X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/593a1d5fd87cdf5b46dd5fcb84467b432cea0f91..0a7de7458d150b5d4dffc935ba399be265ef0a1a:/bsd/kern/kern_memorystatus.c diff --git a/bsd/kern/kern_memorystatus.c b/bsd/kern/kern_memorystatus.c index 912fdef3f..5c3410624 100644 --- a/bsd/kern/kern_memorystatus.c +++ b/bsd/kern/kern_memorystatus.c @@ -1,8 +1,8 @@ /* - * Copyright (c) 2006 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2006-2018 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ - * + * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in @@ -11,10 +11,10 @@ * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. - * + * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. - * + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -22,112 +22,10636 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * + * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ * */ -/*- - * Copyright (c) 1999,2000,2001 Jonathan Lemon - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -#include -#include #include +#include +#include +#include +#include #include #include +#include +#include +#include + +#include + #include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include #include +#include +#include +#include +#include +#include +#include -extern unsigned int vm_page_free_count; -extern unsigned int vm_page_active_count; -extern unsigned int vm_page_inactive_count; -extern unsigned int vm_page_purgeable_count; -extern unsigned int vm_page_wire_count; +#if CONFIG_FREEZE +#include +#endif /* CONFIG_FREEZE */ -static void kern_memorystatus_thread(void); +#include -int kern_memorystatus_wakeup = 0; -int kern_memorystatus_level = 0; -int kern_memorystatus_last_level = 0; -unsigned int kern_memorystatus_kev_failure_count = 0; +#include +#include +#include -SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD, &kern_memorystatus_level, 0, ""); -SYSCTL_UINT(_kern, OID_AUTO, memorystatus_kev_failure_count, CTLFLAG_RD, &kern_memorystatus_kev_failure_count, 0, ""); +/* For logging clarity */ +static const char *memorystatus_kill_cause_name[] = { + "", /* kMemorystatusInvalid */ + "jettisoned", /* kMemorystatusKilled */ + "highwater", /* kMemorystatusKilledHiwat */ + "vnode-limit", /* kMemorystatusKilledVnodes */ + "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */ + "proc-thrashing", /* kMemorystatusKilledProcThrashing */ + "fc-thrashing", /* kMemorystatusKilledFCThrashing */ + "per-process-limit", /* kMemorystatusKilledPerProcessLimit */ + "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */ + "idle-exit", /* kMemorystatusKilledIdleExit */ + "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */ + "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */ + "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */ +}; -__private_extern__ void -kern_memorystatus_init(void) +static const char * +memorystatus_priority_band_name(int32_t priority) { - (void)kernel_thread(kernel_task, kern_memorystatus_thread); + switch (priority) { + case JETSAM_PRIORITY_FOREGROUND: + return "FOREGROUND"; + case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY: + return "AUDIO_AND_ACCESSORY"; + case JETSAM_PRIORITY_CONDUCTOR: + return "CONDUCTOR"; + case JETSAM_PRIORITY_HOME: + return "HOME"; + case JETSAM_PRIORITY_EXECUTIVE: + return "EXECUTIVE"; + case JETSAM_PRIORITY_IMPORTANT: + return "IMPORTANT"; + case JETSAM_PRIORITY_CRITICAL: + return "CRITICAL"; + } + + return "?"; } -static void -kern_memorystatus_thread(void) +/* Does cause indicate vm or fc thrashing? */ +static boolean_t +is_reason_thrashing(unsigned cause) { - struct kev_msg ev_msg; - struct { - uint32_t free_pages; - uint32_t active_pages; - uint32_t inactive_pages; - uint32_t purgeable_pages; - uint32_t wired_pages; - } data; - int ret; + switch (cause) { + case kMemorystatusKilledFCThrashing: + case kMemorystatusKilledVMCompressorThrashing: + case kMemorystatusKilledVMCompressorSpaceShortage: + return TRUE; + default: + return FALSE; + } +} + +/* Is the zone map almost full? */ +static boolean_t +is_reason_zone_map_exhaustion(unsigned cause) +{ + if (cause == kMemorystatusKilledZoneMapExhaustion) { + return TRUE; + } + return FALSE; +} + +/* + * Returns the current zone map size and capacity to include in the jetsam snapshot. + * Defined in zalloc.c + */ +extern void get_zone_map_size(uint64_t *current_size, uint64_t *capacity); + +/* + * Returns the name of the largest zone and its size to include in the jetsam snapshot. + * Defined in zalloc.c + */ +extern void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size); + +/* These are very verbose printfs(), enable with + * MEMORYSTATUS_DEBUG_LOG + */ +#if MEMORYSTATUS_DEBUG_LOG +#define MEMORYSTATUS_DEBUG(cond, format, ...) \ +do { \ + if (cond) { printf(format, ##__VA_ARGS__); } \ +} while(0) +#else +#define MEMORYSTATUS_DEBUG(cond, format, ...) +#endif + +/* + * Active / Inactive limit support + * proc list must be locked + * + * The SET_*** macros are used to initialize a limit + * for the first time. + * + * The CACHE_*** macros are use to cache the limit that will + * soon be in effect down in the ledgers. + */ + +#define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \ +MACRO_BEGIN \ +(p)->p_memstat_memlimit_active = (limit); \ + if (is_fatal) { \ + (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \ + } else { \ + (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \ + } \ +MACRO_END + +#define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \ +MACRO_BEGIN \ +(p)->p_memstat_memlimit_inactive = (limit); \ + if (is_fatal) { \ + (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \ + } else { \ + (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \ + } \ +MACRO_END + +#define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \ +MACRO_BEGIN \ +(p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \ + if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \ + (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \ + is_fatal = TRUE; \ + } else { \ + (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \ + is_fatal = FALSE; \ + } \ +MACRO_END + +#define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \ +MACRO_BEGIN \ +(p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \ + if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \ + (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \ + is_fatal = TRUE; \ + } else { \ + (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \ + is_fatal = FALSE; \ + } \ +MACRO_END + + +/* General tunables */ + +unsigned long delta_percentage = 5; +unsigned long critical_threshold_percentage = 5; +unsigned long idle_offset_percentage = 5; +unsigned long pressure_threshold_percentage = 15; +unsigned long freeze_threshold_percentage = 50; +unsigned long policy_more_free_offset_percentage = 5; + +/* General memorystatus stuff */ + +struct klist memorystatus_klist; +static lck_mtx_t memorystatus_klist_mutex; + +static void memorystatus_klist_lock(void); +static void memorystatus_klist_unlock(void); + +static uint64_t memorystatus_sysprocs_idle_delay_time = 0; +static uint64_t memorystatus_apps_idle_delay_time = 0; + +/* + * Memorystatus kevents + */ + +static int filt_memorystatusattach(struct knote *kn, struct kevent_internal_s *kev); +static void filt_memorystatusdetach(struct knote *kn); +static int filt_memorystatus(struct knote *kn, long hint); +static int filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev); +static int filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); + +SECURITY_READ_ONLY_EARLY(struct filterops) memorystatus_filtops = { + .f_attach = filt_memorystatusattach, + .f_detach = filt_memorystatusdetach, + .f_event = filt_memorystatus, + .f_touch = filt_memorystatustouch, + .f_process = filt_memorystatusprocess, +}; + +enum { + kMemorystatusNoPressure = 0x1, + kMemorystatusPressure = 0x2, + kMemorystatusLowSwap = 0x4, + kMemorystatusProcLimitWarn = 0x8, + kMemorystatusProcLimitCritical = 0x10 +}; + +/* Idle guard handling */ + +static int32_t memorystatus_scheduled_idle_demotions_sysprocs = 0; +static int32_t memorystatus_scheduled_idle_demotions_apps = 0; + +static thread_call_t memorystatus_idle_demotion_call; + +static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2); +static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state); +static void memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clean_state); +static void memorystatus_reschedule_idle_demotion_locked(void); + +static void memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check); - while(1) { - - kern_memorystatus_last_level = kern_memorystatus_level; +int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap); - ev_msg.vendor_code = KEV_VENDOR_APPLE; - ev_msg.kev_class = KEV_SYSTEM_CLASS; - ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS; +vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); - /* pass the memory status level in the event code (as percent used) */ - ev_msg.event_code = 100 - kern_memorystatus_last_level; +boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t); +void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear); +void memorystatus_send_low_swap_note(void); - ev_msg.dv[0].data_length = sizeof data; - ev_msg.dv[0].data_ptr = &data; - ev_msg.dv[1].data_length = 0; +unsigned int memorystatus_level = 0; - data.free_pages = vm_page_free_count; - data.active_pages = vm_page_active_count; - data.inactive_pages = vm_page_inactive_count; - data.purgeable_pages = vm_page_purgeable_count; - data.wired_pages = vm_page_wire_count; +static int memorystatus_list_count = 0; - ret = kev_post_msg(&ev_msg); - if (ret) { - kern_memorystatus_kev_failure_count++; - printf("%s: kev_post_msg() failed, err %d\n", __func__, ret); + +#define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1) + +typedef struct memstat_bucket { + TAILQ_HEAD(, proc) list; + int count; +} memstat_bucket_t; + +memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT]; + +int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index); + +uint64_t memstat_idle_demotion_deadline = 0; + +int system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; +int applications_aging_band = JETSAM_PRIORITY_IDLE; + +#define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band))) + +/* + * Checking the p_memstat_state almost always requires the proc_list_lock + * because the jetsam thread could be on the other core changing the state. + * + * App -- almost always managed by a system process. Always have dirty tracking OFF. Can include extensions too. + * System Processes -- not managed by anybody. Always have dirty tracking ON. Can include extensions (here) too. + */ +#define isApp(p) ((p->p_memstat_state & P_MEMSTAT_MANAGED) || ! (p->p_memstat_dirty & P_DIRTY_TRACK)) +#define isSysProc(p) ( ! (p->p_memstat_state & P_MEMSTAT_MANAGED) || (p->p_memstat_dirty & P_DIRTY_TRACK)) + +#define kJetsamAgingPolicyNone (0) +#define kJetsamAgingPolicyLegacy (1) +#define kJetsamAgingPolicySysProcsReclaimedFirst (2) +#define kJetsamAgingPolicyAppsReclaimedFirst (3) +#define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst + +unsigned int jetsam_aging_policy = kJetsamAgingPolicyLegacy; + +extern int corpse_for_fatal_memkill; +extern unsigned long total_corpses_count(void) __attribute__((pure)); +extern void task_purge_all_corpses(void); +extern uint64_t vm_purgeable_purge_task_owned(task_t task); +boolean_t memorystatus_allowed_vm_map_fork(task_t); +#if DEVELOPMENT || DEBUG +void memorystatus_abort_vm_map_fork(task_t); +#endif + +#if 0 + +/* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */ + +static int +sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, arg1, arg2) + + int error = 0, val = 0; + memstat_bucket_t *old_bucket = 0; + int old_system_procs_aging_band = 0, new_system_procs_aging_band = 0; + int old_applications_aging_band = 0, new_applications_aging_band = 0; + proc_t p = NULL, next_proc = NULL; + + + error = sysctl_io_number(req, jetsam_aging_policy, sizeof(int), &val, NULL); + if (error || !req->newptr) { + return error; + } + + if ((val < 0) || (val > kJetsamAgingPolicyMax)) { + printf("jetsam: ordering policy sysctl has invalid value - %d\n", val); + return EINVAL; + } + + /* + * We need to synchronize with any potential adding/removal from aging bands + * that might be in progress currently. We use the proc_list_lock() just for + * consistency with all the routines dealing with 'aging' processes. We need + * a lighterweight lock. + */ + proc_list_lock(); + + old_system_procs_aging_band = system_procs_aging_band; + old_applications_aging_band = applications_aging_band; + + switch (val) { + case kJetsamAgingPolicyNone: + new_system_procs_aging_band = JETSAM_PRIORITY_IDLE; + new_applications_aging_band = JETSAM_PRIORITY_IDLE; + break; + + case kJetsamAgingPolicyLegacy: + /* + * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band. + */ + new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; + new_applications_aging_band = JETSAM_PRIORITY_IDLE; + break; + + case kJetsamAgingPolicySysProcsReclaimedFirst: + new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; + new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND2; + break; + + case kJetsamAgingPolicyAppsReclaimedFirst: + new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2; + new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND1; + break; + + default: + break; + } + + if (old_system_procs_aging_band && (old_system_procs_aging_band != new_system_procs_aging_band)) { + old_bucket = &memstat_bucket[old_system_procs_aging_band]; + p = TAILQ_FIRST(&old_bucket->list); + + while (p) { + next_proc = TAILQ_NEXT(p, p_memstat_list); + + if (isSysProc(p)) { + if (new_system_procs_aging_band == JETSAM_PRIORITY_IDLE) { + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + } + + memorystatus_update_priority_locked(p, new_system_procs_aging_band, false, true); + } + + p = next_proc; + continue; } + } + + if (old_applications_aging_band && (old_applications_aging_band != new_applications_aging_band)) { + old_bucket = &memstat_bucket[old_applications_aging_band]; + p = TAILQ_FIRST(&old_bucket->list); - if (kern_memorystatus_level >= kern_memorystatus_last_level + 5 || - kern_memorystatus_level <= kern_memorystatus_last_level - 5) + while (p) { + next_proc = TAILQ_NEXT(p, p_memstat_list); + + if (isApp(p)) { + if (new_applications_aging_band == JETSAM_PRIORITY_IDLE) { + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + } + + memorystatus_update_priority_locked(p, new_applications_aging_band, false, true); + } + + p = next_proc; continue; + } + } + + jetsam_aging_policy = val; + system_procs_aging_band = new_system_procs_aging_band; + applications_aging_band = new_applications_aging_band; + + proc_list_unlock(); + + return 0; +} + +SYSCTL_PROC(_kern, OID_AUTO, set_jetsam_aging_policy, CTLTYPE_INT | CTLFLAG_RW, + 0, 0, sysctl_set_jetsam_aging_policy, "I", "Jetsam Aging Policy"); +#endif /*0*/ + +static int +sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, arg1, arg2) + + int error = 0, val = 0, old_time_in_secs = 0; + uint64_t old_time_in_ns = 0; + + absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time, &old_time_in_ns); + old_time_in_secs = old_time_in_ns / NSEC_PER_SEC; + + error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL); + if (error || !req->newptr) { + return error; + } + + if ((val < 0) || (val > INT32_MAX)) { + printf("jetsam: new idle delay interval has invalid value.\n"); + return EINVAL; + } + + nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time); + + return 0; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_sysprocs_idle_delay_time, CTLTYPE_INT | CTLFLAG_RW, + 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time, "I", "Aging window for system processes"); + + +static int +sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, arg1, arg2) + + int error = 0, val = 0, old_time_in_secs = 0; + uint64_t old_time_in_ns = 0; + + absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time, &old_time_in_ns); + old_time_in_secs = old_time_in_ns / NSEC_PER_SEC; + + error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL); + if (error || !req->newptr) { + return error; + } + + if ((val < 0) || (val > INT32_MAX)) { + printf("jetsam: new idle delay interval has invalid value.\n"); + return EINVAL; + } + + nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time); + + return 0; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_apps_idle_delay_time, CTLTYPE_INT | CTLFLAG_RW, + 0, 0, sysctl_jetsam_set_apps_idle_delay_time, "I", "Aging window for applications"); + +SYSCTL_INT(_kern, OID_AUTO, jetsam_aging_policy, CTLTYPE_INT | CTLFLAG_RD, &jetsam_aging_policy, 0, ""); + +static unsigned int memorystatus_dirty_count = 0; + +SYSCTL_INT(_kern, OID_AUTO, max_task_pmem, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, &max_task_footprint_mb, 0, ""); + +#if CONFIG_EMBEDDED + +SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_level, 0, ""); + +#endif /* CONFIG_EMBEDDED */ + +int +memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret) +{ + user_addr_t level = 0; + + level = args->level; + + if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) { + return EFAULT; + } + + return 0; +} + +static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search); +static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search); + +static void memorystatus_thread(void *param __unused, wait_result_t wr __unused); + +/* Memory Limits */ + +static int memorystatus_highwater_enabled = 1; /* Update the cached memlimit data. */ + +static boolean_t proc_jetsam_state_is_active_locked(proc_t); +static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason); +static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason); + + +static int memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); + +static int memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry); + +static int memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); + +static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); + +int proc_get_memstat_priority(proc_t, boolean_t); + +static boolean_t memorystatus_idle_snapshot = 0; + +unsigned int memorystatus_delta = 0; + +/* Jetsam Loop Detection */ +static boolean_t memorystatus_jld_enabled = FALSE; /* Enable jetsam loop detection */ +static uint32_t memorystatus_jld_eval_period_msecs = 0; /* Init pass sets this based on device memory size */ +static int memorystatus_jld_eval_aggressive_count = 3; /* Raise the priority max after 'n' aggressive loops */ +static int memorystatus_jld_eval_aggressive_priority_band_max = 15; /* Kill aggressively up through this band */ + +/* + * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as: + * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands. + * + * RESTRICTIONS: + * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was + * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band. + * + * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around. + * + * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior. + */ + +#define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25 +boolean_t memorystatus_aggressive_jetsam_lenient_allowed = FALSE; +boolean_t memorystatus_aggressive_jetsam_lenient = FALSE; + +#if DEVELOPMENT || DEBUG +/* + * Jetsam Loop Detection tunables. + */ + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_period_msecs, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_count, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_count, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_priority_band_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_priority_band_max, 0, ""); +#endif /* DEVELOPMENT || DEBUG */ + +static uint32_t kill_under_pressure_cause = 0; + +/* + * default jetsam snapshot support + */ +static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot; +static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot_copy; +#define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries +static unsigned int memorystatus_jetsam_snapshot_count = 0; +static unsigned int memorystatus_jetsam_snapshot_copy_count = 0; +static unsigned int memorystatus_jetsam_snapshot_max = 0; +static unsigned int memorystatus_jetsam_snapshot_size = 0; +static uint64_t memorystatus_jetsam_snapshot_last_timestamp = 0; +static uint64_t memorystatus_jetsam_snapshot_timeout = 0; +#define JETSAM_SNAPSHOT_TIMEOUT_SECS 30 + +/* + * snapshot support for memstats collected at boot. + */ +static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot; + +static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count); +static boolean_t memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount); +static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime); + +static void memorystatus_clear_errors(void); +static void memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages); +static void memorystatus_get_task_phys_footprint_page_counts(task_t task, + uint64_t *internal_pages, uint64_t *internal_compressed_pages, + uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages, + uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages, + uint64_t *iokit_mapped_pages, uint64_t *page_table_pages); + +static void memorystatus_get_task_memory_region_count(task_t task, uint64_t *count); + +static uint32_t memorystatus_build_state(proc_t p); +//static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured); + +static boolean_t memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, int32_t *priority, uint32_t *errors); +static boolean_t memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, int32_t priority_max, uint32_t *errors); +static boolean_t memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors); +static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged); + +static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause); + +/* Priority Band Sorting Routines */ +static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order); +static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order); +static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index); +static int memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz); + +/* qsort routines */ +typedef int (*cmpfunc_t)(const void *a, const void *b); +extern void qsort(void *a, size_t n, size_t es, cmpfunc_t cmp); +static int memstat_asc_cmp(const void *a, const void *b); + +/* VM pressure */ + +extern unsigned int vm_page_free_count; +extern unsigned int vm_page_active_count; +extern unsigned int vm_page_inactive_count; +extern unsigned int vm_page_throttled_count; +extern unsigned int vm_page_purgeable_count; +extern unsigned int vm_page_wire_count; +#if CONFIG_SECLUDED_MEMORY +extern unsigned int vm_page_secluded_count; +#endif /* CONFIG_SECLUDED_MEMORY */ + +#if CONFIG_JETSAM +unsigned int memorystatus_available_pages = (unsigned int)-1; +unsigned int memorystatus_available_pages_pressure = 0; +unsigned int memorystatus_available_pages_critical = 0; +static unsigned int memorystatus_available_pages_critical_base = 0; +static unsigned int memorystatus_available_pages_critical_idle_offset = 0; + +#if DEVELOPMENT || DEBUG +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, ""); +#else +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, ""); +#endif /* DEVELOPMENT || DEBUG */ + +static unsigned int memorystatus_jetsam_policy = kPolicyDefault; +unsigned int memorystatus_policy_more_free_offset_pages = 0; +static void memorystatus_update_levels_locked(boolean_t critical_only); +static unsigned int memorystatus_thread_wasted_wakeup = 0; + +/* Callback into vm_compressor.c to signal that thrashing has been mitigated. */ +extern void vm_thrashing_jetsam_done(void); +static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit); + +int32_t max_kill_priority = JETSAM_PRIORITY_MAX; + +#else /* CONFIG_JETSAM */ + +uint64_t memorystatus_available_pages = (uint64_t)-1; +uint64_t memorystatus_available_pages_pressure = (uint64_t)-1; +uint64_t memorystatus_available_pages_critical = (uint64_t)-1; + +int32_t max_kill_priority = JETSAM_PRIORITY_IDLE; +#endif /* CONFIG_JETSAM */ + +unsigned int memorystatus_frozen_count = 0; +unsigned int memorystatus_frozen_processes_max = 0; +unsigned int memorystatus_frozen_shared_mb = 0; +unsigned int memorystatus_frozen_shared_mb_max = 0; +unsigned int memorystatus_freeze_shared_mb_per_process_max = 0; /* Max. MB allowed per process to be freezer-eligible. */ +unsigned int memorystatus_freeze_private_shared_pages_ratio = 2; /* Ratio of private:shared pages for a process to be freezer-eligible. */ +unsigned int memorystatus_suspended_count = 0; +unsigned int memorystatus_thaw_count = 0; +unsigned int memorystatus_refreeze_eligible_count = 0; /* # of processes currently thawed i.e. have state on disk & in-memory */ + +#if VM_PRESSURE_EVENTS + +boolean_t memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t exceeded); + +vm_pressure_level_t memorystatus_vm_pressure_level = kVMPressureNormal; + +/* + * We use this flag to signal if we have any HWM offenders + * on the system. This way we can reduce the number of wakeups + * of the memorystatus_thread when the system is between the + * "pressure" and "critical" threshold. + * + * The (re-)setting of this variable is done without any locks + * or synchronization simply because it is not possible (currently) + * to keep track of HWM offenders that drop down below their memory + * limit and/or exit. So, we choose to burn a couple of wasted wakeups + * by allowing the unguarded modification of this variable. + */ +boolean_t memorystatus_hwm_candidates = 0; + +static int memorystatus_send_note(int event_code, void *data, size_t data_length); + +/* + * This value is the threshold that a process must meet to be considered for scavenging. + */ +#if CONFIG_EMBEDDED +#define VM_PRESSURE_MINIMUM_RSIZE 6 /* MB */ +#else /* CONFIG_EMBEDDED */ +#define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */ +#endif /* CONFIG_EMBEDDED */ + +uint32_t vm_pressure_task_footprint_min = VM_PRESSURE_MINIMUM_RSIZE; + +#if DEVELOPMENT || DEBUG +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_vm_pressure_task_footprint_min, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pressure_task_footprint_min, 0, ""); +#endif /* DEVELOPMENT || DEBUG */ + +#endif /* VM_PRESSURE_EVENTS */ + + +#if DEVELOPMENT || DEBUG + +lck_grp_attr_t *disconnect_page_mappings_lck_grp_attr; +lck_grp_t *disconnect_page_mappings_lck_grp; +static lck_mtx_t disconnect_page_mappings_mutex; + +extern boolean_t kill_on_no_paging_space; +#endif /* DEVELOPMENT || DEBUG */ + + +/* + * Table that expresses the probability of a process + * being used in the next hour. + */ +typedef struct memorystatus_internal_probabilities { + char proc_name[MAXCOMLEN + 1]; + int use_probability; +} memorystatus_internal_probabilities_t; + +static memorystatus_internal_probabilities_t *memorystatus_global_probabilities_table = NULL; +static size_t memorystatus_global_probabilities_size = 0; + +/* Freeze */ + +#if CONFIG_FREEZE +boolean_t memorystatus_freeze_enabled = FALSE; +int memorystatus_freeze_wakeup = 0; +int memorystatus_freeze_jetsam_band = 0; /* the jetsam band which will contain P_MEMSTAT_FROZEN processes */ + +lck_grp_attr_t *freezer_lck_grp_attr; +lck_grp_t *freezer_lck_grp; +static lck_mtx_t freezer_mutex; + +static inline boolean_t memorystatus_can_freeze_processes(void); +static boolean_t memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low); +static boolean_t memorystatus_is_process_eligible_for_freeze(proc_t p); +static void memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused); +static boolean_t memorystatus_freeze_thread_should_run(void); + +void memorystatus_disable_freeze(void); + +/* Thresholds */ +static unsigned int memorystatus_freeze_threshold = 0; + +static unsigned int memorystatus_freeze_pages_min = 0; +static unsigned int memorystatus_freeze_pages_max = 0; + +static unsigned int memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT; + +static unsigned int memorystatus_freeze_daily_mb_max = FREEZE_DAILY_MB_MAX_DEFAULT; +static uint64_t memorystatus_freeze_budget_pages_remaining = 0; //remaining # of pages that can be frozen to disk +static boolean_t memorystatus_freeze_degradation = FALSE; //protected by the freezer mutex. Signals we are in a degraded freeze mode. + +static unsigned int memorystatus_max_frozen_demotions_daily = 0; +static unsigned int memorystatus_thaw_count_demotion_threshold = 0; + +/* Stats */ +static uint64_t memorystatus_freeze_pageouts = 0; + +/* Throttling */ +#define DEGRADED_WINDOW_MINS (30) +#define NORMAL_WINDOW_MINS (24 * 60) + +static throttle_interval_t throttle_intervals[] = { + { DEGRADED_WINDOW_MINS, 1, 0, 0, { 0, 0 }}, + { NORMAL_WINDOW_MINS, 1, 0, 0, { 0, 0 }}, +}; +throttle_interval_t *degraded_throttle_window = &throttle_intervals[0]; +throttle_interval_t *normal_throttle_window = &throttle_intervals[1]; + +extern uint64_t vm_swap_get_free_space(void); +extern boolean_t vm_swap_max_budget(uint64_t *); + +static void memorystatus_freeze_update_throttle(uint64_t *budget_pages_allowed); + +static uint64_t memorystatus_freezer_thread_next_run_ts = 0; + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_count, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_frozen_count, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_thaw_count, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_thaw_count, 0, ""); +SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_pageouts, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_freeze_pageouts, ""); +SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_budget_pages_remaining, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_freeze_budget_pages_remaining, ""); + +#endif /* CONFIG_FREEZE */ + +/* Debug */ + +extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *); + +#if DEVELOPMENT || DEBUG + +static unsigned int memorystatus_debug_dump_this_bucket = 0; + +static void +memorystatus_debug_dump_bucket_locked(unsigned int bucket_index) +{ + proc_t p = NULL; + uint64_t bytes = 0; + int ledger_limit = 0; + unsigned int b = bucket_index; + boolean_t traverse_all_buckets = FALSE; - assert_wait(&kern_memorystatus_wakeup, THREAD_UNINT); - (void)thread_block((thread_continue_t)kern_memorystatus_thread); + if (bucket_index >= MEMSTAT_BUCKET_COUNT) { + traverse_all_buckets = TRUE; + b = 0; + } else { + traverse_all_buckets = FALSE; + b = bucket_index; } + + /* + * footprint reported in [pages / MB ] + * limits reported as: + * L-limit proc's Ledger limit + * C-limit proc's Cached limit, should match Ledger + * A-limit proc's Active limit + * IA-limit proc's Inactive limit + * F==Fatal, NF==NonFatal + */ + + printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64); + printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n"); + p = memorystatus_get_first_proc_locked(&b, traverse_all_buckets); + while (p) { + bytes = get_task_phys_footprint(p->task); + task_get_phys_footprint_limit(p->task, &ledger_limit); + printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n", + b, p->p_pid, + (bytes / PAGE_SIZE_64), /* task's footprint converted from bytes to pages */ + (bytes / (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */ + p->p_memstat_state, p->p_memstat_effectivepriority, p->p_memstat_requestedpriority, p->p_memstat_dirty, p->p_memstat_idledeadline, + ledger_limit, + p->p_memstat_memlimit, + (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), + p->p_memstat_memlimit_active, + (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL ? "F " : "NF"), + p->p_memstat_memlimit_inactive, + (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL ? "F " : "NF"), + (*p->p_name ? p->p_name : "unknown")); + p = memorystatus_get_next_proc_locked(&b, p, traverse_all_buckets); + } + printf("memorystatus_debug_dump ***END***\n"); +} + +static int +sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, arg2) + int bucket_index = 0; + int error; + error = SYSCTL_OUT(req, arg1, sizeof(int)); + if (error || !req->newptr) { + return error; + } + error = SYSCTL_IN(req, &bucket_index, sizeof(int)); + if (error || !req->newptr) { + return error; + } + if (bucket_index >= MEMSTAT_BUCKET_COUNT) { + /* + * All jetsam buckets will be dumped. + */ + } else { + /* + * Only a single bucket will be dumped. + */ + } + + proc_list_lock(); + memorystatus_debug_dump_bucket_locked(bucket_index); + proc_list_unlock(); + memorystatus_debug_dump_this_bucket = bucket_index; + return error; +} + +/* + * Debug aid to look at jetsam buckets and proc jetsam fields. + * Use this sysctl to act on a particular jetsam bucket. + * Writing the sysctl triggers the dump. + * Usage: sysctl kern.memorystatus_debug_dump_this_bucket= + */ + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_debug_dump_this_bucket, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_debug_dump_this_bucket, 0, sysctl_memorystatus_debug_dump_bucket, "I", ""); + + +/* Debug aid to aid determination of limit */ + +static int +sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, arg2) + proc_t p; + unsigned int b = 0; + int error, enable = 0; + boolean_t use_active; /* use the active limit and active limit attributes */ + boolean_t is_fatal; + + error = SYSCTL_OUT(req, arg1, sizeof(int)); + if (error || !req->newptr) { + return error; + } + + error = SYSCTL_IN(req, &enable, sizeof(int)); + if (error || !req->newptr) { + return error; + } + + if (!(enable == 0 || enable == 1)) { + return EINVAL; + } + + proc_list_lock(); + + p = memorystatus_get_first_proc_locked(&b, TRUE); + while (p) { + use_active = proc_jetsam_state_is_active_locked(p); + + if (enable) { + if (use_active == TRUE) { + CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); + } else { + CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); + } + } else { + /* + * Disabling limits does not touch the stored variants. + * Set the cached limit fields to system_wide defaults. + */ + p->p_memstat_memlimit = -1; + p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; + is_fatal = TRUE; + } + + /* + * Enforce the cached limit by writing to the ledger. + */ + task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal); + + p = memorystatus_get_next_proc_locked(&b, p, TRUE); + } + + memorystatus_highwater_enabled = enable; + + proc_list_unlock(); + + return 0; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I", ""); + +#if VM_PRESSURE_EVENTS + +/* + * This routine is used for targeted notifications regardless of system memory pressure + * and regardless of whether or not the process has already been notified. + * It bypasses and has no effect on the only-one-notification per soft-limit policy. + * + * "memnote" is the current user. + */ + +static int +sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2) + + int error = 0, pid = 0; + struct knote *kn = NULL; + boolean_t found_knote = FALSE; + int fflags = 0; /* filter flags for EVFILT_MEMORYSTATUS */ + uint64_t value = 0; + + error = sysctl_handle_quad(oidp, &value, 0, req); + if (error || !req->newptr) { + return error; + } + + /* + * Find the pid in the low 32 bits of value passed in. + */ + pid = (int)(value & 0xFFFFFFFF); + + /* + * Find notification in the high 32 bits of the value passed in. + */ + fflags = (int)((value >> 32) & 0xFFFFFFFF); + + /* + * For backwards compatibility, when no notification is + * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN + */ + if (fflags == 0) { + fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; + // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags); + } + + /* + * See event.h ... fflags for EVFILT_MEMORYSTATUS + */ + if (!((fflags == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) || + (fflags == NOTE_MEMORYSTATUS_PRESSURE_WARN) || + (fflags == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) || + (fflags == NOTE_MEMORYSTATUS_LOW_SWAP) || + (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) || + (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) || + (((fflags & NOTE_MEMORYSTATUS_MSL_STATUS) != 0 && + ((fflags & ~NOTE_MEMORYSTATUS_MSL_STATUS) == 0))))) { + printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n", fflags); + error = 1; + return error; + } + + /* + * Forcibly send pid a memorystatus notification. + */ + + memorystatus_klist_lock(); + + SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { + proc_t knote_proc = knote_get_kq(kn)->kq_p; + pid_t knote_pid = knote_proc->p_pid; + + if (knote_pid == pid) { + /* + * Forcibly send this pid a memorystatus notification. + */ + kn->kn_fflags = fflags; + found_knote = TRUE; + } + } + + if (found_knote) { + KNOTE(&memorystatus_klist, 0); + printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n", value, fflags, pid); + error = 0; + } else { + printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n", value, fflags, pid); + error = 1; + } + + memorystatus_klist_unlock(); + + return error; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_send, CTLTYPE_QUAD | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorystatus_vm_pressure_send, "Q", ""); + +#endif /* VM_PRESSURE_EVENTS */ + +SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, ""); + +#if CONFIG_JETSAM +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RW, &memorystatus_policy_more_free_offset_pages, 0, ""); + +static unsigned int memorystatus_jetsam_panic_debug = 0; +static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic = 0; + +/* Diagnostic code */ + +enum { + kJetsamDiagnosticModeNone = 0, + kJetsamDiagnosticModeAll = 1, + kJetsamDiagnosticModeStopAtFirstActive = 2, + kJetsamDiagnosticModeCount +} jetsam_diagnostic_mode = kJetsamDiagnosticModeNone; + +static int jetsam_diagnostic_suspended_one_active_proc = 0; + +static int +sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2) + + const char *diagnosticStrings[] = { + "jetsam: diagnostic mode: resetting critical level.", + "jetsam: diagnostic mode: will examine all processes", + "jetsam: diagnostic mode: will stop at first active process" + }; + + int error, val = jetsam_diagnostic_mode; + boolean_t changed = FALSE; + + error = sysctl_handle_int(oidp, &val, 0, req); + if (error || !req->newptr) { + return error; + } + if ((val < 0) || (val >= kJetsamDiagnosticModeCount)) { + printf("jetsam: diagnostic mode: invalid value - %d\n", val); + return EINVAL; + } + + proc_list_lock(); + + if ((unsigned int) val != jetsam_diagnostic_mode) { + jetsam_diagnostic_mode = val; + + memorystatus_jetsam_policy &= ~kPolicyDiagnoseActive; + + switch (jetsam_diagnostic_mode) { + case kJetsamDiagnosticModeNone: + /* Already cleared */ + break; + case kJetsamDiagnosticModeAll: + memorystatus_jetsam_policy |= kPolicyDiagnoseAll; + break; + case kJetsamDiagnosticModeStopAtFirstActive: + memorystatus_jetsam_policy |= kPolicyDiagnoseFirst; + break; + default: + /* Already validated */ + break; + } + + memorystatus_update_levels_locked(FALSE); + changed = TRUE; + } + + proc_list_unlock(); + + if (changed) { + printf("%s\n", diagnosticStrings[val]); + } + + return 0; +} + +SYSCTL_PROC(_debug, OID_AUTO, jetsam_diagnostic_mode, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, + &jetsam_diagnostic_mode, 0, sysctl_jetsam_diagnostic_mode, "I", "Jetsam Diagnostic Mode"); + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jetsam_policy_offset_pages_diagnostic, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jetsam_policy_offset_pages_diagnostic, 0, ""); + +#if VM_PRESSURE_EVENTS + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, ""); + +#endif /* VM_PRESSURE_EVENTS */ + +#endif /* CONFIG_JETSAM */ + +#if CONFIG_FREEZE + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_jetsam_band, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_jetsam_band, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_daily_mb_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_daily_mb_max, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_degraded_mode, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_freeze_degradation, 0, ""); + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_threshold, 0, ""); + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_min, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_pages_min, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_pages_max, 0, ""); + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_refreeze_eligible_count, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_refreeze_eligible_count, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_processes_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_frozen_processes_max, 0, ""); + +/* + * Max. shared-anonymous memory in MB that can be held by frozen processes in the high jetsam band. + * "0" means no limit. + * Default is 10% of system-wide task limit. + */ + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_frozen_shared_mb_max, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_frozen_shared_mb, 0, ""); + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb_per_process_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_shared_mb_per_process_max, 0, ""); +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_private_shared_pages_ratio, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_private_shared_pages_ratio, 0, ""); + +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_min_processes, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_suspended_threshold, 0, ""); + +/* + * max. # of frozen process demotions we will allow in our daily cycle. + */ +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_max_freeze_demotions_daily, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_max_frozen_demotions_daily, 0, ""); +/* + * min # of thaws needed by a process to protect it from getting demoted into the IDLE band. + */ +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_thaw_count_demotion_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_thaw_count_demotion_threshold, 0, ""); + +boolean_t memorystatus_freeze_throttle_enabled = TRUE; +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_throttle_enabled, 0, ""); + +/* + * When set to true, this keeps frozen processes in the compressor pool in memory, instead of swapping them out to disk. + * Exposed via the sysctl kern.memorystatus_freeze_to_memory. + */ +boolean_t memorystatus_freeze_to_memory = FALSE; +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_to_memory, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_freeze_to_memory, 0, ""); + +#define VM_PAGES_FOR_ALL_PROCS (2) +/* + * Manual trigger of freeze and thaw for dev / debug kernels only. + */ +static int +sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2) + int error, pid = 0; + proc_t p; + int freezer_error_code = 0; + + if (memorystatus_freeze_enabled == FALSE) { + printf("sysctl_freeze: Freeze is DISABLED\n"); + return ENOTSUP; + } + + error = sysctl_handle_int(oidp, &pid, 0, req); + if (error || !req->newptr) { + return error; + } + + if (pid == VM_PAGES_FOR_ALL_PROCS) { + vm_pageout_anonymous_pages(); + + return 0; + } + + lck_mtx_lock(&freezer_mutex); + + p = proc_find(pid); + if (p != NULL) { + uint32_t purgeable, wired, clean, dirty, shared; + uint32_t max_pages = 0, state = 0; + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + /* + * Freezer backed by the compressor and swap file(s) + * will hold compressed data. + * + * Set the sysctl kern.memorystatus_freeze_to_memory to true to keep compressed data from + * being swapped out to disk. Note that this disables freezer swap support globally, + * not just for the process being frozen. + * + * + * We don't care about the global freezer budget or the process's (min/max) budget here. + * The freeze sysctl is meant to force-freeze a process. + * + * We also don't update any global or process stats on this path, so that the jetsam/ freeze + * logic remains unaffected. The tasks we're performing here are: freeze the process, set the + * P_MEMSTAT_FROZEN bit, and elevate the process to a higher band (if the freezer is active). + */ + max_pages = memorystatus_freeze_pages_max; + } else { + /* + * We only have the compressor without any swap. + */ + max_pages = UINT32_MAX - 1; + } + + proc_list_lock(); + state = p->p_memstat_state; + proc_list_unlock(); + + /* + * The jetsam path also verifies that the process is a suspended App. We don't care about that here. + * We simply ensure that jetsam is not already working on the process and that the process has not + * explicitly disabled freezing. + */ + if (state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED)) { + printf("sysctl_freeze: p_memstat_state check failed, process is%s%s%s\n", + (state & P_MEMSTAT_TERMINATED) ? " terminated" : "", + (state & P_MEMSTAT_LOCKED) ? " locked" : "", + (state & P_MEMSTAT_FREEZE_DISABLED) ? " unfreezable" : ""); + + proc_rele(p); + lck_mtx_unlock(&freezer_mutex); + return EPERM; + } + + error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); + + if (error) { + char reason[128]; + if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { + strlcpy(reason, "too much shared memory", 128); + } + + if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { + strlcpy(reason, "low private-shared pages ratio", 128); + } + + if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { + strlcpy(reason, "no compressor space", 128); + } + + if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { + strlcpy(reason, "no swap space", 128); + } + + printf("sysctl_freeze: task_freeze failed: %s\n", reason); + + if (error == KERN_NO_SPACE) { + /* Make it easy to distinguish between failures due to low compressor/ swap space and other failures. */ + error = ENOSPC; + } else { + error = EIO; + } + } else { + proc_list_lock(); + if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { + p->p_memstat_state |= P_MEMSTAT_FROZEN; + memorystatus_frozen_count++; + } + p->p_memstat_frozen_count++; + + + proc_list_unlock(); + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + /* + * We elevate only if we are going to swap out the data. + */ + error = memorystatus_update_inactive_jetsam_priority_band(pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, + memorystatus_freeze_jetsam_band, TRUE); + + if (error) { + printf("sysctl_freeze: Elevating frozen process to higher jetsam band failed with %d\n", error); + } + } + } + + proc_rele(p); + + lck_mtx_unlock(&freezer_mutex); + return error; + } else { + printf("sysctl_freeze: Invalid process\n"); + } + + + lck_mtx_unlock(&freezer_mutex); + return EINVAL; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_freeze, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorystatus_freeze, "I", ""); + +static int +sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2) + + int error, pid = 0; + proc_t p; + + if (memorystatus_freeze_enabled == FALSE) { + return ENOTSUP; + } + + error = sysctl_handle_int(oidp, &pid, 0, req); + if (error || !req->newptr) { + return error; + } + + if (pid == VM_PAGES_FOR_ALL_PROCS) { + do_fastwake_warmup_all(); + return 0; + } else { + p = proc_find(pid); + if (p != NULL) { + error = task_thaw(p->task); + + if (error) { + error = EIO; + } else { + /* + * task_thaw() succeeded. + * + * We increment memorystatus_frozen_count on the sysctl freeze path. + * And so we need the P_MEMSTAT_FROZEN to decrement the frozen count + * when this process exits. + * + * proc_list_lock(); + * p->p_memstat_state &= ~P_MEMSTAT_FROZEN; + * proc_list_unlock(); + */ + } + proc_rele(p); + return error; + } + } + + return EINVAL; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_thaw, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorystatus_available_pages_thaw, "I", ""); + +typedef struct _global_freezable_status { + boolean_t freeze_pages_threshold_crossed; + boolean_t freeze_eligible_procs_available; + boolean_t freeze_scheduled_in_future; +}global_freezable_status_t; + +typedef struct _proc_freezable_status { + boolean_t freeze_has_memstat_state; + boolean_t freeze_has_pages_min; + int freeze_has_probability; + boolean_t freeze_attempted; + uint32_t p_memstat_state; + uint32_t p_pages; + int p_freeze_error_code; + int p_pid; + char p_name[MAXCOMLEN + 1]; +}proc_freezable_status_t; + +#define MAX_FREEZABLE_PROCESSES 100 + +static int +memorystatus_freezer_get_status(user_addr_t buffer, size_t buffer_size, int32_t *retval) +{ + uint32_t proc_count = 0, i = 0; + global_freezable_status_t *list_head; + proc_freezable_status_t *list_entry; + size_t list_size = 0; + proc_t p; + memstat_bucket_t *bucket; + uint32_t state = 0, pages = 0, entry_count = 0; + boolean_t try_freeze = TRUE; + int error = 0, probability_of_use = 0; + + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE == FALSE) { + return ENOTSUP; + } + + list_size = sizeof(global_freezable_status_t) + (sizeof(proc_freezable_status_t) * MAX_FREEZABLE_PROCESSES); + + if (buffer_size < list_size) { + return EINVAL; + } + + list_head = (global_freezable_status_t*)kalloc(list_size); + if (list_head == NULL) { + return ENOMEM; + } + + memset(list_head, 0, list_size); + + list_size = sizeof(global_freezable_status_t); + + proc_list_lock(); + + uint64_t curr_time = mach_absolute_time(); + + list_head->freeze_pages_threshold_crossed = (memorystatus_available_pages < memorystatus_freeze_threshold); + list_head->freeze_eligible_procs_available = ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold); + list_head->freeze_scheduled_in_future = (curr_time < memorystatus_freezer_thread_next_run_ts); + + list_entry = (proc_freezable_status_t*) ((uintptr_t)list_head + sizeof(global_freezable_status_t)); + + bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + + entry_count = (memorystatus_global_probabilities_size / sizeof(memorystatus_internal_probabilities_t)); + + p = memorystatus_get_first_proc_locked(&i, FALSE); + proc_count++; + + while ((proc_count <= MAX_FREEZABLE_PROCESSES) && + (p) && + (list_size < buffer_size)) { + if (isApp(p) == FALSE) { + p = memorystatus_get_next_proc_locked(&i, p, FALSE); + proc_count++; + continue; + } + + strlcpy(list_entry->p_name, p->p_name, MAXCOMLEN + 1); + + list_entry->p_pid = p->p_pid; + + state = p->p_memstat_state; + + if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) || + !(state & P_MEMSTAT_SUSPENDED)) { + try_freeze = list_entry->freeze_has_memstat_state = FALSE; + } else { + try_freeze = list_entry->freeze_has_memstat_state = TRUE; + } + + list_entry->p_memstat_state = state; + + memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); + if (pages < memorystatus_freeze_pages_min) { + try_freeze = list_entry->freeze_has_pages_min = FALSE; + } else { + list_entry->freeze_has_pages_min = TRUE; + if (try_freeze != FALSE) { + try_freeze = TRUE; + } + } + + list_entry->p_pages = pages; + + if (entry_count) { + uint32_t j = 0; + for (j = 0; j < entry_count; j++) { + if (strncmp(memorystatus_global_probabilities_table[j].proc_name, + p->p_name, + MAXCOMLEN + 1) == 0) { + probability_of_use = memorystatus_global_probabilities_table[j].use_probability; + break; + } + } + + list_entry->freeze_has_probability = probability_of_use; + + if (probability_of_use && try_freeze != FALSE) { + try_freeze = TRUE; + } else { + try_freeze = FALSE; + } + } else { + if (try_freeze != FALSE) { + try_freeze = TRUE; + } + list_entry->freeze_has_probability = -1; + } + + if (try_freeze) { + uint32_t purgeable, wired, clean, dirty, shared; + uint32_t max_pages = 0; + int freezer_error_code = 0; + + error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, TRUE /* eval only */); + + if (error) { + list_entry->p_freeze_error_code = freezer_error_code; + } + + list_entry->freeze_attempted = TRUE; + } + + list_entry++; + + list_size += sizeof(proc_freezable_status_t); + + p = memorystatus_get_next_proc_locked(&i, p, FALSE); + proc_count++; + } + + proc_list_unlock(); + + buffer_size = list_size; + + error = copyout(list_head, buffer, buffer_size); + if (error == 0) { + *retval = buffer_size; + } else { + *retval = 0; + } + + list_size = sizeof(global_freezable_status_t) + (sizeof(proc_freezable_status_t) * MAX_FREEZABLE_PROCESSES); + kfree(list_head, list_size); + + MEMORYSTATUS_DEBUG(1, "memorystatus_freezer_get_status: returning %d (%lu - size)\n", error, (unsigned long)*list_size); + + return error; +} + +static int +memorystatus_freezer_control(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) +{ + int err = ENOTSUP; + + if (flags == FREEZER_CONTROL_GET_STATUS) { + err = memorystatus_freezer_get_status(buffer, buffer_size, retval); + } + + return err; +} + +#endif /* CONFIG_FREEZE */ + +#endif /* DEVELOPMENT || DEBUG */ + +extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation, + void *parameter, + integer_t priority, + thread_t *new_thread); + +#if DEVELOPMENT || DEBUG + +static int +sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2) + int error = 0, pid = 0; + proc_t p; + + error = sysctl_handle_int(oidp, &pid, 0, req); + if (error || !req->newptr) { + return error; + } + + lck_mtx_lock(&disconnect_page_mappings_mutex); + + if (pid == -1) { + vm_pageout_disconnect_all_pages(); + } else { + p = proc_find(pid); + + if (p != NULL) { + error = task_disconnect_page_mappings(p->task); + + proc_rele(p); + + if (error) { + error = EIO; + } + } else { + error = EINVAL; + } + } + lck_mtx_unlock(&disconnect_page_mappings_mutex); + + return error; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I", ""); + +#endif /* DEVELOPMENT || DEBUG */ + + +/* + * Picks the sorting routine for a given jetsam priority band. + * + * Input: + * bucket_index - jetsam priority band to be sorted. + * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h + * Currently sort_order is only meaningful when handling + * coalitions. + * + * Return: + * 0 on success + * non-0 on failure + */ +static int +memorystatus_sort_bucket(unsigned int bucket_index, int sort_order) +{ + int coal_sort_order; + + /* + * Verify the jetsam priority + */ + if (bucket_index >= MEMSTAT_BUCKET_COUNT) { + return EINVAL; + } + +#if DEVELOPMENT || DEBUG + if (sort_order == JETSAM_SORT_DEFAULT) { + coal_sort_order = COALITION_SORT_DEFAULT; + } else { + coal_sort_order = sort_order; /* only used for testing scenarios */ + } +#else + /* Verify default */ + if (sort_order == JETSAM_SORT_DEFAULT) { + coal_sort_order = COALITION_SORT_DEFAULT; + } else { + return EINVAL; + } +#endif + + proc_list_lock(); + + if (memstat_bucket[bucket_index].count == 0) { + proc_list_unlock(); + return 0; + } + + switch (bucket_index) { + case JETSAM_PRIORITY_FOREGROUND: + if (memorystatus_sort_by_largest_coalition_locked(bucket_index, coal_sort_order) == 0) { + /* + * Fall back to per process sorting when zero coalitions are found. + */ + memorystatus_sort_by_largest_process_locked(bucket_index); + } + break; + default: + memorystatus_sort_by_largest_process_locked(bucket_index); + break; + } + proc_list_unlock(); + + return 0; +} + +/* + * Sort processes by size for a single jetsam bucket. + */ + +static void +memorystatus_sort_by_largest_process_locked(unsigned int bucket_index) +{ + proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL; + proc_t next_p = NULL, prev_max_proc = NULL; + uint32_t pages = 0, max_pages = 0; + memstat_bucket_t *current_bucket; + + if (bucket_index >= MEMSTAT_BUCKET_COUNT) { + return; + } + + current_bucket = &memstat_bucket[bucket_index]; + + p = TAILQ_FIRST(¤t_bucket->list); + + while (p) { + memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); + max_pages = pages; + max_proc = p; + prev_max_proc = p; + + while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) { + /* traversing list until we find next largest process */ + p = next_p; + memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); + if (pages > max_pages) { + max_pages = pages; + max_proc = p; + } + } + + if (prev_max_proc != max_proc) { + /* found a larger process, place it in the list */ + TAILQ_REMOVE(¤t_bucket->list, max_proc, p_memstat_list); + if (insert_after_proc == NULL) { + TAILQ_INSERT_HEAD(¤t_bucket->list, max_proc, p_memstat_list); + } else { + TAILQ_INSERT_AFTER(¤t_bucket->list, insert_after_proc, max_proc, p_memstat_list); + } + prev_max_proc = max_proc; + } + + insert_after_proc = max_proc; + + p = TAILQ_NEXT(max_proc, p_memstat_list); + } +} + +static proc_t +memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search) +{ + memstat_bucket_t *current_bucket; + proc_t next_p; + + if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) { + return NULL; + } + + current_bucket = &memstat_bucket[*bucket_index]; + next_p = TAILQ_FIRST(¤t_bucket->list); + if (!next_p && search) { + while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { + current_bucket = &memstat_bucket[*bucket_index]; + next_p = TAILQ_FIRST(¤t_bucket->list); + } + } + + return next_p; +} + +static proc_t +memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search) +{ + memstat_bucket_t *current_bucket; + proc_t next_p; + + if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) { + return NULL; + } + + next_p = TAILQ_NEXT(p, p_memstat_list); + while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { + current_bucket = &memstat_bucket[*bucket_index]; + next_p = TAILQ_FIRST(¤t_bucket->list); + } + + return next_p; +} + +/* + * Structure to hold state for a jetsam thread. + * Typically there should be a single jetsam thread + * unless parallel jetsam is enabled. + */ +struct jetsam_thread_state { + boolean_t inited; /* if the thread is initialized */ + int memorystatus_wakeup; /* wake channel */ + int index; /* jetsam thread index */ + thread_t thread; /* jetsam thread pointer */ +} *jetsam_threads; + +/* Maximum number of jetsam threads allowed */ +#define JETSAM_THREADS_LIMIT 3 + +/* Number of active jetsam threads */ +_Atomic int active_jetsam_threads = 1; + +/* Number of maximum jetsam threads configured */ +int max_jetsam_threads = JETSAM_THREADS_LIMIT; + +/* + * Global switch for enabling fast jetsam. Fast jetsam is + * hooked up via the system_override() system call. It has the + * following effects: + * - Raise the jetsam threshold ("clear-the-deck") + * - Enabled parallel jetsam on eligible devices + */ +int fast_jetsam_enabled = 0; + +/* Routine to find the jetsam state structure for the current jetsam thread */ +static inline struct jetsam_thread_state * +jetsam_current_thread(void) +{ + for (int thr_id = 0; thr_id < max_jetsam_threads; thr_id++) { + if (jetsam_threads[thr_id].thread == current_thread()) { + return &(jetsam_threads[thr_id]); + } + } + panic("jetsam_current_thread() is being called from a non-jetsam thread\n"); + /* Contol should not reach here */ + return NULL; +} + + +__private_extern__ void +memorystatus_init(void) +{ + kern_return_t result; + int i; + +#if CONFIG_FREEZE + memorystatus_freeze_jetsam_band = JETSAM_PRIORITY_UI_SUPPORT; + memorystatus_frozen_processes_max = FREEZE_PROCESSES_MAX; + memorystatus_frozen_shared_mb_max = ((MAX_FROZEN_SHARED_MB_PERCENT * max_task_footprint_mb) / 100); /* 10% of the system wide task limit */ + memorystatus_freeze_shared_mb_per_process_max = (memorystatus_frozen_shared_mb_max / 4); + memorystatus_freeze_pages_min = FREEZE_PAGES_MIN; + memorystatus_freeze_pages_max = FREEZE_PAGES_MAX; + memorystatus_max_frozen_demotions_daily = MAX_FROZEN_PROCESS_DEMOTIONS; + memorystatus_thaw_count_demotion_threshold = MIN_THAW_DEMOTION_THRESHOLD; +#endif + +#if DEVELOPMENT || DEBUG + disconnect_page_mappings_lck_grp_attr = lck_grp_attr_alloc_init(); + disconnect_page_mappings_lck_grp = lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr); + + lck_mtx_init(&disconnect_page_mappings_mutex, disconnect_page_mappings_lck_grp, NULL); + + if (kill_on_no_paging_space == TRUE) { + max_kill_priority = JETSAM_PRIORITY_MAX; + } +#endif + + + /* Init buckets */ + for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) { + TAILQ_INIT(&memstat_bucket[i].list); + memstat_bucket[i].count = 0; + } + memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL); + +#if CONFIG_JETSAM + nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time); + nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time); + + /* Apply overrides */ + PE_get_default("kern.jetsam_delta", &delta_percentage, sizeof(delta_percentage)); + if (delta_percentage == 0) { + delta_percentage = 5; + } + assert(delta_percentage < 100); + PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage, sizeof(critical_threshold_percentage)); + assert(critical_threshold_percentage < 100); + PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage, sizeof(idle_offset_percentage)); + assert(idle_offset_percentage < 100); + PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage, sizeof(pressure_threshold_percentage)); + assert(pressure_threshold_percentage < 100); + PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage, sizeof(freeze_threshold_percentage)); + assert(freeze_threshold_percentage < 100); + + if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy, + sizeof(jetsam_aging_policy))) { + if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy, + sizeof(jetsam_aging_policy))) { + jetsam_aging_policy = kJetsamAgingPolicyLegacy; + } + } + + if (jetsam_aging_policy > kJetsamAgingPolicyMax) { + jetsam_aging_policy = kJetsamAgingPolicyLegacy; + } + + switch (jetsam_aging_policy) { + case kJetsamAgingPolicyNone: + system_procs_aging_band = JETSAM_PRIORITY_IDLE; + applications_aging_band = JETSAM_PRIORITY_IDLE; + break; + + case kJetsamAgingPolicyLegacy: + /* + * Legacy behavior where some daemons get a 10s protection once + * AND only before the first clean->dirty->clean transition before + * going into IDLE band. + */ + system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; + applications_aging_band = JETSAM_PRIORITY_IDLE; + break; + + case kJetsamAgingPolicySysProcsReclaimedFirst: + system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; + applications_aging_band = JETSAM_PRIORITY_AGING_BAND2; + break; + + case kJetsamAgingPolicyAppsReclaimedFirst: + system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2; + applications_aging_band = JETSAM_PRIORITY_AGING_BAND1; + break; + + default: + break; + } + + /* + * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE + * band and must be below it in priority. This is so that we don't have to make + * our 'aging' code worry about a mix of processes, some of which need to age + * and some others that need to stay elevated in the jetsam bands. + */ + assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band); + assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band); + + /* Take snapshots for idle-exit kills by default? First check the boot-arg... */ + if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot))) { + /* ...no boot-arg, so check the device tree */ + PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot)); + } + + memorystatus_delta = delta_percentage * atop_64(max_mem) / 100; + memorystatus_available_pages_critical_idle_offset = idle_offset_percentage * atop_64(max_mem) / 100; + memorystatus_available_pages_critical_base = (critical_threshold_percentage / delta_percentage) * memorystatus_delta; + memorystatus_policy_more_free_offset_pages = (policy_more_free_offset_percentage / delta_percentage) * memorystatus_delta; + + /* Jetsam Loop Detection */ + if (max_mem <= (512 * 1024 * 1024)) { + /* 512 MB devices */ + memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */ + } else { + /* 1GB and larger devices */ + memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */ + } + + memorystatus_jld_enabled = TRUE; + + /* No contention at this point */ + memorystatus_update_levels_locked(FALSE); + +#endif /* CONFIG_JETSAM */ + + memorystatus_jetsam_snapshot_max = maxproc; + + memorystatus_jetsam_snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + + (sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max); + + memorystatus_jetsam_snapshot = + (memorystatus_jetsam_snapshot_t*)kalloc(memorystatus_jetsam_snapshot_size); + if (!memorystatus_jetsam_snapshot) { + panic("Could not allocate memorystatus_jetsam_snapshot"); + } + + memorystatus_jetsam_snapshot_copy = + (memorystatus_jetsam_snapshot_t*)kalloc(memorystatus_jetsam_snapshot_size); + if (!memorystatus_jetsam_snapshot_copy) { + panic("Could not allocate memorystatus_jetsam_snapshot_copy"); + } + + nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout); + + memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t)); + +#if CONFIG_FREEZE + memorystatus_freeze_threshold = (freeze_threshold_percentage / delta_percentage) * memorystatus_delta; +#endif + + /* Check the boot-arg to see if fast jetsam is allowed */ + if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled, sizeof(fast_jetsam_enabled))) { + fast_jetsam_enabled = 0; + } + + /* Check the boot-arg to configure the maximum number of jetsam threads */ + if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads, sizeof(max_jetsam_threads))) { + max_jetsam_threads = JETSAM_THREADS_LIMIT; + } + + /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */ + if (max_jetsam_threads > JETSAM_THREADS_LIMIT) { + max_jetsam_threads = JETSAM_THREADS_LIMIT; + } + + /* For low CPU systems disable fast jetsam mechanism */ + if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { + max_jetsam_threads = 1; + fast_jetsam_enabled = 0; + } + + /* Initialize the jetsam_threads state array */ + jetsam_threads = kalloc(sizeof(struct jetsam_thread_state) * max_jetsam_threads); + + /* Initialize all the jetsam threads */ + for (i = 0; i < max_jetsam_threads; i++) { + result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &jetsam_threads[i].thread); + if (result == KERN_SUCCESS) { + jetsam_threads[i].inited = FALSE; + jetsam_threads[i].index = i; + thread_deallocate(jetsam_threads[i].thread); + } else { + panic("Could not create memorystatus_thread %d", i); + } + } +} + +/* Centralised for the purposes of allowing panic-on-jetsam */ +extern void +vm_run_compactor(void); + +/* + * The jetsam no frills kill call + * Return: 0 on success + * error code on failure (EINVAL...) + */ +static int +jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason) +{ + int error = 0; + error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason); + return error; +} + +/* + * Wrapper for processes exiting with memorystatus details + */ +static boolean_t +memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason) +{ + int error = 0; + __unused pid_t victim_pid = p->p_pid; + + KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START, + victim_pid, cause, vm_page_free_count, 0, 0); + + DTRACE_MEMORYSTATUS3(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause); +#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) + if (memorystatus_jetsam_panic_debug & (1 << cause)) { + panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause); + } +#else +#pragma unused(cause) +#endif + + if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) { + printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p->p_pid, + (*p->p_name ? p->p_name : "unknown"), + memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority, + (uint64_t)memorystatus_available_pages); + } + + /* + * The jetsam_reason (os_reason_t) has enough information about the kill cause. + * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped. + */ + int jetsam_flags = P_LTERM_JETSAM; + switch (cause) { + case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break; + case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break; + case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break; + case kMemorystatusKilledVMCompressorThrashing: + case kMemorystatusKilledVMCompressorSpaceShortage: jetsam_flags |= P_JETSAM_VMTHRASHING; break; + case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break; + case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break; + case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break; + } + error = jetsam_do_kill(p, jetsam_flags, jetsam_reason); + + KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END, + victim_pid, cause, vm_page_free_count, error, 0); + + vm_run_compactor(); + + return error == 0; +} + +/* + * Node manipulation + */ + +static void +memorystatus_check_levels_locked(void) +{ +#if CONFIG_JETSAM + /* Update levels */ + memorystatus_update_levels_locked(TRUE); +#else /* CONFIG_JETSAM */ + /* + * Nothing to do here currently since we update + * memorystatus_available_pages in vm_pressure_response. + */ +#endif /* CONFIG_JETSAM */ +} + +/* + * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work. + * For an application: that means no longer in the FG band + * For a daemon: that means no longer in its 'requested' jetsam priority band + */ + +int +memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, int jetsam_prio, boolean_t effective_now) +{ + int error = 0; + boolean_t enable = FALSE; + proc_t p = NULL; + + if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) { + enable = TRUE; + } else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) { + enable = FALSE; + } else { + return EINVAL; + } + + p = proc_find(pid); + if (p != NULL) { + if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) || + (!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) { + /* + * No change in state. + */ + } else { + proc_list_lock(); + + if (enable) { + p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + + if (effective_now) { + if (p->p_memstat_effectivepriority < jetsam_prio) { + if (memorystatus_highwater_enabled) { + /* + * Process is about to transition from + * inactive --> active + * assign active state + */ + boolean_t is_fatal; + boolean_t use_active = TRUE; + CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); + task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal); + } + memorystatus_update_priority_locked(p, jetsam_prio, FALSE, FALSE); + } + } else { + if (isProcessInAgingBands(p)) { + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); + } + } + } else { + p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + + if (effective_now) { + if (p->p_memstat_effectivepriority == jetsam_prio) { + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); + } + } else { + if (isProcessInAgingBands(p)) { + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); + } + } + } + + proc_list_unlock(); + } + proc_rele(p); + error = 0; + } else { + error = ESRCH; + } + + return error; +} + +static void +memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2) +{ + proc_t p; + uint64_t current_time = 0, idle_delay_time = 0; + int demote_prio_band = 0; + memstat_bucket_t *demotion_bucket; + + MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n"); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0); + + current_time = mach_absolute_time(); + + proc_list_lock(); + + demote_prio_band = JETSAM_PRIORITY_IDLE + 1; + + for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) { + if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band) { + continue; + } + + demotion_bucket = &memstat_bucket[demote_prio_band]; + p = TAILQ_FIRST(&demotion_bucket->list); + + while (p) { + MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p->p_pid); + + assert(p->p_memstat_idledeadline); + + assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS); + + if (current_time >= p->p_memstat_idledeadline) { + if ((isSysProc(p) && + ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/ + task_has_assertions((struct task *)(p->task))) { /* has outstanding assertions which might indicate outstanding work too */ + idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time; + + p->p_memstat_idledeadline += idle_delay_time; + p = TAILQ_NEXT(p, p_memstat_list); + } else { + proc_t next_proc = NULL; + + next_proc = TAILQ_NEXT(p, p_memstat_list); + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true); + + p = next_proc; + continue; + } + } else { + // No further candidates + break; + } + } + } + + memorystatus_reschedule_idle_demotion_locked(); + + proc_list_unlock(); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0); +} + +static void +memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state) +{ + boolean_t present_in_sysprocs_aging_bucket = FALSE; + boolean_t present_in_apps_aging_bucket = FALSE; + uint64_t idle_delay_time = 0; + + if (jetsam_aging_policy == kJetsamAgingPolicyNone) { + return; + } + + if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { + /* + * This process isn't going to be making the trip to the lower bands. + */ + return; + } + + if (isProcessInAgingBands(p)) { + if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) { + assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS); + } + + if (isSysProc(p) && system_procs_aging_band) { + present_in_sysprocs_aging_bucket = TRUE; + } else if (isApp(p) && applications_aging_band) { + present_in_apps_aging_bucket = TRUE; + } + } + + assert(!present_in_sysprocs_aging_bucket); + assert(!present_in_apps_aging_bucket); + + MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n", + p->p_pid, p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)); + + if (isSysProc(p)) { + assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED); + } + + idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time; + + if (set_state) { + p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS; + p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time; + } + + assert(p->p_memstat_idledeadline); + + if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) { + memorystatus_scheduled_idle_demotions_sysprocs++; + } else if (isApp(p) && present_in_apps_aging_bucket == FALSE) { + memorystatus_scheduled_idle_demotions_apps++; + } +} + +static void +memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state) +{ + boolean_t present_in_sysprocs_aging_bucket = FALSE; + boolean_t present_in_apps_aging_bucket = FALSE; + + if (!system_procs_aging_band && !applications_aging_band) { + return; + } + + if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) { + return; + } + + if (isProcessInAgingBands(p)) { + if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) { + assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS); + } + + if (isSysProc(p) && system_procs_aging_band) { + assert(p->p_memstat_effectivepriority == system_procs_aging_band); + assert(p->p_memstat_idledeadline); + present_in_sysprocs_aging_bucket = TRUE; + } else if (isApp(p) && applications_aging_band) { + assert(p->p_memstat_effectivepriority == applications_aging_band); + assert(p->p_memstat_idledeadline); + present_in_apps_aging_bucket = TRUE; + } + } + + MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n", + p->p_pid, clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)); + + + if (clear_state) { + p->p_memstat_idledeadline = 0; + p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS; + } + + if (isSysProc(p) && present_in_sysprocs_aging_bucket == TRUE) { + memorystatus_scheduled_idle_demotions_sysprocs--; + assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0); + } else if (isApp(p) && present_in_apps_aging_bucket == TRUE) { + memorystatus_scheduled_idle_demotions_apps--; + assert(memorystatus_scheduled_idle_demotions_apps >= 0); + } + + assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0); +} + +static void +memorystatus_reschedule_idle_demotion_locked(void) +{ + if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) { + if (memstat_idle_demotion_deadline) { + /* Transitioned 1->0, so cancel next call */ + thread_call_cancel(memorystatus_idle_demotion_call); + memstat_idle_demotion_deadline = 0; + } + } else { + memstat_bucket_t *demotion_bucket; + proc_t p = NULL, p1 = NULL, p2 = NULL; + + if (system_procs_aging_band) { + demotion_bucket = &memstat_bucket[system_procs_aging_band]; + p1 = TAILQ_FIRST(&demotion_bucket->list); + + p = p1; + } + + if (applications_aging_band) { + demotion_bucket = &memstat_bucket[applications_aging_band]; + p2 = TAILQ_FIRST(&demotion_bucket->list); + + if (p1 && p2) { + p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1; + } else { + p = (p1 == NULL) ? p2 : p1; + } + } + + assert(p); + + if (p != NULL) { + assert(p && p->p_memstat_idledeadline); + if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline) { + thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline); + memstat_idle_demotion_deadline = p->p_memstat_idledeadline; + } + } + } +} + +/* + * List manipulation + */ + +int +memorystatus_add(proc_t p, boolean_t locked) +{ + memstat_bucket_t *bucket; + + MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p->p_pid, p->p_memstat_effectivepriority); + + if (!locked) { + proc_list_lock(); + } + + DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority); + + /* Processes marked internal do not have priority tracked */ + if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { + goto exit; + } + + bucket = &memstat_bucket[p->p_memstat_effectivepriority]; + + if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) { + assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1); + } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) { + assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1); + } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { + /* + * Entering the idle band. + * Record idle start time. + */ + p->p_memstat_idle_start = mach_absolute_time(); + } + + TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list); + bucket->count++; + + memorystatus_list_count++; + + memorystatus_check_levels_locked(); + +exit: + if (!locked) { + proc_list_unlock(); + } + + return 0; +} + +/* + * Description: + * Moves a process from one jetsam bucket to another. + * which changes the LRU position of the process. + * + * Monitors transition between buckets and if necessary + * will update cached memory limits accordingly. + * + * skip_demotion_check: + * - if the 'jetsam aging policy' is NOT 'legacy': + * When this flag is TRUE, it means we are going + * to age the ripe processes out of the aging bands and into the + * IDLE band and apply their inactive memory limits. + * + * - if the 'jetsam aging policy' is 'legacy': + * When this flag is TRUE, it might mean the above aging mechanism + * OR + * It might be that we have a process that has used up its 'idle deferral' + * stay that is given to it once per lifetime. And in this case, the process + * won't be going through any aging codepaths. But we still need to apply + * the right inactive limits and so we explicitly set this to TRUE if the + * new priority for the process is the IDLE band. + */ +void +memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check) +{ + memstat_bucket_t *old_bucket, *new_bucket; + + assert(priority < MEMSTAT_BUCKET_COUNT); + + /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */ + if ((p->p_listflag & P_LIST_EXITED) != 0) { + return; + } + + MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n", + (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, head_insert ? "head" : "tail"); + + DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority); + +#if DEVELOPMENT || DEBUG + if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */ + skip_demotion_check == FALSE && /* and it isn't via the path that will set the INACTIVE memlimits */ + (p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */ + ((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */ + ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? (!(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) { /* OR type (fatal vs non-fatal) */ + panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */ + } +#endif /* DEVELOPMENT || DEBUG */ + + old_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; + + if (skip_demotion_check == FALSE) { + if (isSysProc(p)) { + /* + * For system processes, the memorystatus_dirty_* routines take care of adding/removing + * the processes from the aging bands and balancing the demotion counts. + * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute. + */ + + if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { + /* + * 2 types of processes can use the non-standard elevated inactive band: + * - Frozen processes that always land in memorystatus_freeze_jetsam_band + * OR + * - processes that specifically opt-in to the elevated inactive support e.g. docked processes. + */ +#if CONFIG_FREEZE + if (p->p_memstat_state & P_MEMSTAT_FROZEN) { + if (priority <= memorystatus_freeze_jetsam_band) { + priority = memorystatus_freeze_jetsam_band; + } + } else +#endif /* CONFIG_FREEZE */ + { + if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) { + priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; + } + } + assert(!(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS)); + } + } else if (isApp(p)) { + /* + * Check to see if the application is being lowered in jetsam priority. If so, and: + * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band. + * - it is a normal application, then let it age in the aging band if that policy is in effect. + */ + + if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { +#if CONFIG_FREEZE + if (p->p_memstat_state & P_MEMSTAT_FROZEN) { + if (priority <= memorystatus_freeze_jetsam_band) { + priority = memorystatus_freeze_jetsam_band; + } + } else +#endif /* CONFIG_FREEZE */ + { + if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) { + priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; + } + } + } else { + if (applications_aging_band) { + if (p->p_memstat_effectivepriority == applications_aging_band) { + assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1)); + } + + if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && (priority <= applications_aging_band)) { + assert(!(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS)); + priority = applications_aging_band; + memorystatus_schedule_idle_demotion_locked(p, TRUE); + } + } + } + } + } + + if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) { + assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS); + } + + TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list); + old_bucket->count--; + + new_bucket = &memstat_bucket[priority]; + if (head_insert) { + TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list); + } else { + TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); + } + new_bucket->count++; + + if (memorystatus_highwater_enabled) { + boolean_t is_fatal; + boolean_t use_active; + + /* + * If cached limit data is updated, then the limits + * will be enforced by writing to the ledgers. + */ + boolean_t ledger_update_needed = TRUE; + + /* + * Here, we must update the cached memory limit if the task + * is transitioning between: + * active <--> inactive + * FG <--> BG + * but: + * dirty <--> clean is ignored + * + * We bypass non-idle processes that have opted into dirty tracking because + * a move between buckets does not imply a transition between the + * dirty <--> clean state. + */ + + if (p->p_memstat_dirty & P_DIRTY_TRACK) { + if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) { + CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = FALSE; + } else { + ledger_update_needed = FALSE; + } + } else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) { + /* + * inactive --> active + * BG --> FG + * assign active state + */ + CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = TRUE; + } else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) { + /* + * active --> inactive + * FG --> BG + * assign inactive state + */ + CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = FALSE; + } else { + /* + * The transition between jetsam priority buckets apparently did + * not affect active/inactive state. + * This is not unusual... especially during startup when + * processes are getting established in their respective bands. + */ + ledger_update_needed = FALSE; + } + + /* + * Enforce the new limits by writing to the ledger + */ + if (ledger_update_needed) { + task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal); + + MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n", + p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), + (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty, + (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : "")); + } + } + + /* + * Record idle start or idle delta. + */ + if (p->p_memstat_effectivepriority == priority) { + /* + * This process is not transitioning between + * jetsam priority buckets. Do nothing. + */ + } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { + uint64_t now; + /* + * Transitioning out of the idle priority bucket. + * Record idle delta. + */ + assert(p->p_memstat_idle_start != 0); + now = mach_absolute_time(); + if (now > p->p_memstat_idle_start) { + p->p_memstat_idle_delta = now - p->p_memstat_idle_start; + } + + /* + * About to become active and so memory footprint could change. + * So mark it eligible for freeze-considerations next time around. + */ + if (p->p_memstat_state & P_MEMSTAT_FREEZE_IGNORE) { + p->p_memstat_state &= ~P_MEMSTAT_FREEZE_IGNORE; + } + } else if (priority == JETSAM_PRIORITY_IDLE) { + /* + * Transitioning into the idle priority bucket. + * Record idle start. + */ + p->p_memstat_idle_start = mach_absolute_time(); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0); + + p->p_memstat_effectivepriority = priority; + +#if CONFIG_SECLUDED_MEMORY + if (secluded_for_apps && + task_could_use_secluded_mem(p->task)) { + task_set_can_use_secluded_mem( + p->task, + (priority >= JETSAM_PRIORITY_FOREGROUND)); + } +#endif /* CONFIG_SECLUDED_MEMORY */ + + memorystatus_check_levels_locked(); +} + +/* + * + * Description: Update the jetsam priority and memory limit attributes for a given process. + * + * Parameters: + * p init this process's jetsam information. + * priority The jetsam priority band + * user_data user specific data, unused by the kernel + * effective guards against race if process's update already occurred + * update_memlimit When true we know this is the init step via the posix_spawn path. + * + * memlimit_active Value in megabytes; The monitored footprint level while the + * process is active. Exceeding it may result in termination + * based on it's associated fatal flag. + * + * memlimit_active_is_fatal When a process is active and exceeds its memory footprint, + * this describes whether or not it should be immediately fatal. + * + * memlimit_inactive Value in megabytes; The monitored footprint level while the + * process is inactive. Exceeding it may result in termination + * based on it's associated fatal flag. + * + * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint, + * this describes whether or not it should be immediatly fatal. + * + * Returns: 0 Success + * non-0 Failure + */ + +int +memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t effective, boolean_t update_memlimit, + int32_t memlimit_active, boolean_t memlimit_active_is_fatal, + int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal) +{ + int ret; + boolean_t head_insert = false; + + MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, user_data); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0); + + if (priority == -1) { + /* Use as shorthand for default priority */ + priority = JETSAM_PRIORITY_DEFAULT; + } else if ((priority == system_procs_aging_band) || (priority == applications_aging_band)) { + /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */ + priority = JETSAM_PRIORITY_IDLE; + } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) { + /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */ + priority = JETSAM_PRIORITY_IDLE; + head_insert = TRUE; + } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) { + /* Sanity check */ + ret = EINVAL; + goto out; + } + + proc_list_lock(); + + assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); + + if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) { + ret = EALREADY; + proc_list_unlock(); + MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p->p_pid); + goto out; + } + + if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) { + /* + * This could happen when a process calling posix_spawn() is exiting on the jetsam thread. + */ + ret = EBUSY; + proc_list_unlock(); + goto out; + } + + p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED; + p->p_memstat_userdata = user_data; + p->p_memstat_requestedpriority = priority; + + if (update_memlimit) { + boolean_t is_fatal; + boolean_t use_active; + + /* + * Posix_spawn'd processes come through this path to instantiate ledger limits. + * Forked processes do not come through this path, so no ledger limits exist. + * (That's why forked processes can consume unlimited memory.) + */ + + MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n", + p->p_pid, priority, p->p_memstat_dirty, + memlimit_active, (memlimit_active_is_fatal ? "F " : "NF"), + memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF")); + + if (memlimit_active <= 0) { + /* + * This process will have a system_wide task limit when active. + * System_wide task limit is always fatal. + * It's quite common to see non-fatal flag passed in here. + * It's not an error, we just ignore it. + */ + + /* + * For backward compatibility with some unexplained launchd behavior, + * we allow a zero sized limit. But we still enforce system_wide limit + * when written to the ledgers. + */ + + if (memlimit_active < 0) { + memlimit_active = -1; /* enforces system_wide task limit */ + } + memlimit_active_is_fatal = TRUE; + } + + if (memlimit_inactive <= 0) { + /* + * This process will have a system_wide task limit when inactive. + * System_wide task limit is always fatal. + */ + + memlimit_inactive = -1; + memlimit_inactive_is_fatal = TRUE; + } + + /* + * Initialize the active limit variants for this process. + */ + SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal); + + /* + * Initialize the inactive limit variants for this process. + */ + SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal); + + /* + * Initialize the cached limits for target process. + * When the target process is dirty tracked, it's typically + * in a clean state. Non dirty tracked processes are + * typically active (Foreground or above). + * But just in case, we don't make assumptions... + */ + + if (proc_jetsam_state_is_active_locked(p) == TRUE) { + CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = TRUE; + } else { + CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = FALSE; + } + + /* + * Enforce the cached limit by writing to the ledger. + */ + if (memorystatus_highwater_enabled) { + /* apply now */ + task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal); + + MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n", + p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), + (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), priority, p->p_memstat_dirty, + (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : "")); + } + } + + /* + * We can't add to the aging bands buckets here. + * But, we could be removing it from those buckets. + * Check and take appropriate steps if so. + */ + + if (isProcessInAgingBands(p)) { + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); + } else { + if (jetsam_aging_policy == kJetsamAgingPolicyLegacy && priority == JETSAM_PRIORITY_IDLE) { + /* + * Daemons with 'inactive' limits will go through the dirty tracking codepath. + * This path deals with apps that may have 'inactive' limits e.g. WebContent processes. + * If this is the legacy aging policy we explicitly need to apply those limits. If it + * is any other aging policy, then we don't need to worry because all processes + * will go through the aging bands and then the demotion thread will take care to + * move them into the IDLE band and apply the required limits. + */ + memorystatus_update_priority_locked(p, priority, head_insert, TRUE); + } + } + + memorystatus_update_priority_locked(p, priority, head_insert, FALSE); + + proc_list_unlock(); + ret = 0; + +out: + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0); + + return ret; +} + +int +memorystatus_remove(proc_t p, boolean_t locked) +{ + int ret; + memstat_bucket_t *bucket; + boolean_t reschedule = FALSE; + + MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p->p_pid); + + if (!locked) { + proc_list_lock(); + } + + assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); + + bucket = &memstat_bucket[p->p_memstat_effectivepriority]; + + if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) { + assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs); + reschedule = TRUE; + } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) { + assert(bucket->count == memorystatus_scheduled_idle_demotions_apps); + reschedule = TRUE; + } + + /* + * Record idle delta + */ + + if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { + uint64_t now = mach_absolute_time(); + if (now > p->p_memstat_idle_start) { + p->p_memstat_idle_delta = now - p->p_memstat_idle_start; + } + } + + TAILQ_REMOVE(&bucket->list, p, p_memstat_list); + bucket->count--; + + memorystatus_list_count--; + + /* If awaiting demotion to the idle band, clean up */ + if (reschedule) { + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + memorystatus_reschedule_idle_demotion_locked(); + } + + memorystatus_check_levels_locked(); + +#if CONFIG_FREEZE + if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) { + if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { + p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; + memorystatus_refreeze_eligible_count--; + } + + memorystatus_frozen_count--; + memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages; + p->p_memstat_freeze_sharedanon_pages = 0; + } + + if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { + memorystatus_suspended_count--; + } +#endif + + if (!locked) { + proc_list_unlock(); + } + + if (p) { + ret = 0; + } else { + ret = ESRCH; + } + + return ret; +} + +/* + * Validate dirty tracking flags with process state. + * + * Return: + * 0 on success + * non-0 on failure + * + * The proc_list_lock is held by the caller. + */ + +static int +memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol) +{ + /* See that the process isn't marked for termination */ + if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) { + return EBUSY; + } + + /* Idle exit requires that process be tracked */ + if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) && + !(pcontrol & PROC_DIRTY_TRACK)) { + return EINVAL; + } + + /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */ + if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) && + !(pcontrol & PROC_DIRTY_TRACK)) { + return EINVAL; + } + + /* Only one type of DEFER behavior is allowed.*/ + if ((pcontrol & PROC_DIRTY_DEFER) && + (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) { + return EINVAL; + } + + /* Deferral is only relevant if idle exit is specified */ + if (((pcontrol & PROC_DIRTY_DEFER) || + (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) && + !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) { + return EINVAL; + } + + return 0; +} + +static void +memorystatus_update_idle_priority_locked(proc_t p) +{ + int32_t priority; + + MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p->p_pid, p->p_memstat_dirty); + + assert(isSysProc(p)); + + if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) { + priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE; + } else { + priority = p->p_memstat_requestedpriority; + } + + if (priority != p->p_memstat_effectivepriority) { + if ((jetsam_aging_policy == kJetsamAgingPolicyLegacy) && + (priority == JETSAM_PRIORITY_IDLE)) { + /* + * This process is on its way into the IDLE band. The system is + * using 'legacy' jetsam aging policy. That means, this process + * has already used up its idle-deferral aging time that is given + * once per its lifetime. So we need to set the INACTIVE limits + * explicitly because it won't be going through the demotion paths + * that take care to apply the limits appropriately. + */ + + if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { + /* + * This process has the 'elevated inactive jetsam band' attribute. + * So, there will be no trip to IDLE after all. + * Instead, we pin the process in the elevated band, + * where its ACTIVE limits will apply. + */ + + priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; + } + + memorystatus_update_priority_locked(p, priority, false, true); + } else { + memorystatus_update_priority_locked(p, priority, false, false); + } + } +} + +/* + * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle + * (clean). They may also indicate that they support termination when idle, with the result that they are promoted + * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low + * priority idle band when clean (and killed earlier, protecting higher priority procesess). + * + * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by + * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band + * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to + * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle + * band. The deferral can be cleared early by clearing the appropriate flag. + * + * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process + * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be + * re-enabled or the guard state cleared, depending on whether the guard deadline has passed. + */ + +int +memorystatus_dirty_track(proc_t p, uint32_t pcontrol) +{ + unsigned int old_dirty; + boolean_t reschedule = FALSE; + boolean_t already_deferred = FALSE; + boolean_t defer_now = FALSE; + int ret = 0; + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK), + p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0); + + proc_list_lock(); + + if ((p->p_listflag & P_LIST_EXITED) != 0) { + /* + * Process is on its way out. + */ + ret = EBUSY; + goto exit; + } + + if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { + ret = EPERM; + goto exit; + } + + if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) { + /* error */ + goto exit; + } + + old_dirty = p->p_memstat_dirty; + + /* These bits are cumulative, as per */ + if (pcontrol & PROC_DIRTY_TRACK) { + p->p_memstat_dirty |= P_DIRTY_TRACK; + } + + if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) { + p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT; + } + + if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { + p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS; + } + + if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) { + already_deferred = TRUE; + } + + + /* This can be set and cleared exactly once. */ + if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) { + if ((pcontrol & (PROC_DIRTY_DEFER)) && + !(old_dirty & P_DIRTY_DEFER)) { + p->p_memstat_dirty |= P_DIRTY_DEFER; + } + + if ((pcontrol & (PROC_DIRTY_DEFER_ALWAYS)) && + !(old_dirty & P_DIRTY_DEFER_ALWAYS)) { + p->p_memstat_dirty |= P_DIRTY_DEFER_ALWAYS; + } + + defer_now = TRUE; + } + + MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n", + ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N", + defer_now ? "Y" : "N", + p->p_memstat_dirty & P_DIRTY ? "Y" : "N", + p->p_pid); + + /* Kick off or invalidate the idle exit deferment if there's a state transition. */ + if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) { + if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { + if (defer_now && !already_deferred) { + /* + * Request to defer a clean process that's idle-exit enabled + * and not already in the jetsam deferred band. Most likely a + * new launch. + */ + memorystatus_schedule_idle_demotion_locked(p, TRUE); + reschedule = TRUE; + } else if (!defer_now) { + /* + * The process isn't asking for the 'aging' facility. + * Could be that it is: + */ + + if (already_deferred) { + /* + * already in the aging bands. Traditionally, + * some processes have tried to use this to + * opt out of the 'aging' facility. + */ + + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + } else { + /* + * agnostic to the 'aging' facility. In that case, + * we'll go ahead and opt it in because this is likely + * a new launch (clean process, dirty tracking enabled) + */ + + memorystatus_schedule_idle_demotion_locked(p, TRUE); + } + + reschedule = TRUE; + } + } + } else { + /* + * We are trying to operate on a dirty process. Dirty processes have to + * be removed from the deferred band. The question is do we reset the + * deferred state or not? + * + * This could be a legal request like: + * - this process had opted into the 'aging' band + * - but it's now dirty and requests to opt out. + * In this case, we remove the process from the band and reset its + * state too. It'll opt back in properly when needed. + * + * OR, this request could be a user-space bug. E.g.: + * - this process had opted into the 'aging' band when clean + * - and, then issues another request to again put it into the band except + * this time the process is dirty. + * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of + * the deferred band with its state intact. So our request below is no-op. + * But we do it here anyways for coverage. + * + * memorystatus_update_idle_priority_locked() + * single-mindedly treats a dirty process as "cannot be in the aging band". + */ + + if (!defer_now && already_deferred) { + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + reschedule = TRUE; + } else { + boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE; + + memorystatus_invalidate_idle_demotion_locked(p, reset_state); + reschedule = TRUE; + } + } + + memorystatus_update_idle_priority_locked(p); + + if (reschedule) { + memorystatus_reschedule_idle_demotion_locked(); + } + + ret = 0; + +exit: + proc_list_unlock(); + + return ret; +} + +int +memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol) +{ + int ret; + boolean_t kill = false; + boolean_t reschedule = FALSE; + boolean_t was_dirty = FALSE; + boolean_t now_dirty = FALSE; + + MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self, p->p_pid, pcontrol, p->p_memstat_dirty); + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0); + + proc_list_lock(); + + if ((p->p_listflag & P_LIST_EXITED) != 0) { + /* + * Process is on its way out. + */ + ret = EBUSY; + goto exit; + } + + if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { + ret = EPERM; + goto exit; + } + + if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { + was_dirty = TRUE; + } + + if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { + /* Dirty tracking not enabled */ + ret = EINVAL; + } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { + /* + * Process is set to be terminated and we're attempting to mark it dirty. + * Set for termination and marking as clean is OK - see . + */ + ret = EBUSY; + } else { + int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN; + if (pcontrol && !(p->p_memstat_dirty & flag)) { + /* Mark the process as having been dirtied at some point */ + p->p_memstat_dirty |= (flag | P_DIRTY_MARKED); + memorystatus_dirty_count++; + ret = 0; + } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) { + if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) { + /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */ + p->p_memstat_dirty |= P_DIRTY_TERMINATED; + kill = true; + } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { + /* Kill previously terminated processes if set clean */ + kill = true; + } + p->p_memstat_dirty &= ~flag; + memorystatus_dirty_count--; + ret = 0; + } else { + /* Already set */ + ret = EALREADY; + } + } + + if (ret != 0) { + goto exit; + } + + if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { + now_dirty = TRUE; + } + + if ((was_dirty == TRUE && now_dirty == FALSE) || + (was_dirty == FALSE && now_dirty == TRUE)) { + /* Manage idle exit deferral, if applied */ + if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { + /* + * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back + * there once it's clean again. For the legacy case, this only applies if it has some protection window left. + * P_DIRTY_DEFER: one-time protection window given at launch + * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode. + * + * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over + * in that band on it's way to IDLE. + */ + + if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { + /* + * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE" + * + * The process will move from its aging band to its higher requested + * jetsam band. + */ + boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE; + + memorystatus_invalidate_idle_demotion_locked(p, reset_state); + reschedule = TRUE; + } else { + /* + * Process is back from "dirty" to "clean". + */ + + if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) { + if (((p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) == FALSE) && + (mach_absolute_time() >= p->p_memstat_idledeadline)) { + /* + * The process' hasn't enrolled in the "always defer after dirty" + * mode and its deadline has expired. It currently + * does not reside in any of the aging buckets. + * + * It's on its way to the JETSAM_PRIORITY_IDLE + * bucket via memorystatus_update_idle_priority_locked() + * below. + * + * So all we need to do is reset all the state on the + * process that's related to the aging bucket i.e. + * the AGING_IN_PROGRESS flag and the timer deadline. + */ + + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + reschedule = TRUE; + } else { + /* + * Process enrolled in "always stop in deferral band after dirty" OR + * it still has some protection window left and so + * we just re-arm the timer without modifying any + * state on the process iff it still wants into that band. + */ + + if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) { + memorystatus_schedule_idle_demotion_locked(p, TRUE); + reschedule = TRUE; + } else if (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) { + memorystatus_schedule_idle_demotion_locked(p, FALSE); + reschedule = TRUE; + } + } + } else { + memorystatus_schedule_idle_demotion_locked(p, TRUE); + reschedule = TRUE; + } + } + } + + memorystatus_update_idle_priority_locked(p); + + if (memorystatus_highwater_enabled) { + boolean_t ledger_update_needed = TRUE; + boolean_t use_active; + boolean_t is_fatal; + /* + * We are in this path because this process transitioned between + * dirty <--> clean state. Update the cached memory limits. + */ + + if (proc_jetsam_state_is_active_locked(p) == TRUE) { + /* + * process is pinned in elevated band + * or + * process is dirty + */ + CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = TRUE; + ledger_update_needed = TRUE; + } else { + /* + * process is clean...but if it has opted into pressured-exit + * we don't apply the INACTIVE limit till the process has aged + * out and is entering the IDLE band. + * See memorystatus_update_priority_locked() for that. + */ + + if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { + ledger_update_needed = FALSE; + } else { + CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = FALSE; + ledger_update_needed = TRUE; + } + } + + /* + * Enforce the new limits by writing to the ledger. + * + * This is a hot path and holding the proc_list_lock while writing to the ledgers, + * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock. + * We aren't traversing the jetsam bucket list here, so we should be safe. + * See rdar://21394491. + */ + + if (ledger_update_needed && proc_ref_locked(p) == p) { + int ledger_limit; + if (p->p_memstat_memlimit > 0) { + ledger_limit = p->p_memstat_memlimit; + } else { + ledger_limit = -1; + } + proc_list_unlock(); + task_set_phys_footprint_limit_internal(p->task, ledger_limit, NULL, use_active, is_fatal); + proc_list_lock(); + proc_rele_locked(p); + + MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n", + p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), + (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty, + (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : "")); + } + } + + /* If the deferral state changed, reschedule the demotion timer */ + if (reschedule) { + memorystatus_reschedule_idle_demotion_locked(); + } + } + + if (kill) { + if (proc_ref_locked(p) == p) { + proc_list_unlock(); + psignal(p, SIGKILL); + proc_list_lock(); + proc_rele_locked(p); + } + } + +exit: + proc_list_unlock(); + + return ret; +} + +int +memorystatus_dirty_clear(proc_t p, uint32_t pcontrol) +{ + int ret = 0; + + MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p->p_pid, pcontrol, p->p_memstat_dirty); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0); + + proc_list_lock(); + + if ((p->p_listflag & P_LIST_EXITED) != 0) { + /* + * Process is on its way out. + */ + ret = EBUSY; + goto exit; + } + + if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { + ret = EPERM; + goto exit; + } + + if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { + /* Dirty tracking not enabled */ + ret = EINVAL; + goto exit; + } + + if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) == 0) { + ret = EINVAL; + goto exit; + } + + if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { + p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS; + } + + /* This can be set and cleared exactly once. */ + if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) { + if (p->p_memstat_dirty & P_DIRTY_DEFER) { + p->p_memstat_dirty &= ~(P_DIRTY_DEFER); + } + + if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) { + p->p_memstat_dirty &= ~(P_DIRTY_DEFER_ALWAYS); + } + + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + memorystatus_update_idle_priority_locked(p); + memorystatus_reschedule_idle_demotion_locked(); + } + + ret = 0; +exit: + proc_list_unlock(); + + return ret; +} + +int +memorystatus_dirty_get(proc_t p) +{ + int ret = 0; + + proc_list_lock(); + + if (p->p_memstat_dirty & P_DIRTY_TRACK) { + ret |= PROC_DIRTY_TRACKED; + if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { + ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT; + } + if (p->p_memstat_dirty & P_DIRTY) { + ret |= PROC_DIRTY_IS_DIRTY; + } + if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) { + ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS; + } + } + + proc_list_unlock(); + + return ret; +} + +int +memorystatus_on_terminate(proc_t p) +{ + int sig; + + proc_list_lock(); + + p->p_memstat_dirty |= P_DIRTY_TERMINATED; + + if ((p->p_memstat_dirty & (P_DIRTY_TRACK | P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) { + /* Clean; mark as terminated and issue SIGKILL */ + sig = SIGKILL; + } else { + /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */ + sig = SIGTERM; + } + + proc_list_unlock(); + + return sig; +} + +void +memorystatus_on_suspend(proc_t p) +{ +#if CONFIG_FREEZE + uint32_t pages; + memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); +#endif + proc_list_lock(); +#if CONFIG_FREEZE + memorystatus_suspended_count++; +#endif + p->p_memstat_state |= P_MEMSTAT_SUSPENDED; + proc_list_unlock(); +} + +void +memorystatus_on_resume(proc_t p) +{ +#if CONFIG_FREEZE + boolean_t frozen; + pid_t pid; +#endif + + proc_list_lock(); + +#if CONFIG_FREEZE + frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN); + if (frozen) { + /* + * Now that we don't _thaw_ a process completely, + * resuming it (and having some on-demand swapins) + * shouldn't preclude it from being counted as frozen. + * + * memorystatus_frozen_count--; + * + * We preserve the P_MEMSTAT_FROZEN state since the process + * could have state on disk AND so will deserve some protection + * in the jetsam bands. + */ + if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == 0) { + p->p_memstat_state |= P_MEMSTAT_REFREEZE_ELIGIBLE; + memorystatus_refreeze_eligible_count++; + } + p->p_memstat_thaw_count++; + + memorystatus_thaw_count++; + } + + memorystatus_suspended_count--; + + pid = p->p_pid; +#endif + + /* + * P_MEMSTAT_FROZEN will remain unchanged. This used to be: + * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN); + */ + p->p_memstat_state &= ~P_MEMSTAT_SUSPENDED; + + proc_list_unlock(); + +#if CONFIG_FREEZE + if (frozen) { + memorystatus_freeze_entry_t data = { pid, FALSE, 0 }; + memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); + } +#endif +} + +void +memorystatus_on_inactivity(proc_t p) +{ +#pragma unused(p) +#if CONFIG_FREEZE + /* Wake the freeze thread */ + thread_wakeup((event_t)&memorystatus_freeze_wakeup); +#endif +} + +/* + * The proc_list_lock is held by the caller. + */ +static uint32_t +memorystatus_build_state(proc_t p) +{ + uint32_t snapshot_state = 0; + + /* General */ + if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { + snapshot_state |= kMemorystatusSuspended; + } + if (p->p_memstat_state & P_MEMSTAT_FROZEN) { + snapshot_state |= kMemorystatusFrozen; + } + if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { + snapshot_state |= kMemorystatusWasThawed; + } + + /* Tracking */ + if (p->p_memstat_dirty & P_DIRTY_TRACK) { + snapshot_state |= kMemorystatusTracked; + } + if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { + snapshot_state |= kMemorystatusSupportsIdleExit; + } + if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { + snapshot_state |= kMemorystatusDirty; + } + + return snapshot_state; +} + +static boolean_t +kill_idle_exit_proc(void) +{ + proc_t p, victim_p = PROC_NULL; + uint64_t current_time; + boolean_t killed = FALSE; + unsigned int i = 0; + os_reason_t jetsam_reason = OS_REASON_NULL; + + /* Pick next idle exit victim. */ + current_time = mach_absolute_time(); + + jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT); + if (jetsam_reason == OS_REASON_NULL) { + printf("kill_idle_exit_proc: failed to allocate jetsam reason\n"); + } + + proc_list_lock(); + + p = memorystatus_get_first_proc_locked(&i, FALSE); + while (p) { + /* No need to look beyond the idle band */ + if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { + break; + } + + if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT | P_DIRTY_IS_DIRTY | P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) { + if (current_time >= p->p_memstat_idledeadline) { + p->p_memstat_dirty |= P_DIRTY_TERMINATED; + victim_p = proc_ref_locked(p); + break; + } + } + + p = memorystatus_get_next_proc_locked(&i, p, FALSE); + } + + proc_list_unlock(); + + if (victim_p) { + printf("memorystatus: killing_idle_process pid %d [%s]\n", victim_p->p_pid, (*victim_p->p_name ? victim_p->p_name : "unknown")); + killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason); + proc_rele(victim_p); + } else { + os_reason_free(jetsam_reason); + } + + return killed; +} + +static void +memorystatus_thread_wake(void) +{ + int thr_id = 0; + int active_thr = atomic_load(&active_jetsam_threads); + + /* Wakeup all the jetsam threads */ + for (thr_id = 0; thr_id < active_thr; thr_id++) { + thread_wakeup((event_t)&jetsam_threads[thr_id].memorystatus_wakeup); + } +} + +#if CONFIG_JETSAM + +static void +memorystatus_thread_pool_max() +{ + /* Increase the jetsam thread pool to max_jetsam_threads */ + int max_threads = max_jetsam_threads; + printf("Expanding memorystatus pool to %d!\n", max_threads); + atomic_store(&active_jetsam_threads, max_threads); +} + +static void +memorystatus_thread_pool_default() +{ + /* Restore the jetsam thread pool to a single thread */ + printf("Reverting memorystatus pool back to 1\n"); + atomic_store(&active_jetsam_threads, 1); +} + +#endif /* CONFIG_JETSAM */ + +extern void vm_pressure_response(void); + +static int +memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation) +{ + struct jetsam_thread_state *jetsam_thread = jetsam_current_thread(); + + if (interval_ms) { + assert_wait_timeout(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT, interval_ms, NSEC_PER_MSEC); + } else { + assert_wait(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT); + } + + return thread_block(continuation); +} + +static boolean_t +memorystatus_avail_pages_below_pressure(void) +{ +#if CONFIG_EMBEDDED +/* + * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should + * key off of the system having dynamic swap support. With full swap support, + * the system shouldn't really need to worry about various page thresholds. + */ + return memorystatus_available_pages <= memorystatus_available_pages_pressure; +#else /* CONFIG_EMBEDDED */ + return FALSE; +#endif /* CONFIG_EMBEDDED */ +} + +static boolean_t +memorystatus_avail_pages_below_critical(void) +{ +#if CONFIG_EMBEDDED + return memorystatus_available_pages <= memorystatus_available_pages_critical; +#else /* CONFIG_EMBEDDED */ + return FALSE; +#endif /* CONFIG_EMBEDDED */ +} + +static boolean_t +memorystatus_post_snapshot(int32_t priority, uint32_t cause) +{ +#if CONFIG_EMBEDDED +#pragma unused(cause) + /* + * Don't generate logs for steady-state idle-exit kills, + * unless it is overridden for debug or by the device + * tree. + */ + + return (priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot; + +#else /* CONFIG_EMBEDDED */ + /* + * Don't generate logs for steady-state idle-exit kills, + * unless + * - it is overridden for debug or by the device + * tree. + * OR + * - the kill causes are important i.e. not kMemorystatusKilledIdleExit + */ + + boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause)); + return (priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot || snapshot_eligible_kill_cause; +#endif /* CONFIG_EMBEDDED */ +} + +static boolean_t +memorystatus_action_needed(void) +{ +#if CONFIG_EMBEDDED + return is_reason_thrashing(kill_under_pressure_cause) || + is_reason_zone_map_exhaustion(kill_under_pressure_cause) || + memorystatus_available_pages <= memorystatus_available_pages_pressure; +#else /* CONFIG_EMBEDDED */ + return is_reason_thrashing(kill_under_pressure_cause) || + is_reason_zone_map_exhaustion(kill_under_pressure_cause); +#endif /* CONFIG_EMBEDDED */ +} + +#if CONFIG_FREEZE +extern void vm_swap_consider_defragmenting(int); + +/* + * This routine will _jetsam_ all frozen processes + * and reclaim the swap space immediately. + * + * So freeze has to be DISABLED when we call this routine. + */ + +void +memorystatus_disable_freeze(void) +{ + memstat_bucket_t *bucket; + int bucket_count = 0, retries = 0; + boolean_t retval = FALSE, killed = FALSE; + uint32_t errors = 0, errors_over_prev_iteration = 0; + os_reason_t jetsam_reason = 0; + unsigned int band = 0; + proc_t p = PROC_NULL, next_p = PROC_NULL; + + assert(memorystatus_freeze_enabled == FALSE); + + jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_DISK_SPACE_SHORTAGE); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_disable_freeze: failed to allocate jetsam reason\n"); + } + + /* + * Let's relocate all frozen processes into band 8. Demoted frozen processes + * are sitting in band 0 currently and it's possible to have a frozen process + * in the FG band being actively used. We don't reset its frozen state when + * it is resumed because it has state on disk. + * + * We choose to do this relocation rather than implement a new 'kill frozen' + * process function for these reasons: + * - duplication of code: too many kill functions exist and we need to rework them better. + * - disk-space-shortage kills are rare + * - not having the 'real' jetsam band at time of the this frozen kill won't preclude us + * from answering any imp. questions re. jetsam policy/effectiveness. + * + * This is essentially what memorystatus_update_inactive_jetsam_priority_band() does while + * avoiding the application of memory limits. + */ + +again: + proc_list_lock(); + + band = JETSAM_PRIORITY_IDLE; + p = PROC_NULL; + next_p = PROC_NULL; + + next_p = memorystatus_get_first_proc_locked(&band, TRUE); + while (next_p) { + p = next_p; + next_p = memorystatus_get_next_proc_locked(&band, p, TRUE); + + if (p->p_memstat_effectivepriority > JETSAM_PRIORITY_FOREGROUND) { + break; + } + + if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { + continue; + } + + if (p->p_memstat_state & P_MEMSTAT_ERROR) { + p->p_memstat_state &= ~P_MEMSTAT_ERROR; + } + + if (p->p_memstat_effectivepriority == memorystatus_freeze_jetsam_band) { + continue; + } + + /* + * We explicitly add this flag here so the process looks like a normal + * frozen process i.e. P_MEMSTAT_FROZEN and P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND. + * We don't bother with assigning the 'active' memory + * limits at this point because we are going to be killing it soon below. + */ + p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + + memorystatus_update_priority_locked(p, memorystatus_freeze_jetsam_band, FALSE, TRUE); + } + + bucket = &memstat_bucket[memorystatus_freeze_jetsam_band]; + bucket_count = bucket->count; + proc_list_unlock(); + + /* + * Bucket count is already stale at this point. But, we don't expect + * freezing to continue since we have already disabled the freeze functionality. + * However, an existing freeze might be in progress. So we might miss that process + * in the first go-around. We hope to catch it in the next. + */ + + errors_over_prev_iteration = 0; + while (bucket_count) { + bucket_count--; + + /* + * memorystatus_kill_elevated_process() drops a reference, + * so take another one so we can continue to use this exit reason + * even after it returns. + */ + + os_reason_ref(jetsam_reason); + retval = memorystatus_kill_elevated_process( + kMemorystatusKilledDiskSpaceShortage, + jetsam_reason, + memorystatus_freeze_jetsam_band, + 0, /* the iteration of aggressive jetsam..ignored here */ + &errors); + + if (errors > 0) { + printf("memorystatus_disable_freeze: memorystatus_kill_elevated_process returned %d error(s)\n", errors); + errors_over_prev_iteration += errors; + errors = 0; + } + + if (retval == 0) { + /* + * No frozen processes left to kill. + */ + break; + } + + killed = TRUE; + } + + proc_list_lock(); + + if (memorystatus_frozen_count) { + /* + * A frozen process snuck in and so + * go back around to kill it. That + * process may have been resumed and + * put into the FG band too. So we + * have to do the relocation again. + */ + assert(memorystatus_freeze_enabled == FALSE); + + retries++; + if (retries < 3) { + proc_list_unlock(); + goto again; + } +#if DEVELOPMENT || DEBUG + panic("memorystatus_disable_freeze: Failed to kill all frozen processes, memorystatus_frozen_count = %d, errors = %d", + memorystatus_frozen_count, errors_over_prev_iteration); +#endif /* DEVELOPMENT || DEBUG */ + } + proc_list_unlock(); + + os_reason_free(jetsam_reason); + + if (killed) { + vm_swap_consider_defragmenting(VM_SWAP_FLAGS_FORCE_DEFRAG | VM_SWAP_FLAGS_FORCE_RECLAIM); + + proc_list_lock(); + size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + + sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); + uint64_t timestamp_now = mach_absolute_time(); + memorystatus_jetsam_snapshot->notification_time = timestamp_now; + memorystatus_jetsam_snapshot->js_gencount++; + if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || + timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { + proc_list_unlock(); + int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); + if (!ret) { + proc_list_lock(); + memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; + proc_list_unlock(); + } + } else { + proc_list_unlock(); + } + } + + return; +} +#endif /* CONFIG_FREEZE */ + +static boolean_t +memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, boolean_t *post_snapshot, __unused boolean_t *is_critical) +{ + boolean_t purged = FALSE; + boolean_t killed = memorystatus_kill_hiwat_proc(errors, &purged); + + if (killed) { + *hwm_kill = *hwm_kill + 1; + *post_snapshot = TRUE; + return TRUE; + } else { + if (purged == FALSE) { + /* couldn't purge and couldn't kill */ + memorystatus_hwm_candidates = FALSE; + } + } + +#if CONFIG_JETSAM + /* No highwater processes to kill. Continue or stop for now? */ + if (!is_reason_thrashing(kill_under_pressure_cause) && + !is_reason_zone_map_exhaustion(kill_under_pressure_cause) && + (memorystatus_available_pages > memorystatus_available_pages_critical)) { + /* + * We are _not_ out of pressure but we are above the critical threshold and there's: + * - no compressor thrashing + * - enough zone memory + * - no more HWM processes left. + * For now, don't kill any other processes. + */ + + if (*hwm_kill == 0) { + memorystatus_thread_wasted_wakeup++; + } + + *is_critical = FALSE; + + return TRUE; + } +#endif /* CONFIG_JETSAM */ + + return FALSE; +} + +static boolean_t +memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, boolean_t *corpse_list_purged, boolean_t *post_snapshot) +{ + if (memorystatus_jld_enabled == TRUE) { + boolean_t killed; + uint32_t errors = 0; + + /* Jetsam Loop Detection - locals */ + memstat_bucket_t *bucket; + int jld_bucket_count = 0; + struct timeval jld_now_tstamp = {0, 0}; + uint64_t jld_now_msecs = 0; + int elevated_bucket_count = 0; + + /* Jetsam Loop Detection - statics */ + static uint64_t jld_timestamp_msecs = 0; + static int jld_idle_kill_candidates = 0; /* Number of available processes in band 0,1 at start */ + static int jld_eval_aggressive_count = 0; /* Bumps the max priority in aggressive loop */ + static int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT; + /* + * Jetsam Loop Detection: attempt to detect + * rapid daemon relaunches in the lower bands. + */ + + microuptime(&jld_now_tstamp); + + /* + * Ignore usecs in this calculation. + * msecs granularity is close enough. + */ + jld_now_msecs = (jld_now_tstamp.tv_sec * 1000); + + proc_list_lock(); + switch (jetsam_aging_policy) { + case kJetsamAgingPolicyLegacy: + bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + jld_bucket_count = bucket->count; + bucket = &memstat_bucket[JETSAM_PRIORITY_AGING_BAND1]; + jld_bucket_count += bucket->count; + break; + case kJetsamAgingPolicySysProcsReclaimedFirst: + case kJetsamAgingPolicyAppsReclaimedFirst: + bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + jld_bucket_count = bucket->count; + bucket = &memstat_bucket[system_procs_aging_band]; + jld_bucket_count += bucket->count; + bucket = &memstat_bucket[applications_aging_band]; + jld_bucket_count += bucket->count; + break; + case kJetsamAgingPolicyNone: + default: + bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + jld_bucket_count = bucket->count; + break; + } + + bucket = &memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE]; + elevated_bucket_count = bucket->count; + + proc_list_unlock(); + + /* + * memorystatus_jld_eval_period_msecs is a tunable + * memorystatus_jld_eval_aggressive_count is a tunable + * memorystatus_jld_eval_aggressive_priority_band_max is a tunable + */ + if ((jld_bucket_count == 0) || + (jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) { + /* + * Refresh evaluation parameters + */ + jld_timestamp_msecs = jld_now_msecs; + jld_idle_kill_candidates = jld_bucket_count; + *jld_idle_kills = 0; + jld_eval_aggressive_count = 0; + jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT; + } + + if (*jld_idle_kills > jld_idle_kill_candidates) { + jld_eval_aggressive_count++; + +#if DEVELOPMENT || DEBUG + printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n", + jld_eval_aggressive_count, + jld_timestamp_msecs, + jld_now_msecs); + printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n", + jld_eval_aggressive_count, + jld_idle_kill_candidates, + *jld_idle_kills); +#endif /* DEVELOPMENT || DEBUG */ + + if ((jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) && + (total_corpses_count() > 0) && (*corpse_list_purged == FALSE)) { + /* + * If we reach this aggressive cycle, corpses might be causing memory pressure. + * So, in an effort to avoid jetsams in the FG band, we will attempt to purge + * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT. + */ + task_purge_all_corpses(); + *corpse_list_purged = TRUE; + } else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) { + /* + * Bump up the jetsam priority limit (eg: the bucket index) + * Enforce bucket index sanity. + */ + if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) || + (memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) { + /* + * Do nothing. Stick with the default level. + */ + } else { + jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max; + } + } + + /* Visit elevated processes first */ + while (elevated_bucket_count) { + elevated_bucket_count--; + + /* + * memorystatus_kill_elevated_process() drops a reference, + * so take another one so we can continue to use this exit reason + * even after it returns. + */ + + os_reason_ref(jetsam_reason); + killed = memorystatus_kill_elevated_process( + cause, + jetsam_reason, + JETSAM_PRIORITY_ELEVATED_INACTIVE, + jld_eval_aggressive_count, + &errors); + + if (killed) { + *post_snapshot = TRUE; + if (memorystatus_avail_pages_below_pressure()) { + /* + * Still under pressure. + * Find another pinned processes. + */ + continue; + } else { + return TRUE; + } + } else { + /* + * No pinned processes left to kill. + * Abandon elevated band. + */ + break; + } + } + + /* + * memorystatus_kill_top_process_aggressive() allocates its own + * jetsam_reason so the kMemorystatusKilledProcThrashing cause + * is consistent throughout the aggressive march. + */ + killed = memorystatus_kill_top_process_aggressive( + kMemorystatusKilledProcThrashing, + jld_eval_aggressive_count, + jld_priority_band_max, + &errors); + + if (killed) { + /* Always generate logs after aggressive kill */ + *post_snapshot = TRUE; + *jld_idle_kills = 0; + return TRUE; + } + } + + return FALSE; + } + + return FALSE; +} + + +static void +memorystatus_thread(void *param __unused, wait_result_t wr __unused) +{ + boolean_t post_snapshot = FALSE; + uint32_t errors = 0; + uint32_t hwm_kill = 0; + boolean_t sort_flag = TRUE; + boolean_t corpse_list_purged = FALSE; + int jld_idle_kills = 0; + struct jetsam_thread_state *jetsam_thread = jetsam_current_thread(); + + if (jetsam_thread->inited == FALSE) { + /* + * It's the first time the thread has run, so just mark the thread as privileged and block. + * This avoids a spurious pass with unset variables, as set out in . + */ + + char name[32]; + thread_wire(host_priv_self(), current_thread(), TRUE); + snprintf(name, 32, "VM_memorystatus_%d", jetsam_thread->index + 1); + + if (jetsam_thread->index == 0) { + if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { + thread_vm_bind_group_add(); + } + } + thread_set_thread_name(current_thread(), name); + jetsam_thread->inited = TRUE; + memorystatus_thread_block(0, memorystatus_thread); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START, + memorystatus_available_pages, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count, 0); + + /* + * Jetsam aware version. + * + * The VM pressure notification thread is working it's way through clients in parallel. + * + * So, while the pressure notification thread is targeting processes in order of + * increasing jetsam priority, we can hopefully reduce / stop it's work by killing + * any processes that have exceeded their highwater mark. + * + * If we run out of HWM processes and our available pages drops below the critical threshold, then, + * we target the least recently used process in order of increasing jetsam priority (exception: the FG band). + */ + while (memorystatus_action_needed()) { + boolean_t killed; + int32_t priority; + uint32_t cause; + uint64_t jetsam_reason_code = JETSAM_REASON_INVALID; + os_reason_t jetsam_reason = OS_REASON_NULL; + + cause = kill_under_pressure_cause; + switch (cause) { + case kMemorystatusKilledFCThrashing: + jetsam_reason_code = JETSAM_REASON_MEMORY_FCTHRASHING; + break; + case kMemorystatusKilledVMCompressorThrashing: + jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING; + break; + case kMemorystatusKilledVMCompressorSpaceShortage: + jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE; + break; + case kMemorystatusKilledZoneMapExhaustion: + jetsam_reason_code = JETSAM_REASON_ZONE_MAP_EXHAUSTION; + break; + case kMemorystatusKilledVMPageShortage: + /* falls through */ + default: + jetsam_reason_code = JETSAM_REASON_MEMORY_VMPAGESHORTAGE; + cause = kMemorystatusKilledVMPageShortage; + break; + } + + /* Highwater */ + boolean_t is_critical = TRUE; + if (memorystatus_act_on_hiwat_processes(&errors, &hwm_kill, &post_snapshot, &is_critical)) { + if (is_critical == FALSE) { + /* + * For now, don't kill any other processes. + */ + break; + } else { + goto done; + } + } + + jetsam_reason = os_reason_create(OS_REASON_JETSAM, jetsam_reason_code); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_thread: failed to allocate jetsam reason\n"); + } + + if (memorystatus_act_aggressive(cause, jetsam_reason, &jld_idle_kills, &corpse_list_purged, &post_snapshot)) { + goto done; + } + + /* + * memorystatus_kill_top_process() drops a reference, + * so take another one so we can continue to use this exit reason + * even after it returns + */ + os_reason_ref(jetsam_reason); + + /* LRU */ + killed = memorystatus_kill_top_process(TRUE, sort_flag, cause, jetsam_reason, &priority, &errors); + sort_flag = FALSE; + + if (killed) { + if (memorystatus_post_snapshot(priority, cause) == TRUE) { + post_snapshot = TRUE; + } + + /* Jetsam Loop Detection */ + if (memorystatus_jld_enabled == TRUE) { + if ((priority == JETSAM_PRIORITY_IDLE) || (priority == system_procs_aging_band) || (priority == applications_aging_band)) { + jld_idle_kills++; + } else { + /* + * We've reached into bands beyond idle deferred. + * We make no attempt to monitor them + */ + } + } + + if ((priority >= JETSAM_PRIORITY_UI_SUPPORT) && (total_corpses_count() > 0) && (corpse_list_purged == FALSE)) { + /* + * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT + * then we attempt to relieve pressure by purging corpse memory. + */ + task_purge_all_corpses(); + corpse_list_purged = TRUE; + } + goto done; + } + + if (memorystatus_avail_pages_below_critical()) { + /* + * Still under pressure and unable to kill a process - purge corpse memory + */ + if (total_corpses_count() > 0) { + task_purge_all_corpses(); + corpse_list_purged = TRUE; + } + + if (memorystatus_avail_pages_below_critical()) { + /* + * Still under pressure and unable to kill a process - panic + */ + panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages); + } + } + +done: + + /* + * We do not want to over-kill when thrashing has been detected. + * To avoid that, we reset the flag here and notify the + * compressor. + */ + if (is_reason_thrashing(kill_under_pressure_cause)) { + kill_under_pressure_cause = 0; +#if CONFIG_JETSAM + vm_thrashing_jetsam_done(); +#endif /* CONFIG_JETSAM */ + } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause)) { + kill_under_pressure_cause = 0; + } + + os_reason_free(jetsam_reason); + } + + kill_under_pressure_cause = 0; + + if (errors) { + memorystatus_clear_errors(); + } + + if (post_snapshot) { + proc_list_lock(); + size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + + sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); + uint64_t timestamp_now = mach_absolute_time(); + memorystatus_jetsam_snapshot->notification_time = timestamp_now; + memorystatus_jetsam_snapshot->js_gencount++; + if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || + timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { + proc_list_unlock(); + int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); + if (!ret) { + proc_list_lock(); + memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; + proc_list_unlock(); + } + } else { + proc_list_unlock(); + } + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END, + memorystatus_available_pages, 0, 0, 0, 0); + + memorystatus_thread_block(0, memorystatus_thread); +} + +/* + * Returns TRUE: + * when an idle-exitable proc was killed + * Returns FALSE: + * when there are no more idle-exitable procs found + * when the attempt to kill an idle-exitable proc failed + */ +boolean_t +memorystatus_idle_exit_from_VM(void) +{ + /* + * This routine should no longer be needed since we are + * now using jetsam bands on all platforms and so will deal + * with IDLE processes within the memorystatus thread itself. + * + * But we still use it because we observed that macos systems + * started heavy compression/swapping with a bunch of + * idle-exitable processes alive and doing nothing. We decided + * to rather kill those processes than start swapping earlier. + */ + + return kill_idle_exit_proc(); +} + +/* + * Callback invoked when allowable physical memory footprint exceeded + * (dirty pages + IOKit mappings) + * + * This is invoked for both advisory, non-fatal per-task high watermarks, + * as well as the fatal task memory limits. + */ +void +memorystatus_on_ledger_footprint_exceeded(boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal) +{ + os_reason_t jetsam_reason = OS_REASON_NULL; + + proc_t p = current_proc(); + +#if VM_PRESSURE_EVENTS + if (warning == TRUE) { + /* + * This is a warning path which implies that the current process is close, but has + * not yet exceeded its per-process memory limit. + */ + if (memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) { + /* Print warning, since it's possible that task has not registered for pressure notifications */ + os_log(OS_LOG_DEFAULT, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p->p_pid); + } + return; + } +#endif /* VM_PRESSURE_EVENTS */ + + if (memlimit_is_fatal) { + /* + * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task + * has violated either the system-wide per-task memory limit OR its own task limit. + */ + jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT); + if (jetsam_reason == NULL) { + printf("task_exceeded footprint: failed to allocate jetsam reason\n"); + } else if (corpse_for_fatal_memkill != 0 && proc_send_synchronous_EXC_RESOURCE(p) == FALSE) { + /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */ + jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; + } + + if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) { + printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n"); + } + } else { + /* + * HWM offender exists. Done without locks or synchronization. + * See comment near its declaration for more details. + */ + memorystatus_hwm_candidates = TRUE; + +#if VM_PRESSURE_EVENTS + /* + * The current process is not in the warning path. + * This path implies the current process has exceeded a non-fatal (soft) memory limit. + * Failure to send note is ignored here. + */ + (void)memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */); + +#endif /* VM_PRESSURE_EVENTS */ + } +} + +void +memorystatus_log_exception(const int max_footprint_mb, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal) +{ + proc_t p = current_proc(); + + /* + * The limit violation is logged here, but only once per process per limit. + * Soft memory limit is a non-fatal high-water-mark + * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit. + */ + + os_log_with_startup_serial(OS_LOG_DEFAULT, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n", + (*p->p_name ? p->p_name : "unknown"), p->p_pid, (memlimit_is_active ? "Active" : "Inactive"), + (memlimit_is_fatal ? "Hard" : "Soft"), max_footprint_mb, + (memlimit_is_fatal ? "fatal" : "non-fatal")); + + return; +} + + +/* + * Description: + * Evaluates process state to determine which limit + * should be applied (active vs. inactive limit). + * + * Processes that have the 'elevated inactive jetsam band' attribute + * are first evaluated based on their current priority band. + * presently elevated ==> active + * + * Processes that opt into dirty tracking are evaluated + * based on clean vs dirty state. + * dirty ==> active + * clean ==> inactive + * + * Process that do not opt into dirty tracking are + * evalulated based on priority level. + * Foreground or above ==> active + * Below Foreground ==> inactive + * + * Return: TRUE if active + * False if inactive + */ + +static boolean_t +proc_jetsam_state_is_active_locked(proc_t p) +{ + if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) && + (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) { + /* + * process has the 'elevated inactive jetsam band' attribute + * and process is present in the elevated band + * implies active state + */ + return TRUE; + } else if (p->p_memstat_dirty & P_DIRTY_TRACK) { + /* + * process has opted into dirty tracking + * active state is based on dirty vs. clean + */ + if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { + /* + * process is dirty + * implies active state + */ + return TRUE; + } else { + /* + * process is clean + * implies inactive state + */ + return FALSE; + } + } else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) { + /* + * process is Foreground or higher + * implies active state + */ + return TRUE; + } else { + /* + * process found below Foreground + * implies inactive state + */ + return FALSE; + } +} + +static boolean_t +memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) +{ + boolean_t res; + + uint32_t errors = 0; + + if (victim_pid == -1) { + /* No pid, so kill first process */ + res = memorystatus_kill_top_process(TRUE, TRUE, cause, jetsam_reason, NULL, &errors); + } else { + res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason); + } + + if (errors) { + memorystatus_clear_errors(); + } + + if (res == TRUE) { + /* Fire off snapshot notification */ + proc_list_lock(); + size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + + sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count; + uint64_t timestamp_now = mach_absolute_time(); + memorystatus_jetsam_snapshot->notification_time = timestamp_now; + if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || + timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { + proc_list_unlock(); + int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); + if (!ret) { + proc_list_lock(); + memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; + proc_list_unlock(); + } + } else { + proc_list_unlock(); + } + } + + return res; +} + +/* + * Jetsam a specific process. + */ +static boolean_t +memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) +{ + boolean_t killed; + proc_t p; + uint64_t killtime = 0; + clock_sec_t tv_sec; + clock_usec_t tv_usec; + uint32_t tv_msec; + + /* TODO - add a victim queue and push this into the main jetsam thread */ + + p = proc_find(victim_pid); + if (!p) { + os_reason_free(jetsam_reason); + return FALSE; + } + + proc_list_lock(); + + if (memorystatus_jetsam_snapshot_count == 0) { + memorystatus_init_jetsam_snapshot_locked(NULL, 0); + } + + killtime = mach_absolute_time(); + absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); + tv_msec = tv_usec / 1000; + + memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); + + proc_list_unlock(); + + os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n", + (unsigned long)tv_sec, tv_msec, victim_pid, (*p->p_name ? p->p_name : "unknown"), + memorystatus_kill_cause_name[cause], p->p_memstat_effectivepriority, (uint64_t)memorystatus_available_pages); + + killed = memorystatus_do_kill(p, cause, jetsam_reason); + proc_rele(p); + + return killed; +} + + +/* + * Toggle the P_MEMSTAT_TERMINATED state. + * Takes the proc_list_lock. + */ +void +proc_memstat_terminated(proc_t p, boolean_t set) +{ +#if DEVELOPMENT || DEBUG + if (p) { + proc_list_lock(); + if (set == TRUE) { + p->p_memstat_state |= P_MEMSTAT_TERMINATED; + } else { + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + } + proc_list_unlock(); + } +#else +#pragma unused(p, set) + /* + * do nothing + */ +#endif /* DEVELOPMENT || DEBUG */ + return; +} + + +#if CONFIG_JETSAM +/* + * This is invoked when cpulimits have been exceeded while in fatal mode. + * The jetsam_flags do not apply as those are for memory related kills. + * We call this routine so that the offending process is killed with + * a non-zero exit status. + */ +void +jetsam_on_ledger_cpulimit_exceeded(void) +{ + int retval = 0; + int jetsam_flags = 0; /* make it obvious */ + proc_t p = current_proc(); + os_reason_t jetsam_reason = OS_REASON_NULL; + + printf("task_exceeded_cpulimit: killing pid %d [%s]\n", + p->p_pid, (*p->p_name ? p->p_name : "(unknown)")); + + jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT); + if (jetsam_reason == OS_REASON_NULL) { + printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n"); + } + + retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason); + + if (retval) { + printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n"); + } +} + +#endif /* CONFIG_JETSAM */ + +static void +memorystatus_get_task_memory_region_count(task_t task, uint64_t *count) +{ + assert(task); + assert(count); + + *count = get_task_memory_region_count(task); +} + + +#define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000 +#define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000 + +#if DEVELOPMENT || DEBUG + +/* + * Sysctl only used to test memorystatus_allowed_vm_map_fork() path. + * set a new pidwatch value + * or + * get the current pidwatch value + * + * The pidwatch_val starts out with a PID to watch for in the map_fork path. + * Its value is: + * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork. + * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork. + * - set to -1ull if the map_fork() is aborted for other reasons. + */ + +uint64_t memorystatus_vm_map_fork_pidwatch_val = 0; + +static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS { +#pragma unused(oidp, arg1, arg2) + + uint64_t new_value = 0; + uint64_t old_value = 0; + int error = 0; + + /* + * The pid is held in the low 32 bits. + * The 'allowed' flags are in the upper 32 bits. + */ + old_value = memorystatus_vm_map_fork_pidwatch_val; + + error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL); + + if (error || !req->newptr) { + /* + * No new value passed in. + */ + return error; + } + + /* + * A new pid was passed in via req->newptr. + * Ignore any attempt to set the higher order bits. + */ + memorystatus_vm_map_fork_pidwatch_val = new_value & 0xFFFFFFFF; + printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value, new_value); + + return error; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_map_fork_pidwatch, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch, "Q", "get/set pid watched for in vm_map_fork"); + + +/* + * Record if a watched process fails to qualify for a vm_map_fork(). + */ +void +memorystatus_abort_vm_map_fork(task_t task) +{ + if (memorystatus_vm_map_fork_pidwatch_val != 0) { + proc_t p = get_bsdtask_info(task); + if (p != NULL && memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid) { + memorystatus_vm_map_fork_pidwatch_val = -1ull; + } + } +} + +static void +set_vm_map_fork_pidwatch(task_t task, uint64_t x) +{ + if (memorystatus_vm_map_fork_pidwatch_val != 0) { + proc_t p = get_bsdtask_info(task); + if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid)) { + memorystatus_vm_map_fork_pidwatch_val |= x; + } + } +} + +#else /* DEVELOPMENT || DEBUG */ + + +static void +set_vm_map_fork_pidwatch(task_t task, uint64_t x) +{ +#pragma unused(task) +#pragma unused(x) +} + +#endif /* DEVELOPMENT || DEBUG */ + +/* + * Called during EXC_RESOURCE handling when a process exceeds a soft + * memory limit. This is the corpse fork path and here we decide if + * vm_map_fork will be allowed when creating the corpse. + * The task being considered is suspended. + * + * By default, a vm_map_fork is allowed to proceed. + * + * A few simple policy assumptions: + * Desktop platform is not considered in this path. + * The vm_map_fork is always allowed. + * + * If the device has a zero system-wide task limit, + * then the vm_map_fork is allowed. + * + * And if a process's memory footprint calculates less + * than or equal to half of the system-wide task limit, + * then the vm_map_fork is allowed. This calculation + * is based on the assumption that a process can + * munch memory up to the system-wide task limit. + */ +boolean_t +memorystatus_allowed_vm_map_fork(task_t task) +{ + boolean_t is_allowed = TRUE; /* default */ + +#if CONFIG_EMBEDDED + + uint64_t footprint_in_bytes; + uint64_t max_allowed_bytes; + + if (max_task_footprint_mb == 0) { + set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED); + return is_allowed; + } + + footprint_in_bytes = get_task_phys_footprint(task); + + /* + * Maximum is 1/4 of the system-wide task limit. + */ + max_allowed_bytes = ((uint64_t)max_task_footprint_mb * 1024 * 1024) >> 2; + + if (footprint_in_bytes > max_allowed_bytes) { + printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes, max_allowed_bytes); + set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED); + return !is_allowed; + } +#endif /* CONFIG_EMBEDDED */ + + set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED); + return is_allowed; +} + +static void +memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages) +{ + assert(task); + assert(footprint); + + uint64_t pages; + + pages = (get_task_phys_footprint(task) / PAGE_SIZE_64); + assert(((uint32_t)pages) == pages); + *footprint = (uint32_t)pages; + + if (max_footprint_lifetime) { + pages = (get_task_phys_footprint_lifetime_max(task) / PAGE_SIZE_64); + assert(((uint32_t)pages) == pages); + *max_footprint_lifetime = (uint32_t)pages; + } + if (purgeable_pages) { + pages = (get_task_purgeable_size(task) / PAGE_SIZE_64); + assert(((uint32_t)pages) == pages); + *purgeable_pages = (uint32_t)pages; + } +} + +static void +memorystatus_get_task_phys_footprint_page_counts(task_t task, + uint64_t *internal_pages, uint64_t *internal_compressed_pages, + uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages, + uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages, + uint64_t *iokit_mapped_pages, uint64_t *page_table_pages) +{ + assert(task); + + if (internal_pages) { + *internal_pages = (get_task_internal(task) / PAGE_SIZE_64); + } + + if (internal_compressed_pages) { + *internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64); + } + + if (purgeable_nonvolatile_pages) { + *purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64); + } + + if (purgeable_nonvolatile_compressed_pages) { + *purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64); + } + + if (alternate_accounting_pages) { + *alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64); + } + + if (alternate_accounting_compressed_pages) { + *alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64); + } + + if (iokit_mapped_pages) { + *iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64); + } + + if (page_table_pages) { + *page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64); + } +} + +/* + * This routine only acts on the global jetsam event snapshot. + * Updating the process's entry can race when the memorystatus_thread + * has chosen to kill a process that is racing to exit on another core. + */ +static void +memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime) +{ + memorystatus_jetsam_snapshot_entry_t *entry = NULL; + memorystatus_jetsam_snapshot_t *snapshot = NULL; + memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL; + + unsigned int i; + + LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); + + if (memorystatus_jetsam_snapshot_count == 0) { + /* + * No active snapshot. + * Nothing to do. + */ + return; + } + + /* + * Sanity check as this routine should only be called + * from a jetsam kill path. + */ + assert(kill_cause != 0 && killtime != 0); + + snapshot = memorystatus_jetsam_snapshot; + snapshot_list = memorystatus_jetsam_snapshot->entries; + + for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) { + if (snapshot_list[i].pid == p->p_pid) { + entry = &snapshot_list[i]; + + if (entry->killed || entry->jse_killtime) { + /* + * We apparently raced on the exit path + * for this process, as it's snapshot entry + * has already recorded a kill. + */ + assert(entry->killed && entry->jse_killtime); + break; + } + + /* + * Update the entry we just found in the snapshot. + */ + + entry->killed = kill_cause; + entry->jse_killtime = killtime; + entry->jse_gencount = snapshot->js_gencount; + entry->jse_idle_delta = p->p_memstat_idle_delta; +#if CONFIG_FREEZE + entry->jse_thaw_count = p->p_memstat_thaw_count; +#else /* CONFIG_FREEZE */ + entry->jse_thaw_count = 0; +#endif /* CONFIG_FREEZE */ + + /* + * If a process has moved between bands since snapshot was + * initialized, then likely these fields changed too. + */ + if (entry->priority != p->p_memstat_effectivepriority) { + strlcpy(entry->name, p->p_name, sizeof(entry->name)); + entry->priority = p->p_memstat_effectivepriority; + entry->state = memorystatus_build_state(p); + entry->user_data = p->p_memstat_userdata; + entry->fds = p->p_fd->fd_nfiles; + } + + /* + * Always update the page counts on a kill. + */ + + uint32_t pages = 0; + uint32_t max_pages_lifetime = 0; + uint32_t purgeable_pages = 0; + + memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages); + entry->pages = (uint64_t)pages; + entry->max_pages_lifetime = (uint64_t)max_pages_lifetime; + entry->purgeable_pages = (uint64_t)purgeable_pages; + + uint64_t internal_pages = 0; + uint64_t internal_compressed_pages = 0; + uint64_t purgeable_nonvolatile_pages = 0; + uint64_t purgeable_nonvolatile_compressed_pages = 0; + uint64_t alternate_accounting_pages = 0; + uint64_t alternate_accounting_compressed_pages = 0; + uint64_t iokit_mapped_pages = 0; + uint64_t page_table_pages = 0; + + memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages, + &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages, + &alternate_accounting_pages, &alternate_accounting_compressed_pages, + &iokit_mapped_pages, &page_table_pages); + + entry->jse_internal_pages = internal_pages; + entry->jse_internal_compressed_pages = internal_compressed_pages; + entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages; + entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages; + entry->jse_alternate_accounting_pages = alternate_accounting_pages; + entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages; + entry->jse_iokit_mapped_pages = iokit_mapped_pages; + entry->jse_page_table_pages = page_table_pages; + + uint64_t region_count = 0; + memorystatus_get_task_memory_region_count(p->task, ®ion_count); + entry->jse_memory_region_count = region_count; + + goto exit; + } + } + + if (entry == NULL) { + /* + * The entry was not found in the snapshot, so the process must have + * launched after the snapshot was initialized. + * Let's try to append the new entry. + */ + if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) { + /* + * A populated snapshot buffer exists + * and there is room to init a new entry. + */ + assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count); + + unsigned int next = memorystatus_jetsam_snapshot_count; + + if (memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[next], (snapshot->js_gencount)) == TRUE) { + entry = &snapshot_list[next]; + entry->killed = kill_cause; + entry->jse_killtime = killtime; + + snapshot->entry_count = ++next; + memorystatus_jetsam_snapshot_count = next; + + if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) { + /* + * We just used the last slot in the snapshot buffer. + * We only want to log it once... so we do it here + * when we notice we've hit the max. + */ + printf("memorystatus: WARNING snapshot buffer is full, count %d\n", + memorystatus_jetsam_snapshot_count); + } + } + } + } + +exit: + if (entry == NULL) { + /* + * If we reach here, the snapshot buffer could not be updated. + * Most likely, the buffer is full, in which case we would have + * logged a warning in the previous call. + * + * For now, we will stop appending snapshot entries. + * When the buffer is consumed, the snapshot state will reset. + */ + + MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n", + p->p_pid, p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count); + } + + return; +} + +#if CONFIG_JETSAM +void +memorystatus_pages_update(unsigned int pages_avail) +{ + memorystatus_available_pages = pages_avail; + +#if VM_PRESSURE_EVENTS + /* + * Since memorystatus_available_pages changes, we should + * re-evaluate the pressure levels on the system and + * check if we need to wake the pressure thread. + * We also update memorystatus_level in that routine. + */ + vm_pressure_response(); + + if (memorystatus_available_pages <= memorystatus_available_pages_pressure) { + if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) { + memorystatus_thread_wake(); + } + } +#if CONFIG_FREEZE + /* + * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect + * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this + * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here + * will result in the "mutex with preemption disabled" panic. + */ + + if (memorystatus_freeze_thread_should_run() == TRUE) { + /* + * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process). + * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here. + */ + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + thread_wakeup((event_t)&memorystatus_freeze_wakeup); + } + } +#endif /* CONFIG_FREEZE */ + +#else /* VM_PRESSURE_EVENTS */ + + boolean_t critical, delta; + + if (!memorystatus_delta) { + return; + } + + critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE; + delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta)) + || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE; + + if (critical || delta) { + unsigned int total_pages; + + total_pages = (unsigned int) atop_64(max_mem); +#if CONFIG_SECLUDED_MEMORY + total_pages -= vm_page_secluded_count; +#endif /* CONFIG_SECLUDED_MEMORY */ + memorystatus_level = memorystatus_available_pages * 100 / total_pages; + memorystatus_thread_wake(); + } +#endif /* VM_PRESSURE_EVENTS */ +} +#endif /* CONFIG_JETSAM */ + +static boolean_t +memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount) +{ + clock_sec_t tv_sec; + clock_usec_t tv_usec; + uint32_t pages = 0; + uint32_t max_pages_lifetime = 0; + uint32_t purgeable_pages = 0; + uint64_t internal_pages = 0; + uint64_t internal_compressed_pages = 0; + uint64_t purgeable_nonvolatile_pages = 0; + uint64_t purgeable_nonvolatile_compressed_pages = 0; + uint64_t alternate_accounting_pages = 0; + uint64_t alternate_accounting_compressed_pages = 0; + uint64_t iokit_mapped_pages = 0; + uint64_t page_table_pages = 0; + uint64_t region_count = 0; + uint64_t cids[COALITION_NUM_TYPES]; + + memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t)); + + entry->pid = p->p_pid; + strlcpy(&entry->name[0], p->p_name, sizeof(entry->name)); + entry->priority = p->p_memstat_effectivepriority; + + memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages); + entry->pages = (uint64_t)pages; + entry->max_pages_lifetime = (uint64_t)max_pages_lifetime; + entry->purgeable_pages = (uint64_t)purgeable_pages; + + memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages, + &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages, + &alternate_accounting_pages, &alternate_accounting_compressed_pages, + &iokit_mapped_pages, &page_table_pages); + + entry->jse_internal_pages = internal_pages; + entry->jse_internal_compressed_pages = internal_compressed_pages; + entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages; + entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages; + entry->jse_alternate_accounting_pages = alternate_accounting_pages; + entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages; + entry->jse_iokit_mapped_pages = iokit_mapped_pages; + entry->jse_page_table_pages = page_table_pages; + + memorystatus_get_task_memory_region_count(p->task, ®ion_count); + entry->jse_memory_region_count = region_count; + + entry->state = memorystatus_build_state(p); + entry->user_data = p->p_memstat_userdata; + memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid)); + entry->fds = p->p_fd->fd_nfiles; + + absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec); + entry->cpu_time.tv_sec = (int64_t)tv_sec; + entry->cpu_time.tv_usec = (int64_t)tv_usec; + + assert(p->p_stats != NULL); + entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */ + entry->jse_killtime = 0; /* abstime jetsam chose to kill process */ + entry->killed = 0; /* the jetsam kill cause */ + entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */ + + entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */ + +#if CONFIG_FREEZE + entry->jse_thaw_count = p->p_memstat_thaw_count; +#else /* CONFIG_FREEZE */ + entry->jse_thaw_count = 0; +#endif /* CONFIG_FREEZE */ + + proc_coalitionids(p, cids); + entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM]; + + return TRUE; +} + +static void +memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot) +{ + kern_return_t kr = KERN_SUCCESS; + mach_msg_type_number_t count = HOST_VM_INFO64_COUNT; + vm_statistics64_data_t vm_stat; + + if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count)) != KERN_SUCCESS) { + printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr); + memset(&snapshot->stats, 0, sizeof(snapshot->stats)); + } else { + snapshot->stats.free_pages = vm_stat.free_count; + snapshot->stats.active_pages = vm_stat.active_count; + snapshot->stats.inactive_pages = vm_stat.inactive_count; + snapshot->stats.throttled_pages = vm_stat.throttled_count; + snapshot->stats.purgeable_pages = vm_stat.purgeable_count; + snapshot->stats.wired_pages = vm_stat.wire_count; + + snapshot->stats.speculative_pages = vm_stat.speculative_count; + snapshot->stats.filebacked_pages = vm_stat.external_page_count; + snapshot->stats.anonymous_pages = vm_stat.internal_page_count; + snapshot->stats.compressions = vm_stat.compressions; + snapshot->stats.decompressions = vm_stat.decompressions; + snapshot->stats.compressor_pages = vm_stat.compressor_page_count; + snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor; + } + + get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity); + get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name), + &snapshot->stats.largest_zone_size); +} + +/* + * Collect vm statistics at boot. + * Called only once (see kern_exec.c) + * Data can be consumed at any time. + */ +void +memorystatus_init_at_boot_snapshot() +{ + memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot); + memorystatus_at_boot_snapshot.entry_count = 0; + memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */ + memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time(); +} + +static void +memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count ) +{ + proc_t p, next_p; + unsigned int b = 0, i = 0; + + memorystatus_jetsam_snapshot_t *snapshot = NULL; + memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL; + unsigned int snapshot_max = 0; + + LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); + + if (od_snapshot) { + /* + * This is an on_demand snapshot + */ + snapshot = od_snapshot; + snapshot_list = od_snapshot->entries; + snapshot_max = ods_list_count; + } else { + /* + * This is a jetsam event snapshot + */ + snapshot = memorystatus_jetsam_snapshot; + snapshot_list = memorystatus_jetsam_snapshot->entries; + snapshot_max = memorystatus_jetsam_snapshot_max; + } + + /* + * Init the snapshot header information + */ + memorystatus_init_snapshot_vmstats(snapshot); + snapshot->snapshot_time = mach_absolute_time(); + snapshot->notification_time = 0; + snapshot->js_gencount = 0; + + next_p = memorystatus_get_first_proc_locked(&b, TRUE); + while (next_p) { + p = next_p; + next_p = memorystatus_get_next_proc_locked(&b, p, TRUE); + + if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) { + continue; + } + + MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", + p->p_pid, + p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7], + p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]); + + if (++i == snapshot_max) { + break; + } + } + + snapshot->entry_count = i; + + if (!od_snapshot) { + /* update the system buffer count */ + memorystatus_jetsam_snapshot_count = i; + } +} + +#if DEVELOPMENT || DEBUG + +#if CONFIG_JETSAM +static int +memorystatus_cmd_set_panic_bits(user_addr_t buffer, uint32_t buffer_size) +{ + int ret; + memorystatus_jetsam_panic_options_t debug; + + if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) { + return EINVAL; + } + + ret = copyin(buffer, &debug, buffer_size); + if (ret) { + return ret; + } + + /* Panic bits match kMemorystatusKilled* enum */ + memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask); + + /* Copyout new value */ + debug.data = memorystatus_jetsam_panic_debug; + ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t)); + + return ret; +} +#endif /* CONFIG_JETSAM */ + +/* + * Triggers a sort_order on a specified jetsam priority band. + * This is for testing only, used to force a path through the sort + * function. + */ +static int +memorystatus_cmd_test_jetsam_sort(int priority, int sort_order) +{ + int error = 0; + + unsigned int bucket_index = 0; + + if (priority == -1) { + /* Use as shorthand for default priority */ + bucket_index = JETSAM_PRIORITY_DEFAULT; + } else { + bucket_index = (unsigned int)priority; + } + + error = memorystatus_sort_bucket(bucket_index, sort_order); + + return error; +} + +#endif /* DEVELOPMENT || DEBUG */ + +/* + * Prepare the process to be killed (set state, update snapshot) and kill it. + */ +static uint64_t memorystatus_purge_before_jetsam_success = 0; + +static boolean_t +memorystatus_kill_proc(proc_t p, uint32_t cause, os_reason_t jetsam_reason, boolean_t *killed) +{ + pid_t aPid = 0; + uint32_t aPid_ep = 0; + + uint64_t killtime = 0; + clock_sec_t tv_sec; + clock_usec_t tv_usec; + uint32_t tv_msec; + boolean_t retval = FALSE; + uint64_t num_pages_purged = 0; + + aPid = p->p_pid; + aPid_ep = p->p_memstat_effectivepriority; + + if (cause != kMemorystatusKilledVnodes && cause != kMemorystatusKilledZoneMapExhaustion) { + /* + * Genuine memory pressure and not other (vnode/zone) resource exhaustion. + */ + boolean_t success = FALSE; + + networking_memstatus_callout(p, cause); + num_pages_purged = vm_purgeable_purge_task_owned(p->task); + + if (num_pages_purged) { + /* + * We actually purged something and so let's + * check if we need to continue with the kill. + */ + if (cause == kMemorystatusKilledHiwat) { + uint64_t footprint_in_bytes = get_task_phys_footprint(p->task); + uint64_t memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */ + success = (footprint_in_bytes <= memlimit_in_bytes); + } else { + success = (memorystatus_avail_pages_below_pressure() == FALSE); + } + + if (success) { + memorystatus_purge_before_jetsam_success++; + + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: purged %llu pages from pid %d [%s] and avoided %s\n", + num_pages_purged, aPid, (*p->p_name ? p->p_name : "unknown"), memorystatus_kill_cause_name[cause]); + + *killed = FALSE; + + return TRUE; + } + } + } + +#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) + MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n", + (memorystatus_jetsam_policy & kPolicyDiagnoseActive) ? "suspending": "killing", + aPid, (*p->p_name ? p->p_name : "unknown"), + (footprint_in_bytes / (1024ULL * 1024ULL)), /* converted bytes to MB */ + p->p_memstat_memlimit); +#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ + + killtime = mach_absolute_time(); + absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); + tv_msec = tv_usec / 1000; + +#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) + if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { + if (cause == kMemorystatusKilledHiwat) { + MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] for diagnosis - memorystatus_available_pages: %d\n", + aPid, (*p->p_name ? p->p_name: "(unknown)"), memorystatus_available_pages); + } else { + int activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; + if (activeProcess) { + MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memorystatus_available_pages: %d\n", + aPid, (*p->p_name ? p->p_name: "(unknown)"), memorystatus_available_pages); + + if (memorystatus_jetsam_policy & kPolicyDiagnoseFirst) { + jetsam_diagnostic_suspended_one_active_proc = 1; + printf("jetsam: returning after suspending first active proc - %d\n", aPid); + } + } + } + + proc_list_lock(); + /* This diagnostic code is going away soon. Ignore the kMemorystatusInvalid cause here. */ + memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusInvalid, killtime); + proc_list_unlock(); + + p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED; + + if (p) { + task_suspend(p->task); + *killed = TRUE; + } + } else +#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ + { + proc_list_lock(); + memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); + proc_list_unlock(); + + char kill_reason_string[128]; + + if (cause == kMemorystatusKilledHiwat) { + strlcpy(kill_reason_string, "killing_highwater_process", 128); + } else { + if (aPid_ep == JETSAM_PRIORITY_IDLE) { + strlcpy(kill_reason_string, "killing_idle_process", 128); + } else { + strlcpy(kill_reason_string, "killing_top_process", 128); + } + } + + os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n", + (unsigned long)tv_sec, tv_msec, kill_reason_string, + aPid, (*p->p_name ? p->p_name : "unknown"), + memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); + + /* + * memorystatus_do_kill drops a reference, so take another one so we can + * continue to use this exit reason even after memorystatus_do_kill() + * returns + */ + os_reason_ref(jetsam_reason); + + retval = memorystatus_do_kill(p, cause, jetsam_reason); + + *killed = retval; + } + + return retval; +} + +/* + * Jetsam the first process in the queue. + */ +static boolean_t +memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, + int32_t *priority, uint32_t *errors) +{ + pid_t aPid; + proc_t p = PROC_NULL, next_p = PROC_NULL; + boolean_t new_snapshot = FALSE, force_new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE; + unsigned int i = 0; + uint32_t aPid_ep; + int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE; + +#ifndef CONFIG_FREEZE +#pragma unused(any) +#endif + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, + memorystatus_available_pages, 0, 0, 0, 0); + + +#if CONFIG_JETSAM + if (sort_flag == TRUE) { + (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT); + } + + local_max_kill_prio = max_kill_priority; + + force_new_snapshot = FALSE; + +#else /* CONFIG_JETSAM */ + + if (sort_flag == TRUE) { + (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT); + } + + /* + * On macos, we currently only have 2 reasons to be here: + * + * kMemorystatusKilledZoneMapExhaustion + * AND + * kMemorystatusKilledVMCompressorSpaceShortage + * + * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider + * any and all processes as eligible kill candidates since we need to avoid a panic. + * + * Since this function can be called async. it is harder to toggle the max_kill_priority + * value before and after a call. And so we use this local variable to set the upper band + * on the eligible kill bands. + */ + if (cause == kMemorystatusKilledZoneMapExhaustion) { + local_max_kill_prio = JETSAM_PRIORITY_MAX; + } else { + local_max_kill_prio = max_kill_priority; + } + + /* + * And, because we are here under extreme circumstances, we force a snapshot even for + * IDLE kills. + */ + force_new_snapshot = TRUE; + +#endif /* CONFIG_JETSAM */ + + proc_list_lock(); + + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) { +#if DEVELOPMENT || DEBUG + int procSuspendedForDiagnosis; +#endif /* DEVELOPMENT || DEBUG */ + + p = next_p; + next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); + +#if DEVELOPMENT || DEBUG + procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; +#endif /* DEVELOPMENT || DEBUG */ + + aPid = p->p_pid; + aPid_ep = p->p_memstat_effectivepriority; + + if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { + continue; /* with lock held */ + } + +#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) + if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { + printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid); + continue; + } +#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ + + if (cause == kMemorystatusKilledVnodes) { + /* + * If the system runs out of vnodes, we systematically jetsam + * processes in hopes of stumbling onto a vnode gain that helps + * the system recover. The process that happens to trigger + * this path has no known relationship to the vnode shortage. + * Deadlock avoidance: attempt to safeguard the caller. + */ + + if (p == current_proc()) { + /* do not jetsam the current process */ + continue; + } + } + +#if CONFIG_FREEZE + boolean_t skip; + boolean_t reclaim_proc = !(p->p_memstat_state & P_MEMSTAT_LOCKED); + if (any || reclaim_proc) { + skip = FALSE; + } else { + skip = TRUE; + } + + if (skip) { + continue; + } else +#endif + { + if (proc_ref_locked(p) == p) { + /* + * Mark as terminated so that if exit1() indicates success, but the process (for example) + * is blocked in task_exception_notify(), it'll be skipped if encountered again - see + * . This is cheaper than examining P_LEXIT, which requires the + * acquisition of the proc lock. + */ + p->p_memstat_state |= P_MEMSTAT_TERMINATED; + } else { + /* + * We need to restart the search again because + * proc_ref_locked _can_ drop the proc_list lock + * and we could have lost our stored next_p via + * an exit() on another core. + */ + i = 0; + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + continue; + } + + /* + * Capture a snapshot if none exists and: + * - we are forcing a new snapshot creation, either because: + * - on a particular platform we need these snapshots every time, OR + * - a boot-arg/embedded device tree property has been set. + * - priority was not requested (this is something other than an ambient kill) + * - the priority was requested *and* the targeted process is not at idle priority + */ + if ((memorystatus_jetsam_snapshot_count == 0) && + (force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) { + memorystatus_init_jetsam_snapshot_locked(NULL, 0); + new_snapshot = TRUE; + } + + proc_list_unlock(); + + freed_mem = memorystatus_kill_proc(p, cause, jetsam_reason, &killed); /* purged and/or killed 'p' */ + /* Success? */ + if (freed_mem) { + if (killed) { + if (priority) { + *priority = aPid_ep; + } + } else { + /* purged */ + proc_list_lock(); + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + proc_list_unlock(); + } + proc_rele(p); + goto exit; + } + + /* + * Failure - first unwind the state, + * then fall through to restart the search. + */ + proc_list_lock(); + proc_rele_locked(p); + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + p->p_memstat_state |= P_MEMSTAT_ERROR; + *errors += 1; + + i = 0; + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + } + } + + proc_list_unlock(); + +exit: + os_reason_free(jetsam_reason); + + /* Clear snapshot if freshly captured and no target was found */ + if (new_snapshot && !killed) { + proc_list_lock(); + memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; + proc_list_unlock(); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, + memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); + + return killed; +} + +/* + * Jetsam aggressively + */ +static boolean_t +memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, + int32_t priority_max, uint32_t *errors) +{ + pid_t aPid; + proc_t p = PROC_NULL, next_p = PROC_NULL; + boolean_t new_snapshot = FALSE, killed = FALSE; + int kill_count = 0; + unsigned int i = 0; + int32_t aPid_ep = 0; + unsigned int memorystatus_level_snapshot = 0; + uint64_t killtime = 0; + clock_sec_t tv_sec; + clock_usec_t tv_usec; + uint32_t tv_msec; + os_reason_t jetsam_reason = OS_REASON_NULL; + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, + memorystatus_available_pages, priority_max, 0, 0, 0); + + memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT); + + jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_top_process_aggressive: failed to allocate exit reason\n"); + } + + proc_list_lock(); + + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + while (next_p) { +#if DEVELOPMENT || DEBUG + int activeProcess; + int procSuspendedForDiagnosis; +#endif /* DEVELOPMENT || DEBUG */ + + if (((next_p->p_listflag & P_LIST_EXITED) != 0) || + ((unsigned int)(next_p->p_memstat_effectivepriority) != i)) { + /* + * We have raced with next_p running on another core. + * It may be exiting or it may have moved to a different + * jetsam priority band. This means we have lost our + * place in line while traversing the jetsam list. We + * attempt to recover by rewinding to the beginning of the band + * we were already traversing. By doing this, we do not guarantee + * that no process escapes this aggressive march, but we can make + * skipping an entire range of processes less likely. (PR-21069019) + */ + + MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n", + aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown"), next_p->p_pid); + + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + continue; + } + + p = next_p; + next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); + + if (p->p_memstat_effectivepriority > priority_max) { + /* + * Bail out of this killing spree if we have + * reached beyond the priority_max jetsam band. + * That is, we kill up to and through the + * priority_max jetsam band. + */ + proc_list_unlock(); + goto exit; + } + +#if DEVELOPMENT || DEBUG + activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; + procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; +#endif /* DEVELOPMENT || DEBUG */ + + aPid = p->p_pid; + aPid_ep = p->p_memstat_effectivepriority; + + if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { + continue; + } + +#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) + if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { + printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid); + continue; + } +#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ + + /* + * Capture a snapshot if none exists. + */ + if (memorystatus_jetsam_snapshot_count == 0) { + memorystatus_init_jetsam_snapshot_locked(NULL, 0); + new_snapshot = TRUE; + } + + /* + * Mark as terminated so that if exit1() indicates success, but the process (for example) + * is blocked in task_exception_notify(), it'll be skipped if encountered again - see + * . This is cheaper than examining P_LEXIT, which requires the + * acquisition of the proc lock. + */ + p->p_memstat_state |= P_MEMSTAT_TERMINATED; + + killtime = mach_absolute_time(); + absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); + tv_msec = tv_usec / 1000; + + /* Shift queue, update stats */ + memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); + + /* + * In order to kill the target process, we will drop the proc_list_lock. + * To guaranteee that p and next_p don't disappear out from under the lock, + * we must take a ref on both. + * If we cannot get a reference, then it's likely we've raced with + * that process exiting on another core. + */ + if (proc_ref_locked(p) == p) { + if (next_p) { + while (next_p && (proc_ref_locked(next_p) != next_p)) { + proc_t temp_p; + + /* + * We must have raced with next_p exiting on another core. + * Recover by getting the next eligible process in the band. + */ + + MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n", + aggr_count, next_p->p_pid, (*next_p->p_name ? next_p->p_name : "(unknown)")); + + temp_p = next_p; + next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE); + } + } + proc_list_unlock(); + + printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n", + (unsigned long)tv_sec, tv_msec, + ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"), + aggr_count, aPid, (*p->p_name ? p->p_name : "unknown"), + memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); + + memorystatus_level_snapshot = memorystatus_level; + + /* + * memorystatus_do_kill() drops a reference, so take another one so we can + * continue to use this exit reason even after memorystatus_do_kill() + * returns. + */ + os_reason_ref(jetsam_reason); + killed = memorystatus_do_kill(p, cause, jetsam_reason); + + /* Success? */ + if (killed) { + proc_rele(p); + kill_count++; + p = NULL; + killed = FALSE; + + /* + * Continue the killing spree. + */ + proc_list_lock(); + if (next_p) { + proc_rele_locked(next_p); + } + + if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) { + if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) { +#if DEVELOPMENT || DEBUG + printf("Disabling Lenient mode after one-time deployment.\n"); +#endif /* DEVELOPMENT || DEBUG */ + memorystatus_aggressive_jetsam_lenient = FALSE; + break; + } + } + + continue; + } + + /* + * Failure - first unwind the state, + * then fall through to restart the search. + */ + proc_list_lock(); + proc_rele_locked(p); + if (next_p) { + proc_rele_locked(next_p); + } + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + p->p_memstat_state |= P_MEMSTAT_ERROR; + *errors += 1; + p = NULL; + } + + /* + * Failure - restart the search at the beginning of + * the band we were already traversing. + * + * We might have raced with "p" exiting on another core, resulting in no + * ref on "p". Or, we may have failed to kill "p". + * + * Either way, we fall thru to here, leaving the proc in the + * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state. + * + * And, we hold the the proc_list_lock at this point. + */ + + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + } + + proc_list_unlock(); + +exit: + os_reason_free(jetsam_reason); + + /* Clear snapshot if freshly captured and no target was found */ + if (new_snapshot && (kill_count == 0)) { + proc_list_lock(); + memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; + proc_list_unlock(); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, + memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0); + + if (kill_count > 0) { + return TRUE; + } else { + return FALSE; + } +} + +static boolean_t +memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged) +{ + pid_t aPid = 0; + proc_t p = PROC_NULL, next_p = PROC_NULL; + boolean_t new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE; + unsigned int i = 0; + uint32_t aPid_ep; + os_reason_t jetsam_reason = OS_REASON_NULL; + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START, + memorystatus_available_pages, 0, 0, 0, 0); + + jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n"); + } + + proc_list_lock(); + + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + while (next_p) { + uint64_t footprint_in_bytes = 0; + uint64_t memlimit_in_bytes = 0; + boolean_t skip = 0; + + p = next_p; + next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); + + aPid = p->p_pid; + aPid_ep = p->p_memstat_effectivepriority; + + if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { + continue; + } + + /* skip if no limit set */ + if (p->p_memstat_memlimit <= 0) { + continue; + } + + footprint_in_bytes = get_task_phys_footprint(p->task); + memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */ + skip = (footprint_in_bytes <= memlimit_in_bytes); + +#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) + if (!skip && (memorystatus_jetsam_policy & kPolicyDiagnoseActive)) { + if (p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED) { + continue; + } + } +#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ + +#if CONFIG_FREEZE + if (!skip) { + if (p->p_memstat_state & P_MEMSTAT_LOCKED) { + skip = TRUE; + } else { + skip = FALSE; + } + } +#endif + + if (skip) { + continue; + } else { + if (memorystatus_jetsam_snapshot_count == 0) { + memorystatus_init_jetsam_snapshot_locked(NULL, 0); + new_snapshot = TRUE; + } + + if (proc_ref_locked(p) == p) { + /* + * Mark as terminated so that if exit1() indicates success, but the process (for example) + * is blocked in task_exception_notify(), it'll be skipped if encountered again - see + * . This is cheaper than examining P_LEXIT, which requires the + * acquisition of the proc lock. + */ + p->p_memstat_state |= P_MEMSTAT_TERMINATED; + + proc_list_unlock(); + } else { + /* + * We need to restart the search again because + * proc_ref_locked _can_ drop the proc_list lock + * and we could have lost our stored next_p via + * an exit() on another core. + */ + i = 0; + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + continue; + } + + freed_mem = memorystatus_kill_proc(p, kMemorystatusKilledHiwat, jetsam_reason, &killed); /* purged and/or killed 'p' */ + + /* Success? */ + if (freed_mem) { + if (killed == FALSE) { + /* purged 'p'..don't reset HWM candidate count */ + *purged = TRUE; + + proc_list_lock(); + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + proc_list_unlock(); + } + proc_rele(p); + goto exit; + } + /* + * Failure - first unwind the state, + * then fall through to restart the search. + */ + proc_list_lock(); + proc_rele_locked(p); + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + p->p_memstat_state |= P_MEMSTAT_ERROR; + *errors += 1; + + i = 0; + next_p = memorystatus_get_first_proc_locked(&i, TRUE); + } + } + + proc_list_unlock(); + +exit: + os_reason_free(jetsam_reason); + + /* Clear snapshot if freshly captured and no target was found */ + if (new_snapshot && !killed) { + proc_list_lock(); + memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; + proc_list_unlock(); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END, + memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); + + return killed; +} + +/* + * Jetsam a process pinned in the elevated band. + * + * Return: true -- at least one pinned process was jetsammed + * false -- no pinned process was jetsammed + */ +static boolean_t +memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors) +{ + pid_t aPid = 0; + proc_t p = PROC_NULL, next_p = PROC_NULL; + boolean_t new_snapshot = FALSE, killed = FALSE; + int kill_count = 0; + uint32_t aPid_ep; + uint64_t killtime = 0; + clock_sec_t tv_sec; + clock_usec_t tv_usec; + uint32_t tv_msec; + + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, + memorystatus_available_pages, 0, 0, 0, 0); + +#if CONFIG_FREEZE + boolean_t consider_frozen_only = FALSE; + + if (band == (unsigned int) memorystatus_freeze_jetsam_band) { + consider_frozen_only = TRUE; + } +#endif /* CONFIG_FREEZE */ + + proc_list_lock(); + + next_p = memorystatus_get_first_proc_locked(&band, FALSE); + while (next_p) { + p = next_p; + next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); + + aPid = p->p_pid; + aPid_ep = p->p_memstat_effectivepriority; + + /* + * Only pick a process pinned in this elevated band + */ + if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) { + continue; + } + + if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { + continue; + } + +#if CONFIG_FREEZE + if (consider_frozen_only && !(p->p_memstat_state & P_MEMSTAT_FROZEN)) { + continue; + } + + if (p->p_memstat_state & P_MEMSTAT_LOCKED) { + continue; + } +#endif /* CONFIG_FREEZE */ + +#if DEVELOPMENT || DEBUG + MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n", + aggr_count, + aPid, (*p->p_name ? p->p_name : "unknown"), + memorystatus_available_pages); +#endif /* DEVELOPMENT || DEBUG */ + + if (memorystatus_jetsam_snapshot_count == 0) { + memorystatus_init_jetsam_snapshot_locked(NULL, 0); + new_snapshot = TRUE; + } + + p->p_memstat_state |= P_MEMSTAT_TERMINATED; + + killtime = mach_absolute_time(); + absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); + tv_msec = tv_usec / 1000; + + memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); + + if (proc_ref_locked(p) == p) { + proc_list_unlock(); + + os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n", + (unsigned long)tv_sec, tv_msec, + aggr_count, + aPid, (*p->p_name ? p->p_name : "unknown"), + memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); + + /* + * memorystatus_do_kill drops a reference, so take another one so we can + * continue to use this exit reason even after memorystatus_do_kill() + * returns + */ + os_reason_ref(jetsam_reason); + killed = memorystatus_do_kill(p, cause, jetsam_reason); + + /* Success? */ + if (killed) { + proc_rele(p); + kill_count++; + goto exit; + } + + /* + * Failure - first unwind the state, + * then fall through to restart the search. + */ + proc_list_lock(); + proc_rele_locked(p); + p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; + p->p_memstat_state |= P_MEMSTAT_ERROR; + *errors += 1; + } + + /* + * Failure - restart the search. + * + * We might have raced with "p" exiting on another core, resulting in no + * ref on "p". Or, we may have failed to kill "p". + * + * Either way, we fall thru to here, leaving the proc in the + * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state. + * + * And, we hold the the proc_list_lock at this point. + */ + + next_p = memorystatus_get_first_proc_locked(&band, FALSE); + } + + proc_list_unlock(); + +exit: + os_reason_free(jetsam_reason); + + /* Clear snapshot if freshly captured and no target was found */ + if (new_snapshot && (kill_count == 0)) { + proc_list_lock(); + memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; + proc_list_unlock(); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, + memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0); + + return killed; +} + +static boolean_t +memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause) +{ + /* + * TODO: allow a general async path + * + * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to + * add the appropriate exit reason code mapping. + */ + if ((victim_pid != -1) || + (cause != kMemorystatusKilledVMPageShortage && + cause != kMemorystatusKilledVMCompressorThrashing && + cause != kMemorystatusKilledVMCompressorSpaceShortage && + cause != kMemorystatusKilledFCThrashing && + cause != kMemorystatusKilledZoneMapExhaustion)) { + return FALSE; + } + + kill_under_pressure_cause = cause; + memorystatus_thread_wake(); + return TRUE; +} + +boolean_t +memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async) +{ + if (async) { + return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage); + } else { + os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n"); + } + + return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage, jetsam_reason); + } +} + +#if CONFIG_JETSAM +boolean_t +memorystatus_kill_on_VM_compressor_thrashing(boolean_t async) +{ + if (async) { + return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing); + } else { + os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n"); + } + + return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing, jetsam_reason); + } +} + +boolean_t +memorystatus_kill_on_VM_page_shortage(boolean_t async) +{ + if (async) { + return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage); + } else { + os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMPAGESHORTAGE); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n"); + } + + return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage, jetsam_reason); + } +} + +boolean_t +memorystatus_kill_on_FC_thrashing(boolean_t async) +{ + if (async) { + return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing); + } else { + os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_FCTHRASHING); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n"); + } + + return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing, jetsam_reason); + } +} + +boolean_t +memorystatus_kill_on_vnode_limit(void) +{ + os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n"); + } + + return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason); +} + +#endif /* CONFIG_JETSAM */ + +boolean_t +memorystatus_kill_on_zone_map_exhaustion(pid_t pid) +{ + boolean_t res = FALSE; + if (pid == -1) { + res = memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion); + } else { + os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n"); + } + + res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason); + } + return res; +} + +#if CONFIG_FREEZE + +__private_extern__ void +memorystatus_freeze_init(void) +{ + kern_return_t result; + thread_t thread; + + freezer_lck_grp_attr = lck_grp_attr_alloc_init(); + freezer_lck_grp = lck_grp_alloc_init("freezer", freezer_lck_grp_attr); + + lck_mtx_init(&freezer_mutex, freezer_lck_grp, NULL); + + /* + * This is just the default value if the underlying + * storage device doesn't have any specific budget. + * We check with the storage layer in memorystatus_freeze_update_throttle() + * before we start our freezing the first time. + */ + memorystatus_freeze_budget_pages_remaining = (memorystatus_freeze_daily_mb_max * 1024 * 1024) / PAGE_SIZE; + + result = kernel_thread_start(memorystatus_freeze_thread, NULL, &thread); + if (result == KERN_SUCCESS) { + proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); + proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); + thread_set_thread_name(thread, "VM_freezer"); + + thread_deallocate(thread); + } else { + panic("Could not create memorystatus_freeze_thread"); + } +} + +static boolean_t +memorystatus_is_process_eligible_for_freeze(proc_t p) +{ + /* + * Called with proc_list_lock held. + */ + + LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); + + boolean_t should_freeze = FALSE; + uint32_t state = 0, entry_count = 0, pages = 0, i = 0; + int probability_of_use = 0; + + if (isApp(p) == FALSE) { + goto out; + } + + state = p->p_memstat_state; + + if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) || + !(state & P_MEMSTAT_SUSPENDED)) { + goto out; + } + + /* Only freeze processes meeting our minimum resident page criteria */ + memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); + if (pages < memorystatus_freeze_pages_min) { + goto out; + } + + entry_count = (memorystatus_global_probabilities_size / sizeof(memorystatus_internal_probabilities_t)); + + if (entry_count) { + for (i = 0; i < entry_count; i++) { + if (strncmp(memorystatus_global_probabilities_table[i].proc_name, + p->p_name, + MAXCOMLEN + 1) == 0) { + probability_of_use = memorystatus_global_probabilities_table[i].use_probability; + break; + } + } + + if (probability_of_use == 0) { + goto out; + } + } + + should_freeze = TRUE; +out: + return should_freeze; +} + +/* + * Synchronously freeze the passed proc. Called with a reference to the proc held. + * + * Doesn't deal with re-freezing because this is called on a specific process and + * not by the freezer thread. If that changes, we'll have to teach it about + * refreezing a frozen process. + * + * Returns EINVAL or the value returned by task_freeze(). + */ +int +memorystatus_freeze_process_sync(proc_t p) +{ + int ret = EINVAL; + pid_t aPid = 0; + boolean_t memorystatus_freeze_swap_low = FALSE; + int freezer_error_code = 0; + + lck_mtx_lock(&freezer_mutex); + + if (p == NULL) { + printf("memorystatus_freeze_process_sync: Invalid process\n"); + goto exit; + } + + if (memorystatus_freeze_enabled == FALSE) { + printf("memorystatus_freeze_process_sync: Freezing is DISABLED\n"); + goto exit; + } + + if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { + printf("memorystatus_freeze_process_sync: Low compressor and/or low swap space...skipping freeze\n"); + goto exit; + } + + memorystatus_freeze_update_throttle(&memorystatus_freeze_budget_pages_remaining); + if (!memorystatus_freeze_budget_pages_remaining) { + printf("memorystatus_freeze_process_sync: exit with NO available budget\n"); + goto exit; + } + + proc_list_lock(); + + if (p != NULL) { + uint32_t purgeable, wired, clean, dirty, shared; + uint32_t max_pages, i; + + aPid = p->p_pid; + + /* Ensure the process is eligible for freezing */ + if (memorystatus_is_process_eligible_for_freeze(p) == FALSE) { + proc_list_unlock(); + goto exit; + } + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + max_pages = MIN(memorystatus_freeze_pages_max, memorystatus_freeze_budget_pages_remaining); + } else { + /* + * We only have the compressor without any swap. + */ + max_pages = UINT32_MAX - 1; + } + + /* Mark as locked temporarily to avoid kill */ + p->p_memstat_state |= P_MEMSTAT_LOCKED; + proc_list_unlock(); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, + memorystatus_available_pages, 0, 0, 0, 0); + + ret = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, + memorystatus_available_pages, aPid, 0, 0, 0); + + DTRACE_MEMORYSTATUS6(memorystatus_freeze, proc_t, p, unsigned int, memorystatus_available_pages, boolean_t, purgeable, unsigned int, wired, uint32_t, clean, uint32_t, dirty); + + MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - " + "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n", + (ret == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (*p->p_name ? p->p_name : "(unknown)"), + memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared); + + proc_list_lock(); + + if (ret == KERN_SUCCESS) { + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (specific) pid %d [%s]...done", + aPid, (*p->p_name ? p->p_name : "unknown")); + + memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; + + p->p_memstat_freeze_sharedanon_pages += shared; + + memorystatus_frozen_shared_mb += shared; + + if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { + p->p_memstat_state |= P_MEMSTAT_FROZEN; + memorystatus_frozen_count++; + } + + p->p_memstat_frozen_count++; + + /* + * Still keeping the P_MEMSTAT_LOCKED bit till we are actually done elevating this frozen process + * to its higher jetsam band. + */ + proc_list_unlock(); + + memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + ret = memorystatus_update_inactive_jetsam_priority_band(p->p_pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, + memorystatus_freeze_jetsam_band, TRUE); + + if (ret) { + printf("Elevating the frozen process failed with %d\n", ret); + /* not fatal */ + ret = 0; + } + + proc_list_lock(); + + /* Update stats */ + for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { + throttle_intervals[i].pageouts += dirty; + } + } else { + proc_list_lock(); + } + + memorystatus_freeze_pageouts += dirty; + + if (memorystatus_frozen_count == (memorystatus_frozen_processes_max - 1)) { + /* + * Add some eviction logic here? At some point should we + * jetsam a process to get back its swap space so that we + * can freeze a more eligible process at this moment in time? + */ + } + } else { + char reason[128]; + if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { + strlcpy(reason, "too much shared memory", 128); + } + + if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { + strlcpy(reason, "low private-shared pages ratio", 128); + } + + if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { + strlcpy(reason, "no compressor space", 128); + } + + if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { + strlcpy(reason, "no swap space", 128); + } + + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (specific) pid %d [%s]...skipped (%s)", + aPid, (*p->p_name ? p->p_name : "unknown"), reason); + p->p_memstat_state |= P_MEMSTAT_FREEZE_IGNORE; + } + + p->p_memstat_state &= ~P_MEMSTAT_LOCKED; + proc_list_unlock(); + } + +exit: + lck_mtx_unlock(&freezer_mutex); + + return ret; +} + +static int +memorystatus_freeze_top_process(void) +{ + pid_t aPid = 0; + int ret = -1; + proc_t p = PROC_NULL, next_p = PROC_NULL; + unsigned int i = 0; + unsigned int band = JETSAM_PRIORITY_IDLE; + boolean_t refreeze_processes = FALSE; + + proc_list_lock(); + + if (memorystatus_frozen_count >= memorystatus_frozen_processes_max) { + /* + * Freezer is already full but we are here and so let's + * try to refreeze any processes we might have thawed + * in the past and push out their compressed state out. + */ + refreeze_processes = TRUE; + band = (unsigned int) memorystatus_freeze_jetsam_band; + } + +freeze_process: + + next_p = memorystatus_get_first_proc_locked(&band, FALSE); + while (next_p) { + kern_return_t kr; + uint32_t purgeable, wired, clean, dirty, shared; + uint32_t max_pages = 0; + int freezer_error_code = 0; + + p = next_p; + next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); + + aPid = p->p_pid; + + if (p->p_memstat_effectivepriority != (int32_t) band) { + /* + * We shouldn't be freezing processes outside the + * prescribed band. + */ + break; + } + + /* Ensure the process is eligible for (re-)freezing */ + if (refreeze_processes) { + /* + * Has to have been frozen once before. + */ + if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { + continue; + } + + /* + * Has to have been resumed once before. + */ + if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == FALSE) { + continue; + } + + /* + * Not currently being looked at for something. + */ + if (p->p_memstat_state & P_MEMSTAT_LOCKED) { + continue; + } + + /* + * We are going to try and refreeze and so re-evaluate + * the process. We don't want to double count the shared + * memory. So deduct the old snapshot here. + */ + memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages; + p->p_memstat_freeze_sharedanon_pages = 0; + + p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; + memorystatus_refreeze_eligible_count--; + } else { + if (memorystatus_is_process_eligible_for_freeze(p) == FALSE) { + continue; // with lock held + } + } + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + /* + * Freezer backed by the compressor and swap file(s) + * will hold compressed data. + */ + + max_pages = MIN(memorystatus_freeze_pages_max, memorystatus_freeze_budget_pages_remaining); + } else { + /* + * We only have the compressor pool. + */ + max_pages = UINT32_MAX - 1; + } + + /* Mark as locked temporarily to avoid kill */ + p->p_memstat_state |= P_MEMSTAT_LOCKED; + + p = proc_ref_locked(p); + if (!p) { + break; + } + + proc_list_unlock(); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, + memorystatus_available_pages, 0, 0, 0, 0); + + kr = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, + memorystatus_available_pages, aPid, 0, 0, 0); + + MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - " + "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n", + (kr == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (*p->p_name ? p->p_name : "(unknown)"), + memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared); + + proc_list_lock(); + + /* Success? */ + if (KERN_SUCCESS == kr) { + if (refreeze_processes) { + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: Refreezing (general) pid %d [%s]...done", + aPid, (*p->p_name ? p->p_name : "unknown")); + } else { + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (general) pid %d [%s]...done", + aPid, (*p->p_name ? p->p_name : "unknown")); + } + + memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; + + p->p_memstat_freeze_sharedanon_pages += shared; + + memorystatus_frozen_shared_mb += shared; + + if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { + p->p_memstat_state |= P_MEMSTAT_FROZEN; + memorystatus_frozen_count++; + } + + p->p_memstat_frozen_count++; + + /* + * Still keeping the P_MEMSTAT_LOCKED bit till we are actually done elevating this frozen process + * to its higher jetsam band. + */ + proc_list_unlock(); + + memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); + + if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + ret = memorystatus_update_inactive_jetsam_priority_band(p->p_pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, memorystatus_freeze_jetsam_band, TRUE); + + if (ret) { + printf("Elevating the frozen process failed with %d\n", ret); + /* not fatal */ + ret = 0; + } + + proc_list_lock(); + + /* Update stats */ + for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { + throttle_intervals[i].pageouts += dirty; + } + } else { + proc_list_lock(); + } + + memorystatus_freeze_pageouts += dirty; + + if (memorystatus_frozen_count == (memorystatus_frozen_processes_max - 1)) { + /* + * Add some eviction logic here? At some point should we + * jetsam a process to get back its swap space so that we + * can freeze a more eligible process at this moment in time? + */ + } + + /* Return KERN_SUCCESS */ + ret = kr; + + p->p_memstat_state &= ~P_MEMSTAT_LOCKED; + proc_rele_locked(p); + + /* + * We froze a process successfully. We can stop now + * and see if that helped. + */ + + break; + } else { + p->p_memstat_state &= ~P_MEMSTAT_LOCKED; + + if (refreeze_processes == TRUE) { + if ((freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) || + (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO)) { + /* + * Keeping this prior-frozen process in this high band when + * we failed to re-freeze it due to bad shared memory usage + * could cause excessive pressure on the lower bands. + * We need to demote it for now. It'll get re-evaluated next + * time because we don't set the P_MEMSTAT_FREEZE_IGNORE + * bit. + */ + + p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, TRUE, TRUE); + } + } else { + p->p_memstat_state |= P_MEMSTAT_FREEZE_IGNORE; + } + + proc_rele_locked(p); + + char reason[128]; + if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { + strlcpy(reason, "too much shared memory", 128); + } + + if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { + strlcpy(reason, "low private-shared pages ratio", 128); + } + + if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { + strlcpy(reason, "no compressor space", 128); + } + + if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { + strlcpy(reason, "no swap space", 128); + } + + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (general) pid %d [%s]...skipped (%s)", + aPid, (*p->p_name ? p->p_name : "unknown"), reason); + + if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { + break; + } + } + } + + if ((ret == -1) && + (memorystatus_refreeze_eligible_count >= MIN_THAW_REFREEZE_THRESHOLD) && + (refreeze_processes == FALSE)) { + /* + * We failed to freeze a process from the IDLE + * band AND we have some thawed processes + * AND haven't tried refreezing as yet. + * Let's try and re-freeze processes in the + * frozen band that have been resumed in the past + * and so have brought in state from disk. + */ + + band = (unsigned int) memorystatus_freeze_jetsam_band; + + refreeze_processes = TRUE; + + goto freeze_process; + } + + proc_list_unlock(); + + return ret; +} + +static inline boolean_t +memorystatus_can_freeze_processes(void) +{ + boolean_t ret; + + proc_list_lock(); + + if (memorystatus_suspended_count) { + memorystatus_freeze_suspended_threshold = MIN(memorystatus_freeze_suspended_threshold, FREEZE_SUSPENDED_THRESHOLD_DEFAULT); + + if ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold) { + ret = TRUE; + } else { + ret = FALSE; + } + } else { + ret = FALSE; + } + + proc_list_unlock(); + + return ret; +} + +static boolean_t +memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low) +{ + boolean_t can_freeze = TRUE; + + /* Only freeze if we're sufficiently low on memory; this holds off freeze right + * after boot, and is generally is a no-op once we've reached steady state. */ + if (memorystatus_available_pages > memorystatus_freeze_threshold) { + return FALSE; + } + + /* Check minimum suspended process threshold. */ + if (!memorystatus_can_freeze_processes()) { + return FALSE; + } + assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); + + if (!VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { + /* + * In-core compressor used for freezing WITHOUT on-disk swap support. + */ + if (vm_compressor_low_on_space()) { + if (*memorystatus_freeze_swap_low) { + *memorystatus_freeze_swap_low = TRUE; + } + + can_freeze = FALSE; + } else { + if (*memorystatus_freeze_swap_low) { + *memorystatus_freeze_swap_low = FALSE; + } + + can_freeze = TRUE; + } + } else { + /* + * Freezing WITH on-disk swap support. + * + * In-core compressor fronts the swap. + */ + if (vm_swap_low_on_space()) { + if (*memorystatus_freeze_swap_low) { + *memorystatus_freeze_swap_low = TRUE; + } + + can_freeze = FALSE; + } + } + + return can_freeze; +} + +/* + * This function evaluates if the currently frozen processes deserve + * to stay in the higher jetsam band. If the # of thaws of a process + * is below our threshold, then we will demote that process into the IDLE + * band and put it at the head. We don't immediately kill the process here + * because it already has state on disk and so it might be worth giving + * it another shot at getting thawed/resumed and used. + */ +static void +memorystatus_demote_frozen_processes(void) +{ + unsigned int band = (unsigned int) memorystatus_freeze_jetsam_band; + unsigned int demoted_proc_count = 0; + proc_t p = PROC_NULL, next_p = PROC_NULL; + + proc_list_lock(); + + if (memorystatus_freeze_enabled == FALSE) { + /* + * Freeze has been disabled likely to + * reclaim swap space. So don't change + * any state on the frozen processes. + */ + proc_list_unlock(); + return; + } + + next_p = memorystatus_get_first_proc_locked(&band, FALSE); + while (next_p) { + p = next_p; + next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); + + if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { + continue; + } + + if (p->p_memstat_state & P_MEMSTAT_LOCKED) { + continue; + } + + if (p->p_memstat_thaw_count < memorystatus_thaw_count_demotion_threshold) { + p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + + memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, TRUE, TRUE); +#if DEVELOPMENT || DEBUG + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus_demote_frozen_process pid %d [%s]", + p->p_pid, (*p->p_name ? p->p_name : "unknown")); +#endif /* DEVELOPMENT || DEBUG */ + + /* + * The freezer thread will consider this a normal app to be frozen + * because it is in the IDLE band. So we don't need the + * P_MEMSTAT_REFREEZE_ELIGIBLE state here. Also, if it gets resumed + * we'll correctly count it as eligible for re-freeze again. + * + * We don't drop the frozen count because this process still has + * state on disk. So there's a chance it gets resumed and then it + * should land in the higher jetsam band. For that it needs to + * remain marked frozen. + */ + if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { + p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; + memorystatus_refreeze_eligible_count--; + } + + demoted_proc_count++; + } + + if (demoted_proc_count == memorystatus_max_frozen_demotions_daily) { + break; + } + } + + memorystatus_thaw_count = 0; + proc_list_unlock(); +} + + +/* + * This function will do 4 things: + * + * 1) check to see if we are currently in a degraded freezer mode, and if so: + * - check to see if our window has expired and we should exit this mode, OR, + * - return a budget based on the degraded throttle window's max. pageouts vs current pageouts. + * + * 2) check to see if we are in a NEW normal window and update the normal throttle window's params. + * + * 3) check what the current normal window allows for a budget. + * + * 4) calculate the current rate of pageouts for DEGRADED_WINDOW_MINS duration. If that rate is below + * what we would normally expect, then we are running low on our daily budget and need to enter + * degraded perf. mode. + */ + +static void +memorystatus_freeze_update_throttle(uint64_t *budget_pages_allowed) +{ + clock_sec_t sec; + clock_nsec_t nsec; + mach_timespec_t ts; + + unsigned int freeze_daily_pageouts_max = 0; + +#if DEVELOPMENT || DEBUG + if (!memorystatus_freeze_throttle_enabled) { + /* + * No throttling...we can use the full budget everytime. + */ + *budget_pages_allowed = UINT64_MAX; + return; + } +#endif + + clock_get_system_nanotime(&sec, &nsec); + ts.tv_sec = sec; + ts.tv_nsec = nsec; + + struct throttle_interval_t *interval = NULL; + + if (memorystatus_freeze_degradation == TRUE) { + interval = degraded_throttle_window; + + if (CMP_MACH_TIMESPEC(&ts, &interval->ts) >= 0) { + memorystatus_freeze_degradation = FALSE; + interval->pageouts = 0; + interval->max_pageouts = 0; + } else { + *budget_pages_allowed = interval->max_pageouts - interval->pageouts; + } + } + + interval = normal_throttle_window; + + if (CMP_MACH_TIMESPEC(&ts, &interval->ts) >= 0) { + /* + * New throttle window. + * Rollover any unused budget. + * Also ask the storage layer what the new budget needs to be. + */ + uint64_t freeze_daily_budget = 0; + unsigned int daily_budget_pageouts = 0; + + if (vm_swap_max_budget(&freeze_daily_budget)) { + memorystatus_freeze_daily_mb_max = (freeze_daily_budget / (1024 * 1024)); + os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: memorystatus_freeze_daily_mb_max set to %dMB\n", memorystatus_freeze_daily_mb_max); + } + + freeze_daily_pageouts_max = memorystatus_freeze_daily_mb_max * (1024 * 1024 / PAGE_SIZE); + + daily_budget_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / NORMAL_WINDOW_MINS)); + interval->max_pageouts = (interval->max_pageouts - interval->pageouts) + daily_budget_pageouts; + + interval->ts.tv_sec = interval->mins * 60; + interval->ts.tv_nsec = 0; + ADD_MACH_TIMESPEC(&interval->ts, &ts); + /* Since we update the throttle stats pre-freeze, adjust for overshoot here */ + if (interval->pageouts > interval->max_pageouts) { + interval->pageouts -= interval->max_pageouts; + } else { + interval->pageouts = 0; + } + *budget_pages_allowed = interval->max_pageouts; + + memorystatus_demote_frozen_processes(); + } else { + /* + * Current throttle window. + * Deny freezing if we have no budget left. + * Try graceful degradation if we are within 25% of: + * - the daily budget, and + * - the current budget left is below our normal budget expectations. + */ + +#if DEVELOPMENT || DEBUG + /* + * This can only happen in the INTERNAL configs because we allow modifying the daily budget for testing. + */ + + if (freeze_daily_pageouts_max > interval->max_pageouts) { + /* + * We just bumped the daily budget. Re-evaluate our normal window params. + */ + interval->max_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / NORMAL_WINDOW_MINS)); + memorystatus_freeze_degradation = FALSE; //we'll re-evaluate this below... + } +#endif /* DEVELOPMENT || DEBUG */ + + if (memorystatus_freeze_degradation == FALSE) { + if (interval->pageouts >= interval->max_pageouts) { + *budget_pages_allowed = 0; + } else { + int budget_left = interval->max_pageouts - interval->pageouts; + int budget_threshold = (freeze_daily_pageouts_max * FREEZE_DEGRADATION_BUDGET_THRESHOLD) / 100; + + mach_timespec_t time_left = {0, 0}; + + time_left.tv_sec = interval->ts.tv_sec; + time_left.tv_nsec = 0; + + SUB_MACH_TIMESPEC(&time_left, &ts); + + if (budget_left <= budget_threshold) { + /* + * For the current normal window, calculate how much we would pageout in a DEGRADED_WINDOW_MINS duration. + * And also calculate what we would pageout for the same DEGRADED_WINDOW_MINS duration if we had the full + * daily pageout budget. + */ + + unsigned int current_budget_rate_allowed = ((budget_left / time_left.tv_sec) / 60) * DEGRADED_WINDOW_MINS; + unsigned int normal_budget_rate_allowed = (freeze_daily_pageouts_max / NORMAL_WINDOW_MINS) * DEGRADED_WINDOW_MINS; + + /* + * The current rate of pageouts is below what we would expect for + * the normal rate i.e. we have below normal budget left and so... + */ + + if (current_budget_rate_allowed < normal_budget_rate_allowed) { + memorystatus_freeze_degradation = TRUE; + degraded_throttle_window->max_pageouts = current_budget_rate_allowed; + degraded_throttle_window->pageouts = 0; + + /* + * Switch over to the degraded throttle window so the budget + * doled out is based on that window. + */ + interval = degraded_throttle_window; + } + } + + *budget_pages_allowed = interval->max_pageouts - interval->pageouts; + } + } + } + + MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n", + interval->pageouts, interval->max_pageouts, interval->mins, (interval->ts.tv_sec - ts->tv_sec) / 60, + interval->throttle ? "on" : "off"); +} + +static void +memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused) +{ + static boolean_t memorystatus_freeze_swap_low = FALSE; + + lck_mtx_lock(&freezer_mutex); + + if (memorystatus_freeze_enabled) { + if ((memorystatus_frozen_count < memorystatus_frozen_processes_max) || + (memorystatus_refreeze_eligible_count >= MIN_THAW_REFREEZE_THRESHOLD)) { + if (memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { + /* Only freeze if we've not exceeded our pageout budgets.*/ + memorystatus_freeze_update_throttle(&memorystatus_freeze_budget_pages_remaining); + + if (memorystatus_freeze_budget_pages_remaining) { + memorystatus_freeze_top_process(); + } + } + } + } + + /* + * We use memorystatus_apps_idle_delay_time because if/when we adopt aging for applications, + * it'll tie neatly into running the freezer once we age an application. + * + * Till then, it serves as a good interval that can be tuned via a sysctl too. + */ + memorystatus_freezer_thread_next_run_ts = mach_absolute_time() + memorystatus_apps_idle_delay_time; + + assert_wait((event_t) &memorystatus_freeze_wakeup, THREAD_UNINT); + lck_mtx_unlock(&freezer_mutex); + + thread_block((thread_continue_t) memorystatus_freeze_thread); +} + +static boolean_t +memorystatus_freeze_thread_should_run(void) +{ + /* + * No freezer_mutex held here...see why near call-site + * within memorystatus_pages_update(). + */ + + boolean_t should_run = FALSE; + + if (memorystatus_freeze_enabled == FALSE) { + goto out; + } + + if (memorystatus_available_pages > memorystatus_freeze_threshold) { + goto out; + } + + if ((memorystatus_frozen_count >= memorystatus_frozen_processes_max) && + (memorystatus_refreeze_eligible_count < MIN_THAW_REFREEZE_THRESHOLD)) { + goto out; + } + + if (memorystatus_frozen_shared_mb_max && (memorystatus_frozen_shared_mb >= memorystatus_frozen_shared_mb_max)) { + goto out; + } + + uint64_t curr_time = mach_absolute_time(); + + if (curr_time < memorystatus_freezer_thread_next_run_ts) { + goto out; + } + + should_run = TRUE; + +out: + return should_run; +} + +static int +sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, req, arg1, arg2) + + /* Need to be root or have entitlement */ + if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT)) { + return EPERM; + } + + if (memorystatus_freeze_enabled == FALSE) { + return ENOTSUP; + } + + do_fastwake_warmup_all(); + + return 0; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_do_fastwake_warmup_all, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all, "I", ""); + +#endif /* CONFIG_FREEZE */ + +#if VM_PRESSURE_EVENTS + +#if CONFIG_MEMORYSTATUS + +static int +memorystatus_send_note(int event_code, void *data, size_t data_length) +{ + int ret; + struct kev_msg ev_msg; + + ev_msg.vendor_code = KEV_VENDOR_APPLE; + ev_msg.kev_class = KEV_SYSTEM_CLASS; + ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS; + + ev_msg.event_code = event_code; + + ev_msg.dv[0].data_length = data_length; + ev_msg.dv[0].data_ptr = data; + ev_msg.dv[1].data_length = 0; + + ret = kev_post_msg(&ev_msg); + if (ret) { + printf("%s: kev_post_msg() failed, err %d\n", __func__, ret); + } + + return ret; +} + +boolean_t +memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t limit_exceeded) +{ + boolean_t ret = FALSE; + boolean_t found_knote = FALSE; + struct knote *kn = NULL; + int send_knote_count = 0; + + /* + * See comment in sysctl_memorystatus_vm_pressure_send. + */ + + memorystatus_klist_lock(); + + SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { + proc_t knote_proc = knote_get_kq(kn)->kq_p; + pid_t knote_pid = knote_proc->p_pid; + + if (knote_pid == pid) { + /* + * By setting the "fflags" here, we are forcing + * a process to deal with the case where it's + * bumping up into its memory limits. If we don't + * do this here, we will end up depending on the + * system pressure snapshot evaluation in + * filt_memorystatus(). + */ + +#if CONFIG_EMBEDDED + if (!limit_exceeded) { + /* + * Intentionally set either the unambiguous limit warning, + * the system-wide critical or the system-wide warning + * notification bit. + */ + + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; + found_knote = TRUE; + send_knote_count++; + } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; + found_knote = TRUE; + send_knote_count++; + } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; + found_knote = TRUE; + send_knote_count++; + } + } else { + /* + * Send this notification when a process has exceeded a soft limit. + */ + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; + found_knote = TRUE; + send_knote_count++; + } + } +#else /* CONFIG_EMBEDDED */ + if (!limit_exceeded) { + /* + * Processes on desktop are not expecting to handle a system-wide + * critical or system-wide warning notification from this path. + * Intentionally set only the unambiguous limit warning here. + * + * If the limit is soft, however, limit this to one notification per + * active/inactive limit (per each registered listener). + */ + + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { + found_knote = TRUE; + if (!is_fatal) { + /* + * Restrict proc_limit_warn notifications when + * non-fatal (soft) limit is at play. + */ + if (is_active) { + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) { + /* + * Mark this knote for delivery. + */ + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; + /* + * And suppress it from future notifications. + */ + kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; + send_knote_count++; + } + } else { + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) { + /* + * Mark this knote for delivery. + */ + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; + /* + * And suppress it from future notifications. + */ + kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; + send_knote_count++; + } + } + } else { + /* + * No restriction on proc_limit_warn notifications when + * fatal (hard) limit is at play. + */ + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; + send_knote_count++; + } + } + } else { + /* + * Send this notification when a process has exceeded a soft limit, + */ + + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { + found_knote = TRUE; + if (!is_fatal) { + /* + * Restrict critical notifications for soft limits. + */ + + if (is_active) { + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) { + /* + * Suppress future proc_limit_critical notifications + * for the active soft limit. + */ + kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; + send_knote_count++; + } + } else { + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) { + /* + * Suppress future proc_limit_critical_notifications + * for the inactive soft limit. + */ + kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; + send_knote_count++; + } + } + } else { + /* + * We should never be trying to send a critical notification for + * a hard limit... the process would be killed before it could be + * received. + */ + panic("Caught sending pid %d a critical warning for a fatal limit.\n", pid); + } + } + } +#endif /* CONFIG_EMBEDDED */ + } + } + + if (found_knote) { + if (send_knote_count > 0) { + KNOTE(&memorystatus_klist, 0); + } + ret = TRUE; + } + + memorystatus_klist_unlock(); + + return ret; +} + +/* + * Can only be set by the current task on itself. + */ +int +memorystatus_low_mem_privileged_listener(uint32_t op_flags) +{ + boolean_t set_privilege = FALSE; + /* + * Need an entitlement check here? + */ + if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE) { + set_privilege = TRUE; + } else if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE) { + set_privilege = FALSE; + } else { + return EINVAL; + } + + return task_low_mem_privileged_listener(current_task(), set_privilege, NULL); +} + +int +memorystatus_send_pressure_note(pid_t pid) +{ + MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid); + return memorystatus_send_note(kMemorystatusPressureNote, &pid, sizeof(pid)); +} + +void +memorystatus_send_low_swap_note(void) +{ + struct knote *kn = NULL; + + memorystatus_klist_lock(); + SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { + /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the + * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist + * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with + * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */ + if (is_knote_registered_modify_task_pressure_bits(kn, NOTE_MEMORYSTATUS_LOW_SWAP, NULL, 0, 0) == TRUE) { + KNOTE(&memorystatus_klist, kMemorystatusLowSwap); + break; + } + } + + memorystatus_klist_unlock(); +} + +boolean_t +memorystatus_bg_pressure_eligible(proc_t p) +{ + boolean_t eligible = FALSE; + + proc_list_lock(); + + MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p->p_pid, p->p_memstat_state); + + /* Foreground processes have already been dealt with at this point, so just test for eligibility */ + if (!(p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN))) { + eligible = TRUE; + } + + if (p->p_memstat_effectivepriority < JETSAM_PRIORITY_BACKGROUND_OPPORTUNISTIC) { + /* + * IDLE and IDLE_DEFERRED bands contain processes + * that have dropped memory to be under their inactive + * memory limits. And so they can't really give back + * anything. + */ + eligible = FALSE; + } + + proc_list_unlock(); + + return eligible; +} + +boolean_t +memorystatus_is_foreground_locked(proc_t p) +{ + return (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND) || + (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND_SUPPORT); +} + +/* + * This is meant for stackshot and kperf -- it does not take the proc_list_lock + * to access the p_memstat_dirty field. + */ +void +memorystatus_proc_flags_unsafe(void * v, boolean_t *is_dirty, boolean_t *is_dirty_tracked, boolean_t *allow_idle_exit) +{ + if (!v) { + *is_dirty = FALSE; + *is_dirty_tracked = FALSE; + *allow_idle_exit = FALSE; + } else { + proc_t p = (proc_t)v; + *is_dirty = (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) != 0; + *is_dirty_tracked = (p->p_memstat_dirty & P_DIRTY_TRACK) != 0; + *allow_idle_exit = (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) != 0; + } +} + +#endif /* CONFIG_MEMORYSTATUS */ + +/* + * Trigger levels to test the mechanism. + * Can be used via a sysctl. + */ +#define TEST_LOW_MEMORY_TRIGGER_ONE 1 +#define TEST_LOW_MEMORY_TRIGGER_ALL 2 +#define TEST_PURGEABLE_TRIGGER_ONE 3 +#define TEST_PURGEABLE_TRIGGER_ALL 4 +#define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5 +#define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6 + +boolean_t memorystatus_manual_testing_on = FALSE; +vm_pressure_level_t memorystatus_manual_testing_level = kVMPressureNormal; + +extern struct knote * +vm_pressure_select_optimal_candidate_to_notify(struct klist *, int, boolean_t); + + +#define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */ + +#if DEBUG +#define VM_PRESSURE_DEBUG(cond, format, ...) \ +do { \ + if (cond) { printf(format, ##__VA_ARGS__); } \ +} while(0) +#else +#define VM_PRESSURE_DEBUG(cond, format, ...) +#endif + +#define INTER_NOTIFICATION_DELAY (250000) /* .25 second */ + +void +memorystatus_on_pageout_scan_end(void) +{ + /* No-op */ +} + +/* + * kn_max - knote + * + * knote_pressure_level - to check if the knote is registered for this notification level. + * + * task - task whose bits we'll be modifying + * + * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again. + * + * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately. + * + */ + +boolean_t +is_knote_registered_modify_task_pressure_bits(struct knote *kn_max, int knote_pressure_level, task_t task, vm_pressure_level_t pressure_level_to_clear, vm_pressure_level_t pressure_level_to_set) +{ + if (kn_max->kn_sfflags & knote_pressure_level) { + if (pressure_level_to_clear && task_has_been_notified(task, pressure_level_to_clear) == TRUE) { + task_clear_has_been_notified(task, pressure_level_to_clear); + } + + task_mark_has_been_notified(task, pressure_level_to_set); + return TRUE; + } + + return FALSE; +} + +void +memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear) +{ + struct knote *kn = NULL; + + memorystatus_klist_lock(); + SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { + proc_t p = PROC_NULL; + struct task* t = TASK_NULL; + + p = knote_get_kq(kn)->kq_p; + proc_list_lock(); + if (p != proc_ref_locked(p)) { + p = PROC_NULL; + proc_list_unlock(); + continue; + } + proc_list_unlock(); + + t = (struct task *)(p->task); + + task_clear_has_been_notified(t, pressure_level_to_clear); + + proc_rele(p); + } + + memorystatus_klist_unlock(); +} + +extern kern_return_t vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process); + +struct knote * +vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process); + +/* + * Used by the vm_pressure_thread which is + * signalled from within vm_pageout_scan(). + */ +static void vm_dispatch_memory_pressure(void); +void consider_vm_pressure_events(void); + +void +consider_vm_pressure_events(void) +{ + vm_dispatch_memory_pressure(); +} +static void +vm_dispatch_memory_pressure(void) +{ + memorystatus_update_vm_pressure(FALSE); +} + +extern vm_pressure_level_t +convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); + +struct knote * +vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process) +{ + struct knote *kn = NULL, *kn_max = NULL; + uint64_t resident_max = 0; /* MB */ + struct timeval curr_tstamp = {0, 0}; + int elapsed_msecs = 0; + int selected_task_importance = 0; + static int pressure_snapshot = -1; + boolean_t pressure_increase = FALSE; + + if (pressure_snapshot == -1) { + /* + * Initial snapshot. + */ + pressure_snapshot = level; + pressure_increase = TRUE; + } else { + if (level && (level >= pressure_snapshot)) { + pressure_increase = TRUE; + } else { + pressure_increase = FALSE; + } + + pressure_snapshot = level; + } + + if (pressure_increase == TRUE) { + /* + * We'll start by considering the largest + * unimportant task in our list. + */ + selected_task_importance = INT_MAX; + } else { + /* + * We'll start by considering the largest + * important task in our list. + */ + selected_task_importance = 0; + } + + microuptime(&curr_tstamp); + + SLIST_FOREACH(kn, candidate_list, kn_selnext) { + uint64_t resident_size = 0; /* MB */ + proc_t p = PROC_NULL; + struct task* t = TASK_NULL; + int curr_task_importance = 0; + boolean_t consider_knote = FALSE; + boolean_t privileged_listener = FALSE; + + p = knote_get_kq(kn)->kq_p; + proc_list_lock(); + if (p != proc_ref_locked(p)) { + p = PROC_NULL; + proc_list_unlock(); + continue; + } + proc_list_unlock(); + +#if CONFIG_MEMORYSTATUS + if (target_foreground_process == TRUE && !memorystatus_is_foreground_locked(p)) { + /* + * Skip process not marked foreground. + */ + proc_rele(p); + continue; + } +#endif /* CONFIG_MEMORYSTATUS */ + + t = (struct task *)(p->task); + + timevalsub(&curr_tstamp, &p->vm_pressure_last_notify_tstamp); + elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; + + vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(level); + + if ((kn->kn_sfflags & dispatch_level) == 0) { + proc_rele(p); + continue; + } + +#if CONFIG_MEMORYSTATUS + if (target_foreground_process == FALSE && !memorystatus_bg_pressure_eligible(p)) { + VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n", p->p_pid); + proc_rele(p); + continue; + } +#endif /* CONFIG_MEMORYSTATUS */ + +#if CONFIG_EMBEDDED + curr_task_importance = p->p_memstat_effectivepriority; +#else /* CONFIG_EMBEDDED */ + curr_task_importance = task_importance_estimate(t); +#endif /* CONFIG_EMBEDDED */ + + /* + * Privileged listeners are only considered in the multi-level pressure scheme + * AND only if the pressure is increasing. + */ + if (level > 0) { + if (task_has_been_notified(t, level) == FALSE) { + /* + * Is this a privileged listener? + */ + if (task_low_mem_privileged_listener(t, FALSE, &privileged_listener) == 0) { + if (privileged_listener) { + kn_max = kn; + proc_rele(p); + goto done_scanning; + } + } + } else { + proc_rele(p); + continue; + } + } else if (level == 0) { + /* + * Task wasn't notified when the pressure was increasing and so + * no need to notify it that the pressure is decreasing. + */ + if ((task_has_been_notified(t, kVMPressureWarning) == FALSE) && (task_has_been_notified(t, kVMPressureCritical) == FALSE)) { + proc_rele(p); + continue; + } + } + + /* + * We don't want a small process to block large processes from + * being notified again. + */ + resident_size = (get_task_phys_footprint(t)) / (1024 * 1024ULL); /* MB */ + + if (resident_size >= vm_pressure_task_footprint_min) { + if (level > 0) { + /* + * Warning or Critical Pressure. + */ + if (pressure_increase) { + if ((curr_task_importance < selected_task_importance) || + ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { + /* + * We have found a candidate process which is: + * a) at a lower importance than the current selected process + * OR + * b) has importance equal to that of the current selected process but is larger + */ + + consider_knote = TRUE; + } + } else { + if ((curr_task_importance > selected_task_importance) || + ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { + /* + * We have found a candidate process which is: + * a) at a higher importance than the current selected process + * OR + * b) has importance equal to that of the current selected process but is larger + */ + + consider_knote = TRUE; + } + } + } else if (level == 0) { + /* + * Pressure back to normal. + */ + if ((curr_task_importance > selected_task_importance) || + ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { + consider_knote = TRUE; + } + } + + if (consider_knote) { + resident_max = resident_size; + kn_max = kn; + selected_task_importance = curr_task_importance; + consider_knote = FALSE; /* reset for the next candidate */ + } + } else { + /* There was no candidate with enough resident memory to scavenge */ + VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n", p->p_pid, resident_size); + } + proc_rele(p); + } + +done_scanning: + if (kn_max) { + VM_DEBUG_CONSTANT_EVENT(vm_pressure_event, VM_PRESSURE_EVENT, DBG_FUNC_NONE, knote_get_kq(kn_max)->kq_p->p_pid, resident_max, 0, 0); + VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n", knote_get_kq(kn_max)->kq_p->p_pid, resident_max); + } + + return kn_max; +} + +#define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */ +#define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */ +#define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */ + +uint64_t next_warning_notification_sent_at_ts = 0; +uint64_t next_critical_notification_sent_at_ts = 0; + +kern_return_t +memorystatus_update_vm_pressure(boolean_t target_foreground_process) +{ + struct knote *kn_max = NULL; + struct knote *kn_cur = NULL, *kn_temp = NULL; /* for safe list traversal */ + pid_t target_pid = -1; + struct klist dispatch_klist = { NULL }; + proc_t target_proc = PROC_NULL; + struct task *task = NULL; + boolean_t found_candidate = FALSE; + + static vm_pressure_level_t level_snapshot = kVMPressureNormal; + static vm_pressure_level_t prev_level_snapshot = kVMPressureNormal; + boolean_t smoothing_window_started = FALSE; + struct timeval smoothing_window_start_tstamp = {0, 0}; + struct timeval curr_tstamp = {0, 0}; + int elapsed_msecs = 0; + uint64_t curr_ts = mach_absolute_time(); + +#if !CONFIG_JETSAM +#define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */ + + int idle_kill_counter = 0; + + /* + * On desktop we take this opportunity to free up memory pressure + * by immediately killing idle exitable processes. We use a delay + * to avoid overkill. And we impose a max counter as a fail safe + * in case daemons re-launch too fast. + */ + while ((memorystatus_vm_pressure_level != kVMPressureNormal) && (idle_kill_counter < MAX_IDLE_KILLS)) { + if (memorystatus_idle_exit_from_VM() == FALSE) { + /* No idle exitable processes left to kill */ + break; + } + idle_kill_counter++; + + if (memorystatus_manual_testing_on == TRUE) { + /* + * Skip the delay when testing + * the pressure notification scheme. + */ + } else { + delay(1000000); /* 1 second */ + } + } +#endif /* !CONFIG_JETSAM */ + + if (level_snapshot != kVMPressureNormal) { + /* + * Check to see if we are still in the 'resting' period + * after having notified all clients interested in + * a particular pressure level. + */ + + level_snapshot = memorystatus_vm_pressure_level; + + if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { + if (next_warning_notification_sent_at_ts) { + if (curr_ts < next_warning_notification_sent_at_ts) { + delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */); + return KERN_SUCCESS; + } + + next_warning_notification_sent_at_ts = 0; + memorystatus_klist_reset_all_for_level(kVMPressureWarning); + } + } else if (level_snapshot == kVMPressureCritical) { + if (next_critical_notification_sent_at_ts) { + if (curr_ts < next_critical_notification_sent_at_ts) { + delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */); + return KERN_SUCCESS; + } + next_critical_notification_sent_at_ts = 0; + memorystatus_klist_reset_all_for_level(kVMPressureCritical); + } + } + } + + while (1) { + /* + * There is a race window here. But it's not clear + * how much we benefit from having extra synchronization. + */ + level_snapshot = memorystatus_vm_pressure_level; + + if (prev_level_snapshot > level_snapshot) { + /* + * Pressure decreased? Let's take a little breather + * and see if this condition stays. + */ + if (smoothing_window_started == FALSE) { + smoothing_window_started = TRUE; + microuptime(&smoothing_window_start_tstamp); + } + + microuptime(&curr_tstamp); + timevalsub(&curr_tstamp, &smoothing_window_start_tstamp); + elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; + + if (elapsed_msecs < VM_PRESSURE_DECREASED_SMOOTHING_PERIOD) { + delay(INTER_NOTIFICATION_DELAY); + continue; + } + } + + prev_level_snapshot = level_snapshot; + smoothing_window_started = FALSE; + + memorystatus_klist_lock(); + kn_max = vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist, level_snapshot, target_foreground_process); + + if (kn_max == NULL) { + memorystatus_klist_unlock(); + + /* + * No more level-based clients to notify. + * + * Start the 'resting' window within which clients will not be re-notified. + */ + + if (level_snapshot != kVMPressureNormal) { + if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { + nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts); + + /* Next warning notification (if nothing changes) won't be sent before...*/ + next_warning_notification_sent_at_ts = mach_absolute_time() + curr_ts; + } + + if (level_snapshot == kVMPressureCritical) { + nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts); + + /* Next critical notification (if nothing changes) won't be sent before...*/ + next_critical_notification_sent_at_ts = mach_absolute_time() + curr_ts; + } + } + return KERN_FAILURE; + } + + target_proc = knote_get_kq(kn_max)->kq_p; + + proc_list_lock(); + if (target_proc != proc_ref_locked(target_proc)) { + target_proc = PROC_NULL; + proc_list_unlock(); + memorystatus_klist_unlock(); + continue; + } + proc_list_unlock(); + + target_pid = target_proc->p_pid; + + task = (struct task *)(target_proc->task); + + if (level_snapshot != kVMPressureNormal) { + if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { + if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_WARN, task, 0, kVMPressureWarning) == TRUE) { + found_candidate = TRUE; + } + } else { + if (level_snapshot == kVMPressureCritical) { + if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL, task, 0, kVMPressureCritical) == TRUE) { + found_candidate = TRUE; + } + } + } + } else { + if (kn_max->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { + task_clear_has_been_notified(task, kVMPressureWarning); + task_clear_has_been_notified(task, kVMPressureCritical); + + found_candidate = TRUE; + } + } + + if (found_candidate == FALSE) { + proc_rele(target_proc); + memorystatus_klist_unlock(); + continue; + } + + SLIST_FOREACH_SAFE(kn_cur, &memorystatus_klist, kn_selnext, kn_temp) { + int knote_pressure_level = convert_internal_pressure_level_to_dispatch_level(level_snapshot); + + if (is_knote_registered_modify_task_pressure_bits(kn_cur, knote_pressure_level, task, 0, level_snapshot) == TRUE) { + proc_t knote_proc = knote_get_kq(kn_cur)->kq_p; + pid_t knote_pid = knote_proc->p_pid; + if (knote_pid == target_pid) { + KNOTE_DETACH(&memorystatus_klist, kn_cur); + KNOTE_ATTACH(&dispatch_klist, kn_cur); + } + } + } + + KNOTE(&dispatch_klist, (level_snapshot != kVMPressureNormal) ? kMemorystatusPressure : kMemorystatusNoPressure); + + SLIST_FOREACH_SAFE(kn_cur, &dispatch_klist, kn_selnext, kn_temp) { + KNOTE_DETACH(&dispatch_klist, kn_cur); + KNOTE_ATTACH(&memorystatus_klist, kn_cur); + } + + memorystatus_klist_unlock(); + + microuptime(&target_proc->vm_pressure_last_notify_tstamp); + proc_rele(target_proc); + + if (memorystatus_manual_testing_on == TRUE && target_foreground_process == TRUE) { + break; + } + + if (memorystatus_manual_testing_on == TRUE) { + /* + * Testing out the pressure notification scheme. + * No need for delays etc. + */ + } else { + uint32_t sleep_interval = INTER_NOTIFICATION_DELAY; +#if CONFIG_JETSAM + unsigned int page_delta = 0; + unsigned int skip_delay_page_threshold = 0; + + assert(memorystatus_available_pages_pressure >= memorystatus_available_pages_critical_base); + + page_delta = (memorystatus_available_pages_pressure - memorystatus_available_pages_critical_base) / 2; + skip_delay_page_threshold = memorystatus_available_pages_pressure - page_delta; + + if (memorystatus_available_pages <= skip_delay_page_threshold) { + /* + * We are nearing the critcal mark fast and can't afford to wait between + * notifications. + */ + sleep_interval = 0; + } +#endif /* CONFIG_JETSAM */ + + if (sleep_interval) { + delay(sleep_interval); + } + } + } + + return KERN_SUCCESS; +} + +vm_pressure_level_t +convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level) +{ + vm_pressure_level_t dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; + + switch (internal_pressure_level) { + case kVMPressureNormal: + { + dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; + break; + } + + case kVMPressureWarning: + case kVMPressureUrgent: + { + dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_WARN; + break; + } + + case kVMPressureCritical: + { + dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; + break; + } + + default: + break; + } + + return dispatch_level; +} + +static int +sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2, oidp) +#if CONFIG_EMBEDDED + int error = 0; + + error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); + if (error) { + return error; + } + +#endif /* CONFIG_EMBEDDED */ + vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level); + + return SYSCTL_OUT(req, &dispatch_level, sizeof(dispatch_level)); +} + +#if DEBUG || DEVELOPMENT + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, + 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", ""); + +#else /* DEBUG || DEVELOPMENT */ + +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", ""); + +#endif /* DEBUG || DEVELOPMENT */ + + +static int +sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2) + + int level = 0; + int error = 0; + int pressure_level = 0; + int trigger_request = 0; + int force_purge; + + error = sysctl_handle_int(oidp, &level, 0, req); + if (error || !req->newptr) { + return error; + } + + memorystatus_manual_testing_on = TRUE; + + trigger_request = (level >> 16) & 0xFFFF; + pressure_level = (level & 0xFFFF); + + if (trigger_request < TEST_LOW_MEMORY_TRIGGER_ONE || + trigger_request > TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL) { + return EINVAL; + } + switch (pressure_level) { + case NOTE_MEMORYSTATUS_PRESSURE_NORMAL: + case NOTE_MEMORYSTATUS_PRESSURE_WARN: + case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL: + break; + default: + return EINVAL; + } + + /* + * The pressure level is being set from user-space. + * And user-space uses the constants in sys/event.h + * So we translate those events to our internal levels here. + */ + if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { + memorystatus_manual_testing_level = kVMPressureNormal; + force_purge = 0; + } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_WARN) { + memorystatus_manual_testing_level = kVMPressureWarning; + force_purge = vm_pageout_state.memorystatus_purge_on_warning; + } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { + memorystatus_manual_testing_level = kVMPressureCritical; + force_purge = vm_pageout_state.memorystatus_purge_on_critical; + } + + memorystatus_vm_pressure_level = memorystatus_manual_testing_level; + + /* purge according to the new pressure level */ + switch (trigger_request) { + case TEST_PURGEABLE_TRIGGER_ONE: + case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE: + if (force_purge == 0) { + /* no purging requested */ + break; + } + vm_purgeable_object_purge_one_unlocked(force_purge); + break; + case TEST_PURGEABLE_TRIGGER_ALL: + case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL: + if (force_purge == 0) { + /* no purging requested */ + break; + } + while (vm_purgeable_object_purge_one_unlocked(force_purge)) { + ; + } + break; + } + + if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ONE) || + (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE)) { + memorystatus_update_vm_pressure(TRUE); + } + + if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ALL) || + (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL)) { + while (memorystatus_update_vm_pressure(FALSE) == KERN_SUCCESS) { + continue; + } + } + + if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { + memorystatus_manual_testing_on = FALSE; + } + + return 0; +} + +SYSCTL_PROC(_kern, OID_AUTO, memorypressure_manual_trigger, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_memorypressure_manual_trigger, "I", ""); + + +SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_warning, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_warning, 0, ""); +SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_urgent, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_urgent, 0, ""); +SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_critical, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_critical, 0, ""); + +#if DEBUG || DEVELOPMENT +SYSCTL_UINT(_kern, OID_AUTO, memorystatus_vm_pressure_events_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pressure_events_enabled, 0, ""); +#endif + +#endif /* VM_PRESSURE_EVENTS */ + +/* Return both allocated and actual size, since there's a race between allocation and list compilation */ +static int +memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only) +{ + uint32_t list_count, i = 0; + memorystatus_priority_entry_t *list_entry; + proc_t p; + + list_count = memorystatus_list_count; + *list_size = sizeof(memorystatus_priority_entry_t) * list_count; + + /* Just a size check? */ + if (size_only) { + return 0; + } + + /* Otherwise, validate the size of the buffer */ + if (*buffer_size < *list_size) { + return EINVAL; + } + + *list_ptr = (memorystatus_priority_entry_t*)kalloc(*list_size); + if (!*list_ptr) { + return ENOMEM; + } + + memset(*list_ptr, 0, *list_size); + + *buffer_size = *list_size; + *list_size = 0; + + list_entry = *list_ptr; + + proc_list_lock(); + + p = memorystatus_get_first_proc_locked(&i, TRUE); + while (p && (*list_size < *buffer_size)) { + list_entry->pid = p->p_pid; + list_entry->priority = p->p_memstat_effectivepriority; + list_entry->user_data = p->p_memstat_userdata; + + if (p->p_memstat_memlimit <= 0) { + task_get_phys_footprint_limit(p->task, &list_entry->limit); + } else { + list_entry->limit = p->p_memstat_memlimit; + } + + list_entry->state = memorystatus_build_state(p); + list_entry++; + + *list_size += sizeof(memorystatus_priority_entry_t); + + p = memorystatus_get_next_proc_locked(&i, p, TRUE); + } + + proc_list_unlock(); + + MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size); + + return 0; +} + +static int +memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size) +{ + int error = 0; + memorystatus_priority_entry_t mp_entry; + + /* Validate inputs */ + if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) { + return EINVAL; + } + + proc_t p = proc_find(pid); + if (!p) { + return ESRCH; + } + + memset(&mp_entry, 0, sizeof(memorystatus_priority_entry_t)); + + mp_entry.pid = p->p_pid; + mp_entry.priority = p->p_memstat_effectivepriority; + mp_entry.user_data = p->p_memstat_userdata; + if (p->p_memstat_memlimit <= 0) { + task_get_phys_footprint_limit(p->task, &mp_entry.limit); + } else { + mp_entry.limit = p->p_memstat_memlimit; + } + mp_entry.state = memorystatus_build_state(p); + + proc_rele(p); + + error = copyout(&mp_entry, buffer, buffer_size); + + return error; +} + +static int +memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval) +{ + int error = 0; + boolean_t size_only; + size_t list_size; + + /* + * When a non-zero pid is provided, the 'list' has only one entry. + */ + + size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE); + + if (pid != 0) { + list_size = sizeof(memorystatus_priority_entry_t) * 1; + if (!size_only) { + error = memorystatus_get_priority_pid(pid, buffer, buffer_size); + } + } else { + memorystatus_priority_entry_t *list = NULL; + error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only); + + if (error == 0) { + if (!size_only) { + error = copyout(list, buffer, list_size); + } + } + + if (list) { + kfree(list, buffer_size); + } + } + + if (error == 0) { + *retval = list_size; + } + + return error; +} + +static void +memorystatus_clear_errors(void) +{ + proc_t p; + unsigned int i = 0; + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0); + + proc_list_lock(); + + p = memorystatus_get_first_proc_locked(&i, TRUE); + while (p) { + if (p->p_memstat_state & P_MEMSTAT_ERROR) { + p->p_memstat_state &= ~P_MEMSTAT_ERROR; + } + p = memorystatus_get_next_proc_locked(&i, p, TRUE); + } + + proc_list_unlock(); + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0); +} + +#if CONFIG_JETSAM +static void +memorystatus_update_levels_locked(boolean_t critical_only) +{ + memorystatus_available_pages_critical = memorystatus_available_pages_critical_base; + + /* + * If there's an entry in the first bucket, we have idle processes. + */ + + memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + if (first_bucket->count) { + memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset; + + if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure) { + /* + * The critical threshold must never exceed the pressure threshold + */ + memorystatus_available_pages_critical = memorystatus_available_pages_pressure; + } + } + +#if DEBUG || DEVELOPMENT + if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { + memorystatus_available_pages_critical += memorystatus_jetsam_policy_offset_pages_diagnostic; + + if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure) { + /* + * The critical threshold must never exceed the pressure threshold + */ + memorystatus_available_pages_critical = memorystatus_available_pages_pressure; + } + } +#endif /* DEBUG || DEVELOPMENT */ + + if (memorystatus_jetsam_policy & kPolicyMoreFree) { + memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages; + } + + if (critical_only) { + return; + } + +#if VM_PRESSURE_EVENTS + memorystatus_available_pages_pressure = (pressure_threshold_percentage / delta_percentage) * memorystatus_delta; +#if DEBUG || DEVELOPMENT + if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { + memorystatus_available_pages_pressure += memorystatus_jetsam_policy_offset_pages_diagnostic; + } +#endif +#endif +} + +void +memorystatus_fast_jetsam_override(boolean_t enable_override) +{ + /* If fast jetsam is not enabled, simply return */ + if (!fast_jetsam_enabled) { + return; + } + + if (enable_override) { + if ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree) { + return; + } + proc_list_lock(); + memorystatus_jetsam_policy |= kPolicyMoreFree; + memorystatus_thread_pool_max(); + memorystatus_update_levels_locked(TRUE); + proc_list_unlock(); + } else { + if ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0) { + return; + } + proc_list_lock(); + memorystatus_jetsam_policy &= ~kPolicyMoreFree; + memorystatus_thread_pool_default(); + memorystatus_update_levels_locked(TRUE); + proc_list_unlock(); + } +} + + +static int +sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS +{ +#pragma unused(arg1, arg2, oidp) + int error = 0, more_free = 0; + + /* + * TODO: Enable this privilege check? + * + * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0); + * if (error) + * return (error); + */ + + error = sysctl_handle_int(oidp, &more_free, 0, req); + if (error || !req->newptr) { + return error; + } + + if (more_free) { + memorystatus_fast_jetsam_override(true); + } else { + memorystatus_fast_jetsam_override(false); + } + + return 0; +} +SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, + 0, 0, &sysctl_kern_memorystatus_policy_more_free, "I", ""); + +#endif /* CONFIG_JETSAM */ + +/* + * Get the at_boot snapshot + */ +static int +memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) +{ + size_t input_size = *snapshot_size; + + /* + * The at_boot snapshot has no entry list. + */ + *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t); + + if (size_only) { + return 0; + } + + /* + * Validate the size of the snapshot buffer + */ + if (input_size < *snapshot_size) { + return EINVAL; + } + + /* + * Update the notification_time only + */ + memorystatus_at_boot_snapshot.notification_time = mach_absolute_time(); + *snapshot = &memorystatus_at_boot_snapshot; + + MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n", + (long)input_size, (long)*snapshot_size, 0); + return 0; +} + +/* + * Get the previous fully populated snapshot + */ +static int +memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) +{ + size_t input_size = *snapshot_size; + + if (memorystatus_jetsam_snapshot_copy_count > 0) { + *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_copy_count)); + } else { + *snapshot_size = 0; + } + + if (size_only) { + return 0; + } + + if (input_size < *snapshot_size) { + return EINVAL; + } + + *snapshot = memorystatus_jetsam_snapshot_copy; + + MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n", + (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_copy_count); + + return 0; +} + +static int +memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) +{ + size_t input_size = *snapshot_size; + uint32_t ods_list_count = memorystatus_list_count; + memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */ + + *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count)); + + if (size_only) { + return 0; + } + + /* + * Validate the size of the snapshot buffer. + * This is inherently racey. May want to revisit + * this error condition and trim the output when + * it doesn't fit. + */ + if (input_size < *snapshot_size) { + return EINVAL; + } + + /* + * Allocate and initialize a snapshot buffer. + */ + ods = (memorystatus_jetsam_snapshot_t *)kalloc(*snapshot_size); + if (!ods) { + return ENOMEM; + } + + memset(ods, 0, *snapshot_size); + + proc_list_lock(); + memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count); + proc_list_unlock(); + + /* + * Return the kernel allocated, on_demand buffer. + * The caller of this routine will copy the data out + * to user space and then free the kernel allocated + * buffer. + */ + *snapshot = ods; + + MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n", + (long)input_size, (long)*snapshot_size, (long)ods_list_count); + + return 0; +} + +static int +memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) +{ + size_t input_size = *snapshot_size; + + if (memorystatus_jetsam_snapshot_count > 0) { + *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count)); + } else { + *snapshot_size = 0; + } + + if (size_only) { + return 0; + } + + if (input_size < *snapshot_size) { + return EINVAL; + } + + *snapshot = memorystatus_jetsam_snapshot; + + MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n", + (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count); + + return 0; +} + + +static int +memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) +{ + int error = EINVAL; + boolean_t size_only; + boolean_t is_default_snapshot = FALSE; + boolean_t is_on_demand_snapshot = FALSE; + boolean_t is_at_boot_snapshot = FALSE; + memorystatus_jetsam_snapshot_t *snapshot; + + size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE); + + if (flags == 0) { + /* Default */ + is_default_snapshot = TRUE; + error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only); + } else { + if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT | MEMORYSTATUS_SNAPSHOT_COPY)) { + /* + * Unsupported bit set in flag. + */ + return EINVAL; + } + + if (flags & (flags - 0x1)) { + /* + * Can't have multiple flags set at the same time. + */ + return EINVAL; + } + + if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) { + is_on_demand_snapshot = TRUE; + /* + * When not requesting the size only, the following call will allocate + * an on_demand snapshot buffer, which is freed below. + */ + error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only); + } else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) { + is_at_boot_snapshot = TRUE; + error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only); + } else if (flags & MEMORYSTATUS_SNAPSHOT_COPY) { + error = memorystatus_get_jetsam_snapshot_copy(&snapshot, &buffer_size, size_only); + } else { + /* + * Invalid flag setting. + */ + return EINVAL; + } + } + + if (error) { + goto out; + } + + /* + * Copy the data out to user space and clear the snapshot buffer. + * If working with the jetsam snapshot, + * clearing the buffer means, reset the count. + * If working with an on_demand snapshot + * clearing the buffer means, free it. + * If working with the at_boot snapshot + * there is nothing to clear or update. + * If working with a copy of the snapshot + * there is nothing to clear or update. + */ + if (!size_only) { + if ((error = copyout(snapshot, buffer, buffer_size)) == 0) { + if (is_default_snapshot) { + /* + * The jetsam snapshot is never freed, its count is simply reset. + * However, we make a copy for any parties that might be interested + * in the previous fully populated snapshot. + */ + proc_list_lock(); + memcpy(memorystatus_jetsam_snapshot_copy, memorystatus_jetsam_snapshot, memorystatus_jetsam_snapshot_size); + memorystatus_jetsam_snapshot_copy_count = memorystatus_jetsam_snapshot_count; + snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; + memorystatus_jetsam_snapshot_last_timestamp = 0; + proc_list_unlock(); + } + } + + if (is_on_demand_snapshot) { + /* + * The on_demand snapshot is always freed, + * even if the copyout failed. + */ + if (snapshot) { + kfree(snapshot, buffer_size); + } + } + } + + if (error == 0) { + *retval = buffer_size; + } +out: + return error; +} + +/* + * Routine: memorystatus_cmd_grp_set_priorities + * Purpose: Update priorities for a group of processes. + * + * [priority] + * Move each process out of its effective priority + * band and into a new priority band. + * Maintains relative order from lowest to highest priority. + * In single band, maintains relative order from head to tail. + * + * eg: before [effectivepriority | pid] + * [18 | p101 ] + * [17 | p55, p67, p19 ] + * [12 | p103 p10 ] + * [ 7 | p25 ] + * [ 0 | p71, p82, ] + * + * after [ new band | pid] + * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101] + * + * Returns: 0 on success, else non-zero. + * + * Caveat: We know there is a race window regarding recycled pids. + * A process could be killed before the kernel can act on it here. + * If a pid cannot be found in any of the jetsam priority bands, + * then we simply ignore it. No harm. + * But, if the pid has been recycled then it could be an issue. + * In that scenario, we might move an unsuspecting process to the new + * priority band. It's not clear how the kernel can safeguard + * against this, but it would be an extremely rare case anyway. + * The caller of this api might avoid such race conditions by + * ensuring that the processes passed in the pid list are suspended. + */ + + +static int +memorystatus_cmd_grp_set_priorities(user_addr_t buffer, size_t buffer_size) +{ + /* + * We only handle setting priority + * per process + */ + + int error = 0; + memorystatus_properties_entry_v1_t *entries = NULL; + uint32_t entry_count = 0; + + /* This will be the ordered proc list */ + typedef struct memorystatus_internal_properties { + proc_t proc; + int32_t priority; + } memorystatus_internal_properties_t; + + memorystatus_internal_properties_t *table = NULL; + size_t table_size = 0; + uint32_t table_count = 0; + + uint32_t i = 0; + uint32_t bucket_index = 0; + boolean_t head_insert; + int32_t new_priority; + + proc_t p; + + /* Verify inputs */ + if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) { + error = EINVAL; + goto out; + } + + entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t)); + if ((entries = (memorystatus_properties_entry_v1_t *)kalloc(buffer_size)) == NULL) { + error = ENOMEM; + goto out; + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, 0, 0, 0); + + if ((error = copyin(buffer, entries, buffer_size)) != 0) { + goto out; + } + + /* Verify sanity of input priorities */ + if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) { + if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) { + error = EINVAL; + goto out; + } + } else { + error = EINVAL; + goto out; + } + + for (i = 0; i < entry_count; i++) { + if (entries[i].priority == -1) { + /* Use as shorthand for default priority */ + entries[i].priority = JETSAM_PRIORITY_DEFAULT; + } else if ((entries[i].priority == system_procs_aging_band) || (entries[i].priority == applications_aging_band)) { + /* Both the aging bands are reserved for internal use; + * if requested, adjust to JETSAM_PRIORITY_IDLE. */ + entries[i].priority = JETSAM_PRIORITY_IDLE; + } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { + /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle + * queue */ + /* Deal with this later */ + } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) { + /* Sanity check */ + error = EINVAL; + goto out; + } + } + + table_size = sizeof(memorystatus_internal_properties_t) * entry_count; + if ((table = (memorystatus_internal_properties_t *)kalloc(table_size)) == NULL) { + error = ENOMEM; + goto out; + } + memset(table, 0, table_size); + + + /* + * For each jetsam bucket entry, spin through the input property list. + * When a matching pid is found, populate an adjacent table with the + * appropriate proc pointer and new property values. + * This traversal automatically preserves order from lowest + * to highest priority. + */ + + bucket_index = 0; + + proc_list_lock(); + + /* Create the ordered table */ + p = memorystatus_get_first_proc_locked(&bucket_index, TRUE); + while (p && (table_count < entry_count)) { + for (i = 0; i < entry_count; i++) { + if (p->p_pid == entries[i].pid) { + /* Build the table data */ + table[table_count].proc = p; + table[table_count].priority = entries[i].priority; + table_count++; + break; + } + } + p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE); + } + + /* We now have ordered list of procs ready to move */ + for (i = 0; i < table_count; i++) { + p = table[i].proc; + assert(p != NULL); + + /* Allow head inserts -- but relative order is now */ + if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { + new_priority = JETSAM_PRIORITY_IDLE; + head_insert = true; + } else { + new_priority = table[i].priority; + head_insert = false; + } + + /* Not allowed */ + if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { + continue; + } + + /* + * Take appropriate steps if moving proc out of + * either of the aging bands. + */ + if ((p->p_memstat_effectivepriority == system_procs_aging_band) || (p->p_memstat_effectivepriority == applications_aging_band)) { + memorystatus_invalidate_idle_demotion_locked(p, TRUE); + } + + memorystatus_update_priority_locked(p, new_priority, head_insert, false); + } + + proc_list_unlock(); + + /* + * if (table_count != entry_count) + * then some pids were not found in a jetsam band. + * harmless but interesting... + */ +out: + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, table_count, 0, 0); + + if (entries) { + kfree(entries, buffer_size); + } + if (table) { + kfree(table, table_size); + } + + return error; +} + +static int +memorystatus_cmd_grp_set_probabilities(user_addr_t buffer, size_t buffer_size) +{ + int error = 0; + memorystatus_properties_entry_v1_t *entries = NULL; + uint32_t entry_count = 0, i = 0; + memorystatus_internal_probabilities_t *tmp_table_new = NULL, *tmp_table_old = NULL; + size_t tmp_table_new_size = 0, tmp_table_old_size = 0; + + /* Verify inputs */ + if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) { + error = EINVAL; + goto out; + } + + entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t)); + + if ((entries = (memorystatus_properties_entry_v1_t *) kalloc(buffer_size)) == NULL) { + error = ENOMEM; + goto out; + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, 0, 0, 0); + + if ((error = copyin(buffer, entries, buffer_size)) != 0) { + goto out; + } + + if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) { + if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) { + error = EINVAL; + goto out; + } + } else { + error = EINVAL; + goto out; + } + + /* Verify sanity of input priorities */ + for (i = 0; i < entry_count; i++) { + /* + * 0 - low probability of use. + * 1 - high probability of use. + * + * Keeping this field an int (& not a bool) to allow + * us to experiment with different values/approaches + * later on. + */ + if (entries[i].use_probability > 1) { + error = EINVAL; + goto out; + } + } + + tmp_table_new_size = sizeof(memorystatus_internal_probabilities_t) * entry_count; + + if ((tmp_table_new = (memorystatus_internal_probabilities_t *) kalloc(tmp_table_new_size)) == NULL) { + error = ENOMEM; + goto out; + } + memset(tmp_table_new, 0, tmp_table_new_size); + + proc_list_lock(); + + if (memorystatus_global_probabilities_table) { + tmp_table_old = memorystatus_global_probabilities_table; + tmp_table_old_size = memorystatus_global_probabilities_size; + } + + memorystatus_global_probabilities_table = tmp_table_new; + memorystatus_global_probabilities_size = tmp_table_new_size; + tmp_table_new = NULL; + + for (i = 0; i < entry_count; i++) { + /* Build the table data */ + strlcpy(memorystatus_global_probabilities_table[i].proc_name, entries[i].proc_name, MAXCOMLEN + 1); + memorystatus_global_probabilities_table[i].use_probability = entries[i].use_probability; + } + + proc_list_unlock(); + +out: + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, tmp_table_new_size, 0, 0); + + if (entries) { + kfree(entries, buffer_size); + entries = NULL; + } + + if (tmp_table_old) { + kfree(tmp_table_old, tmp_table_old_size); + tmp_table_old = NULL; + } + + return error; +} + +static int +memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) +{ + int error = 0; + + if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) { + error = memorystatus_cmd_grp_set_priorities(buffer, buffer_size); + } else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) { + error = memorystatus_cmd_grp_set_probabilities(buffer, buffer_size); + } else { + error = EINVAL; + } + + return error; +} + +/* + * This routine is used to update a process's jetsam priority position and stored user_data. + * It is not used for the setting of memory limits, which is why the last 6 args to the + * memorystatus_update() call are 0 or FALSE. + */ + +static int +memorystatus_cmd_set_priority_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) +{ + int error = 0; + memorystatus_priority_properties_t mpp_entry; + + /* Validate inputs */ + if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_properties_t))) { + return EINVAL; + } + + error = copyin(buffer, &mpp_entry, buffer_size); + + if (error == 0) { + proc_t p; + + p = proc_find(pid); + if (!p) { + return ESRCH; + } + + if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { + proc_rele(p); + return EPERM; + } + + error = memorystatus_update(p, mpp_entry.priority, mpp_entry.user_data, FALSE, FALSE, 0, 0, FALSE, FALSE); + proc_rele(p); + } + + return error; +} + +static int +memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) +{ + int error = 0; + memorystatus_memlimit_properties_t mmp_entry; + + /* Validate inputs */ + if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) { + return EINVAL; + } + + error = copyin(buffer, &mmp_entry, buffer_size); + + if (error == 0) { + error = memorystatus_set_memlimit_properties(pid, &mmp_entry); + } + + return error; +} + +/* + * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit(). + * That gets the proc's cached memlimit and there is no guarantee that the active/inactive + * limits will be the same in the no-limit case. Instead we convert limits <= 0 using + * task_convert_phys_footprint_limit(). It computes the same limit value that would be written + * to the task's ledgers via task_set_phys_footprint_limit(). + */ +static int +memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) +{ + int error = 0; + memorystatus_memlimit_properties_t mmp_entry; + + /* Validate inputs */ + if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) { + return EINVAL; + } + + memset(&mmp_entry, 0, sizeof(memorystatus_memlimit_properties_t)); + + proc_t p = proc_find(pid); + if (!p) { + return ESRCH; + } + + /* + * Get the active limit and attributes. + * No locks taken since we hold a reference to the proc. + */ + + if (p->p_memstat_memlimit_active > 0) { + mmp_entry.memlimit_active = p->p_memstat_memlimit_active; + } else { + task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_active); + } + + if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { + mmp_entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; + } + + /* + * Get the inactive limit and attributes + */ + if (p->p_memstat_memlimit_inactive <= 0) { + task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_inactive); + } else { + mmp_entry.memlimit_inactive = p->p_memstat_memlimit_inactive; + } + if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { + mmp_entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; + } + proc_rele(p); + + error = copyout(&mmp_entry, buffer, buffer_size); + + return error; +} + + +/* + * SPI for kbd - pr24956468 + * This is a very simple snapshot that calculates how much a + * process's phys_footprint exceeds a specific memory limit. + * Only the inactive memory limit is supported for now. + * The delta is returned as bytes in excess or zero. + */ +static int +memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) +{ + int error = 0; + uint64_t footprint_in_bytes = 0; + uint64_t delta_in_bytes = 0; + int32_t memlimit_mb = 0; + uint64_t memlimit_bytes = 0; + + /* Validate inputs */ + if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(uint64_t)) || (flags != 0)) { + return EINVAL; + } + + proc_t p = proc_find(pid); + if (!p) { + return ESRCH; + } + + /* + * Get the inactive limit. + * No locks taken since we hold a reference to the proc. + */ + + if (p->p_memstat_memlimit_inactive <= 0) { + task_convert_phys_footprint_limit(-1, &memlimit_mb); + } else { + memlimit_mb = p->p_memstat_memlimit_inactive; + } + + footprint_in_bytes = get_task_phys_footprint(p->task); + + proc_rele(p); + + memlimit_bytes = memlimit_mb * 1024 * 1024; /* MB to bytes */ + + /* + * Computed delta always returns >= 0 bytes + */ + if (footprint_in_bytes > memlimit_bytes) { + delta_in_bytes = footprint_in_bytes - memlimit_bytes; + } + + error = copyout(&delta_in_bytes, buffer, sizeof(delta_in_bytes)); + + return error; +} + + +static int +memorystatus_cmd_get_pressure_status(int32_t *retval) +{ + int error; + + /* Need privilege for check */ + error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); + if (error) { + return error; + } + + /* Inherently racy, so it's not worth taking a lock here */ + *retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; + + return error; +} + +int +memorystatus_get_pressure_status_kdp() +{ + return (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; +} + +/* + * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM. + * + * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal + * So, with 2-level HWM preserving previous behavior will map as follows. + * - treat the limit passed in as both an active and inactive limit. + * - treat the is_fatal_limit flag as though it applies to both active and inactive limits. + * + * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK + * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft + * - so mapping is (active/non-fatal, inactive/non-fatal) + * + * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT + * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard + * - so mapping is (active/fatal, inactive/fatal) + */ + +#if CONFIG_JETSAM +static int +memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit) +{ + int error = 0; + memorystatus_memlimit_properties_t entry; + + entry.memlimit_active = high_water_mark; + entry.memlimit_active_attr = 0; + entry.memlimit_inactive = high_water_mark; + entry.memlimit_inactive_attr = 0; + + if (is_fatal_limit == TRUE) { + entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; + entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; + } + + error = memorystatus_set_memlimit_properties(pid, &entry); + return error; +} +#endif /* CONFIG_JETSAM */ + +static int +memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry) +{ + int32_t memlimit_active; + boolean_t memlimit_active_is_fatal; + int32_t memlimit_inactive; + boolean_t memlimit_inactive_is_fatal; + uint32_t valid_attrs = 0; + int error = 0; + + proc_t p = proc_find(pid); + if (!p) { + return ESRCH; + } + + /* + * Check for valid attribute flags. + */ + valid_attrs |= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL); + if ((entry->memlimit_active_attr & (~valid_attrs)) != 0) { + proc_rele(p); + return EINVAL; + } + if ((entry->memlimit_inactive_attr & (~valid_attrs)) != 0) { + proc_rele(p); + return EINVAL; + } + + /* + * Setup the active memlimit properties + */ + memlimit_active = entry->memlimit_active; + if (entry->memlimit_active_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) { + memlimit_active_is_fatal = TRUE; + } else { + memlimit_active_is_fatal = FALSE; + } + + /* + * Setup the inactive memlimit properties + */ + memlimit_inactive = entry->memlimit_inactive; + if (entry->memlimit_inactive_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) { + memlimit_inactive_is_fatal = TRUE; + } else { + memlimit_inactive_is_fatal = FALSE; + } + + /* + * Setting a limit of <= 0 implies that the process has no + * high-water-mark and has no per-task-limit. That means + * the system_wide task limit is in place, which by the way, + * is always fatal. + */ + + if (memlimit_active <= 0) { + /* + * Enforce the fatal system_wide task limit while process is active. + */ + memlimit_active = -1; + memlimit_active_is_fatal = TRUE; + } + + if (memlimit_inactive <= 0) { + /* + * Enforce the fatal system_wide task limit while process is inactive. + */ + memlimit_inactive = -1; + memlimit_inactive_is_fatal = TRUE; + } + + proc_list_lock(); + + /* + * Store the active limit variants in the proc. + */ + SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal); + + /* + * Store the inactive limit variants in the proc. + */ + SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal); + + /* + * Enforce appropriate limit variant by updating the cached values + * and writing the ledger. + * Limit choice is based on process active/inactive state. + */ + + if (memorystatus_highwater_enabled) { + boolean_t is_fatal; + boolean_t use_active; + + if (proc_jetsam_state_is_active_locked(p) == TRUE) { + CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = TRUE; + } else { + CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); + use_active = FALSE; + } + + /* Enforce the limit by writing to the ledgers */ + error = (task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal) == 0) ? 0 : EINVAL; + + MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n", + p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), + (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty, + (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : "")); + DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1)); + } + + proc_list_unlock(); + proc_rele(p); + + return error; +} + +/* + * Returns the jetsam priority (effective or requested) of the process + * associated with this task. + */ +int +proc_get_memstat_priority(proc_t p, boolean_t effective_priority) +{ + if (p) { + if (effective_priority) { + return p->p_memstat_effectivepriority; + } else { + return p->p_memstat_requestedpriority; + } + } + return 0; +} + +static int +memorystatus_get_process_is_managed(pid_t pid, int *is_managed) +{ + proc_t p = NULL; + + /* Validate inputs */ + if (pid == 0) { + return EINVAL; + } + + p = proc_find(pid); + if (!p) { + return ESRCH; + } + + proc_list_lock(); + *is_managed = ((p->p_memstat_state & P_MEMSTAT_MANAGED) ? 1 : 0); + proc_rele_locked(p); + proc_list_unlock(); + + return 0; +} + +static int +memorystatus_set_process_is_managed(pid_t pid, boolean_t set_managed) +{ + proc_t p = NULL; + + /* Validate inputs */ + if (pid == 0) { + return EINVAL; + } + + p = proc_find(pid); + if (!p) { + return ESRCH; + } + + proc_list_lock(); + if (set_managed == TRUE) { + p->p_memstat_state |= P_MEMSTAT_MANAGED; + } else { + p->p_memstat_state &= ~P_MEMSTAT_MANAGED; + } + proc_rele_locked(p); + proc_list_unlock(); + + return 0; +} + +static int +memorystatus_get_process_is_freezable(pid_t pid, int *is_freezable) +{ + proc_t p = PROC_NULL; + + if (pid == 0) { + return EINVAL; + } + + p = proc_find(pid); + if (!p) { + return ESRCH; + } + + /* + * Only allow this on the current proc for now. + * We can check for privileges and allow targeting another process in the future. + */ + if (p != current_proc()) { + proc_rele(p); + return EPERM; + } + + proc_list_lock(); + *is_freezable = ((p->p_memstat_state & P_MEMSTAT_FREEZE_DISABLED) ? 0 : 1); + proc_rele_locked(p); + proc_list_unlock(); + + return 0; +} + +static int +memorystatus_set_process_is_freezable(pid_t pid, boolean_t is_freezable) +{ + proc_t p = PROC_NULL; + + if (pid == 0) { + return EINVAL; + } + + p = proc_find(pid); + if (!p) { + return ESRCH; + } + + /* + * Only allow this on the current proc for now. + * We can check for privileges and allow targeting another process in the future. + */ + if (p != current_proc()) { + proc_rele(p); + return EPERM; + } + + proc_list_lock(); + if (is_freezable == FALSE) { + /* Freeze preference set to FALSE. Set the P_MEMSTAT_FREEZE_DISABLED bit. */ + p->p_memstat_state |= P_MEMSTAT_FREEZE_DISABLED; + printf("memorystatus_set_process_is_freezable: disabling freeze for pid %d [%s]\n", + p->p_pid, (*p->p_name ? p->p_name : "unknown")); + } else { + p->p_memstat_state &= ~P_MEMSTAT_FREEZE_DISABLED; + printf("memorystatus_set_process_is_freezable: enabling freeze for pid %d [%s]\n", + p->p_pid, (*p->p_name ? p->p_name : "unknown")); + } + proc_rele_locked(p); + proc_list_unlock(); + + return 0; +} + +int +memorystatus_control(struct proc *p __unused, struct memorystatus_control_args *args, int *ret) +{ + int error = EINVAL; + boolean_t skip_auth_check = FALSE; + os_reason_t jetsam_reason = OS_REASON_NULL; + +#if !CONFIG_JETSAM + #pragma unused(ret) + #pragma unused(jetsam_reason) +#endif + + /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */ + if (args->command == MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE || args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE) { + skip_auth_check = TRUE; + } + + /* Need to be root or have entitlement. */ + if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT) && !skip_auth_check) { + error = EPERM; + goto out; + } + + /* + * Sanity check. + * Do not enforce it for snapshots. + */ + if (args->command != MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT) { + if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) { + error = EINVAL; + goto out; + } + } + + switch (args->command) { + case MEMORYSTATUS_CMD_GET_PRIORITY_LIST: + error = memorystatus_cmd_get_priority_list(args->pid, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES: + error = memorystatus_cmd_set_priority_properties(args->pid, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES: + error = memorystatus_cmd_set_memlimit_properties(args->pid, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES: + error = memorystatus_cmd_get_memlimit_properties(args->pid, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS: + error = memorystatus_cmd_get_memlimit_excess_np(args->pid, args->flags, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES: + error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT: + error = memorystatus_cmd_get_jetsam_snapshot((int32_t)args->flags, args->buffer, args->buffersize, ret); + break; + case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS: + error = memorystatus_cmd_get_pressure_status(ret); + break; +#if CONFIG_JETSAM + case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK: + /* + * This call does not distinguish between active and inactive limits. + * Default behavior in 2-level HWM world is to set both. + * Non-fatal limit is also assumed for both. + */ + error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE); + break; + case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT: + /* + * This call does not distinguish between active and inactive limits. + * Default behavior in 2-level HWM world is to set both. + * Fatal limit is also assumed for both. + */ + error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE); + break; +#endif /* CONFIG_JETSAM */ + /* Test commands */ +#if DEVELOPMENT || DEBUG + case MEMORYSTATUS_CMD_TEST_JETSAM: + jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_GENERIC); + if (jetsam_reason == OS_REASON_NULL) { + printf("memorystatus_control: failed to allocate jetsam reason\n"); + } + + error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled, jetsam_reason) ? 0 : EINVAL; + break; + case MEMORYSTATUS_CMD_TEST_JETSAM_SORT: + error = memorystatus_cmd_test_jetsam_sort(args->pid, (int32_t)args->flags); + break; +#if CONFIG_JETSAM + case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS: + error = memorystatus_cmd_set_panic_bits(args->buffer, args->buffersize); + break; +#endif /* CONFIG_JETSAM */ +#else /* DEVELOPMENT || DEBUG */ + #pragma unused(jetsam_reason) +#endif /* DEVELOPMENT || DEBUG */ + case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE: + if (memorystatus_aggressive_jetsam_lenient_allowed == FALSE) { +#if DEVELOPMENT || DEBUG + printf("Enabling Lenient Mode\n"); +#endif /* DEVELOPMENT || DEBUG */ + + memorystatus_aggressive_jetsam_lenient_allowed = TRUE; + memorystatus_aggressive_jetsam_lenient = TRUE; + error = 0; + } + break; + case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE: +#if DEVELOPMENT || DEBUG + printf("Disabling Lenient mode\n"); +#endif /* DEVELOPMENT || DEBUG */ + memorystatus_aggressive_jetsam_lenient_allowed = FALSE; + memorystatus_aggressive_jetsam_lenient = FALSE; + error = 0; + break; + case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE: + case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE: + error = memorystatus_low_mem_privileged_listener(args->command); + break; + + case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE: + case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE: + error = memorystatus_update_inactive_jetsam_priority_band(args->pid, args->command, JETSAM_PRIORITY_ELEVATED_INACTIVE, args->flags ? TRUE : FALSE); + break; + case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED: + error = memorystatus_set_process_is_managed(args->pid, args->flags); + break; + + case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED: + error = memorystatus_get_process_is_managed(args->pid, ret); + break; + + case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE: + error = memorystatus_set_process_is_freezable(args->pid, args->flags ? TRUE : FALSE); + break; + + case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE: + error = memorystatus_get_process_is_freezable(args->pid, ret); + break; + +#if CONFIG_FREEZE +#if DEVELOPMENT || DEBUG + case MEMORYSTATUS_CMD_FREEZER_CONTROL: + error = memorystatus_freezer_control(args->flags, args->buffer, args->buffersize, ret); + break; +#endif /* DEVELOPMENT || DEBUG */ +#endif /* CONFIG_FREEZE */ + + default: + break; + } + +out: + return error; +} + + +static int +filt_memorystatusattach(struct knote *kn, __unused struct kevent_internal_s *kev) +{ + int error; + + kn->kn_flags |= EV_CLEAR; + error = memorystatus_knote_register(kn); + if (error) { + kn->kn_flags = EV_ERROR; + kn->kn_data = error; + } + return 0; +} + +static void +filt_memorystatusdetach(struct knote *kn) +{ + memorystatus_knote_unregister(kn); +} + +static int +filt_memorystatus(struct knote *kn __unused, long hint) +{ + if (hint) { + switch (hint) { + case kMemorystatusNoPressure: + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; + } + break; + case kMemorystatusPressure: + if (memorystatus_vm_pressure_level == kVMPressureWarning || memorystatus_vm_pressure_level == kVMPressureUrgent) { + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; + } + } else if (memorystatus_vm_pressure_level == kVMPressureCritical) { + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; + } + } + break; + case kMemorystatusLowSwap: + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_LOW_SWAP) { + kn->kn_fflags = NOTE_MEMORYSTATUS_LOW_SWAP; + } + break; + + case kMemorystatusProcLimitWarn: + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; + } + break; + + case kMemorystatusProcLimitCritical: + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { + kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; + } + break; + + default: + break; + } + } + +#if 0 + if (kn->kn_fflags != 0) { + proc_t knote_proc = knote_get_kq(kn)->kq_p; + pid_t knote_pid = knote_proc->p_pid; + + printf("filt_memorystatus: sending kn 0x%lx (event 0x%x) for pid (%d)\n", + (unsigned long)kn, kn->kn_fflags, knote_pid); + } +#endif + + return kn->kn_fflags != 0; +} + +static int +filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev) +{ + int res; + int prev_kn_sfflags = 0; + + memorystatus_klist_lock(); + + /* + * copy in new kevent settings + * (saving the "desired" data and fflags). + */ + + prev_kn_sfflags = kn->kn_sfflags; + kn->kn_sfflags = (kev->fflags & EVFILT_MEMORYSTATUS_ALL_MASK); + +#if !CONFIG_EMBEDDED + /* + * Only on desktop do we restrict notifications to + * one per active/inactive state (soft limits only). + */ + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { + /* + * Is there previous state to preserve? + */ + if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { + /* + * This knote was previously interested in proc_limit_warn, + * so yes, preserve previous state. + */ + if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) { + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; + } + if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) { + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; + } + } else { + /* + * This knote was not previously interested in proc_limit_warn, + * but it is now. Set both states. + */ + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; + } + } + + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { + /* + * Is there previous state to preserve? + */ + if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { + /* + * This knote was previously interested in proc_limit_critical, + * so yes, preserve previous state. + */ + if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) { + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; + } + if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) { + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; + } + } else { + /* + * This knote was not previously interested in proc_limit_critical, + * but it is now. Set both states. + */ + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; + } + } +#endif /* !CONFIG_EMBEDDED */ + + /* + * reset the output flags based on a + * combination of the old events and + * the new desired event list. + */ + //kn->kn_fflags &= kn->kn_sfflags; + + res = (kn->kn_fflags != 0); + + memorystatus_klist_unlock(); + + return res; +} + +static int +filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) +{ +#pragma unused(data) + int res; + + memorystatus_klist_lock(); + res = (kn->kn_fflags != 0); + if (res) { + *kev = kn->kn_kevent; + kn->kn_flags |= EV_CLEAR; /* automatic */ + kn->kn_fflags = 0; + kn->kn_data = 0; + } + memorystatus_klist_unlock(); + + return res; +} + +static void +memorystatus_klist_lock(void) +{ + lck_mtx_lock(&memorystatus_klist_mutex); +} + +static void +memorystatus_klist_unlock(void) +{ + lck_mtx_unlock(&memorystatus_klist_mutex); +} + +void +memorystatus_kevent_init(lck_grp_t *grp, lck_attr_t *attr) +{ + lck_mtx_init(&memorystatus_klist_mutex, grp, attr); + klist_init(&memorystatus_klist); +} + +int +memorystatus_knote_register(struct knote *kn) +{ + int error = 0; + + memorystatus_klist_lock(); + + /* + * Support only userspace visible flags. + */ + if ((kn->kn_sfflags & EVFILT_MEMORYSTATUS_ALL_MASK) == (unsigned int) kn->kn_sfflags) { +#if !CONFIG_EMBEDDED + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; + } + + if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; + kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; + } +#endif /* !CONFIG_EMBEDDED */ + + KNOTE_ATTACH(&memorystatus_klist, kn); + } else { + error = ENOTSUP; + } + + memorystatus_klist_unlock(); + + return error; +} + +void +memorystatus_knote_unregister(struct knote *kn __unused) +{ + memorystatus_klist_lock(); + KNOTE_DETACH(&memorystatus_klist, kn); + memorystatus_klist_unlock(); +} + + +#if 0 +#if CONFIG_JETSAM && VM_PRESSURE_EVENTS +static boolean_t +memorystatus_issue_pressure_kevent(boolean_t pressured) +{ + memorystatus_klist_lock(); + KNOTE(&memorystatus_klist, pressured ? kMemorystatusPressure : kMemorystatusNoPressure); + memorystatus_klist_unlock(); + return TRUE; +} +#endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */ +#endif /* 0 */ + +/* Coalition support */ + +/* sorting info for a particular priority bucket */ +typedef struct memstat_sort_info { + coalition_t msi_coal; + uint64_t msi_page_count; + pid_t msi_pid; + int msi_ntasks; +} memstat_sort_info_t; + +/* + * qsort from smallest page count to largest page count + * + * return < 0 for a < b + * 0 for a == b + * > 0 for a > b + */ +static int +memstat_asc_cmp(const void *a, const void *b) +{ + const memstat_sort_info_t *msA = (const memstat_sort_info_t *)a; + const memstat_sort_info_t *msB = (const memstat_sort_info_t *)b; + + return (int)((uint64_t)msA->msi_page_count - (uint64_t)msB->msi_page_count); +} + +/* + * Return the number of pids rearranged during this sort. + */ +static int +memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order) +{ +#define MAX_SORT_PIDS 80 +#define MAX_COAL_LEADERS 10 + + unsigned int b = bucket_index; + int nleaders = 0; + int ntasks = 0; + proc_t p = NULL; + coalition_t coal = COALITION_NULL; + int pids_moved = 0; + int total_pids_moved = 0; + int i; + + /* + * The system is typically under memory pressure when in this + * path, hence, we want to avoid dynamic memory allocation. + */ + memstat_sort_info_t leaders[MAX_COAL_LEADERS]; + pid_t pid_list[MAX_SORT_PIDS]; + + if (bucket_index >= MEMSTAT_BUCKET_COUNT) { + return 0; + } + + /* + * Clear the array that holds coalition leader information + */ + for (i = 0; i < MAX_COAL_LEADERS; i++) { + leaders[i].msi_coal = COALITION_NULL; + leaders[i].msi_page_count = 0; /* will hold total coalition page count */ + leaders[i].msi_pid = 0; /* will hold coalition leader pid */ + leaders[i].msi_ntasks = 0; /* will hold the number of tasks in a coalition */ + } + + p = memorystatus_get_first_proc_locked(&b, FALSE); + while (p) { + if (coalition_is_leader(p->task, COALITION_TYPE_JETSAM, &coal)) { + if (nleaders < MAX_COAL_LEADERS) { + int coal_ntasks = 0; + uint64_t coal_page_count = coalition_get_page_count(coal, &coal_ntasks); + leaders[nleaders].msi_coal = coal; + leaders[nleaders].msi_page_count = coal_page_count; + leaders[nleaders].msi_pid = p->p_pid; /* the coalition leader */ + leaders[nleaders].msi_ntasks = coal_ntasks; + nleaders++; + } else { + /* + * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions. + * Abandoned coalitions will linger at the tail of the priority band + * when this sort session ends. + * TODO: should this be an assert? + */ + printf("%s: WARNING: more than %d leaders in priority band [%d]\n", + __FUNCTION__, MAX_COAL_LEADERS, bucket_index); + break; + } + } + p = memorystatus_get_next_proc_locked(&b, p, FALSE); + } + + if (nleaders == 0) { + /* Nothing to sort */ + return 0; + } + + /* + * Sort the coalition leader array, from smallest coalition page count + * to largest coalition page count. When inserted in the priority bucket, + * smallest coalition is handled first, resulting in the last to be jetsammed. + */ + if (nleaders > 1) { + qsort(leaders, nleaders, sizeof(memstat_sort_info_t), memstat_asc_cmp); + } + +#if 0 + for (i = 0; i < nleaders; i++) { + printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n", + __FUNCTION__, i, nleaders, leaders[i].msi_pid, leaders[i].msi_page_count, + leaders[i].msi_ntasks); + } +#endif + + /* + * During coalition sorting, processes in a priority band are rearranged + * by being re-inserted at the head of the queue. So, when handling a + * list, the first process that gets moved to the head of the queue, + * ultimately gets pushed toward the queue tail, and hence, jetsams last. + * + * So, for example, the coalition leader is expected to jetsam last, + * after its coalition members. Therefore, the coalition leader is + * inserted at the head of the queue first. + * + * After processing a coalition, the jetsam order is as follows: + * undefs(jetsam first), extensions, xpc services, leader(jetsam last) + */ + + /* + * Coalition members are rearranged in the priority bucket here, + * based on their coalition role. + */ + total_pids_moved = 0; + for (i = 0; i < nleaders; i++) { + /* a bit of bookkeeping */ + pids_moved = 0; + + /* Coalition leaders are jetsammed last, so move into place first */ + pid_list[0] = leaders[i].msi_pid; + pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, 1); + + /* xpc services should jetsam after extensions */ + ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_XPC, + coal_sort_order, pid_list, MAX_SORT_PIDS); + + if (ntasks > 0) { + pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, + (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); + } + + /* extensions should jetsam after unmarked processes */ + ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_EXT, + coal_sort_order, pid_list, MAX_SORT_PIDS); + + if (ntasks > 0) { + pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, + (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); + } + + /* undefined coalition members should be the first to jetsam */ + ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_UNDEF, + coal_sort_order, pid_list, MAX_SORT_PIDS); + + if (ntasks > 0) { + pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, + (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); + } + +#if 0 + if (pids_moved == leaders[i].msi_ntasks) { + /* + * All the pids in the coalition were found in this band. + */ + printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__, + pids_moved, leaders[i].msi_ntasks); + } else if (pids_moved > leaders[i].msi_ntasks) { + /* + * Apparently new coalition members showed up during the sort? + */ + printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__, + pids_moved, leaders[i].msi_ntasks); + } else { + /* + * Apparently not all the pids in the coalition were found in this band? + */ + printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__, + pids_moved, leaders[i].msi_ntasks); + } +#endif + + total_pids_moved += pids_moved; + } /* end for */ + + return total_pids_moved; +} + + +/* + * Traverse a list of pids, searching for each within the priority band provided. + * If pid is found, move it to the front of the priority band. + * Never searches outside the priority band provided. + * + * Input: + * bucket_index - jetsam priority band. + * pid_list - pointer to a list of pids. + * list_sz - number of pids in the list. + * + * Pid list ordering is important in that, + * pid_list[n] is expected to jetsam ahead of pid_list[n+1]. + * The sort_order is set by the coalition default. + * + * Return: + * the number of pids found and hence moved within the priority band. + */ +static int +memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz) +{ + memstat_bucket_t *current_bucket; + int i; + int found_pids = 0; + + if ((pid_list == NULL) || (list_sz <= 0)) { + return 0; + } + + if (bucket_index >= MEMSTAT_BUCKET_COUNT) { + return 0; + } + + current_bucket = &memstat_bucket[bucket_index]; + for (i = 0; i < list_sz; i++) { + unsigned int b = bucket_index; + proc_t p = NULL; + proc_t aProc = NULL; + pid_t aPid; + int list_index; + + list_index = ((list_sz - 1) - i); + aPid = pid_list[list_index]; + + /* never search beyond bucket_index provided */ + p = memorystatus_get_first_proc_locked(&b, FALSE); + while (p) { + if (p->p_pid == aPid) { + aProc = p; + break; + } + p = memorystatus_get_next_proc_locked(&b, p, FALSE); + } + + if (aProc == NULL) { + /* pid not found in this band, just skip it */ + continue; + } else { + TAILQ_REMOVE(¤t_bucket->list, aProc, p_memstat_list); + TAILQ_INSERT_HEAD(¤t_bucket->list, aProc, p_memstat_list); + found_pids++; + } + } + return found_pids; +} + +int +memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index) +{ + int32_t i = JETSAM_PRIORITY_IDLE; + int count = 0; + + if (max_bucket_index >= MEMSTAT_BUCKET_COUNT) { + return -1; + } + + while (i <= max_bucket_index) { + count += memstat_bucket[i++].count; + } + + return count; +} + +int +memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap) +{ +#if !CONFIG_JETSAM + if (!p || (!isApp(p)) || (p->p_memstat_state & (P_MEMSTAT_INTERNAL | P_MEMSTAT_MANAGED))) { + /* + * Ineligible processes OR system processes e.g. launchd. + * + * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e. + * they're managed by assertiond. These are iOS apps that have been ported + * to macOS. assertiond might be in the process of modifying the app's + * priority / memory limit - so it might have the proc_list lock, and then try + * to take the task lock. Meanwhile we've entered this function with the task lock + * held, and we need the proc_list lock below. So we'll deadlock with assertiond. + * + * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list + * lock here, since assertiond only sets this bit on process launch. + */ + return -1; + } + + /* + * For macOS only: + * We would like to use memorystatus_update() here to move the processes + * within the bands. Unfortunately memorystatus_update() calls + * memorystatus_update_priority_locked() which uses any band transitions + * as an indication to modify ledgers. For that it needs the task lock + * and since we came into this function with the task lock held, we'll deadlock. + * + * Unfortunately we can't completely disable ledger updates because we still + * need the ledger updates for a subset of processes i.e. daemons. + * When all processes on all platforms support memory limits, we can simply call + * memorystatus_update(). + * + * It also has some logic to deal with 'aging' which, currently, is only applicable + * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need + * to do this explicit band transition. + */ + + memstat_bucket_t *current_bucket, *new_bucket; + int32_t priority = 0; + + proc_list_lock(); + + if (((p->p_listflag & P_LIST_EXITED) != 0) || + (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED))) { + /* + * If the process is on its way out OR + * jetsam has alread tried and failed to kill this process, + * let's skip the whole jetsam band transition. + */ + proc_list_unlock(); + return 0; + } + + if (is_appnap) { + current_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; + new_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + priority = JETSAM_PRIORITY_IDLE; + } else { + if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { + /* + * It is possible that someone pulled this process + * out of the IDLE band without updating its app-nap + * parameters. + */ + proc_list_unlock(); + return 0; + } + + current_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; + new_bucket = &memstat_bucket[p->p_memstat_requestedpriority]; + priority = p->p_memstat_requestedpriority; + } + + TAILQ_REMOVE(¤t_bucket->list, p, p_memstat_list); + current_bucket->count--; + + TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); + new_bucket->count++; + + /* + * Record idle start or idle delta. + */ + if (p->p_memstat_effectivepriority == priority) { + /* + * This process is not transitioning between + * jetsam priority buckets. Do nothing. + */ + } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { + uint64_t now; + /* + * Transitioning out of the idle priority bucket. + * Record idle delta. + */ + assert(p->p_memstat_idle_start != 0); + now = mach_absolute_time(); + if (now > p->p_memstat_idle_start) { + p->p_memstat_idle_delta = now - p->p_memstat_idle_start; + } + } else if (priority == JETSAM_PRIORITY_IDLE) { + /* + * Transitioning into the idle priority bucket. + * Record idle start. + */ + p->p_memstat_idle_start = mach_absolute_time(); + } + + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0); + + p->p_memstat_effectivepriority = priority; + + proc_list_unlock(); + + return 0; + +#else /* !CONFIG_JETSAM */ + #pragma unused(p) + #pragma unused(is_appnap) + return -1; +#endif /* !CONFIG_JETSAM */ }