X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/593a1d5fd87cdf5b46dd5fcb84467b432cea0f91..f427ee49d309d8fc33ebf3042c3a775f2f530ded:/osfmk/vm/vm_resident.c diff --git a/osfmk/vm/vm_resident.c b/osfmk/vm/vm_resident.c index 7e7520ce1..45430fce9 100644 --- a/osfmk/vm/vm_resident.c +++ b/osfmk/vm/vm_resident.c @@ -1,8 +1,8 @@ /* - * Copyright (c) 2000-2007 Apple Inc. All rights reserved. + * Copyright (c) 2000-2020 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ - * + * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in @@ -11,10 +11,10 @@ * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. - * + * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. - * + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -22,34 +22,34 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * + * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ */ -/* +/* * Mach Operating System * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University * All Rights Reserved. - * + * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. - * + * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. - * + * * Carnegie Mellon requests users of this software to return to - * + * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 - * + * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ @@ -64,42 +64,118 @@ #include #include +#include #include #include #include #include #include +#include #include +#include #include #include -#include -#include +#include +#include +#include #include #include #include #include #include -#include /* kernel_memory_allocate() */ +#include /* kernel_memory_allocate() */ #include -#include +#include #include -#include /* (BRINGUP) */ -#include /* (BRINGUP) */ +#include +#include #include #include #include +#include +#if defined (__x86_64__) +#include +#endif -#if CONFIG_EMBEDDED -#include +#if CONFIG_PHANTOM_CACHE +#include +#endif + +#if HIBERNATION +#include +#include +#endif /* HIBERNATION */ + +#include + +#if defined(HAS_APPLE_PAC) +#include #endif +#if defined(__arm64__) +#include +#endif /* defined(__arm64__) */ -int speculative_age_index = 0; -int speculative_steal_index = 0; +#if MACH_ASSERT + +#define ASSERT_PMAP_FREE(mem) pmap_assert_free(VM_PAGE_GET_PHYS_PAGE(mem)) + +#else /* MACH_ASSERT */ + +#define ASSERT_PMAP_FREE(mem) /* nothing */ + +#endif /* MACH_ASSERT */ + +extern boolean_t vm_pageout_running; +extern thread_t vm_pageout_scan_thread; +extern boolean_t vps_dynamic_priority_enabled; + +char vm_page_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; +char vm_page_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; +char vm_page_non_speculative_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; +char vm_page_active_or_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; + +#if CONFIG_SECLUDED_MEMORY +struct vm_page_secluded_data vm_page_secluded; +#endif /* CONFIG_SECLUDED_MEMORY */ +#if DEVELOPMENT || DEBUG +extern struct memory_object_pager_ops shared_region_pager_ops; +unsigned int shared_region_pagers_resident_count = 0; +unsigned int shared_region_pagers_resident_peak = 0; +#endif /* DEVELOPMENT || DEBUG */ + +int PERCPU_DATA(start_color); +vm_page_t PERCPU_DATA(free_pages); +boolean_t hibernate_cleaning_in_progress = FALSE; +boolean_t vm_page_free_verify = TRUE; + +uint32_t vm_lopage_free_count = 0; +uint32_t vm_lopage_free_limit = 0; +uint32_t vm_lopage_lowater = 0; +boolean_t vm_lopage_refill = FALSE; +boolean_t vm_lopage_needed = FALSE; + +lck_mtx_ext_t vm_page_queue_lock_ext; +lck_mtx_ext_t vm_page_queue_free_lock_ext; +lck_mtx_ext_t vm_purgeable_queue_lock_ext; + +int speculative_age_index = 0; +int speculative_steal_index = 0; struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; +boolean_t hibernation_vmqueues_inspection = FALSE; /* Tracks if the hibernation code is looking at the VM queues. + * Updated and checked behind the vm_page_queues_lock. */ + +static void vm_page_free_prepare(vm_page_t page); +static vm_page_t vm_page_grab_fictitious_common(ppnum_t phys_addr); + +static void vm_tag_init(void); + +/* for debugging purposes */ +SECURITY_READ_ONLY_EARLY(vm_packing_params_t) vm_page_packing_params = + VM_PACKING_PARAMS(VM_PAGE_PACKED_PTR); /* * Associated with page of user-allocatable memory is a @@ -114,7 +190,7 @@ struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AG vm_offset_t virtual_space_start; vm_offset_t virtual_space_end; -int vm_page_pages; +uint32_t vm_page_pages; /* * The vm_page_lookup() routine, which provides for fast @@ -125,22 +201,52 @@ int vm_page_pages; * or VP, table.] */ typedef struct { - vm_page_t pages; -#if MACH_PAGE_HASH_STATS - int cur_count; /* current count */ - int hi_count; /* high water mark */ + vm_page_packed_t page_list; +#if MACH_PAGE_HASH_STATS + int cur_count; /* current count */ + int hi_count; /* high water mark */ #endif /* MACH_PAGE_HASH_STATS */ } vm_page_bucket_t; -vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ -unsigned int vm_page_bucket_count = 0; /* How big is array? */ -unsigned int vm_page_hash_mask; /* Mask for hash function */ -unsigned int vm_page_hash_shift; /* Shift for hash function */ -uint32_t vm_page_bucket_hash; /* Basic bucket hash */ -decl_simple_lock_data(,vm_page_bucket_lock) +#define BUCKETS_PER_LOCK 16 -#if MACH_PAGE_HASH_STATS +vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ +unsigned int vm_page_bucket_count = 0; /* How big is array? */ +unsigned int vm_page_hash_mask; /* Mask for hash function */ +unsigned int vm_page_hash_shift; /* Shift for hash function */ +uint32_t vm_page_bucket_hash; /* Basic bucket hash */ +unsigned int vm_page_bucket_lock_count = 0; /* How big is array of locks? */ + +#ifndef VM_TAG_ACTIVE_UPDATE +#error VM_TAG_ACTIVE_UPDATE +#endif +#ifndef VM_MAX_TAG_ZONES +#error VM_MAX_TAG_ZONES +#endif + +boolean_t vm_tag_active_update = VM_TAG_ACTIVE_UPDATE; +lck_spin_t *vm_page_bucket_locks; + +vm_allocation_site_t vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC + 1]; +vm_allocation_site_t * vm_allocation_sites[VM_MAX_TAG_VALUE]; +#if VM_MAX_TAG_ZONES +vm_allocation_zone_total_t ** vm_allocation_zone_totals; +#endif /* VM_MAX_TAG_ZONES */ + +vm_tag_t vm_allocation_tag_highest; + +#if VM_PAGE_BUCKETS_CHECK +boolean_t vm_page_buckets_check_ready = FALSE; +#if VM_PAGE_FAKE_BUCKETS +vm_page_bucket_t *vm_page_fake_buckets; /* decoy buckets */ +vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end; +#endif /* VM_PAGE_FAKE_BUCKETS */ +#endif /* VM_PAGE_BUCKETS_CHECK */ + + + +#if MACH_PAGE_HASH_STATS /* This routine is only for debug. It is intended to be called by * hand by a developer using a kernel debugger. This routine prints * out vm_page_hash table statistics to the kernel debug console. @@ -148,29 +254,30 @@ decl_simple_lock_data(,vm_page_bucket_lock) void hash_debug(void) { - int i; - int numbuckets = 0; - int highsum = 0; - int maxdepth = 0; + int i; + int numbuckets = 0; + int highsum = 0; + int maxdepth = 0; for (i = 0; i < vm_page_bucket_count; i++) { if (vm_page_buckets[i].hi_count) { numbuckets++; highsum += vm_page_buckets[i].hi_count; - if (vm_page_buckets[i].hi_count > maxdepth) + if (vm_page_buckets[i].hi_count > maxdepth) { maxdepth = vm_page_buckets[i].hi_count; + } } } printf("Total number of buckets: %d\n", vm_page_bucket_count); printf("Number used buckets: %d = %d%%\n", - numbuckets, 100*numbuckets/vm_page_bucket_count); + numbuckets, 100 * numbuckets / vm_page_bucket_count); printf("Number unused buckets: %d = %d%%\n", - vm_page_bucket_count - numbuckets, - 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); + vm_page_bucket_count - numbuckets, + 100 * (vm_page_bucket_count - numbuckets) / vm_page_bucket_count); printf("Sum of bucket max depth: %d\n", highsum); printf("Average bucket depth: %d.%2d\n", - highsum/vm_page_bucket_count, - highsum%vm_page_bucket_count); + highsum / vm_page_bucket_count, + highsum % vm_page_bucket_count); printf("Maximum bucket depth: %d\n", maxdepth); } #endif /* MACH_PAGE_HASH_STATS */ @@ -186,39 +293,46 @@ hash_debug(void) * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT * constants. */ -vm_size_t page_size = PAGE_SIZE; -vm_size_t page_mask = PAGE_MASK; -int page_shift = PAGE_SHIFT; +#if defined(__arm__) || defined(__arm64__) +vm_size_t page_size; +vm_size_t page_mask; +int page_shift; +#else +vm_size_t page_size = PAGE_SIZE; +vm_size_t page_mask = PAGE_MASK; +int page_shift = PAGE_SHIFT; +#endif -/* - * Resident page structures are initialized from - * a template (see vm_page_alloc). - * - * When adding a new field to the virtual memory - * object structure, be sure to add initialization - * (see vm_page_bootstrap). - */ -struct vm_page vm_page_template; +SECURITY_READ_ONLY_LATE(vm_page_t) vm_pages = VM_PAGE_NULL; +SECURITY_READ_ONLY_LATE(vm_page_t) vm_page_array_beginning_addr; +vm_page_t vm_page_array_ending_addr; -vm_page_t vm_pages = VM_PAGE_NULL; -unsigned int vm_pages_count = 0; +unsigned int vm_pages_count = 0; /* * Resident pages that represent real memory * are allocated from a set of free lists, * one per color. */ -unsigned int vm_colors; -unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ -unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ -queue_head_t vm_page_queue_free[MAX_COLORS]; -vm_page_t vm_page_queue_fictitious; -unsigned int vm_page_free_wanted; -unsigned int vm_page_free_wanted_privileged; -unsigned int vm_page_free_count; -unsigned int vm_page_fictitious_count; +unsigned int vm_colors; +unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ +unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ +unsigned int vm_free_magazine_refill_limit = 0; + + +struct vm_page_queue_free_head { + vm_page_queue_head_t qhead; +} VM_PAGE_PACKED_ALIGNED; + +struct vm_page_queue_free_head vm_page_queue_free[MAX_COLORS]; -unsigned int vm_page_free_count_minimum; /* debugging */ + +unsigned int vm_page_free_wanted; +unsigned int vm_page_free_wanted_privileged; +#if CONFIG_SECLUDED_MEMORY +unsigned int vm_page_free_wanted_secluded; +#endif /* CONFIG_SECLUDED_MEMORY */ +unsigned int vm_page_free_count; /* * Occasionally, the virtual memory system uses @@ -229,62 +343,128 @@ unsigned int vm_page_free_count_minimum; /* debugging */ * These page structures are allocated the way * most other kernel structures are. */ -zone_t vm_page_zone; -decl_mutex_data(,vm_page_alloc_lock) -unsigned int io_throttle_zero_fill; - +SECURITY_READ_ONLY_LATE(zone_t) vm_page_zone; +vm_locks_array_t vm_page_locks; + +LCK_ATTR_DECLARE(vm_page_lck_attr, 0, 0); +LCK_GRP_DECLARE(vm_page_lck_grp_free, "vm_page_free"); +LCK_GRP_DECLARE(vm_page_lck_grp_queue, "vm_page_queue"); +LCK_GRP_DECLARE(vm_page_lck_grp_local, "vm_page_queue_local"); +LCK_GRP_DECLARE(vm_page_lck_grp_purge, "vm_page_purge"); +LCK_GRP_DECLARE(vm_page_lck_grp_alloc, "vm_page_alloc"); +LCK_GRP_DECLARE(vm_page_lck_grp_bucket, "vm_page_bucket"); +LCK_MTX_EARLY_DECLARE_ATTR(vm_page_alloc_lock, &vm_page_lck_grp_alloc, &vm_page_lck_attr); +LCK_SPIN_DECLARE_ATTR(vm_objects_wired_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); +LCK_SPIN_DECLARE_ATTR(vm_allocation_sites_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); + +unsigned int vm_page_local_q_soft_limit = 250; +unsigned int vm_page_local_q_hard_limit = 500; +struct vpl *__zpercpu vm_page_local_q; + +/* N.B. Guard and fictitious pages must not + * be assigned a zero phys_page value. + */ /* * Fictitious pages don't have a physical address, * but we must initialize phys_page to something. * For debugging, this should be a strange value * that the pmap module can recognize in assertions. */ -vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1; +const ppnum_t vm_page_fictitious_addr = (ppnum_t) -1; /* * Guard pages are not accessible so they don't - * need a physical address, but we need to enter + * need a physical address, but we need to enter * one in the pmap. * Let's make it recognizable and make sure that * we don't use a real physical page with that * physical address. */ -vm_offset_t vm_page_guard_addr = (vm_offset_t) -2; +const ppnum_t vm_page_guard_addr = (ppnum_t) -2; /* * Resident page structures are also chained on * queues that are used by the page replacement * system (pageout daemon). These queues are * defined here, but are shared by the pageout - * module. The inactive queue is broken into - * inactive and zf for convenience as the - * pageout daemon often assignes a higher - * affinity to zf pages + * module. The inactive queue is broken into + * file backed and anonymous for convenience as the + * pageout daemon often assignes a higher + * importance to anonymous pages (less likely to pick) */ -queue_head_t vm_page_queue_active; -queue_head_t vm_page_queue_inactive; -queue_head_t vm_page_queue_zf; /* inactive memory queue for zero fill */ +vm_page_queue_head_t vm_page_queue_active VM_PAGE_PACKED_ALIGNED; +vm_page_queue_head_t vm_page_queue_inactive VM_PAGE_PACKED_ALIGNED; +#if CONFIG_SECLUDED_MEMORY +vm_page_queue_head_t vm_page_queue_secluded VM_PAGE_PACKED_ALIGNED; +#endif /* CONFIG_SECLUDED_MEMORY */ +vm_page_queue_head_t vm_page_queue_anonymous VM_PAGE_PACKED_ALIGNED; /* inactive memory queue for anonymous pages */ +vm_page_queue_head_t vm_page_queue_throttled VM_PAGE_PACKED_ALIGNED; + +queue_head_t vm_objects_wired; + +void vm_update_darkwake_mode(boolean_t); + +#if CONFIG_BACKGROUND_QUEUE +vm_page_queue_head_t vm_page_queue_background VM_PAGE_PACKED_ALIGNED; +uint32_t vm_page_background_target; +uint32_t vm_page_background_target_snapshot; +uint32_t vm_page_background_count; +uint64_t vm_page_background_promoted_count; + +uint32_t vm_page_background_internal_count; +uint32_t vm_page_background_external_count; + +uint32_t vm_page_background_mode; +uint32_t vm_page_background_exclude_external; +#endif -unsigned int vm_page_active_count; -unsigned int vm_page_inactive_count; -unsigned int vm_page_throttled_count; -unsigned int vm_page_speculative_count; -unsigned int vm_page_wire_count; -unsigned int vm_page_gobble_count = 0; -unsigned int vm_page_wire_count_warning = 0; -unsigned int vm_page_gobble_count_warning = 0; +unsigned int vm_page_active_count; +unsigned int vm_page_inactive_count; +unsigned int vm_page_kernelcache_count; +#if CONFIG_SECLUDED_MEMORY +unsigned int vm_page_secluded_count; +unsigned int vm_page_secluded_count_free; +unsigned int vm_page_secluded_count_inuse; +unsigned int vm_page_secluded_count_over_target; +#endif /* CONFIG_SECLUDED_MEMORY */ +unsigned int vm_page_anonymous_count; +unsigned int vm_page_throttled_count; +unsigned int vm_page_speculative_count; + +unsigned int vm_page_wire_count; +unsigned int vm_page_wire_count_on_boot = 0; +unsigned int vm_page_stolen_count = 0; +unsigned int vm_page_wire_count_initial; +unsigned int vm_page_gobble_count = 0; +unsigned int vm_page_kern_lpage_count = 0; + +uint64_t booter_size; /* external so it can be found in core dumps */ + +#define VM_PAGE_WIRE_COUNT_WARNING 0 +#define VM_PAGE_GOBBLE_COUNT_WARNING 0 + +unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ +unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */ +uint64_t vm_page_purged_count = 0; /* total count of purged pages */ + +unsigned int vm_page_xpmapped_external_count = 0; +unsigned int vm_page_external_count = 0; +unsigned int vm_page_internal_count = 0; +unsigned int vm_page_pageable_external_count = 0; +unsigned int vm_page_pageable_internal_count = 0; + +#if DEVELOPMENT || DEBUG +unsigned int vm_page_speculative_recreated = 0; +unsigned int vm_page_speculative_created = 0; +unsigned int vm_page_speculative_used = 0; +#endif -unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ -uint64_t vm_page_purged_count = 0; /* total count of purged pages */ +vm_page_queue_head_t vm_page_queue_cleaned VM_PAGE_PACKED_ALIGNED; -unsigned int vm_page_speculative_recreated = 0; -unsigned int vm_page_speculative_created = 0; -unsigned int vm_page_speculative_used = 0; +unsigned int vm_page_cleaned_count = 0; -ppnum_t vm_lopage_poolstart = 0; -ppnum_t vm_lopage_poolend = 0; -int vm_lopage_poolsize = 0; -uint64_t max_valid_dma_address = 0xffffffffffffffffULL; +uint64_t max_valid_dma_address = 0xffffffffffffffffULL; +ppnum_t max_valid_low_ppnum = PPNUM_MAX; /* @@ -293,12 +473,16 @@ uint64_t max_valid_dma_address = 0xffffffffffffffffULL; * (done here in vm_page_alloc) can trigger the * pageout daemon. */ -unsigned int vm_page_free_target = 0; -unsigned int vm_page_free_min = 0; -unsigned int vm_page_inactive_target = 0; -unsigned int vm_page_inactive_min = 0; -unsigned int vm_page_free_reserved = 0; -unsigned int vm_page_zfill_throttle_count = 0; +unsigned int vm_page_free_target = 0; +unsigned int vm_page_free_min = 0; +unsigned int vm_page_throttle_limit = 0; +unsigned int vm_page_inactive_target = 0; +#if CONFIG_SECLUDED_MEMORY +unsigned int vm_page_secluded_target = 0; +#endif /* CONFIG_SECLUDED_MEMORY */ +unsigned int vm_page_anonymous_min = 0; +unsigned int vm_page_free_reserved = 0; + /* * The VM system has a couple of heuristics for deciding @@ -310,6 +494,8 @@ unsigned int vm_page_zfill_throttle_count = 0; boolean_t vm_page_deactivate_hint = TRUE; +struct vm_page_stats_reusable vm_page_stats_reusable; + /* * vm_set_page_size: * @@ -322,41 +508,392 @@ boolean_t vm_page_deactivate_hint = TRUE; void vm_set_page_size(void) { - page_mask = page_size - 1; + page_size = PAGE_SIZE; + page_mask = PAGE_MASK; + page_shift = PAGE_SHIFT; - if ((page_mask & page_size) != 0) + if ((page_mask & page_size) != 0) { panic("vm_set_page_size: page size not a power of two"); + } - for (page_shift = 0; ; page_shift++) - if ((1U << page_shift) == page_size) + for (page_shift = 0;; page_shift++) { + if ((1U << page_shift) == page_size) { break; + } + } +} + +#if defined (__x86_64__) + +#define MAX_CLUMP_SIZE 16 +#define DEFAULT_CLUMP_SIZE 4 + +unsigned int vm_clump_size, vm_clump_mask, vm_clump_shift, vm_clump_promote_threshold; + +#if DEVELOPMENT || DEBUG +unsigned long vm_clump_stats[MAX_CLUMP_SIZE + 1]; +unsigned long vm_clump_allocs, vm_clump_inserts, vm_clump_inrange, vm_clump_promotes; + +static inline void +vm_clump_update_stats(unsigned int c) +{ + assert(c <= vm_clump_size); + if (c > 0 && c <= vm_clump_size) { + vm_clump_stats[c] += c; + } + vm_clump_allocs += c; +} +#endif /* if DEVELOPMENT || DEBUG */ + +/* Called once to setup the VM clump knobs */ +static void +vm_page_setup_clump( void ) +{ + unsigned int override, n; + + vm_clump_size = DEFAULT_CLUMP_SIZE; + if (PE_parse_boot_argn("clump_size", &override, sizeof(override))) { + vm_clump_size = override; + } + + if (vm_clump_size > MAX_CLUMP_SIZE) { + panic("vm_page_setup_clump:: clump_size is too large!"); + } + if (vm_clump_size < 1) { + panic("vm_page_setup_clump:: clump_size must be >= 1"); + } + if ((vm_clump_size & (vm_clump_size - 1)) != 0) { + panic("vm_page_setup_clump:: clump_size must be a power of 2"); + } + + vm_clump_promote_threshold = vm_clump_size; + vm_clump_mask = vm_clump_size - 1; + for (vm_clump_shift = 0, n = vm_clump_size; n > 1; n >>= 1, vm_clump_shift++) { + ; + } + +#if DEVELOPMENT || DEBUG + bzero(vm_clump_stats, sizeof(vm_clump_stats)); + vm_clump_allocs = vm_clump_inserts = vm_clump_inrange = vm_clump_promotes = 0; +#endif /* if DEVELOPMENT || DEBUG */ } +#endif /* #if defined (__x86_64__) */ + +#define COLOR_GROUPS_TO_STEAL 4 /* Called once during statup, once the cache geometry is known. */ static void vm_page_set_colors( void ) { - unsigned int n, override; - - if ( PE_parse_boot_argn("colors", &override, sizeof (override)) ) /* colors specified as a boot-arg? */ - n = override; - else if ( vm_cache_geometry_colors ) /* do we know what the cache geometry is? */ - n = vm_cache_geometry_colors; - else n = DEFAULT_COLORS; /* use default if all else fails */ + unsigned int n, override; - if ( n == 0 ) +#if defined (__x86_64__) + /* adjust #colors because we need to color outside the clump boundary */ + vm_cache_geometry_colors >>= vm_clump_shift; +#endif + if (PE_parse_boot_argn("colors", &override, sizeof(override))) { /* colors specified as a boot-arg? */ + n = override; + } else if (vm_cache_geometry_colors) { /* do we know what the cache geometry is? */ + n = vm_cache_geometry_colors; + } else { + n = DEFAULT_COLORS; /* use default if all else fails */ + } + if (n == 0) { n = 1; - if ( n > MAX_COLORS ) + } + if (n > MAX_COLORS) { n = MAX_COLORS; - + } + /* the count must be a power of 2 */ - if ( ( n & (n - 1)) !=0 ) - panic("vm_page_set_colors"); - + if ((n & (n - 1)) != 0) { + n = DEFAULT_COLORS; /* use default if all else fails */ + } vm_colors = n; vm_color_mask = n - 1; + + vm_free_magazine_refill_limit = vm_colors * COLOR_GROUPS_TO_STEAL; + +#if defined (__x86_64__) + /* adjust for reduction in colors due to clumping and multiple cores */ + if (real_ncpus) { + vm_free_magazine_refill_limit *= (vm_clump_size * real_ncpus); + } +#endif +} + +/* + * During single threaded early boot we don't initialize all pages. + * This avoids some delay during boot. They'll be initialized and + * added to the free list as needed or after we are multithreaded by + * what becomes the pageout thread. + */ +static boolean_t fill = FALSE; +static unsigned int fillval; +uint_t vm_delayed_count = 0; /* when non-zero, indicates we may have more pages to init */ +ppnum_t delay_above_pnum = PPNUM_MAX; + +/* + * For x86 first 8 Gig initializes quickly and gives us lots of lowmem + mem above to start off with. + * If ARM ever uses delayed page initialization, this value may need to be quite different. + */ +#define DEFAULT_DELAY_ABOVE_PHYS_GB (8) + +/* + * When we have to dip into more delayed pages due to low memory, free up + * a large chunk to get things back to normal. This avoids contention on the + * delayed code allocating page by page. + */ +#define VM_DELAY_PAGE_CHUNK ((1024 * 1024 * 1024) / PAGE_SIZE) + +/* + * Get and initialize the next delayed page. + */ +static vm_page_t +vm_get_delayed_page(int grab_options) +{ + vm_page_t p; + ppnum_t pnum; + + /* + * Get a new page if we have one. + */ + lck_mtx_lock(&vm_page_queue_free_lock); + if (vm_delayed_count == 0) { + lck_mtx_unlock(&vm_page_queue_free_lock); + return NULL; + } + if (!pmap_next_page(&pnum)) { + vm_delayed_count = 0; + lck_mtx_unlock(&vm_page_queue_free_lock); + return NULL; + } + + assert(vm_delayed_count > 0); + --vm_delayed_count; + +#if defined(__x86_64__) + /* x86 cluster code requires increasing phys_page in vm_pages[] */ + if (vm_pages_count > 0) { + assert(pnum > vm_pages[vm_pages_count - 1].vmp_phys_page); + } +#endif + p = &vm_pages[vm_pages_count]; + assert(p < vm_page_array_ending_addr); + vm_page_init(p, pnum, FALSE); + ++vm_pages_count; + ++vm_page_pages; + lck_mtx_unlock(&vm_page_queue_free_lock); + + /* + * These pages were initially counted as wired, undo that now. + */ + if (grab_options & VM_PAGE_GRAB_Q_LOCK_HELD) { + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + } else { + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); + vm_page_lockspin_queues(); + } + --vm_page_wire_count; + --vm_page_wire_count_initial; + if (vm_page_wire_count_on_boot != 0) { + --vm_page_wire_count_on_boot; + } + if (!(grab_options & VM_PAGE_GRAB_Q_LOCK_HELD)) { + vm_page_unlock_queues(); + } + + + if (fill) { + fillPage(pnum, fillval); + } + return p; +} + +static void vm_page_module_init_delayed(void); + +/* + * Free all remaining delayed pages to the free lists. + */ +void +vm_free_delayed_pages(void) +{ + vm_page_t p; + vm_page_t list = NULL; + uint_t cnt = 0; + vm_offset_t start_free_va; + int64_t free_size; + + while ((p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE)) != NULL) { + if (vm_himemory_mode) { + vm_page_release(p, FALSE); + } else { + p->vmp_snext = list; + list = p; + } + ++cnt; + } + + /* + * Free the pages in reverse order if not himemory mode. + * Hence the low memory pages will be first on free lists. (LIFO) + */ + while (list != NULL) { + p = list; + list = p->vmp_snext; + p->vmp_snext = NULL; + vm_page_release(p, FALSE); + } +#if DEVELOPMENT || DEBUG + kprintf("vm_free_delayed_pages: initialized %d free pages\n", cnt); +#endif + + /* + * Free up any unused full pages at the end of the vm_pages[] array + */ + start_free_va = round_page((vm_offset_t)&vm_pages[vm_pages_count]); + +#if defined(__x86_64__) + /* + * Since x86 might have used large pages for vm_pages[], we can't + * free starting in the middle of a partially used large page. + */ + if (pmap_query_pagesize(kernel_pmap, start_free_va) == I386_LPGBYTES) { + start_free_va = ((start_free_va + I386_LPGMASK) & ~I386_LPGMASK); + } +#endif + if (start_free_va < (vm_offset_t)vm_page_array_ending_addr) { + free_size = trunc_page((vm_offset_t)vm_page_array_ending_addr - start_free_va); + if (free_size > 0) { + ml_static_mfree(start_free_va, (vm_offset_t)free_size); + vm_page_array_ending_addr = (void *)start_free_va; + + /* + * Note there's no locking here, as only this thread will ever change this value. + * The reader, vm_page_diagnose, doesn't grab any locks for the counts it looks at. + */ + vm_page_stolen_count -= (free_size >> PAGE_SHIFT); + +#if DEVELOPMENT || DEBUG + kprintf("Freeing final unused %ld bytes from vm_pages[] at 0x%lx\n", + (long)free_size, (long)start_free_va); +#endif + } + } + + + /* + * now we can create the VM page array zone + */ + vm_page_module_init_delayed(); +} + +/* + * Try and free up enough delayed pages to match a contig memory allocation. + */ +static void +vm_free_delayed_pages_contig( + uint_t npages, + ppnum_t max_pnum, + ppnum_t pnum_mask) +{ + vm_page_t p; + ppnum_t pnum; + uint_t cnt = 0; + + /* + * Treat 0 as the absolute max page number. + */ + if (max_pnum == 0) { + max_pnum = PPNUM_MAX; + } + + /* + * Free till we get a properly aligned start page + */ + for (;;) { + p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE); + if (p == NULL) { + return; + } + pnum = VM_PAGE_GET_PHYS_PAGE(p); + vm_page_release(p, FALSE); + if (pnum >= max_pnum) { + return; + } + if ((pnum & pnum_mask) == 0) { + break; + } + } + + /* + * Having a healthy pool of free pages will help performance. We don't + * want to fall back to the delayed code for every page allocation. + */ + if (vm_page_free_count < VM_DELAY_PAGE_CHUNK) { + npages += VM_DELAY_PAGE_CHUNK; + } + + /* + * Now free up the pages + */ + for (cnt = 1; cnt < npages; ++cnt) { + p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE); + if (p == NULL) { + return; + } + vm_page_release(p, FALSE); + } +} + +#define ROUNDUP_NEXTP2(X) (1U << (32 - __builtin_clz((X) - 1))) + +void +vm_page_init_local_q(unsigned int num_cpus) +{ + struct vpl *t_local_q; + + /* + * no point in this for a uni-processor system + */ + if (num_cpus >= 2) { + ml_cpu_info_t cpu_info; + + /* + * Force the allocation alignment to a cacheline, + * because the `vpl` struct has a lock and will be taken + * cross CPU so we want to isolate the rest of the per-CPU + * data to avoid false sharing due to this lock being taken. + */ + + ml_cpu_get_info(&cpu_info); + + t_local_q = zalloc_percpu_permanent(sizeof(struct vpl), + cpu_info.cache_line_size - 1); + + zpercpu_foreach(lq, t_local_q) { + VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr); + vm_page_queue_init(&lq->vpl_queue); + } + + /* make the initialization visible to all cores */ + os_atomic_store(&vm_page_local_q, t_local_q, release); + } +} + +/* + * vm_init_before_launchd + * + * This should be called right before launchd is loaded. + */ +void +vm_init_before_launchd() +{ + vm_page_lockspin_queues(); + vm_page_wire_count_on_boot = vm_page_wire_count; + vm_page_unlock_queues(); } @@ -370,82 +907,33 @@ vm_page_set_colors( void ) * Each page cell is initialized and placed on the free list. * Returns the range of available kernel virtual memory. */ - +__startup_func void vm_page_bootstrap( - vm_offset_t *startp, - vm_offset_t *endp) -{ - register vm_page_t m; - unsigned int i; - unsigned int log1; - unsigned int log2; - unsigned int size; - - /* - * Initialize the vm_page template. - */ - - m = &vm_page_template; - m->object = VM_OBJECT_NULL; /* reset later */ - m->offset = (vm_object_offset_t) -1; /* reset later */ - m->wire_count = 0; - - m->pageq.next = NULL; - m->pageq.prev = NULL; - m->listq.next = NULL; - m->listq.prev = NULL; - - m->speculative = FALSE; - m->throttled = FALSE; - m->inactive = FALSE; - m->active = FALSE; - m->no_cache = FALSE; - m->laundry = FALSE; - m->free = FALSE; - m->pmapped = FALSE; - m->wpmapped = FALSE; - m->reference = FALSE; - m->pageout = FALSE; - m->dump_cleaning = FALSE; - m->list_req_pending = FALSE; - - m->busy = TRUE; - m->wanted = FALSE; - m->tabled = FALSE; - m->fictitious = FALSE; - m->private = FALSE; - m->absent = FALSE; - m->error = FALSE; - m->dirty = FALSE; - m->cleaning = FALSE; - m->precious = FALSE; - m->clustered = FALSE; - m->unusual = FALSE; - m->restart = FALSE; - m->zero_fill = FALSE; - m->encrypted = FALSE; - m->encrypted_cleaning = FALSE; - m->deactivated = FALSE; - - m->phys_page = 0; /* reset later */ + vm_offset_t *startp, + vm_offset_t *endp) +{ + unsigned int i; + unsigned int log1; + unsigned int log2; + unsigned int size; /* * Initialize the page queues. */ - mutex_init(&vm_page_queue_free_lock, 0); - mutex_init(&vm_page_queue_lock, 0); + lck_mtx_init_ext(&vm_page_queue_free_lock, &vm_page_queue_free_lock_ext, &vm_page_lck_grp_free, &vm_page_lck_attr); + lck_mtx_init_ext(&vm_page_queue_lock, &vm_page_queue_lock_ext, &vm_page_lck_grp_queue, &vm_page_lck_attr); + lck_mtx_init_ext(&vm_purgeable_queue_lock, &vm_purgeable_queue_lock_ext, &vm_page_lck_grp_purge, &vm_page_lck_attr); - mutex_init(&vm_purgeable_queue_lock, 0); - for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { int group; purgeable_queues[i].token_q_head = 0; purgeable_queues[i].token_q_tail = 0; - for (group = 0; group < NUM_VOLATILE_GROUPS; group++) - queue_init(&purgeable_queues[i].objq[group]); + for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { + queue_init(&purgeable_queues[i].objq[group]); + } purgeable_queues[i].type = i; purgeable_queues[i].new_pages = 0; @@ -453,35 +941,118 @@ vm_page_bootstrap( purgeable_queues[i].debug_count_tokens = 0; purgeable_queues[i].debug_count_objects = 0; #endif - }; - - for (i = 0; i < MAX_COLORS; i++ ) - queue_init(&vm_page_queue_free[i]); - queue_init(&vm_lopage_queue_free); - vm_page_queue_fictitious = VM_PAGE_NULL; - queue_init(&vm_page_queue_active); - queue_init(&vm_page_queue_inactive); - queue_init(&vm_page_queue_throttled); - queue_init(&vm_page_queue_zf); + } + ; + purgeable_nonvolatile_count = 0; + queue_init(&purgeable_nonvolatile_queue); + + for (i = 0; i < MAX_COLORS; i++) { + vm_page_queue_init(&vm_page_queue_free[i].qhead); + } - for ( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) { - queue_init(&vm_page_queue_speculative[i].age_q); + vm_page_queue_init(&vm_lopage_queue_free); + vm_page_queue_init(&vm_page_queue_active); + vm_page_queue_init(&vm_page_queue_inactive); +#if CONFIG_SECLUDED_MEMORY + vm_page_queue_init(&vm_page_queue_secluded); +#endif /* CONFIG_SECLUDED_MEMORY */ + vm_page_queue_init(&vm_page_queue_cleaned); + vm_page_queue_init(&vm_page_queue_throttled); + vm_page_queue_init(&vm_page_queue_anonymous); + queue_init(&vm_objects_wired); + + for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { + vm_page_queue_init(&vm_page_queue_speculative[i].age_q); vm_page_queue_speculative[i].age_ts.tv_sec = 0; vm_page_queue_speculative[i].age_ts.tv_nsec = 0; } +#if CONFIG_BACKGROUND_QUEUE + vm_page_queue_init(&vm_page_queue_background); + + vm_page_background_count = 0; + vm_page_background_internal_count = 0; + vm_page_background_external_count = 0; + vm_page_background_promoted_count = 0; + + vm_page_background_target = (unsigned int)(atop_64(max_mem) / 25); + + if (vm_page_background_target > VM_PAGE_BACKGROUND_TARGET_MAX) { + vm_page_background_target = VM_PAGE_BACKGROUND_TARGET_MAX; + } + + vm_page_background_mode = VM_PAGE_BG_LEVEL_1; + vm_page_background_exclude_external = 0; + + PE_parse_boot_argn("vm_page_bg_mode", &vm_page_background_mode, sizeof(vm_page_background_mode)); + PE_parse_boot_argn("vm_page_bg_exclude_external", &vm_page_background_exclude_external, sizeof(vm_page_background_exclude_external)); + PE_parse_boot_argn("vm_page_bg_target", &vm_page_background_target, sizeof(vm_page_background_target)); + + if (vm_page_background_mode > VM_PAGE_BG_LEVEL_1) { + vm_page_background_mode = VM_PAGE_BG_LEVEL_1; + } +#endif vm_page_free_wanted = 0; vm_page_free_wanted_privileged = 0; - +#if CONFIG_SECLUDED_MEMORY + vm_page_free_wanted_secluded = 0; +#endif /* CONFIG_SECLUDED_MEMORY */ + +#if defined (__x86_64__) + /* this must be called before vm_page_set_colors() */ + vm_page_setup_clump(); +#endif + vm_page_set_colors(); + bzero(vm_page_inactive_states, sizeof(vm_page_inactive_states)); + vm_page_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; + vm_page_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; + vm_page_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; + + bzero(vm_page_pageable_states, sizeof(vm_page_pageable_states)); + vm_page_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; + vm_page_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; + vm_page_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; + vm_page_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1; + vm_page_pageable_states[VM_PAGE_ON_SPECULATIVE_Q] = 1; + vm_page_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1; +#if CONFIG_SECLUDED_MEMORY + vm_page_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1; +#endif /* CONFIG_SECLUDED_MEMORY */ + + bzero(vm_page_non_speculative_pageable_states, sizeof(vm_page_non_speculative_pageable_states)); + vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; + vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; + vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; + vm_page_non_speculative_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1; + vm_page_non_speculative_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1; +#if CONFIG_SECLUDED_MEMORY + vm_page_non_speculative_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1; +#endif /* CONFIG_SECLUDED_MEMORY */ + + bzero(vm_page_active_or_inactive_states, sizeof(vm_page_active_or_inactive_states)); + vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; + vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; + vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; + vm_page_active_or_inactive_states[VM_PAGE_ON_ACTIVE_Q] = 1; +#if CONFIG_SECLUDED_MEMORY + vm_page_active_or_inactive_states[VM_PAGE_ON_SECLUDED_Q] = 1; +#endif /* CONFIG_SECLUDED_MEMORY */ + + for (vm_tag_t t = 0; t < VM_KERN_MEMORY_FIRST_DYNAMIC; t++) { + vm_allocation_sites_static[t].refcount = 2; + vm_allocation_sites_static[t].tag = t; + vm_allocation_sites[t] = &vm_allocation_sites_static[t]; + } + vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC].refcount = 2; + vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC].tag = VM_KERN_MEMORY_ANY; + vm_allocation_sites[VM_KERN_MEMORY_ANY] = &vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC]; /* * Steal memory for the map and zone subsystems. */ - - vm_map_steal_memory(); - zone_steal_memory(); + kernel_startup_initialize_upto(STARTUP_SUB_PMAP_STEAL); /* * Allocate (and initialize) the virtual-to-physical @@ -493,15 +1064,15 @@ vm_page_bootstrap( * than the number of physical pages in the system. */ - simple_lock_init(&vm_page_bucket_lock, 0); - if (vm_page_bucket_count == 0) { unsigned int npages = pmap_free_pages(); vm_page_bucket_count = 1; - while (vm_page_bucket_count < npages) + while (vm_page_bucket_count < npages) { vm_page_bucket_count <<= 1; + } } + vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK; vm_page_hash_mask = vm_page_bucket_count - 1; @@ -513,34 +1084,77 @@ vm_page_bootstrap( * B/2 - O */ size = vm_page_bucket_count; - for (log1 = 0; size > 1; log1++) + for (log1 = 0; size > 1; log1++) { size /= 2; + } size = sizeof(struct vm_object); - for (log2 = 0; size > 1; log2++) + for (log2 = 0; size > 1; log2++) { size /= 2; - vm_page_hash_shift = log1/2 - log2 + 1; - - vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ - vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ - vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ + } + vm_page_hash_shift = log1 / 2 - log2 + 1; - if (vm_page_hash_mask & vm_page_bucket_count) + vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ + vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ + vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ + + if (vm_page_hash_mask & vm_page_bucket_count) { printf("vm_page_bootstrap: WARNING -- strange page hash\n"); + } + +#if VM_PAGE_BUCKETS_CHECK +#if VM_PAGE_FAKE_BUCKETS + /* + * Allocate a decoy set of page buckets, to detect + * any stomping there. + */ + vm_page_fake_buckets = (vm_page_bucket_t *) + pmap_steal_memory(vm_page_bucket_count * + sizeof(vm_page_bucket_t)); + vm_page_fake_buckets_start = (vm_map_offset_t) vm_page_fake_buckets; + vm_page_fake_buckets_end = + vm_map_round_page((vm_page_fake_buckets_start + + (vm_page_bucket_count * + sizeof(vm_page_bucket_t))), + PAGE_MASK); + char *cp; + for (cp = (char *)vm_page_fake_buckets_start; + cp < (char *)vm_page_fake_buckets_end; + cp++) { + *cp = 0x5a; + } +#endif /* VM_PAGE_FAKE_BUCKETS */ +#endif /* VM_PAGE_BUCKETS_CHECK */ + kernel_debug_string_early("vm_page_buckets"); vm_page_buckets = (vm_page_bucket_t *) - pmap_steal_memory(vm_page_bucket_count * - sizeof(vm_page_bucket_t)); + pmap_steal_memory(vm_page_bucket_count * + sizeof(vm_page_bucket_t)); + + kernel_debug_string_early("vm_page_bucket_locks"); + vm_page_bucket_locks = (lck_spin_t *) + pmap_steal_memory(vm_page_bucket_lock_count * + sizeof(lck_spin_t)); for (i = 0; i < vm_page_bucket_count; i++) { - register vm_page_bucket_t *bucket = &vm_page_buckets[i]; + vm_page_bucket_t *bucket = &vm_page_buckets[i]; - bucket->pages = VM_PAGE_NULL; + bucket->page_list = VM_PAGE_PACK_PTR(VM_PAGE_NULL); #if MACH_PAGE_HASH_STATS bucket->cur_count = 0; bucket->hi_count = 0; #endif /* MACH_PAGE_HASH_STATS */ } + for (i = 0; i < vm_page_bucket_lock_count; i++) { + lck_spin_init(&vm_page_bucket_locks[i], &vm_page_lck_grp_bucket, &vm_page_lck_attr); + } + + vm_tag_init(); + +#if VM_PAGE_BUCKETS_CHECK + vm_page_buckets_check_ready = TRUE; +#endif /* VM_PAGE_BUCKETS_CHECK */ + /* * Machine-dependent code allocates the resident page table. * It uses vm_page_init to initialize the page frames. @@ -549,6 +1163,7 @@ vm_page_bootstrap( * to get the alignment right. */ + kernel_debug_string_early("pmap_startup"); pmap_startup(&virtual_space_start, &virtual_space_end); virtual_space_start = round_page(virtual_space_start); virtual_space_end = trunc_page(virtual_space_end); @@ -558,275 +1173,478 @@ vm_page_bootstrap( /* * Compute the initial "wire" count. - * Up until now, the pages which have been set aside are not under + * Up until now, the pages which have been set aside are not under * the VM system's control, so although they aren't explicitly * wired, they nonetheless can't be moved. At this moment, * all VM managed pages are "free", courtesy of pmap_startup. */ - vm_page_wire_count = atop_64(max_mem) - vm_page_free_count; /* initial value */ - vm_page_free_count_minimum = vm_page_free_count; + assert((unsigned int) atop_64(max_mem) == atop_64(max_mem)); + vm_page_wire_count = ((unsigned int) atop_64(max_mem)) - + vm_page_free_count - vm_lopage_free_count; +#if CONFIG_SECLUDED_MEMORY + vm_page_wire_count -= vm_page_secluded_count; +#endif + vm_page_wire_count_initial = vm_page_wire_count; + + /* capture this for later use */ + booter_size = ml_get_booter_memory_size(); - printf("vm_page_bootstrap: %d free pages and %d wired pages\n", - vm_page_free_count, vm_page_wire_count); + printf("vm_page_bootstrap: %d free pages, %d wired pages, (up to %d of which are delayed free)\n", + vm_page_free_count, vm_page_wire_count, vm_delayed_count); - simple_lock_init(&vm_paging_lock, 0); + kernel_debug_string_early("vm_page_bootstrap complete"); } -#ifndef MACHINE_PAGES +#ifndef MACHINE_PAGES /* - * We implement pmap_steal_memory and pmap_startup with the help - * of two simpler functions, pmap_virtual_space and pmap_next_page. + * This is the early boot time allocator for data structures needed to bootstrap the VM system. + * On x86 it will allocate large pages if size is sufficiently large. We don't need to do this + * on ARM yet, due to the combination of a large base page size and smaller RAM devices. */ - -void * -pmap_steal_memory( - vm_size_t size) +static void * +pmap_steal_memory_internal( + vm_size_t size, + boolean_t might_free) { - vm_offset_t addr, vaddr; - ppnum_t phys_page; + kern_return_t kr; + vm_offset_t addr; + vm_offset_t map_addr; + ppnum_t phys_page; /* - * We round the size to a round multiple. + * Size needs to be aligned to word size. */ - - size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); + size = (size + sizeof(void *) - 1) & ~(sizeof(void *) - 1); /* - * If this is the first call to pmap_steal_memory, - * we have to initialize ourself. + * On the first call, get the initial values for virtual address space + * and page align them. */ - if (virtual_space_start == virtual_space_end) { pmap_virtual_space(&virtual_space_start, &virtual_space_end); + virtual_space_start = round_page(virtual_space_start); + virtual_space_end = trunc_page(virtual_space_end); +#if defined(__x86_64__) /* - * The initial values must be aligned properly, and - * we don't trust the pmap module to do it right. + * Release remaining unused section of preallocated KVA and the 4K page tables + * that map it. This makes the VA available for large page mappings. */ - - virtual_space_start = round_page(virtual_space_start); - virtual_space_end = trunc_page(virtual_space_end); + Idle_PTs_release(virtual_space_start, virtual_space_end); +#endif } /* - * Allocate virtual memory for this request. + * Allocate the virtual space for this request. On x86, we'll align to a large page + * address if the size is big enough to back with at least 1 large page. */ - +#if defined(__x86_64__) + if (size >= I386_LPGBYTES) { + virtual_space_start = ((virtual_space_start + I386_LPGMASK) & ~I386_LPGMASK); + } +#endif addr = virtual_space_start; virtual_space_start += size; - kprintf("pmap_steal_memory: %08X - %08X; size=%08X\n", addr, virtual_space_start, size); /* (TEST/DEBUG) */ + //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */ /* - * Allocate and map physical pages to back new virtual pages. + * Allocate and map physical pages to back the new virtual space. */ - - for (vaddr = round_page(addr); - vaddr < addr + size; - vaddr += PAGE_SIZE) { - if (!pmap_next_page(&phys_page)) - panic("pmap_steal_memory"); - + map_addr = round_page(addr); + while (map_addr < addr + size) { +#if defined(__x86_64__) /* - * XXX Logically, these mappings should be wired, - * but some pmap modules barf if they are. + * Back with a large page if properly aligned on x86 */ + if ((map_addr & I386_LPGMASK) == 0 && + map_addr + I386_LPGBYTES <= addr + size && + pmap_pre_expand_large(kernel_pmap, map_addr) == KERN_SUCCESS && + pmap_next_page_large(&phys_page) == KERN_SUCCESS) { + kr = pmap_enter(kernel_pmap, map_addr, phys_page, + VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, + VM_WIMG_USE_DEFAULT | VM_MEM_SUPERPAGE, FALSE); + + if (kr != KERN_SUCCESS) { + panic("pmap_steal_memory: pmap_enter() large failed, new_addr=%#lx, phys_page=%u", + (unsigned long)map_addr, phys_page); + } + map_addr += I386_LPGBYTES; + vm_page_wire_count += I386_LPGBYTES >> PAGE_SHIFT; + vm_page_stolen_count += I386_LPGBYTES >> PAGE_SHIFT; + vm_page_kern_lpage_count++; + continue; + } +#endif + + if (!pmap_next_page_hi(&phys_page, might_free)) { + panic("pmap_steal_memory() size: 0x%llx\n", (uint64_t)size); + } + +#if defined(__x86_64__) + pmap_pre_expand(kernel_pmap, map_addr); +#endif + + kr = pmap_enter(kernel_pmap, map_addr, phys_page, + VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, + VM_WIMG_USE_DEFAULT, FALSE); + + if (kr != KERN_SUCCESS) { + panic("pmap_steal_memory() pmap_enter failed, map_addr=%#lx, phys_page=%u", + (unsigned long)map_addr, phys_page); + } + map_addr += PAGE_SIZE; - pmap_enter(kernel_pmap, vaddr, phys_page, - VM_PROT_READ|VM_PROT_WRITE, - VM_WIMG_USE_DEFAULT, FALSE); /* * Account for newly stolen memory */ vm_page_wire_count++; - + vm_page_stolen_count++; } +#if defined(__x86_64__) + /* + * The call with might_free is currently the last use of pmap_steal_memory*(). + * Notify the pmap layer to record which high pages were allocated so far. + */ + if (might_free) { + pmap_hi_pages_done(); + } +#endif +#if KASAN + kasan_notify_address(round_page(addr), size); +#endif return (void *) addr; } +void * +pmap_steal_memory( + vm_size_t size) +{ + return pmap_steal_memory_internal(size, FALSE); +} + +void * +pmap_steal_freeable_memory( + vm_size_t size) +{ + return pmap_steal_memory_internal(size, TRUE); +} + +#if CONFIG_SECLUDED_MEMORY +/* boot-args to control secluded memory */ +unsigned int secluded_mem_mb = 0; /* # of MBs of RAM to seclude */ +int secluded_for_iokit = 1; /* IOKit can use secluded memory */ +int secluded_for_apps = 1; /* apps can use secluded memory */ +int secluded_for_filecache = 2; /* filecache can use seclude memory */ +#if 11 +int secluded_for_fbdp = 0; +#endif +uint64_t secluded_shutoff_trigger = 0; +uint64_t secluded_shutoff_headroom = 150 * 1024 * 1024; /* original value from N56 */ +#endif /* CONFIG_SECLUDED_MEMORY */ + + +#if defined(__arm__) || defined(__arm64__) +extern void patch_low_glo_vm_page_info(void *, void *, uint32_t); +unsigned int vm_first_phys_ppnum = 0; +#endif + +void vm_page_release_startup(vm_page_t mem); void pmap_startup( - vm_offset_t *startp, - vm_offset_t *endp) + vm_offset_t *startp, + vm_offset_t *endp) { - unsigned int i, npages, pages_initialized, fill, fillval; - ppnum_t phys_page; - addr64_t tmpaddr; - unsigned int num_of_lopages = 0; - unsigned int last_index; - + unsigned int i, npages; + ppnum_t phys_page; + uint64_t mem_sz; + uint64_t start_ns; + uint64_t now_ns; + uint_t low_page_count = 0; + +#if defined(__LP64__) /* - * We calculate how many page frames we will have - * and then allocate the page structures in one chunk. + * make sure we are aligned on a 64 byte boundary + * for VM_PAGE_PACK_PTR (it clips off the low-order + * 6 bits of the pointer) */ - - tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ - tmpaddr = tmpaddr + (addr64_t)(round_page_32(virtual_space_start) - virtual_space_start); /* Account for any slop */ - npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*vm_pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ - - vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages); + if (virtual_space_start != virtual_space_end) { + virtual_space_start = round_page(virtual_space_start); + } +#endif /* - * Initialize the page frames. + * We calculate how many page frames we will have + * and then allocate the page structures in one chunk. + * + * Note that the calculation here doesn't take into account + * the memory needed to map what's being allocated, i.e. the page + * table entries. So the actual number of pages we get will be + * less than this. To do someday: include that in the computation. */ - for (i = 0, pages_initialized = 0; i < npages; i++) { - if (!pmap_next_page(&phys_page)) - break; + mem_sz = pmap_free_pages() * (uint64_t)PAGE_SIZE; + mem_sz += round_page(virtual_space_start) - virtual_space_start; /* Account for any slop */ + npages = (uint_t)(mem_sz / (PAGE_SIZE + sizeof(*vm_pages))); /* scaled to include the vm_page_ts */ - vm_page_init(&vm_pages[i], phys_page); - vm_page_pages++; - pages_initialized++; - } - vm_pages_count = pages_initialized; + vm_pages = (vm_page_t) pmap_steal_freeable_memory(npages * sizeof *vm_pages); /* * Check if we want to initialize pages to a known value */ - fill = 0; /* Assume no fill */ - if (PE_parse_boot_argn("fill", &fillval, sizeof (fillval))) fill = 1; /* Set fill */ - + if (PE_parse_boot_argn("fill", &fillval, sizeof(fillval))) { + fill = TRUE; + } +#if DEBUG + /* This slows down booting the DEBUG kernel, particularly on + * large memory systems, but is worthwhile in deterministically + * trapping uninitialized memory usage. + */ + if (!fill) { + fill = TRUE; + fillval = 0xDEB8F177; + } +#endif + if (fill) { + kprintf("Filling vm_pages with pattern: 0x%x\n", fillval); + } +#if CONFIG_SECLUDED_MEMORY /* - * if vm_lopage_poolsize is non-zero, than we need to reserve - * a pool of pages whose addresess are less than 4G... this pool - * is used by drivers whose hardware can't DMA beyond 32 bits... - * - * note that I'm assuming that the page list is ascending and - * ordered w/r to the physical address + * Figure out how much secluded memory to have before we start + * release pages to free lists. + * The default, if specified nowhere else, is no secluded mem. */ - for (i = 0, num_of_lopages = vm_lopage_poolsize; num_of_lopages && i < pages_initialized; num_of_lopages--, i++) { - vm_page_t m; + secluded_mem_mb = 0; + if (max_mem > 1 * 1024 * 1024 * 1024) { + /* default to 90MB for devices with > 1GB of RAM */ + secluded_mem_mb = 90; + } + /* override with value from device tree, if provided */ + PE_get_default("kern.secluded_mem_mb", + &secluded_mem_mb, sizeof(secluded_mem_mb)); + /* override with value from boot-args, if provided */ + PE_parse_boot_argn("secluded_mem_mb", + &secluded_mem_mb, + sizeof(secluded_mem_mb)); + + vm_page_secluded_target = (unsigned int) + ((secluded_mem_mb * 1024ULL * 1024ULL) / PAGE_SIZE); + PE_parse_boot_argn("secluded_for_iokit", + &secluded_for_iokit, + sizeof(secluded_for_iokit)); + PE_parse_boot_argn("secluded_for_apps", + &secluded_for_apps, + sizeof(secluded_for_apps)); + PE_parse_boot_argn("secluded_for_filecache", + &secluded_for_filecache, + sizeof(secluded_for_filecache)); +#if 11 + PE_parse_boot_argn("secluded_for_fbdp", + &secluded_for_fbdp, + sizeof(secluded_for_fbdp)); +#endif - m = &vm_pages[i]; + /* + * Allow a really large app to effectively use secluded memory until it exits. + */ + if (vm_page_secluded_target != 0) { + /* + * Get an amount from boot-args, else use 1/2 of max_mem. + * 1/2 max_mem was chosen from a Peace daemon tentpole test which + * used munch to induce jetsam thrashing of false idle daemons on N56. + */ + int secluded_shutoff_mb; + if (PE_parse_boot_argn("secluded_shutoff_mb", &secluded_shutoff_mb, + sizeof(secluded_shutoff_mb))) { + secluded_shutoff_trigger = (uint64_t)secluded_shutoff_mb * 1024 * 1024; + } else { + secluded_shutoff_trigger = max_mem / 2; + } - if (m->phys_page >= (1 << (32 - PAGE_SHIFT))) - panic("couldn't reserve the lopage pool: not enough lo pages\n"); + /* ensure the headroom value is sensible and avoid underflows */ + assert(secluded_shutoff_trigger == 0 || secluded_shutoff_trigger > secluded_shutoff_headroom); + } - if (m->phys_page < vm_lopage_poolend) - panic("couldn't reserve the lopage pool: page list out of order\n"); +#endif /* CONFIG_SECLUDED_MEMORY */ - vm_lopage_poolend = m->phys_page; +#if defined(__x86_64__) - if (vm_lopage_poolstart == 0) - vm_lopage_poolstart = m->phys_page; - else { - if (m->phys_page < vm_lopage_poolstart) - panic("couldn't reserve the lopage pool: page list out of order\n"); - } + /* + * Decide how much memory we delay freeing at boot time. + */ + uint32_t delay_above_gb; + if (!PE_parse_boot_argn("delay_above_gb", &delay_above_gb, sizeof(delay_above_gb))) { + delay_above_gb = DEFAULT_DELAY_ABOVE_PHYS_GB; + } - if (fill) - fillPage(m->phys_page, fillval); /* Fill the page with a know value if requested at boot */ + if (delay_above_gb == 0) { + delay_above_pnum = PPNUM_MAX; + } else { + delay_above_pnum = delay_above_gb * (1024 * 1024 * 1024 / PAGE_SIZE); + } - vm_page_release(m); - } - last_index = i; + /* make sure we have sane breathing room: 1G above low memory */ + if (delay_above_pnum <= max_valid_low_ppnum) { + delay_above_pnum = max_valid_low_ppnum + ((1024 * 1024 * 1024) >> PAGE_SHIFT); + } - // -debug code remove - if (2 == vm_himemory_mode) { - // free low -> high so high is preferred - for (i = last_index + 1; i <= pages_initialized; i++) { - if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ - vm_page_release(&vm_pages[i - 1]); - } + if (delay_above_pnum < PPNUM_MAX) { + printf("pmap_startup() delaying init/free of page nums > 0x%x\n", delay_above_pnum); } - else - // debug code remove- + +#endif /* defined(__x86_64__) */ /* - * Release pages in reverse order so that physical pages - * initially get allocated in ascending addresses. This keeps - * the devices (which must address physical memory) happy if - * they require several consecutive pages. + * Initialize and release the page frames. */ - for (i = pages_initialized; i > last_index; i--) { - if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ - vm_page_release(&vm_pages[i - 1]); + kernel_debug_string_early("page_frame_init"); + + vm_page_array_beginning_addr = &vm_pages[0]; + vm_page_array_ending_addr = &vm_pages[npages]; /* used by ptr packing/unpacking code */ +#if VM_PAGE_PACKED_FROM_ARRAY + if (npages >= VM_PAGE_PACKED_FROM_ARRAY) { + panic("pmap_startup(): too many pages to support vm_page packing"); } +#endif -#if 0 - { - vm_page_t xx, xxo, xxl; - int i, j, k, l; - - j = 0; /* (BRINGUP) */ - xxl = 0; - - for( i = 0; i < vm_colors; i++ ) { - queue_iterate(&vm_page_queue_free[i], - xx, - vm_page_t, - pageq) { /* BRINGUP */ - j++; /* (BRINGUP) */ - if(j > vm_page_free_count) { /* (BRINGUP) */ - panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); - } - - l = vm_page_free_count - j; /* (BRINGUP) */ - k = 0; /* (BRINGUP) */ - - if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); - - for(xxo = xx->pageq.next; xxo != &vm_page_queue_free[i]; xxo = xxo->pageq.next) { /* (BRINGUP) */ - k++; - if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); - if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ - panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); - } - } + vm_delayed_count = 0; - xxl = xx; - } + absolutetime_to_nanoseconds(mach_absolute_time(), &start_ns); + vm_pages_count = 0; + for (i = 0; i < npages; i++) { + /* Did we run out of pages? */ + if (!pmap_next_page(&phys_page)) { + break; + } + + if (phys_page < max_valid_low_ppnum) { + ++low_page_count; } - - if(j != vm_page_free_count) { /* (BRINGUP) */ - panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); + + /* Are we at high enough pages to delay the rest? */ + if (low_page_count > vm_lopage_free_limit && phys_page > delay_above_pnum) { + vm_delayed_count = pmap_free_pages(); + break; + } + +#if defined(__arm__) || defined(__arm64__) + if (i == 0) { + vm_first_phys_ppnum = phys_page; + patch_low_glo_vm_page_info((void *)vm_page_array_beginning_addr, + (void *)vm_page_array_ending_addr, vm_first_phys_ppnum); + } + assert((i + vm_first_phys_ppnum) == phys_page); +#endif + +#if defined(__x86_64__) + /* The x86 clump freeing code requires increasing ppn's to work correctly */ + if (i > 0) { + assert(phys_page > vm_pages[i - 1].vmp_phys_page); + } +#endif + ++vm_pages_count; + vm_page_init(&vm_pages[i], phys_page, FALSE); + if (fill) { + fillPage(phys_page, fillval); + } + if (vm_himemory_mode) { + vm_page_release_startup(&vm_pages[i]); } } + vm_page_pages = vm_pages_count; /* used to report to user space */ + + if (!vm_himemory_mode) { + do { + vm_page_release_startup(&vm_pages[--i]); + } while (i != 0); + } + + absolutetime_to_nanoseconds(mach_absolute_time(), &now_ns); + printf("pmap_startup() init/release time: %lld microsec\n", (now_ns - start_ns) / NSEC_PER_USEC); + printf("pmap_startup() delayed init/release of %d pages\n", vm_delayed_count); + +#if defined(__LP64__) + if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[0]))) != &vm_pages[0]) { + panic("VM_PAGE_PACK_PTR failed on &vm_pages[0] - %p", (void *)&vm_pages[0]); + } + + if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[vm_pages_count - 1]))) != &vm_pages[vm_pages_count - 1]) { + panic("VM_PAGE_PACK_PTR failed on &vm_pages[vm_pages_count-1] - %p", (void *)&vm_pages[vm_pages_count - 1]); + } #endif + VM_CHECK_MEMORYSTATUS; /* - * We have to re-align virtual_space_start, - * because pmap_steal_memory has been using it. + * We have to re-align virtual_space_start, + * because pmap_steal_memory has been using it. */ - - virtual_space_start = round_page_32(virtual_space_start); - + virtual_space_start = round_page(virtual_space_start); *startp = virtual_space_start; *endp = virtual_space_end; } -#endif /* MACHINE_PAGES */ +#endif /* MACHINE_PAGES */ /* - * Routine: vm_page_module_init - * Purpose: - * Second initialization pass, to be done after - * the basic VM system is ready. + * Create the zone that represents the vm_pages[] array. Nothing ever allocates + * or frees to this zone. It's just here for reporting purposes via zprint command. + * This needs to be done after all initially delayed pages are put on the free lists. */ -void -vm_page_module_init(void) +static void +vm_page_module_init_delayed(void) { - vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), - 0, PAGE_SIZE, "vm pages"); + (void)zone_create_ext("vm pages array", sizeof(struct vm_page), + ZC_NOGZALLOC, ZONE_ID_ANY, ^(zone_t z) { + uint64_t vm_page_zone_pages, vm_page_array_zone_data_size; + + zone_set_exhaustible(z, 0); + /* + * Reflect size and usage information for vm_pages[]. + */ -#if ZONE_DEBUG - zone_debug_disable(vm_page_zone); -#endif /* ZONE_DEBUG */ + z->countavail = (uint32_t)(vm_page_array_ending_addr - vm_pages); + z->countfree = z->countavail - vm_pages_count; + zpercpu_get_cpu(z->z_stats, 0)->zs_mem_allocated = + vm_pages_count * sizeof(struct vm_page); + vm_page_array_zone_data_size = (uintptr_t)((void *)vm_page_array_ending_addr - (void *)vm_pages); + vm_page_zone_pages = atop(round_page((vm_offset_t)vm_page_array_zone_data_size)); + z->page_count += vm_page_zone_pages; + /* since zone accounts for these, take them out of stolen */ + VM_PAGE_MOVE_STOLEN(vm_page_zone_pages); + }); +} - zone_change(vm_page_zone, Z_EXPAND, FALSE); - zone_change(vm_page_zone, Z_EXHAUST, TRUE); - zone_change(vm_page_zone, Z_FOREIGN, TRUE); +/* + * Create the vm_pages zone. This is used for the vm_page structures for the pages + * that are scavanged from other boot time usages by ml_static_mfree(). As such, + * this needs to happen in early VM bootstrap. + */ - /* - * Adjust zone statistics to account for the real pages allocated - * in vm_page_create(). [Q: is this really what we want?] - */ - vm_page_zone->count += vm_page_pages; - vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size; +__startup_func +static void +vm_page_module_init(void) +{ + vm_size_t vm_page_with_ppnum_size; - mutex_init(&vm_page_alloc_lock, 0); + /* + * Since the pointers to elements in this zone will be packed, they + * must have appropriate size. Not strictly what sizeof() reports. + */ + vm_page_with_ppnum_size = + (sizeof(struct vm_page_with_ppnum) + (VM_PAGE_PACKED_PTR_ALIGNMENT - 1)) & + ~(VM_PAGE_PACKED_PTR_ALIGNMENT - 1); + + vm_page_zone = zone_create_ext("vm pages", vm_page_with_ppnum_size, + ZC_ALLOW_FOREIGN | ZC_NOGZALLOC | ZC_ALIGNMENT_REQUIRED | + ZC_NOCALLOUT, ZONE_ID_ANY, ^(zone_t z) { +#if defined(__LP64__) + zone_set_submap_idx(z, Z_SUBMAP_IDX_VA_RESTRICTED_MAP); +#endif + zone_set_exhaustible(z, 0); + }); } +STARTUP(ZALLOC, STARTUP_RANK_SECOND, vm_page_module_init); /* * Routine: vm_page_create @@ -842,19 +1660,24 @@ vm_page_create( ppnum_t start, ppnum_t end) { - ppnum_t phys_page; - vm_page_t m; + ppnum_t phys_page; + vm_page_t m; for (phys_page = start; - phys_page < end; - phys_page++) { - while ((m = (vm_page_t) vm_page_grab_fictitious()) - == VM_PAGE_NULL) + phys_page < end; + phys_page++) { + while ((m = (vm_page_t) vm_page_grab_fictitious_common(phys_page)) + == VM_PAGE_NULL) { vm_page_more_fictitious(); + } - vm_page_init(m, phys_page); + m->vmp_fictitious = FALSE; + pmap_clear_noencrypt(phys_page); + + lck_mtx_lock(&vm_page_queue_free_lock); vm_page_pages++; - vm_page_release(m); + lck_mtx_unlock(&vm_page_queue_free_lock); + vm_page_release(m, FALSE); } } @@ -866,7 +1689,7 @@ vm_page_create( * NOTE: The bucket count must be a power of 2 */ #define vm_page_hash(object, offset) (\ - ( (natural_t)((uint32_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ + ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ & vm_page_hash_mask) @@ -880,99 +1703,270 @@ vm_page_create( */ void vm_page_insert( - vm_page_t mem, - vm_object_t object, - vm_object_offset_t offset) + vm_page_t mem, + vm_object_t object, + vm_object_offset_t offset) { - vm_page_insert_internal(mem, object, offset, FALSE); + vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, FALSE, FALSE, NULL); } +void +vm_page_insert_wired( + vm_page_t mem, + vm_object_t object, + vm_object_offset_t offset, + vm_tag_t tag) +{ + vm_page_insert_internal(mem, object, offset, tag, FALSE, TRUE, FALSE, FALSE, NULL); +} void vm_page_insert_internal( - vm_page_t mem, - vm_object_t object, - vm_object_offset_t offset, - boolean_t queues_lock_held) + vm_page_t mem, + vm_object_t object, + vm_object_offset_t offset, + vm_tag_t tag, + boolean_t queues_lock_held, + boolean_t insert_in_hash, + boolean_t batch_pmap_op, + boolean_t batch_accounting, + uint64_t *delayed_ledger_update) { - register vm_page_bucket_t *bucket; - - XPR(XPR_VM_PAGE, - "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", - (integer_t)object, (integer_t)offset, (integer_t)mem, 0,0); + vm_page_bucket_t *bucket; + lck_spin_t *bucket_lock; + int hash_id; + task_t owner; + int ledger_idx_volatile; + int ledger_idx_nonvolatile; + int ledger_idx_volatile_compressed; + int ledger_idx_nonvolatile_compressed; + boolean_t do_footprint; +#if 0 + /* + * we may not hold the page queue lock + * so this check isn't safe to make + */ VM_PAGE_CHECK(mem); +#endif - if (object == vm_submap_object) { - /* the vm_submap_object is only a placeholder for submaps */ - panic("vm_page_insert(vm_submap_object,0x%llx)\n", offset); - } + assertf(page_aligned(offset), "0x%llx\n", offset); + + assert(!VM_PAGE_WIRED(mem) || mem->vmp_private || mem->vmp_fictitious || (tag != VM_KERN_MEMORY_NONE)); + + /* the vm_submap_object is only a placeholder for submaps */ + assert(object != vm_submap_object); vm_object_lock_assert_exclusive(object); -#if DEBUG - if (mem->tabled || mem->object != VM_OBJECT_NULL) - panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " - "already in (obj=%p,off=0x%llx)", - mem, object, offset, mem->object, mem->offset); + LCK_MTX_ASSERT(&vm_page_queue_lock, + queues_lock_held ? LCK_MTX_ASSERT_OWNED + : LCK_MTX_ASSERT_NOTOWNED); + + if (queues_lock_held == FALSE) { + assert(!VM_PAGE_PAGEABLE(mem)); + } + + if (insert_in_hash == TRUE) { +#if DEBUG || VM_PAGE_BUCKETS_CHECK + if (mem->vmp_tabled || mem->vmp_object) { + panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " + "already in (obj=%p,off=0x%llx)", + mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset); + } #endif - assert(!object->internal || offset < object->size); + if (object->internal && (offset >= object->vo_size)) { + panic("vm_page_insert_internal: (page=%p,obj=%p,off=0x%llx,size=0x%llx) inserted at offset past object bounds", + mem, object, offset, object->vo_size); + } - /* only insert "pageout" pages into "pageout" objects, - * and normal pages into normal objects */ - assert(object->pageout == mem->pageout); + assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); - assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); + /* + * Record the object/offset pair in this page + */ - /* - * Record the object/offset pair in this page - */ + mem->vmp_object = VM_PAGE_PACK_OBJECT(object); + mem->vmp_offset = offset; - mem->object = object; - mem->offset = offset; +#if CONFIG_SECLUDED_MEMORY + if (object->eligible_for_secluded) { + vm_page_secluded.eligible_for_secluded++; + } +#endif /* CONFIG_SECLUDED_MEMORY */ - /* - * Insert it into the object_object/offset hash table - */ + /* + * Insert it into the object_object/offset hash table + */ + hash_id = vm_page_hash(object, offset); + bucket = &vm_page_buckets[hash_id]; + bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; + + lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); + + mem->vmp_next_m = bucket->page_list; + bucket->page_list = VM_PAGE_PACK_PTR(mem); + assert(mem == (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))); - bucket = &vm_page_buckets[vm_page_hash(object, offset)]; - simple_lock(&vm_page_bucket_lock); - mem->next = bucket->pages; - bucket->pages = mem; #if MACH_PAGE_HASH_STATS - if (++bucket->cur_count > bucket->hi_count) - bucket->hi_count = bucket->cur_count; + if (++bucket->cur_count > bucket->hi_count) { + bucket->hi_count = bucket->cur_count; + } #endif /* MACH_PAGE_HASH_STATS */ - simple_unlock(&vm_page_bucket_lock); + mem->vmp_hashed = TRUE; + lck_spin_unlock(bucket_lock); + } + + { + unsigned int cache_attr; + + cache_attr = object->wimg_bits & VM_WIMG_MASK; + if (cache_attr != VM_WIMG_USE_DEFAULT) { + PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op); + } + } /* * Now link into the object's list of backed pages. */ - - VM_PAGE_INSERT(mem, object); - mem->tabled = TRUE; + vm_page_queue_enter(&object->memq, mem, vmp_listq); + object->memq_hint = mem; + mem->vmp_tabled = TRUE; /* * Show that the object has one more resident page. */ object->resident_page_count++; + if (VM_PAGE_WIRED(mem)) { + assert(mem->vmp_wire_count > 0); + VM_OBJECT_WIRED_PAGE_UPDATE_START(object); + VM_OBJECT_WIRED_PAGE_ADD(object, mem); + VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag); + } + assert(object->resident_page_count >= object->wired_page_count); + +#if DEVELOPMENT || DEBUG + if (object->object_is_shared_cache && + object->pager != NULL && + object->pager->mo_pager_ops == &shared_region_pager_ops) { + int new, old; + assert(!object->internal); + new = OSAddAtomic(+1, &shared_region_pagers_resident_count); + do { + old = shared_region_pagers_resident_peak; + } while (old < new && + !OSCompareAndSwap(old, new, &shared_region_pagers_resident_peak)); + } +#endif /* DEVELOPMENT || DEBUG */ - if (object->purgable == VM_PURGABLE_VOLATILE) { - if (queues_lock_held == FALSE) - vm_page_lockspin_queues(); + if (batch_accounting == FALSE) { + if (object->internal) { + OSAddAtomic(1, &vm_page_internal_count); + } else { + OSAddAtomic(1, &vm_page_external_count); + } + } + + /* + * It wouldn't make sense to insert a "reusable" page in + * an object (the page would have been marked "reusable" only + * at the time of a madvise(MADV_FREE_REUSABLE) if it was already + * in the object at that time). + * But a page could be inserted in a "all_reusable" object, if + * something faults it in (a vm_read() from another task or a + * "use-after-free" issue in user space, for example). It can + * also happen if we're relocating a page from that object to + * a different physical page during a physically-contiguous + * allocation. + */ + assert(!mem->vmp_reusable); + if (object->all_reusable) { + OSAddAtomic(+1, &vm_page_stats_reusable.reusable_count); + } - vm_page_purgeable_count++; + if (object->purgable == VM_PURGABLE_DENY && + !object->vo_ledger_tag) { + owner = TASK_NULL; + } else { + owner = VM_OBJECT_OWNER(object); + vm_object_ledger_tag_ledgers(object, + &ledger_idx_volatile, + &ledger_idx_nonvolatile, + &ledger_idx_volatile_compressed, + &ledger_idx_nonvolatile_compressed, + &do_footprint); + } + if (owner && + (object->purgable == VM_PURGABLE_NONVOLATILE || + object->purgable == VM_PURGABLE_DENY || + VM_PAGE_WIRED(mem))) { + if (delayed_ledger_update) { + *delayed_ledger_update += PAGE_SIZE; + } else { + /* more non-volatile bytes */ + ledger_credit(owner->ledger, + ledger_idx_nonvolatile, + PAGE_SIZE); + if (do_footprint) { + /* more footprint */ + ledger_credit(owner->ledger, + task_ledgers.phys_footprint, + PAGE_SIZE); + } + } + } else if (owner && + (object->purgable == VM_PURGABLE_VOLATILE || + object->purgable == VM_PURGABLE_EMPTY)) { + assert(!VM_PAGE_WIRED(mem)); + /* more volatile bytes */ + ledger_credit(owner->ledger, + ledger_idx_volatile, + PAGE_SIZE); + } - if (queues_lock_held == FALSE) - vm_page_unlock_queues(); + if (object->purgable == VM_PURGABLE_VOLATILE) { + if (VM_PAGE_WIRED(mem)) { + OSAddAtomic(+1, &vm_page_purgeable_wired_count); + } else { + OSAddAtomic(+1, &vm_page_purgeable_count); + } } else if (object->purgable == VM_PURGABLE_EMPTY && - mem->throttled) { - if (queues_lock_held == FALSE) - vm_page_lock_queues(); + mem->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) { + /* + * This page belongs to a purged VM object but hasn't + * been purged (because it was "busy"). + * It's in the "throttled" queue and hence not + * visible to vm_pageout_scan(). Move it to a pageable + * queue, so that it can eventually be reclaimed, instead + * of lingering in the "empty" object. + */ + if (queues_lock_held == FALSE) { + vm_page_lockspin_queues(); + } vm_page_deactivate(mem); - if (queues_lock_held == FALSE) + if (queues_lock_held == FALSE) { vm_page_unlock_queues(); + } + } + +#if VM_OBJECT_TRACKING_OP_MODIFIED + if (vm_object_tracking_inited && + object->internal && + object->resident_page_count == 0 && + object->pager == NULL && + object->shadow != NULL && + object->shadow->copy == object) { + void *bt[VM_OBJECT_TRACKING_BTDEPTH]; + int numsaved = 0; + + numsaved = OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH); + btlog_add_entry(vm_object_tracking_btlog, + object, + VM_OBJECT_TRACKING_OP_MODIFIED, + bt, + numsaved); } +#endif /* VM_OBJECT_TRACKING_OP_MODIFIED */ } /* @@ -981,116 +1975,98 @@ vm_page_insert_internal( * Exactly like vm_page_insert, except that we first * remove any existing page at the given offset in object. * - * The object and page queues must be locked. + * The object must be locked. */ - void vm_page_replace( - register vm_page_t mem, - register vm_object_t object, - register vm_object_offset_t offset) + vm_page_t mem, + vm_object_t object, + vm_object_offset_t offset) { vm_page_bucket_t *bucket; - vm_page_t found_m = VM_PAGE_NULL; + vm_page_t found_m = VM_PAGE_NULL; + lck_spin_t *bucket_lock; + int hash_id; +#if 0 + /* + * we don't hold the page queue lock + * so this check isn't safe to make + */ VM_PAGE_CHECK(mem); +#endif vm_object_lock_assert_exclusive(object); -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); - - if (mem->tabled || mem->object != VM_OBJECT_NULL) +#if DEBUG || VM_PAGE_BUCKETS_CHECK + if (mem->vmp_tabled || mem->vmp_object) { panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " - "already in (obj=%p,off=0x%llx)", - mem, object, offset, mem->object, mem->offset); + "already in (obj=%p,off=0x%llx)", + mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset); + } #endif + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); + + assert(!VM_PAGE_PAGEABLE(mem)); + /* * Record the object/offset pair in this page */ - - mem->object = object; - mem->offset = offset; + mem->vmp_object = VM_PAGE_PACK_OBJECT(object); + mem->vmp_offset = offset; /* * Insert it into the object_object/offset hash table, * replacing any page that might have been there. */ - bucket = &vm_page_buckets[vm_page_hash(object, offset)]; - simple_lock(&vm_page_bucket_lock); + hash_id = vm_page_hash(object, offset); + bucket = &vm_page_buckets[hash_id]; + bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; + + lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); - if (bucket->pages) { - vm_page_t *mp = &bucket->pages; - register vm_page_t m = *mp; + if (bucket->page_list) { + vm_page_packed_t *mp = &bucket->page_list; + vm_page_t m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp)); do { - if (m->object == object && m->offset == offset) { + /* + * compare packed object pointers + */ + if (m->vmp_object == mem->vmp_object && m->vmp_offset == offset) { /* * Remove old page from hash list */ - *mp = m->next; + *mp = m->vmp_next_m; + m->vmp_hashed = FALSE; + m->vmp_next_m = VM_PAGE_PACK_PTR(NULL); found_m = m; break; } - mp = &m->next; - } while ((m = *mp)); + mp = &m->vmp_next_m; + } while ((m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp)))); - mem->next = bucket->pages; + mem->vmp_next_m = bucket->page_list; } else { - mem->next = VM_PAGE_NULL; + mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL); } /* * insert new page at head of hash list */ - bucket->pages = mem; + bucket->page_list = VM_PAGE_PACK_PTR(mem); + mem->vmp_hashed = TRUE; - simple_unlock(&vm_page_bucket_lock); + lck_spin_unlock(bucket_lock); if (found_m) { - /* + /* * there was already a page at the specified * offset for this object... remove it from * the object and free it back to the free list */ - VM_PAGE_REMOVE(found_m); - found_m->tabled = FALSE; - - found_m->object = VM_OBJECT_NULL; - found_m->offset = (vm_object_offset_t) -1; - object->resident_page_count--; - - if (object->purgable == VM_PURGABLE_VOLATILE) { - assert(vm_page_purgeable_count > 0); - vm_page_purgeable_count--; - } - - /* - * Return page to the free list. - * Note the page is not tabled now - */ - vm_page_free(found_m); - } - /* - * Now link into the object's list of backed pages. - */ - - VM_PAGE_INSERT(mem, object); - mem->tabled = TRUE; - - /* - * And show that the object has one more resident - * page. - */ - - object->resident_page_count++; - - if (object->purgable == VM_PURGABLE_VOLATILE) { - vm_page_purgeable_count++; - } else if (object->purgable == VM_PURGABLE_EMPTY) { - if (mem->throttled) { - vm_page_deactivate(mem); - } + vm_page_free_unlocked(found_m, FALSE); } + vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, FALSE, FALSE, FALSE, NULL); } /* @@ -1099,75 +2075,196 @@ vm_page_replace( * Removes the given mem entry from the object/offset-page * table and the object page list. * - * The object and page queues must be locked. + * The object must be locked. */ void vm_page_remove( - register vm_page_t mem) + vm_page_t mem, + boolean_t remove_from_hash) { - register vm_page_bucket_t *bucket; - register vm_page_t this; - - XPR(XPR_VM_PAGE, - "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", - (integer_t)mem->object, (integer_t)mem->offset, - (integer_t)mem, 0,0); -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); -#endif - vm_object_lock_assert_exclusive(mem->object); - assert(mem->tabled); - assert(!mem->cleaning); - VM_PAGE_CHECK(mem); - - + vm_page_bucket_t *bucket; + vm_page_t this; + lck_spin_t *bucket_lock; + int hash_id; + task_t owner; + vm_object_t m_object; + int ledger_idx_volatile; + int ledger_idx_nonvolatile; + int ledger_idx_volatile_compressed; + int ledger_idx_nonvolatile_compressed; + int do_footprint; + + m_object = VM_PAGE_OBJECT(mem); + + vm_object_lock_assert_exclusive(m_object); + assert(mem->vmp_tabled); + assert(!mem->vmp_cleaning); + assert(!mem->vmp_laundry); + + if (VM_PAGE_PAGEABLE(mem)) { + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + } +#if 0 /* - * Remove from the object_object/offset hash table + * we don't hold the page queue lock + * so this check isn't safe to make */ + VM_PAGE_CHECK(mem); +#endif + if (remove_from_hash == TRUE) { + /* + * Remove from the object_object/offset hash table + */ + hash_id = vm_page_hash(m_object, mem->vmp_offset); + bucket = &vm_page_buckets[hash_id]; + bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; - bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)]; - simple_lock(&vm_page_bucket_lock); - if ((this = bucket->pages) == mem) { - /* optimize for common case */ + lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); - bucket->pages = mem->next; - } else { - register vm_page_t *prev; + if ((this = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))) == mem) { + /* optimize for common case */ - for (prev = &this->next; - (this = *prev) != mem; - prev = &this->next) - continue; - *prev = this->next; - } -#if MACH_PAGE_HASH_STATS - bucket->cur_count--; -#endif /* MACH_PAGE_HASH_STATS */ - simple_unlock(&vm_page_bucket_lock); + bucket->page_list = mem->vmp_next_m; + } else { + vm_page_packed_t *prev; + for (prev = &this->vmp_next_m; + (this = (vm_page_t)(VM_PAGE_UNPACK_PTR(*prev))) != mem; + prev = &this->vmp_next_m) { + continue; + } + *prev = this->vmp_next_m; + } +#if MACH_PAGE_HASH_STATS + bucket->cur_count--; +#endif /* MACH_PAGE_HASH_STATS */ + mem->vmp_hashed = FALSE; + this->vmp_next_m = VM_PAGE_PACK_PTR(NULL); + lck_spin_unlock(bucket_lock); + } /* * Now remove from the object's list of backed pages. */ - VM_PAGE_REMOVE(mem); + vm_page_remove_internal(mem); /* * And show that the object has one fewer resident * page. */ - mem->object->resident_page_count--; + assert(m_object->resident_page_count > 0); + m_object->resident_page_count--; + +#if DEVELOPMENT || DEBUG + if (m_object->object_is_shared_cache && + m_object->pager != NULL && + m_object->pager->mo_pager_ops == &shared_region_pager_ops) { + assert(!m_object->internal); + OSAddAtomic(-1, &shared_region_pagers_resident_count); + } +#endif /* DEVELOPMENT || DEBUG */ + + if (m_object->internal) { +#if DEBUG + assert(vm_page_internal_count); +#endif /* DEBUG */ + + OSAddAtomic(-1, &vm_page_internal_count); + } else { + assert(vm_page_external_count); + OSAddAtomic(-1, &vm_page_external_count); + + if (mem->vmp_xpmapped) { + assert(vm_page_xpmapped_external_count); + OSAddAtomic(-1, &vm_page_xpmapped_external_count); + } + } + if (!m_object->internal && + m_object->cached_list.next && + m_object->cached_list.prev) { + if (m_object->resident_page_count == 0) { + vm_object_cache_remove(m_object); + } + } + + if (VM_PAGE_WIRED(mem)) { + assert(mem->vmp_wire_count > 0); + VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); + VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem); + VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag); + } + assert(m_object->resident_page_count >= + m_object->wired_page_count); + if (mem->vmp_reusable) { + assert(m_object->reusable_page_count > 0); + m_object->reusable_page_count--; + assert(m_object->reusable_page_count <= + m_object->resident_page_count); + mem->vmp_reusable = FALSE; + OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); + vm_page_stats_reusable.reused_remove++; + } else if (m_object->all_reusable) { + OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); + vm_page_stats_reusable.reused_remove++; + } + + if (m_object->purgable == VM_PURGABLE_DENY && + !m_object->vo_ledger_tag) { + owner = TASK_NULL; + } else { + owner = VM_OBJECT_OWNER(m_object); + vm_object_ledger_tag_ledgers(m_object, + &ledger_idx_volatile, + &ledger_idx_nonvolatile, + &ledger_idx_volatile_compressed, + &ledger_idx_nonvolatile_compressed, + &do_footprint); + } + if (owner && + (m_object->purgable == VM_PURGABLE_NONVOLATILE || + m_object->purgable == VM_PURGABLE_DENY || + VM_PAGE_WIRED(mem))) { + /* less non-volatile bytes */ + ledger_debit(owner->ledger, + ledger_idx_nonvolatile, + PAGE_SIZE); + if (do_footprint) { + /* less footprint */ + ledger_debit(owner->ledger, + task_ledgers.phys_footprint, + PAGE_SIZE); + } + } else if (owner && + (m_object->purgable == VM_PURGABLE_VOLATILE || + m_object->purgable == VM_PURGABLE_EMPTY)) { + assert(!VM_PAGE_WIRED(mem)); + /* less volatile bytes */ + ledger_debit(owner->ledger, + ledger_idx_volatile, + PAGE_SIZE); + } + if (m_object->purgable == VM_PURGABLE_VOLATILE) { + if (VM_PAGE_WIRED(mem)) { + assert(vm_page_purgeable_wired_count > 0); + OSAddAtomic(-1, &vm_page_purgeable_wired_count); + } else { + assert(vm_page_purgeable_count > 0); + OSAddAtomic(-1, &vm_page_purgeable_count); + } + } - if (mem->object->purgable == VM_PURGABLE_VOLATILE) { - assert(vm_page_purgeable_count > 0); - vm_page_purgeable_count--; + if (m_object->set_cache_attr == TRUE) { + pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(mem), 0); } - mem->tabled = FALSE; - mem->object = VM_OBJECT_NULL; - mem->offset = (vm_object_offset_t) -1; + + mem->vmp_tabled = FALSE; + mem->vmp_object = 0; + mem->vmp_offset = (vm_object_offset_t) -1; } + /* * vm_page_lookup: * @@ -1177,58 +2274,121 @@ vm_page_remove( * The object must be locked. No side effects. */ -unsigned long vm_page_lookup_hint = 0; -unsigned long vm_page_lookup_hint_next = 0; -unsigned long vm_page_lookup_hint_prev = 0; -unsigned long vm_page_lookup_hint_miss = 0; -unsigned long vm_page_lookup_bucket_NULL = 0; -unsigned long vm_page_lookup_miss = 0; +#define VM_PAGE_HASH_LOOKUP_THRESHOLD 10 + +#if DEBUG_VM_PAGE_LOOKUP +struct { + uint64_t vpl_total; + uint64_t vpl_empty_obj; + uint64_t vpl_bucket_NULL; + uint64_t vpl_hit_hint; + uint64_t vpl_hit_hint_next; + uint64_t vpl_hit_hint_prev; + uint64_t vpl_fast; + uint64_t vpl_slow; + uint64_t vpl_hit; + uint64_t vpl_miss; + + uint64_t vpl_fast_elapsed; + uint64_t vpl_slow_elapsed; +} vm_page_lookup_stats __attribute__((aligned(8))); + +#endif + +#define KDP_VM_PAGE_WALK_MAX 1000 + +vm_page_t +kdp_vm_page_lookup( + vm_object_t object, + vm_object_offset_t offset) +{ + vm_page_t cur_page; + int num_traversed = 0; + + if (not_in_kdp) { + panic("panic: kdp_vm_page_lookup done outside of kernel debugger"); + } + + vm_page_queue_iterate(&object->memq, cur_page, vmp_listq) { + if (cur_page->vmp_offset == offset) { + return cur_page; + } + num_traversed++; + + if (num_traversed >= KDP_VM_PAGE_WALK_MAX) { + return VM_PAGE_NULL; + } + } + + return VM_PAGE_NULL; +} vm_page_t vm_page_lookup( - register vm_object_t object, - register vm_object_offset_t offset) + vm_object_t object, + vm_object_offset_t offset) { - register vm_page_t mem; - register vm_page_bucket_t *bucket; - queue_entry_t qe; + vm_page_t mem; + vm_page_bucket_t *bucket; + vm_page_queue_entry_t qe; + lck_spin_t *bucket_lock = NULL; + int hash_id; +#if DEBUG_VM_PAGE_LOOKUP + uint64_t start, elapsed; + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_total); +#endif vm_object_lock_assert_held(object); + assertf(page_aligned(offset), "offset 0x%llx\n", offset); + + if (object->resident_page_count == 0) { +#if DEBUG_VM_PAGE_LOOKUP + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_empty_obj); +#endif + return VM_PAGE_NULL; + } + mem = object->memq_hint; if (mem != VM_PAGE_NULL) { - assert(mem->object == object); + assert(VM_PAGE_OBJECT(mem) == object); - if (mem->offset == offset) { - vm_page_lookup_hint++; + if (mem->vmp_offset == offset) { +#if DEBUG_VM_PAGE_LOOKUP + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint); +#endif return mem; } - qe = queue_next(&mem->listq); + qe = (vm_page_queue_entry_t)vm_page_queue_next(&mem->vmp_listq); - if (! queue_end(&object->memq, qe)) { - vm_page_t next_page; + if (!vm_page_queue_end(&object->memq, qe)) { + vm_page_t next_page; - next_page = (vm_page_t) qe; - assert(next_page->object == object); + next_page = (vm_page_t)((uintptr_t)qe); + assert(VM_PAGE_OBJECT(next_page) == object); - if (next_page->offset == offset) { - vm_page_lookup_hint_next++; + if (next_page->vmp_offset == offset) { object->memq_hint = next_page; /* new hint */ +#if DEBUG_VM_PAGE_LOOKUP + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_next); +#endif return next_page; } } - qe = queue_prev(&mem->listq); + qe = (vm_page_queue_entry_t)vm_page_queue_prev(&mem->vmp_listq); - if (! queue_end(&object->memq, qe)) { + if (!vm_page_queue_end(&object->memq, qe)) { vm_page_t prev_page; - prev_page = (vm_page_t) qe; - assert(prev_page->object == object); + prev_page = (vm_page_t)((uintptr_t)qe); + assert(VM_PAGE_OBJECT(prev_page) == object); - if (prev_page->offset == offset) { - vm_page_lookup_hint_prev++; + if (prev_page->vmp_offset == offset) { object->memq_hint = prev_page; /* new hint */ +#if DEBUG_VM_PAGE_LOOKUP + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_prev); +#endif return prev_page; } } @@ -1236,40 +2396,92 @@ vm_page_lookup( /* * Search the hash table for this object/offset pair */ - bucket = &vm_page_buckets[vm_page_hash(object, offset)]; + hash_id = vm_page_hash(object, offset); + bucket = &vm_page_buckets[hash_id]; /* * since we hold the object lock, we are guaranteed that no * new pages can be inserted into this object... this in turn * guarantess that the page we're looking for can't exist * if the bucket it hashes to is currently NULL even when looked - * at outside the scope of the hash bucket lock... this is a + * at outside the scope of the hash bucket lock... this is a * really cheap optimiztion to avoid taking the lock */ - if (bucket->pages == VM_PAGE_NULL) { - vm_page_lookup_bucket_NULL++; - - return (VM_PAGE_NULL); + if (!bucket->page_list) { +#if DEBUG_VM_PAGE_LOOKUP + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_bucket_NULL); +#endif + return VM_PAGE_NULL; } - simple_lock(&vm_page_bucket_lock); - for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) { - VM_PAGE_CHECK(mem); - if ((mem->object == object) && (mem->offset == offset)) - break; +#if DEBUG_VM_PAGE_LOOKUP + start = mach_absolute_time(); +#endif + if (object->resident_page_count <= VM_PAGE_HASH_LOOKUP_THRESHOLD) { + /* + * on average, it's roughly 3 times faster to run a short memq list + * than to take the spin lock and go through the hash list + */ + mem = (vm_page_t)vm_page_queue_first(&object->memq); + + while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) { + if (mem->vmp_offset == offset) { + break; + } + + mem = (vm_page_t)vm_page_queue_next(&mem->vmp_listq); + } + if (vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) { + mem = NULL; + } + } else { + vm_page_object_t packed_object; + + packed_object = VM_PAGE_PACK_OBJECT(object); + + bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; + + lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); + + for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); + mem != VM_PAGE_NULL; + mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m))) { +#if 0 + /* + * we don't hold the page queue lock + * so this check isn't safe to make + */ + VM_PAGE_CHECK(mem); +#endif + if ((mem->vmp_object == packed_object) && (mem->vmp_offset == offset)) { + break; + } + } + lck_spin_unlock(bucket_lock); } - simple_unlock(&vm_page_bucket_lock); +#if DEBUG_VM_PAGE_LOOKUP + elapsed = mach_absolute_time() - start; + + if (bucket_lock) { + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_slow); + OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_slow_elapsed); + } else { + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_fast); + OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_fast_elapsed); + } if (mem != VM_PAGE_NULL) { - if (object->memq_hint != VM_PAGE_NULL) { - vm_page_lookup_hint_miss++; - } - assert(mem->object == object); - object->memq_hint = mem; - } else - vm_page_lookup_miss++; + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit); + } else { + OSAddAtomic64(1, &vm_page_lookup_stats.vpl_miss); + } +#endif + if (mem != VM_PAGE_NULL) { + assert(VM_PAGE_OBJECT(mem) == object); - return(mem); + object->memq_hint = mem; + } + return mem; } @@ -1283,43 +2495,59 @@ vm_page_lookup( */ void vm_page_rename( - register vm_page_t mem, - register vm_object_t new_object, - vm_object_offset_t new_offset, - boolean_t encrypted_ok) + vm_page_t mem, + vm_object_t new_object, + vm_object_offset_t new_offset) { - assert(mem->object != new_object); + boolean_t internal_to_external, external_to_internal; + vm_tag_t tag; + vm_object_t m_object; - /* - * ENCRYPTED SWAP: - * The encryption key is based on the page's memory object - * (aka "pager") and paging offset. Moving the page to - * another VM object changes its "pager" and "paging_offset" - * so it has to be decrypted first, or we would lose the key. - * - * One exception is VM object collapsing, where we transfer pages - * from one backing object to its parent object. This operation also - * transfers the paging information, so the info - * should remain consistent. The caller (vm_object_do_collapse()) - * sets "encrypted_ok" in this case. - */ - if (!encrypted_ok && mem->encrypted) { - panic("vm_page_rename: page %p is encrypted\n", mem); - } + m_object = VM_PAGE_OBJECT(mem); + + assert(m_object != new_object); + assert(m_object); /* - * Changes to mem->object require the page lock because + * Changes to mem->vmp_object require the page lock because * the pageout daemon uses that lock to get the object. */ + vm_page_lockspin_queues(); - XPR(XPR_VM_PAGE, - "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", - (integer_t)new_object, (integer_t)new_offset, - (integer_t)mem, 0,0); + internal_to_external = FALSE; + external_to_internal = FALSE; + + if (mem->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q) { + /* + * it's much easier to get the vm_page_pageable_xxx accounting correct + * if we first move the page to the active queue... it's going to end + * up there anyway, and we don't do vm_page_rename's frequently enough + * for this to matter. + */ + vm_page_queues_remove(mem, FALSE); + vm_page_activate(mem); + } + if (VM_PAGE_PAGEABLE(mem)) { + if (m_object->internal && !new_object->internal) { + internal_to_external = TRUE; + } + if (!m_object->internal && new_object->internal) { + external_to_internal = TRUE; + } + } + + tag = m_object->wire_tag; + vm_page_remove(mem, TRUE); + vm_page_insert_internal(mem, new_object, new_offset, tag, TRUE, TRUE, FALSE, FALSE, NULL); + + if (internal_to_external) { + vm_page_pageable_internal_count--; + vm_page_pageable_external_count++; + } else if (external_to_internal) { + vm_page_pageable_external_count--; + vm_page_pageable_internal_count++; + } - vm_page_lockspin_queues(); - vm_page_remove(mem); - vm_page_insert(mem, new_object, new_offset); vm_page_unlock_queues(); } @@ -1332,12 +2560,59 @@ vm_page_rename( */ void vm_page_init( - vm_page_t mem, - ppnum_t phys_page) + vm_page_t mem, + ppnum_t phys_page, + boolean_t lopage) { + uint_t i; + uintptr_t *p; + assert(phys_page); - *mem = vm_page_template; - mem->phys_page = phys_page; + +#if DEBUG + if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) { + if (!(pmap_valid_page(phys_page))) { + panic("vm_page_init: non-DRAM phys_page 0x%x\n", phys_page); + } + } +#endif /* DEBUG */ + + /* + * Initialize the fields of the vm_page. If adding any new fields to vm_page, + * try to use initial values which match 0. This minimizes the number of writes + * needed for boot-time initialization. + * + * Kernel bzero() isn't an inline yet, so do it by hand for performance. + */ + assert(VM_PAGE_NOT_ON_Q == 0); + assert(sizeof(*mem) % sizeof(uintptr_t) == 0); + for (p = (uintptr_t *)(void *)mem, i = sizeof(*mem) / sizeof(uintptr_t); i != 0; --i) { + *p++ = 0; + } + mem->vmp_offset = (vm_object_offset_t)-1; + mem->vmp_busy = TRUE; + mem->vmp_lopage = lopage; + + VM_PAGE_SET_PHYS_PAGE(mem, phys_page); +#if 0 + /* + * we're leaving this turned off for now... currently pages + * come off the free list and are either immediately dirtied/referenced + * due to zero-fill or COW faults, or are used to read or write files... + * in the file I/O case, the UPL mechanism takes care of clearing + * the state of the HW ref/mod bits in a somewhat fragile way. + * Since we may change the way this works in the future (to toughen it up), + * I'm leaving this as a reminder of where these bits could get cleared + */ + + /* + * make sure both the h/w referenced and modified bits are + * clear at this point... we are especially dependent on + * not finding a 'stale' h/w modified in a number of spots + * once this page goes back into use + */ + pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); +#endif } /* @@ -1346,25 +2621,26 @@ vm_page_init( * Remove a fictitious page from the free list. * Returns VM_PAGE_NULL if there are no free pages. */ -int c_vm_page_grab_fictitious = 0; -int c_vm_page_release_fictitious = 0; -int c_vm_page_more_fictitious = 0; - -extern vm_page_t vm_page_grab_fictitious_common(vm_offset_t phys_addr); +int c_vm_page_grab_fictitious = 0; +int c_vm_page_grab_fictitious_failed = 0; +int c_vm_page_release_fictitious = 0; +int c_vm_page_more_fictitious = 0; vm_page_t vm_page_grab_fictitious_common( - vm_offset_t phys_addr) + ppnum_t phys_addr) { - register vm_page_t m; + vm_page_t m; + + if ((m = (vm_page_t)zalloc_noblock(vm_page_zone))) { + vm_page_init(m, phys_addr, FALSE); + m->vmp_fictitious = TRUE; - m = (vm_page_t)zget(vm_page_zone); - if (m) { - vm_page_init(m, phys_addr); - m->fictitious = TRUE; + c_vm_page_grab_fictitious++; + } else { + c_vm_page_grab_fictitious_failed++; } - c_vm_page_grab_fictitious++; return m; } @@ -1374,46 +2650,54 @@ vm_page_grab_fictitious(void) return vm_page_grab_fictitious_common(vm_page_fictitious_addr); } +int vm_guard_count; + + vm_page_t vm_page_grab_guard(void) { - return vm_page_grab_fictitious_common(vm_page_guard_addr); + vm_page_t page; + page = vm_page_grab_fictitious_common(vm_page_guard_addr); + if (page) { + OSAddAtomic(1, &vm_guard_count); + } + return page; } + /* * vm_page_release_fictitious: * - * Release a fictitious page to the free list. + * Release a fictitious page to the zone pool */ - void vm_page_release_fictitious( - register vm_page_t m) + vm_page_t m) { - assert(!m->free); - assert(m->busy); - assert(m->fictitious); - assert(m->phys_page == vm_page_fictitious_addr || - m->phys_page == vm_page_guard_addr); + assert((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || (m->vmp_q_state == VM_PAGE_IS_WIRED)); + assert(m->vmp_fictitious); + assert(VM_PAGE_GET_PHYS_PAGE(m) == vm_page_fictitious_addr || + VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr); + + + if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { + OSAddAtomic(-1, &vm_guard_count); + } c_vm_page_release_fictitious++; -#if DEBUG - if (m->free) - panic("vm_page_release_fictitious"); -#endif - m->free = TRUE; + zfree(vm_page_zone, m); } /* * vm_page_more_fictitious: * - * Add more fictitious pages to the free list. + * Add more fictitious pages to the zone. * Allowed to block. This routine is way intimate * with the zones code, for several reasons: * 1. we need to carve some page structures out of physical * memory before zones work, so they _cannot_ come from - * the zone_map. + * the zone restricted submap. * 2. the zone needs to be collectable in order to prevent * growth without bound. These structures are used by * the device pager (by the hundreds and thousands), as @@ -1422,40 +2706,32 @@ vm_page_release_fictitious( * permanent allocation of a resource. * 3. To smooth allocation humps, we allocate single pages * with kernel_memory_allocate(), and cram them into the - * zone. This also allows us to initialize the vm_page_t's - * on the way into the zone, so that zget() always returns - * an initialized structure. The zone free element pointer - * and the free page pointer are both the first item in the - * vm_page_t. - * 4. By having the pages in the zone pre-initialized, we need - * not keep 2 levels of lists. The garbage collector simply - * scans our list, and reduces physical memory usage as it - * sees fit. + * zone. */ -void vm_page_more_fictitious(void) +void +vm_page_more_fictitious(void) { - register vm_page_t m; - vm_offset_t addr; - kern_return_t retval; - int i; + vm_offset_t addr; + kern_return_t retval; c_vm_page_more_fictitious++; /* - * Allocate a single page from the zone_map. Do not wait if no physical - * pages are immediately available, and do not zero the space. We need - * our own blocking lock here to prevent having multiple, - * simultaneous requests from piling up on the zone_map lock. Exactly - * one (of our) threads should be potentially waiting on the map lock. - * If winner is not vm-privileged, then the page allocation will fail, - * and it will temporarily block here in the vm_page_wait(). + * Allocate a single page from the zone restricted submap. Do not wait + * if no physical pages are immediately available, and do not zero the + * space. We need our own blocking lock here to prevent having multiple, + * simultaneous requests from piling up on the zone restricted submap + * lock. + * Exactly one (of our) threads should be potentially waiting on the map + * lock. If winner is not vm-privileged, then the page allocation will + * fail, and it will temporarily block here in the vm_page_wait(). */ - mutex_lock(&vm_page_alloc_lock); + lck_mtx_lock(&vm_page_alloc_lock); /* * If another thread allocated space, just bail out now. */ - if (zone_free_count(vm_page_zone) > 5) { + if (os_atomic_load(&vm_page_zone->countfree, relaxed) > 5) { /* * The number "5" is a small number that is larger than the * number of fictitious pages that any single caller will @@ -1468,36 +2744,28 @@ void vm_page_more_fictitious(void) * of fictitious pages required in this manner is 2. 5 is * simply a somewhat larger number. */ - mutex_unlock(&vm_page_alloc_lock); + lck_mtx_unlock(&vm_page_alloc_lock); return; } - retval = kernel_memory_allocate(zone_map, - &addr, PAGE_SIZE, VM_PROT_ALL, - KMA_KOBJECT|KMA_NOPAGEWAIT); - if (retval != KERN_SUCCESS) { + retval = kernel_memory_allocate(zone_submap(vm_page_zone), + &addr, PAGE_SIZE, 0, KMA_ZERO | KMA_KOBJECT | KMA_NOPAGEWAIT, + VM_KERN_MEMORY_ZONE); + + if (retval != KERN_SUCCESS) { /* - * No page was available. Tell the pageout daemon, drop the + * No page was available. Drop the * lock to give another thread a chance at it, and * wait for the pageout daemon to make progress. */ - mutex_unlock(&vm_page_alloc_lock); + lck_mtx_unlock(&vm_page_alloc_lock); vm_page_wait(THREAD_UNINT); return; } - /* - * Initialize as many vm_page_t's as will fit on this page. This - * depends on the zone code disturbing ONLY the first item of - * each zone element. - */ - m = (vm_page_t)addr; - for (i = PAGE_SIZE/sizeof(struct vm_page); i > 0; i--) { - vm_page_init(m, vm_page_fictitious_addr); - m->fictitious = TRUE; - m++; - } - zcram(vm_page_zone, (void *) addr, PAGE_SIZE); - mutex_unlock(&vm_page_alloc_lock); + + zcram(vm_page_zone, addr, PAGE_SIZE); + + lck_mtx_unlock(&vm_page_alloc_lock); } @@ -1512,2092 +2780,7030 @@ int vm_pool_low(void) { /* No locking, at worst we will fib. */ - return( vm_page_free_count < vm_page_free_reserved ); + return vm_page_free_count <= vm_page_free_reserved; } - +boolean_t vm_darkwake_mode = FALSE; /* - * this is an interface to support bring-up of drivers - * on platforms with physical memory > 4G... + * vm_update_darkwake_mode(): + * + * Tells the VM that the system is in / out of darkwake. + * + * Today, the VM only lowers/raises the background queue target + * so as to favor consuming more/less background pages when + * darwake is ON/OFF. + * + * We might need to do more things in the future. */ -int vm_himemory_mode = 0; +void +vm_update_darkwake_mode(boolean_t darkwake_mode) +{ + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); -/* - * this interface exists to support hardware controllers - * incapable of generating DMAs with more than 32 bits - * of address on platforms with physical memory > 4G... - */ -unsigned int vm_lopage_free_count = 0; -unsigned int vm_lopage_max_count = 0; -queue_head_t vm_lopage_queue_free; + vm_page_lockspin_queues(); -vm_page_t -vm_page_grablo(void) -{ - register vm_page_t mem; - unsigned int vm_lopage_alloc_count; + if (vm_darkwake_mode == darkwake_mode) { + /* + * No change. + */ + vm_page_unlock_queues(); + return; + } - if (vm_lopage_poolsize == 0) - return (vm_page_grab()); + vm_darkwake_mode = darkwake_mode; - mutex_lock(&vm_page_queue_free_lock); + if (vm_darkwake_mode == TRUE) { +#if CONFIG_BACKGROUND_QUEUE - if (! queue_empty(&vm_lopage_queue_free)) { - queue_remove_first(&vm_lopage_queue_free, - mem, - vm_page_t, - pageq); - assert(mem->free); - assert(mem->busy); - assert(!mem->pmapped); - assert(!mem->wpmapped); + /* save background target to restore later */ + vm_page_background_target_snapshot = vm_page_background_target; - mem->pageq.next = NULL; - mem->pageq.prev = NULL; - mem->free = FALSE; + /* target is set to 0...no protection for background pages */ + vm_page_background_target = 0; - vm_lopage_free_count--; - vm_lopage_alloc_count = (vm_lopage_poolend - vm_lopage_poolstart) - vm_lopage_free_count; - if (vm_lopage_alloc_count > vm_lopage_max_count) - vm_lopage_max_count = vm_lopage_alloc_count; - } else { - mem = VM_PAGE_NULL; - } - mutex_unlock(&vm_page_queue_free_lock); +#endif /* CONFIG_BACKGROUND_QUEUE */ + } else if (vm_darkwake_mode == FALSE) { +#if CONFIG_BACKGROUND_QUEUE - return (mem); + if (vm_page_background_target_snapshot) { + vm_page_background_target = vm_page_background_target_snapshot; + } +#endif /* CONFIG_BACKGROUND_QUEUE */ + } + vm_page_unlock_queues(); } +#if CONFIG_BACKGROUND_QUEUE -/* - * vm_page_grab: - * - * first try to grab a page from the per-cpu free list... - * this must be done while pre-emption is disabled... if - * a page is available, we're done... - * if no page is available, grab the vm_page_queue_free_lock - * and see if current number of free pages would allow us - * to grab at least 1... if not, return VM_PAGE_NULL as before... - * if there are pages available, disable preemption and - * recheck the state of the per-cpu free list... we could - * have been preempted and moved to a different cpu, or - * some other thread could have re-filled it... if still - * empty, figure out how many pages we can steal from the - * global free queue and move to the per-cpu queue... - * return 1 of these pages when done... only wakeup the - * pageout_scan thread if we moved pages from the global - * list... no need for the wakeup if we've satisfied the - * request from the per-cpu queue. - */ +void +vm_page_update_background_state(vm_page_t mem) +{ + if (vm_page_background_mode == VM_PAGE_BG_DISABLED) { + return; + } -#define COLOR_GROUPS_TO_STEAL 4 + if (mem->vmp_in_background == FALSE) { + return; + } + task_t my_task = current_task(); -vm_page_t -vm_page_grab( void ) -{ - vm_page_t mem; + if (my_task) { + if (task_get_darkwake_mode(my_task)) { + return; + } + } + +#if BACKGROUNDQ_BASED_ON_QOS + if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) { + return; + } +#else + if (my_task) { + if (proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG)) { + return; + } + } +#endif + vm_page_lockspin_queues(); + mem->vmp_in_background = FALSE; + vm_page_background_promoted_count++; - disable_preemption(); + vm_page_remove_from_backgroundq(mem); - if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { -return_page_from_cpu_list: - PROCESSOR_DATA(current_processor(), page_grab_count) += 1; - PROCESSOR_DATA(current_processor(), free_pages) = mem->pageq.next; - mem->pageq.next = NULL; - - enable_preemption(); - - assert(mem->listq.next == NULL && mem->listq.prev == NULL); - assert(mem->tabled == FALSE); - assert(mem->object == VM_OBJECT_NULL); - assert(!mem->laundry); - assert(!mem->free); - assert(pmap_verify_free(mem->phys_page)); - assert(mem->busy); - assert(!mem->encrypted); - assert(!mem->pmapped); - assert(!mem->wpmapped); + vm_page_unlock_queues(); +} - return mem; + +void +vm_page_assign_background_state(vm_page_t mem) +{ + if (vm_page_background_mode == VM_PAGE_BG_DISABLED) { + return; } - enable_preemption(); + task_t my_task = current_task(); - mutex_lock(&vm_page_queue_free_lock); + if (my_task) { + if (task_get_darkwake_mode(my_task)) { + mem->vmp_in_background = TRUE; + return; + } + } - /* - * Optionally produce warnings if the wire or gobble - * counts exceed some threshold. - */ - if (vm_page_wire_count_warning > 0 - && vm_page_wire_count >= vm_page_wire_count_warning) { - printf("mk: vm_page_grab(): high wired page count of %d\n", - vm_page_wire_count); - assert(vm_page_wire_count < vm_page_wire_count_warning); +#if BACKGROUNDQ_BASED_ON_QOS + if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) { + mem->vmp_in_background = TRUE; + } else { + mem->vmp_in_background = FALSE; } - if (vm_page_gobble_count_warning > 0 - && vm_page_gobble_count >= vm_page_gobble_count_warning) { - printf("mk: vm_page_grab(): high gobbled page count of %d\n", - vm_page_gobble_count); - assert(vm_page_gobble_count < vm_page_gobble_count_warning); +#else + if (my_task) { + mem->vmp_in_background = proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG); } +#endif +} - /* - * Only let privileged threads (involved in pageout) - * dip into the reserved pool. - */ - if ((vm_page_free_count < vm_page_free_reserved) && - !(current_thread()->options & TH_OPT_VMPRIV)) { - mutex_unlock(&vm_page_queue_free_lock); - mem = VM_PAGE_NULL; - } - else { - vm_page_t head; - vm_page_t tail; - unsigned int pages_to_steal; - unsigned int color; - while ( vm_page_free_count == 0 ) { +void +vm_page_remove_from_backgroundq( + vm_page_t mem) +{ + vm_object_t m_object; - mutex_unlock(&vm_page_queue_free_lock); - /* - * must be a privileged thread to be - * in this state since a non-privileged - * thread would have bailed if we were - * under the vm_page_free_reserved mark - */ - VM_PAGE_WAIT(); - mutex_lock(&vm_page_queue_free_lock); - } + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); - disable_preemption(); + if (mem->vmp_on_backgroundq) { + vm_page_queue_remove(&vm_page_queue_background, mem, vmp_backgroundq); - if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { - mutex_unlock(&vm_page_queue_free_lock); + mem->vmp_backgroundq.next = 0; + mem->vmp_backgroundq.prev = 0; + mem->vmp_on_backgroundq = FALSE; - /* - * we got preempted and moved to another processor - * or we got preempted and someone else ran and filled the cache - */ - goto return_page_from_cpu_list; - } - if (vm_page_free_count <= vm_page_free_reserved) - pages_to_steal = 1; - else { - pages_to_steal = COLOR_GROUPS_TO_STEAL * vm_colors; - - if (pages_to_steal > (vm_page_free_count - vm_page_free_reserved)) - pages_to_steal = (vm_page_free_count - vm_page_free_reserved); - } - color = PROCESSOR_DATA(current_processor(), start_color); - head = tail = NULL; - - while (pages_to_steal--) { - if (--vm_page_free_count < vm_page_free_count_minimum) - vm_page_free_count_minimum = vm_page_free_count; - - while (queue_empty(&vm_page_queue_free[color])) - color = (color + 1) & vm_color_mask; - - queue_remove_first(&vm_page_queue_free[color], - mem, - vm_page_t, - pageq); - mem->pageq.next = NULL; - mem->pageq.prev = NULL; - - color = (color + 1) & vm_color_mask; - - if (head == NULL) - head = mem; - else - tail->pageq.next = (queue_t)mem; - tail = mem; - - mem->pageq.prev = NULL; - assert(mem->listq.next == NULL && mem->listq.prev == NULL); - assert(mem->tabled == FALSE); - assert(mem->object == VM_OBJECT_NULL); - assert(!mem->laundry); - assert(mem->free); - mem->free = FALSE; - - assert(pmap_verify_free(mem->phys_page)); - assert(mem->busy); - assert(!mem->free); - assert(!mem->encrypted); - assert(!mem->pmapped); - assert(!mem->wpmapped); - } - PROCESSOR_DATA(current_processor(), free_pages) = head->pageq.next; - PROCESSOR_DATA(current_processor(), start_color) = color; - - /* - * satisfy this request - */ - PROCESSOR_DATA(current_processor(), page_grab_count) += 1; - mem = head; - mem->pageq.next = NULL; - - mutex_unlock(&vm_page_queue_free_lock); - - enable_preemption(); - } - /* - * Decide if we should poke the pageout daemon. - * We do this if the free count is less than the low - * water mark, or if the free count is less than the high - * water mark (but above the low water mark) and the inactive - * count is less than its target. - * - * We don't have the counts locked ... if they change a little, - * it doesn't really matter. - */ - if ((vm_page_free_count < vm_page_free_min) || - ((vm_page_free_count < vm_page_free_target) && - ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) - thread_wakeup((event_t) &vm_page_free_wanted); + vm_page_background_count--; -#if CONFIG_EMBEDDED - { - int percent_avail; + m_object = VM_PAGE_OBJECT(mem); - /* - * Decide if we need to poke the memorystatus notification thread. - */ - percent_avail = - (vm_page_active_count + vm_page_inactive_count + - vm_page_speculative_count + vm_page_free_count + - (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / - atop_64(max_mem); - if (percent_avail <= (kern_memorystatus_level - 5)) { - kern_memorystatus_level = percent_avail; - thread_wakeup((event_t)&kern_memorystatus_wakeup); - } + if (m_object->internal) { + vm_page_background_internal_count--; + } else { + vm_page_background_external_count--; + } + } else { + assert(VM_PAGE_UNPACK_PTR(mem->vmp_backgroundq.next) == (uintptr_t)NULL && + VM_PAGE_UNPACK_PTR(mem->vmp_backgroundq.prev) == (uintptr_t)NULL); } -#endif - -// dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ - - return mem; } -/* - * vm_page_release: - * - * Return a page to the free list. - */ void -vm_page_release( - register vm_page_t mem) +vm_page_add_to_backgroundq( + vm_page_t mem, + boolean_t first) { - unsigned int color; -#if 0 - unsigned int pindex; - phys_entry *physent; + vm_object_t m_object; + + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); - physent = mapping_phys_lookup(mem->phys_page, &pindex); /* (BRINGUP) */ - if(physent->ppLink & ppN) { /* (BRINGUP) */ - panic("vm_page_release: already released - %08X %08X\n", mem, mem->phys_page); + if (vm_page_background_mode == VM_PAGE_BG_DISABLED) { + return; } - physent->ppLink = physent->ppLink | ppN; /* (BRINGUP) */ -#endif - assert(!mem->private && !mem->fictitious); -// dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ + if (mem->vmp_on_backgroundq == FALSE) { + m_object = VM_PAGE_OBJECT(mem); - mutex_lock(&vm_page_queue_free_lock); -#if DEBUG - if (mem->free) - panic("vm_page_release"); -#endif - mem->free = TRUE; - - assert(mem->busy); - assert(!mem->laundry); - assert(mem->object == VM_OBJECT_NULL); - assert(mem->pageq.next == NULL && - mem->pageq.prev == NULL); - assert(mem->listq.next == NULL && - mem->listq.prev == NULL); - - if (mem->phys_page <= vm_lopage_poolend && mem->phys_page >= vm_lopage_poolstart) { - /* - * this exists to support hardware controllers - * incapable of generating DMAs with more than 32 bits - * of address on platforms with physical memory > 4G... - */ - queue_enter_first(&vm_lopage_queue_free, - mem, - vm_page_t, - pageq); - vm_lopage_free_count++; - } else { - color = mem->phys_page & vm_color_mask; - queue_enter_first(&vm_page_queue_free[color], - mem, - vm_page_t, - pageq); - vm_page_free_count++; - /* - * Check if we should wake up someone waiting for page. - * But don't bother waking them unless they can allocate. - * - * We wakeup only one thread, to prevent starvation. - * Because the scheduling system handles wait queues FIFO, - * if we wakeup all waiting threads, one greedy thread - * can starve multiple niceguy threads. When the threads - * all wakeup, the greedy threads runs first, grabs the page, - * and waits for another page. It will be the first to run - * when the next page is freed. - * - * However, there is a slight danger here. - * The thread we wake might not use the free page. - * Then the other threads could wait indefinitely - * while the page goes unused. To forestall this, - * the pageout daemon will keep making free pages - * as long as vm_page_free_wanted is non-zero. - */ + if (vm_page_background_exclude_external && !m_object->internal) { + return; + } - if ((vm_page_free_wanted_privileged > 0) && vm_page_free_count) { - vm_page_free_wanted_privileged--; - thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); - } else if ((vm_page_free_wanted > 0) && - (vm_page_free_count >= vm_page_free_reserved)) { - vm_page_free_wanted--; - thread_wakeup_one((event_t) &vm_page_free_count); + if (first == TRUE) { + vm_page_queue_enter_first(&vm_page_queue_background, mem, vmp_backgroundq); + } else { + vm_page_queue_enter(&vm_page_queue_background, mem, vmp_backgroundq); } - } - mutex_unlock(&vm_page_queue_free_lock); + mem->vmp_on_backgroundq = TRUE; -#if CONFIG_EMBEDDED - { - int percent_avail; + vm_page_background_count++; - /* - * Decide if we need to poke the memorystatus notification thread. - * Locking is not a big issue, as only a single thread delivers these. - */ - percent_avail = - (vm_page_active_count + vm_page_inactive_count + - vm_page_speculative_count + vm_page_free_count + - (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / - atop_64(max_mem); - if (percent_avail >= (kern_memorystatus_level + 5)) { - kern_memorystatus_level = percent_avail; - thread_wakeup((event_t)&kern_memorystatus_wakeup); - } + if (m_object->internal) { + vm_page_background_internal_count++; + } else { + vm_page_background_external_count++; + } } -#endif } +#endif /* CONFIG_BACKGROUND_QUEUE */ + /* - * vm_page_wait: - * - * Wait for a page to become available. - * If there are plenty of free pages, then we don't sleep. - * - * Returns: - * TRUE: There may be another page, try again - * FALSE: We were interrupted out of our wait, don't try again + * This can be switched to FALSE to help debug drivers + * that are having problems with memory > 4G. */ +boolean_t vm_himemory_mode = TRUE; -boolean_t -vm_page_wait( - int interruptible ) -{ - /* - * We can't use vm_page_free_reserved to make this - * determination. Consider: some thread might - * need to allocate two pages. The first allocation - * succeeds, the second fails. After the first page is freed, - * a call to vm_page_wait must really block. - */ - kern_return_t wait_result; - int need_wakeup = 0; - int is_privileged = current_thread()->options & TH_OPT_VMPRIV; +/* + * this interface exists to support hardware controllers + * incapable of generating DMAs with more than 32 bits + * of address on platforms with physical memory > 4G... + */ +unsigned int vm_lopages_allocated_q = 0; +unsigned int vm_lopages_allocated_cpm_success = 0; +unsigned int vm_lopages_allocated_cpm_failed = 0; +vm_page_queue_head_t vm_lopage_queue_free VM_PAGE_PACKED_ALIGNED; - mutex_lock(&vm_page_queue_free_lock); +vm_page_t +vm_page_grablo(void) +{ + vm_page_t mem; - if (is_privileged && vm_page_free_count) { - mutex_unlock(&vm_page_queue_free_lock); - return TRUE; + if (vm_lopage_needed == FALSE) { + return vm_page_grab(); } - if (vm_page_free_count < vm_page_free_target) { - if (is_privileged) { - if (vm_page_free_wanted_privileged++ == 0) - need_wakeup = 1; - wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible); - } else { - if (vm_page_free_wanted++ == 0) - need_wakeup = 1; - wait_result = assert_wait((event_t)&vm_page_free_count, interruptible); - } - mutex_unlock(&vm_page_queue_free_lock); - counter(c_vm_page_wait_block++); + lck_mtx_lock_spin(&vm_page_queue_free_lock); - if (need_wakeup) - thread_wakeup((event_t)&vm_page_free_wanted); + if (!vm_page_queue_empty(&vm_lopage_queue_free)) { + vm_page_queue_remove_first(&vm_lopage_queue_free, mem, vmp_pageq); + assert(vm_lopage_free_count); + assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q); + mem->vmp_q_state = VM_PAGE_NOT_ON_Q; - if (wait_result == THREAD_WAITING) - wait_result = thread_block(THREAD_CONTINUE_NULL); + vm_lopage_free_count--; + vm_lopages_allocated_q++; + + if (vm_lopage_free_count < vm_lopage_lowater) { + vm_lopage_refill = TRUE; + } - return(wait_result == THREAD_AWAKENED); + lck_mtx_unlock(&vm_page_queue_free_lock); + +#if CONFIG_BACKGROUND_QUEUE + vm_page_assign_background_state(mem); +#endif } else { - mutex_unlock(&vm_page_queue_free_lock); - return TRUE; - } -} + lck_mtx_unlock(&vm_page_queue_free_lock); -/* - * vm_page_alloc: - * - * Allocate and return a memory cell associated - * with this VM object/offset pair. - * - * Object must be locked. - */ + if (cpm_allocate(PAGE_SIZE, &mem, atop(PPNUM_MAX), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) { + lck_mtx_lock_spin(&vm_page_queue_free_lock); + vm_lopages_allocated_cpm_failed++; + lck_mtx_unlock(&vm_page_queue_free_lock); -vm_page_t -vm_page_alloc( - vm_object_t object, - vm_object_offset_t offset) -{ - register vm_page_t mem; + return VM_PAGE_NULL; + } + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); - vm_object_lock_assert_exclusive(object); - mem = vm_page_grab(); - if (mem == VM_PAGE_NULL) - return VM_PAGE_NULL; + mem->vmp_busy = TRUE; - vm_page_insert(mem, object, offset); + vm_page_lockspin_queues(); - return(mem); -} + mem->vmp_gobbled = FALSE; + vm_page_gobble_count--; + vm_page_wire_count--; -vm_page_t -vm_page_alloclo( - vm_object_t object, - vm_object_offset_t offset) -{ - register vm_page_t mem; + vm_lopages_allocated_cpm_success++; + vm_page_unlock_queues(); + } + assert(mem->vmp_busy); + assert(!mem->vmp_pmapped); + assert(!mem->vmp_wpmapped); + assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); - vm_object_lock_assert_exclusive(object); - mem = vm_page_grablo(); - if (mem == VM_PAGE_NULL) - return VM_PAGE_NULL; + VM_PAGE_ZERO_PAGEQ_ENTRY(mem); - vm_page_insert(mem, object, offset); + disable_preemption(); + *PERCPU_GET(vm_page_grab_count) += 1; + VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, 0, 1, 0, 0); + enable_preemption(); - return(mem); + return mem; } /* - * vm_page_alloc_guard: - * - * Allocate a ficticious page which will be used - * as a guard page. The page will be inserted into - * the object and returned to the caller. + * vm_page_grab: + * + * first try to grab a page from the per-cpu free list... + * this must be done while pre-emption is disabled... if + * a page is available, we're done... + * if no page is available, grab the vm_page_queue_free_lock + * and see if current number of free pages would allow us + * to grab at least 1... if not, return VM_PAGE_NULL as before... + * if there are pages available, disable preemption and + * recheck the state of the per-cpu free list... we could + * have been preempted and moved to a different cpu, or + * some other thread could have re-filled it... if still + * empty, figure out how many pages we can steal from the + * global free queue and move to the per-cpu queue... + * return 1 of these pages when done... only wakeup the + * pageout_scan thread if we moved pages from the global + * list... no need for the wakeup if we've satisfied the + * request from the per-cpu queue. */ -vm_page_t -vm_page_alloc_guard( - vm_object_t object, - vm_object_offset_t offset) -{ - register vm_page_t mem; - - vm_object_lock_assert_exclusive(object); - mem = vm_page_grab_guard(); - if (mem == VM_PAGE_NULL) - return VM_PAGE_NULL; +#if CONFIG_SECLUDED_MEMORY +vm_page_t vm_page_grab_secluded(void); +#endif /* CONFIG_SECLUDED_MEMORY */ - vm_page_insert(mem, object, offset); +static inline void +vm_page_grab_diags(void); - return(mem); +vm_page_t +vm_page_grab(void) +{ + return vm_page_grab_options(VM_PAGE_GRAB_OPTIONS_NONE); } +#if HIBERNATION +boolean_t hibernate_rebuild_needed = FALSE; +#endif /* HIBERNATION */ -counter(unsigned int c_laundry_pages_freed = 0;) - -boolean_t vm_page_free_verify = TRUE; -/* - * vm_page_free: - * - * Returns the given page to the free list, - * disassociating it with any VM object. - * - * Object and page queues must be locked prior to entry. - */ -void -vm_page_free_prepare( - register vm_page_t mem) +vm_page_t +vm_page_grab_options( + int grab_options) { - VM_PAGE_CHECK(mem); - assert(!mem->free); - assert(!mem->cleaning); - assert(!mem->pageout); + vm_page_t mem; -#if DEBUG - if (vm_page_free_verify && !mem->fictitious && !mem->private) { - assert(pmap_verify_free(mem->phys_page)); - } - if (mem->object) - vm_object_lock_assert_exclusive(mem->object); - _mutex_assert(&vm_page_queue_lock, MA_OWNED); + disable_preemption(); - if (mem->free) - panic("vm_page_free: freeing page on free list\n"); -#endif + if ((mem = *PERCPU_GET(free_pages))) { +return_page_from_cpu_list: + assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q); - if (mem->laundry) { - /* - * We may have to free a page while it's being laundered - * if we lost its pager (due to a forced unmount, for example). - * We need to call vm_pageout_throttle_up() before removing - * the page from its VM object, so that we can find out on - * which pageout queue the page is. - */ - vm_pageout_throttle_up(mem); - counter(++c_laundry_pages_freed); - } +#if HIBERNATION + if (hibernate_rebuild_needed) { + panic("%s:%d should not modify cpu->free_pages while hibernating", __FUNCTION__, __LINE__); + } +#endif /* HIBERNATION */ - if (mem->tabled) - vm_page_remove(mem); /* clears tabled, object, offset */ + vm_page_grab_diags(); - VM_PAGE_QUEUES_REMOVE(mem); /* clears active/inactive/throttled/speculative */ + vm_offset_t pcpu_base = current_percpu_base(); + *PERCPU_GET_WITH_BASE(pcpu_base, vm_page_grab_count) += 1; + *PERCPU_GET_WITH_BASE(pcpu_base, free_pages) = mem->vmp_snext; + VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0); - if (mem->wire_count) { - if (!mem->private && !mem->fictitious) - vm_page_wire_count--; - mem->wire_count = 0; - assert(!mem->gobbled); - } else if (mem->gobbled) { - if (!mem->private && !mem->fictitious) - vm_page_wire_count--; - vm_page_gobble_count--; + enable_preemption(); + VM_PAGE_ZERO_PAGEQ_ENTRY(mem); + mem->vmp_q_state = VM_PAGE_NOT_ON_Q; + + assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0); + assert(mem->vmp_tabled == FALSE); + assert(mem->vmp_object == 0); + assert(!mem->vmp_laundry); + ASSERT_PMAP_FREE(mem); + assert(mem->vmp_busy); + assert(!mem->vmp_pmapped); + assert(!mem->vmp_wpmapped); + assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); + +#if CONFIG_BACKGROUND_QUEUE + vm_page_assign_background_state(mem); +#endif + return mem; } - mem->gobbled = FALSE; - - PAGE_WAKEUP(mem); /* clears wanted */ + enable_preemption(); - /* Some of these may be unnecessary */ - mem->busy = TRUE; - mem->absent = FALSE; - mem->error = FALSE; - mem->dirty = FALSE; - mem->precious = FALSE; - mem->reference = FALSE; - mem->encrypted = FALSE; - mem->encrypted_cleaning = FALSE; - mem->deactivated = FALSE; - mem->pmapped = FALSE; - mem->wpmapped = FALSE; - if (mem->private) { - mem->private = FALSE; - mem->fictitious = TRUE; - mem->phys_page = vm_page_fictitious_addr; + /* + * Optionally produce warnings if the wire or gobble + * counts exceed some threshold. + */ +#if VM_PAGE_WIRE_COUNT_WARNING + if (vm_page_wire_count >= VM_PAGE_WIRE_COUNT_WARNING) { + printf("mk: vm_page_grab(): high wired page count of %d\n", + vm_page_wire_count); } - if (!mem->fictitious) { - if (mem->zero_fill == TRUE) { - mem->zero_fill = FALSE; - OSAddAtomic(-1, (SInt32 *)&vm_zf_count); - } - vm_page_init(mem, mem->phys_page); +#endif +#if VM_PAGE_GOBBLE_COUNT_WARNING + if (vm_page_gobble_count >= VM_PAGE_GOBBLE_COUNT_WARNING) { + printf("mk: vm_page_grab(): high gobbled page count of %d\n", + vm_page_gobble_count); } -} +#endif -void -vm_page_free( - vm_page_t mem) -{ - vm_page_free_prepare(mem); - if (mem->fictitious) { - vm_page_release_fictitious(mem); - } else { - vm_page_release(mem); + /* + * If free count is low and we have delayed pages from early boot, + * get one of those instead. + */ + if (__improbable(vm_delayed_count > 0 && + vm_page_free_count <= vm_page_free_target && + (mem = vm_get_delayed_page(grab_options)) != NULL)) { + return mem; } -} - -/* - * Free a list of pages. The list can be up to several hundred pages, - * as blocked up by vm_pageout_scan(). - * The big win is not having to take the page q and free list locks once - * per page. We sort the incoming pages into n lists, one for - * each color. - * - * The page queues must be locked, and are kept locked. - */ -void -vm_page_free_list( - vm_page_t mem) -{ - vm_page_t nxt; - int pg_count = 0; - int color; - int inuse_list_head = -1; - queue_head_t free_list[MAX_COLORS]; - int inuse[MAX_COLORS]; + lck_mtx_lock_spin(&vm_page_queue_free_lock); - for (color = 0; color < (signed) vm_colors; color++) { - queue_init(&free_list[color]); - } - -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); -#endif - while (mem) { -#if DEBUG - if (mem->tabled || mem->object) - panic("vm_page_free_list: freeing tabled page\n"); - if (mem->inactive || mem->active || mem->throttled || mem->free) - panic("vm_page_free_list: freeing page on list\n"); - if (vm_page_free_verify && !mem->fictitious && !mem->private) { - assert(pmap_verify_free(mem->phys_page)); - } -#endif - assert(mem->pageq.prev == NULL); - assert(mem->busy); - assert(!mem->free); - nxt = (vm_page_t)(mem->pageq.next); - - if (!mem->fictitious) { - if (mem->phys_page <= vm_lopage_poolend && mem->phys_page >= vm_lopage_poolstart) { - mem->pageq.next = NULL; - vm_page_release(mem); - } else { - mem->free = TRUE; + /* + * Only let privileged threads (involved in pageout) + * dip into the reserved pool. + */ + if ((vm_page_free_count < vm_page_free_reserved) && + !(current_thread()->options & TH_OPT_VMPRIV)) { + /* no page for us in the free queue... */ + lck_mtx_unlock(&vm_page_queue_free_lock); + mem = VM_PAGE_NULL; - color = mem->phys_page & vm_color_mask; - if (queue_empty(&free_list[color])) { - inuse[color] = inuse_list_head; - inuse_list_head = color; +#if CONFIG_SECLUDED_MEMORY + /* ... but can we try and grab from the secluded queue? */ + if (vm_page_secluded_count > 0 && + ((grab_options & VM_PAGE_GRAB_SECLUDED) || + task_can_use_secluded_mem(current_task(), TRUE))) { + mem = vm_page_grab_secluded(); + if (grab_options & VM_PAGE_GRAB_SECLUDED) { + vm_page_secluded.grab_for_iokit++; + if (mem) { + vm_page_secluded.grab_for_iokit_success++; } - queue_enter_first(&free_list[color], - mem, - vm_page_t, - pageq); - pg_count++; - } - } else { - assert(mem->phys_page == vm_page_fictitious_addr || - mem->phys_page == vm_page_guard_addr); - vm_page_release_fictitious(mem); - } - mem = nxt; - } - if (pg_count) { - unsigned int avail_free_count; - - mutex_lock(&vm_page_queue_free_lock); - - color = inuse_list_head; - - while( color != -1 ) { - vm_page_t first, last; - vm_page_t first_free; - - first = (vm_page_t) queue_first(&free_list[color]); - last = (vm_page_t) queue_last(&free_list[color]); - first_free = (vm_page_t) queue_first(&vm_page_queue_free[color]); - - if (queue_empty(&vm_page_queue_free[color])) { - queue_last(&vm_page_queue_free[color]) = - (queue_entry_t) last; - } else { - queue_prev(&first_free->pageq) = - (queue_entry_t) last; } - queue_first(&vm_page_queue_free[color]) = - (queue_entry_t) first; - queue_prev(&first->pageq) = - (queue_entry_t) &vm_page_queue_free[color]; - queue_next(&last->pageq) = - (queue_entry_t) first_free; - color = inuse[color]; - } - - vm_page_free_count += pg_count; - avail_free_count = vm_page_free_count; + if (mem) { + VM_CHECK_MEMORYSTATUS; - while ((vm_page_free_wanted_privileged > 0) && avail_free_count) { - vm_page_free_wanted_privileged--; - avail_free_count--; + disable_preemption(); + vm_page_grab_diags(); + *PERCPU_GET(vm_page_grab_count) += 1; + VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0); + enable_preemption(); - thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); + return mem; + } + } +#else /* CONFIG_SECLUDED_MEMORY */ + (void) grab_options; +#endif /* CONFIG_SECLUDED_MEMORY */ + } else { + vm_page_t head; + vm_page_t tail; + unsigned int pages_to_steal; + unsigned int color; + unsigned int clump_end, sub_count; + + while (vm_page_free_count == 0) { + lck_mtx_unlock(&vm_page_queue_free_lock); + /* + * must be a privileged thread to be + * in this state since a non-privileged + * thread would have bailed if we were + * under the vm_page_free_reserved mark + */ + VM_PAGE_WAIT(); + lck_mtx_lock_spin(&vm_page_queue_free_lock); } - if ((vm_page_free_wanted > 0) && - (avail_free_count >= vm_page_free_reserved)) { - unsigned int available_pages; + disable_preemption(); - if (avail_free_count >= vm_page_free_reserved) { - available_pages = (avail_free_count - vm_page_free_reserved); - } else { - available_pages = 0; - } + if ((mem = *PERCPU_GET(free_pages))) { + lck_mtx_unlock(&vm_page_queue_free_lock); - if (available_pages >= vm_page_free_wanted) { - vm_page_free_wanted = 0; - thread_wakeup((event_t) &vm_page_free_count); + /* + * we got preempted and moved to another processor + * or we got preempted and someone else ran and filled the cache + */ + goto return_page_from_cpu_list; + } + if (vm_page_free_count <= vm_page_free_reserved) { + pages_to_steal = 1; + } else { + if (vm_free_magazine_refill_limit <= (vm_page_free_count - vm_page_free_reserved)) { + pages_to_steal = vm_free_magazine_refill_limit; } else { - while (available_pages--) { - vm_page_free_wanted--; - thread_wakeup_one((event_t) &vm_page_free_count); - } + pages_to_steal = (vm_page_free_count - vm_page_free_reserved); } } - mutex_unlock(&vm_page_queue_free_lock); + color = *PERCPU_GET(start_color); + head = tail = NULL; -#if CONFIG_EMBEDDED - { - int percent_avail; + vm_page_free_count -= pages_to_steal; + clump_end = sub_count = 0; - /* - * Decide if we need to poke the memorystatus notification thread. - */ - percent_avail = - (vm_page_active_count + vm_page_inactive_count + - vm_page_speculative_count + vm_page_free_count + - (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / - atop_64(max_mem); - if (percent_avail >= (kern_memorystatus_level + 5)) { - kern_memorystatus_level = percent_avail; - thread_wakeup((event_t)&kern_memorystatus_wakeup); - } - } + while (pages_to_steal--) { + while (vm_page_queue_empty(&vm_page_queue_free[color].qhead)) { + color = (color + 1) & vm_color_mask; + } +#if defined(__x86_64__) + vm_page_queue_remove_first_with_clump(&vm_page_queue_free[color].qhead, + mem, clump_end); +#else + vm_page_queue_remove_first(&vm_page_queue_free[color].qhead, + mem, vmp_pageq); #endif - } -} + assert(mem->vmp_q_state == VM_PAGE_ON_FREE_Q); -/* - * vm_page_wire: - * - * Mark this page as wired down by yet - * another map, removing it from paging queues - * as necessary. - * - * The page's object and the page queues must be locked. - */ -void -vm_page_wire( - register vm_page_t mem) -{ + VM_PAGE_ZERO_PAGEQ_ENTRY(mem); -// dbgLog(current_thread(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ +#if defined(__arm__) || defined(__arm64__) + color = (color + 1) & vm_color_mask; +#else - VM_PAGE_CHECK(mem); -#if DEBUG - if (mem->object) - vm_object_lock_assert_exclusive(mem->object); - _mutex_assert(&vm_page_queue_lock, MA_OWNED); -#endif - if (mem->wire_count == 0) { - VM_PAGE_QUEUES_REMOVE(mem); - if (!mem->private && !mem->fictitious && !mem->gobbled) - vm_page_wire_count++; - if (mem->gobbled) - vm_page_gobble_count--; - mem->gobbled = FALSE; - if (mem->zero_fill == TRUE) { - mem->zero_fill = FALSE; - OSAddAtomic(-1, (SInt32 *)&vm_zf_count); - } -#if CONFIG_EMBEDDED - { - int percent_avail; +#if DEVELOPMENT || DEBUG - /* - * Decide if we need to poke the memorystatus notification thread. - */ - percent_avail = - (vm_page_active_count + vm_page_inactive_count + - vm_page_speculative_count + vm_page_free_count + - (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / - atop_64(max_mem); - if (percent_avail <= (kern_memorystatus_level - 5)) { - kern_memorystatus_level = percent_avail; - thread_wakeup((event_t)&kern_memorystatus_wakeup); - } - } -#endif - /* - * ENCRYPTED SWAP: - * The page could be encrypted, but - * We don't have to decrypt it here - * because we don't guarantee that the - * data is actually valid at this point. - * The page will get decrypted in - * vm_fault_wire() if needed. - */ - } - assert(!mem->gobbled); - mem->wire_count++; -} + sub_count++; + if (clump_end) { + vm_clump_update_stats(sub_count); + sub_count = 0; + color = (color + 1) & vm_color_mask; + } +#else + if (clump_end) { + color = (color + 1) & vm_color_mask; + } -/* - * vm_page_gobble: - * - * Mark this page as consumed by the vm/ipc/xmm subsystems. - * - * Called only for freshly vm_page_grab()ed pages - w/ nothing locked. - */ -void -vm_page_gobble( - register vm_page_t mem) -{ - vm_page_lockspin_queues(); - VM_PAGE_CHECK(mem); +#endif /* if DEVELOPMENT || DEBUG */ - assert(!mem->gobbled); - assert(mem->wire_count == 0); +#endif /* if defined(__arm__) || defined(__arm64__) */ - if (!mem->gobbled && mem->wire_count == 0) { - if (!mem->private && !mem->fictitious) - vm_page_wire_count++; - } - vm_page_gobble_count++; - mem->gobbled = TRUE; - vm_page_unlock_queues(); -} + if (head == NULL) { + head = mem; + } else { + tail->vmp_snext = mem; + } + tail = mem; -/* - * vm_page_unwire: - * - * Release one wiring of this page, potentially - * enabling it to be paged again. - * - * The page's object and the page queues must be locked. - */ -void -vm_page_unwire( - register vm_page_t mem) -{ + assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0); + assert(mem->vmp_tabled == FALSE); + assert(mem->vmp_object == 0); + assert(!mem->vmp_laundry); -// dbgLog(current_thread(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ + mem->vmp_q_state = VM_PAGE_ON_FREE_LOCAL_Q; - VM_PAGE_CHECK(mem); - assert(mem->wire_count > 0); -#if DEBUG - if (mem->object) - vm_object_lock_assert_exclusive(mem->object); - _mutex_assert(&vm_page_queue_lock, MA_OWNED); + ASSERT_PMAP_FREE(mem); + assert(mem->vmp_busy); + assert(!mem->vmp_pmapped); + assert(!mem->vmp_wpmapped); + assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); + } +#if defined (__x86_64__) && (DEVELOPMENT || DEBUG) + vm_clump_update_stats(sub_count); #endif - if (--mem->wire_count == 0) { - assert(!mem->private && !mem->fictitious); - vm_page_wire_count--; - assert(!mem->laundry); - assert(mem->object != kernel_object); - assert(mem->pageq.next == NULL && mem->pageq.prev == NULL); - if (mem->object->purgable == VM_PURGABLE_EMPTY) { - vm_page_deactivate(mem); - } else { - vm_page_activate(mem); + lck_mtx_unlock(&vm_page_queue_free_lock); + +#if HIBERNATION + if (hibernate_rebuild_needed) { + panic("%s:%d should not modify cpu->free_pages while hibernating", __FUNCTION__, __LINE__); } -#if CONFIG_EMBEDDED - { - int percent_avail; +#endif /* HIBERNATION */ + vm_offset_t pcpu_base = current_percpu_base(); + *PERCPU_GET_WITH_BASE(pcpu_base, free_pages) = head->vmp_snext; + *PERCPU_GET_WITH_BASE(pcpu_base, start_color) = color; /* - * Decide if we need to poke the memorystatus notification thread. + * satisfy this request */ - percent_avail = - (vm_page_active_count + vm_page_inactive_count + - vm_page_speculative_count + vm_page_free_count + - (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / - atop_64(max_mem); - if (percent_avail >= (kern_memorystatus_level + 5)) { - kern_memorystatus_level = percent_avail; - thread_wakeup((event_t)&kern_memorystatus_wakeup); - } - } -#endif - } -} - - -/* - * vm_page_deactivate: - * - * Returns the given page to the inactive list, - * indicating that no physical maps have access - * to this page. [Used by the physical mapping system.] - * - * The page queues must be locked. - */ -void -vm_page_deactivate( - register vm_page_t m) -{ - boolean_t rapid_age = FALSE; + vm_page_grab_diags(); + *PERCPU_GET_WITH_BASE(pcpu_base, vm_page_grab_count) += 1; + VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0); + mem = head; + assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q); - VM_PAGE_CHECK(m); - assert(m->object != kernel_object); - assert(m->phys_page != vm_page_guard_addr); + VM_PAGE_ZERO_PAGEQ_ENTRY(mem); + mem->vmp_q_state = VM_PAGE_NOT_ON_Q; -// dbgLog(m->phys_page, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); -#endif + enable_preemption(); + } /* - * This page is no longer very interesting. If it was - * interesting (active or inactive/referenced), then we - * clear the reference bit and (re)enter it in the - * inactive queue. Note wired pages should not have - * their reference bit cleared. + * Decide if we should poke the pageout daemon. + * We do this if the free count is less than the low + * water mark. VM Pageout Scan will keep running till + * the free_count > free_target (& hence above free_min). + * This wakeup is to catch the possibility of the counts + * dropping between VM Pageout Scan parking and this check. + * + * We don't have the counts locked ... if they change a little, + * it doesn't really matter. */ - if (m->gobbled) { /* can this happen? */ - assert(m->wire_count == 0); - - if (!m->private && !m->fictitious) - vm_page_wire_count--; - vm_page_gobble_count--; - m->gobbled = FALSE; + if (vm_page_free_count < vm_page_free_min) { + lck_mtx_lock(&vm_page_queue_free_lock); + if (vm_pageout_running == FALSE) { + lck_mtx_unlock(&vm_page_queue_free_lock); + thread_wakeup((event_t) &vm_page_free_wanted); + } else { + lck_mtx_unlock(&vm_page_queue_free_lock); + } } - if (m->private || (m->wire_count != 0)) - return; - if (m->active && m->deactivated == TRUE) { - if (!pmap_is_referenced(m->phys_page)) - rapid_age = TRUE; - } - if (rapid_age == FALSE && !m->fictitious && !m->absent) - pmap_clear_reference(m->phys_page); + VM_CHECK_MEMORYSTATUS; - m->reference = FALSE; - m->deactivated = FALSE; - m->no_cache = FALSE; + if (mem) { +// dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ - if (!m->inactive) { - VM_PAGE_QUEUES_REMOVE(m); +#if CONFIG_BACKGROUND_QUEUE + vm_page_assign_background_state(mem); +#endif + } + return mem; +} - assert(!m->laundry); - assert(m->pageq.next == NULL && m->pageq.prev == NULL); +#if CONFIG_SECLUDED_MEMORY +vm_page_t +vm_page_grab_secluded(void) +{ + vm_page_t mem; + vm_object_t object; + int refmod_state; - if (!IP_VALID(memory_manager_default) && - m->dirty && m->object->internal && - (m->object->purgable == VM_PURGABLE_DENY || - m->object->purgable == VM_PURGABLE_NONVOLATILE || - m->object->purgable == VM_PURGABLE_VOLATILE )) { - queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); - m->throttled = TRUE; - vm_page_throttled_count++; - } else { - if (rapid_age == TRUE || - (!m->fictitious && m->object->named && m->object->ref_count == 1)) { - vm_page_speculate(m, FALSE); - vm_page_speculative_recreated++; - return; - } else { - if (m->zero_fill) { - queue_enter(&vm_page_queue_zf, m, vm_page_t, pageq); - vm_zf_queue_count++; - } else { - queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq); - } - } - m->inactive = TRUE; - if (!m->fictitious) { - vm_page_inactive_count++; - token_new_pagecount++; - } - } + if (vm_page_secluded_count == 0) { + /* no secluded pages to grab... */ + return VM_PAGE_NULL; } -} -/* - * vm_page_activate: - * - * Put the specified page on the active list (if appropriate). - * - * The page queues must be locked. - */ + /* secluded queue is protected by the VM page queue lock */ + vm_page_lock_queues(); -void -vm_page_activate( - register vm_page_t m) -{ - VM_PAGE_CHECK(m); -#ifdef FIXME_4778297 - assert(m->object != kernel_object); -#endif - assert(m->phys_page != vm_page_guard_addr); -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); -#endif - if (m->gobbled) { - assert(m->wire_count == 0); - if (!m->private && !m->fictitious) - vm_page_wire_count--; - vm_page_gobble_count--; - m->gobbled = FALSE; + if (vm_page_secluded_count == 0) { + /* no secluded pages to grab... */ + vm_page_unlock_queues(); + return VM_PAGE_NULL; } - if (m->private) - return; -#if DEBUG - if (m->active) - panic("vm_page_activate: already active"); +#if 00 + /* can we grab from the secluded queue? */ + if (vm_page_secluded_count > vm_page_secluded_target || + (vm_page_secluded_count > 0 && + task_can_use_secluded_mem(current_task(), TRUE))) { + /* OK */ + } else { + /* can't grab from secluded queue... */ + vm_page_unlock_queues(); + return VM_PAGE_NULL; + } #endif - if (m->speculative) { - DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); - DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); + /* we can grab a page from secluded queue! */ + assert((vm_page_secluded_count_free + + vm_page_secluded_count_inuse) == + vm_page_secluded_count); + if (current_task()->task_can_use_secluded_mem) { + assert(num_tasks_can_use_secluded_mem > 0); + } + assert(!vm_page_queue_empty(&vm_page_queue_secluded)); + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + mem = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded); + assert(mem->vmp_q_state == VM_PAGE_ON_SECLUDED_Q); + vm_page_queues_remove(mem, TRUE); + + object = VM_PAGE_OBJECT(mem); + + assert(!mem->vmp_fictitious); + assert(!VM_PAGE_WIRED(mem)); + if (object == VM_OBJECT_NULL) { + /* free for grab! */ + vm_page_unlock_queues(); + vm_page_secluded.grab_success_free++; + + assert(mem->vmp_busy); + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); + assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL); + assert(mem->vmp_pageq.next == 0); + assert(mem->vmp_pageq.prev == 0); + assert(mem->vmp_listq.next == 0); + assert(mem->vmp_listq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_on_backgroundq == 0); + assert(mem->vmp_backgroundq.next == 0); + assert(mem->vmp_backgroundq.prev == 0); +#endif /* CONFIG_BACKGROUND_QUEUE */ + return mem; } - VM_PAGE_QUEUES_REMOVE(m); + assert(!object->internal); +// vm_page_pageable_external_count--; - if (m->wire_count == 0) { - assert(!m->laundry); - assert(m->pageq.next == NULL && m->pageq.prev == NULL); - if (!IP_VALID(memory_manager_default) && - !m->fictitious && m->dirty && m->object->internal && - (m->object->purgable == VM_PURGABLE_DENY || - m->object->purgable == VM_PURGABLE_NONVOLATILE || - m->object->purgable == VM_PURGABLE_VOLATILE )) { - queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); - m->throttled = TRUE; - vm_page_throttled_count++; - } else { - queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); - m->active = TRUE; - if (!m->fictitious) - vm_page_active_count++; - } - m->reference = TRUE; - m->no_cache = FALSE; + if (!vm_object_lock_try(object)) { +// printf("SECLUDED: page %p: object %p locked\n", mem, object); + vm_page_secluded.grab_failure_locked++; +reactivate_secluded_page: + vm_page_activate(mem); + vm_page_unlock_queues(); + return VM_PAGE_NULL; + } + if (mem->vmp_busy || + mem->vmp_cleaning || + mem->vmp_laundry) { + /* can't steal page in this state... */ + vm_object_unlock(object); + vm_page_secluded.grab_failure_state++; + goto reactivate_secluded_page; } -} - -/* - * vm_page_speculate: - * - * Put the specified page on the speculative list (if appropriate). - * - * The page queues must be locked. - */ -void -vm_page_speculate( - vm_page_t m, - boolean_t new) -{ - struct vm_speculative_age_q *aq; + mem->vmp_busy = TRUE; + refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem)); + if (refmod_state & VM_MEM_REFERENCED) { + mem->vmp_reference = TRUE; + } + if (refmod_state & VM_MEM_MODIFIED) { + SET_PAGE_DIRTY(mem, FALSE); + } + if (mem->vmp_dirty || mem->vmp_precious) { + /* can't grab a dirty page; re-activate */ +// printf("SECLUDED: dirty page %p\n", mem); + PAGE_WAKEUP_DONE(mem); + vm_page_secluded.grab_failure_dirty++; + vm_object_unlock(object); + goto reactivate_secluded_page; + } + if (mem->vmp_reference) { + /* it's been used but we do need to grab a page... */ + } - VM_PAGE_CHECK(m); - assert(m->object != kernel_object); - assert(!m->speculative && !m->active && !m->inactive && !m->throttled); - assert(m->phys_page != vm_page_guard_addr); - assert(m->pageq.next == NULL && m->pageq.prev == NULL); -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); -#endif - if (m->wire_count == 0) { - mach_timespec_t ts; + vm_page_unlock_queues(); - clock_get_system_nanotime(&ts.tv_sec, (unsigned *)&ts.tv_nsec); + /* finish what vm_page_free() would have done... */ + vm_page_free_prepare_object(mem, TRUE); + vm_object_unlock(object); + object = VM_OBJECT_NULL; + if (vm_page_free_verify) { + ASSERT_PMAP_FREE(mem); + } + pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); + vm_page_secluded.grab_success_other++; + + assert(mem->vmp_busy); + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); + assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL); + assert(mem->vmp_pageq.next == 0); + assert(mem->vmp_pageq.prev == 0); + assert(mem->vmp_listq.next == 0); + assert(mem->vmp_listq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_on_backgroundq == 0); + assert(mem->vmp_backgroundq.next == 0); + assert(mem->vmp_backgroundq.prev == 0); +#endif /* CONFIG_BACKGROUND_QUEUE */ - if (vm_page_speculative_count == 0) { + return mem; +} - speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; - speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; +uint64_t +vm_page_secluded_drain(void) +{ + vm_page_t local_freeq; + int local_freed; + uint64_t num_reclaimed; + unsigned int saved_secluded_count, saved_secluded_target; - aq = &vm_page_queue_speculative[speculative_age_index]; + num_reclaimed = 0; + local_freeq = NULL; + local_freed = 0; - /* - * set the timer to begin a new group - */ - aq->age_ts.tv_sec = VM_PAGE_SPECULATIVE_Q_AGE_MS / 1000; - aq->age_ts.tv_nsec = (VM_PAGE_SPECULATIVE_Q_AGE_MS % 1000) * 1000 * NSEC_PER_USEC; + vm_page_lock_queues(); - ADD_MACH_TIMESPEC(&aq->age_ts, &ts); + saved_secluded_count = vm_page_secluded_count; + saved_secluded_target = vm_page_secluded_target; + vm_page_secluded_target = 0; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + while (vm_page_secluded_count) { + vm_page_t secluded_page; + + assert((vm_page_secluded_count_free + + vm_page_secluded_count_inuse) == + vm_page_secluded_count); + secluded_page = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded); + assert(secluded_page->vmp_q_state == VM_PAGE_ON_SECLUDED_Q); + + vm_page_queues_remove(secluded_page, FALSE); + assert(!secluded_page->vmp_fictitious); + assert(!VM_PAGE_WIRED(secluded_page)); + + if (secluded_page->vmp_object == 0) { + /* transfer to free queue */ + assert(secluded_page->vmp_busy); + secluded_page->vmp_snext = local_freeq; + local_freeq = secluded_page; + local_freed += 1; } else { - aq = &vm_page_queue_speculative[speculative_age_index]; - - if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { - - speculative_age_index++; + /* transfer to head of active queue */ + vm_page_enqueue_active(secluded_page, FALSE); + secluded_page = VM_PAGE_NULL; + } + num_reclaimed++; + } + vm_page_secluded_target = saved_secluded_target; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); - if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) - speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; - if (speculative_age_index == speculative_steal_index) { - speculative_steal_index = speculative_age_index + 1; +// printf("FBDP %s:%d secluded_count %d->%d, target %d, reclaimed %lld\n", __FUNCTION__, __LINE__, saved_secluded_count, vm_page_secluded_count, vm_page_secluded_target, num_reclaimed); - if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) - speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; - } - aq = &vm_page_queue_speculative[speculative_age_index]; + vm_page_unlock_queues(); - if (!queue_empty(&aq->age_q)) - vm_page_speculate_ageit(aq); + if (local_freed) { + vm_page_free_list(local_freeq, TRUE); + local_freeq = NULL; + local_freed = 0; + } - aq->age_ts.tv_sec = VM_PAGE_SPECULATIVE_Q_AGE_MS / 1000; - aq->age_ts.tv_nsec = (VM_PAGE_SPECULATIVE_Q_AGE_MS % 1000) * 1000 * NSEC_PER_USEC; + return num_reclaimed; +} +#endif /* CONFIG_SECLUDED_MEMORY */ - ADD_MACH_TIMESPEC(&aq->age_ts, &ts); - } - } - enqueue_tail(&aq->age_q, &m->pageq); - m->speculative = TRUE; - vm_page_speculative_count++; - if (new == TRUE) { - m->object->pages_created++; - vm_page_speculative_created++; - } +static inline void +vm_page_grab_diags() +{ +#if DEVELOPMENT || DEBUG + task_t task = current_task(); + if (task == NULL) { + return; } -} + ledger_credit(task->ledger, task_ledgers.pages_grabbed, 1); +#endif /* DEVELOPMENT || DEBUG */ +} /* - * move pages from the specified aging bin to - * the speculative bin that pageout_scan claims from + * vm_page_release: * - * The page queues must be locked. + * Return a page to the free list. */ + void -vm_page_speculate_ageit(struct vm_speculative_age_q *aq) +vm_page_release( + vm_page_t mem, + boolean_t page_queues_locked) { - struct vm_speculative_age_q *sq; - vm_page_t t; - - sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; - - if (queue_empty(&sq->age_q)) { - sq->age_q.next = aq->age_q.next; - sq->age_q.prev = aq->age_q.prev; - - t = (vm_page_t)sq->age_q.next; - t->pageq.prev = &sq->age_q; - - t = (vm_page_t)sq->age_q.prev; - t->pageq.next = &sq->age_q; + unsigned int color; + int need_wakeup = 0; + int need_priv_wakeup = 0; +#if CONFIG_SECLUDED_MEMORY + int need_secluded_wakeup = 0; +#endif /* CONFIG_SECLUDED_MEMORY */ + event_t wakeup_event = NULL; + + if (page_queues_locked) { + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); } else { - t = (vm_page_t)sq->age_q.prev; - t->pageq.next = aq->age_q.next; - - t = (vm_page_t)aq->age_q.next; - t->pageq.prev = sq->age_q.prev; - - t = (vm_page_t)aq->age_q.prev; - t->pageq.next = &sq->age_q; - - sq->age_q.prev = aq->age_q.prev; + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); } - queue_init(&aq->age_q); -} + assert(!mem->vmp_private && !mem->vmp_fictitious); + if (vm_page_free_verify) { + ASSERT_PMAP_FREE(mem); + } +// dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ + + pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); + + lck_mtx_lock_spin(&vm_page_queue_free_lock); + + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); + assert(mem->vmp_busy); + assert(!mem->vmp_laundry); + assert(mem->vmp_object == 0); + assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); + assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_backgroundq.next == 0 && + mem->vmp_backgroundq.prev == 0 && + mem->vmp_on_backgroundq == FALSE); +#endif + if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) && + vm_lopage_free_count < vm_lopage_free_limit && + VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) { + /* + * this exists to support hardware controllers + * incapable of generating DMAs with more than 32 bits + * of address on platforms with physical memory > 4G... + */ + vm_page_queue_enter_first(&vm_lopage_queue_free, mem, vmp_pageq); + vm_lopage_free_count++; -void -vm_page_lru( - vm_page_t m) -{ - VM_PAGE_CHECK(m); - assert(m->object != kernel_object); - assert(m->phys_page != vm_page_guard_addr); - -#if DEBUG - _mutex_assert(&vm_page_queue_lock, MA_OWNED); + if (vm_lopage_free_count >= vm_lopage_free_limit) { + vm_lopage_refill = FALSE; + } + + mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q; + mem->vmp_lopage = TRUE; +#if CONFIG_SECLUDED_MEMORY + } else if (vm_page_free_count > vm_page_free_reserved && + vm_page_secluded_count < vm_page_secluded_target && + num_tasks_can_use_secluded_mem == 0) { + /* + * XXX FBDP TODO: also avoid refilling secluded queue + * when some IOKit objects are already grabbing from it... + */ + if (!page_queues_locked) { + if (!vm_page_trylock_queues()) { + /* take locks in right order */ + lck_mtx_unlock(&vm_page_queue_free_lock); + vm_page_lock_queues(); + lck_mtx_lock_spin(&vm_page_queue_free_lock); + } + } + mem->vmp_lopage = FALSE; + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + vm_page_queue_enter_first(&vm_page_queue_secluded, mem, vmp_pageq); + mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q; + vm_page_secluded_count++; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + vm_page_secluded_count_free++; + if (!page_queues_locked) { + vm_page_unlock_queues(); + } + LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_OWNED); + if (vm_page_free_wanted_secluded > 0) { + vm_page_free_wanted_secluded--; + need_secluded_wakeup = 1; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + } else { + mem->vmp_lopage = FALSE; + mem->vmp_q_state = VM_PAGE_ON_FREE_Q; + + color = VM_PAGE_GET_COLOR(mem); +#if defined(__x86_64__) + vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem); +#else + vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq); #endif - if (m->active || m->reference) - return; + vm_page_free_count++; + /* + * Check if we should wake up someone waiting for page. + * But don't bother waking them unless they can allocate. + * + * We wakeup only one thread, to prevent starvation. + * Because the scheduling system handles wait queues FIFO, + * if we wakeup all waiting threads, one greedy thread + * can starve multiple niceguy threads. When the threads + * all wakeup, the greedy threads runs first, grabs the page, + * and waits for another page. It will be the first to run + * when the next page is freed. + * + * However, there is a slight danger here. + * The thread we wake might not use the free page. + * Then the other threads could wait indefinitely + * while the page goes unused. To forestall this, + * the pageout daemon will keep making free pages + * as long as vm_page_free_wanted is non-zero. + */ - if (m->private || (m->wire_count != 0)) - return; + assert(vm_page_free_count > 0); + if (vm_page_free_wanted_privileged > 0) { + vm_page_free_wanted_privileged--; + need_priv_wakeup = 1; +#if CONFIG_SECLUDED_MEMORY + } else if (vm_page_free_wanted_secluded > 0 && + vm_page_free_count > vm_page_free_reserved) { + vm_page_free_wanted_secluded--; + need_secluded_wakeup = 1; +#endif /* CONFIG_SECLUDED_MEMORY */ + } else if (vm_page_free_wanted > 0 && + vm_page_free_count > vm_page_free_reserved) { + vm_page_free_wanted--; + need_wakeup = 1; + } + } + vm_pageout_vminfo.vm_page_pages_freed++; - m->no_cache = FALSE; + VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, 1, 0, 0, 0); - VM_PAGE_QUEUES_REMOVE(m); + lck_mtx_unlock(&vm_page_queue_free_lock); - assert(!m->laundry); - assert(m->pageq.next == NULL && m->pageq.prev == NULL); + if (need_priv_wakeup) { + wakeup_event = &vm_page_free_wanted_privileged; + } +#if CONFIG_SECLUDED_MEMORY + else if (need_secluded_wakeup) { + wakeup_event = &vm_page_free_wanted_secluded; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + else if (need_wakeup) { + wakeup_event = &vm_page_free_count; + } - queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq); - m->inactive = TRUE; + if (wakeup_event) { + if (vps_dynamic_priority_enabled == TRUE) { + thread_t thread_woken = NULL; + wakeup_one_with_inheritor((event_t) wakeup_event, THREAD_AWAKENED, LCK_WAKE_DO_NOT_TRANSFER_PUSH, &thread_woken); + thread_deallocate(thread_woken); + } else { + thread_wakeup_one((event_t) wakeup_event); + } + } - vm_page_inactive_count++; - token_new_pagecount++; + VM_CHECK_MEMORYSTATUS; } - /* - * vm_page_part_zero_fill: - * - * Zero-fill a part of the page. + * This version of vm_page_release() is used only at startup + * when we are single-threaded and pages are being released + * for the first time. Hence, no locking or unnecessary checks are made. + * Note: VM_CHECK_MEMORYSTATUS invoked by the caller. */ void -vm_page_part_zero_fill( - vm_page_t m, - vm_offset_t m_pa, - vm_size_t len) +vm_page_release_startup( + vm_page_t mem) { - vm_page_t tmp; + vm_page_queue_t queue_free; - VM_PAGE_CHECK(m); -#ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED - pmap_zero_part_page(m->phys_page, m_pa, len); + if (vm_lopage_free_count < vm_lopage_free_limit && + VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) { + mem->vmp_lopage = TRUE; + mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q; + vm_lopage_free_count++; + queue_free = &vm_lopage_queue_free; +#if CONFIG_SECLUDED_MEMORY + } else if (vm_page_secluded_count < vm_page_secluded_target) { + mem->vmp_lopage = FALSE; + mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q; + vm_page_secluded_count++; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + vm_page_secluded_count_free++; + queue_free = &vm_page_queue_secluded; +#endif /* CONFIG_SECLUDED_MEMORY */ + } else { + mem->vmp_lopage = FALSE; + mem->vmp_q_state = VM_PAGE_ON_FREE_Q; + vm_page_free_count++; + queue_free = &vm_page_queue_free[VM_PAGE_GET_COLOR(mem)].qhead; + } + if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) { +#if defined(__x86_64__) + vm_page_queue_enter_clump(queue_free, mem); #else - while (1) { - tmp = vm_page_grab(); - if (tmp == VM_PAGE_NULL) { - vm_page_wait(THREAD_UNINT); - continue; - } - break; + vm_page_queue_enter(queue_free, mem, vmp_pageq); +#endif + } else { + vm_page_queue_enter_first(queue_free, mem, vmp_pageq); } - vm_page_zero_fill(tmp); - if(m_pa != 0) { - vm_page_part_copy(m, 0, tmp, 0, m_pa); +} + +/* + * vm_page_wait: + * + * Wait for a page to become available. + * If there are plenty of free pages, then we don't sleep. + * + * Returns: + * TRUE: There may be another page, try again + * FALSE: We were interrupted out of our wait, don't try again + */ + +boolean_t +vm_page_wait( + int interruptible ) +{ + /* + * We can't use vm_page_free_reserved to make this + * determination. Consider: some thread might + * need to allocate two pages. The first allocation + * succeeds, the second fails. After the first page is freed, + * a call to vm_page_wait must really block. + */ + kern_return_t wait_result; + int need_wakeup = 0; + int is_privileged = current_thread()->options & TH_OPT_VMPRIV; + event_t wait_event = NULL; + + lck_mtx_lock_spin(&vm_page_queue_free_lock); + + if (is_privileged && vm_page_free_count) { + lck_mtx_unlock(&vm_page_queue_free_lock); + return TRUE; } - if((m_pa + len) < PAGE_SIZE) { - vm_page_part_copy(m, m_pa + len, tmp, - m_pa + len, PAGE_SIZE - (m_pa + len)); + + if (vm_page_free_count >= vm_page_free_target) { + lck_mtx_unlock(&vm_page_queue_free_lock); + return TRUE; } - vm_page_copy(tmp,m); - vm_page_lock_queues(); - vm_page_free(tmp); - vm_page_unlock_queues(); + + if (is_privileged) { + if (vm_page_free_wanted_privileged++ == 0) { + need_wakeup = 1; + } + wait_event = (event_t)&vm_page_free_wanted_privileged; +#if CONFIG_SECLUDED_MEMORY + } else if (secluded_for_apps && + task_can_use_secluded_mem(current_task(), FALSE)) { +#if 00 + /* XXX FBDP: need pageq lock for this... */ + /* XXX FBDP: might wait even if pages available, */ + /* XXX FBDP: hopefully not for too long... */ + if (vm_page_secluded_count > 0) { + lck_mtx_unlock(&vm_page_queue_free_lock); + return TRUE; + } #endif + if (vm_page_free_wanted_secluded++ == 0) { + need_wakeup = 1; + } + wait_event = (event_t)&vm_page_free_wanted_secluded; +#endif /* CONFIG_SECLUDED_MEMORY */ + } else { + if (vm_page_free_wanted++ == 0) { + need_wakeup = 1; + } + wait_event = (event_t)&vm_page_free_count; + } + + /* + * We don't do a vm_pageout_scan wakeup if we already have + * some waiters because vm_pageout_scan checks for waiters + * before it returns and does so behind the vm_page_queue_free_lock, + * which we own when we bump the waiter counts. + */ + + if (vps_dynamic_priority_enabled == TRUE) { + /* + * We are waking up vm_pageout_scan here. If it needs + * the vm_page_queue_free_lock before we unlock it + * we'll end up just blocking and incur an extra + * context switch. Could be a perf. issue. + */ + + counter(c_vm_page_wait_block++); + + if (need_wakeup) { + thread_wakeup((event_t)&vm_page_free_wanted); + } + + /* + * LD: This event is going to get recorded every time because + * we don't get back THREAD_WAITING from lck_mtx_sleep_with_inheritor. + * We just block in that routine. + */ + VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START, + vm_page_free_wanted_privileged, + vm_page_free_wanted, +#if CONFIG_SECLUDED_MEMORY + vm_page_free_wanted_secluded, +#else /* CONFIG_SECLUDED_MEMORY */ + 0, +#endif /* CONFIG_SECLUDED_MEMORY */ + 0); + wait_result = lck_mtx_sleep_with_inheritor(&vm_page_queue_free_lock, + LCK_SLEEP_UNLOCK, + wait_event, + vm_pageout_scan_thread, + interruptible, + 0); + } else { + wait_result = assert_wait(wait_event, interruptible); + + lck_mtx_unlock(&vm_page_queue_free_lock); + counter(c_vm_page_wait_block++); + if (need_wakeup) { + thread_wakeup((event_t)&vm_page_free_wanted); + } + + if (wait_result == THREAD_WAITING) { + VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START, + vm_page_free_wanted_privileged, + vm_page_free_wanted, +#if CONFIG_SECLUDED_MEMORY + vm_page_free_wanted_secluded, +#else /* CONFIG_SECLUDED_MEMORY */ + 0, +#endif /* CONFIG_SECLUDED_MEMORY */ + 0); + wait_result = thread_block(THREAD_CONTINUE_NULL); + VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, + VM_PAGE_WAIT_BLOCK, DBG_FUNC_END, 0, 0, 0, 0); + } + } + + return (wait_result == THREAD_AWAKENED) || (wait_result == THREAD_NOT_WAITING); } /* - * vm_page_zero_fill: + * vm_page_alloc: * - * Zero-fill the specified page. + * Allocate and return a memory cell associated + * with this VM object/offset pair. + * + * Object must be locked. */ -void -vm_page_zero_fill( - vm_page_t m) + +vm_page_t +vm_page_alloc( + vm_object_t object, + vm_object_offset_t offset) { - XPR(XPR_VM_PAGE, - "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", - (integer_t)m->object, (integer_t)m->offset, (integer_t)m, 0,0); + vm_page_t mem; + int grab_options; - VM_PAGE_CHECK(m); + vm_object_lock_assert_exclusive(object); + grab_options = 0; +#if CONFIG_SECLUDED_MEMORY + if (object->can_grab_secluded) { + grab_options |= VM_PAGE_GRAB_SECLUDED; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + mem = vm_page_grab_options(grab_options); + if (mem == VM_PAGE_NULL) { + return VM_PAGE_NULL; + } -// dbgTrace(0xAEAEAEAE, m->phys_page, 0); /* (BRINGUP) */ - pmap_zero_page(m->phys_page); + vm_page_insert(mem, object, offset); + + return mem; } /* - * vm_page_part_copy: + * vm_page_alloc_guard: * - * copy part of one page to another + * Allocate a fictitious page which will be used + * as a guard page. The page will be inserted into + * the object and returned to the caller. */ -void -vm_page_part_copy( - vm_page_t src_m, - vm_offset_t src_pa, - vm_page_t dst_m, - vm_offset_t dst_pa, - vm_size_t len) +vm_page_t +vm_page_alloc_guard( + vm_object_t object, + vm_object_offset_t offset) { - VM_PAGE_CHECK(src_m); - VM_PAGE_CHECK(dst_m); + vm_page_t mem; + + vm_object_lock_assert_exclusive(object); + mem = vm_page_grab_guard(); + if (mem == VM_PAGE_NULL) { + return VM_PAGE_NULL; + } + + vm_page_insert(mem, object, offset); - pmap_copy_part_page(src_m->phys_page, src_pa, - dst_m->phys_page, dst_pa, len); + return mem; } + +counter(unsigned int c_laundry_pages_freed = 0; ) + /* - * vm_page_copy: + * vm_page_free_prepare: * - * Copy one page to another + * Removes page from any queue it may be on + * and disassociates it from its VM object. * - * ENCRYPTED SWAP: - * The source page should not be encrypted. The caller should - * make sure the page is decrypted first, if necessary. + * Object and page queues must be locked prior to entry. */ +static void +vm_page_free_prepare( + vm_page_t mem) +{ + vm_page_free_prepare_queues(mem); + vm_page_free_prepare_object(mem, TRUE); +} -int vm_page_copy_cs_validations = 0; -int vm_page_copy_cs_tainted = 0; void -vm_page_copy( - vm_page_t src_m, - vm_page_t dest_m) +vm_page_free_prepare_queues( + vm_page_t mem) { - XPR(XPR_VM_PAGE, - "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", - (integer_t)src_m->object, src_m->offset, - (integer_t)dest_m->object, dest_m->offset, - 0); + vm_object_t m_object; - VM_PAGE_CHECK(src_m); - VM_PAGE_CHECK(dest_m); + VM_PAGE_CHECK(mem); - /* - * ENCRYPTED SWAP: - * The source page should not be encrypted at this point. - * The destination page will therefore not contain encrypted - * data after the copy. - */ - if (src_m->encrypted) { - panic("vm_page_copy: source page %p is encrypted\n", src_m); - } - dest_m->encrypted = FALSE; + assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q); + assert(!mem->vmp_cleaning); + m_object = VM_PAGE_OBJECT(mem); - if (src_m->object != VM_OBJECT_NULL && - src_m->object->code_signed) { + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + if (m_object) { + vm_object_lock_assert_exclusive(m_object); + } + if (mem->vmp_laundry) { /* - * We're copying a page from a code-signed object. - * Whoever ends up mapping the copy page might care about - * the original page's integrity, so let's validate the - * source page now. + * We may have to free a page while it's being laundered + * if we lost its pager (due to a forced unmount, for example). + * We need to call vm_pageout_steal_laundry() before removing + * the page from its VM object, so that we can remove it + * from its pageout queue and adjust the laundry accounting */ - vm_page_copy_cs_validations++; - vm_page_validate_cs(src_m); - } - /* - * Propagate the code-signing bits to the copy page. - */ - dest_m->cs_validated = src_m->cs_validated; - dest_m->cs_tainted = src_m->cs_tainted; - if (dest_m->cs_tainted) { - assert(dest_m->cs_validated); - vm_page_copy_cs_tainted++; + vm_pageout_steal_laundry(mem, TRUE); + counter(++c_laundry_pages_freed); } - pmap_copy_page(src_m->phys_page, dest_m->phys_page); -} + vm_page_queues_remove(mem, TRUE); -#if MACH_ASSERT -/* - * Check that the list of pages is ordered by - * ascending physical address and has no holes. - */ -static int -vm_page_verify_contiguous( - vm_page_t pages, - unsigned int npages) -{ - register vm_page_t m; - unsigned int page_count; - vm_offset_t prev_addr; + if (VM_PAGE_WIRED(mem)) { + assert(mem->vmp_wire_count > 0); - prev_addr = pages->phys_page; - page_count = 1; - for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { - if (m->phys_page != prev_addr + 1) { - printf("m %p prev_addr 0x%x, current addr 0x%x\n", - m, prev_addr, m->phys_page); - printf("pages %p page_count %d\n", pages, page_count); - panic("vm_page_verify_contiguous: not contiguous!"); + if (m_object) { + VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); + VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem); + VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag); + + assert(m_object->resident_page_count >= + m_object->wired_page_count); + + if (m_object->purgable == VM_PURGABLE_VOLATILE) { + OSAddAtomic(+1, &vm_page_purgeable_count); + assert(vm_page_purgeable_wired_count > 0); + OSAddAtomic(-1, &vm_page_purgeable_wired_count); + } + if ((m_object->purgable == VM_PURGABLE_VOLATILE || + m_object->purgable == VM_PURGABLE_EMPTY) && + m_object->vo_owner != TASK_NULL) { + task_t owner; + int ledger_idx_volatile; + int ledger_idx_nonvolatile; + int ledger_idx_volatile_compressed; + int ledger_idx_nonvolatile_compressed; + boolean_t do_footprint; + + owner = VM_OBJECT_OWNER(m_object); + vm_object_ledger_tag_ledgers( + m_object, + &ledger_idx_volatile, + &ledger_idx_nonvolatile, + &ledger_idx_volatile_compressed, + &ledger_idx_nonvolatile_compressed, + &do_footprint); + /* + * While wired, this page was accounted + * as "non-volatile" but it should now + * be accounted as "volatile". + */ + /* one less "non-volatile"... */ + ledger_debit(owner->ledger, + ledger_idx_nonvolatile, + PAGE_SIZE); + if (do_footprint) { + /* ... and "phys_footprint" */ + ledger_debit(owner->ledger, + task_ledgers.phys_footprint, + PAGE_SIZE); + } + /* one more "volatile" */ + ledger_credit(owner->ledger, + ledger_idx_volatile, + PAGE_SIZE); + } } - prev_addr = m->phys_page; - ++page_count; - } - if (page_count != npages) { - printf("pages %p actual count 0x%x but requested 0x%x\n", - pages, page_count, npages); - panic("vm_page_verify_contiguous: count error"); + if (!mem->vmp_private && !mem->vmp_fictitious) { + vm_page_wire_count--; + } + + mem->vmp_q_state = VM_PAGE_NOT_ON_Q; + mem->vmp_wire_count = 0; + assert(!mem->vmp_gobbled); + } else if (mem->vmp_gobbled) { + if (!mem->vmp_private && !mem->vmp_fictitious) { + vm_page_wire_count--; + } + vm_page_gobble_count--; } - return 1; } -#endif /* MACH_ASSERT */ -#if MACH_ASSERT -/* - * Check the free lists for proper length etc. - */ -static void -vm_page_verify_free_lists( void ) +void +vm_page_free_prepare_object( + vm_page_t mem, + boolean_t remove_from_hash) { - unsigned int color, npages; - vm_page_t m; - vm_page_t prev_m; - - npages = 0; - - mutex_lock(&vm_page_queue_free_lock); - - for( color = 0; color < vm_colors; color++ ) { - prev_m = (vm_page_t) &vm_page_queue_free[color]; - queue_iterate(&vm_page_queue_free[color], - m, - vm_page_t, - pageq) { - if ((vm_page_t) m->pageq.prev != prev_m) - panic("vm_page_verify_free_lists: corrupted prev ptr"); - if ( ! m->free ) - panic("vm_page_verify_free_lists: not free"); - if ( ! m->busy ) - panic("vm_page_verify_free_lists: not busy"); - if ( (m->phys_page & vm_color_mask) != color) - panic("vm_page_verify_free_lists: wrong color"); - ++npages; - prev_m = m; - } + if (mem->vmp_tabled) { + vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */ } - if (npages != vm_page_free_count) - panic("vm_page_verify_free_lists: npages %u free_count %d", - npages, vm_page_free_count); + PAGE_WAKEUP(mem); /* clears wanted */ - mutex_unlock(&vm_page_queue_free_lock); + if (mem->vmp_private) { + mem->vmp_private = FALSE; + mem->vmp_fictitious = TRUE; + VM_PAGE_SET_PHYS_PAGE(mem, vm_page_fictitious_addr); + } + if (!mem->vmp_fictitious) { + assert(mem->vmp_pageq.next == 0); + assert(mem->vmp_pageq.prev == 0); + assert(mem->vmp_listq.next == 0); + assert(mem->vmp_listq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_backgroundq.next == 0); + assert(mem->vmp_backgroundq.prev == 0); +#endif /* CONFIG_BACKGROUND_QUEUE */ + assert(mem->vmp_next_m == 0); + ASSERT_PMAP_FREE(mem); + vm_page_init(mem, VM_PAGE_GET_PHYS_PAGE(mem), mem->vmp_lopage); + } } -#endif /* MACH_ASSERT */ - /* - * CONTIGUOUS PAGE ALLOCATION - * Additional levels of effort: - * + consider pages that are currently 'pmapped' - * this could be expensive since we'd have - * to ask the pmap layer about there state - * + consider dirty pages - * either clean them or - * copy them to other locations... + * vm_page_free: * - * Find a region large enough to contain at least n pages - * of contiguous physical memory. + * Returns the given page to the free list, + * disassociating it with any VM object. * - * This is done by traversing the vm_page_t array in a linear fashion - * we assume that the vm_page_t array has the avaiable physical pages in an - * ordered, ascending list... this is currently true of all our implementations - * and must remain so... there can be 'holes' in the array... we also can - * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed - * which use to happen via 'vm_page_convert'... that function was no longer - * being called and was removed... - * - * The basic flow consists of stabilizing some of the interesting state of - * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our - * sweep at the beginning of the array looking for pages that meet our criterea - * for a 'stealable' page... currently we are pretty conservative... if the page - * meets this criterea and is physically contiguous to the previous page in the 'run' - * we keep developing it. If we hit a page that doesn't fit, we reset our state - * and start to develop a new run... if at this point we've already considered - * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, - * and mutex_pause (which will yield the processor), to keep the latency low w/r - * to other threads trying to acquire free pages (or move pages from q to q), - * and then continue from the spot we left off... we only make 1 pass through the - * array. Once we have a 'run' that is long enough, we'll go into the loop which - * which steals the pages from the queues they're currently on... pages on the free - * queue can be stolen directly... pages that are on any of the other queues - * must be removed from the object they are tabled on... this requires taking the - * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails - * or if the state of the page behind the vm_object lock is no longer viable, we'll - * dump the pages we've currently stolen back to the free list, and pick up our - * scan from the point where we aborted the 'current' run. - * - * - * Requirements: - * - neither vm_page_queue nor vm_free_list lock can be held on entry - * - * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. - * - * Algorithm: + * Object and page queues must be locked prior to entry. */ +void +vm_page_free( + vm_page_t mem) +{ + vm_page_free_prepare(mem); -#define MAX_CONSIDERED_BEFORE_YIELD 1000 + if (mem->vmp_fictitious) { + vm_page_release_fictitious(mem); + } else { + vm_page_release(mem, + TRUE); /* page queues are locked */ + } +} -#define RESET_STATE_OF_RUN() \ - MACRO_BEGIN \ - prevcontaddr = -2; \ - free_considered = 0; \ - substitute_needed = 0; \ - npages = 0; \ - MACRO_END +void +vm_page_free_unlocked( + vm_page_t mem, + boolean_t remove_from_hash) +{ + vm_page_lockspin_queues(); + vm_page_free_prepare_queues(mem); + vm_page_unlock_queues(); + vm_page_free_prepare_object(mem, remove_from_hash); -static vm_page_t -vm_page_find_contiguous( - unsigned int contig_pages, - ppnum_t max_pnum, - boolean_t wire) -{ - vm_page_t m = NULL; - ppnum_t prevcontaddr; - unsigned int npages, considered; - unsigned int page_idx, start_idx; - int free_considered, free_available; - int substitute_needed; -#if DEBUG - uint32_t tv_start_sec, tv_start_usec, tv_end_sec, tv_end_usec; -#endif -#if MACH_ASSERT - int yielded = 0; - int dumped_run = 0; - int stolen_pages = 0; -#endif + if (mem->vmp_fictitious) { + vm_page_release_fictitious(mem); + } else { + vm_page_release(mem, FALSE); /* page queues are not locked */ + } +} - if (contig_pages == 0) - return VM_PAGE_NULL; -#if MACH_ASSERT - vm_page_verify_free_lists(); -#endif -#if DEBUG - clock_get_system_microtime(&tv_start_sec, &tv_start_usec); -#endif - vm_page_lock_queues(); - mutex_lock(&vm_page_queue_free_lock); +/* + * Free a list of pages. The list can be up to several hundred pages, + * as blocked up by vm_pageout_scan(). + * The big win is not having to take the free list lock once + * per page. + * + * The VM page queues lock (vm_page_queue_lock) should NOT be held. + * The VM page free queues lock (vm_page_queue_free_lock) should NOT be held. + */ +void +vm_page_free_list( + vm_page_t freeq, + boolean_t prepare_object) +{ + vm_page_t mem; + vm_page_t nxt; + vm_page_t local_freeq; + int pg_count; - RESET_STATE_OF_RUN(); + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); + LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_NOTOWNED); - considered = 0; - free_available = vm_page_free_count - vm_page_free_reserved; + while (freeq) { + pg_count = 0; + local_freeq = VM_PAGE_NULL; + mem = freeq; - for (page_idx = 0, start_idx = 0; - npages < contig_pages && page_idx < vm_pages_count; - page_idx++) { -retry: - m = &vm_pages[page_idx]; + /* + * break up the processing into smaller chunks so + * that we can 'pipeline' the pages onto the + * free list w/o introducing too much + * contention on the global free queue lock + */ + while (mem && pg_count < 64) { + assert((mem->vmp_q_state == VM_PAGE_NOT_ON_Q) || + (mem->vmp_q_state == VM_PAGE_IS_WIRED)); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_backgroundq.next == 0 && + mem->vmp_backgroundq.prev == 0 && + mem->vmp_on_backgroundq == FALSE); +#endif + nxt = mem->vmp_snext; + mem->vmp_snext = NULL; + assert(mem->vmp_pageq.prev == 0); - if (max_pnum && m->phys_page > max_pnum) { - /* no more low pages... */ - break; + if (vm_page_free_verify && !mem->vmp_fictitious && !mem->vmp_private) { + ASSERT_PMAP_FREE(mem); + } + if (prepare_object == TRUE) { + vm_page_free_prepare_object(mem, TRUE); + } + + if (!mem->vmp_fictitious) { + assert(mem->vmp_busy); + + if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) && + vm_lopage_free_count < vm_lopage_free_limit && + VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) { + vm_page_release(mem, FALSE); /* page queues are not locked */ +#if CONFIG_SECLUDED_MEMORY + } else if (vm_page_secluded_count < vm_page_secluded_target && + num_tasks_can_use_secluded_mem == 0) { + vm_page_release(mem, + FALSE); /* page queues are not locked */ +#endif /* CONFIG_SECLUDED_MEMORY */ + } else { + /* + * IMPORTANT: we can't set the page "free" here + * because that would make the page eligible for + * a physically-contiguous allocation (see + * vm_page_find_contiguous()) right away (we don't + * hold the vm_page_queue_free lock). That would + * cause trouble because the page is not actually + * in the free queue yet... + */ + mem->vmp_snext = local_freeq; + local_freeq = mem; + pg_count++; + + pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); + } + } else { + assert(VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_fictitious_addr || + VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_guard_addr); + vm_page_release_fictitious(mem); + } + mem = nxt; } - if (m->phys_page <= vm_lopage_poolend && - m->phys_page >= vm_lopage_poolstart) { - /* - * don't want to take pages from our - * reserved pool of low memory - * so don't consider it which - * means starting a new run - */ - RESET_STATE_OF_RUN(); + freeq = mem; - } else if (m->wire_count || m->gobbled || - m->encrypted || m->encrypted_cleaning || m->cs_validated || m->cs_tainted || - m->error || m->absent || m->pageout_queue || m->laundry || m->wanted || m->precious || - m->cleaning || m->overwriting || m->restart || m->unusual || m->list_req_pending) { - /* - * page is in a transient state - * or a state we don't want to deal - * with, so don't consider it which - * means starting a new run - */ - RESET_STATE_OF_RUN(); + if ((mem = local_freeq)) { + unsigned int avail_free_count; + unsigned int need_wakeup = 0; + unsigned int need_priv_wakeup = 0; +#if CONFIG_SECLUDED_MEMORY + unsigned int need_wakeup_secluded = 0; +#endif /* CONFIG_SECLUDED_MEMORY */ + event_t priv_wakeup_event, secluded_wakeup_event, normal_wakeup_event; + boolean_t priv_wakeup_all, secluded_wakeup_all, normal_wakeup_all; - } else if (!m->free && !m->active && !m->inactive && !m->speculative && !m->throttled) { - /* - * page needs to be on one of our queues - * in order for it to be stable behind the - * locks we hold at this point... - * if not, don't consider it which - * means starting a new run - */ - RESET_STATE_OF_RUN(); + lck_mtx_lock_spin(&vm_page_queue_free_lock); - } else if (!m->free && (!m->tabled || m->busy)) { - /* - * pages on the free list are always 'busy' - * so we couldn't test for 'busy' in the check - * for the transient states... pages that are - * 'free' are never 'tabled', so we also couldn't - * test for 'tabled'. So we check here to make - * sure that a non-free page is not busy and is - * tabled on an object... - * if not, don't consider it which - * means starting a new run - */ - RESET_STATE_OF_RUN(); + while (mem) { + int color; - } else { - if (m->phys_page != prevcontaddr + 1) { - npages = 1; - start_idx = page_idx; - } else { - npages++; + nxt = mem->vmp_snext; + + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); + assert(mem->vmp_busy); + mem->vmp_lopage = FALSE; + mem->vmp_q_state = VM_PAGE_ON_FREE_Q; + + color = VM_PAGE_GET_COLOR(mem); +#if defined(__x86_64__) + vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem); +#else + vm_page_queue_enter(&vm_page_queue_free[color].qhead, + mem, vmp_pageq); +#endif + mem = nxt; } - prevcontaddr = m->phys_page; + vm_pageout_vminfo.vm_page_pages_freed += pg_count; + vm_page_free_count += pg_count; + avail_free_count = vm_page_free_count; - if (m->pmapped || m->dirty) - substitute_needed++; + VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, pg_count, 0, 0, 0); - if (m->free) { - free_considered++; + if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) { + if (avail_free_count < vm_page_free_wanted_privileged) { + need_priv_wakeup = avail_free_count; + vm_page_free_wanted_privileged -= avail_free_count; + avail_free_count = 0; + } else { + need_priv_wakeup = vm_page_free_wanted_privileged; + avail_free_count -= vm_page_free_wanted_privileged; + vm_page_free_wanted_privileged = 0; + } } - if ((free_considered + substitute_needed) > free_available) { - /* - * if we let this run continue - * we will end up dropping the vm_page_free_count - * below the reserve limit... we need to abort - * this run, but we can at least re-consider this - * page... thus the jump back to 'retry' - */ - RESET_STATE_OF_RUN(); +#if CONFIG_SECLUDED_MEMORY + if (vm_page_free_wanted_secluded > 0 && + avail_free_count > vm_page_free_reserved) { + unsigned int available_pages; + available_pages = (avail_free_count - + vm_page_free_reserved); + if (available_pages < + vm_page_free_wanted_secluded) { + need_wakeup_secluded = available_pages; + vm_page_free_wanted_secluded -= + available_pages; + avail_free_count -= available_pages; + } else { + need_wakeup_secluded = + vm_page_free_wanted_secluded; + avail_free_count -= + vm_page_free_wanted_secluded; + vm_page_free_wanted_secluded = 0; + } + } +#endif /* CONFIG_SECLUDED_MEMORY */ + if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) { + unsigned int available_pages; - if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { - considered++; - goto retry; + available_pages = avail_free_count - vm_page_free_reserved; + + if (available_pages >= vm_page_free_wanted) { + need_wakeup = vm_page_free_wanted; + vm_page_free_wanted = 0; + } else { + need_wakeup = available_pages; + vm_page_free_wanted -= available_pages; } + } + lck_mtx_unlock(&vm_page_queue_free_lock); + + priv_wakeup_event = NULL; + secluded_wakeup_event = NULL; + normal_wakeup_event = NULL; + + priv_wakeup_all = FALSE; + secluded_wakeup_all = FALSE; + normal_wakeup_all = FALSE; + + + if (need_priv_wakeup != 0) { /* - * free_available == 0 - * so can't consider any free pages... if - * we went to retry in this case, we'd - * get stuck looking at the same page - * w/o making any forward progress - * we also want to take this path if we've already - * reached our limit that controls the lock latency + * There shouldn't be that many VM-privileged threads, + * so let's wake them all up, even if we don't quite + * have enough pages to satisfy them all. */ + priv_wakeup_event = (event_t)&vm_page_free_wanted_privileged; + priv_wakeup_all = TRUE; + } +#if CONFIG_SECLUDED_MEMORY + if (need_wakeup_secluded != 0 && + vm_page_free_wanted_secluded == 0) { + secluded_wakeup_event = (event_t)&vm_page_free_wanted_secluded; + secluded_wakeup_all = TRUE; + need_wakeup_secluded = 0; + } else { + secluded_wakeup_event = (event_t)&vm_page_free_wanted_secluded; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + if (need_wakeup != 0 && vm_page_free_wanted == 0) { + /* + * We don't expect to have any more waiters + * after this, so let's wake them all up at + * once. + */ + normal_wakeup_event = (event_t) &vm_page_free_count; + normal_wakeup_all = TRUE; + need_wakeup = 0; + } else { + normal_wakeup_event = (event_t) &vm_page_free_count; } - } - if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { - - mutex_unlock(&vm_page_queue_free_lock); - vm_page_unlock_queues(); - mutex_pause(0); + if (priv_wakeup_event || +#if CONFIG_SECLUDED_MEMORY + secluded_wakeup_event || +#endif /* CONFIG_SECLUDED_MEMORY */ + normal_wakeup_event) { + if (vps_dynamic_priority_enabled == TRUE) { + thread_t thread_woken = NULL; - vm_page_lock_queues(); - mutex_lock(&vm_page_queue_free_lock); + if (priv_wakeup_all == TRUE) { + wakeup_all_with_inheritor(priv_wakeup_event, THREAD_AWAKENED); + } - RESET_STATE_OF_RUN(); - /* - * reset our free page limit since we - * dropped the lock protecting the vm_page_free_queue - */ - free_available = vm_page_free_count - vm_page_free_reserved; - considered = 0; -#if MACH_ASSERT - yielded++; -#endif - goto retry; - } - considered++; - } - m = VM_PAGE_NULL; +#if CONFIG_SECLUDED_MEMORY + if (secluded_wakeup_all == TRUE) { + wakeup_all_with_inheritor(secluded_wakeup_event, THREAD_AWAKENED); + } - if (npages != contig_pages) - mutex_unlock(&vm_page_queue_free_lock); - else { - vm_page_t m1; - vm_page_t m2; - unsigned int cur_idx; - unsigned int tmp_start_idx; - vm_object_t locked_object = VM_OBJECT_NULL; - boolean_t abort_run = FALSE; - - tmp_start_idx = start_idx; + while (need_wakeup_secluded-- != 0) { + /* + * Wake up one waiter per page we just released. + */ + wakeup_one_with_inheritor(secluded_wakeup_event, THREAD_AWAKENED, LCK_WAKE_DO_NOT_TRANSFER_PUSH, &thread_woken); + thread_deallocate(thread_woken); + } +#endif /* CONFIG_SECLUDED_MEMORY */ - /* - * first pass through to pull the free pages - * off of the free queue so that in case we - * need substitute pages, we won't grab any - * of the free pages in the run... we'll clear - * the 'free' bit in the 2nd pass, and even in - * an abort_run case, we'll collect all of the - * free pages in this run and return them to the free list - */ - while (start_idx < page_idx) { + if (normal_wakeup_all == TRUE) { + wakeup_all_with_inheritor(normal_wakeup_event, THREAD_AWAKENED); + } - m1 = &vm_pages[start_idx++]; + while (need_wakeup-- != 0) { + /* + * Wake up one waiter per page we just released. + */ + wakeup_one_with_inheritor(normal_wakeup_event, THREAD_AWAKENED, LCK_WAKE_DO_NOT_TRANSFER_PUSH, &thread_woken); + thread_deallocate(thread_woken); + } + } else { + /* + * Non-priority-aware wakeups. + */ - if (m1->free) { - unsigned int color; + if (priv_wakeup_all == TRUE) { + thread_wakeup(priv_wakeup_event); + } + +#if CONFIG_SECLUDED_MEMORY + if (secluded_wakeup_all == TRUE) { + thread_wakeup(secluded_wakeup_event); + } - color = m1->phys_page & vm_color_mask; - queue_remove(&vm_page_queue_free[color], - m1, - vm_page_t, - pageq); + while (need_wakeup_secluded-- != 0) { + /* + * Wake up one waiter per page we just released. + */ + thread_wakeup_one(secluded_wakeup_event); + } - vm_page_free_count--; +#endif /* CONFIG_SECLUDED_MEMORY */ + if (normal_wakeup_all == TRUE) { + thread_wakeup(normal_wakeup_event); + } + + while (need_wakeup-- != 0) { + /* + * Wake up one waiter per page we just released. + */ + thread_wakeup_one(normal_wakeup_event); + } + } } + + VM_CHECK_MEMORYSTATUS; } - /* - * adjust global freelist counts - */ - if (vm_page_free_count < vm_page_free_count_minimum) - vm_page_free_count_minimum = vm_page_free_count; + } +} - /* - * we can drop the free queue lock at this point since - * we've pulled any 'free' candidates off of the list - * we need it dropped so that we can do a vm_page_grab - * when substituing for pmapped/dirty pages - */ - mutex_unlock(&vm_page_queue_free_lock); - start_idx = tmp_start_idx; - cur_idx = page_idx - 1; +/* + * vm_page_wire: + * + * Mark this page as wired down by yet + * another map, removing it from paging queues + * as necessary. + * + * The page's object and the page queues must be locked. + */ - while (start_idx++ < page_idx) { - /* - * must go through the list from back to front - * so that the page list is created in the - * correct order - low -> high phys addresses - */ - m1 = &vm_pages[cur_idx--]; - if (m1->free) { - /* - * pages have already been removed from - * the free list in the 1st pass - */ - assert(m1->free); - assert(m1->busy); - assert(!m1->wanted); - assert(!m1->laundry); - m1->free = FALSE; +void +vm_page_wire( + vm_page_t mem, + vm_tag_t tag, + boolean_t check_memorystatus) +{ + vm_object_t m_object; - } else { - vm_object_t object; + m_object = VM_PAGE_OBJECT(mem); - if (abort_run == TRUE) - continue; +// dbgLog(current_thread(), mem->vmp_offset, m_object, 1); /* (TEST/DEBUG) */ - object = m1->object; + VM_PAGE_CHECK(mem); + if (m_object) { + vm_object_lock_assert_exclusive(m_object); + } else { + /* + * In theory, the page should be in an object before it + * gets wired, since we need to hold the object lock + * to update some fields in the page structure. + * However, some code (i386 pmap, for example) might want + * to wire a page before it gets inserted into an object. + * That's somewhat OK, as long as nobody else can get to + * that page and update it at the same time. + */ + } + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + if (!VM_PAGE_WIRED(mem)) { + if (mem->vmp_laundry) { + vm_pageout_steal_laundry(mem, TRUE); + } - if (object != locked_object) { - if (locked_object) { - vm_object_unlock(locked_object); - locked_object = VM_OBJECT_NULL; - } - if (vm_object_lock_try(object)) - locked_object = object; - } - if (locked_object == VM_OBJECT_NULL || - (m1->wire_count || m1->gobbled || - m1->encrypted || m1->encrypted_cleaning || m1->cs_validated || m1->cs_tainted || - m1->error || m1->absent || m1->pageout_queue || m1->laundry || m1->wanted || m1->precious || - m1->cleaning || m1->overwriting || m1->restart || m1->unusual || m1->list_req_pending || m1->busy)) { + vm_page_queues_remove(mem, TRUE); - if (locked_object) { - vm_object_unlock(locked_object); - locked_object = VM_OBJECT_NULL; + assert(mem->vmp_wire_count == 0); + mem->vmp_q_state = VM_PAGE_IS_WIRED; + + if (m_object) { + VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); + VM_OBJECT_WIRED_PAGE_ADD(m_object, mem); + VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, tag); + + assert(m_object->resident_page_count >= + m_object->wired_page_count); + if (m_object->purgable == VM_PURGABLE_VOLATILE) { + assert(vm_page_purgeable_count > 0); + OSAddAtomic(-1, &vm_page_purgeable_count); + OSAddAtomic(1, &vm_page_purgeable_wired_count); + } + if ((m_object->purgable == VM_PURGABLE_VOLATILE || + m_object->purgable == VM_PURGABLE_EMPTY) && + m_object->vo_owner != TASK_NULL) { + task_t owner; + int ledger_idx_volatile; + int ledger_idx_nonvolatile; + int ledger_idx_volatile_compressed; + int ledger_idx_nonvolatile_compressed; + boolean_t do_footprint; + + owner = VM_OBJECT_OWNER(m_object); + vm_object_ledger_tag_ledgers( + m_object, + &ledger_idx_volatile, + &ledger_idx_nonvolatile, + &ledger_idx_volatile_compressed, + &ledger_idx_nonvolatile_compressed, + &do_footprint); + /* less volatile bytes */ + ledger_debit(owner->ledger, + ledger_idx_volatile, + PAGE_SIZE); + /* more not-quite-volatile bytes */ + ledger_credit(owner->ledger, + ledger_idx_nonvolatile, + PAGE_SIZE); + if (do_footprint) { + /* more footprint */ + ledger_credit(owner->ledger, + task_ledgers.phys_footprint, + PAGE_SIZE); + } + } + if (m_object->all_reusable) { + /* + * Wired pages are not counted as "re-usable" + * in "all_reusable" VM objects, so nothing + * to do here. + */ + } else if (mem->vmp_reusable) { + /* + * This page is not "re-usable" when it's + * wired, so adjust its state and the + * accounting. + */ + vm_object_reuse_pages(m_object, + mem->vmp_offset, + mem->vmp_offset + PAGE_SIZE_64, + FALSE); + } + } + assert(!mem->vmp_reusable); + + if (!mem->vmp_private && !mem->vmp_fictitious && !mem->vmp_gobbled) { + vm_page_wire_count++; + } + if (mem->vmp_gobbled) { + vm_page_gobble_count--; + } + mem->vmp_gobbled = FALSE; + + if (check_memorystatus == TRUE) { + VM_CHECK_MEMORYSTATUS; + } + } + assert(!mem->vmp_gobbled); + assert(mem->vmp_q_state == VM_PAGE_IS_WIRED); + mem->vmp_wire_count++; + if (__improbable(mem->vmp_wire_count == 0)) { + panic("vm_page_wire(%p): wire_count overflow", mem); + } + VM_PAGE_CHECK(mem); +} + +/* + * vm_page_unwire: + * + * Release one wiring of this page, potentially + * enabling it to be paged again. + * + * The page's object and the page queues must be locked. + */ +void +vm_page_unwire( + vm_page_t mem, + boolean_t queueit) +{ + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(mem); + +// dbgLog(current_thread(), mem->vmp_offset, m_object, 0); /* (TEST/DEBUG) */ + + VM_PAGE_CHECK(mem); + assert(VM_PAGE_WIRED(mem)); + assert(mem->vmp_wire_count > 0); + assert(!mem->vmp_gobbled); + assert(m_object != VM_OBJECT_NULL); + vm_object_lock_assert_exclusive(m_object); + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + if (--mem->vmp_wire_count == 0) { + mem->vmp_q_state = VM_PAGE_NOT_ON_Q; + + VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); + VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem); + VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag); + if (!mem->vmp_private && !mem->vmp_fictitious) { + vm_page_wire_count--; + } + + assert(m_object->resident_page_count >= + m_object->wired_page_count); + if (m_object->purgable == VM_PURGABLE_VOLATILE) { + OSAddAtomic(+1, &vm_page_purgeable_count); + assert(vm_page_purgeable_wired_count > 0); + OSAddAtomic(-1, &vm_page_purgeable_wired_count); + } + if ((m_object->purgable == VM_PURGABLE_VOLATILE || + m_object->purgable == VM_PURGABLE_EMPTY) && + m_object->vo_owner != TASK_NULL) { + task_t owner; + int ledger_idx_volatile; + int ledger_idx_nonvolatile; + int ledger_idx_volatile_compressed; + int ledger_idx_nonvolatile_compressed; + boolean_t do_footprint; + + owner = VM_OBJECT_OWNER(m_object); + vm_object_ledger_tag_ledgers( + m_object, + &ledger_idx_volatile, + &ledger_idx_nonvolatile, + &ledger_idx_volatile_compressed, + &ledger_idx_nonvolatile_compressed, + &do_footprint); + /* more volatile bytes */ + ledger_credit(owner->ledger, + ledger_idx_volatile, + PAGE_SIZE); + /* less not-quite-volatile bytes */ + ledger_debit(owner->ledger, + ledger_idx_nonvolatile, + PAGE_SIZE); + if (do_footprint) { + /* less footprint */ + ledger_debit(owner->ledger, + task_ledgers.phys_footprint, + PAGE_SIZE); + } + } + assert(m_object != kernel_object); + assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); + + if (queueit == TRUE) { + if (m_object->purgable == VM_PURGABLE_EMPTY) { + vm_page_deactivate(mem); + } else { + vm_page_activate(mem); + } + } + + VM_CHECK_MEMORYSTATUS; + } + VM_PAGE_CHECK(mem); +} + +/* + * vm_page_deactivate: + * + * Returns the given page to the inactive list, + * indicating that no physical maps have access + * to this page. [Used by the physical mapping system.] + * + * The page queues must be locked. + */ +void +vm_page_deactivate( + vm_page_t m) +{ + vm_page_deactivate_internal(m, TRUE); +} + + +void +vm_page_deactivate_internal( + vm_page_t m, + boolean_t clear_hw_reference) +{ + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(m); + + VM_PAGE_CHECK(m); + assert(m_object != kernel_object); + assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); + +// dbgLog(VM_PAGE_GET_PHYS_PAGE(m), vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + /* + * This page is no longer very interesting. If it was + * interesting (active or inactive/referenced), then we + * clear the reference bit and (re)enter it in the + * inactive queue. Note wired pages should not have + * their reference bit cleared. + */ + assert( !(m->vmp_absent && !m->vmp_unusual)); + + if (m->vmp_gobbled) { /* can this happen? */ + assert( !VM_PAGE_WIRED(m)); + + if (!m->vmp_private && !m->vmp_fictitious) { + vm_page_wire_count--; + } + vm_page_gobble_count--; + m->vmp_gobbled = FALSE; + } + /* + * if this page is currently on the pageout queue, we can't do the + * vm_page_queues_remove (which doesn't handle the pageout queue case) + * and we can't remove it manually since we would need the object lock + * (which is not required here) to decrement the activity_in_progress + * reference which is held on the object while the page is in the pageout queue... + * just let the normal laundry processing proceed + */ + if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || + (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || + (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) || + VM_PAGE_WIRED(m)) { + return; + } + if (!m->vmp_absent && clear_hw_reference == TRUE) { + pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m)); + } + + m->vmp_reference = FALSE; + m->vmp_no_cache = FALSE; + + if (!VM_PAGE_INACTIVE(m)) { + vm_page_queues_remove(m, FALSE); + + if (!VM_DYNAMIC_PAGING_ENABLED() && + m->vmp_dirty && m_object->internal && + (m_object->purgable == VM_PURGABLE_DENY || + m_object->purgable == VM_PURGABLE_NONVOLATILE || + m_object->purgable == VM_PURGABLE_VOLATILE)) { + vm_page_check_pageable_safe(m); + vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; + vm_page_throttled_count++; + } else { + if (m_object->named && m_object->ref_count == 1) { + vm_page_speculate(m, FALSE); +#if DEVELOPMENT || DEBUG + vm_page_speculative_recreated++; +#endif + } else { + vm_page_enqueue_inactive(m, FALSE); + } + } + } +} + +/* + * vm_page_enqueue_cleaned + * + * Put the page on the cleaned queue, mark it cleaned, etc. + * Being on the cleaned queue (and having m->clean_queue set) + * does ** NOT ** guarantee that the page is clean! + * + * Call with the queues lock held. + */ + +void +vm_page_enqueue_cleaned(vm_page_t m) +{ + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(m); + + assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + assert( !(m->vmp_absent && !m->vmp_unusual)); + + if (VM_PAGE_WIRED(m)) { + return; + } + + if (m->vmp_gobbled) { + if (!m->vmp_private && !m->vmp_fictitious) { + vm_page_wire_count--; + } + vm_page_gobble_count--; + m->vmp_gobbled = FALSE; + } + /* + * if this page is currently on the pageout queue, we can't do the + * vm_page_queues_remove (which doesn't handle the pageout queue case) + * and we can't remove it manually since we would need the object lock + * (which is not required here) to decrement the activity_in_progress + * reference which is held on the object while the page is in the pageout queue... + * just let the normal laundry processing proceed + */ + if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || + (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || + (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { + return; + } + vm_page_queues_remove(m, FALSE); + + vm_page_check_pageable_safe(m); + vm_page_queue_enter(&vm_page_queue_cleaned, m, vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_INACTIVE_CLEANED_Q; + vm_page_cleaned_count++; + + vm_page_inactive_count++; + if (m_object->internal) { + vm_page_pageable_internal_count++; + } else { + vm_page_pageable_external_count++; + } +#if CONFIG_BACKGROUND_QUEUE + if (m->vmp_in_background) { + vm_page_add_to_backgroundq(m, TRUE); + } +#endif + VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1); +} + +/* + * vm_page_activate: + * + * Put the specified page on the active list (if appropriate). + * + * The page queues must be locked. + */ + +void +vm_page_activate( + vm_page_t m) +{ + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(m); + + VM_PAGE_CHECK(m); +#ifdef FIXME_4778297 + assert(m_object != kernel_object); +#endif + assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + assert( !(m->vmp_absent && !m->vmp_unusual)); + + if (m->vmp_gobbled) { + assert( !VM_PAGE_WIRED(m)); + if (!m->vmp_private && !m->vmp_fictitious) { + vm_page_wire_count--; + } + vm_page_gobble_count--; + m->vmp_gobbled = FALSE; + } + /* + * if this page is currently on the pageout queue, we can't do the + * vm_page_queues_remove (which doesn't handle the pageout queue case) + * and we can't remove it manually since we would need the object lock + * (which is not required here) to decrement the activity_in_progress + * reference which is held on the object while the page is in the pageout queue... + * just let the normal laundry processing proceed + */ + if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || + (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || + (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { + return; + } + +#if DEBUG + if (m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q) { + panic("vm_page_activate: already active"); + } +#endif + + if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { + DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); + DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); + } + + vm_page_queues_remove(m, FALSE); + + if (!VM_PAGE_WIRED(m)) { + vm_page_check_pageable_safe(m); + if (!VM_DYNAMIC_PAGING_ENABLED() && + m->vmp_dirty && m_object->internal && + (m_object->purgable == VM_PURGABLE_DENY || + m_object->purgable == VM_PURGABLE_NONVOLATILE || + m_object->purgable == VM_PURGABLE_VOLATILE)) { + vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; + vm_page_throttled_count++; + } else { +#if CONFIG_SECLUDED_MEMORY + if (secluded_for_filecache && + vm_page_secluded_target != 0 && + num_tasks_can_use_secluded_mem == 0 && + m_object->eligible_for_secluded) { + vm_page_queue_enter(&vm_page_queue_secluded, m, vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_SECLUDED_Q; + vm_page_secluded_count++; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + vm_page_secluded_count_inuse++; + assert(!m_object->internal); +// vm_page_pageable_external_count++; + } else +#endif /* CONFIG_SECLUDED_MEMORY */ + vm_page_enqueue_active(m, FALSE); + } + m->vmp_reference = TRUE; + m->vmp_no_cache = FALSE; + } + VM_PAGE_CHECK(m); +} + + +/* + * vm_page_speculate: + * + * Put the specified page on the speculative list (if appropriate). + * + * The page queues must be locked. + */ +void +vm_page_speculate( + vm_page_t m, + boolean_t new) +{ + struct vm_speculative_age_q *aq; + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(m); + + VM_PAGE_CHECK(m); + vm_page_check_pageable_safe(m); + + assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + assert( !(m->vmp_absent && !m->vmp_unusual)); + assert(m_object->internal == FALSE); + + /* + * if this page is currently on the pageout queue, we can't do the + * vm_page_queues_remove (which doesn't handle the pageout queue case) + * and we can't remove it manually since we would need the object lock + * (which is not required here) to decrement the activity_in_progress + * reference which is held on the object while the page is in the pageout queue... + * just let the normal laundry processing proceed + */ + if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || + (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || + (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { + return; + } + + vm_page_queues_remove(m, FALSE); + + if (!VM_PAGE_WIRED(m)) { + mach_timespec_t ts; + clock_sec_t sec; + clock_nsec_t nsec; + + clock_get_system_nanotime(&sec, &nsec); + ts.tv_sec = (unsigned int) sec; + ts.tv_nsec = nsec; + + if (vm_page_speculative_count == 0) { + speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; + speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; + + aq = &vm_page_queue_speculative[speculative_age_index]; + + /* + * set the timer to begin a new group + */ + aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000; + aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; + + ADD_MACH_TIMESPEC(&aq->age_ts, &ts); + } else { + aq = &vm_page_queue_speculative[speculative_age_index]; + + if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { + speculative_age_index++; + + if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) { + speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; + } + if (speculative_age_index == speculative_steal_index) { + speculative_steal_index = speculative_age_index + 1; + + if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) { + speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; } - tmp_start_idx = cur_idx; - abort_run = TRUE; + } + aq = &vm_page_queue_speculative[speculative_age_index]; + + if (!vm_page_queue_empty(&aq->age_q)) { + vm_page_speculate_ageit(aq); + } + + aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000; + aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; + + ADD_MACH_TIMESPEC(&aq->age_ts, &ts); + } + } + vm_page_enqueue_tail(&aq->age_q, &m->vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_SPECULATIVE_Q; + vm_page_speculative_count++; + vm_page_pageable_external_count++; + + if (new == TRUE) { + vm_object_lock_assert_exclusive(m_object); + + m_object->pages_created++; +#if DEVELOPMENT || DEBUG + vm_page_speculative_created++; +#endif + } + } + VM_PAGE_CHECK(m); +} + + +/* + * move pages from the specified aging bin to + * the speculative bin that pageout_scan claims from + * + * The page queues must be locked. + */ +void +vm_page_speculate_ageit(struct vm_speculative_age_q *aq) +{ + struct vm_speculative_age_q *sq; + vm_page_t t; + + sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; + + if (vm_page_queue_empty(&sq->age_q)) { + sq->age_q.next = aq->age_q.next; + sq->age_q.prev = aq->age_q.prev; + + t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.next); + t->vmp_pageq.prev = VM_PAGE_PACK_PTR(&sq->age_q); + + t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev); + t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q); + } else { + t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev); + t->vmp_pageq.next = aq->age_q.next; + + t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.next); + t->vmp_pageq.prev = sq->age_q.prev; + + t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.prev); + t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q); + + sq->age_q.prev = aq->age_q.prev; + } + vm_page_queue_init(&aq->age_q); +} + + +void +vm_page_lru( + vm_page_t m) +{ + VM_PAGE_CHECK(m); + assert(VM_PAGE_OBJECT(m) != kernel_object); + assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); + + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + + if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q) { + /* + * we don't need to do all the other work that + * vm_page_queues_remove and vm_page_enqueue_inactive + * bring along for the ride + */ + assert(!m->vmp_laundry); + assert(!m->vmp_private); + + m->vmp_no_cache = FALSE; + + vm_page_queue_remove(&vm_page_queue_inactive, m, vmp_pageq); + vm_page_queue_enter(&vm_page_queue_inactive, m, vmp_pageq); + + return; + } + /* + * if this page is currently on the pageout queue, we can't do the + * vm_page_queues_remove (which doesn't handle the pageout queue case) + * and we can't remove it manually since we would need the object lock + * (which is not required here) to decrement the activity_in_progress + * reference which is held on the object while the page is in the pageout queue... + * just let the normal laundry processing proceed + */ + if (m->vmp_laundry || m->vmp_private || + (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || + (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) || + VM_PAGE_WIRED(m)) { + return; + } + + m->vmp_no_cache = FALSE; + + vm_page_queues_remove(m, FALSE); + + vm_page_enqueue_inactive(m, FALSE); +} + + +void +vm_page_reactivate_all_throttled(void) +{ + vm_page_t first_throttled, last_throttled; + vm_page_t first_active; + vm_page_t m; + int extra_active_count; + int extra_internal_count, extra_external_count; + vm_object_t m_object; + + if (!VM_DYNAMIC_PAGING_ENABLED()) { + return; + } + + extra_active_count = 0; + extra_internal_count = 0; + extra_external_count = 0; + vm_page_lock_queues(); + if (!vm_page_queue_empty(&vm_page_queue_throttled)) { + /* + * Switch "throttled" pages to "active". + */ + vm_page_queue_iterate(&vm_page_queue_throttled, m, vmp_pageq) { + VM_PAGE_CHECK(m); + assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q); + + m_object = VM_PAGE_OBJECT(m); + + extra_active_count++; + if (m_object->internal) { + extra_internal_count++; + } else { + extra_external_count++; + } + + m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; + VM_PAGE_CHECK(m); +#if CONFIG_BACKGROUND_QUEUE + if (m->vmp_in_background) { + vm_page_add_to_backgroundq(m, FALSE); + } +#endif + } + + /* + * Transfer the entire throttled queue to a regular LRU page queues. + * We insert it at the head of the active queue, so that these pages + * get re-evaluated by the LRU algorithm first, since they've been + * completely out of it until now. + */ + first_throttled = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); + last_throttled = (vm_page_t) vm_page_queue_last(&vm_page_queue_throttled); + first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); + if (vm_page_queue_empty(&vm_page_queue_active)) { + vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled); + } else { + first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled); + } + vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_throttled); + first_throttled->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active); + last_throttled->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active); + +#if DEBUG + printf("reactivated %d throttled pages\n", vm_page_throttled_count); +#endif + vm_page_queue_init(&vm_page_queue_throttled); + /* + * Adjust the global page counts. + */ + vm_page_active_count += extra_active_count; + vm_page_pageable_internal_count += extra_internal_count; + vm_page_pageable_external_count += extra_external_count; + vm_page_throttled_count = 0; + } + assert(vm_page_throttled_count == 0); + assert(vm_page_queue_empty(&vm_page_queue_throttled)); + vm_page_unlock_queues(); +} + + +/* + * move pages from the indicated local queue to the global active queue + * its ok to fail if we're below the hard limit and force == FALSE + * the nolocks == TRUE case is to allow this function to be run on + * the hibernate path + */ + +void +vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks) +{ + struct vpl *lq; + vm_page_t first_local, last_local; + vm_page_t first_active; + vm_page_t m; + uint32_t count = 0; + + if (vm_page_local_q == NULL) { + return; + } + + lq = zpercpu_get_cpu(vm_page_local_q, lid); + + if (nolocks == FALSE) { + if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) { + if (!vm_page_trylockspin_queues()) { + return; + } + } else { + vm_page_lockspin_queues(); + } + + VPL_LOCK(&lq->vpl_lock); + } + if (lq->vpl_count) { + /* + * Switch "local" pages to "active". + */ + assert(!vm_page_queue_empty(&lq->vpl_queue)); + + vm_page_queue_iterate(&lq->vpl_queue, m, vmp_pageq) { + VM_PAGE_CHECK(m); + vm_page_check_pageable_safe(m); + assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q); + assert(!m->vmp_fictitious); + + if (m->vmp_local_id != lid) { + panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m); + } + + m->vmp_local_id = 0; + m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; + VM_PAGE_CHECK(m); +#if CONFIG_BACKGROUND_QUEUE + if (m->vmp_in_background) { + vm_page_add_to_backgroundq(m, FALSE); + } +#endif + count++; + } + if (count != lq->vpl_count) { + panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count); + } + + /* + * Transfer the entire local queue to a regular LRU page queues. + */ + first_local = (vm_page_t) vm_page_queue_first(&lq->vpl_queue); + last_local = (vm_page_t) vm_page_queue_last(&lq->vpl_queue); + first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); + + if (vm_page_queue_empty(&vm_page_queue_active)) { + vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); + } else { + first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); + } + vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local); + first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active); + last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active); + + vm_page_queue_init(&lq->vpl_queue); + /* + * Adjust the global page counts. + */ + vm_page_active_count += lq->vpl_count; + vm_page_pageable_internal_count += lq->vpl_internal_count; + vm_page_pageable_external_count += lq->vpl_external_count; + lq->vpl_count = 0; + lq->vpl_internal_count = 0; + lq->vpl_external_count = 0; + } + assert(vm_page_queue_empty(&lq->vpl_queue)); + + if (nolocks == FALSE) { + VPL_UNLOCK(&lq->vpl_lock); + + vm_page_balance_inactive(count / 4); + vm_page_unlock_queues(); + } +} + +/* + * vm_page_part_zero_fill: + * + * Zero-fill a part of the page. + */ +#define PMAP_ZERO_PART_PAGE_IMPLEMENTED +void +vm_page_part_zero_fill( + vm_page_t m, + vm_offset_t m_pa, + vm_size_t len) +{ +#if 0 + /* + * we don't hold the page queue lock + * so this check isn't safe to make + */ + VM_PAGE_CHECK(m); +#endif + +#ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED + pmap_zero_part_page(VM_PAGE_GET_PHYS_PAGE(m), m_pa, len); +#else + vm_page_t tmp; + while (1) { + tmp = vm_page_grab(); + if (tmp == VM_PAGE_NULL) { + vm_page_wait(THREAD_UNINT); + continue; + } + break; + } + vm_page_zero_fill(tmp); + if (m_pa != 0) { + vm_page_part_copy(m, 0, tmp, 0, m_pa); + } + if ((m_pa + len) < PAGE_SIZE) { + vm_page_part_copy(m, m_pa + len, tmp, + m_pa + len, PAGE_SIZE - (m_pa + len)); + } + vm_page_copy(tmp, m); + VM_PAGE_FREE(tmp); +#endif +} + +/* + * vm_page_zero_fill: + * + * Zero-fill the specified page. + */ +void +vm_page_zero_fill( + vm_page_t m) +{ +#if 0 + /* + * we don't hold the page queue lock + * so this check isn't safe to make + */ + VM_PAGE_CHECK(m); +#endif + +// dbgTrace(0xAEAEAEAE, VM_PAGE_GET_PHYS_PAGE(m), 0); /* (BRINGUP) */ + pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m)); +} + +/* + * vm_page_part_copy: + * + * copy part of one page to another + */ + +void +vm_page_part_copy( + vm_page_t src_m, + vm_offset_t src_pa, + vm_page_t dst_m, + vm_offset_t dst_pa, + vm_size_t len) +{ +#if 0 + /* + * we don't hold the page queue lock + * so this check isn't safe to make + */ + VM_PAGE_CHECK(src_m); + VM_PAGE_CHECK(dst_m); +#endif + pmap_copy_part_page(VM_PAGE_GET_PHYS_PAGE(src_m), src_pa, + VM_PAGE_GET_PHYS_PAGE(dst_m), dst_pa, len); +} + +/* + * vm_page_copy: + * + * Copy one page to another + */ + +int vm_page_copy_cs_validations = 0; +int vm_page_copy_cs_tainted = 0; + +void +vm_page_copy( + vm_page_t src_m, + vm_page_t dest_m) +{ + vm_object_t src_m_object; + + src_m_object = VM_PAGE_OBJECT(src_m); + +#if 0 + /* + * we don't hold the page queue lock + * so this check isn't safe to make + */ + VM_PAGE_CHECK(src_m); + VM_PAGE_CHECK(dest_m); +#endif + vm_object_lock_assert_held(src_m_object); + + if (src_m_object != VM_OBJECT_NULL && + src_m_object->code_signed) { + /* + * We're copying a page from a code-signed object. + * Whoever ends up mapping the copy page might care about + * the original page's integrity, so let's validate the + * source page now. + */ + vm_page_copy_cs_validations++; + vm_page_validate_cs(src_m, PAGE_SIZE, 0); +#if DEVELOPMENT || DEBUG + DTRACE_VM4(codesigned_copy, + vm_object_t, src_m_object, + vm_object_offset_t, src_m->vmp_offset, + int, src_m->vmp_cs_validated, + int, src_m->vmp_cs_tainted); +#endif /* DEVELOPMENT || DEBUG */ + } + + /* + * Propagate the cs_tainted bit to the copy page. Do not propagate + * the cs_validated bit. + */ + dest_m->vmp_cs_tainted = src_m->vmp_cs_tainted; + dest_m->vmp_cs_nx = src_m->vmp_cs_nx; + if (dest_m->vmp_cs_tainted) { + vm_page_copy_cs_tainted++; + } + dest_m->vmp_error = src_m->vmp_error; /* sliding src_m might have failed... */ + pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(src_m), VM_PAGE_GET_PHYS_PAGE(dest_m)); +} + +#if MACH_ASSERT +static void +_vm_page_print( + vm_page_t p) +{ + printf("vm_page %p: \n", p); + printf(" pageq: next=%p prev=%p\n", + (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.next), + (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.prev)); + printf(" listq: next=%p prev=%p\n", + (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.next)), + (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.prev))); + printf(" next=%p\n", (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m))); + printf(" object=%p offset=0x%llx\n", VM_PAGE_OBJECT(p), p->vmp_offset); + printf(" wire_count=%u\n", p->vmp_wire_count); + printf(" q_state=%u\n", p->vmp_q_state); + + printf(" %slaundry, %sref, %sgobbled, %sprivate\n", + (p->vmp_laundry ? "" : "!"), + (p->vmp_reference ? "" : "!"), + (p->vmp_gobbled ? "" : "!"), + (p->vmp_private ? "" : "!")); + printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n", + (p->vmp_busy ? "" : "!"), + (p->vmp_wanted ? "" : "!"), + (p->vmp_tabled ? "" : "!"), + (p->vmp_fictitious ? "" : "!"), + (p->vmp_pmapped ? "" : "!"), + (p->vmp_wpmapped ? "" : "!")); + printf(" %sfree_when_done, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n", + (p->vmp_free_when_done ? "" : "!"), + (p->vmp_absent ? "" : "!"), + (p->vmp_error ? "" : "!"), + (p->vmp_dirty ? "" : "!"), + (p->vmp_cleaning ? "" : "!"), + (p->vmp_precious ? "" : "!"), + (p->vmp_clustered ? "" : "!")); + printf(" %soverwriting, %srestart, %sunusual\n", + (p->vmp_overwriting ? "" : "!"), + (p->vmp_restart ? "" : "!"), + (p->vmp_unusual ? "" : "!")); + printf(" cs_validated=%d, cs_tainted=%d, cs_nx=%d, %sno_cache\n", + p->vmp_cs_validated, + p->vmp_cs_tainted, + p->vmp_cs_nx, + (p->vmp_no_cache ? "" : "!")); + + printf("phys_page=0x%x\n", VM_PAGE_GET_PHYS_PAGE(p)); +} + +/* + * Check that the list of pages is ordered by + * ascending physical address and has no holes. + */ +static int +vm_page_verify_contiguous( + vm_page_t pages, + unsigned int npages) +{ + vm_page_t m; + unsigned int page_count; + vm_offset_t prev_addr; + + prev_addr = VM_PAGE_GET_PHYS_PAGE(pages); + page_count = 1; + for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { + if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) { + printf("m %p prev_addr 0x%lx, current addr 0x%x\n", + m, (long)prev_addr, VM_PAGE_GET_PHYS_PAGE(m)); + printf("pages %p page_count %d npages %d\n", pages, page_count, npages); + panic("vm_page_verify_contiguous: not contiguous!"); + } + prev_addr = VM_PAGE_GET_PHYS_PAGE(m); + ++page_count; + } + if (page_count != npages) { + printf("pages %p actual count 0x%x but requested 0x%x\n", + pages, page_count, npages); + panic("vm_page_verify_contiguous: count error"); + } + return 1; +} + + +/* + * Check the free lists for proper length etc. + */ +static boolean_t vm_page_verify_this_free_list_enabled = FALSE; +static unsigned int +vm_page_verify_free_list( + vm_page_queue_head_t *vm_page_queue, + unsigned int color, + vm_page_t look_for_page, + boolean_t expect_page) +{ + unsigned int npages; + vm_page_t m; + vm_page_t prev_m; + boolean_t found_page; + + if (!vm_page_verify_this_free_list_enabled) { + return 0; + } + + found_page = FALSE; + npages = 0; + prev_m = (vm_page_t)((uintptr_t)vm_page_queue); + + vm_page_queue_iterate(vm_page_queue, m, vmp_pageq) { + if (m == look_for_page) { + found_page = TRUE; + } + if ((vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev) != prev_m) { + panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n", + color, npages, m, (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev), prev_m); + } + if (!m->vmp_busy) { + panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n", + color, npages, m); + } + if (color != (unsigned int) -1) { + if (VM_PAGE_GET_COLOR(m) != color) { + panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n", + color, npages, m, VM_PAGE_GET_COLOR(m), color); + } + if (m->vmp_q_state != VM_PAGE_ON_FREE_Q) { + panic("vm_page_verify_free_list(color=%u, npages=%u): page %p - expecting q_state == VM_PAGE_ON_FREE_Q, found %d\n", + color, npages, m, m->vmp_q_state); + } + } else { + if (m->vmp_q_state != VM_PAGE_ON_FREE_LOCAL_Q) { + panic("vm_page_verify_free_list(npages=%u): local page %p - expecting q_state == VM_PAGE_ON_FREE_LOCAL_Q, found %d\n", + npages, m, m->vmp_q_state); + } + } + ++npages; + prev_m = m; + } + if (look_for_page != VM_PAGE_NULL) { + unsigned int other_color; + + if (expect_page && !found_page) { + printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n", + color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page)); + _vm_page_print(look_for_page); + for (other_color = 0; + other_color < vm_colors; + other_color++) { + if (other_color == color) { + continue; + } + vm_page_verify_free_list(&vm_page_queue_free[other_color].qhead, + other_color, look_for_page, FALSE); + } + if (color == (unsigned int) -1) { + vm_page_verify_free_list(&vm_lopage_queue_free, + (unsigned int) -1, look_for_page, FALSE); + } + panic("vm_page_verify_free_list(color=%u)\n", color); + } + if (!expect_page && found_page) { + printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n", + color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page)); + } + } + return npages; +} + +static boolean_t vm_page_verify_all_free_lists_enabled = FALSE; +static void +vm_page_verify_free_lists( void ) +{ + unsigned int color, npages, nlopages; + boolean_t toggle = TRUE; + + if (!vm_page_verify_all_free_lists_enabled) { + return; + } + + npages = 0; + + lck_mtx_lock(&vm_page_queue_free_lock); + + if (vm_page_verify_this_free_list_enabled == TRUE) { + /* + * This variable has been set globally for extra checking of + * each free list Q. Since we didn't set it, we don't own it + * and we shouldn't toggle it. + */ + toggle = FALSE; + } + + if (toggle == TRUE) { + vm_page_verify_this_free_list_enabled = TRUE; + } + + for (color = 0; color < vm_colors; color++) { + npages += vm_page_verify_free_list(&vm_page_queue_free[color].qhead, + color, VM_PAGE_NULL, FALSE); + } + nlopages = vm_page_verify_free_list(&vm_lopage_queue_free, + (unsigned int) -1, + VM_PAGE_NULL, FALSE); + if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) { + panic("vm_page_verify_free_lists: " + "npages %u free_count %d nlopages %u lo_free_count %u", + npages, vm_page_free_count, nlopages, vm_lopage_free_count); + } + + if (toggle == TRUE) { + vm_page_verify_this_free_list_enabled = FALSE; + } + + lck_mtx_unlock(&vm_page_queue_free_lock); +} + +#endif /* MACH_ASSERT */ + + +extern boolean_t(*volatile consider_buffer_cache_collect)(int); + +/* + * CONTIGUOUS PAGE ALLOCATION + * + * Find a region large enough to contain at least n pages + * of contiguous physical memory. + * + * This is done by traversing the vm_page_t array in a linear fashion + * we assume that the vm_page_t array has the avaiable physical pages in an + * ordered, ascending list... this is currently true of all our implementations + * and must remain so... there can be 'holes' in the array... we also can + * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed + * which use to happen via 'vm_page_convert'... that function was no longer + * being called and was removed... + * + * The basic flow consists of stabilizing some of the interesting state of + * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our + * sweep at the beginning of the array looking for pages that meet our criterea + * for a 'stealable' page... currently we are pretty conservative... if the page + * meets this criterea and is physically contiguous to the previous page in the 'run' + * we keep developing it. If we hit a page that doesn't fit, we reset our state + * and start to develop a new run... if at this point we've already considered + * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, + * and mutex_pause (which will yield the processor), to keep the latency low w/r + * to other threads trying to acquire free pages (or move pages from q to q), + * and then continue from the spot we left off... we only make 1 pass through the + * array. Once we have a 'run' that is long enough, we'll go into the loop which + * which steals the pages from the queues they're currently on... pages on the free + * queue can be stolen directly... pages that are on any of the other queues + * must be removed from the object they are tabled on... this requires taking the + * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails + * or if the state of the page behind the vm_object lock is no longer viable, we'll + * dump the pages we've currently stolen back to the free list, and pick up our + * scan from the point where we aborted the 'current' run. + * + * + * Requirements: + * - neither vm_page_queue nor vm_free_list lock can be held on entry + * + * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. + * + * Algorithm: + */ + +#define MAX_CONSIDERED_BEFORE_YIELD 1000 + + +#define RESET_STATE_OF_RUN() \ + MACRO_BEGIN \ + prevcontaddr = -2; \ + start_pnum = -1; \ + free_considered = 0; \ + substitute_needed = 0; \ + npages = 0; \ + MACRO_END + +/* + * Can we steal in-use (i.e. not free) pages when searching for + * physically-contiguous pages ? + */ +#define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1 + +static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0; +#if DEBUG +int vm_page_find_contig_debug = 0; +#endif + +static vm_page_t +vm_page_find_contiguous( + unsigned int contig_pages, + ppnum_t max_pnum, + ppnum_t pnum_mask, + boolean_t wire, + int flags) +{ + vm_page_t m = NULL; + ppnum_t prevcontaddr = 0; + ppnum_t start_pnum = 0; + unsigned int npages = 0, considered = 0, scanned = 0; + unsigned int page_idx = 0, start_idx = 0, last_idx = 0, orig_last_idx = 0; + unsigned int idx_last_contig_page_found = 0; + int free_considered = 0, free_available = 0; + int substitute_needed = 0; + boolean_t wrapped, zone_gc_called = FALSE; + kern_return_t kr; +#if DEBUG + clock_sec_t tv_start_sec = 0, tv_end_sec = 0; + clock_usec_t tv_start_usec = 0, tv_end_usec = 0; +#endif + + int yielded = 0; + int dumped_run = 0; + int stolen_pages = 0; + int compressed_pages = 0; + + + if (contig_pages == 0) { + return VM_PAGE_NULL; + } + +full_scan_again: + +#if MACH_ASSERT + vm_page_verify_free_lists(); +#endif +#if DEBUG + clock_get_system_microtime(&tv_start_sec, &tv_start_usec); +#endif + PAGE_REPLACEMENT_ALLOWED(TRUE); + + /* + * If there are still delayed pages, try to free up some that match. + */ + if (__improbable(vm_delayed_count != 0 && contig_pages != 0)) { + vm_free_delayed_pages_contig(contig_pages, max_pnum, pnum_mask); + } + + vm_page_lock_queues(); + lck_mtx_lock(&vm_page_queue_free_lock); + + RESET_STATE_OF_RUN(); + + scanned = 0; + considered = 0; + free_available = vm_page_free_count - vm_page_free_reserved; + + wrapped = FALSE; + + if (flags & KMA_LOMEM) { + idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx; + } else { + idx_last_contig_page_found = vm_page_find_contiguous_last_idx; + } + + orig_last_idx = idx_last_contig_page_found; + last_idx = orig_last_idx; + + for (page_idx = last_idx, start_idx = last_idx; + npages < contig_pages && page_idx < vm_pages_count; + page_idx++) { +retry: + if (wrapped && + npages == 0 && + page_idx >= orig_last_idx) { + /* + * We're back where we started and we haven't + * found any suitable contiguous range. Let's + * give up. + */ + break; + } + scanned++; + m = &vm_pages[page_idx]; + + assert(!m->vmp_fictitious); + assert(!m->vmp_private); + + if (max_pnum && VM_PAGE_GET_PHYS_PAGE(m) > max_pnum) { + /* no more low pages... */ + break; + } + if (!npages & ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0)) { + /* + * not aligned + */ + RESET_STATE_OF_RUN(); + } else if (VM_PAGE_WIRED(m) || m->vmp_gobbled || + m->vmp_laundry || m->vmp_wanted || + m->vmp_cleaning || m->vmp_overwriting || m->vmp_free_when_done) { + /* + * page is in a transient state + * or a state we don't want to deal + * with, so don't consider it which + * means starting a new run + */ + RESET_STATE_OF_RUN(); + } else if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || + (m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q) || + (m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q) || + (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { + /* + * page needs to be on one of our queues (other then the pageout or special free queues) + * or it needs to belong to the compressor pool (which is now indicated + * by vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR and falls out + * from the check for VM_PAGE_NOT_ON_Q) + * in order for it to be stable behind the + * locks we hold at this point... + * if not, don't consider it which + * means starting a new run + */ + RESET_STATE_OF_RUN(); + } else if ((m->vmp_q_state != VM_PAGE_ON_FREE_Q) && (!m->vmp_tabled || m->vmp_busy)) { + /* + * pages on the free list are always 'busy' + * so we couldn't test for 'busy' in the check + * for the transient states... pages that are + * 'free' are never 'tabled', so we also couldn't + * test for 'tabled'. So we check here to make + * sure that a non-free page is not busy and is + * tabled on an object... + * if not, don't consider it which + * means starting a new run + */ + RESET_STATE_OF_RUN(); + } else { + if (VM_PAGE_GET_PHYS_PAGE(m) != prevcontaddr + 1) { + if ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0) { + RESET_STATE_OF_RUN(); + goto did_consider; + } else { + npages = 1; + start_idx = page_idx; + start_pnum = VM_PAGE_GET_PHYS_PAGE(m); + } + } else { + npages++; + } + prevcontaddr = VM_PAGE_GET_PHYS_PAGE(m); + + VM_PAGE_CHECK(m); + if (m->vmp_q_state == VM_PAGE_ON_FREE_Q) { + free_considered++; + } else { + /* + * This page is not free. + * If we can't steal used pages, + * we have to give up this run + * and keep looking. + * Otherwise, we might need to + * move the contents of this page + * into a substitute page. + */ +#if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL + if (m->vmp_pmapped || m->vmp_dirty || m->vmp_precious) { + substitute_needed++; + } +#else + RESET_STATE_OF_RUN(); +#endif + } + + if ((free_considered + substitute_needed) > free_available) { + /* + * if we let this run continue + * we will end up dropping the vm_page_free_count + * below the reserve limit... we need to abort + * this run, but we can at least re-consider this + * page... thus the jump back to 'retry' + */ + RESET_STATE_OF_RUN(); + + if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { + considered++; + goto retry; + } + /* + * free_available == 0 + * so can't consider any free pages... if + * we went to retry in this case, we'd + * get stuck looking at the same page + * w/o making any forward progress + * we also want to take this path if we've already + * reached our limit that controls the lock latency + */ + } + } +did_consider: + if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { + PAGE_REPLACEMENT_ALLOWED(FALSE); + + lck_mtx_unlock(&vm_page_queue_free_lock); + vm_page_unlock_queues(); + + mutex_pause(0); + + PAGE_REPLACEMENT_ALLOWED(TRUE); + + vm_page_lock_queues(); + lck_mtx_lock(&vm_page_queue_free_lock); + + RESET_STATE_OF_RUN(); + /* + * reset our free page limit since we + * dropped the lock protecting the vm_page_free_queue + */ + free_available = vm_page_free_count - vm_page_free_reserved; + considered = 0; + + yielded++; + + goto retry; + } + considered++; + } + m = VM_PAGE_NULL; + + if (npages != contig_pages) { + if (!wrapped) { + /* + * We didn't find a contiguous range but we didn't + * start from the very first page. + * Start again from the very first page. + */ + RESET_STATE_OF_RUN(); + if (flags & KMA_LOMEM) { + idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0; + } else { + idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0; + } + last_idx = 0; + page_idx = last_idx; + wrapped = TRUE; + goto retry; + } + lck_mtx_unlock(&vm_page_queue_free_lock); + } else { + vm_page_t m1; + vm_page_t m2; + unsigned int cur_idx; + unsigned int tmp_start_idx; + vm_object_t locked_object = VM_OBJECT_NULL; + boolean_t abort_run = FALSE; + + assert(page_idx - start_idx == contig_pages); + + tmp_start_idx = start_idx; + + /* + * first pass through to pull the free pages + * off of the free queue so that in case we + * need substitute pages, we won't grab any + * of the free pages in the run... we'll clear + * the 'free' bit in the 2nd pass, and even in + * an abort_run case, we'll collect all of the + * free pages in this run and return them to the free list + */ + while (start_idx < page_idx) { + m1 = &vm_pages[start_idx++]; + +#if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL + assert(m1->vmp_q_state == VM_PAGE_ON_FREE_Q); +#endif + + if (m1->vmp_q_state == VM_PAGE_ON_FREE_Q) { + unsigned int color; + + color = VM_PAGE_GET_COLOR(m1); +#if MACH_ASSERT + vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, m1, TRUE); +#endif + vm_page_queue_remove(&vm_page_queue_free[color].qhead, m1, vmp_pageq); + + VM_PAGE_ZERO_PAGEQ_ENTRY(m1); +#if MACH_ASSERT + vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, VM_PAGE_NULL, FALSE); +#endif + /* + * Clear the "free" bit so that this page + * does not get considered for another + * concurrent physically-contiguous allocation. + */ + m1->vmp_q_state = VM_PAGE_NOT_ON_Q; + assert(m1->vmp_busy); + + vm_page_free_count--; + } + } + if (flags & KMA_LOMEM) { + vm_page_lomem_find_contiguous_last_idx = page_idx; + } else { + vm_page_find_contiguous_last_idx = page_idx; + } + + /* + * we can drop the free queue lock at this point since + * we've pulled any 'free' candidates off of the list + * we need it dropped so that we can do a vm_page_grab + * when substituing for pmapped/dirty pages + */ + lck_mtx_unlock(&vm_page_queue_free_lock); + + start_idx = tmp_start_idx; + cur_idx = page_idx - 1; + + while (start_idx++ < page_idx) { + /* + * must go through the list from back to front + * so that the page list is created in the + * correct order - low -> high phys addresses + */ + m1 = &vm_pages[cur_idx--]; + + if (m1->vmp_object == 0) { + /* + * page has already been removed from + * the free list in the 1st pass + */ + assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q); + assert(m1->vmp_offset == (vm_object_offset_t) -1); + assert(m1->vmp_busy); + assert(!m1->vmp_wanted); + assert(!m1->vmp_laundry); + } else { + vm_object_t object; + int refmod; + boolean_t disconnected, reusable; + + if (abort_run == TRUE) { + continue; + } + + assert(m1->vmp_q_state != VM_PAGE_NOT_ON_Q); + + object = VM_PAGE_OBJECT(m1); + + if (object != locked_object) { + if (locked_object) { + vm_object_unlock(locked_object); + locked_object = VM_OBJECT_NULL; + } + if (vm_object_lock_try(object)) { + locked_object = object; + } + } + if (locked_object == VM_OBJECT_NULL || + (VM_PAGE_WIRED(m1) || m1->vmp_gobbled || + m1->vmp_laundry || m1->vmp_wanted || + m1->vmp_cleaning || m1->vmp_overwriting || m1->vmp_free_when_done || m1->vmp_busy) || + (m1->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { + if (locked_object) { + vm_object_unlock(locked_object); + locked_object = VM_OBJECT_NULL; + } + tmp_start_idx = cur_idx; + abort_run = TRUE; + continue; + } + + disconnected = FALSE; + reusable = FALSE; + + if ((m1->vmp_reusable || + object->all_reusable) && + (m1->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) && + !m1->vmp_dirty && + !m1->vmp_reference) { + /* reusable page... */ + refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1)); + disconnected = TRUE; + if (refmod == 0) { + /* + * ... not reused: can steal + * without relocating contents. + */ + reusable = TRUE; + } + } + + if ((m1->vmp_pmapped && + !reusable) || + m1->vmp_dirty || + m1->vmp_precious) { + vm_object_offset_t offset; + + m2 = vm_page_grab_options(VM_PAGE_GRAB_Q_LOCK_HELD); + + if (m2 == VM_PAGE_NULL) { + if (locked_object) { + vm_object_unlock(locked_object); + locked_object = VM_OBJECT_NULL; + } + tmp_start_idx = cur_idx; + abort_run = TRUE; + continue; + } + if (!disconnected) { + if (m1->vmp_pmapped) { + refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1)); + } else { + refmod = 0; + } + } + + /* copy the page's contents */ + pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(m1), VM_PAGE_GET_PHYS_PAGE(m2)); + /* copy the page's state */ + assert(!VM_PAGE_WIRED(m1)); + assert(m1->vmp_q_state != VM_PAGE_ON_FREE_Q); + assert(m1->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q); + assert(!m1->vmp_laundry); + m2->vmp_reference = m1->vmp_reference; + assert(!m1->vmp_gobbled); + assert(!m1->vmp_private); + m2->vmp_no_cache = m1->vmp_no_cache; + m2->vmp_xpmapped = 0; + assert(!m1->vmp_busy); + assert(!m1->vmp_wanted); + assert(!m1->vmp_fictitious); + m2->vmp_pmapped = m1->vmp_pmapped; /* should flush cache ? */ + m2->vmp_wpmapped = m1->vmp_wpmapped; + assert(!m1->vmp_free_when_done); + m2->vmp_absent = m1->vmp_absent; + m2->vmp_error = m1->vmp_error; + m2->vmp_dirty = m1->vmp_dirty; + assert(!m1->vmp_cleaning); + m2->vmp_precious = m1->vmp_precious; + m2->vmp_clustered = m1->vmp_clustered; + assert(!m1->vmp_overwriting); + m2->vmp_restart = m1->vmp_restart; + m2->vmp_unusual = m1->vmp_unusual; + m2->vmp_cs_validated = m1->vmp_cs_validated; + m2->vmp_cs_tainted = m1->vmp_cs_tainted; + m2->vmp_cs_nx = m1->vmp_cs_nx; + + /* + * If m1 had really been reusable, + * we would have just stolen it, so + * let's not propagate it's "reusable" + * bit and assert that m2 is not + * marked as "reusable". + */ + // m2->vmp_reusable = m1->vmp_reusable; + assert(!m2->vmp_reusable); + + // assert(!m1->vmp_lopage); + + if (m1->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { + m2->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR; + } + + /* + * page may need to be flushed if + * it is marshalled into a UPL + * that is going to be used by a device + * that doesn't support coherency + */ + m2->vmp_written_by_kernel = TRUE; + + /* + * make sure we clear the ref/mod state + * from the pmap layer... else we risk + * inheriting state from the last time + * this page was used... + */ + pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m2), VM_MEM_MODIFIED | VM_MEM_REFERENCED); + + if (refmod & VM_MEM_REFERENCED) { + m2->vmp_reference = TRUE; + } + if (refmod & VM_MEM_MODIFIED) { + SET_PAGE_DIRTY(m2, TRUE); + } + offset = m1->vmp_offset; + + /* + * completely cleans up the state + * of the page so that it is ready + * to be put onto the free list, or + * for this purpose it looks like it + * just came off of the free list + */ + vm_page_free_prepare(m1); + + /* + * now put the substitute page + * on the object + */ + vm_page_insert_internal(m2, locked_object, offset, VM_KERN_MEMORY_NONE, TRUE, TRUE, FALSE, FALSE, NULL); + + if (m2->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { + m2->vmp_pmapped = TRUE; + m2->vmp_wpmapped = TRUE; + + PMAP_ENTER(kernel_pmap, (vm_map_offset_t)m2->vmp_offset, m2, + VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE, kr); + + assert(kr == KERN_SUCCESS); + + compressed_pages++; + } else { + if (m2->vmp_reference) { + vm_page_activate(m2); + } else { + vm_page_deactivate(m2); + } + } + PAGE_WAKEUP_DONE(m2); + } else { + assert(m1->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); + + /* + * completely cleans up the state + * of the page so that it is ready + * to be put onto the free list, or + * for this purpose it looks like it + * just came off of the free list + */ + vm_page_free_prepare(m1); + } + + stolen_pages++; + } +#if CONFIG_BACKGROUND_QUEUE + vm_page_assign_background_state(m1); +#endif + VM_PAGE_ZERO_PAGEQ_ENTRY(m1); + m1->vmp_snext = m; + m = m1; + } + if (locked_object) { + vm_object_unlock(locked_object); + locked_object = VM_OBJECT_NULL; + } + + if (abort_run == TRUE) { + /* + * want the index of the last + * page in this run that was + * successfully 'stolen', so back + * it up 1 for the auto-decrement on use + * and 1 more to bump back over this page + */ + page_idx = tmp_start_idx + 2; + if (page_idx >= vm_pages_count) { + if (wrapped) { + if (m != VM_PAGE_NULL) { + vm_page_unlock_queues(); + vm_page_free_list(m, FALSE); + vm_page_lock_queues(); + m = VM_PAGE_NULL; + } + dumped_run++; + goto done_scanning; + } + page_idx = last_idx = 0; + wrapped = TRUE; + } + abort_run = FALSE; + + /* + * We didn't find a contiguous range but we didn't + * start from the very first page. + * Start again from the very first page. + */ + RESET_STATE_OF_RUN(); + + if (flags & KMA_LOMEM) { + idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx; + } else { + idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx; + } + + last_idx = page_idx; + + if (m != VM_PAGE_NULL) { + vm_page_unlock_queues(); + vm_page_free_list(m, FALSE); + vm_page_lock_queues(); + m = VM_PAGE_NULL; + } + dumped_run++; + + lck_mtx_lock(&vm_page_queue_free_lock); + /* + * reset our free page limit since we + * dropped the lock protecting the vm_page_free_queue + */ + free_available = vm_page_free_count - vm_page_free_reserved; + goto retry; + } + + for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { + assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q); + assert(m1->vmp_wire_count == 0); + + if (wire == TRUE) { + m1->vmp_wire_count++; + m1->vmp_q_state = VM_PAGE_IS_WIRED; + } else { + m1->vmp_gobbled = TRUE; + } + } + if (wire == FALSE) { + vm_page_gobble_count += npages; + } + + /* + * gobbled pages are also counted as wired pages + */ + vm_page_wire_count += npages; + + assert(vm_page_verify_contiguous(m, npages)); + } +done_scanning: + PAGE_REPLACEMENT_ALLOWED(FALSE); + + vm_page_unlock_queues(); + +#if DEBUG + clock_get_system_microtime(&tv_end_sec, &tv_end_usec); + + tv_end_sec -= tv_start_sec; + if (tv_end_usec < tv_start_usec) { + tv_end_sec--; + tv_end_usec += 1000000; + } + tv_end_usec -= tv_start_usec; + if (tv_end_usec >= 1000000) { + tv_end_sec++; + tv_end_sec -= 1000000; + } + if (vm_page_find_contig_debug) { + printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages\n", + __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, + (long)tv_end_sec, tv_end_usec, orig_last_idx, + scanned, yielded, dumped_run, stolen_pages, compressed_pages); + } + +#endif +#if MACH_ASSERT + vm_page_verify_free_lists(); +#endif + if (m == NULL && zone_gc_called == FALSE) { + printf("%s(num=%d,low=%d): found %d pages at 0x%llx...scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages... wired count is %d\n", + __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, + scanned, yielded, dumped_run, stolen_pages, compressed_pages, vm_page_wire_count); + + if (consider_buffer_cache_collect != NULL) { + (void)(*consider_buffer_cache_collect)(1); + } + + consider_zone_gc(FALSE); + + zone_gc_called = TRUE; + + printf("vm_page_find_contiguous: zone_gc called... wired count is %d\n", vm_page_wire_count); + goto full_scan_again; + } + + return m; +} + +/* + * Allocate a list of contiguous, wired pages. + */ +kern_return_t +cpm_allocate( + vm_size_t size, + vm_page_t *list, + ppnum_t max_pnum, + ppnum_t pnum_mask, + boolean_t wire, + int flags) +{ + vm_page_t pages; + unsigned int npages; + + if (size % PAGE_SIZE != 0) { + return KERN_INVALID_ARGUMENT; + } + + npages = (unsigned int) (size / PAGE_SIZE); + if (npages != size / PAGE_SIZE) { + /* 32-bit overflow */ + return KERN_INVALID_ARGUMENT; + } + + /* + * Obtain a pointer to a subset of the free + * list large enough to satisfy the request; + * the region will be physically contiguous. + */ + pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags); + + if (pages == VM_PAGE_NULL) { + return KERN_NO_SPACE; + } + /* + * determine need for wakeups + */ + if (vm_page_free_count < vm_page_free_min) { + lck_mtx_lock(&vm_page_queue_free_lock); + if (vm_pageout_running == FALSE) { + lck_mtx_unlock(&vm_page_queue_free_lock); + thread_wakeup((event_t) &vm_page_free_wanted); + } else { + lck_mtx_unlock(&vm_page_queue_free_lock); + } + } + + VM_CHECK_MEMORYSTATUS; + + /* + * The CPM pages should now be available and + * ordered by ascending physical address. + */ + assert(vm_page_verify_contiguous(pages, npages)); + + *list = pages; + return KERN_SUCCESS; +} + + +unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT; + +/* + * when working on a 'run' of pages, it is necessary to hold + * the vm_page_queue_lock (a hot global lock) for certain operations + * on the page... however, the majority of the work can be done + * while merely holding the object lock... in fact there are certain + * collections of pages that don't require any work brokered by the + * vm_page_queue_lock... to mitigate the time spent behind the global + * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT + * while doing all of the work that doesn't require the vm_page_queue_lock... + * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the + * necessary work for each page... we will grab the busy bit on the page + * if it's not already held so that vm_page_do_delayed_work can drop the object lock + * if it can't immediately take the vm_page_queue_lock in order to compete + * for the locks in the same order that vm_pageout_scan takes them. + * the operation names are modeled after the names of the routines that + * need to be called in order to make the changes very obvious in the + * original loop + */ + +void +vm_page_do_delayed_work( + vm_object_t object, + vm_tag_t tag, + struct vm_page_delayed_work *dwp, + int dw_count) +{ + int j; + vm_page_t m; + vm_page_t local_free_q = VM_PAGE_NULL; + + /* + * pageout_scan takes the vm_page_lock_queues first + * then tries for the object lock... to avoid what + * is effectively a lock inversion, we'll go to the + * trouble of taking them in that same order... otherwise + * if this object contains the majority of the pages resident + * in the UBC (or a small set of large objects actively being + * worked on contain the majority of the pages), we could + * cause the pageout_scan thread to 'starve' in its attempt + * to find pages to move to the free queue, since it has to + * successfully acquire the object lock of any candidate page + * before it can steal/clean it. + */ + if (!vm_page_trylockspin_queues()) { + vm_object_unlock(object); + + /* + * "Turnstile enabled vm_pageout_scan" can be runnable + * for a very long time without getting on a core. + * If this is a higher priority thread it could be + * waiting here for a very long time respecting the fact + * that pageout_scan would like its object after VPS does + * a mutex_pause(0). + * So we cap the number of yields in the vm_object_lock_avoid() + * case to a single mutex_pause(0) which will give vm_pageout_scan + * 10us to run and grab the object if needed. + */ + vm_page_lockspin_queues(); + + for (j = 0;; j++) { + if ((!vm_object_lock_avoid(object) || + (vps_dynamic_priority_enabled && (j > 0))) && + _vm_object_lock_try(object)) { + break; + } + vm_page_unlock_queues(); + mutex_pause(j); + vm_page_lockspin_queues(); + } + } + for (j = 0; j < dw_count; j++, dwp++) { + m = dwp->dw_m; + + if (dwp->dw_mask & DW_vm_pageout_throttle_up) { + vm_pageout_throttle_up(m); + } +#if CONFIG_PHANTOM_CACHE + if (dwp->dw_mask & DW_vm_phantom_cache_update) { + vm_phantom_cache_update(m); + } +#endif + if (dwp->dw_mask & DW_vm_page_wire) { + vm_page_wire(m, tag, FALSE); + } else if (dwp->dw_mask & DW_vm_page_unwire) { + boolean_t queueit; + + queueit = (dwp->dw_mask & (DW_vm_page_free | DW_vm_page_deactivate_internal)) ? FALSE : TRUE; + + vm_page_unwire(m, queueit); + } + if (dwp->dw_mask & DW_vm_page_free) { + vm_page_free_prepare_queues(m); + + assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); + /* + * Add this page to our list of reclaimed pages, + * to be freed later. + */ + m->vmp_snext = local_free_q; + local_free_q = m; + } else { + if (dwp->dw_mask & DW_vm_page_deactivate_internal) { + vm_page_deactivate_internal(m, FALSE); + } else if (dwp->dw_mask & DW_vm_page_activate) { + if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) { + vm_page_activate(m); + } + } else if (dwp->dw_mask & DW_vm_page_speculate) { + vm_page_speculate(m, TRUE); + } else if (dwp->dw_mask & DW_enqueue_cleaned) { + /* + * if we didn't hold the object lock and did this, + * we might disconnect the page, then someone might + * soft fault it back in, then we would put it on the + * cleaned queue, and so we would have a referenced (maybe even dirty) + * page on that queue, which we don't want + */ + int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); + + if ((refmod_state & VM_MEM_REFERENCED)) { + /* + * this page has been touched since it got cleaned; let's activate it + * if it hasn't already been + */ + VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1); + VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); + + if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) { + vm_page_activate(m); + } + } else { + m->vmp_reference = FALSE; + vm_page_enqueue_cleaned(m); + } + } else if (dwp->dw_mask & DW_vm_page_lru) { + vm_page_lru(m); + } else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) { + if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) { + vm_page_queues_remove(m, TRUE); + } + } + if (dwp->dw_mask & DW_set_reference) { + m->vmp_reference = TRUE; + } else if (dwp->dw_mask & DW_clear_reference) { + m->vmp_reference = FALSE; + } + + if (dwp->dw_mask & DW_move_page) { + if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) { + vm_page_queues_remove(m, FALSE); + + assert(VM_PAGE_OBJECT(m) != kernel_object); + + vm_page_enqueue_inactive(m, FALSE); + } + } + if (dwp->dw_mask & DW_clear_busy) { + m->vmp_busy = FALSE; + } + + if (dwp->dw_mask & DW_PAGE_WAKEUP) { + PAGE_WAKEUP(m); + } + } + } + vm_page_unlock_queues(); + + if (local_free_q) { + vm_page_free_list(local_free_q, TRUE); + } + + VM_CHECK_MEMORYSTATUS; +} + +kern_return_t +vm_page_alloc_list( + int page_count, + int flags, + vm_page_t *list) +{ + vm_page_t lo_page_list = VM_PAGE_NULL; + vm_page_t mem; + int i; + + if (!(flags & KMA_LOMEM)) { + panic("vm_page_alloc_list: called w/o KMA_LOMEM"); + } + + for (i = 0; i < page_count; i++) { + mem = vm_page_grablo(); + + if (mem == VM_PAGE_NULL) { + if (lo_page_list) { + vm_page_free_list(lo_page_list, FALSE); + } + + *list = VM_PAGE_NULL; + + return KERN_RESOURCE_SHORTAGE; + } + mem->vmp_snext = lo_page_list; + lo_page_list = mem; + } + *list = lo_page_list; + + return KERN_SUCCESS; +} + +void +vm_page_set_offset(vm_page_t page, vm_object_offset_t offset) +{ + page->vmp_offset = offset; +} + +vm_page_t +vm_page_get_next(vm_page_t page) +{ + return page->vmp_snext; +} + +vm_object_offset_t +vm_page_get_offset(vm_page_t page) +{ + return page->vmp_offset; +} + +ppnum_t +vm_page_get_phys_page(vm_page_t page) +{ + return VM_PAGE_GET_PHYS_PAGE(page); +} + + +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +#if HIBERNATION + +static vm_page_t hibernate_gobble_queue; + +static int hibernate_drain_pageout_queue(struct vm_pageout_queue *); +static int hibernate_flush_dirty_pages(int); +static int hibernate_flush_queue(vm_page_queue_head_t *, int); + +void hibernate_flush_wait(void); +void hibernate_mark_in_progress(void); +void hibernate_clear_in_progress(void); + +void hibernate_free_range(int, int); +void hibernate_hash_insert_page(vm_page_t); +uint32_t hibernate_mark_as_unneeded(addr64_t, addr64_t, hibernate_page_list_t *, hibernate_page_list_t *); +uint32_t hibernate_teardown_vm_structs(hibernate_page_list_t *, hibernate_page_list_t *); +ppnum_t hibernate_lookup_paddr(unsigned int); + +struct hibernate_statistics { + int hibernate_considered; + int hibernate_reentered_on_q; + int hibernate_found_dirty; + int hibernate_skipped_cleaning; + int hibernate_skipped_transient; + int hibernate_skipped_precious; + int hibernate_skipped_external; + int hibernate_queue_nolock; + int hibernate_queue_paused; + int hibernate_throttled; + int hibernate_throttle_timeout; + int hibernate_drained; + int hibernate_drain_timeout; + int cd_lock_failed; + int cd_found_precious; + int cd_found_wired; + int cd_found_busy; + int cd_found_unusual; + int cd_found_cleaning; + int cd_found_laundry; + int cd_found_dirty; + int cd_found_xpmapped; + int cd_skipped_xpmapped; + int cd_local_free; + int cd_total_free; + int cd_vm_page_wire_count; + int cd_vm_struct_pages_unneeded; + int cd_pages; + int cd_discarded; + int cd_count_wire; +} hibernate_stats; + + +/* + * clamp the number of 'xpmapped' pages we'll sweep into the hibernation image + * so that we don't overrun the estimated image size, which would + * result in a hibernation failure. + */ +#define HIBERNATE_XPMAPPED_LIMIT 40000 + + +static int +hibernate_drain_pageout_queue(struct vm_pageout_queue *q) +{ + wait_result_t wait_result; + + vm_page_lock_queues(); + + while (!vm_page_queue_empty(&q->pgo_pending)) { + q->pgo_draining = TRUE; + + assert_wait_timeout((event_t) (&q->pgo_laundry + 1), THREAD_INTERRUPTIBLE, 5000, 1000 * NSEC_PER_USEC); + + vm_page_unlock_queues(); + + wait_result = thread_block(THREAD_CONTINUE_NULL); + + if (wait_result == THREAD_TIMED_OUT && !vm_page_queue_empty(&q->pgo_pending)) { + hibernate_stats.hibernate_drain_timeout++; + + if (q == &vm_pageout_queue_external) { + return 0; + } + + return 1; + } + vm_page_lock_queues(); + + hibernate_stats.hibernate_drained++; + } + vm_page_unlock_queues(); + + return 0; +} + + +boolean_t hibernate_skip_external = FALSE; + +static int +hibernate_flush_queue(vm_page_queue_head_t *q, int qcount) +{ + vm_page_t m; + vm_object_t l_object = NULL; + vm_object_t m_object = NULL; + int refmod_state = 0; + int try_failed_count = 0; + int retval = 0; + int current_run = 0; + struct vm_pageout_queue *iq; + struct vm_pageout_queue *eq; + struct vm_pageout_queue *tq; + + KDBG(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START, + VM_KERNEL_UNSLIDE_OR_PERM(q), qcount); + + iq = &vm_pageout_queue_internal; + eq = &vm_pageout_queue_external; + + vm_page_lock_queues(); + + while (qcount && !vm_page_queue_empty(q)) { + if (current_run++ == 1000) { + if (hibernate_should_abort()) { + retval = 1; + break; + } + current_run = 0; + } + + m = (vm_page_t) vm_page_queue_first(q); + m_object = VM_PAGE_OBJECT(m); + + /* + * check to see if we currently are working + * with the same object... if so, we've + * already got the lock + */ + if (m_object != l_object) { + /* + * the object associated with candidate page is + * different from the one we were just working + * with... dump the lock if we still own it + */ + if (l_object != NULL) { + vm_object_unlock(l_object); + l_object = NULL; + } + /* + * Try to lock object; since we've alread got the + * page queues lock, we can only 'try' for this one. + * if the 'try' fails, we need to do a mutex_pause + * to allow the owner of the object lock a chance to + * run... + */ + if (!vm_object_lock_try_scan(m_object)) { + if (try_failed_count > 20) { + hibernate_stats.hibernate_queue_nolock++; + + goto reenter_pg_on_q; + } + + vm_page_unlock_queues(); + mutex_pause(try_failed_count++); + vm_page_lock_queues(); + + hibernate_stats.hibernate_queue_paused++; + continue; + } else { + l_object = m_object; + } + } + if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error) { + /* + * page is not to be cleaned + * put it back on the head of its queue + */ + if (m->vmp_cleaning) { + hibernate_stats.hibernate_skipped_cleaning++; + } else { + hibernate_stats.hibernate_skipped_transient++; + } + + goto reenter_pg_on_q; + } + if (m_object->copy == VM_OBJECT_NULL) { + if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) { + /* + * let the normal hibernate image path + * deal with these + */ + goto reenter_pg_on_q; + } + } + if (!m->vmp_dirty && m->vmp_pmapped) { + refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m)); + + if ((refmod_state & VM_MEM_MODIFIED)) { + SET_PAGE_DIRTY(m, FALSE); + } + } else { + refmod_state = 0; + } + + if (!m->vmp_dirty) { + /* + * page is not to be cleaned + * put it back on the head of its queue + */ + if (m->vmp_precious) { + hibernate_stats.hibernate_skipped_precious++; + } + + goto reenter_pg_on_q; + } + + if (hibernate_skip_external == TRUE && !m_object->internal) { + hibernate_stats.hibernate_skipped_external++; + + goto reenter_pg_on_q; + } + tq = NULL; + + if (m_object->internal) { + if (VM_PAGE_Q_THROTTLED(iq)) { + tq = iq; + } + } else if (VM_PAGE_Q_THROTTLED(eq)) { + tq = eq; + } + + if (tq != NULL) { + wait_result_t wait_result; + int wait_count = 5; + + if (l_object != NULL) { + vm_object_unlock(l_object); + l_object = NULL; + } + + while (retval == 0) { + tq->pgo_throttled = TRUE; + + assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000 * NSEC_PER_USEC); + + vm_page_unlock_queues(); + + wait_result = thread_block(THREAD_CONTINUE_NULL); + + vm_page_lock_queues(); + + if (wait_result != THREAD_TIMED_OUT) { + break; + } + if (!VM_PAGE_Q_THROTTLED(tq)) { + break; + } + + if (hibernate_should_abort()) { + retval = 1; + } + + if (--wait_count == 0) { + hibernate_stats.hibernate_throttle_timeout++; + + if (tq == eq) { + hibernate_skip_external = TRUE; + break; + } + retval = 1; + } + } + if (retval) { + break; + } + + hibernate_stats.hibernate_throttled++; + + continue; + } + /* + * we've already factored out pages in the laundry which + * means this page can't be on the pageout queue so it's + * safe to do the vm_page_queues_remove + */ + vm_page_queues_remove(m, TRUE); + + if (m_object->internal == TRUE) { + pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m), PMAP_OPTIONS_COMPRESSOR, NULL); + } + + vm_pageout_cluster(m); + + hibernate_stats.hibernate_found_dirty++; + + goto next_pg; + +reenter_pg_on_q: + vm_page_queue_remove(q, m, vmp_pageq); + vm_page_queue_enter(q, m, vmp_pageq); + + hibernate_stats.hibernate_reentered_on_q++; +next_pg: + hibernate_stats.hibernate_considered++; + + qcount--; + try_failed_count = 0; + } + if (l_object != NULL) { + vm_object_unlock(l_object); + l_object = NULL; + } + + vm_page_unlock_queues(); + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0); + + return retval; +} + + +static int +hibernate_flush_dirty_pages(int pass) +{ + struct vm_speculative_age_q *aq; + uint32_t i; + + if (vm_page_local_q) { + zpercpu_foreach_cpu(lid) { + vm_page_reactivate_local(lid, TRUE, FALSE); + } + } + + for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { + int qcount; + vm_page_t m; + + aq = &vm_page_queue_speculative[i]; + + if (vm_page_queue_empty(&aq->age_q)) { + continue; + } + qcount = 0; + + vm_page_lockspin_queues(); + + vm_page_queue_iterate(&aq->age_q, m, vmp_pageq) { + qcount++; + } + vm_page_unlock_queues(); + + if (qcount) { + if (hibernate_flush_queue(&aq->age_q, qcount)) { + return 1; + } + } + } + if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) { + return 1; + } + /* XXX FBDP TODO: flush secluded queue */ + if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) { + return 1; + } + if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) { + return 1; + } + if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) { + return 1; + } + + if (pass == 1) { + vm_compressor_record_warmup_start(); + } + + if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) { + if (pass == 1) { + vm_compressor_record_warmup_end(); + } + return 1; + } + if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) { + if (pass == 1) { + vm_compressor_record_warmup_end(); + } + return 1; + } + if (pass == 1) { + vm_compressor_record_warmup_end(); + } + + if (hibernate_skip_external == FALSE && hibernate_drain_pageout_queue(&vm_pageout_queue_external)) { + return 1; + } + + return 0; +} + + +void +hibernate_reset_stats() +{ + bzero(&hibernate_stats, sizeof(struct hibernate_statistics)); +} + + +int +hibernate_flush_memory() +{ + int retval; + + assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0); + + hibernate_cleaning_in_progress = TRUE; + hibernate_skip_external = FALSE; + + if ((retval = hibernate_flush_dirty_pages(1)) == 0) { + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_START, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); + + vm_compressor_flush(); + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_END, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); + + if (consider_buffer_cache_collect != NULL) { + unsigned int orig_wire_count; + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, 0, 0, 0, 0, 0); + orig_wire_count = vm_page_wire_count; + + (void)(*consider_buffer_cache_collect)(1); + consider_zone_gc(FALSE); + + HIBLOG("hibernate_flush_memory: buffer_cache_gc freed up %d wired pages\n", orig_wire_count - vm_page_wire_count); + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, orig_wire_count - vm_page_wire_count, 0, 0, 0, 0); + } + } + hibernate_cleaning_in_progress = FALSE; + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0); + + if (retval) { + HIBLOG("hibernate_flush_memory() failed to finish - vm_page_compressor_count(%d)\n", VM_PAGE_COMPRESSOR_COUNT); + } + + + HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n", + hibernate_stats.hibernate_considered, + hibernate_stats.hibernate_reentered_on_q, + hibernate_stats.hibernate_found_dirty); + HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) skipped_external(%d) queue_nolock(%d)\n", + hibernate_stats.hibernate_skipped_cleaning, + hibernate_stats.hibernate_skipped_transient, + hibernate_stats.hibernate_skipped_precious, + hibernate_stats.hibernate_skipped_external, + hibernate_stats.hibernate_queue_nolock); + HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n", + hibernate_stats.hibernate_queue_paused, + hibernate_stats.hibernate_throttled, + hibernate_stats.hibernate_throttle_timeout, + hibernate_stats.hibernate_drained, + hibernate_stats.hibernate_drain_timeout); + + return retval; +} + + +static void +hibernate_page_list_zero(hibernate_page_list_t *list) +{ + uint32_t bank; + hibernate_bitmap_t * bitmap; + + bitmap = &list->bank_bitmap[0]; + for (bank = 0; bank < list->bank_count; bank++) { + uint32_t last_bit; + + bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2); + // set out-of-bound bits at end of bitmap. + last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31); + if (last_bit) { + bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit); + } + + bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords]; + } +} + +void +hibernate_free_gobble_pages(void) +{ + vm_page_t m, next; + uint32_t count = 0; + + m = (vm_page_t) hibernate_gobble_queue; + while (m) { + next = m->vmp_snext; + vm_page_free(m); + count++; + m = next; + } + hibernate_gobble_queue = VM_PAGE_NULL; + + if (count) { + HIBLOG("Freed %d pages\n", count); + } +} + +static boolean_t +hibernate_consider_discard(vm_page_t m, boolean_t preflight) +{ + vm_object_t object = NULL; + int refmod_state; + boolean_t discard = FALSE; + + do{ + if (m->vmp_private) { + panic("hibernate_consider_discard: private"); + } + + object = VM_PAGE_OBJECT(m); + + if (!vm_object_lock_try(object)) { + object = NULL; + if (!preflight) { + hibernate_stats.cd_lock_failed++; + } + break; + } + if (VM_PAGE_WIRED(m)) { + if (!preflight) { + hibernate_stats.cd_found_wired++; + } + break; + } + if (m->vmp_precious) { + if (!preflight) { + hibernate_stats.cd_found_precious++; + } + break; + } + if (m->vmp_busy || !object->alive) { + /* + * Somebody is playing with this page. + */ + if (!preflight) { + hibernate_stats.cd_found_busy++; + } + break; + } + if (m->vmp_absent || m->vmp_unusual || m->vmp_error) { + /* + * If it's unusual in anyway, ignore it + */ + if (!preflight) { + hibernate_stats.cd_found_unusual++; + } + break; + } + if (m->vmp_cleaning) { + if (!preflight) { + hibernate_stats.cd_found_cleaning++; + } + break; + } + if (m->vmp_laundry) { + if (!preflight) { + hibernate_stats.cd_found_laundry++; + } + break; + } + if (!m->vmp_dirty) { + refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m)); + + if (refmod_state & VM_MEM_REFERENCED) { + m->vmp_reference = TRUE; + } + if (refmod_state & VM_MEM_MODIFIED) { + SET_PAGE_DIRTY(m, FALSE); + } + } + + /* + * If it's clean or purgeable we can discard the page on wakeup. + */ + discard = (!m->vmp_dirty) + || (VM_PURGABLE_VOLATILE == object->purgable) + || (VM_PURGABLE_EMPTY == object->purgable); + + + if (discard == FALSE) { + if (!preflight) { + hibernate_stats.cd_found_dirty++; + } + } else if (m->vmp_xpmapped && m->vmp_reference && !object->internal) { + if (hibernate_stats.cd_found_xpmapped < HIBERNATE_XPMAPPED_LIMIT) { + if (!preflight) { + hibernate_stats.cd_found_xpmapped++; + } + discard = FALSE; + } else { + if (!preflight) { + hibernate_stats.cd_skipped_xpmapped++; + } + } + } + }while (FALSE); + + if (object) { + vm_object_unlock(object); + } + + return discard; +} + + +static void +hibernate_discard_page(vm_page_t m) +{ + vm_object_t m_object; + + if (m->vmp_absent || m->vmp_unusual || m->vmp_error) { + /* + * If it's unusual in anyway, ignore + */ + return; + } + + m_object = VM_PAGE_OBJECT(m); + +#if MACH_ASSERT || DEBUG + if (!vm_object_lock_try(m_object)) { + panic("hibernate_discard_page(%p) !vm_object_lock_try", m); + } +#else + /* No need to lock page queue for token delete, hibernate_vm_unlock() + * makes sure these locks are uncontended before sleep */ +#endif /* MACH_ASSERT || DEBUG */ + + if (m->vmp_pmapped == TRUE) { + __unused int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); + } + + if (m->vmp_laundry) { + panic("hibernate_discard_page(%p) laundry", m); + } + if (m->vmp_private) { + panic("hibernate_discard_page(%p) private", m); + } + if (m->vmp_fictitious) { + panic("hibernate_discard_page(%p) fictitious", m); + } + + if (VM_PURGABLE_VOLATILE == m_object->purgable) { + /* object should be on a queue */ + assert((m_object->objq.next != NULL) && (m_object->objq.prev != NULL)); + purgeable_q_t old_queue = vm_purgeable_object_remove(m_object); + assert(old_queue); + if (m_object->purgeable_when_ripe) { + vm_purgeable_token_delete_first(old_queue); + } + vm_object_lock_assert_exclusive(m_object); + m_object->purgable = VM_PURGABLE_EMPTY; + + /* + * Purgeable ledgers: pages of VOLATILE and EMPTY objects are + * accounted in the "volatile" ledger, so no change here. + * We have to update vm_page_purgeable_count, though, since we're + * effectively purging this object. + */ + unsigned int delta; + assert(m_object->resident_page_count >= m_object->wired_page_count); + delta = (m_object->resident_page_count - m_object->wired_page_count); + assert(vm_page_purgeable_count >= delta); + assert(delta > 0); + OSAddAtomic(-delta, (SInt32 *)&vm_page_purgeable_count); + } + + vm_page_free(m); + +#if MACH_ASSERT || DEBUG + vm_object_unlock(m_object); +#endif /* MACH_ASSERT || DEBUG */ +} + +/* + * Grab locks for hibernate_page_list_setall() + */ +void +hibernate_vm_lock_queues(void) +{ + vm_object_lock(compressor_object); + vm_page_lock_queues(); + lck_mtx_lock(&vm_page_queue_free_lock); + lck_mtx_lock(&vm_purgeable_queue_lock); + + if (vm_page_local_q) { + zpercpu_foreach(lq, vm_page_local_q) { + VPL_LOCK(&lq->vpl_lock); + } + } +} + +void +hibernate_vm_unlock_queues(void) +{ + if (vm_page_local_q) { + zpercpu_foreach(lq, vm_page_local_q) { + VPL_UNLOCK(&lq->vpl_lock); + } + } + lck_mtx_unlock(&vm_purgeable_queue_lock); + lck_mtx_unlock(&vm_page_queue_free_lock); + vm_page_unlock_queues(); + vm_object_unlock(compressor_object); +} + +/* + * Bits zero in the bitmaps => page needs to be saved. All pages default to be saved, + * pages known to VM to not need saving are subtracted. + * Wired pages to be saved are present in page_list_wired, pageable in page_list. + */ + +void +hibernate_page_list_setall(hibernate_page_list_t * page_list, + hibernate_page_list_t * page_list_wired, + hibernate_page_list_t * page_list_pal, + boolean_t preflight, + boolean_t will_discard, + uint32_t * pagesOut) +{ + uint64_t start, end, nsec; + vm_page_t m; + vm_page_t next; + uint32_t pages = page_list->page_count; + uint32_t count_anonymous = 0, count_throttled = 0, count_compressor = 0; + uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0; + uint32_t count_wire = pages; + uint32_t count_discard_active = 0; + uint32_t count_discard_inactive = 0; + uint32_t count_discard_cleaned = 0; + uint32_t count_discard_purgeable = 0; + uint32_t count_discard_speculative = 0; + uint32_t count_discard_vm_struct_pages = 0; + uint32_t i; + uint32_t bank; + hibernate_bitmap_t * bitmap; + hibernate_bitmap_t * bitmap_wired; + boolean_t discard_all; + boolean_t discard; + + HIBLOG("hibernate_page_list_setall(preflight %d) start\n", preflight); + + if (preflight) { + page_list = NULL; + page_list_wired = NULL; + page_list_pal = NULL; + discard_all = FALSE; + } else { + discard_all = will_discard; + } + +#if MACH_ASSERT || DEBUG + if (!preflight) { + assert(hibernate_vm_locks_are_safe()); + vm_page_lock_queues(); + if (vm_page_local_q) { + zpercpu_foreach(lq, vm_page_local_q) { + VPL_LOCK(&lq->vpl_lock); + } + } + } +#endif /* MACH_ASSERT || DEBUG */ + + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0); + + clock_get_uptime(&start); + + if (!preflight) { + hibernate_page_list_zero(page_list); + hibernate_page_list_zero(page_list_wired); + hibernate_page_list_zero(page_list_pal); + + hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count; + hibernate_stats.cd_pages = pages; + } + + if (vm_page_local_q) { + zpercpu_foreach_cpu(lid) { + vm_page_reactivate_local(lid, TRUE, !preflight); + } + } + + if (preflight) { + vm_object_lock(compressor_object); + vm_page_lock_queues(); + lck_mtx_lock(&vm_page_queue_free_lock); + } + + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + + hibernation_vmqueues_inspection = TRUE; + + m = (vm_page_t) hibernate_gobble_queue; + while (m) { + pages--; + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + m = m->vmp_snext; + } + + if (!preflight) { + percpu_foreach(free_pages_head, free_pages) { + for (m = *free_pages_head; m; m = m->vmp_snext) { + assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q); + + pages--; + count_wire--; + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + + hibernate_stats.cd_local_free++; + hibernate_stats.cd_total_free++; + } + } + } + + for (i = 0; i < vm_colors; i++) { + vm_page_queue_iterate(&vm_page_queue_free[i].qhead, m, vmp_pageq) { + assert(m->vmp_q_state == VM_PAGE_ON_FREE_Q); + + pages--; + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + + hibernate_stats.cd_total_free++; + } + } + } + + vm_page_queue_iterate(&vm_lopage_queue_free, m, vmp_pageq) { + assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q); + + pages--; + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + + hibernate_stats.cd_total_free++; + } + } + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); + while (m && !vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q); + + next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + discard = FALSE; + if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) + && hibernate_consider_discard(m, preflight)) { + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + count_discard_inactive++; + discard = discard_all; + } else { + count_throttled++; + } + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + + if (discard) { + hibernate_discard_page(m); + } + m = next; + } + + m = (vm_page_t)vm_page_queue_first(&vm_page_queue_anonymous); + while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); + + next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + discard = FALSE; + if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && + hibernate_consider_discard(m, preflight)) { + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_inactive++; + } + discard = discard_all; + } else { + count_anonymous++; + } + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (discard) { + hibernate_discard_page(m); + } + m = next; + } + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); + while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); + + next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + discard = FALSE; + if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && + hibernate_consider_discard(m, preflight)) { + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_cleaned++; + } + discard = discard_all; + } else { + count_cleaned++; + } + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (discard) { + hibernate_discard_page(m); + } + m = next; + } + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); + while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q); + + next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + discard = FALSE; + if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) && + hibernate_consider_discard(m, preflight)) { + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_active++; + } + discard = discard_all; + } else { + count_active++; + } + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (discard) { + hibernate_discard_page(m); + } + m = next; + } + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); + while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); + + next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + discard = FALSE; + if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && + hibernate_consider_discard(m, preflight)) { + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_inactive++; + } + discard = discard_all; + } else { + count_inactive++; + } + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (discard) { + hibernate_discard_page(m); + } + m = next; + } + /* XXX FBDP TODO: secluded queue */ + + for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q); + while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) { + assertf(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q, + "Bad page: %p (0x%x:0x%x) on queue %d has state: %d (Discard: %d, Preflight: %d)", + m, m->vmp_pageq.next, m->vmp_pageq.prev, i, m->vmp_q_state, discard, preflight); + + next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + discard = FALSE; + if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && + hibernate_consider_discard(m, preflight)) { + if (!preflight) { + hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + count_discard_speculative++; + discard = discard_all; + } else { + count_speculative++; + } + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + if (discard) { + hibernate_discard_page(m); + } + m = next; + } + } + + vm_page_queue_iterate(&compressor_object->memq, m, vmp_listq) { + assert(m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR); + + count_compressor++; + count_wire--; + if (!preflight) { + hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); + } + } + + if (preflight == FALSE && discard_all == TRUE) { + KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_START); + + HIBLOG("hibernate_teardown started\n"); + count_discard_vm_struct_pages = hibernate_teardown_vm_structs(page_list, page_list_wired); + HIBLOG("hibernate_teardown completed - discarded %d\n", count_discard_vm_struct_pages); + + pages -= count_discard_vm_struct_pages; + count_wire -= count_discard_vm_struct_pages; + + hibernate_stats.cd_vm_struct_pages_unneeded = count_discard_vm_struct_pages; + + KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_END); + } + + if (!preflight) { + // pull wired from hibernate_bitmap + bitmap = &page_list->bank_bitmap[0]; + bitmap_wired = &page_list_wired->bank_bitmap[0]; + for (bank = 0; bank < page_list->bank_count; bank++) { + for (i = 0; i < bitmap->bitmapwords; i++) { + bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i]; + } + bitmap = (hibernate_bitmap_t *)&bitmap->bitmap[bitmap->bitmapwords]; + bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords]; + } + } + + // machine dependent adjustments + hibernate_page_list_setall_machine(page_list, page_list_wired, preflight, &pages); + + if (!preflight) { + hibernate_stats.cd_count_wire = count_wire; + hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable + + count_discard_speculative + count_discard_cleaned + count_discard_vm_struct_pages; + } + + clock_get_uptime(&end); + absolutetime_to_nanoseconds(end - start, &nsec); + HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL); + + HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, compr %d, xpmapped %d\n %s discard act %d inact %d purgeable %d spec %d cleaned %d\n", + pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_anonymous, count_throttled, count_compressor, hibernate_stats.cd_found_xpmapped, + discard_all ? "did" : "could", + count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); + + if (hibernate_stats.cd_skipped_xpmapped) { + HIBLOG("WARNING: hibernate_page_list_setall skipped %d xpmapped pages\n", hibernate_stats.cd_skipped_xpmapped); + } + + *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned; + + if (preflight && will_discard) { + *pagesOut -= count_compressor + count_throttled + count_anonymous + count_inactive + count_cleaned + count_speculative + count_active; + } + + hibernation_vmqueues_inspection = FALSE; + +#if MACH_ASSERT || DEBUG + if (!preflight) { + if (vm_page_local_q) { + zpercpu_foreach(lq, vm_page_local_q) { + VPL_UNLOCK(&lq->vpl_lock); + } + } + vm_page_unlock_queues(); + } +#endif /* MACH_ASSERT || DEBUG */ + + if (preflight) { + lck_mtx_unlock(&vm_page_queue_free_lock); + vm_page_unlock_queues(); + vm_object_unlock(compressor_object); + } + + KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0); +} + +void +hibernate_page_list_discard(hibernate_page_list_t * page_list) +{ + uint64_t start, end, nsec; + vm_page_t m; + vm_page_t next; + uint32_t i; + uint32_t count_discard_active = 0; + uint32_t count_discard_inactive = 0; + uint32_t count_discard_purgeable = 0; + uint32_t count_discard_cleaned = 0; + uint32_t count_discard_speculative = 0; + + +#if MACH_ASSERT || DEBUG + vm_page_lock_queues(); + if (vm_page_local_q) { + zpercpu_foreach(lq, vm_page_local_q) { + VPL_LOCK(&lq->vpl_lock); + } + } +#endif /* MACH_ASSERT || DEBUG */ + + clock_get_uptime(&start); + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); + while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); + + next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_inactive++; + } + hibernate_discard_page(m); + } + m = next; + } + + for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q); + while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q); + + next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { + count_discard_speculative++; + hibernate_discard_page(m); + } + m = next; + } + } + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); + while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); + + next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_inactive++; + } + hibernate_discard_page(m); + } + m = next; + } + /* XXX FBDP TODO: secluded queue */ + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); + while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q); + + next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_active++; + } + hibernate_discard_page(m); + } + m = next; + } + + m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); + while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) { + assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); + + next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); + if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { + if (m->vmp_dirty) { + count_discard_purgeable++; + } else { + count_discard_cleaned++; + } + hibernate_discard_page(m); + } + m = next; + } + +#if MACH_ASSERT || DEBUG + if (vm_page_local_q) { + zpercpu_foreach(lq, vm_page_local_q) { + VPL_UNLOCK(&lq->vpl_lock); + } + } + vm_page_unlock_queues(); +#endif /* MACH_ASSERT || DEBUG */ + + clock_get_uptime(&end); + absolutetime_to_nanoseconds(end - start, &nsec); + HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n", + nsec / 1000000ULL, + count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); +} + +boolean_t hibernate_paddr_map_inited = FALSE; +unsigned int hibernate_teardown_last_valid_compact_indx = -1; +vm_page_t hibernate_rebuild_hash_list = NULL; + +unsigned int hibernate_teardown_found_tabled_pages = 0; +unsigned int hibernate_teardown_found_created_pages = 0; +unsigned int hibernate_teardown_found_free_pages = 0; +unsigned int hibernate_teardown_vm_page_free_count; + + +struct ppnum_mapping { + struct ppnum_mapping *ppnm_next; + ppnum_t ppnm_base_paddr; + unsigned int ppnm_sindx; + unsigned int ppnm_eindx; +}; + +struct ppnum_mapping *ppnm_head; +struct ppnum_mapping *ppnm_last_found = NULL; + + +void +hibernate_create_paddr_map(void) +{ + unsigned int i; + ppnum_t next_ppnum_in_run = 0; + struct ppnum_mapping *ppnm = NULL; + + if (hibernate_paddr_map_inited == FALSE) { + for (i = 0; i < vm_pages_count; i++) { + if (ppnm) { + ppnm->ppnm_eindx = i; + } + + if (ppnm == NULL || VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) != next_ppnum_in_run) { + ppnm = zalloc_permanent_type(struct ppnum_mapping); + + ppnm->ppnm_next = ppnm_head; + ppnm_head = ppnm; + + ppnm->ppnm_sindx = i; + ppnm->ppnm_base_paddr = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]); + } + next_ppnum_in_run = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) + 1; + } + ppnm->ppnm_eindx++; + + hibernate_paddr_map_inited = TRUE; + } +} + +ppnum_t +hibernate_lookup_paddr(unsigned int indx) +{ + struct ppnum_mapping *ppnm = NULL; + + ppnm = ppnm_last_found; + + if (ppnm) { + if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) { + goto done; + } + } + for (ppnm = ppnm_head; ppnm; ppnm = ppnm->ppnm_next) { + if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) { + ppnm_last_found = ppnm; + break; + } + } + if (ppnm == NULL) { + panic("hibernate_lookup_paddr of %d failed\n", indx); + } +done: + return ppnm->ppnm_base_paddr + (indx - ppnm->ppnm_sindx); +} + + +uint32_t +hibernate_mark_as_unneeded(addr64_t saddr, addr64_t eaddr, hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) +{ + addr64_t saddr_aligned; + addr64_t eaddr_aligned; + addr64_t addr; + ppnum_t paddr; + unsigned int mark_as_unneeded_pages = 0; + + saddr_aligned = (saddr + PAGE_MASK_64) & ~PAGE_MASK_64; + eaddr_aligned = eaddr & ~PAGE_MASK_64; + + for (addr = saddr_aligned; addr < eaddr_aligned; addr += PAGE_SIZE_64) { + paddr = pmap_find_phys(kernel_pmap, addr); + + assert(paddr); + + hibernate_page_bitset(page_list, TRUE, paddr); + hibernate_page_bitset(page_list_wired, TRUE, paddr); + + mark_as_unneeded_pages++; + } + return mark_as_unneeded_pages; +} + + +void +hibernate_hash_insert_page(vm_page_t mem) +{ + vm_page_bucket_t *bucket; + int hash_id; + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(mem); + + assert(mem->vmp_hashed); + assert(m_object); + assert(mem->vmp_offset != (vm_object_offset_t) -1); + + /* + * Insert it into the object_object/offset hash table + */ + hash_id = vm_page_hash(m_object, mem->vmp_offset); + bucket = &vm_page_buckets[hash_id]; + + mem->vmp_next_m = bucket->page_list; + bucket->page_list = VM_PAGE_PACK_PTR(mem); +} + + +void +hibernate_free_range(int sindx, int eindx) +{ + vm_page_t mem; + unsigned int color; + + while (sindx < eindx) { + mem = &vm_pages[sindx]; + + vm_page_init(mem, hibernate_lookup_paddr(sindx), FALSE); + + mem->vmp_lopage = FALSE; + mem->vmp_q_state = VM_PAGE_ON_FREE_Q; + + color = VM_PAGE_GET_COLOR(mem); +#if defined(__x86_64__) + vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem); +#else + vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq); +#endif + vm_page_free_count++; + + sindx++; + } +} + +void +hibernate_rebuild_vm_structs(void) +{ + int i, cindx, sindx, eindx; + vm_page_t mem, tmem, mem_next; + AbsoluteTime startTime, endTime; + uint64_t nsec; + + if (hibernate_rebuild_needed == FALSE) { + return; + } + + KDBG(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_START); + HIBLOG("hibernate_rebuild started\n"); + + clock_get_uptime(&startTime); + + pal_hib_rebuild_pmap_structs(); + + bzero(&vm_page_buckets[0], vm_page_bucket_count * sizeof(vm_page_bucket_t)); + eindx = vm_pages_count; + + /* + * Mark all the vm_pages[] that have not been initialized yet as being + * transient. This is needed to ensure that buddy page search is corrrect. + * Without this random data in these vm_pages[] can trip the buddy search + */ + for (i = hibernate_teardown_last_valid_compact_indx + 1; i < eindx; ++i) { + vm_pages[i].vmp_q_state = VM_PAGE_NOT_ON_Q; + } + + for (cindx = hibernate_teardown_last_valid_compact_indx; cindx >= 0; cindx--) { + mem = &vm_pages[cindx]; + assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q); + /* + * hibernate_teardown_vm_structs leaves the location where + * this vm_page_t must be located in "next". + */ + tmem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m)); + mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL); + + sindx = (int)(tmem - &vm_pages[0]); + + if (mem != tmem) { + /* + * this vm_page_t was moved by hibernate_teardown_vm_structs, + * so move it back to its real location + */ + *tmem = *mem; + mem = tmem; + } + if (mem->vmp_hashed) { + hibernate_hash_insert_page(mem); + } + /* + * the 'hole' between this vm_page_t and the previous + * vm_page_t we moved needs to be initialized as + * a range of free vm_page_t's + */ + hibernate_free_range(sindx + 1, eindx); + + eindx = sindx; + } + if (sindx) { + hibernate_free_range(0, sindx); + } + + assert(vm_page_free_count == hibernate_teardown_vm_page_free_count); + + /* + * process the list of vm_page_t's that were entered in the hash, + * but were not located in the vm_pages arrary... these are + * vm_page_t's that were created on the fly (i.e. fictitious) + */ + for (mem = hibernate_rebuild_hash_list; mem; mem = mem_next) { + mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m)); + + mem->vmp_next_m = 0; + hibernate_hash_insert_page(mem); + } + hibernate_rebuild_hash_list = NULL; + + clock_get_uptime(&endTime); + SUB_ABSOLUTETIME(&endTime, &startTime); + absolutetime_to_nanoseconds(endTime, &nsec); + + HIBLOG("hibernate_rebuild completed - took %qd msecs\n", nsec / 1000000ULL); + + hibernate_rebuild_needed = FALSE; + + KDBG(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END); +} + +uint32_t +hibernate_teardown_vm_structs(hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) +{ + unsigned int i; + unsigned int compact_target_indx; + vm_page_t mem, mem_next; + vm_page_bucket_t *bucket; + unsigned int mark_as_unneeded_pages = 0; + unsigned int unneeded_vm_page_bucket_pages = 0; + unsigned int unneeded_vm_pages_pages = 0; + unsigned int unneeded_pmap_pages = 0; + addr64_t start_of_unneeded = 0; + addr64_t end_of_unneeded = 0; + + + if (hibernate_should_abort()) { + return 0; + } + + hibernate_rebuild_needed = TRUE; + + HIBLOG("hibernate_teardown: wired_pages %d, free_pages %d, active_pages %d, inactive_pages %d, speculative_pages %d, cleaned_pages %d, compressor_pages %d\n", + vm_page_wire_count, vm_page_free_count, vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, + vm_page_cleaned_count, compressor_object->resident_page_count); + + for (i = 0; i < vm_page_bucket_count; i++) { + bucket = &vm_page_buckets[i]; + + for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); mem != VM_PAGE_NULL; mem = mem_next) { + assert(mem->vmp_hashed); + + mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m)); + + if (mem < &vm_pages[0] || mem >= &vm_pages[vm_pages_count]) { + mem->vmp_next_m = VM_PAGE_PACK_PTR(hibernate_rebuild_hash_list); + hibernate_rebuild_hash_list = mem; + } + } + } + unneeded_vm_page_bucket_pages = hibernate_mark_as_unneeded((addr64_t)&vm_page_buckets[0], (addr64_t)&vm_page_buckets[vm_page_bucket_count], page_list, page_list_wired); + mark_as_unneeded_pages += unneeded_vm_page_bucket_pages; + + hibernate_teardown_vm_page_free_count = vm_page_free_count; + + compact_target_indx = 0; + + for (i = 0; i < vm_pages_count; i++) { + mem = &vm_pages[i]; + + if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) { + unsigned int color; + + assert(mem->vmp_busy); + assert(!mem->vmp_lopage); + + color = VM_PAGE_GET_COLOR(mem); + + vm_page_queue_remove(&vm_page_queue_free[color].qhead, mem, vmp_pageq); + + VM_PAGE_ZERO_PAGEQ_ENTRY(mem); + + vm_page_free_count--; + + hibernate_teardown_found_free_pages++; + + if (vm_pages[compact_target_indx].vmp_q_state != VM_PAGE_ON_FREE_Q) { + compact_target_indx = i; + } + } else { + /* + * record this vm_page_t's original location + * we need this even if it doesn't get moved + * as an indicator to the rebuild function that + * we don't have to move it + */ + mem->vmp_next_m = VM_PAGE_PACK_PTR(mem); + + if (vm_pages[compact_target_indx].vmp_q_state == VM_PAGE_ON_FREE_Q) { + /* + * we've got a hole to fill, so + * move this vm_page_t to it's new home + */ + vm_pages[compact_target_indx] = *mem; + mem->vmp_q_state = VM_PAGE_ON_FREE_Q; + + hibernate_teardown_last_valid_compact_indx = compact_target_indx; + compact_target_indx++; + } else { + hibernate_teardown_last_valid_compact_indx = i; + } + } + } + unneeded_vm_pages_pages = hibernate_mark_as_unneeded((addr64_t)&vm_pages[hibernate_teardown_last_valid_compact_indx + 1], + (addr64_t)&vm_pages[vm_pages_count - 1], page_list, page_list_wired); + mark_as_unneeded_pages += unneeded_vm_pages_pages; + + pal_hib_teardown_pmap_structs(&start_of_unneeded, &end_of_unneeded); + + if (start_of_unneeded) { + unneeded_pmap_pages = hibernate_mark_as_unneeded(start_of_unneeded, end_of_unneeded, page_list, page_list_wired); + mark_as_unneeded_pages += unneeded_pmap_pages; + } + HIBLOG("hibernate_teardown: mark_as_unneeded_pages %d, %d, %d\n", unneeded_vm_page_bucket_pages, unneeded_vm_pages_pages, unneeded_pmap_pages); + + return mark_as_unneeded_pages; +} + + +#endif /* HIBERNATION */ + +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +#include +#if MACH_VM_DEBUG + +#include +#include + +/* + * Routine: vm_page_info + * Purpose: + * Return information about the global VP table. + * Fills the buffer with as much information as possible + * and returns the desired size of the buffer. + * Conditions: + * Nothing locked. The caller should provide + * possibly-pageable memory. + */ + +unsigned int +vm_page_info( + hash_info_bucket_t *info, + unsigned int count) +{ + unsigned int i; + lck_spin_t *bucket_lock; + + if (vm_page_bucket_count < count) { + count = vm_page_bucket_count; + } + + for (i = 0; i < count; i++) { + vm_page_bucket_t *bucket = &vm_page_buckets[i]; + unsigned int bucket_count = 0; + vm_page_t m; + + bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; + lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); + + for (m = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); + m != VM_PAGE_NULL; + m = (vm_page_t)(VM_PAGE_UNPACK_PTR(m->vmp_next_m))) { + bucket_count++; + } + + lck_spin_unlock(bucket_lock); + + /* don't touch pageable memory while holding locks */ + info[i].hib_count = bucket_count; + } + + return vm_page_bucket_count; +} +#endif /* MACH_VM_DEBUG */ + +#if VM_PAGE_BUCKETS_CHECK +void +vm_page_buckets_check(void) +{ + unsigned int i; + vm_page_t p; + unsigned int p_hash; + vm_page_bucket_t *bucket; + lck_spin_t *bucket_lock; + + if (!vm_page_buckets_check_ready) { + return; + } + +#if HIBERNATION + if (hibernate_rebuild_needed || + hibernate_rebuild_hash_list) { + panic("BUCKET_CHECK: hibernation in progress: " + "rebuild_needed=%d rebuild_hash_list=%p\n", + hibernate_rebuild_needed, + hibernate_rebuild_hash_list); + } +#endif /* HIBERNATION */ + +#if VM_PAGE_FAKE_BUCKETS + char *cp; + for (cp = (char *) vm_page_fake_buckets_start; + cp < (char *) vm_page_fake_buckets_end; + cp++) { + if (*cp != 0x5a) { + panic("BUCKET_CHECK: corruption at %p in fake buckets " + "[0x%llx:0x%llx]\n", + cp, + (uint64_t) vm_page_fake_buckets_start, + (uint64_t) vm_page_fake_buckets_end); + } + } +#endif /* VM_PAGE_FAKE_BUCKETS */ + + for (i = 0; i < vm_page_bucket_count; i++) { + vm_object_t p_object; + + bucket = &vm_page_buckets[i]; + if (!bucket->page_list) { + continue; + } + + bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; + lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); + p = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); + + while (p != VM_PAGE_NULL) { + p_object = VM_PAGE_OBJECT(p); + + if (!p->vmp_hashed) { + panic("BUCKET_CHECK: page %p (%p,0x%llx) " + "hash %d in bucket %d at %p " + "is not hashed\n", + p, p_object, p->vmp_offset, + p_hash, i, bucket); + } + p_hash = vm_page_hash(p_object, p->vmp_offset); + if (p_hash != i) { + panic("BUCKET_CHECK: corruption in bucket %d " + "at %p: page %p object %p offset 0x%llx " + "hash %d\n", + i, bucket, p, p_object, p->vmp_offset, + p_hash); + } + p = (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m)); + } + lck_spin_unlock(bucket_lock); + } + +// printf("BUCKET_CHECK: checked buckets\n"); +} +#endif /* VM_PAGE_BUCKETS_CHECK */ + +/* + * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the + * local queues if they exist... its the only spot in the system where we add pages + * to those queues... once on those queues, those pages can only move to one of the + * global page queues or the free queues... they NEVER move from local q to local q. + * the 'local' state is stable when vm_page_queues_remove is called since we're behind + * the global vm_page_queue_lock at this point... we still need to take the local lock + * in case this operation is being run on a different CPU then the local queue's identity, + * but we don't have to worry about the page moving to a global queue or becoming wired + * while we're grabbing the local lock since those operations would require the global + * vm_page_queue_lock to be held, and we already own it. + * + * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id... + * 'wired' and local are ALWAYS mutually exclusive conditions. + */ + +#if CONFIG_BACKGROUND_QUEUE +void +vm_page_queues_remove(vm_page_t mem, boolean_t remove_from_backgroundq) +#else +void +vm_page_queues_remove(vm_page_t mem, boolean_t __unused remove_from_backgroundq) +#endif +{ + boolean_t was_pageable = TRUE; + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(mem); + + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + + if (mem->vmp_q_state == VM_PAGE_NOT_ON_Q) { + assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + if (remove_from_backgroundq == TRUE) { + vm_page_remove_from_backgroundq(mem); + } + if (mem->vmp_on_backgroundq) { + assert(mem->vmp_backgroundq.next != 0); + assert(mem->vmp_backgroundq.prev != 0); + } else { + assert(mem->vmp_backgroundq.next == 0); + assert(mem->vmp_backgroundq.prev == 0); + } +#endif /* CONFIG_BACKGROUND_QUEUE */ + return; + } + + if (mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { + assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_backgroundq.next == 0 && + mem->vmp_backgroundq.prev == 0 && + mem->vmp_on_backgroundq == FALSE); +#endif + return; + } + if (mem->vmp_q_state == VM_PAGE_IS_WIRED) { + /* + * might put these guys on a list for debugging purposes + * if we do, we'll need to remove this assert + */ + assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); +#if CONFIG_BACKGROUND_QUEUE + assert(mem->vmp_backgroundq.next == 0 && + mem->vmp_backgroundq.prev == 0 && + mem->vmp_on_backgroundq == FALSE); +#endif + return; + } + + assert(m_object != compressor_object); + assert(m_object != kernel_object); + assert(m_object != vm_submap_object); + assert(!mem->vmp_fictitious); + + switch (mem->vmp_q_state) { + case VM_PAGE_ON_ACTIVE_LOCAL_Q: + { + struct vpl *lq; + + lq = zpercpu_get_cpu(vm_page_local_q, mem->vmp_local_id); + VPL_LOCK(&lq->vpl_lock); + vm_page_queue_remove(&lq->vpl_queue, mem, vmp_pageq); + mem->vmp_local_id = 0; + lq->vpl_count--; + if (m_object->internal) { + lq->vpl_internal_count--; + } else { + lq->vpl_external_count--; + } + VPL_UNLOCK(&lq->vpl_lock); + was_pageable = FALSE; + break; + } + case VM_PAGE_ON_ACTIVE_Q: + { + vm_page_queue_remove(&vm_page_queue_active, mem, vmp_pageq); + vm_page_active_count--; + break; + } + + case VM_PAGE_ON_INACTIVE_INTERNAL_Q: + { + assert(m_object->internal == TRUE); + + vm_page_inactive_count--; + vm_page_queue_remove(&vm_page_queue_anonymous, mem, vmp_pageq); + vm_page_anonymous_count--; + + vm_purgeable_q_advance_all(); + vm_page_balance_inactive(3); + break; + } + + case VM_PAGE_ON_INACTIVE_EXTERNAL_Q: + { + assert(m_object->internal == FALSE); + + vm_page_inactive_count--; + vm_page_queue_remove(&vm_page_queue_inactive, mem, vmp_pageq); + vm_purgeable_q_advance_all(); + vm_page_balance_inactive(3); + break; + } + + case VM_PAGE_ON_INACTIVE_CLEANED_Q: + { + assert(m_object->internal == FALSE); + + vm_page_inactive_count--; + vm_page_queue_remove(&vm_page_queue_cleaned, mem, vmp_pageq); + vm_page_cleaned_count--; + vm_page_balance_inactive(3); + break; + } + + case VM_PAGE_ON_THROTTLED_Q: + { + assert(m_object->internal == TRUE); + + vm_page_queue_remove(&vm_page_queue_throttled, mem, vmp_pageq); + vm_page_throttled_count--; + was_pageable = FALSE; + break; + } + + case VM_PAGE_ON_SPECULATIVE_Q: + { + assert(m_object->internal == FALSE); + + vm_page_remque(&mem->vmp_pageq); + vm_page_speculative_count--; + vm_page_balance_inactive(3); + break; + } + +#if CONFIG_SECLUDED_MEMORY + case VM_PAGE_ON_SECLUDED_Q: + { + vm_page_queue_remove(&vm_page_queue_secluded, mem, vmp_pageq); + vm_page_secluded_count--; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + if (m_object == VM_OBJECT_NULL) { + vm_page_secluded_count_free--; + was_pageable = FALSE; + } else { + assert(!m_object->internal); + vm_page_secluded_count_inuse--; + was_pageable = FALSE; +// was_pageable = TRUE; + } + break; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + + default: + { + /* + * if (mem->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) + * NOTE: vm_page_queues_remove does not deal with removing pages from the pageout queue... + * the caller is responsible for determing if the page is on that queue, and if so, must + * either first remove it (it needs both the page queues lock and the object lock to do + * this via vm_pageout_steal_laundry), or avoid the call to vm_page_queues_remove + * + * we also don't expect to encounter VM_PAGE_ON_FREE_Q, VM_PAGE_ON_FREE_LOCAL_Q, VM_PAGE_ON_FREE_LOPAGE_Q + * or any of the undefined states + */ + panic("vm_page_queues_remove - bad page q_state (%p, %d)\n", mem, mem->vmp_q_state); + break; + } + } + VM_PAGE_ZERO_PAGEQ_ENTRY(mem); + mem->vmp_q_state = VM_PAGE_NOT_ON_Q; + +#if CONFIG_BACKGROUND_QUEUE + if (remove_from_backgroundq == TRUE) { + vm_page_remove_from_backgroundq(mem); + } +#endif + if (was_pageable) { + if (m_object->internal) { + vm_page_pageable_internal_count--; + } else { + vm_page_pageable_external_count--; + } + } +} + +void +vm_page_remove_internal(vm_page_t page) +{ + vm_object_t __object = VM_PAGE_OBJECT(page); + if (page == __object->memq_hint) { + vm_page_t __new_hint; + vm_page_queue_entry_t __qe; + __qe = (vm_page_queue_entry_t)vm_page_queue_next(&page->vmp_listq); + if (vm_page_queue_end(&__object->memq, __qe)) { + __qe = (vm_page_queue_entry_t)vm_page_queue_prev(&page->vmp_listq); + if (vm_page_queue_end(&__object->memq, __qe)) { + __qe = NULL; + } + } + __new_hint = (vm_page_t)((uintptr_t) __qe); + __object->memq_hint = __new_hint; + } + vm_page_queue_remove(&__object->memq, page, vmp_listq); +#if CONFIG_SECLUDED_MEMORY + if (__object->eligible_for_secluded) { + vm_page_secluded.eligible_for_secluded--; + } +#endif /* CONFIG_SECLUDED_MEMORY */ +} + +void +vm_page_enqueue_inactive(vm_page_t mem, boolean_t first) +{ + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(mem); + + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + assert(!mem->vmp_fictitious); + assert(!mem->vmp_laundry); + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); + vm_page_check_pageable_safe(mem); + + if (m_object->internal) { + mem->vmp_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q; + + if (first == TRUE) { + vm_page_queue_enter_first(&vm_page_queue_anonymous, mem, vmp_pageq); + } else { + vm_page_queue_enter(&vm_page_queue_anonymous, mem, vmp_pageq); + } + + vm_page_anonymous_count++; + vm_page_pageable_internal_count++; + } else { + mem->vmp_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q; + + if (first == TRUE) { + vm_page_queue_enter_first(&vm_page_queue_inactive, mem, vmp_pageq); + } else { + vm_page_queue_enter(&vm_page_queue_inactive, mem, vmp_pageq); + } + + vm_page_pageable_external_count++; + } + vm_page_inactive_count++; + token_new_pagecount++; + +#if CONFIG_BACKGROUND_QUEUE + if (mem->vmp_in_background) { + vm_page_add_to_backgroundq(mem, FALSE); + } +#endif +} + +void +vm_page_enqueue_active(vm_page_t mem, boolean_t first) +{ + vm_object_t m_object; + + m_object = VM_PAGE_OBJECT(mem); + + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); + assert(!mem->vmp_fictitious); + assert(!mem->vmp_laundry); + assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); + vm_page_check_pageable_safe(mem); + + mem->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; + if (first == TRUE) { + vm_page_queue_enter_first(&vm_page_queue_active, mem, vmp_pageq); + } else { + vm_page_queue_enter(&vm_page_queue_active, mem, vmp_pageq); + } + vm_page_active_count++; + + if (m_object->internal) { + vm_page_pageable_internal_count++; + } else { + vm_page_pageable_external_count++; + } + +#if CONFIG_BACKGROUND_QUEUE + if (mem->vmp_in_background) { + vm_page_add_to_backgroundq(mem, FALSE); + } +#endif + vm_page_balance_inactive(3); +} + +/* + * Pages from special kernel objects shouldn't + * be placed on pageable queues. + */ +void +vm_page_check_pageable_safe(vm_page_t page) +{ + vm_object_t page_object; + + page_object = VM_PAGE_OBJECT(page); + + if (page_object == kernel_object) { + panic("vm_page_check_pageable_safe: trying to add page" \ + "from kernel object (%p) to pageable queue", kernel_object); + } + + if (page_object == compressor_object) { + panic("vm_page_check_pageable_safe: trying to add page" \ + "from compressor object (%p) to pageable queue", compressor_object); + } + + if (page_object == vm_submap_object) { + panic("vm_page_check_pageable_safe: trying to add page" \ + "from submap object (%p) to pageable queue", vm_submap_object); + } +} + +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +* wired page diagnose +* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +#include + +#define KA_SIZE(namelen, subtotalscount) \ + (sizeof(struct vm_allocation_site) + (namelen) + 1 + ((subtotalscount) * sizeof(struct vm_allocation_total))) + +#define KA_NAME(alloc) \ + ((char *)(&(alloc)->subtotals[(alloc->subtotalscount)])) + +#define KA_NAME_LEN(alloc) \ + (VM_TAG_NAME_LEN_MAX & (alloc->flags >> VM_TAG_NAME_LEN_SHIFT)) + +vm_tag_t +vm_tag_bt(void) +{ + uintptr_t* frameptr; + uintptr_t* frameptr_next; + uintptr_t retaddr; + uintptr_t kstackb, kstackt; + const vm_allocation_site_t * site; + thread_t cthread; + kern_allocation_name_t name; + + cthread = current_thread(); + if (__improbable(cthread == NULL)) { + return VM_KERN_MEMORY_OSFMK; + } + + if ((name = thread_get_kernel_state(cthread)->allocation_name)) { + if (!name->tag) { + vm_tag_alloc(name); + } + return name->tag; + } + + kstackb = cthread->kernel_stack; + kstackt = kstackb + kernel_stack_size; + + /* Load stack frame pointer (EBP on x86) into frameptr */ + frameptr = __builtin_frame_address(0); + site = NULL; + while (frameptr != NULL) { + /* Verify thread stack bounds */ + if (((uintptr_t)(frameptr + 2) > kstackt) || ((uintptr_t)frameptr < kstackb)) { + break; + } + + /* Next frame pointer is pointed to by the previous one */ + frameptr_next = (uintptr_t*) *frameptr; + + /* Pull return address from one spot above the frame pointer */ + retaddr = *(frameptr + 1); + +#if defined(HAS_APPLE_PAC) + retaddr = (uintptr_t) ptrauth_strip((void *)retaddr, ptrauth_key_return_address); +#endif + + if (((retaddr < vm_kernel_builtinkmod_text_end) && (retaddr >= vm_kernel_builtinkmod_text)) + || (retaddr < vm_kernel_stext) || (retaddr > vm_kernel_top)) { + site = OSKextGetAllocationSiteForCaller(retaddr); + break; + } + frameptr = frameptr_next; + } + + return site ? site->tag : VM_KERN_MEMORY_NONE; +} + +static uint64_t free_tag_bits[VM_MAX_TAG_VALUE / 64]; + +void +vm_tag_alloc_locked(vm_allocation_site_t * site, vm_allocation_site_t ** releasesiteP) +{ + vm_tag_t tag; + uint64_t avail; + uint32_t idx; + vm_allocation_site_t * prev; + + if (site->tag) { + return; + } + + idx = 0; + while (TRUE) { + avail = free_tag_bits[idx]; + if (avail) { + tag = (vm_tag_t)__builtin_clzll(avail); + avail &= ~(1ULL << (63 - tag)); + free_tag_bits[idx] = avail; + tag += (idx << 6); + break; + } + idx++; + if (idx >= ARRAY_COUNT(free_tag_bits)) { + for (idx = 0; idx < ARRAY_COUNT(vm_allocation_sites); idx++) { + prev = vm_allocation_sites[idx]; + if (!prev) { continue; } - if (m1->pmapped || m1->dirty) { - int refmod; - vm_object_offset_t offset; + if (!KA_NAME_LEN(prev)) { + continue; + } + if (!prev->tag) { + continue; + } + if (prev->total) { + continue; + } + if (1 != prev->refcount) { + continue; + } + + assert(idx == prev->tag); + tag = (vm_tag_t)idx; + prev->tag = VM_KERN_MEMORY_NONE; + *releasesiteP = prev; + break; + } + if (idx >= ARRAY_COUNT(vm_allocation_sites)) { + tag = VM_KERN_MEMORY_ANY; + } + break; + } + } + site->tag = tag; + + OSAddAtomic16(1, &site->refcount); + + if (VM_KERN_MEMORY_ANY != tag) { + vm_allocation_sites[tag] = site; + } + + if (tag > vm_allocation_tag_highest) { + vm_allocation_tag_highest = tag; + } +} + +static void +vm_tag_free_locked(vm_tag_t tag) +{ + uint64_t avail; + uint32_t idx; + uint64_t bit; + + if (VM_KERN_MEMORY_ANY == tag) { + return; + } + + idx = (tag >> 6); + avail = free_tag_bits[idx]; + tag &= 63; + bit = (1ULL << (63 - tag)); + assert(!(avail & bit)); + free_tag_bits[idx] = (avail | bit); +} + +static void +vm_tag_init(void) +{ + vm_tag_t tag; + for (tag = VM_KERN_MEMORY_FIRST_DYNAMIC; tag < VM_KERN_MEMORY_ANY; tag++) { + vm_tag_free_locked(tag); + } + + for (tag = VM_KERN_MEMORY_ANY + 1; tag < VM_MAX_TAG_VALUE; tag++) { + vm_tag_free_locked(tag); + } +} + +vm_tag_t +vm_tag_alloc(vm_allocation_site_t * site) +{ + vm_tag_t tag; + vm_allocation_site_t * releasesite; + + if (VM_TAG_BT & site->flags) { + tag = vm_tag_bt(); + if (VM_KERN_MEMORY_NONE != tag) { + return tag; + } + } + + if (!site->tag) { + releasesite = NULL; + lck_spin_lock(&vm_allocation_sites_lock); + vm_tag_alloc_locked(site, &releasesite); + lck_spin_unlock(&vm_allocation_sites_lock); + if (releasesite) { + kern_allocation_name_release(releasesite); + } + } + + return site->tag; +} + +void +vm_tag_update_size(vm_tag_t tag, int64_t delta) +{ + vm_allocation_site_t * allocation; + uint64_t prior; + + assert(VM_KERN_MEMORY_NONE != tag); + assert(tag < VM_MAX_TAG_VALUE); + + allocation = vm_allocation_sites[tag]; + assert(allocation); + + if (delta < 0) { + assertf(allocation->total >= ((uint64_t)-delta), "tag %d, site %p", tag, allocation); + } + prior = OSAddAtomic64(delta, &allocation->total); + +#if DEBUG || DEVELOPMENT + + uint64_t new, peak; + new = prior + delta; + do{ + peak = allocation->peak; + if (new <= peak) { + break; + } + }while (!OSCompareAndSwap64(peak, new, &allocation->peak)); + +#endif /* DEBUG || DEVELOPMENT */ + + if (tag < VM_KERN_MEMORY_FIRST_DYNAMIC) { + return; + } + + if (!prior && !allocation->tag) { + vm_tag_alloc(allocation); + } +} + +void +kern_allocation_update_size(kern_allocation_name_t allocation, int64_t delta) +{ + uint64_t prior; + + if (delta < 0) { + assertf(allocation->total >= ((uint64_t)-delta), "name %p", allocation); + } + prior = OSAddAtomic64(delta, &allocation->total); + +#if DEBUG || DEVELOPMENT + + uint64_t new, peak; + new = prior + delta; + do{ + peak = allocation->peak; + if (new <= peak) { + break; + } + }while (!OSCompareAndSwap64(peak, new, &allocation->peak)); + +#endif /* DEBUG || DEVELOPMENT */ + + if (!prior && !allocation->tag) { + vm_tag_alloc(allocation); + } +} + +#if VM_MAX_TAG_ZONES + +void +vm_allocation_zones_init(void) +{ + kern_return_t ret; + vm_offset_t addr; + vm_size_t size; + + size = VM_MAX_TAG_VALUE * sizeof(vm_allocation_zone_total_t * *) + + 2 * VM_MAX_TAG_ZONES * sizeof(vm_allocation_zone_total_t); + + ret = kernel_memory_allocate(kernel_map, + &addr, round_page(size), 0, + KMA_ZERO, VM_KERN_MEMORY_DIAG); + assert(KERN_SUCCESS == ret); + + vm_allocation_zone_totals = (vm_allocation_zone_total_t **) addr; + addr += VM_MAX_TAG_VALUE * sizeof(vm_allocation_zone_total_t * *); + + // prepopulate VM_KERN_MEMORY_DIAG & VM_KERN_MEMORY_KALLOC so allocations + // in vm_tag_update_zone_size() won't recurse + vm_allocation_zone_totals[VM_KERN_MEMORY_DIAG] = (vm_allocation_zone_total_t *) addr; + addr += VM_MAX_TAG_ZONES * sizeof(vm_allocation_zone_total_t); + vm_allocation_zone_totals[VM_KERN_MEMORY_KALLOC] = (vm_allocation_zone_total_t *) addr; +} + +void +vm_tag_will_update_zone(vm_tag_t tag, uint32_t zidx) +{ + vm_allocation_zone_total_t * zone; + + assert(VM_KERN_MEMORY_NONE != tag); + assert(tag < VM_MAX_TAG_VALUE); + + if (zidx >= VM_MAX_TAG_ZONES) { + return; + } + + zone = vm_allocation_zone_totals[tag]; + if (!zone) { + zone = kalloc_tag(VM_MAX_TAG_ZONES * sizeof(*zone), VM_KERN_MEMORY_DIAG); + if (!zone) { + return; + } + bzero(zone, VM_MAX_TAG_ZONES * sizeof(*zone)); + if (!OSCompareAndSwapPtr(NULL, zone, &vm_allocation_zone_totals[tag])) { + kfree(zone, VM_MAX_TAG_ZONES * sizeof(*zone)); + } + } +} + +void +vm_tag_update_zone_size(vm_tag_t tag, uint32_t zidx, int64_t delta, int64_t dwaste) +{ + vm_allocation_zone_total_t * zone; + uint32_t new; + + assert(VM_KERN_MEMORY_NONE != tag); + assert(tag < VM_MAX_TAG_VALUE); + + if (zidx >= VM_MAX_TAG_ZONES) { + return; + } + + zone = vm_allocation_zone_totals[tag]; + assert(zone); + zone += zidx; + + /* the zone is locked */ + if (delta < 0) { + assertf(zone->total >= ((uint64_t)-delta), "zidx %d, tag %d, %p", zidx, tag, zone); + zone->total += delta; + } else { + zone->total += delta; + if (zone->total > zone->peak) { + zone->peak = zone->total; + } + if (dwaste) { + new = zone->waste; + if (zone->wastediv < 65536) { + zone->wastediv++; + } else { + new -= (new >> 16); + } + __assert_only bool ov = os_add_overflow(new, dwaste, &new); + assert(!ov); + zone->waste = new; + } + } +} + +#endif /* VM_MAX_TAG_ZONES */ + +void +kern_allocation_update_subtotal(kern_allocation_name_t allocation, uint32_t subtag, int64_t delta) +{ + kern_allocation_name_t other; + struct vm_allocation_total * total; + uint32_t subidx; + + subidx = 0; + assert(VM_KERN_MEMORY_NONE != subtag); + lck_spin_lock(&vm_allocation_sites_lock); + for (; subidx < allocation->subtotalscount; subidx++) { + if (VM_KERN_MEMORY_NONE == allocation->subtotals[subidx].tag) { + allocation->subtotals[subidx].tag = (vm_tag_t)subtag; + break; + } + if (subtag == allocation->subtotals[subidx].tag) { + break; + } + } + lck_spin_unlock(&vm_allocation_sites_lock); + assert(subidx < allocation->subtotalscount); + if (subidx >= allocation->subtotalscount) { + return; + } + + total = &allocation->subtotals[subidx]; + other = vm_allocation_sites[subtag]; + assert(other); + + if (delta < 0) { + assertf(total->total >= ((uint64_t)-delta), "name %p", allocation); + assertf(other->mapped >= ((uint64_t)-delta), "other %p", other); + } + OSAddAtomic64(delta, &other->mapped); + OSAddAtomic64(delta, &total->total); +} + +const char * +kern_allocation_get_name(kern_allocation_name_t allocation) +{ + return KA_NAME(allocation); +} + +kern_allocation_name_t +kern_allocation_name_allocate(const char * name, uint16_t subtotalscount) +{ + uint16_t namelen; + + namelen = (uint16_t)strnlen(name, MACH_MEMORY_INFO_NAME_MAX_LEN - 1); + + kern_allocation_name_t allocation; + allocation = kheap_alloc(KHEAP_DATA_BUFFERS, + KA_SIZE(namelen, subtotalscount), Z_WAITOK); + bzero(allocation, KA_SIZE(namelen, subtotalscount)); + + allocation->refcount = 1; + allocation->subtotalscount = subtotalscount; + allocation->flags = (uint16_t)(namelen << VM_TAG_NAME_LEN_SHIFT); + strlcpy(KA_NAME(allocation), name, namelen + 1); + + return allocation; +} + +void +kern_allocation_name_release(kern_allocation_name_t allocation) +{ + assert(allocation->refcount > 0); + if (1 == OSAddAtomic16(-1, &allocation->refcount)) { + kheap_free(KHEAP_DATA_BUFFERS, allocation, + KA_SIZE(KA_NAME_LEN(allocation), allocation->subtotalscount)); + } +} + +vm_tag_t +kern_allocation_name_get_vm_tag(kern_allocation_name_t allocation) +{ + return vm_tag_alloc(allocation); +} + +#if !VM_TAG_ACTIVE_UPDATE +static void +vm_page_count_object(mach_memory_info_t * info, unsigned int __unused num_info, vm_object_t object) +{ + if (!object->wired_page_count) { + return; + } + if (object != kernel_object) { + assert(object->wire_tag < num_info); + info[object->wire_tag].size += ptoa_64(object->wired_page_count); + } +} - m2 = vm_page_grab(); +typedef void (*vm_page_iterate_proc)(mach_memory_info_t * info, + unsigned int num_info, vm_object_t object); - if (m2 == VM_PAGE_NULL) { - if (locked_object) { - vm_object_unlock(locked_object); - locked_object = VM_OBJECT_NULL; - } - tmp_start_idx = cur_idx; - abort_run = TRUE; - continue; - } - if (m1->pmapped) - refmod = pmap_disconnect(m1->phys_page); - else - refmod = 0; - vm_page_copy(m1, m2); - - m2->reference = m1->reference; - m2->dirty = m1->dirty; - - if (refmod & VM_MEM_REFERENCED) - m2->reference = TRUE; - if (refmod & VM_MEM_MODIFIED) - m2->dirty = TRUE; - offset = m1->offset; +static void +vm_page_iterate_purgeable_objects(mach_memory_info_t * info, unsigned int num_info, + vm_page_iterate_proc proc, purgeable_q_t queue, + int group) +{ + vm_object_t object; - /* - * completely cleans up the state - * of the page so that it is ready - * to be put onto the free list, or - * for this purpose it looks like it - * just came off of the free list - */ - vm_page_free_prepare(m1); + for (object = (vm_object_t) queue_first(&queue->objq[group]); + !queue_end(&queue->objq[group], (queue_entry_t) object); + object = (vm_object_t) queue_next(&object->objq)) { + proc(info, num_info, object); + } +} - /* - * make sure we clear the ref/mod state - * from the pmap layer... else we risk - * inheriting state from the last time - * this page was used... - */ - pmap_clear_refmod(m2->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); - /* - * now put the substitute page on the object - */ - vm_page_insert_internal(m2, locked_object, offset, TRUE); +static void +vm_page_iterate_objects(mach_memory_info_t * info, unsigned int num_info, + vm_page_iterate_proc proc) +{ + vm_object_t object; - if (m2->reference) - vm_page_activate(m2); - else - vm_page_deactivate(m2); + lck_spin_lock_grp(&vm_objects_wired_lock, &vm_page_lck_grp_bucket); + queue_iterate(&vm_objects_wired, + object, + vm_object_t, + wired_objq) + { + proc(info, num_info, object); + } + lck_spin_unlock(&vm_objects_wired_lock); +} +#endif /* ! VM_TAG_ACTIVE_UPDATE */ - PAGE_WAKEUP_DONE(m2); +static uint64_t +process_account(mach_memory_info_t * info, unsigned int num_info, + uint64_t zones_collectable_bytes, boolean_t iterated) +{ + size_t namelen; + unsigned int idx, count, nextinfo; + vm_allocation_site_t * site; + lck_spin_lock(&vm_allocation_sites_lock); + + for (idx = 0; idx <= vm_allocation_tag_highest; idx++) { + site = vm_allocation_sites[idx]; + if (!site) { + continue; + } + info[idx].mapped = site->mapped; + info[idx].tag = site->tag; + if (!iterated) { + info[idx].size = site->total; +#if DEBUG || DEVELOPMENT + info[idx].peak = site->peak; +#endif /* DEBUG || DEVELOPMENT */ + } else { + if (!site->subtotalscount && (site->total != info[idx].size)) { + printf("tag mismatch[%d] 0x%qx, iter 0x%qx\n", idx, site->total, info[idx].size); + info[idx].size = site->total; + } + } + info[idx].flags |= VM_KERN_SITE_WIRED; + if (idx < VM_KERN_MEMORY_FIRST_DYNAMIC) { + info[idx].site = idx; + info[idx].flags |= VM_KERN_SITE_TAG; + if (VM_KERN_MEMORY_ZONE == idx) { + info[idx].flags |= VM_KERN_SITE_HIDE; + info[idx].flags &= ~VM_KERN_SITE_WIRED; + info[idx].collectable_bytes = zones_collectable_bytes; + } + } else if ((namelen = (VM_TAG_NAME_LEN_MAX & (site->flags >> VM_TAG_NAME_LEN_SHIFT)))) { + info[idx].site = 0; + info[idx].flags |= VM_KERN_SITE_NAMED; + if (namelen > sizeof(info[idx].name)) { + namelen = sizeof(info[idx].name); + } + strncpy(&info[idx].name[0], KA_NAME(site), namelen); + } else if (VM_TAG_KMOD & site->flags) { + info[idx].site = OSKextGetKmodIDForSite(site, NULL, 0); + info[idx].flags |= VM_KERN_SITE_KMOD; + } else { + info[idx].site = VM_KERNEL_UNSLIDE(site); + info[idx].flags |= VM_KERN_SITE_KERNEL; + } + } - } else { - /* - * completely cleans up the state - * of the page so that it is ready - * to be put onto the free list, or - * for this purpose it looks like it - * just came off of the free list - */ - vm_page_free_prepare(m1); + nextinfo = (vm_allocation_tag_highest + 1); + count = nextinfo; + if (count >= num_info) { + count = num_info; + } + + for (idx = 0; idx < count; idx++) { + site = vm_allocation_sites[idx]; + if (!site) { + continue; + } +#if VM_MAX_TAG_ZONES + vm_allocation_zone_total_t * zone; + unsigned int zidx; + vm_size_t elem_size; + + if (vm_allocation_zone_totals + && (zone = vm_allocation_zone_totals[idx]) + && (nextinfo < num_info)) { + for (zidx = 0; zidx < VM_MAX_TAG_ZONES; zidx++) { + if (!zone[zidx].peak) { + continue; } -#if MACH_ASSERT - stolen_pages++; -#endif + info[nextinfo] = info[idx]; + info[nextinfo].zone = (uint16_t)zone_index_from_tag_index(zidx, &elem_size); + info[nextinfo].flags &= ~VM_KERN_SITE_WIRED; + info[nextinfo].flags |= VM_KERN_SITE_ZONE; + info[nextinfo].size = zone[zidx].total; + info[nextinfo].peak = zone[zidx].peak; + info[nextinfo].mapped = 0; + if (zone[zidx].wastediv) { + info[nextinfo].collectable_bytes = ((zone[zidx].waste * zone[zidx].total / elem_size) / zone[zidx].wastediv); + } + nextinfo++; } - m1->pageq.next = (queue_entry_t) m; - m1->pageq.prev = NULL; - m = m1; } - if (locked_object) { - vm_object_unlock(locked_object); - locked_object = VM_OBJECT_NULL; +#endif /* VM_MAX_TAG_ZONES */ + if (site->subtotalscount) { + uint64_t mapped, mapcost, take; + uint32_t sub; + vm_tag_t alloctag; + + info[idx].size = site->total; + mapped = info[idx].size; + info[idx].mapped = mapped; + mapcost = 0; + for (sub = 0; sub < site->subtotalscount; sub++) { + alloctag = site->subtotals[sub].tag; + assert(alloctag < num_info); + if (info[alloctag].name[0]) { + continue; + } + take = site->subtotals[sub].total; + if (take > info[alloctag].size) { + take = info[alloctag].size; + } + if (take > mapped) { + take = mapped; + } + info[alloctag].mapped -= take; + info[alloctag].size -= take; + mapped -= take; + mapcost += take; + } + info[idx].size = mapcost; } + } + lck_spin_unlock(&vm_allocation_sites_lock); - if (abort_run == TRUE) { - if (m != VM_PAGE_NULL) { - vm_page_free_list(m); + return 0; +} + +uint32_t +vm_page_diagnose_estimate(void) +{ + vm_allocation_site_t * site; + uint32_t count = zone_view_count; + uint32_t idx; + + lck_spin_lock(&vm_allocation_sites_lock); + for (idx = 0; idx < VM_MAX_TAG_VALUE; idx++) { + site = vm_allocation_sites[idx]; + if (!site) { + continue; + } + count++; +#if VM_MAX_TAG_ZONES + if (vm_allocation_zone_totals) { + vm_allocation_zone_total_t * zone; + zone = vm_allocation_zone_totals[idx]; + if (!zone) { + continue; } -#if MACH_ASSERT - dumped_run++; + for (uint32_t zidx = 0; zidx < VM_MAX_TAG_ZONES; zidx++) { + if (zone[zidx].peak) { + count++; + } + } + } #endif - /* - * want the index of the last - * page in this run that was - * successfully 'stolen', so back - * it up 1 for the auto-decrement on use - * and 1 more to bump back over this page - */ - page_idx = tmp_start_idx + 2; - - if (page_idx >= vm_pages_count) - goto done_scanning; - - mutex_lock(&vm_page_queue_free_lock); + } + lck_spin_unlock(&vm_allocation_sites_lock); - RESET_STATE_OF_RUN(); + /* some slop for new tags created */ + count += 8; + count += VM_KERN_COUNTER_COUNT; - /* - * reset our free page limit since we - * dropped the lock protecting the vm_page_free_queue - */ - free_available = vm_page_free_count - vm_page_free_reserved; - - goto retry; - } + return count; +} - for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { +static void +vm_page_diagnose_zone_stats(mach_memory_info_t *info, zone_stats_t zstats, + bool percpu) +{ + zpercpu_foreach(zs, zstats) { + info->size += zs->zs_mem_allocated - zs->zs_mem_freed; + } + if (percpu) { + info->size *= zpercpu_count(); + } + info->flags |= VM_KERN_SITE_NAMED | VM_KERN_SITE_ZONE_VIEW; +} - if (wire == TRUE) - m1->wire_count++; - else - m1->gobbled = TRUE; - } - if (wire == FALSE) - vm_page_gobble_count += npages; +static void +vm_page_diagnose_zone(mach_memory_info_t *info, zone_t z) +{ + vm_page_diagnose_zone_stats(info, z->z_stats, z->percpu); + snprintf(info->name, sizeof(info->name), + "%s%s[raw]", zone_heap_name(z), z->z_name); +} - /* - * gobbled pages are also counted as wired pages - */ - vm_page_wire_count += npages; +static int +vm_page_diagnose_heap(mach_memory_info_t *info, kalloc_heap_t kheap) +{ + struct kheap_zones *zones = kheap->kh_zones; + int i = 0; - assert(vm_page_verify_contiguous(m, npages)); + for (; i < zones->max_k_zone; i++) { + vm_page_diagnose_zone(info + i, zones->k_zone[i]); } -done_scanning: - vm_page_unlock_queues(); - -#if DEBUG - clock_get_system_microtime(&tv_end_sec, &tv_end_usec); - tv_end_sec -= tv_start_sec; - if (tv_end_usec < tv_start_usec) { - tv_end_sec--; - tv_end_usec += 1000000; + for (kalloc_heap_t kh = zones->views; kh; kh = kh->kh_next, i++) { + vm_page_diagnose_zone_stats(info + i, kh->kh_stats, false); + snprintf(info[i].name, sizeof(info[i].name), + "%skalloc[%s]", kheap->kh_name, kh->kh_name); } - tv_end_usec -= tv_start_usec; - if (tv_end_usec >= 1000000) { - tv_end_sec++; - tv_end_sec -= 1000000; - } - printf("vm_find_page_contiguous(num=%d,low=%d): found %d pages in %d.%06ds... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages\n", - contig_pages, max_pnum, npages, tv_end_sec, tv_end_usec, page_idx, yielded, dumped_run, stolen_pages); -#endif -#if MACH_ASSERT - vm_page_verify_free_lists(); -#endif - return m; + return i; } -/* - * Allocate a list of contiguous, wired pages. - */ kern_return_t -cpm_allocate( - vm_size_t size, - vm_page_t *list, - ppnum_t max_pnum, - boolean_t wire) +vm_page_diagnose(mach_memory_info_t * info, unsigned int num_info, uint64_t zones_collectable_bytes) { - vm_page_t pages; - unsigned int npages; - - if (size % page_size != 0) - return KERN_INVALID_ARGUMENT; + uint64_t wired_size; + uint64_t wired_managed_size; + uint64_t wired_reserved_size; + boolean_t iterate; + mach_memory_info_t * counts; + uint32_t i; - npages = size / page_size; + bzero(info, num_info * sizeof(mach_memory_info_t)); - /* - * Obtain a pointer to a subset of the free - * list large enough to satisfy the request; - * the region will be physically contiguous. - */ - pages = vm_page_find_contiguous(npages, max_pnum, wire); + if (!vm_page_wire_count_initial) { + return KERN_ABORTED; + } - if (pages == VM_PAGE_NULL) - return KERN_NO_SPACE; - /* - * determine need for wakeups - */ - if ((vm_page_free_count < vm_page_free_min) || - ((vm_page_free_count < vm_page_free_target) && - ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) - thread_wakeup((event_t) &vm_page_free_wanted); - #if CONFIG_EMBEDDED - { - int percent_avail; - - /* - * Decide if we need to poke the memorystatus notification thread. - */ - percent_avail = - (vm_page_active_count + vm_page_inactive_count + - vm_page_speculative_count + vm_page_free_count + - (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / - atop_64(max_mem); - if (percent_avail <= (kern_memorystatus_level - 5)) { - kern_memorystatus_level = percent_avail; - thread_wakeup((event_t)&kern_memorystatus_wakeup); + wired_size = ptoa_64(vm_page_wire_count); + wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count); +#else + wired_size = ptoa_64(vm_page_wire_count + vm_lopage_free_count + vm_page_throttled_count); + wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count + vm_page_throttled_count); +#endif + wired_managed_size = ptoa_64(vm_page_wire_count - vm_page_wire_count_initial); + + wired_size += booter_size; + + assert(num_info >= VM_KERN_COUNTER_COUNT); + num_info -= VM_KERN_COUNTER_COUNT; + counts = &info[num_info]; + +#define SET_COUNT(xcount, xsize, xflags) \ + counts[xcount].tag = VM_MAX_TAG_VALUE + xcount; \ + counts[xcount].site = (xcount); \ + counts[xcount].size = (xsize); \ + counts[xcount].mapped = (xsize); \ + counts[xcount].flags = VM_KERN_SITE_COUNTER | xflags; + + SET_COUNT(VM_KERN_COUNT_MANAGED, ptoa_64(vm_page_pages), 0); + SET_COUNT(VM_KERN_COUNT_WIRED, wired_size, 0); + SET_COUNT(VM_KERN_COUNT_WIRED_MANAGED, wired_managed_size, 0); + SET_COUNT(VM_KERN_COUNT_RESERVED, wired_reserved_size, VM_KERN_SITE_WIRED); + SET_COUNT(VM_KERN_COUNT_STOLEN, ptoa_64(vm_page_stolen_count), VM_KERN_SITE_WIRED); + SET_COUNT(VM_KERN_COUNT_LOPAGE, ptoa_64(vm_lopage_free_count), VM_KERN_SITE_WIRED); + SET_COUNT(VM_KERN_COUNT_WIRED_BOOT, ptoa_64(vm_page_wire_count_on_boot), 0); + SET_COUNT(VM_KERN_COUNT_BOOT_STOLEN, booter_size, VM_KERN_SITE_WIRED); + SET_COUNT(VM_KERN_COUNT_WIRED_STATIC_KERNELCACHE, ptoa_64(vm_page_kernelcache_count), 0); + +#define SET_MAP(xcount, xsize, xfree, xlargest) \ + counts[xcount].site = (xcount); \ + counts[xcount].size = (xsize); \ + counts[xcount].mapped = (xsize); \ + counts[xcount].free = (xfree); \ + counts[xcount].largest = (xlargest); \ + counts[xcount].flags = VM_KERN_SITE_COUNTER; + + vm_map_size_t map_size, map_free, map_largest; + + vm_map_sizes(kernel_map, &map_size, &map_free, &map_largest); + SET_MAP(VM_KERN_COUNT_MAP_KERNEL, map_size, map_free, map_largest); + + zone_map_sizes(&map_size, &map_free, &map_largest); + SET_MAP(VM_KERN_COUNT_MAP_ZONE, map_size, map_free, map_largest); + + vm_map_sizes(kalloc_map, &map_size, &map_free, &map_largest); + SET_MAP(VM_KERN_COUNT_MAP_KALLOC, map_size, map_free, map_largest); + + assert(num_info >= zone_view_count); + num_info -= zone_view_count; + counts = &info[num_info]; + i = 0; + + i += vm_page_diagnose_heap(counts + i, KHEAP_DEFAULT); + if (KHEAP_DATA_BUFFERS->kh_heap_id == KHEAP_ID_DATA_BUFFERS) { + i += vm_page_diagnose_heap(counts + i, KHEAP_DATA_BUFFERS); } + if (KHEAP_KEXT->kh_heap_id == KHEAP_ID_KEXT) { + i += vm_page_diagnose_heap(counts + i, KHEAP_KEXT); } -#endif - /* - * The CPM pages should now be available and - * ordered by ascending physical address. - */ - assert(vm_page_verify_contiguous(pages, npages)); + assert(i <= zone_view_count); - *list = pages; - return KERN_SUCCESS; -} - + zone_index_foreach(zidx) { + zone_t z = &zone_array[zidx]; + zone_view_t zv = z->z_views; -#include -#if MACH_VM_DEBUG + if (zv == NULL) { + continue; + } -#include -#include + if (z->kalloc_heap == KHEAP_ID_NONE) { + vm_page_diagnose_zone(counts + i, z); + i++; + assert(i <= zone_view_count); + } -/* - * Routine: vm_page_info - * Purpose: - * Return information about the global VP table. - * Fills the buffer with as much information as possible - * and returns the desired size of the buffer. - * Conditions: - * Nothing locked. The caller should provide - * possibly-pageable memory. - */ + for (; zv; zv = zv->zv_next) { + vm_page_diagnose_zone_stats(counts + i, zv->zv_stats, + z->percpu); + snprintf(counts[i].name, sizeof(counts[i].name), "%s%s[%s]", + zone_heap_name(z), z->z_name, zv->zv_name); + i++; + assert(i <= zone_view_count); + } + } -unsigned int -vm_page_info( - hash_info_bucket_t *info, - unsigned int count) -{ - unsigned int i; + iterate = !VM_TAG_ACTIVE_UPDATE; + if (iterate) { + enum { kMaxKernelDepth = 1 }; + vm_map_t maps[kMaxKernelDepth]; + vm_map_entry_t entries[kMaxKernelDepth]; + vm_map_t map; + vm_map_entry_t entry; + vm_object_offset_t offset; + vm_page_t page; + int stackIdx, count; + +#if !VM_TAG_ACTIVE_UPDATE + vm_page_iterate_objects(info, num_info, &vm_page_count_object); +#endif /* ! VM_TAG_ACTIVE_UPDATE */ + + map = kernel_map; + stackIdx = 0; + while (map) { + vm_map_lock(map); + for (entry = map->hdr.links.next; map; entry = entry->links.next) { + if (entry->is_sub_map) { + assert(stackIdx < kMaxKernelDepth); + maps[stackIdx] = map; + entries[stackIdx] = entry; + stackIdx++; + map = VME_SUBMAP(entry); + entry = NULL; + break; + } + if (VME_OBJECT(entry) == kernel_object) { + count = 0; + vm_object_lock(VME_OBJECT(entry)); + for (offset = entry->links.start; offset < entry->links.end; offset += page_size) { + page = vm_page_lookup(VME_OBJECT(entry), offset); + if (page && VM_PAGE_WIRED(page)) { + count++; + } + } + vm_object_unlock(VME_OBJECT(entry)); - if (vm_page_bucket_count < count) - count = vm_page_bucket_count; + if (count) { + assert(VME_ALIAS(entry) != VM_KERN_MEMORY_NONE); + assert(VME_ALIAS(entry) < num_info); + info[VME_ALIAS(entry)].size += ptoa_64(count); + } + } + while (map && (entry == vm_map_last_entry(map))) { + vm_map_unlock(map); + if (!stackIdx) { + map = NULL; + } else { + --stackIdx; + map = maps[stackIdx]; + entry = entries[stackIdx]; + } + } + } + } + } - for (i = 0; i < count; i++) { - vm_page_bucket_t *bucket = &vm_page_buckets[i]; - unsigned int bucket_count = 0; - vm_page_t m; + process_account(info, num_info, zones_collectable_bytes, iterate); - simple_lock(&vm_page_bucket_lock); - for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next) - bucket_count++; - simple_unlock(&vm_page_bucket_lock); + return KERN_SUCCESS; +} - /* don't touch pageable memory while holding locks */ - info[i].hib_count = bucket_count; +#if DEBUG || DEVELOPMENT + +kern_return_t +vm_kern_allocation_info(uintptr_t addr, vm_size_t * size, vm_tag_t * tag, vm_size_t * zone_size) +{ + kern_return_t ret; + vm_size_t zsize; + vm_map_t map; + vm_map_entry_t entry; + + zsize = zone_element_info((void *) addr, tag); + if (zsize) { + *zone_size = *size = zsize; + return KERN_SUCCESS; } - return vm_page_bucket_count; -} -#endif /* MACH_VM_DEBUG */ + *zone_size = 0; + ret = KERN_INVALID_ADDRESS; + for (map = kernel_map; map;) { + vm_map_lock(map); + if (!vm_map_lookup_entry(map, addr, &entry)) { + break; + } + if (entry->is_sub_map) { + if (map != kernel_map) { + break; + } + map = VME_SUBMAP(entry); + continue; + } + if (entry->vme_start != addr) { + break; + } + *tag = (vm_tag_t)VME_ALIAS(entry); + *size = (entry->vme_end - addr); + ret = KERN_SUCCESS; + break; + } + if (map != kernel_map) { + vm_map_unlock(map); + } + vm_map_unlock(kernel_map); -#include -#if MACH_KDB + return ret; +} -#include -#include -#define printf kdbprintf +#endif /* DEBUG || DEVELOPMENT */ -/* - * Routine: vm_page_print [exported] - */ -void -vm_page_print( - db_addr_t db_addr) +uint32_t +vm_tag_get_kext(vm_tag_t tag, char * name, vm_size_t namelen) { - vm_page_t p; - - p = (vm_page_t) (long) db_addr; + vm_allocation_site_t * site; + uint32_t kmodId; + + kmodId = 0; + lck_spin_lock(&vm_allocation_sites_lock); + if ((site = vm_allocation_sites[tag])) { + if (VM_TAG_KMOD & site->flags) { + kmodId = OSKextGetKmodIDForSite(site, name, namelen); + } + } + lck_spin_unlock(&vm_allocation_sites_lock); - iprintf("page 0x%x\n", p); + return kmodId; +} - db_indent += 2; - iprintf("object=0x%x", p->object); - printf(", offset=0x%x", p->offset); - printf(", wire_count=%d", p->wire_count); +#if CONFIG_SECLUDED_MEMORY +/* + * Note that there's no locking around other accesses to vm_page_secluded_target. + * That should be OK, since these are the only place where it can be changed after + * initialization. Other users (like vm_pageout) may see the wrong value briefly, + * but will eventually get the correct value. This brief mismatch is OK as pageout + * and page freeing will auto-adjust the vm_page_secluded_count to match the target + * over time. + */ +unsigned int vm_page_secluded_suppress_cnt = 0; +unsigned int vm_page_secluded_save_target; - iprintf("%sinactive, %sactive, %sthrottled, %sgobbled, %slaundry, %sfree, %sref, %sencrypted\n", - (p->inactive ? "" : "!"), - (p->active ? "" : "!"), - (p->throttled ? "" : "!"), - (p->gobbled ? "" : "!"), - (p->laundry ? "" : "!"), - (p->free ? "" : "!"), - (p->reference ? "" : "!"), - (p->encrypted ? "" : "!")); - iprintf("%sbusy, %swanted, %stabled, %sfictitious, %sprivate, %sprecious\n", - (p->busy ? "" : "!"), - (p->wanted ? "" : "!"), - (p->tabled ? "" : "!"), - (p->fictitious ? "" : "!"), - (p->private ? "" : "!"), - (p->precious ? "" : "!")); - iprintf("%sabsent, %serror, %sdirty, %scleaning, %spageout, %sclustered\n", - (p->absent ? "" : "!"), - (p->error ? "" : "!"), - (p->dirty ? "" : "!"), - (p->cleaning ? "" : "!"), - (p->pageout ? "" : "!"), - (p->clustered ? "" : "!")); - iprintf("%soverwriting, %srestart, %sunusual\n", - (p->overwriting ? "" : "!"), - (p->restart ? "" : "!"), - (p->unusual ? "" : "!")); +LCK_GRP_DECLARE(secluded_suppress_slock_grp, "secluded_suppress_slock"); +LCK_SPIN_DECLARE(secluded_suppress_slock, &secluded_suppress_slock_grp); - iprintf("phys_page=0x%x", p->phys_page); +void +start_secluded_suppression(task_t task) +{ + if (task->task_suppressed_secluded) { + return; + } + lck_spin_lock(&secluded_suppress_slock); + if (!task->task_suppressed_secluded && vm_page_secluded_suppress_cnt++ == 0) { + task->task_suppressed_secluded = TRUE; + vm_page_secluded_save_target = vm_page_secluded_target; + vm_page_secluded_target = 0; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + } + lck_spin_unlock(&secluded_suppress_slock); +} - db_indent -= 2; +void +stop_secluded_suppression(task_t task) +{ + lck_spin_lock(&secluded_suppress_slock); + if (task->task_suppressed_secluded && --vm_page_secluded_suppress_cnt == 0) { + task->task_suppressed_secluded = FALSE; + vm_page_secluded_target = vm_page_secluded_save_target; + VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); + } + lck_spin_unlock(&secluded_suppress_slock); } -#endif /* MACH_KDB */ + +#endif /* CONFIG_SECLUDED_MEMORY */