)[0] = 0xFFFE; + vm_tag_update_zone_size(tag, zone->tag_zone_index, + -((int64_t)elem_size), 0); + } +#endif /* VM_MAX_TAG_ZONES */ + + zone_page_meta_set_freelist(page_meta, page, element); + if (os_sub_overflow(page_meta->zm_alloc_count, 1, + &page_meta->zm_alloc_count)) { + zone_page_meta_accounting_panic(zone, page_meta, + "alloc_count wrap-around"); + } + zone->countfree++; + + if (kind == ZONE_ADDR_FOREIGN) { + if (old_head == 0) { + /* first foreign element freed on page, move from all_used_foreign */ + zone_meta_requeue(zone, &zone->pages_any_free_foreign, page_meta, kind); + } + } else if (page_meta->zm_alloc_count == 0) { + /* whether the page was on the intermediate or all_used, queue, move it to free */ + zone_meta_requeue(zone, &zone->pages_all_free, page_meta, kind); + zone->allfree_page_count += page_meta->zm_page_count; + } else if (old_head == 0) { + /* first free element on page, move from all_used */ + zone_meta_requeue(zone, &zone->pages_intermediate, page_meta, kind); + } + +#if KASAN_ZALLOC + if (zone->percpu) { + zpercpu_foreach_cpu(i) { + kasan_poison_range(element + ptoa(i), elem_size, + ASAN_HEAP_FREED); + } + } else { + kasan_poison_range(element, elem_size, ASAN_HEAP_FREED); + } #endif - break; - case Z_KASAN_QUARANTINE: - zone->kasan_quarantine = value; - break; - default: - panic("Zone_change: Wrong Item Type!"); - /* break; */ +} + +/* + * The function is noinline when zlog can be used so that the backtracing can + * reliably skip the zfree_ext() and zfree_log_trace() + * boring frames. + */ +#if ZONE_ENABLE_LOGGING +__attribute__((noinline)) +#endif +void +zfree_ext(zone_t zone, zone_stats_t zstats, void *addr) +{ + vm_offset_t elem = (vm_offset_t)addr; + vm_size_t elem_size = zone_elem_size(zone); + bool poison = false; + + DTRACE_VM2(zfree, zone_t, zone, void*, addr); + TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, elem_size, elem); + +#if KASAN_ZALLOC + if (kasan_quarantine_freed_element(&zone, &addr)) { + return; + } + /* + * kasan_quarantine_freed_element() might return a different + * {zone, addr} than the one being freed for kalloc heaps. + * + * Make sure we reload everything. + */ + elem = (vm_offset_t)addr; + elem_size = zone_elem_size(zone); +#endif + +#if CONFIG_ZLEAKS + /* + * Zone leak detection: un-track the allocation + */ + if (__improbable(zone->zleak_on)) { + zleak_free(elem, elem_size); + } +#endif /* CONFIG_ZLEAKS */ + +#if CONFIG_ZCACHE + /* + * Note: if zone caching is on, gzalloc and tags aren't used + * so we can always check this first + */ + if (zone_caching_enabled(zone)) { + return zcache_free_to_cpu_cache(zone, zstats, (vm_offset_t)addr); + } +#endif /* CONFIG_ZCACHE */ + +#if CONFIG_GZALLOC + if (__improbable(zone->gzalloc_tracked)) { + return gzalloc_free(zone, zstats, addr); + } +#endif /* CONFIG_GZALLOC */ + +#if ZONE_ENABLE_LOGGING + if (__improbable(DO_LOGGING(zone))) { + zfree_log_trace(zone, elem); + } +#endif /* ZONE_ENABLE_LOGGING */ + + if (zone->zfree_clear_mem) { + poison = zfree_clear(zone, elem, elem_size); } -} -/* - * Return the expected number of free elements in the zone. - * This calculation will be incorrect if items are zfree'd that - * were never zalloc'd/zget'd. The correct way to stuff memory - * into a zone is by zcram. - */ + lock_zone(zone); + assert(zone->z_self == zone); -integer_t -zone_free_count(zone_t zone) -{ - integer_t free_count; + if (!poison) { + poison = zfree_poison_element(zone, &zone->zp_count, elem); + } - lock_zone(zone); - free_count = zone->countfree; - unlock_zone(zone); + if (__probable(zstats != NULL)) { + /* + * The few vm zones used before zone_init() runs do not have + * per-cpu stats yet + */ + zpercpu_get(zstats)->zs_mem_freed += elem_size; + } - assert(free_count >= 0); + zfree_direct_locked(zone, elem, poison); - return(free_count); + unlock_zone(zone); +} + +void +(zfree)(union zone_or_view zov, void *addr) +{ + zone_t zone = zov.zov_view->zv_zone; + zone_stats_t zstats = zov.zov_view->zv_stats; + assert(!zone->percpu); + zfree_ext(zone, zstats, addr); } -/* Drops the elements in the free queue of a zone. Called by zone_gc() on each zone, and when a zone is zdestroy'ed. */ void -drop_free_elements(zone_t z) +zfree_percpu(union zone_or_view zov, void *addr) { - vm_size_t elt_size, size_freed; - int total_freed_pages = 0; - uint64_t old_all_free_count; - struct zone_page_metadata *page_meta; - queue_head_t page_meta_head; + zone_t zone = zov.zov_view->zv_zone; + zone_stats_t zstats = zov.zov_view->zv_stats; + assert(zone->percpu); + zfree_ext(zone, zstats, (void *)__zpcpu_demangle(addr)); +} +#pragma mark vm integration, MIG routines + +/* + * Drops (i.e. frees) the elements in the all free pages queue of a zone. + * Called by zone_gc() on each zone and when a zone is zdestroy()ed. + */ +static void +zone_drop_free_elements(zone_t z) +{ + const zone_addr_kind_t kind = ZONE_ADDR_NATIVE; + unsigned int total_freed_pages = 0; + struct zone_page_metadata *page_meta, *seq_meta; + vm_address_t page_addr; + vm_size_t size_to_free; + vm_size_t free_count; + uint32_t page_count; + + current_thread()->options |= TH_OPT_ZONE_PRIV; lock_zone(z); - if (queue_empty(&z->pages.all_free)) { - unlock_zone(z); - return; - } - /* - * Snatch all of the free elements away from the zone. - */ - elt_size = z->elem_size; - old_all_free_count = z->count_all_free_pages; - queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages); - queue_init(&z->pages.all_free); - z->count_all_free_pages = 0; - unlock_zone(z); + while (!zone_pva_is_null(z->pages_all_free)) { + /* + * If any replenishment threads are running, defer to them, + * so that we don't deplete reserved zones. + * + * The timing of the check isn't super important, as there are + * enough reserves to allow freeing an extra page_meta. + * + * Hence, we can check without grabbing the lock every time + * through the loop. We do need the lock however to avoid + * missing a wakeup when we decide to block. + */ + if (zone_replenish_active > 0) { + lck_spin_lock(&zone_replenish_lock); + if (zone_replenish_active > 0) { + assert_wait(&zone_replenish_active, THREAD_UNINT); + lck_spin_unlock(&zone_replenish_lock); + unlock_zone(z); + thread_block(THREAD_CONTINUE_NULL); + lock_zone(z); + continue; + } + lck_spin_unlock(&zone_replenish_lock); + } - /* Iterate through all elements to find out size and count of elements we snatched */ - size_freed = 0; - queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) { - assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */ - size_freed += elt_size * page_meta->free_count; - } + page_meta = zone_pva_to_meta(z->pages_all_free, kind); + page_count = page_meta->zm_page_count; + free_count = zone_elem_count(z, ptoa(page_count), kind); - /* Update the zone size and free element count */ - lock_zone(z); - z->cur_size -= size_freed; - z->countfree -= size_freed/elt_size; - unlock_zone(z); + /* + * Don't drain zones with async refill to below the refill + * threshold, as they need some reserve to function properly. + */ + if (!z->destroyed && z->prio_refill_count && + (vm_size_t)(z->countfree - free_count) < z->prio_refill_count) { + break; + } + + zone_meta_queue_pop(z, &z->pages_all_free, kind, &page_addr); + + if (os_sub_overflow(z->countfree, free_count, &z->countfree)) { + zone_accounting_panic(z, "countfree wrap-around"); + } + if (os_sub_overflow(z->countavail, free_count, &z->countavail)) { + zone_accounting_panic(z, "countavail wrap-around"); + } + if (os_sub_overflow(z->allfree_page_count, page_count, + &z->allfree_page_count)) { + zone_accounting_panic(z, "allfree_page_count wrap-around"); + } + if (os_sub_overflow(z->page_count, page_count, &z->page_count)) { + zone_accounting_panic(z, "page_count wrap-around"); + } + + os_atomic_sub(&zones_phys_page_count, page_count, relaxed); + os_atomic_sub(&zones_phys_page_mapped_count, page_count, relaxed); + + bzero(page_meta, sizeof(*page_meta) * page_count); + seq_meta = page_meta; + page_meta = NULL; /* page_meta fields are zeroed, prevent reuse */ + + unlock_zone(z); - while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) { - vm_address_t free_page_address; /* Free the pages for metadata and account for them */ - free_page_address = get_zone_page(page_meta); - ZONE_PAGE_COUNT_DECR(z, page_meta->page_count); - total_freed_pages += page_meta->page_count; - old_all_free_count -= page_meta->page_count; + total_freed_pages += page_count; + size_to_free = ptoa(page_count); #if KASAN_ZALLOC - kasan_poison_range(free_page_address, page_meta->page_count * PAGE_SIZE, ASAN_VALID); + kasan_poison_range(page_addr, size_to_free, ASAN_VALID); #endif #if VM_MAX_TAG_ZONES - if (z->tags) ztMemoryRemove(z, free_page_address, (page_meta->page_count * PAGE_SIZE)); + if (z->tags) { + ztMemoryRemove(z, page_addr, size_to_free); + } #endif /* VM_MAX_TAG_ZONES */ - kmem_free(zone_map, free_page_address, (page_meta->page_count * PAGE_SIZE)); - if (current_thread()->options & TH_OPT_ZONE_GC) { - thread_yield_to_preemption(); + + if (z->va_sequester && z->alloc_pages == page_count) { + kernel_memory_depopulate(submap_for_zone(z), page_addr, + size_to_free, KMA_KOBJECT, VM_KERN_MEMORY_ZONE); + } else { + kmem_free(submap_for_zone(z), page_addr, size_to_free); + seq_meta = NULL; } - } + thread_yield_to_preemption(); - /* We freed all the pages from the all_free list for this zone */ - assert(old_all_free_count == 0); + lock_zone(z); + + if (seq_meta) { + zone_meta_queue_push(z, &z->pages_sequester, seq_meta, kind); + z->sequester_page_count += page_count; + } + } + if (z->destroyed) { + assert(zone_pva_is_null(z->pages_all_free)); + assert(z->allfree_page_count == 0); + } + unlock_zone(z); + current_thread()->options &= ~TH_OPT_ZONE_PRIV; - if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) - kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); +#if DEBUG || DEVELOPMENT + if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) { + kprintf("zone_gc() of zone %s%s freed %lu elements, %d pages\n", + zone_heap_name(z), z->z_name, + (unsigned long)(ptoa(total_freed_pages) / z->pcpu_elem_size), + total_freed_pages); + } +#endif /* DEBUG || DEVELOPMENT */ } /* Zone garbage collection @@ -3798,10 +5522,6 @@ drop_free_elements(zone_t z) void zone_gc(boolean_t consider_jetsams) { - unsigned int max_zones; - zone_t z; - unsigned int i; - if (consider_jetsams) { kill_process_in_largest_zone(); /* @@ -3813,38 +5533,33 @@ zone_gc(boolean_t consider_jetsams) lck_mtx_lock(&zone_gc_lock); - current_thread()->options |= TH_OPT_ZONE_GC; - - simple_lock(&all_zones_lock); - max_zones = num_zones; - simple_unlock(&all_zones_lock); - - if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) +#if DEBUG || DEVELOPMENT + if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) { kprintf("zone_gc() starting...\n"); + } +#endif /* DEBUG || DEVELOPMENT */ - for (i = 0; i < max_zones; i++) { - z = &(zone_array[i]); - assert(z != ZONE_NULL); + zone_index_foreach(i) { + zone_t z = &zone_array[i]; if (!z->collectable) { continue; } - - if (queue_empty(&z->pages.all_free)) { +#if CONFIG_ZCACHE + if (zone_caching_enabled(z)) { + zcache_drain_depot(z); + } +#endif /* CONFIG_ZCACHE */ + if (zone_pva_is_null(z->pages_all_free)) { continue; } - - drop_free_elements(z); - } - current_thread()->options &= ~TH_OPT_ZONE_GC; + zone_drop_free_elements(z); + } lck_mtx_unlock(&zone_gc_lock); } -extern vm_offset_t kmapoff_kaddr; -extern unsigned int kmapoff_pgcnt; - /* * consider_zone_gc: * @@ -3854,500 +5569,749 @@ extern unsigned int kmapoff_pgcnt; void consider_zone_gc(boolean_t consider_jetsams) { - if (kmapoff_kaddr != 0) { + /* + * One-time reclaim of kernel_map resources we allocated in + * early boot. + * + * Use atomic exchange in case multiple threads race into here. + */ + vm_offset_t deallocate_kaddr; + if (kmapoff_kaddr != 0 && + (deallocate_kaddr = os_atomic_xchg(&kmapoff_kaddr, 0, relaxed)) != 0) { + vm_deallocate(kernel_map, deallocate_kaddr, ptoa_64(kmapoff_pgcnt)); + } + + zone_gc(consider_jetsams); +} + +/* + * Creates a vm_map_copy_t to return to the caller of mach_* MIG calls + * requesting zone information. + * Frees unused pages towards the end of the region, and zero'es out unused + * space on the last page. + */ +static vm_map_copy_t +create_vm_map_copy( + vm_offset_t start_addr, + vm_size_t total_size, + vm_size_t used_size) +{ + kern_return_t kr; + vm_offset_t end_addr; + vm_size_t free_size; + vm_map_copy_t copy; + + if (used_size != total_size) { + end_addr = start_addr + used_size; + free_size = total_size - (round_page(end_addr) - start_addr); + + if (free_size >= PAGE_SIZE) { + kmem_free(ipc_kernel_map, + round_page(end_addr), free_size); + } + bzero((char *) end_addr, round_page(end_addr) - end_addr); + } + + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)start_addr, + (vm_map_size_t)used_size, TRUE, ©); + assert(kr == KERN_SUCCESS); + + return copy; +} + +static boolean_t +get_zone_info( + zone_t z, + mach_zone_name_t *zn, + mach_zone_info_t *zi) +{ + struct zone zcopy; + + assert(z != ZONE_NULL); + lock_zone(z); + if (!z->z_self) { + unlock_zone(z); + return FALSE; + } + zcopy = *z; + unlock_zone(z); + + if (zn != NULL) { + /* + * Append kalloc heap name to zone name (if zone is used by kalloc) + */ + char temp_zone_name[MAX_ZONE_NAME] = ""; + snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", + zone_heap_name(z), z->z_name); + + /* assuming here the name data is static */ + (void) __nosan_strlcpy(zn->mzn_name, temp_zone_name, + strlen(temp_zone_name) + 1); + } + + if (zi != NULL) { + *zi = (mach_zone_info_t) { + .mzi_count = zone_count_allocated(&zcopy), + .mzi_cur_size = ptoa_64(zcopy.page_count), + // max_size for zprint is now high-watermark of pages used + .mzi_max_size = ptoa_64(zcopy.page_count_hwm), + .mzi_elem_size = zcopy.pcpu_elem_size, + .mzi_alloc_size = ptoa_64(zcopy.alloc_pages), + .mzi_exhaustible = (uint64_t)zcopy.exhaustible, + }; + zpercpu_foreach(zs, zcopy.z_stats) { + zi->mzi_sum_size += zs->zs_mem_allocated; + } + if (zcopy.collectable) { + SET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable, + ptoa_64(zcopy.allfree_page_count)); + SET_MZI_COLLECTABLE_FLAG(zi->mzi_collectable, TRUE); + } + } + + return TRUE; +} + +kern_return_t +task_zone_info( + __unused task_t task, + __unused mach_zone_name_array_t *namesp, + __unused mach_msg_type_number_t *namesCntp, + __unused task_zone_info_array_t *infop, + __unused mach_msg_type_number_t *infoCntp) +{ + return KERN_FAILURE; +} + +kern_return_t +mach_zone_info( + host_priv_t host, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp, + mach_zone_info_array_t *infop, + mach_msg_type_number_t *infoCntp) +{ + return mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL); +} + + +kern_return_t +mach_memory_info( + host_priv_t host, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp, + mach_zone_info_array_t *infop, + mach_msg_type_number_t *infoCntp, + mach_memory_info_array_t *memoryInfop, + mach_msg_type_number_t *memoryInfoCntp) +{ + mach_zone_name_t *names; + vm_offset_t names_addr; + vm_size_t names_size; + + mach_zone_info_t *info; + vm_offset_t info_addr; + vm_size_t info_size; + + mach_memory_info_t *memory_info; + vm_offset_t memory_info_addr; + vm_size_t memory_info_size; + vm_size_t memory_info_vmsize; + unsigned int num_info; + + unsigned int max_zones, used_zones, i; + mach_zone_name_t *zn; + mach_zone_info_t *zi; + kern_return_t kr; + + uint64_t zones_collectable_bytes = 0; + + if (host == HOST_NULL) { + return KERN_INVALID_HOST; + } +#if CONFIG_DEBUGGER_FOR_ZONE_INFO + if (!PE_i_can_has_debugger(NULL)) { + return KERN_INVALID_HOST; + } +#endif + + /* + * We assume that zones aren't freed once allocated. + * We won't pick up any zones that are allocated later. + */ + + max_zones = os_atomic_load(&num_zones, relaxed); + + names_size = round_page(max_zones * sizeof *names); + kr = kmem_alloc_pageable(ipc_kernel_map, + &names_addr, names_size, VM_KERN_MEMORY_IPC); + if (kr != KERN_SUCCESS) { + return kr; + } + names = (mach_zone_name_t *) names_addr; + + info_size = round_page(max_zones * sizeof *info); + kr = kmem_alloc_pageable(ipc_kernel_map, + &info_addr, info_size, VM_KERN_MEMORY_IPC); + if (kr != KERN_SUCCESS) { + kmem_free(ipc_kernel_map, + names_addr, names_size); + return kr; + } + info = (mach_zone_info_t *) info_addr; + + zn = &names[0]; + zi = &info[0]; + + used_zones = max_zones; + for (i = 0; i < max_zones; i++) { + if (!get_zone_info(&(zone_array[i]), zn, zi)) { + used_zones--; + continue; + } + zones_collectable_bytes += GET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable); + zn++; + zi++; + } + + *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, used_zones * sizeof *names); + *namesCntp = used_zones; + + *infop = (mach_zone_info_t *) create_vm_map_copy(info_addr, info_size, used_zones * sizeof *info); + *infoCntp = used_zones; + + num_info = 0; + memory_info_addr = 0; + + if (memoryInfop && memoryInfoCntp) { + vm_map_copy_t copy; + num_info = vm_page_diagnose_estimate(); + memory_info_size = num_info * sizeof(*memory_info); + memory_info_vmsize = round_page(memory_info_size); + kr = kmem_alloc_pageable(ipc_kernel_map, + &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC); + if (kr != KERN_SUCCESS) { + return kr; + } + + kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, + VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE); + assert(kr == KERN_SUCCESS); + + memory_info = (mach_memory_info_t *) memory_info_addr; + vm_page_diagnose(memory_info, num_info, zones_collectable_bytes); + + kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE); + assert(kr == KERN_SUCCESS); + + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr, + (vm_map_size_t)memory_info_size, TRUE, ©); + assert(kr == KERN_SUCCESS); + + *memoryInfop = (mach_memory_info_t *) copy; + *memoryInfoCntp = num_info; + } + + return KERN_SUCCESS; +} + +kern_return_t +mach_zone_info_for_zone( + host_priv_t host, + mach_zone_name_t name, + mach_zone_info_t *infop) +{ + zone_t zone_ptr; + + if (host == HOST_NULL) { + return KERN_INVALID_HOST; + } +#if CONFIG_DEBUGGER_FOR_ZONE_INFO + if (!PE_i_can_has_debugger(NULL)) { + return KERN_INVALID_HOST; + } +#endif + + if (infop == NULL) { + return KERN_INVALID_ARGUMENT; + } + + zone_ptr = ZONE_NULL; + zone_index_foreach(i) { + zone_t z = &(zone_array[i]); + assert(z != ZONE_NULL); + /* - * One-time reclaim of kernel_map resources we allocated in - * early boot. + * Append kalloc heap name to zone name (if zone is used by kalloc) */ - (void) vm_deallocate(kernel_map, - kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); - kmapoff_kaddr = 0; + char temp_zone_name[MAX_ZONE_NAME] = ""; + snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", + zone_heap_name(z), z->z_name); + + /* Find the requested zone by name */ + if (track_this_zone(temp_zone_name, name.mzn_name)) { + zone_ptr = z; + break; + } + } + + /* No zones found with the requested zone name */ + if (zone_ptr == ZONE_NULL) { + return KERN_INVALID_ARGUMENT; } - if (zone_gc_allowed) - zone_gc(consider_jetsams); + if (get_zone_info(zone_ptr, NULL, infop)) { + return KERN_SUCCESS; + } + return KERN_FAILURE; } -kern_return_t -task_zone_info( - __unused task_t task, - __unused mach_zone_name_array_t *namesp, - __unused mach_msg_type_number_t *namesCntp, - __unused task_zone_info_array_t *infop, - __unused mach_msg_type_number_t *infoCntp) -{ +kern_return_t +mach_zone_info_for_largest_zone( + host_priv_t host, + mach_zone_name_t *namep, + mach_zone_info_t *infop) +{ + if (host == HOST_NULL) { + return KERN_INVALID_HOST; + } +#if CONFIG_DEBUGGER_FOR_ZONE_INFO + if (!PE_i_can_has_debugger(NULL)) { + return KERN_INVALID_HOST; + } +#endif + + if (namep == NULL || infop == NULL) { + return KERN_INVALID_ARGUMENT; + } + + if (get_zone_info(zone_find_largest(), namep, infop)) { + return KERN_SUCCESS; + } return KERN_FAILURE; } -kern_return_t -mach_zone_info( - host_priv_t host, - mach_zone_name_array_t *namesp, - mach_msg_type_number_t *namesCntp, - mach_zone_info_array_t *infop, - mach_msg_type_number_t *infoCntp) +uint64_t +get_zones_collectable_bytes(void) { - return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL)); -} + uint64_t zones_collectable_bytes = 0; + mach_zone_info_t zi; + zone_index_foreach(i) { + if (get_zone_info(&zone_array[i], NULL, &zi)) { + zones_collectable_bytes += + GET_MZI_COLLECTABLE_BYTES(zi.mzi_collectable); + } + } + + return zones_collectable_bytes; +} kern_return_t -mach_memory_info( - host_priv_t host, - mach_zone_name_array_t *namesp, - mach_msg_type_number_t *namesCntp, - mach_zone_info_array_t *infop, - mach_msg_type_number_t *infoCntp, - mach_memory_info_array_t *memoryInfop, - mach_msg_type_number_t *memoryInfoCntp) +mach_zone_get_zlog_zones( + host_priv_t host, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp) { - mach_zone_name_t *names; - vm_offset_t names_addr; - vm_size_t names_size; - - mach_zone_info_t *info; - vm_offset_t info_addr; - vm_size_t info_size; - - mach_memory_info_t *memory_info; - vm_offset_t memory_info_addr; - vm_size_t memory_info_size; - vm_size_t memory_info_vmsize; - unsigned int num_info; - - unsigned int max_zones, used_zones, i; - zone_t z; - mach_zone_name_t *zn; - mach_zone_info_t *zi; - kern_return_t kr; - - vm_size_t used; - vm_map_copy_t copy; - uint64_t zones_collectable_bytes = 0; - - if (host == HOST_NULL) - return KERN_INVALID_HOST; -#if CONFIG_DEBUGGER_FOR_ZONE_INFO - if (!PE_i_can_has_debugger(NULL)) +#if ZONE_ENABLE_LOGGING + unsigned int max_zones, logged_zones, i; + kern_return_t kr; + zone_t zone_ptr; + mach_zone_name_t *names; + vm_offset_t names_addr; + vm_size_t names_size; + + if (host == HOST_NULL) { return KERN_INVALID_HOST; -#endif + } - /* - * We assume that zones aren't freed once allocated. - * We won't pick up any zones that are allocated later. - */ + if (namesp == NULL || namesCntp == NULL) { + return KERN_INVALID_ARGUMENT; + } - simple_lock(&all_zones_lock); - max_zones = (unsigned int)(num_zones); - simple_unlock(&all_zones_lock); + max_zones = os_atomic_load(&num_zones, relaxed); names_size = round_page(max_zones * sizeof *names); kr = kmem_alloc_pageable(ipc_kernel_map, - &names_addr, names_size, VM_KERN_MEMORY_IPC); - if (kr != KERN_SUCCESS) - return kr; - names = (mach_zone_name_t *) names_addr; - - info_size = round_page(max_zones * sizeof *info); - kr = kmem_alloc_pageable(ipc_kernel_map, - &info_addr, info_size, VM_KERN_MEMORY_IPC); + &names_addr, names_size, VM_KERN_MEMORY_IPC); if (kr != KERN_SUCCESS) { - kmem_free(ipc_kernel_map, - names_addr, names_size); return kr; } - info = (mach_zone_info_t *) info_addr; - - zn = &names[0]; - zi = &info[0]; + names = (mach_zone_name_t *) names_addr; - used_zones = max_zones; + zone_ptr = ZONE_NULL; + logged_zones = 0; for (i = 0; i < max_zones; i++) { - struct zone zcopy; - z = &(zone_array[i]); + zone_t z = &(zone_array[i]); assert(z != ZONE_NULL); - lock_zone(z); - if (!z->zone_valid) { - unlock_zone(z); - used_zones--; - continue; + /* Copy out the zone name if zone logging is enabled */ + if (z->zlog_btlog) { + get_zone_info(z, &names[logged_zones], NULL); + logged_zones++; } - zcopy = *z; - unlock_zone(z); - - /* assuming here the name data is static */ - (void) __nosan_strncpy(zn->mzn_name, zcopy.zone_name, - sizeof zn->mzn_name); - zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; - - zi->mzi_count = (uint64_t)zcopy.count; - zi->mzi_cur_size = ptoa_64(zcopy.page_count); - zi->mzi_max_size = (uint64_t)zcopy.max_size; - zi->mzi_elem_size = (uint64_t)zcopy.elem_size; - zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; - zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; - zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; - zi->mzi_collectable = (uint64_t)zcopy.collectable; - zones_collectable_bytes += ((uint64_t)zcopy.count_all_free_pages * PAGE_SIZE); - zn++; - zi++; } - used = used_zones * sizeof *names; - if (used != names_size) - bzero((char *) (names_addr + used), names_size - used); + *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, logged_zones * sizeof *names); + *namesCntp = logged_zones; - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, - (vm_map_size_t)used, TRUE, ©); - assert(kr == KERN_SUCCESS); + return KERN_SUCCESS; - *namesp = (mach_zone_name_t *) copy; - *namesCntp = used_zones; +#else /* ZONE_ENABLE_LOGGING */ +#pragma unused(host, namesp, namesCntp) + return KERN_FAILURE; +#endif /* ZONE_ENABLE_LOGGING */ +} - used = used_zones * sizeof *info; +kern_return_t +mach_zone_get_btlog_records( + host_priv_t host, + mach_zone_name_t name, + zone_btrecord_array_t *recsp, + mach_msg_type_number_t *recsCntp) +{ +#if DEBUG || DEVELOPMENT + unsigned int numrecs = 0; + zone_btrecord_t *recs; + kern_return_t kr; + zone_t zone_ptr; + vm_offset_t recs_addr; + vm_size_t recs_size; - if (used != info_size) - bzero((char *) (info_addr + used), info_size - used); + if (host == HOST_NULL) { + return KERN_INVALID_HOST; + } - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, - (vm_map_size_t)used, TRUE, ©); - assert(kr == KERN_SUCCESS); + if (recsp == NULL || recsCntp == NULL) { + return KERN_INVALID_ARGUMENT; + } - *infop = (mach_zone_info_t *) copy; - *infoCntp = used_zones; - - num_info = 0; - memory_info_addr = 0; + zone_ptr = ZONE_NULL; + zone_index_foreach(i) { + zone_t z = &zone_array[i]; - if (memoryInfop && memoryInfoCntp) - { - num_info = vm_page_diagnose_estimate(); - memory_info_size = num_info * sizeof(*memory_info); - memory_info_vmsize = round_page(memory_info_size); - kr = kmem_alloc_pageable(ipc_kernel_map, - &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC); - if (kr != KERN_SUCCESS) { - kmem_free(ipc_kernel_map, - names_addr, names_size); - kmem_free(ipc_kernel_map, - info_addr, info_size); - return kr; + /* + * Append kalloc heap name to zone name (if zone is used by kalloc) + */ + char temp_zone_name[MAX_ZONE_NAME] = ""; + snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", + zone_heap_name(z), z->z_name); + + /* Find the requested zone by name */ + if (track_this_zone(temp_zone_name, name.mzn_name)) { + zone_ptr = z; + break; } + } - kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, - VM_PROT_READ|VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE); - assert(kr == KERN_SUCCESS); + /* No zones found with the requested zone name */ + if (zone_ptr == ZONE_NULL) { + return KERN_INVALID_ARGUMENT; + } - memory_info = (mach_memory_info_t *) memory_info_addr; - vm_page_diagnose(memory_info, num_info, zones_collectable_bytes); + /* Logging not turned on for the requested zone */ + if (!DO_LOGGING(zone_ptr)) { + return KERN_FAILURE; + } - kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE); - assert(kr == KERN_SUCCESS); - - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr, - (vm_map_size_t)memory_info_size, TRUE, ©); - assert(kr == KERN_SUCCESS); + /* Allocate memory for btlog records */ + numrecs = (unsigned int)(get_btlog_records_count(zone_ptr->zlog_btlog)); + recs_size = round_page(numrecs * sizeof *recs); - *memoryInfop = (mach_memory_info_t *) copy; - *memoryInfoCntp = num_info; + kr = kmem_alloc_pageable(ipc_kernel_map, &recs_addr, recs_size, VM_KERN_MEMORY_IPC); + if (kr != KERN_SUCCESS) { + return kr; } - return KERN_SUCCESS; -} + /* + * We will call get_btlog_records() below which populates this region while holding a spinlock + * (the btlog lock). So these pages need to be wired. + */ + kr = vm_map_wire_kernel(ipc_kernel_map, recs_addr, recs_addr + recs_size, + VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE); + assert(kr == KERN_SUCCESS); -uint64_t -get_zones_collectable_bytes(void) -{ - zone_t z; - unsigned int i, max_zones; - uint64_t zones_collectable_bytes = 0; + recs = (zone_btrecord_t *)recs_addr; + get_btlog_records(zone_ptr->zlog_btlog, recs, &numrecs); - simple_lock(&all_zones_lock); - max_zones = (unsigned int)(num_zones); - simple_unlock(&all_zones_lock); + kr = vm_map_unwire(ipc_kernel_map, recs_addr, recs_addr + recs_size, FALSE); + assert(kr == KERN_SUCCESS); - for (i = 0; i < max_zones; i++) { - z = &(zone_array[i]); - assert(z != ZONE_NULL); + *recsp = (zone_btrecord_t *) create_vm_map_copy(recs_addr, recs_size, numrecs * sizeof *recs); + *recsCntp = numrecs; - lock_zone(z); - zones_collectable_bytes += ((uint64_t)z->count_all_free_pages * PAGE_SIZE); - unlock_zone(z); - } + return KERN_SUCCESS; - return zones_collectable_bytes; +#else /* DEBUG || DEVELOPMENT */ +#pragma unused(host, name, recsp, recsCntp) + return KERN_FAILURE; +#endif /* DEBUG || DEVELOPMENT */ } + #if DEBUG || DEVELOPMENT kern_return_t mach_memory_info_check(void) { - mach_memory_info_t * memory_info; - mach_memory_info_t * info; - zone_t zone; - unsigned int idx, num_info, max_zones; - vm_offset_t memory_info_addr; + mach_memory_info_t * memory_info; + mach_memory_info_t * info; + unsigned int num_info; + vm_offset_t memory_info_addr; kern_return_t kr; - size_t memory_info_size, memory_info_vmsize; + size_t memory_info_size, memory_info_vmsize; uint64_t top_wired, zonestotal, total; num_info = vm_page_diagnose_estimate(); memory_info_size = num_info * sizeof(*memory_info); memory_info_vmsize = round_page(memory_info_size); kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG); - assert (kr == KERN_SUCCESS); + assert(kr == KERN_SUCCESS); memory_info = (mach_memory_info_t *) memory_info_addr; vm_page_diagnose(memory_info, num_info, 0); - simple_lock(&all_zones_lock); - max_zones = num_zones; - simple_unlock(&all_zones_lock); - - top_wired = total = zonestotal = 0; - for (idx = 0; idx < max_zones; idx++) - { - zone = &(zone_array[idx]); - assert(zone != ZONE_NULL); - lock_zone(zone); - zonestotal += ptoa_64(zone->page_count); - unlock_zone(zone); + top_wired = total = zonestotal = 0; + zone_index_foreach(idx) { + zonestotal += zone_size_wired(&zone_array[idx]); } - for (idx = 0; idx < num_info; idx++) - { + + for (uint32_t idx = 0; idx < num_info; idx++) { info = &memory_info[idx]; - if (!info->size) continue; - if (VM_KERN_COUNT_WIRED == info->site) top_wired = info->size; - if (VM_KERN_SITE_HIDE & info->flags) continue; - if (!(VM_KERN_SITE_WIRED & info->flags)) continue; + if (!info->size) { + continue; + } + if (VM_KERN_COUNT_WIRED == info->site) { + top_wired = info->size; + } + if (VM_KERN_SITE_HIDE & info->flags) { + continue; + } + if (!(VM_KERN_SITE_WIRED & info->flags)) { + continue; + } total += info->size; - } + } total += zonestotal; - printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", total, top_wired, zonestotal, top_wired - total); + printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", + total, top_wired, zonestotal, top_wired - total); - kmem_free(kernel_map, memory_info_addr, memory_info_vmsize); + kmem_free(kernel_map, memory_info_addr, memory_info_vmsize); - return (kr); + return kr; } +extern boolean_t(*volatile consider_buffer_cache_collect)(int); + #endif /* DEBUG || DEVELOPMENT */ kern_return_t mach_zone_force_gc( host_t host) { - if (host == HOST_NULL) + if (host == HOST_NULL) { return KERN_INVALID_HOST; + } #if DEBUG || DEVELOPMENT + /* Callout to buffer cache GC to drop elements in the apfs zones */ + if (consider_buffer_cache_collect != NULL) { + (void)(*consider_buffer_cache_collect)(0); + } consider_zone_gc(FALSE); #endif /* DEBUG || DEVELOPMENT */ - return (KERN_SUCCESS); + return KERN_SUCCESS; } -extern unsigned int stack_total; -extern unsigned long long stack_allocs; - -#if defined(__i386__) || defined (__x86_64__) -extern unsigned int inuse_ptepages_count; -extern long long alloc_ptepages_count; -#endif - zone_t zone_find_largest(void) { - unsigned int i; - unsigned int max_zones; - zone_t the_zone; - zone_t zone_largest; - - simple_lock(&all_zones_lock); - max_zones = num_zones; - simple_unlock(&all_zones_lock); - - zone_largest = &(zone_array[0]); - for (i = 0; i < max_zones; i++) { - the_zone = &(zone_array[i]); - if (the_zone->cur_size > zone_largest->cur_size) { - zone_largest = the_zone; + uint32_t largest_idx = 0; + vm_offset_t largest_size = zone_size_wired(&zone_array[0]); + + zone_index_foreach(i) { + vm_offset_t size = zone_size_wired(&zone_array[i]); + if (size > largest_size) { + largest_idx = i; + largest_size = size; } } - return zone_largest; + + return &zone_array[largest_idx]; } -#if ZONE_DEBUG +#pragma mark - tests +#if DEBUG || DEVELOPMENT -/* should we care about locks here ? */ +/* + * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one + * thread goes through at a time. Or we can end up with multiple test zones (if + * a second zinit() comes through before zdestroy()), which could lead us to + * run out of zones. + */ +SIMPLE_LOCK_DECLARE(zone_test_lock, 0); +static boolean_t zone_test_running = FALSE; +static zone_t test_zone_ptr = NULL; -#define zone_in_use(z) ( z->count || z->free_elements \ - || !queue_empty(&z->pages.all_free) \ - || !queue_empty(&z->pages.intermediate) \ - || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign))) +static uintptr_t * +zone_copy_allocations(zone_t z, uintptr_t *elems, bitmap_t *bits, + zone_pva_t page_index, zone_addr_kind_t kind) +{ + vm_offset_t free, first, end, page; + struct zone_page_metadata *meta; + while (!zone_pva_is_null(page_index)) { + page = zone_pva_to_addr(page_index); + meta = zone_pva_to_meta(page_index, kind); + end = page + ptoa(meta->zm_percpu ? 1 : meta->zm_page_count); + first = page + ZONE_PAGE_FIRST_OFFSET(kind); -#endif /* ZONE_DEBUG */ + bitmap_clear(bits, (uint32_t)((end - first) / zone_elem_size(z))); + // construct bitmap of all freed elements + free = zone_page_meta_get_freelist(z, meta, page); + while (free) { + bitmap_set(bits, (uint32_t)((free - first) / zone_elem_size(z))); -/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + // next free element + free = *(vm_offset_t *)free ^ zp_nopoison_cookie; + } -#if DEBUG || DEVELOPMENT + for (unsigned i = 0; first < end; i++, first += zone_elem_size(z)) { + if (!bitmap_test(bits, i)) { + *elems++ = INSTANCE_PUT(first); + } + } -static uintptr_t * -zone_copy_all_allocations_inqueue(zone_t z, queue_head_t * queue, uintptr_t * elems) -{ - struct zone_page_metadata *page_meta; - vm_offset_t free, elements; - vm_offset_t idx, numElements, freeCount, bytesAvail, metaSize; - - queue_iterate(queue, page_meta, struct zone_page_metadata *, pages) - { - elements = get_zone_page(page_meta); - bytesAvail = ptoa(page_meta->page_count); - freeCount = 0; - if (z->allows_foreign && !from_zone_map(elements, z->elem_size)) - { - metaSize = (sizeof(struct zone_page_metadata) + ZONE_ELEMENT_ALIGNMENT - 1) & ~(ZONE_ELEMENT_ALIGNMENT - 1); - bytesAvail -= metaSize; - elements += metaSize; - } - numElements = bytesAvail / z->elem_size; - // construct array of all possible elements - for (idx = 0; idx < numElements; idx++) - { - elems[idx] = INSTANCE_PUT(elements + idx * z->elem_size); - } - // remove from the array all free elements - free = (vm_offset_t)page_metadata_get_freelist(page_meta); - while (free) - { - // find idx of free element - for (idx = 0; (idx < numElements) && (elems[idx] != INSTANCE_PUT(free)); idx++) {} - assert(idx < numElements); - // remove it - bcopy(&elems[idx + 1], &elems[idx], (numElements - (idx + 1)) * sizeof(elems[0])); - numElements--; - freeCount++; - // next free element - vm_offset_t *primary = (vm_offset_t *) free; - free = *primary ^ zp_nopoison_cookie; - } - elems += numElements; - } - - return (elems); + page_index = meta->zm_page_next; + } + return elems; } kern_return_t zone_leaks(const char * zoneName, uint32_t nameLen, leak_site_proc proc, void * refCon) { - uintptr_t zbt[MAX_ZTRACE_DEPTH]; - zone_t zone; - uintptr_t * array; - uintptr_t * next; - uintptr_t element, bt; - uint32_t idx, count, found; - uint32_t btidx, btcount, nobtcount, btfound; - uint32_t elemSize; - uint64_t maxElems; - unsigned int max_zones; + uintptr_t zbt[MAX_ZTRACE_DEPTH]; + zone_t zone = NULL; + uintptr_t * array; + uintptr_t * next; + uintptr_t element, bt; + uint32_t idx, count, found; + uint32_t btidx, btcount, nobtcount, btfound; + uint32_t elemSize; + uint64_t maxElems; kern_return_t kr; + bitmap_t *bits; - simple_lock(&all_zones_lock); - max_zones = num_zones; - simple_unlock(&all_zones_lock); + zone_index_foreach(i) { + if (!strncmp(zoneName, zone_array[i].z_name, nameLen)) { + zone = &zone_array[i]; + break; + } + } + if (zone == NULL) { + return KERN_INVALID_NAME; + } - for (idx = 0; idx < max_zones; idx++) - { - if (!strncmp(zoneName, zone_array[idx].zone_name, nameLen)) break; - } - if (idx >= max_zones) return (KERN_INVALID_NAME); - zone = &zone_array[idx]; - - elemSize = (uint32_t) zone->elem_size; - maxElems = ptoa(zone->page_count) / elemSize; - - if ((zone->alloc_size % elemSize) - && !leak_scan_debug_flag) return (KERN_INVALID_CAPABILITY); - - kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array, - maxElems * sizeof(uintptr_t), VM_KERN_MEMORY_DIAG); - if (KERN_SUCCESS != kr) return (kr); - - lock_zone(zone); - - next = array; - next = zone_copy_all_allocations_inqueue(zone, &zone->pages.any_free_foreign, next); - next = zone_copy_all_allocations_inqueue(zone, &zone->pages.intermediate, next); - next = zone_copy_all_allocations_inqueue(zone, &zone->pages.all_used, next); - count = (uint32_t)(next - array); - - unlock_zone(zone); - - zone_leaks_scan(array, count, (uint32_t)zone->elem_size, &found); - assert(found <= count); - - for (idx = 0; idx < count; idx++) - { - element = array[idx]; - if (kInstanceFlagReferenced & element) continue; - element = INSTANCE_PUT(element) & ~kInstanceFlags; - } - - if (zone->zlog_btlog && !corruption_debug_flag) - { - // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found - btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon); - } - - for (nobtcount = idx = 0; idx < count; idx++) - { - element = array[idx]; - if (!element) continue; - if (kInstanceFlagReferenced & element) continue; - element = INSTANCE_PUT(element) & ~kInstanceFlags; - - // see if we can find any backtrace left in the element - btcount = (typeof(btcount)) (zone->elem_size / sizeof(uintptr_t)); - if (btcount >= MAX_ZTRACE_DEPTH) btcount = MAX_ZTRACE_DEPTH - 1; - for (btfound = btidx = 0; btidx < btcount; btidx++) - { - bt = ((uintptr_t *)element)[btcount - 1 - btidx]; - if (!VM_KERNEL_IS_SLID(bt)) break; - zbt[btfound++] = bt; - } - if (btfound) (*proc)(refCon, 1, elemSize, &zbt[0], btfound); - else nobtcount++; - } - if (nobtcount) - { - // fake backtrace when we found nothing - zbt[0] = (uintptr_t) &zalloc; - (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1); - } - - kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t)); - - return (KERN_SUCCESS); -} + elemSize = zone_elem_size(zone); + maxElems = (zone->countavail + 1) & ~1ul; -boolean_t -kdp_is_in_zone(void *addr, const char *zone_name) -{ - zone_t z; - return (zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name)); + if ((ptoa(zone->percpu ? 1 : zone->alloc_pages) % elemSize) && + !zone_leaks_scan_enable) { + return KERN_INVALID_CAPABILITY; + } + + kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array, + maxElems * sizeof(uintptr_t) + BITMAP_LEN(ZONE_CHUNK_MAXELEMENTS), + VM_KERN_MEMORY_DIAG); + if (KERN_SUCCESS != kr) { + return kr; + } + + /* maxElems is a 2-multiple so we're always aligned */ + bits = CAST_DOWN_EXPLICIT(bitmap_t *, array + maxElems); + + lock_zone(zone); + + next = array; + next = zone_copy_allocations(zone, next, bits, + zone->pages_any_free_foreign, ZONE_ADDR_FOREIGN); + next = zone_copy_allocations(zone, next, bits, + zone->pages_all_used_foreign, ZONE_ADDR_FOREIGN); + next = zone_copy_allocations(zone, next, bits, + zone->pages_intermediate, ZONE_ADDR_NATIVE); + next = zone_copy_allocations(zone, next, bits, + zone->pages_all_used, ZONE_ADDR_NATIVE); + count = (uint32_t)(next - array); + + unlock_zone(zone); + + zone_leaks_scan(array, count, zone_elem_size(zone), &found); + assert(found <= count); + + for (idx = 0; idx < count; idx++) { + element = array[idx]; + if (kInstanceFlagReferenced & element) { + continue; + } + element = INSTANCE_PUT(element) & ~kInstanceFlags; + } + +#if ZONE_ENABLE_LOGGING + if (zone->zlog_btlog && !corruption_debug_flag) { + // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found + btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon); + } +#endif /* ZONE_ENABLE_LOGGING */ + + for (nobtcount = idx = 0; idx < count; idx++) { + element = array[idx]; + if (!element) { + continue; + } + if (kInstanceFlagReferenced & element) { + continue; + } + element = INSTANCE_PUT(element) & ~kInstanceFlags; + + // see if we can find any backtrace left in the element + btcount = (typeof(btcount))(zone_elem_size(zone) / sizeof(uintptr_t)); + if (btcount >= MAX_ZTRACE_DEPTH) { + btcount = MAX_ZTRACE_DEPTH - 1; + } + for (btfound = btidx = 0; btidx < btcount; btidx++) { + bt = ((uintptr_t *)element)[btcount - 1 - btidx]; + if (!VM_KERNEL_IS_SLID(bt)) { + break; + } + zbt[btfound++] = bt; + } + if (btfound) { + (*proc)(refCon, 1, elemSize, &zbt[0], btfound); + } else { + nobtcount++; + } + } + if (nobtcount) { + // fake backtrace when we found nothing + zbt[0] = (uintptr_t) &zalloc; + (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1); + } + + kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t)); + + return KERN_SUCCESS; } boolean_t run_zone_test(void) { - int i = 0, max_iter = 5; + unsigned int i = 0, max_iter = 5; void * test_ptr; zone_t test_zone; - simple_lock(&zone_test_lock); + simple_lock(&zone_test_lock, &zone_locks_grp); if (!zone_test_running) { zone_test_running = TRUE; } else { @@ -4368,9 +6332,9 @@ run_zone_test(void) } #if KASAN_ZALLOC - if (test_zone_ptr == NULL && zone_free_count(test_zone) != 0) { + if (test_zone_ptr == NULL && test_zone->countfree != 0) { #else - if (zone_free_count(test_zone) != 0) { + if (test_zone->countfree != 0) { #endif printf("run_zone_test: free count is not zero\n"); return FALSE; @@ -4398,13 +6362,147 @@ run_zone_test(void) printf("run_zone_test: Iteration %d successful\n", i); } while (i < max_iter); + /* test Z_VA_SEQUESTER */ + if (zsecurity_options & ZSECURITY_OPTIONS_SEQUESTER) { + int idx, num_allocs = 8; + vm_size_t elem_size = 2 * PAGE_SIZE / num_allocs; + void *allocs[num_allocs]; + vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_count, relaxed); + vm_size_t zone_map_size = zone_range_size(&zone_info.zi_map_range); + + test_zone = zone_create("test_zone_sysctl", elem_size, + ZC_DESTRUCTIBLE | ZC_SEQUESTER); + if (test_zone == NULL) { + printf("run_zone_test: zinit() failed\n"); + return FALSE; + } + + for (idx = 0; idx < num_allocs; idx++) { + allocs[idx] = zalloc(test_zone); + assert(NULL != allocs[idx]); + printf("alloc[%d] %p\n", idx, allocs[idx]); + } + for (idx = 0; idx < num_allocs; idx++) { + zfree(test_zone, allocs[idx]); + } + assert(!zone_pva_is_null(test_zone->pages_all_free)); + + printf("vm_page_wire_count %d, vm_page_free_count %d, p to v %qd%%\n", + vm_page_wire_count, vm_page_free_count, + (100ULL * ptoa_64(phys_pages)) / zone_map_size); + zone_gc(FALSE); + printf("vm_page_wire_count %d, vm_page_free_count %d, p to v %qd%%\n", + vm_page_wire_count, vm_page_free_count, + (100ULL * ptoa_64(phys_pages)) / zone_map_size); + unsigned int allva = 0; + zone_index_foreach(zidx) { + zone_t z = &zone_array[zidx]; + lock_zone(z); + allva += z->page_count; + if (!z->sequester_page_count) { + unlock_zone(z); + continue; + } + unsigned count = 0; + uint64_t size; + zone_pva_t pg = z->pages_sequester; + struct zone_page_metadata *page_meta; + while (pg.packed_address) { + page_meta = zone_pva_to_meta(pg, ZONE_ADDR_NATIVE); + count += z->alloc_pages; + pg = page_meta->zm_page_next; + } + assert(count == z->sequester_page_count); + size = zone_size_wired(z); + if (!size) { + size = 1; + } + printf("%s%s: seq %d, res %d, %qd %%\n", + zone_heap_name(z), z->z_name, z->sequester_page_count, + z->page_count, zone_size_allocated(z) * 100ULL / size); + unlock_zone(z); + } + + printf("total va: %d\n", allva); + + assert(zone_pva_is_null(test_zone->pages_all_free)); + assert(!zone_pva_is_null(test_zone->pages_sequester)); + assert(2 == test_zone->sequester_page_count); + for (idx = 0; idx < num_allocs; idx++) { + assert(0 == pmap_find_phys(kernel_pmap, (addr64_t)(uintptr_t) allocs[idx])); + } + for (idx = 0; idx < num_allocs; idx++) { + allocs[idx] = zalloc(test_zone); + assert(allocs[idx]); + printf("alloc[%d] %p\n", idx, allocs[idx]); + } + assert(zone_pva_is_null(test_zone->pages_sequester)); + assert(0 == test_zone->sequester_page_count); + for (idx = 0; idx < num_allocs; idx++) { + zfree(test_zone, allocs[idx]); + } + zdestroy(test_zone); + } else { + printf("run_zone_test: skipping sequester test (not enabled)\n"); + } + printf("run_zone_test: Test passed\n"); - simple_lock(&zone_test_lock); + simple_lock(&zone_test_lock, &zone_locks_grp); zone_test_running = FALSE; simple_unlock(&zone_test_lock); return TRUE; } +/* + * Routines to test that zone garbage collection and zone replenish threads + * running at the same time don't cause problems. + */ + +void +zone_gc_replenish_test(void) +{ + zone_gc(FALSE); +} + + +void +zone_alloc_replenish_test(void) +{ + zone_t z = NULL; + struct data { struct data *next; } *node, *list = NULL; + + /* + * Find a zone that has a replenish thread + */ + zone_index_foreach(i) { + z = &zone_array[i]; + if (z->prio_refill_count && + zone_elem_size(z) >= sizeof(struct data)) { + z = &zone_array[i]; + break; + } + } + if (z == NULL) { + printf("Couldn't find a replenish zone\n"); + return; + } + + for (uint32_t i = 0; i < 2000; ++i) { /* something big enough to go past replenishment */ + node = zalloc(z); + node->next = list; + list = node; + } + + /* + * release the memory we allocated + */ + while (list != NULL) { + node = list; + list = list->next; + zfree(z, node); + } +} + #endif /* DEBUG || DEVELOPMENT */