X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/55e303ae13a4cf49d70f2294092726f2fffb9ef2..bb59bff194111743b33cc36712410b5656329d3c:/bsd/kern/kern_event.c diff --git a/bsd/kern/kern_event.c b/bsd/kern/kern_event.c index 0b1425c07..708aef474 100644 --- a/bsd/kern/kern_event.c +++ b/bsd/kern/kern_event.c @@ -1,17 +1,20 @@ /* - * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2014 Apple Inc. All rights reserved. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * @APPLE_LICENSE_HEADER_START@ - * - * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. - * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in - * compliance with the License. Please obtain a copy of the License at - * http://www.opensource.apple.com/apsl/ and read it before using this - * file. - * + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -19,8 +22,8 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * - * @APPLE_LICENSE_HEADER_END@ + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ * */ /*- @@ -51,15 +54,17 @@ /* * @(#)kern_event.c 1.0 (3/31/2000) */ +#include #include #include #include #include -#include -#include +#include +#include +#include #include -#include +#include #include #include #include @@ -71,104 +76,201 @@ #include #include #include - +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include #include +#include + +#include +#include "net/net_str_id.h" + +#include + +#if VM_PRESSURE_EVENTS +#include +#endif + +#if CONFIG_MEMORYSTATUS +#include +#endif MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); -static int kqueue_scan(struct file *fp, int maxevents, - struct kevent *ulistp, const struct timespec *timeout, - register_t *retval, struct proc *p); -static void kqueue_wakeup(struct kqueue *kq); - -static int kqueue_read __P((struct file *fp, struct uio *uio, - struct ucred *cred, int flags, struct proc *p)); -static int kqueue_write __P((struct file *fp, struct uio *uio, - struct ucred *cred, int flags, struct proc *p)); -static int kqueue_ioctl __P((struct file *fp, u_long com, caddr_t data, - struct proc *p)); -static int kqueue_select __P((struct file *fp, int which, void *wql, - struct proc *p)); -static int kqueue_close __P((struct file *fp, struct proc *p)); -static int kqueue_kqfilter __P((struct file *fp, struct knote *kn, struct proc *p)); - -static struct fileops kqueueops = { - kqueue_read, - kqueue_write, - kqueue_ioctl, - kqueue_select, - kqueue_close, - kqueue_kqfilter +#define KQ_EVENT NULL + +static inline void kqlock(struct kqueue *kq); +static inline void kqunlock(struct kqueue *kq); + +static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn); +static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn); +static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn); +static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn); + +static void kqueue_wakeup(struct kqueue *kq, int closed); +static int kqueue_read(struct fileproc *fp, struct uio *uio, + int flags, vfs_context_t ctx); +static int kqueue_write(struct fileproc *fp, struct uio *uio, + int flags, vfs_context_t ctx); +static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data, + vfs_context_t ctx); +static int kqueue_select(struct fileproc *fp, int which, void *wql, + vfs_context_t ctx); +static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); +static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, + vfs_context_t ctx); +static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); + +static const struct fileops kqueueops = { + .fo_type = DTYPE_KQUEUE, + .fo_read = kqueue_read, + .fo_write = kqueue_write, + .fo_ioctl = kqueue_ioctl, + .fo_select = kqueue_select, + .fo_close = kqueue_close, + .fo_kqfilter = kqueue_kqfilter, + .fo_drain = kqueue_drain, }; -static void knote_fdpattach(struct knote *kn, struct filedesc *fdp); -static void knote_drop(struct knote *kn, struct proc *p); -static void knote_enqueue(struct knote *kn); -static void knote_dequeue(struct knote *kn); -static struct knote *knote_alloc(void); -static void knote_free(struct knote *kn); +static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist, + int nchanges, user_addr_t eventlist, int nevents, int fd, + user_addr_t utimeout, unsigned int flags, int32_t *retval); +static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, + struct proc *p, int iskev64); +static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, + struct proc *p, int iskev64); +char * kevent_description(struct kevent64_s *kevp, char *s, size_t n); + +static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, + void *data); +static void kevent_continue(struct kqueue *kq, void *data, int error); +static void kqueue_scan_continue(void *contp, wait_result_t wait_result); +static int kqueue_process(struct kqueue *kq, kevent_callback_t callback, + void *data, int *countp, struct proc *p); +static int kqueue_begin_processing(struct kqueue *kq); +static void kqueue_end_processing(struct kqueue *kq); +static int knote_process(struct knote *kn, kevent_callback_t callback, + void *data, struct kqtailq *inprocessp, struct proc *p); +static void knote_put(struct knote *kn); +static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, + struct proc *p); +static void knote_drop(struct knote *kn, struct proc *p); +static void knote_activate(struct knote *kn, int); +static void knote_deactivate(struct knote *kn); +static void knote_enqueue(struct knote *kn); +static void knote_dequeue(struct knote *kn); +static struct knote *knote_alloc(void); +static void knote_free(struct knote *kn); + +static int filt_fileattach(struct knote *kn); +static struct filterops file_filtops = { + .f_isfd = 1, + .f_attach = filt_fileattach, +}; -static int filt_fileattach(struct knote *kn); -static struct filterops file_filtops = - { 1, filt_fileattach, NULL, NULL }; +static void filt_kqdetach(struct knote *kn); +static int filt_kqueue(struct knote *kn, long hint); +static struct filterops kqread_filtops = { + .f_isfd = 1, + .f_detach = filt_kqdetach, + .f_event = filt_kqueue, +}; -static void filt_kqdetach(struct knote *kn); -static int filt_kqueue(struct knote *kn, long hint); -static struct filterops kqread_filtops = - { 1, NULL, filt_kqdetach, filt_kqueue }; +/* placeholder for not-yet-implemented filters */ +static int filt_badattach(struct knote *kn); +static struct filterops bad_filtops = { + .f_attach = filt_badattach, +}; -/* - * JMM - placeholder for not-yet-implemented filters - */ -static int filt_badattach(struct knote *kn); -static struct filterops bad_filtops = - { 0, filt_badattach, 0 , 0 }; +static int filt_procattach(struct knote *kn); +static void filt_procdetach(struct knote *kn); +static int filt_proc(struct knote *kn, long hint); +static struct filterops proc_filtops = { + .f_attach = filt_procattach, + .f_detach = filt_procdetach, + .f_event = filt_proc, +}; -static int filt_procattach(struct knote *kn); -static void filt_procdetach(struct knote *kn); -static int filt_proc(struct knote *kn, long hint); +#if VM_PRESSURE_EVENTS +static int filt_vmattach(struct knote *kn); +static void filt_vmdetach(struct knote *kn); +static int filt_vm(struct knote *kn, long hint); +static struct filterops vm_filtops = { + .f_attach = filt_vmattach, + .f_detach = filt_vmdetach, + .f_event = filt_vm, +}; +#endif /* VM_PRESSURE_EVENTS */ -static struct filterops proc_filtops = - { 0, filt_procattach, filt_procdetach, filt_proc }; +#if CONFIG_MEMORYSTATUS +extern struct filterops memorystatus_filtops; +#endif /* CONFIG_MEMORYSTATUS */ extern struct filterops fs_filtops; extern struct filterops sig_filtops; -#if 0 -/* JMM - We don't implement these now */ -static void filt_timerexpire(void *knx); -static int filt_timerattach(struct knote *kn); -static void filt_timerdetach(struct knote *kn); -static int filt_timer(struct knote *kn, long hint); - -static struct filterops timer_filtops = - { 0, filt_timerattach, filt_timerdetach, filt_timer }; +/* Timer filter */ +static int filt_timerattach(struct knote *kn); +static void filt_timerdetach(struct knote *kn); +static int filt_timer(struct knote *kn, long hint); +static void filt_timertouch(struct knote *kn, struct kevent64_s *kev, + long type); +static struct filterops timer_filtops = { + .f_attach = filt_timerattach, + .f_detach = filt_timerdetach, + .f_event = filt_timer, + .f_touch = filt_timertouch, +}; -static int kq_ncallouts = 0; -static int kq_calloutmax = (4 * 1024); +/* Helpers */ +static void filt_timerexpire(void *knx, void *param1); +static int filt_timervalidate(struct knote *kn); +static void filt_timerupdate(struct knote *kn); +static void filt_timercancel(struct knote *kn); -SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, - &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); -#endif /* 0 */ +#define TIMER_RUNNING 0x1 +#define TIMER_CANCELWAIT 0x2 -static zone_t knote_zone; +static lck_mtx_t _filt_timerlock; +static void filt_timerlock(void); +static void filt_timerunlock(void); -#define KNOTE_ACTIVATE(kn) do { \ - kn->kn_status |= KN_ACTIVE; \ - if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ - knote_enqueue(kn); \ -} while(0) +static zone_t knote_zone; -#define KN_HASHSIZE 64 /* XXX should be tunable */ -#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) +#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) #if 0 extern struct filterops aio_filtops; #endif +/* Mach portset filter */ +extern struct filterops machport_filtops; + +/* User filter */ +static int filt_userattach(struct knote *kn); +static void filt_userdetach(struct knote *kn); +static int filt_user(struct knote *kn, long hint); +static void filt_usertouch(struct knote *kn, struct kevent64_s *kev, + long type); +static struct filterops user_filtops = { + .f_attach = filt_userattach, + .f_detach = filt_userdetach, + .f_event = filt_user, + .f_touch = filt_usertouch, +}; + /* - * Table for for all system-defined filters. + * Table for all system-defined filters. */ static struct filterops *sysfilt_ops[] = { &file_filtops, /* EVFILT_READ */ @@ -181,36 +283,200 @@ static struct filterops *sysfilt_ops[] = { &file_filtops, /* EVFILT_VNODE */ &proc_filtops, /* EVFILT_PROC */ &sig_filtops, /* EVFILT_SIGNAL */ -#if 0 &timer_filtops, /* EVFILT_TIMER */ + &machport_filtops, /* EVFILT_MACHPORT */ + &fs_filtops, /* EVFILT_FS */ + &user_filtops, /* EVFILT_USER */ + &bad_filtops, /* unused */ +#if VM_PRESSURE_EVENTS + &vm_filtops, /* EVFILT_VM */ +#else + &bad_filtops, /* EVFILT_VM */ +#endif + &file_filtops, /* EVFILT_SOCK */ +#if CONFIG_MEMORYSTATUS + &memorystatus_filtops, /* EVFILT_MEMORYSTATUS */ #else - &bad_filtops, /* EVFILT_TIMER */ + &bad_filtops, /* EVFILT_MEMORYSTATUS */ #endif - &bad_filtops, /* EVFILT_MACHPORT */ - &fs_filtops /* EVFILT_FS */ }; +/* + * kqueue/note lock attributes and implementations + * + * kqueues have locks, while knotes have use counts + * Most of the knote state is guarded by the object lock. + * the knote "inuse" count and status use the kqueue lock. + */ +lck_grp_attr_t * kq_lck_grp_attr; +lck_grp_t * kq_lck_grp; +lck_attr_t * kq_lck_attr; + +static inline void +kqlock(struct kqueue *kq) +{ + lck_spin_lock(&kq->kq_lock); +} + +static inline void +kqunlock(struct kqueue *kq) +{ + lck_spin_unlock(&kq->kq_lock); +} + +/* + * Convert a kq lock to a knote use referece. + * + * If the knote is being dropped, we can't get + * a use reference, so just return with it + * still locked. + * - kq locked at entry + * - unlock on exit if we get the use reference + */ +static int +kqlock2knoteuse(struct kqueue *kq, struct knote *kn) +{ + if (kn->kn_status & KN_DROPPING) + return (0); + kn->kn_inuse++; + kqunlock(kq); + return (1); +} + +/* + * Convert a kq lock to a knote use referece, + * but wait for attach and drop events to complete. + * + * If the knote is being dropped, we can't get + * a use reference, so just return with it + * still locked. + * - kq locked at entry + * - kq always unlocked on exit + */ +static int +kqlock2knoteusewait(struct kqueue *kq, struct knote *kn) +{ + if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) { + kn->kn_status |= KN_USEWAIT; + wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, + &kn->kn_status, THREAD_UNINT, 0); + kqunlock(kq); + thread_block(THREAD_CONTINUE_NULL); + return (0); + } + kn->kn_inuse++; + kqunlock(kq); + return (1); +} + +/* + * Convert from a knote use reference back to kq lock. + * + * Drop a use reference and wake any waiters if + * this is the last one. + * + * The exit return indicates if the knote is + * still alive - but the kqueue lock is taken + * unconditionally. + */ +static int +knoteuse2kqlock(struct kqueue *kq, struct knote *kn) +{ + kqlock(kq); + if (--kn->kn_inuse == 0) { + if ((kn->kn_status & KN_ATTACHING) != 0) { + kn->kn_status &= ~KN_ATTACHING; + } + if ((kn->kn_status & KN_USEWAIT) != 0) { + kn->kn_status &= ~KN_USEWAIT; + wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, + &kn->kn_status, THREAD_AWAKENED); + } + } + return ((kn->kn_status & KN_DROPPING) == 0); +} + +/* + * Convert a kq lock to a knote drop reference. + * + * If the knote is in use, wait for the use count + * to subside. We first mark our intention to drop + * it - keeping other users from "piling on." + * If we are too late, we have to wait for the + * other drop to complete. + * + * - kq locked at entry + * - always unlocked on exit. + * - caller can't hold any locks that would prevent + * the other dropper from completing. + */ +static int +kqlock2knotedrop(struct kqueue *kq, struct knote *kn) +{ + int oktodrop; + + oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0); + kn->kn_status &= ~KN_STAYQUEUED; + kn->kn_status |= KN_DROPPING; + if (oktodrop) { + if (kn->kn_inuse == 0) { + kqunlock(kq); + return (oktodrop); + } + } + kn->kn_status |= KN_USEWAIT; + wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, + THREAD_UNINT, 0); + kqunlock(kq); + thread_block(THREAD_CONTINUE_NULL); + return (oktodrop); +} + +/* + * Release a knote use count reference. + */ +static void +knote_put(struct knote *kn) +{ + struct kqueue *kq = kn->kn_kq; + + kqlock(kq); + if (--kn->kn_inuse == 0) { + if ((kn->kn_status & KN_USEWAIT) != 0) { + kn->kn_status &= ~KN_USEWAIT; + wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, + &kn->kn_status, THREAD_AWAKENED); + } + } + kqunlock(kq); +} + static int filt_fileattach(struct knote *kn) { - - return (fo_kqfilter(kn->kn_fp, kn, current_proc())); + return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current())); } +#define f_flag f_fglob->fg_flag +#define f_msgcount f_fglob->fg_msgcount +#define f_cred f_fglob->fg_cred +#define f_ops f_fglob->fg_ops +#define f_offset f_fglob->fg_offset +#define f_data f_fglob->fg_data + static void filt_kqdetach(struct knote *kn) { struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; - if (kq->kq_state & KQ_SEL) - return; - + kqlock(kq); KNOTE_DETACH(&kq->kq_sel.si_note, kn); + kqunlock(kq); } /*ARGSUSED*/ static int -filt_kqueue(struct knote *kn, long hint) +filt_kqueue(struct knote *kn, __unused long hint) { struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; @@ -223,331 +489,1171 @@ filt_procattach(struct knote *kn) { struct proc *p; - p = pfind(kn->kn_id); - if (p == NULL) - return (ESRCH); - if (! PRISON_CHECK(current_proc(), p)) - return (EACCES); + assert(PID_MAX < NOTE_PDATAMASK); - kn->kn_ptr.p_proc = p; - kn->kn_flags |= EV_CLEAR; /* automatically set */ + if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) + return (ENOTSUP); - /* - * internal flag indicating registration done by kernel - */ - if (kn->kn_flags & EV_FLAG1) { - kn->kn_data = kn->kn_sdata; /* ppid */ - kn->kn_fflags = NOTE_CHILD; - kn->kn_flags &= ~EV_FLAG1; + p = proc_find(kn->kn_id); + if (p == NULL) { + return (ESRCH); } - /* XXX lock the proc here while adding to the list? */ + const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; + + if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) + do { + pid_t selfpid = proc_selfpid(); + + if (p->p_ppid == selfpid) + break; /* parent => ok */ + + if ((p->p_lflag & P_LTRACED) != 0 && + (p->p_oppid == selfpid)) + break; /* parent-in-waiting => ok */ + + proc_rele(p); + return (EACCES); + } while (0); + + proc_klist_lock(); + + kn->kn_flags |= EV_CLEAR; /* automatically set */ + kn->kn_ptr.p_proc = p; /* store the proc handle */ + KNOTE_ATTACH(&p->p_klist, kn); + proc_klist_unlock(); + + proc_rele(p); + return (0); } /* * The knote may be attached to a different process, which may exit, - * leaving nothing for the knote to be attached to. So when the process - * exits, the knote is marked as DETACHED and also flagged as ONESHOT so - * it will be deleted when read out. However, as part of the knote deletion, - * this routine is called, so a check is needed to avoid actually performing - * a detach, because the original process does not exist any more. + * leaving nothing for the knote to be attached to. In that case, + * the pointer to the process will have already been nulled out. */ static void filt_procdetach(struct knote *kn) { - struct proc *p = kn->kn_ptr.p_proc; + struct proc *p; - if (kn->kn_status & KN_DETACHED) - return; + proc_klist_lock(); + + p = kn->kn_ptr.p_proc; + if (p != PROC_NULL) { + kn->kn_ptr.p_proc = PROC_NULL; + KNOTE_DETACH(&p->p_klist, kn); + } - /* XXX locking? this might modify another process. */ - KNOTE_DETACH(&p->p_klist, kn); + proc_klist_unlock(); } static int filt_proc(struct knote *kn, long hint) { - u_int event; - /* - * mask off extra data + * Note: a lot of bits in hint may be obtained from the knote + * To free some of those bits, see Freeing up + * bits in hint for filt_proc */ - event = (u_int)hint & NOTE_PCTRLMASK; + /* hint is 0 when called from above */ + if (hint != 0) { + u_int event; - /* - * if the user is interested in this event, record it. - */ - if (kn->kn_sfflags & event) - kn->kn_fflags |= event; + /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */ - /* - * process is gone, so flag the event as finished. - */ - if (event == NOTE_EXIT) { - kn->kn_status |= KN_DETACHED; - kn->kn_flags |= (EV_EOF | EV_ONESHOT); - return (1); - } + /* + * mask off extra data + */ + event = (u_int)hint & NOTE_PCTRLMASK; - /* - * process forked, and user wants to track the new process, - * so attach a new knote to it, and immediately report an - * event with the parent's pid. - */ - if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { - struct kevent kev; - int error; + /* + * termination lifecycle events can happen while a debugger + * has reparented a process, in which case notifications + * should be quashed except to the tracing parent. When + * the debugger reaps the child (either via wait4(2) or + * process exit), the child will be reparented to the original + * parent and these knotes re-fired. + */ + if (event & NOTE_EXIT) { + if ((kn->kn_ptr.p_proc->p_oppid != 0) + && (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) { + /* + * This knote is not for the current ptrace(2) parent, ignore. + */ + return 0; + } + } /* - * register knote with new process. + * if the user is interested in this event, record it. */ - kev.ident = hint & NOTE_PDATAMASK; /* pid */ - kev.filter = kn->kn_filter; - kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; - kev.fflags = kn->kn_sfflags; - kev.data = kn->kn_id; /* parent */ - kev.udata = kn->kn_kevent.udata; /* preserve udata */ - error = kqueue_register(kn->kn_kq, &kev, NULL); - if (error) - kn->kn_fflags |= NOTE_TRACKERR; + if (kn->kn_sfflags & event) + kn->kn_fflags |= event; + +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wdeprecated-declarations" + if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) { + kn->kn_flags |= (EV_EOF | EV_ONESHOT); + } +#pragma clang diagnostic pop + + + /* + * The kernel has a wrapper in place that returns the same data + * as is collected here, in kn_data. Any changes to how + * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected + * should also be reflected in the proc_pidnoteexit() wrapper. + */ + if (event == NOTE_EXIT) { + kn->kn_data = 0; + if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) { + kn->kn_fflags |= NOTE_EXITSTATUS; + kn->kn_data |= (hint & NOTE_PDATAMASK); + } + if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) { + kn->kn_fflags |= NOTE_EXIT_DETAIL; + if ((kn->kn_ptr.p_proc->p_lflag & + P_LTERM_DECRYPTFAIL) != 0) { + kn->kn_data |= NOTE_EXIT_DECRYPTFAIL; + } + if ((kn->kn_ptr.p_proc->p_lflag & + P_LTERM_JETSAM) != 0) { + kn->kn_data |= NOTE_EXIT_MEMORY; + switch (kn->kn_ptr.p_proc->p_lflag & + P_JETSAM_MASK) { + case P_JETSAM_VMPAGESHORTAGE: + kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE; + break; + case P_JETSAM_VMTHRASHING: + kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING; + break; + case P_JETSAM_FCTHRASHING: + kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING; + break; + case P_JETSAM_VNODE: + kn->kn_data |= NOTE_EXIT_MEMORY_VNODE; + break; + case P_JETSAM_HIWAT: + kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT; + break; + case P_JETSAM_PID: + kn->kn_data |= NOTE_EXIT_MEMORY_PID; + break; + case P_JETSAM_IDLEEXIT: + kn->kn_data |= NOTE_EXIT_MEMORY_IDLE; + break; + } + } + if ((kn->kn_ptr.p_proc->p_csflags & + CS_KILLED) != 0) { + kn->kn_data |= NOTE_EXIT_CSERROR; + } + } + } } + /* atomic check, no locking need when called from above */ return (kn->kn_fflags != 0); } -#if 0 -static void -filt_timerexpire(void *knx) +#if VM_PRESSURE_EVENTS +/* + * Virtual memory kevents + * + * author: Matt Jacobson [matthew_jacobson@apple.com] + */ + +static int +filt_vmattach(struct knote *kn) { - struct knote *kn = knx; - struct callout *calloutp; - struct timeval tv; - int tticks; + /* + * The note will be cleared once the information has been flushed to + * the client. If there is still pressure, we will be re-alerted. + */ + kn->kn_flags |= EV_CLEAR; + return (vm_knote_register(kn)); +} - kn->kn_data++; - KNOTE_ACTIVATE(kn); +static void +filt_vmdetach(struct knote *kn) +{ + vm_knote_unregister(kn); +} - if ((kn->kn_flags & EV_ONESHOT) == 0) { - tv.tv_sec = kn->kn_sdata / 1000; - tv.tv_usec = (kn->kn_sdata % 1000) * 1000; - tticks = tvtohz(&tv); - calloutp = (struct callout *)kn->kn_hook; - callout_reset(calloutp, tticks, filt_timerexpire, kn); +static int +filt_vm(struct knote *kn, long hint) +{ + /* hint == 0 means this is just an alive? check (always true) */ + if (hint != 0) { + const pid_t pid = (pid_t)hint; + if ((kn->kn_sfflags & NOTE_VM_PRESSURE) && + (kn->kn_kq->kq_p->p_pid == pid)) { + kn->kn_fflags |= NOTE_VM_PRESSURE; + } } + + return (kn->kn_fflags != 0); } +#endif /* VM_PRESSURE_EVENTS */ /* - * data contains amount of time to sleep, in milliseconds - */ + * filt_timervalidate - process data from user + * + * Converts to either interval or deadline format. + * + * The saved-data field in the knote contains the + * time value. The saved filter-flags indicates + * the unit of measurement. + * + * After validation, either the saved-data field + * contains the interval in absolute time, or ext[0] + * contains the expected deadline. If that deadline + * is in the past, ext[0] is 0. + * + * Returns EINVAL for unrecognized units of time. + * + * Timer filter lock is held. + * + */ static int -filt_timerattach(struct knote *kn) +filt_timervalidate(struct knote *kn) { - struct callout *calloutp; - struct timeval tv; - int tticks; + uint64_t multiplier; + uint64_t raw = 0; + + switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) { + case NOTE_SECONDS: + multiplier = NSEC_PER_SEC; + break; + case NOTE_USECONDS: + multiplier = NSEC_PER_USEC; + break; + case NOTE_NSECONDS: + multiplier = 1; + break; + case 0: /* milliseconds (default) */ + multiplier = NSEC_PER_SEC / 1000; + break; + default: + return (EINVAL); + } - if (kq_ncallouts >= kq_calloutmax) - return (ENOMEM); - kq_ncallouts++; + /* transform the slop delta(leeway) in kn_ext[1] if passed to same time scale */ + if(kn->kn_sfflags & NOTE_LEEWAY){ + nanoseconds_to_absolutetime((uint64_t)kn->kn_ext[1] * multiplier, &raw); + kn->kn_ext[1] = raw; + } + + nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw); + + kn->kn_ext[0] = 0; + kn->kn_sdata = 0; + + if (kn->kn_sfflags & NOTE_ABSOLUTE) { + clock_sec_t seconds; + clock_nsec_t nanoseconds; + uint64_t now; - tv.tv_sec = kn->kn_sdata / 1000; - tv.tv_usec = (kn->kn_sdata % 1000) * 1000; - tticks = tvtohz(&tv); + clock_get_calendar_nanotime(&seconds, &nanoseconds); + nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC + + nanoseconds, &now); - kn->kn_flags |= EV_CLEAR; /* automatically set */ - MALLOC(calloutp, struct callout *, sizeof(*calloutp), - M_KQUEUE, M_WAITOK); - callout_init(calloutp); - callout_reset(calloutp, tticks, filt_timerexpire, kn); - kn->kn_hook = (caddr_t)calloutp; + if (raw < now) { + /* time has already passed */ + kn->kn_ext[0] = 0; + } else { + raw -= now; + clock_absolutetime_interval_to_deadline(raw, + &kn->kn_ext[0]); + } + } else { + kn->kn_sdata = raw; + } return (0); } +/* + * filt_timerupdate - compute the next deadline + * + * Repeating timers store their interval in kn_sdata. Absolute + * timers have already calculated the deadline, stored in ext[0]. + * + * On return, the next deadline (or zero if no deadline is needed) + * is stored in kn_ext[0]. + * + * Timer filter lock is held. + */ static void -filt_timerdetach(struct knote *kn) +filt_timerupdate(struct knote *kn) { - struct callout *calloutp; + /* if there's no interval, deadline is just in kn_ext[0] */ + if (kn->kn_sdata == 0) + return; - calloutp = (struct callout *)kn->kn_hook; - callout_stop(calloutp); - FREE(calloutp, M_KQUEUE); - kq_ncallouts--; + /* if timer hasn't fired before, fire in interval nsecs */ + if (kn->kn_ext[0] == 0) { + clock_absolutetime_interval_to_deadline(kn->kn_sdata, + &kn->kn_ext[0]); + } else { + /* + * If timer has fired before, schedule the next pop + * relative to the last intended deadline. + * + * We could check for whether the deadline has expired, + * but the thread call layer can handle that. + */ + kn->kn_ext[0] += kn->kn_sdata; + } } -static int -filt_timer(struct knote *kn, long hint) +/* + * filt_timerexpire - the timer callout routine + * + * Just propagate the timer event into the knote + * filter routine (by going through the knote + * synchronization point). Pass a hint to + * indicate this is a real event, not just a + * query from above. + */ +static void +filt_timerexpire(void *knx, __unused void *spare) { + struct klist timer_list; + struct knote *kn = knx; - return (kn->kn_data != 0); -} -#endif /* 0 */ + filt_timerlock(); -/* - * JMM - placeholder for not-yet-implemented filters - */ -static int -filt_badattach(struct knote *kn) -{ - return(EOPNOTSUPP); -} + kn->kn_hookid &= ~TIMER_RUNNING; -#ifndef _SYS_SYSPROTO_H_ -struct kqueue_args { - int dummy; -}; -#endif + /* no "object" for timers, so fake a list */ + SLIST_INIT(&timer_list); + SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext); + KNOTE(&timer_list, 1); -int -kqueue(struct proc *p, struct kqueue_args *uap, register_t *retval) -{ - struct filedesc *fdp = p->p_fd; - struct kqueue *kq; - struct file *fp; - int fd, error; + /* if someone is waiting for timer to pop */ + if (kn->kn_hookid & TIMER_CANCELWAIT) { + struct kqueue *kq = kn->kn_kq; + wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook, + THREAD_AWAKENED); + } - error = falloc(p, &fp, &fd); - if (error) - return (error); - fp->f_flag = FREAD | FWRITE; - fp->f_type = DTYPE_KQUEUE; - fp->f_ops = &kqueueops; - kq = (struct kqueue *)_MALLOC(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO); - TAILQ_INIT(&kq->kq_head); - fp->f_data = (caddr_t)kq; - *retval = fd; - if (fdp->fd_knlistsize < 0) - fdp->fd_knlistsize = 0; /* this process has a kq */ - kq->kq_fdp = fdp; - return (error); + filt_timerunlock(); } -#ifndef _SYS_SYSPROTO_H_ -struct kqueue_portset_np_args { - int fd; -}; -#endif -int -kqueue_portset_np(struct proc *p, struct kqueue_portset_np_args *uap, register_t *retval) +/* + * Cancel a running timer (or wait for the pop). + * Timer filter lock is held. + */ +static void +filt_timercancel(struct knote *kn) { - /* JMM - Placeholder for now */ - return (EOPNOTSUPP); + struct kqueue *kq = kn->kn_kq; + thread_call_t callout = kn->kn_hook; + boolean_t cancelled; + + if (kn->kn_hookid & TIMER_RUNNING) { + /* cancel the callout if we can */ + cancelled = thread_call_cancel(callout); + if (cancelled) { + kn->kn_hookid &= ~TIMER_RUNNING; + } else { + /* we have to wait for the expire routine. */ + kn->kn_hookid |= TIMER_CANCELWAIT; + wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, + &kn->kn_hook, THREAD_UNINT, 0); + filt_timerunlock(); + thread_block(THREAD_CONTINUE_NULL); + filt_timerlock(); + assert((kn->kn_hookid & TIMER_RUNNING) == 0); + } + } } -#ifndef _SYS_SYSPROTO_H_ -struct kqueue_from_portset_np_args { - int fd; -}; -#endif -int -kqueue_from_portset_np(struct proc *p, struct kqueue_from_portset_np_args *uap, register_t *retval) -{ - /* JMM - Placeholder for now */ - return (EOPNOTSUPP); -} - -#if !0 -/* JMM - We don't implement this yet */ -#define fhold(fp) -#define fdrop(fp, p) -#endif /* !0 */ - -#ifndef _SYS_SYSPROTO_H_ -struct kevent_args { - int fd; - const struct kevent *changelist; - int nchanges; - struct kevent *eventlist; - int nevents; - const struct timespec *timeout; -}; -#endif -int -kevent(struct proc *p, struct kevent_args *uap, register_t *retval) +/* + * Allocate a thread call for the knote's lifetime, and kick off the timer. + */ +static int +filt_timerattach(struct knote *kn) { - struct filedesc* fdp = p->p_fd; - struct kqueue *kq; - struct file *fp = NULL; - struct timespec ts; - int i, nerrors, error; + thread_call_t callout; + int error; - if (uap->timeout != NULL) { - error = copyin((caddr_t)uap->timeout, (caddr_t)&ts, sizeof(ts)); - if (error) - goto done; - uap->timeout = &ts; + callout = thread_call_allocate(filt_timerexpire, kn); + if (NULL == callout) + return (ENOMEM); + + filt_timerlock(); + error = filt_timervalidate(kn); + if (error != 0) { + filt_timerunlock(); + return (error); } - if (((u_int)uap->fd) >= fdp->fd_nfiles || - (fp = fdp->fd_ofiles[uap->fd]) == NULL || - (fp->f_type != DTYPE_KQUEUE)) - return (EBADF); + kn->kn_hook = (void*)callout; + kn->kn_hookid = 0; - fhold(fp); + /* absolute=EV_ONESHOT */ + if (kn->kn_sfflags & NOTE_ABSOLUTE) + kn->kn_flags |= EV_ONESHOT; - kq = (struct kqueue *)fp->f_data; - nerrors = 0; + filt_timerupdate(kn); + if (kn->kn_ext[0]) { + kn->kn_flags |= EV_CLEAR; + unsigned int timer_flags = 0; + if (kn->kn_sfflags & NOTE_CRITICAL) + timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; + else if (kn->kn_sfflags & NOTE_BACKGROUND) + timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; + else + timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; - while (uap->nchanges > 0) { - int i; - int n = uap->nchanges > KQ_NEVENTS ? KQ_NEVENTS : uap->nchanges; - struct kevent kq_kev[n]; + if (kn->kn_sfflags & NOTE_LEEWAY) + timer_flags |= THREAD_CALL_DELAY_LEEWAY; - error = copyin((caddr_t)uap->changelist, (caddr_t)kq_kev, - n * sizeof(struct kevent)); - if (error) - goto done; - for (i = 0; i < n; i++) { - struct kevent *kevp = &kq_kev[i]; + thread_call_enter_delayed_with_leeway(callout, NULL, + kn->kn_ext[0], kn->kn_ext[1], timer_flags); - kevp->flags &= ~EV_SYSFLAGS; - error = kqueue_register(kq, kevp, p); - if (error) { - if (uap->nevents != 0) { - kevp->flags = EV_ERROR; - kevp->data = error; - (void) copyout((caddr_t)kevp, - (caddr_t)uap->eventlist, - sizeof(*kevp)); - uap->eventlist++; - uap->nevents--; - nerrors++; - } else { - goto done; - } - } - } - uap->nchanges -= n; - uap->changelist += n; - } - if (nerrors) { - *retval = nerrors; - error = 0; - goto done; + kn->kn_hookid |= TIMER_RUNNING; + } else { + /* fake immediate */ + kn->kn_data = 1; } - error = kqueue_scan(fp, uap->nevents, uap->eventlist, uap->timeout, retval, p); -done: - if (fp != NULL) - fdrop(fp, p); - return (error); + filt_timerunlock(); + return (0); } -int -kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p) +/* + * Shut down the timer if it's running, and free the callout. + */ +static void +filt_timerdetach(struct knote *kn) { - struct filedesc *fdp = kq->kq_fdp; - struct filterops *fops; - struct file *fp = NULL; - struct knote *kn = NULL; - int s, error = 0; + thread_call_t callout; - if (kev->filter < 0) { - if (kev->filter + EVFILT_SYSCOUNT < 0) - return (EINVAL); + filt_timerlock(); + + callout = (thread_call_t)kn->kn_hook; + filt_timercancel(kn); + + filt_timerunlock(); + + thread_call_free(callout); +} + + + +static int +filt_timer(struct knote *kn, long hint) +{ + int result; + + if (hint) { + /* real timer pop -- timer lock held by filt_timerexpire */ + kn->kn_data++; + + if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) && + ((kn->kn_flags & EV_ONESHOT) == 0)) { + + /* evaluate next time to fire */ + filt_timerupdate(kn); + + if (kn->kn_ext[0]) { + unsigned int timer_flags = 0; + + /* keep the callout and re-arm */ + if (kn->kn_sfflags & NOTE_CRITICAL) + timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; + else if (kn->kn_sfflags & NOTE_BACKGROUND) + timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; + else + timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; + + if (kn->kn_sfflags & NOTE_LEEWAY) + timer_flags |= THREAD_CALL_DELAY_LEEWAY; + + thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL, + kn->kn_ext[0], kn->kn_ext[1], timer_flags); + + kn->kn_hookid |= TIMER_RUNNING; + } + } + + return (1); + } + + /* user-query */ + filt_timerlock(); + + result = (kn->kn_data != 0); + + filt_timerunlock(); + + return (result); +} + + +/* + * filt_timertouch - update knote with new user input + * + * Cancel and restart the timer based on new user data. When + * the user picks up a knote, clear the count of how many timer + * pops have gone off (in kn_data). + */ +static void +filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type) +{ + int error; + filt_timerlock(); + + switch (type) { + case EVENT_REGISTER: + /* cancel current call */ + filt_timercancel(kn); + + /* recalculate deadline */ + kn->kn_sdata = kev->data; + kn->kn_sfflags = kev->fflags; + kn->kn_ext[0] = kev->ext[0]; + kn->kn_ext[1] = kev->ext[1]; + + error = filt_timervalidate(kn); + if (error) { + /* no way to report error, so mark it in the knote */ + kn->kn_flags |= EV_ERROR; + kn->kn_data = error; + break; + } + + /* start timer if necessary */ + filt_timerupdate(kn); + + if (kn->kn_ext[0]) { + unsigned int timer_flags = 0; + if (kn->kn_sfflags & NOTE_CRITICAL) + timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; + else if (kn->kn_sfflags & NOTE_BACKGROUND) + timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; + else + timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; + + if (kn->kn_sfflags & NOTE_LEEWAY) + timer_flags |= THREAD_CALL_DELAY_LEEWAY; + + thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL, + kn->kn_ext[0], kn->kn_ext[1], timer_flags); + + kn->kn_hookid |= TIMER_RUNNING; + } else { + /* pretend the timer has fired */ + kn->kn_data = 1; + } + + break; + + case EVENT_PROCESS: + /* reset the timer pop count in kn_data */ + *kev = kn->kn_kevent; + kev->ext[0] = 0; + kn->kn_data = 0; + if (kn->kn_flags & EV_CLEAR) + kn->kn_fflags = 0; + break; + default: + panic("%s: - invalid type (%ld)", __func__, type); + break; + } + + filt_timerunlock(); +} + +static void +filt_timerlock(void) +{ + lck_mtx_lock(&_filt_timerlock); +} + +static void +filt_timerunlock(void) +{ + lck_mtx_unlock(&_filt_timerlock); +} + +static int +filt_userattach(struct knote *kn) +{ + /* EVFILT_USER knotes are not attached to anything in the kernel */ + kn->kn_hook = NULL; + if (kn->kn_fflags & NOTE_TRIGGER) { + kn->kn_hookid = 1; + } else { + kn->kn_hookid = 0; + } + return (0); +} + +static void +filt_userdetach(__unused struct knote *kn) +{ + /* EVFILT_USER knotes are not attached to anything in the kernel */ +} + +static int +filt_user(struct knote *kn, __unused long hint) +{ + return (kn->kn_hookid); +} + +static void +filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type) +{ + uint32_t ffctrl; + switch (type) { + case EVENT_REGISTER: + if (kev->fflags & NOTE_TRIGGER) { + kn->kn_hookid = 1; + } + + ffctrl = kev->fflags & NOTE_FFCTRLMASK; + kev->fflags &= NOTE_FFLAGSMASK; + switch (ffctrl) { + case NOTE_FFNOP: + break; + case NOTE_FFAND: + OSBitAndAtomic(kev->fflags, &kn->kn_sfflags); + break; + case NOTE_FFOR: + OSBitOrAtomic(kev->fflags, &kn->kn_sfflags); + break; + case NOTE_FFCOPY: + kn->kn_sfflags = kev->fflags; + break; + } + kn->kn_sdata = kev->data; + break; + case EVENT_PROCESS: + *kev = kn->kn_kevent; + kev->fflags = (volatile UInt32)kn->kn_sfflags; + kev->data = kn->kn_sdata; + if (kn->kn_flags & EV_CLEAR) { + kn->kn_hookid = 0; + kn->kn_data = 0; + kn->kn_fflags = 0; + } + break; + default: + panic("%s: - invalid type (%ld)", __func__, type); + break; + } +} + +/* + * JMM - placeholder for not-yet-implemented filters + */ +static int +filt_badattach(__unused struct knote *kn) +{ + return (ENOTSUP); +} + +struct kqueue * +kqueue_alloc(struct proc *p) +{ + struct filedesc *fdp = p->p_fd; + struct kqueue *kq; + + MALLOC_ZONE(kq, struct kqueue *, sizeof (struct kqueue), M_KQUEUE, + M_WAITOK); + if (kq != NULL) { + wait_queue_set_t wqs; + + wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | + SYNC_POLICY_PREPOST); + if (wqs != NULL) { + bzero(kq, sizeof (struct kqueue)); + lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr); + TAILQ_INIT(&kq->kq_head); + kq->kq_wqs = wqs; + kq->kq_p = p; + } else { + FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE); + kq = NULL; + } + } + + if (fdp->fd_knlistsize < 0) { + proc_fdlock(p); + if (fdp->fd_knlistsize < 0) + fdp->fd_knlistsize = 0; /* this process has had a kq */ + proc_fdunlock(p); + } + + return (kq); +} + +/* + * kqueue_dealloc - detach all knotes from a kqueue and free it + * + * We walk each list looking for knotes referencing this + * this kqueue. If we find one, we try to drop it. But + * if we fail to get a drop reference, that will wait + * until it is dropped. So, we can just restart again + * safe in the assumption that the list will eventually + * not contain any more references to this kqueue (either + * we dropped them all, or someone else did). + * + * Assumes no new events are being added to the kqueue. + * Nothing locked on entry or exit. + */ +void +kqueue_dealloc(struct kqueue *kq) +{ + struct proc *p = kq->kq_p; + struct filedesc *fdp = p->p_fd; + struct knote *kn; + int i; + + proc_fdlock(p); + for (i = 0; i < fdp->fd_knlistsize; i++) { + kn = SLIST_FIRST(&fdp->fd_knlist[i]); + while (kn != NULL) { + if (kq == kn->kn_kq) { + kqlock(kq); + proc_fdunlock(p); + /* drop it ourselves or wait */ + if (kqlock2knotedrop(kq, kn)) { + kn->kn_fop->f_detach(kn); + knote_drop(kn, p); + } + proc_fdlock(p); + /* start over at beginning of list */ + kn = SLIST_FIRST(&fdp->fd_knlist[i]); + continue; + } + kn = SLIST_NEXT(kn, kn_link); + } + } + if (fdp->fd_knhashmask != 0) { + for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { + kn = SLIST_FIRST(&fdp->fd_knhash[i]); + while (kn != NULL) { + if (kq == kn->kn_kq) { + kqlock(kq); + proc_fdunlock(p); + /* drop it ourselves or wait */ + if (kqlock2knotedrop(kq, kn)) { + kn->kn_fop->f_detach(kn); + knote_drop(kn, p); + } + proc_fdlock(p); + /* start over at beginning of list */ + kn = SLIST_FIRST(&fdp->fd_knhash[i]); + continue; + } + kn = SLIST_NEXT(kn, kn_link); + } + } + } + proc_fdunlock(p); + + /* + * before freeing the wait queue set for this kqueue, + * make sure it is unlinked from all its containing (select) sets. + */ + wait_queue_unlink_all((wait_queue_t)kq->kq_wqs); + wait_queue_set_free(kq->kq_wqs); + lck_spin_destroy(&kq->kq_lock, kq_lck_grp); + FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE); +} + +int +kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval) +{ + struct kqueue *kq; + struct fileproc *fp; + int fd, error; + + error = falloc_withalloc(p, + &fp, &fd, vfs_context_current(), fp_zalloc, cra); + if (error) { + return (error); + } + + kq = kqueue_alloc(p); + if (kq == NULL) { + fp_free(p, fd, fp); + return (ENOMEM); + } + + fp->f_flag = FREAD | FWRITE; + fp->f_ops = &kqueueops; + fp->f_data = kq; + + proc_fdlock(p); + *fdflags(p, fd) |= UF_EXCLOSE; + procfdtbl_releasefd(p, fd, NULL); + fp_drop(p, fd, fp, 1); + proc_fdunlock(p); + + *retval = fd; + return (error); +} + +int +kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) +{ + return (kqueue_body(p, fileproc_alloc_init, NULL, retval)); +} + +static int +kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, + int iskev64) +{ + int advance; + int error; + + if (iskev64) { + advance = sizeof (struct kevent64_s); + error = copyin(*addrp, (caddr_t)kevp, advance); + } else if (IS_64BIT_PROCESS(p)) { + struct user64_kevent kev64; + bzero(kevp, sizeof (struct kevent64_s)); + + advance = sizeof (kev64); + error = copyin(*addrp, (caddr_t)&kev64, advance); + if (error) + return (error); + kevp->ident = kev64.ident; + kevp->filter = kev64.filter; + kevp->flags = kev64.flags; + kevp->fflags = kev64.fflags; + kevp->data = kev64.data; + kevp->udata = kev64.udata; + } else { + struct user32_kevent kev32; + bzero(kevp, sizeof (struct kevent64_s)); + + advance = sizeof (kev32); + error = copyin(*addrp, (caddr_t)&kev32, advance); + if (error) + return (error); + kevp->ident = (uintptr_t)kev32.ident; + kevp->filter = kev32.filter; + kevp->flags = kev32.flags; + kevp->fflags = kev32.fflags; + kevp->data = (intptr_t)kev32.data; + kevp->udata = CAST_USER_ADDR_T(kev32.udata); + } + if (!error) + *addrp += advance; + return (error); +} + +static int +kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, + int iskev64) +{ + int advance; + int error; + + if (iskev64) { + advance = sizeof (struct kevent64_s); + error = copyout((caddr_t)kevp, *addrp, advance); + } else if (IS_64BIT_PROCESS(p)) { + struct user64_kevent kev64; + + /* + * deal with the special case of a user-supplied + * value of (uintptr_t)-1. + */ + kev64.ident = (kevp->ident == (uintptr_t)-1) ? + (uint64_t)-1LL : (uint64_t)kevp->ident; + + kev64.filter = kevp->filter; + kev64.flags = kevp->flags; + kev64.fflags = kevp->fflags; + kev64.data = (int64_t) kevp->data; + kev64.udata = kevp->udata; + advance = sizeof (kev64); + error = copyout((caddr_t)&kev64, *addrp, advance); + } else { + struct user32_kevent kev32; + + kev32.ident = (uint32_t)kevp->ident; + kev32.filter = kevp->filter; + kev32.flags = kevp->flags; + kev32.fflags = kevp->fflags; + kev32.data = (int32_t)kevp->data; + kev32.udata = kevp->udata; + advance = sizeof (kev32); + error = copyout((caddr_t)&kev32, *addrp, advance); + } + if (!error) + *addrp += advance; + return (error); +} + +/* + * kevent_continue - continue a kevent syscall after blocking + * + * assume we inherit a use count on the kq fileglob. + */ + +static void +kevent_continue(__unused struct kqueue *kq, void *data, int error) +{ + struct _kevent *cont_args; + struct fileproc *fp; + int32_t *retval; + int noutputs; + int fd; + struct proc *p = current_proc(); + + cont_args = (struct _kevent *)data; + noutputs = cont_args->eventout; + retval = cont_args->retval; + fd = cont_args->fd; + fp = cont_args->fp; + + fp_drop(p, fd, fp, 0); + + /* don't restart after signals... */ + if (error == ERESTART) + error = EINTR; + else if (error == EWOULDBLOCK) + error = 0; + if (error == 0) + *retval = noutputs; + unix_syscall_return(error); +} + +/* + * kevent - [syscall] register and wait for kernel events + * + */ +int +kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) +{ + return (kevent_internal(p, + 0, + uap->changelist, + uap->nchanges, + uap->eventlist, + uap->nevents, + uap->fd, + uap->timeout, + 0, /* no flags from old kevent() call */ + retval)); +} + +int +kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) +{ + return (kevent_internal(p, + 1, + uap->changelist, + uap->nchanges, + uap->eventlist, + uap->nevents, + uap->fd, + uap->timeout, + uap->flags, + retval)); +} + +static int +kevent_internal(struct proc *p, int iskev64, user_addr_t changelist, + int nchanges, user_addr_t ueventlist, int nevents, int fd, + user_addr_t utimeout, __unused unsigned int flags, + int32_t *retval) +{ + struct _kevent *cont_args; + uthread_t ut; + struct kqueue *kq; + struct fileproc *fp; + struct kevent64_s kev; + int error, noutputs; + struct timeval atv; + + /* convert timeout to absolute - if we have one */ + if (utimeout != USER_ADDR_NULL) { + struct timeval rtv; + if (IS_64BIT_PROCESS(p)) { + struct user64_timespec ts; + error = copyin(utimeout, &ts, sizeof(ts)); + if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0) + error = EINVAL; + else + TIMESPEC_TO_TIMEVAL(&rtv, &ts); + } else { + struct user32_timespec ts; + error = copyin(utimeout, &ts, sizeof(ts)); + TIMESPEC_TO_TIMEVAL(&rtv, &ts); + } + if (error) + return (error); + if (itimerfix(&rtv)) + return (EINVAL); + getmicrouptime(&atv); + timevaladd(&atv, &rtv); + } else { + atv.tv_sec = 0; + atv.tv_usec = 0; + } + + /* get a usecount for the kq itself */ + if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0) + return (error); + + /* each kq should only be used for events of one type */ + kqlock(kq); + if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) { + if (((iskev64 && (kq->kq_state & KQ_KEV32)) || + (!iskev64 && (kq->kq_state & KQ_KEV64)))) { + error = EINVAL; + kqunlock(kq); + goto errorout; + } + } else { + kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32); + } + kqunlock(kq); + + /* register all the change requests the user provided... */ + noutputs = 0; + while (nchanges > 0 && error == 0) { + error = kevent_copyin(&changelist, &kev, p, iskev64); + if (error) + break; + + kev.flags &= ~EV_SYSFLAGS; + error = kevent_register(kq, &kev, p); + if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) { + kev.flags = EV_ERROR; + kev.data = error; + error = kevent_copyout(&kev, &ueventlist, p, iskev64); + if (error == 0) { + nevents--; + noutputs++; + } + } + nchanges--; + } + + /* store the continuation/completion data in the uthread */ + ut = (uthread_t)get_bsdthread_info(current_thread()); + cont_args = &ut->uu_kevent.ss_kevent; + cont_args->fp = fp; + cont_args->fd = fd; + cont_args->retval = retval; + cont_args->eventlist = ueventlist; + cont_args->eventcount = nevents; + cont_args->eventout = noutputs; + cont_args->eventsize = iskev64; + + if (nevents > 0 && noutputs == 0 && error == 0) + error = kqueue_scan(kq, kevent_callback, + kevent_continue, cont_args, + &atv, p); + kevent_continue(kq, cont_args, error); + +errorout: + fp_drop(p, fd, fp, 0); + return (error); +} + + +/* + * kevent_callback - callback for each individual event + * + * called with nothing locked + * caller holds a reference on the kqueue + */ +static int +kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp, + void *data) +{ + struct _kevent *cont_args; + int error; + int iskev64; + + cont_args = (struct _kevent *)data; + assert(cont_args->eventout < cont_args->eventcount); + + iskev64 = cont_args->eventsize; + + /* + * Copy out the appropriate amount of event data for this user. + */ + error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), + iskev64); + + /* + * If there isn't space for additional events, return + * a harmless error to stop the processing here + */ + if (error == 0 && ++cont_args->eventout == cont_args->eventcount) + error = EWOULDBLOCK; + return (error); +} + +/* + * kevent_description - format a description of a kevent for diagnostic output + * + * called with a 128-byte string buffer + */ + +char * +kevent_description(struct kevent64_s *kevp, char *s, size_t n) +{ + snprintf(s, n, + "kevent=" + "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}", + kevp->ident, + kevp->filter, + kevp->flags, + kevp->fflags, + kevp->data, + kevp->udata, + kevp->ext[0], + kevp->ext[1]); + + return (s); +} + +/* + * kevent_register - add a new event to a kqueue + * + * Creates a mapping between the event source and + * the kqueue via a knote data structure. + * + * Because many/most the event sources are file + * descriptor related, the knote is linked off + * the filedescriptor table for quick access. + * + * called with nothing locked + * caller holds a reference on the kqueue + */ + +int +kevent_register(struct kqueue *kq, struct kevent64_s *kev, + __unused struct proc *ctxp) +{ + struct proc *p = kq->kq_p; + struct filedesc *fdp = p->p_fd; + struct filterops *fops; + struct fileproc *fp = NULL; + struct knote *kn = NULL; + int error = 0; + + if (kev->filter < 0) { + if (kev->filter + EVFILT_SYSCOUNT < 0) + return (EINVAL); fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ } else { /* @@ -559,23 +1665,27 @@ kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p) return (EINVAL); } - if (fops->f_isfd) { - /* validate descriptor */ - if ((u_int)kev->ident >= fdp->fd_nfiles || - (fp = fdp->fd_ofiles[kev->ident]) == NULL) - return (EBADF); - fhold(fp); +restart: + /* this iocount needs to be dropped if it is not registered */ + proc_fdlock(p); + if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) { + proc_fdunlock(p); + return (error); + } - if (kev->ident < fdp->fd_knlistsize) { + if (fops->f_isfd) { + /* fd-based knotes are linked off the fd table */ + if (kev->ident < (u_int)fdp->fd_knlistsize) { SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) if (kq == kn->kn_kq && kev->filter == kn->kn_filter) break; } } else { + /* hash non-fd knotes here too */ if (fdp->fd_knhashmask != 0) { struct klist *list; - + list = &fdp->fd_knhash[ KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; SLIST_FOREACH(kn, list, kn_link) @@ -586,25 +1696,40 @@ kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p) } } - if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { - error = ENOENT; - goto done; - } - /* * kn now contains the matching knote, or NULL if no match */ - if (kev->flags & EV_ADD) { - - if (kn == NULL) { + if (kn == NULL) { + if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) { kn = knote_alloc(); if (kn == NULL) { + proc_fdunlock(p); error = ENOMEM; goto done; } kn->kn_fp = fp; kn->kn_kq = kq; + kn->kn_tq = &kq->kq_head; kn->kn_fop = fops; + kn->kn_sfflags = kev->fflags; + kn->kn_sdata = kev->data; + kev->fflags = 0; + kev->data = 0; + kn->kn_kevent = *kev; + kn->kn_inuse = 1; /* for f_attach() */ + kn->kn_status = KN_ATTACHING; + + /* before anyone can find it */ + if (kev->flags & EV_DISABLE) + kn->kn_status |= KN_DISABLED; + + error = knote_fdpattach(kn, fdp, p); + proc_fdunlock(p); + + if (error) { + knote_free(kn); + goto done; + } /* * apply reference count to knote structure, and @@ -612,326 +1737,787 @@ kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p) */ fp = NULL; - kn->kn_sfflags = kev->fflags; - kn->kn_sdata = kev->data; - kev->fflags = 0; - kev->data = 0; - kn->kn_kevent = *kev; + error = fops->f_attach(kn); - knote_fdpattach(kn, fdp); - if ((error = fops->f_attach(kn)) != 0) { + kqlock(kq); + + if (error != 0) { + /* + * Failed to attach correctly, so drop. + * All other possible users/droppers + * have deferred to us. + */ + kn->kn_status |= KN_DROPPING; + kqunlock(kq); + knote_drop(kn, p); + goto done; + } else if (kn->kn_status & KN_DROPPING) { + /* + * Attach succeeded, but someone else + * deferred their drop - now we have + * to do it for them (after detaching). + */ + kqunlock(kq); + kn->kn_fop->f_detach(kn); knote_drop(kn, p); goto done; } + kn->kn_status &= ~KN_ATTACHING; + kqunlock(kq); } else { - /* - * The user may change some filter values after the - * initial EV_ADD, but doing so will not reset any - * filter which have already been triggered. - */ + proc_fdunlock(p); + error = ENOENT; + goto done; + } + } else { + /* existing knote - get kqueue lock */ + kqlock(kq); + proc_fdunlock(p); + + if (kev->flags & EV_DELETE) { + knote_dequeue(kn); + kn->kn_status |= KN_DISABLED; + if (kqlock2knotedrop(kq, kn)) { + kn->kn_fop->f_detach(kn); + knote_drop(kn, p); + } + goto done; + } + + /* update status flags for existing knote */ + if (kev->flags & EV_DISABLE) { + knote_dequeue(kn); + kn->kn_status |= KN_DISABLED; + } else if (kev->flags & EV_ENABLE) { + kn->kn_status &= ~KN_DISABLED; + if (kn->kn_status & KN_ACTIVE) + knote_enqueue(kn); + } + + /* + * The user may change some filter values after the + * initial EV_ADD, but doing so will not reset any + * filter which have already been triggered. + */ + kn->kn_kevent.udata = kev->udata; + if (fops->f_isfd || fops->f_touch == NULL) { kn->kn_sfflags = kev->fflags; kn->kn_sdata = kev->data; - kn->kn_kevent.udata = kev->udata; } - s = splhigh(); - if (kn->kn_fop->f_event(kn, 0)) - KNOTE_ACTIVATE(kn); - splx(s); - - } else if (kev->flags & EV_DELETE) { - kn->kn_fop->f_detach(kn); - knote_drop(kn, p); - goto done; - } + /* + * If somebody is in the middle of dropping this + * knote - go find/insert a new one. But we have + * wait for this one to go away first. Attaches + * running in parallel may also drop/modify the + * knote. Wait for those to complete as well and + * then start over if we encounter one. + */ + if (!kqlock2knoteusewait(kq, kn)) { + /* kqueue, proc_fdlock both unlocked */ + goto restart; + } - if ((kev->flags & EV_DISABLE) && - ((kn->kn_status & KN_DISABLED) == 0)) { - s = splhigh(); - kn->kn_status |= KN_DISABLED; - splx(s); + /* + * Call touch routine to notify filter of changes + * in filter values. + */ + if (!fops->f_isfd && fops->f_touch != NULL) + fops->f_touch(kn, kev, EVENT_REGISTER); } + /* still have use ref on knote */ - if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { - s = splhigh(); - kn->kn_status &= ~KN_DISABLED; - if ((kn->kn_status & KN_ACTIVE) && - ((kn->kn_status & KN_QUEUED) == 0)) - knote_enqueue(kn); - splx(s); + /* + * If the knote is not marked to always stay enqueued, + * invoke the filter routine to see if it should be + * enqueued now. + */ + if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) { + if (knoteuse2kqlock(kq, kn)) + knote_activate(kn, 1); + kqunlock(kq); + } else { + knote_put(kn); } done: if (fp != NULL) - fdrop(fp, p); + fp_drop(p, kev->ident, fp, 0); return (error); } + +/* + * knote_process - process a triggered event + * + * Validate that it is really still a triggered event + * by calling the filter routines (if necessary). Hold + * a use reference on the knote to avoid it being detached. + * If it is still considered triggered, invoke the callback + * routine provided and move it to the provided inprocess + * queue. + * + * caller holds a reference on the kqueue. + * kqueue locked on entry and exit - but may be dropped + */ static int -kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp, - const struct timespec *tsp, register_t *retval, struct proc *p) +knote_process(struct knote *kn, + kevent_callback_t callback, + void *data, + struct kqtailq *inprocessp, + struct proc *p) { - struct kqueue *kq = (struct kqueue *)fp->f_data; - struct timeval atv, rtv, ttv; - int s, count, timeout, error = 0; - struct knote marker; + struct kqueue *kq = kn->kn_kq; + struct kevent64_s kev; + int touch; + int result; + int error; - count = maxevents; - if (count == 0) - goto done; + /* + * Determine the kevent state we want to return. + * + * Some event states need to be revalidated before returning + * them, others we take the snapshot at the time the event + * was enqueued. + * + * Events with non-NULL f_touch operations must be touched. + * Triggered events must fill in kev for the callback. + * + * Convert our lock to a use-count and call the event's + * filter routine(s) to update. + */ + if ((kn->kn_status & KN_DISABLED) != 0) { + result = 0; + touch = 0; + } else { + int revalidate; + + result = 1; + revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 || + (kn->kn_flags & EV_ONESHOT) == 0); + touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL); + + if (revalidate || touch) { + if (revalidate) + knote_deactivate(kn); + + /* call the filter/touch routines with just a ref */ + if (kqlock2knoteuse(kq, kn)) { + /* if we have to revalidate, call the filter */ + if (revalidate) { + result = kn->kn_fop->f_event(kn, 0); + } - if (tsp != NULL) { - TIMESPEC_TO_TIMEVAL(&atv, tsp); - if (itimerfix(&atv)) { - error = EINVAL; - goto done; + /* + * capture the kevent data - using touch if + * specified + */ + if (result && touch) { + kn->kn_fop->f_touch(kn, &kev, + EVENT_PROCESS); + } + + /* + * convert back to a kqlock - bail if the knote + * went away + */ + if (!knoteuse2kqlock(kq, kn)) { + return (EJUSTRETURN); + } else if (result) { + /* + * if revalidated as alive, make sure + * it's active + */ + if (!(kn->kn_status & KN_ACTIVE)) { + knote_activate(kn, 0); + } + + /* + * capture all events that occurred + * during filter + */ + if (!touch) { + kev = kn->kn_kevent; + } + + } else if ((kn->kn_status & KN_STAYQUEUED) == 0) { + /* + * was already dequeued, so just bail on + * this one + */ + return (EJUSTRETURN); + } + } else { + return (EJUSTRETURN); + } + } else { + kev = kn->kn_kevent; } - if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) - timeout = -1; - else - timeout = atv.tv_sec > 24 * 60 * 60 ? - 24 * 60 * 60 * hz : tvtohz(&atv); - getmicrouptime(&rtv); - timevaladd(&atv, &rtv); - } else { - atv.tv_sec = 0; - atv.tv_usec = 0; - timeout = 0; } - goto start; -retry: - if (atv.tv_sec || atv.tv_usec) { - getmicrouptime(&rtv); - if (timevalcmp(&rtv, &atv, >=)) - goto done; - ttv = atv; - timevalsub(&ttv, &rtv); - timeout = ttv.tv_sec > 24 * 60 * 60 ? - 24 * 60 * 60 * hz : tvtohz(&ttv); + /* move knote onto inprocess queue */ + assert(kn->kn_tq == &kq->kq_head); + TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); + kn->kn_tq = inprocessp; + TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe); + + /* + * Determine how to dispatch the knote for future event handling. + * not-fired: just return (do not callout). + * One-shot: deactivate it. + * Clear: deactivate and clear the state. + * Dispatch: don't clear state, just deactivate it and mark it disabled. + * All others: just leave where they are. + */ + + if (result == 0) { + return (EJUSTRETURN); + } else if ((kn->kn_flags & EV_ONESHOT) != 0) { + knote_deactivate(kn); + if (kqlock2knotedrop(kq, kn)) { + kn->kn_fop->f_detach(kn); + knote_drop(kn, p); + } + } else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) { + if ((kn->kn_flags & EV_DISPATCH) != 0) { + /* deactivate and disable all dispatch knotes */ + knote_deactivate(kn); + kn->kn_status |= KN_DISABLED; + } else if (!touch || kn->kn_fflags == 0) { + /* only deactivate if nothing since the touch */ + knote_deactivate(kn); + } + if (!touch && (kn->kn_flags & EV_CLEAR) != 0) { + /* manually clear non-touch knotes */ + kn->kn_data = 0; + kn->kn_fflags = 0; + } + kqunlock(kq); + } else { + /* + * leave on inprocess queue. We'll + * move all the remaining ones back + * the kq queue and wakeup any + * waiters when we are done. + */ + kqunlock(kq); } -start: - s = splhigh(); - if (kq->kq_count == 0) { - if (timeout < 0) { - error = EWOULDBLOCK; + /* callback to handle each event as we find it */ + error = (callback)(kq, &kev, data); + + kqlock(kq); + return (error); +} + +/* + * Return 0 to indicate that processing should proceed, + * -1 if there is nothing to process. + * + * Called with kqueue locked and returns the same way, + * but may drop lock temporarily. + */ +static int +kqueue_begin_processing(struct kqueue *kq) +{ + for (;;) { + if (kq->kq_count == 0) { + return (-1); + } + + /* if someone else is processing the queue, wait */ + if (kq->kq_nprocess != 0) { + wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, + &kq->kq_nprocess, THREAD_UNINT, 0); + kq->kq_state |= KQ_PROCWAIT; + kqunlock(kq); + thread_block(THREAD_CONTINUE_NULL); + kqlock(kq); } else { - kq->kq_state |= KQ_SLEEP; - error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout); + kq->kq_nprocess = 1; + return (0); } - splx(s); - if (error == 0) - goto retry; - /* don't restart after signals... */ - if (error == ERESTART) - error = EINTR; - else if (error == EWOULDBLOCK) + } +} + +/* + * Called with kqueue lock held. + */ +static void +kqueue_end_processing(struct kqueue *kq) +{ + kq->kq_nprocess = 0; + if (kq->kq_state & KQ_PROCWAIT) { + kq->kq_state &= ~KQ_PROCWAIT; + wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, + &kq->kq_nprocess, THREAD_AWAKENED); + } +} + +/* + * kqueue_process - process the triggered events in a kqueue + * + * Walk the queued knotes and validate that they are + * really still triggered events by calling the filter + * routines (if necessary). Hold a use reference on + * the knote to avoid it being detached. For each event + * that is still considered triggered, invoke the + * callback routine provided. + * + * caller holds a reference on the kqueue. + * kqueue locked on entry and exit - but may be dropped + * kqueue list locked (held for duration of call) + */ + +static int +kqueue_process(struct kqueue *kq, + kevent_callback_t callback, + void *data, + int *countp, + struct proc *p) +{ + struct kqtailq inprocess; + struct knote *kn; + int nevents; + int error; + + TAILQ_INIT(&inprocess); + + if (kqueue_begin_processing(kq) == -1) { + *countp = 0; + /* Nothing to process */ + return (0); + } + + /* + * Clear any pre-posted status from previous runs, so we + * only detect events that occur during this run. + */ + wait_queue_sub_clearrefs(kq->kq_wqs); + + /* + * loop through the enqueued knotes, processing each one and + * revalidating those that need it. As they are processed, + * they get moved to the inprocess queue (so the loop can end). + */ + error = 0; + nevents = 0; + + while (error == 0 && + (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) { + error = knote_process(kn, callback, data, &inprocess, p); + if (error == EJUSTRETURN) error = 0; - goto done; + else + nevents++; } - /* JMM - This marker trick doesn't work with multiple threads */ - TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe); - while (count) { - int maxkev = (count > KQ_NEVENTS) ? KQ_NEVENTS : count; - struct kevent kq_kev[maxkev]; - struct kevent *kevp = kq_kev; - struct knote *kn; - int nkev = 0; - - while (nkev < maxkev) { - kn = TAILQ_FIRST(&kq->kq_head); - TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); - if (kn == &marker) { - if (count == maxevents) - goto retry; - break; - } else if (kn->kn_status & KN_DISABLED) { - kn->kn_status &= ~KN_QUEUED; - kq->kq_count--; - continue; - } else if ((kn->kn_flags & EV_ONESHOT) == 0 && - kn->kn_fop->f_event(kn, 0) == 0) { - kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); - kq->kq_count--; - continue; - } + /* + * With the kqueue still locked, move any knotes + * remaining on the inprocess queue back to the + * kq's queue and wake up any waiters. + */ + while ((kn = TAILQ_FIRST(&inprocess)) != NULL) { + assert(kn->kn_tq == &inprocess); + TAILQ_REMOVE(&inprocess, kn, kn_tqe); + kn->kn_tq = &kq->kq_head; + TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); + } - *kevp = kn->kn_kevent; - kevp++; - nkev++; - count--; + kqueue_end_processing(kq); - if (kn->kn_flags & EV_ONESHOT) { - kn->kn_status &= ~KN_QUEUED; - kq->kq_count--; - splx(s); - kn->kn_fop->f_detach(kn); - knote_drop(kn, p); - s = splhigh(); - } else if (kn->kn_flags & EV_CLEAR) { - kn->kn_data = 0; - kn->kn_fflags = 0; - kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); - kq->kq_count--; + *countp = nevents; + return (error); +} + + +static void +kqueue_scan_continue(void *data, wait_result_t wait_result) +{ + thread_t self = current_thread(); + uthread_t ut = (uthread_t)get_bsdthread_info(self); + struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan; + struct kqueue *kq = (struct kqueue *)data; + int error; + int count; + + /* convert the (previous) wait_result to a proper error */ + switch (wait_result) { + case THREAD_AWAKENED: + kqlock(kq); + error = kqueue_process(kq, cont_args->call, cont_args, &count, + current_proc()); + if (error == 0 && count == 0) { + wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, + KQ_EVENT, THREAD_ABORTSAFE, cont_args->deadline); + kq->kq_state |= KQ_SLEEP; + kqunlock(kq); + thread_block_parameter(kqueue_scan_continue, kq); + /* NOTREACHED */ + } + kqunlock(kq); + break; + case THREAD_TIMED_OUT: + error = EWOULDBLOCK; + break; + case THREAD_INTERRUPTED: + error = EINTR; + break; + default: + panic("%s: - invalid wait_result (%d)", __func__, + wait_result); + error = 0; + } + + /* call the continuation with the results */ + assert(cont_args->cont != NULL); + (cont_args->cont)(kq, cont_args->data, error); +} + + +/* + * kqueue_scan - scan and wait for events in a kqueue + * + * Process the triggered events in a kqueue. + * + * If there are no events triggered arrange to + * wait for them. If the caller provided a + * continuation routine, then kevent_scan will + * also. + * + * The callback routine must be valid. + * The caller must hold a use-count reference on the kq. + */ + +int +kqueue_scan(struct kqueue *kq, + kevent_callback_t callback, + kqueue_continue_t continuation, + void *data, + struct timeval *atvp, + struct proc *p) +{ + thread_continue_t cont = THREAD_CONTINUE_NULL; + uint64_t deadline; + int error; + int first; + + assert(callback != NULL); + + first = 1; + for (;;) { + wait_result_t wait_result; + int count; + + /* + * Make a pass through the kq to find events already + * triggered. + */ + kqlock(kq); + error = kqueue_process(kq, callback, data, &count, p); + if (error || count) + break; /* lock still held */ + + /* looks like we have to consider blocking */ + if (first) { + first = 0; + /* convert the timeout to a deadline once */ + if (atvp->tv_sec || atvp->tv_usec) { + uint64_t now; + + clock_get_uptime(&now); + nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC + + atvp->tv_usec * (long)NSEC_PER_USEC, + &deadline); + if (now >= deadline) { + /* non-blocking call */ + error = EWOULDBLOCK; + break; /* lock still held */ + } + deadline -= now; + clock_absolutetime_interval_to_deadline(deadline, &deadline); } else { - TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); + deadline = 0; /* block forever */ + } + + if (continuation) { + uthread_t ut = (uthread_t)get_bsdthread_info(current_thread()); + struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan; + + cont_args->call = callback; + cont_args->cont = continuation; + cont_args->deadline = deadline; + cont_args->data = data; + cont = kqueue_scan_continue; } } - splx(s); - error = copyout((caddr_t)kq_kev, (caddr_t)ulistp, - sizeof(struct kevent) * nkev); - if (kn == &marker) - goto done; - ulistp += nkev; - s = splhigh(); - if (error) - break; + + /* go ahead and wait */ + wait_queue_assert_wait_with_leeway((wait_queue_t)kq->kq_wqs, + KQ_EVENT, THREAD_ABORTSAFE, TIMEOUT_URGENCY_USER_NORMAL, + deadline, 0); + kq->kq_state |= KQ_SLEEP; + kqunlock(kq); + wait_result = thread_block_parameter(cont, kq); + /* NOTREACHED if (continuation != NULL) */ + + switch (wait_result) { + case THREAD_AWAKENED: + continue; + case THREAD_TIMED_OUT: + return (EWOULDBLOCK); + case THREAD_INTERRUPTED: + return (EINTR); + default: + panic("%s: - bad wait_result (%d)", __func__, + wait_result); + error = 0; + } } - TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe); - splx(s); -done: - *retval = maxevents - count; + kqunlock(kq); return (error); } + /* * XXX * This could be expanded to call kqueue_scan, if desired. */ /*ARGSUSED*/ static int -kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, - int flags, struct proc *p) +kqueue_read(__unused struct fileproc *fp, + __unused struct uio *uio, + __unused int flags, + __unused vfs_context_t ctx) { return (ENXIO); } /*ARGSUSED*/ static int -kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, - int flags, struct proc *p) +kqueue_write(__unused struct fileproc *fp, + __unused struct uio *uio, + __unused int flags, + __unused vfs_context_t ctx) { return (ENXIO); } /*ARGSUSED*/ static int -kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p) +kqueue_ioctl(__unused struct fileproc *fp, + __unused u_long com, + __unused caddr_t data, + __unused vfs_context_t ctx) { return (ENOTTY); } /*ARGSUSED*/ static int -kqueue_select(struct file *fp, int which, void *wql, struct proc *p) +kqueue_select(struct fileproc *fp, int which, void *wql, + __unused vfs_context_t ctx) { struct kqueue *kq = (struct kqueue *)fp->f_data; + struct knote *kn; + struct kqtailq inprocessq; int retnum = 0; - int s = splnet(); - if (which == FREAD) { - if (kq->kq_count) { - retnum = 1; - } else { - selrecord(p, &kq->kq_sel, wql); - kq->kq_state |= KQ_SEL; - } + if (which != FREAD) + return (0); + + TAILQ_INIT(&inprocessq); + + kqlock(kq); + /* + * If this is the first pass, link the wait queue associated with the + * the kqueue onto the wait queue set for the select(). Normally we + * use selrecord() for this, but it uses the wait queue within the + * selinfo structure and we need to use the main one for the kqueue to + * catch events from KN_STAYQUEUED sources. So we do the linkage manually. + * (The select() call will unlink them when it ends). + */ + if (wql != NULL) { + thread_t cur_act = current_thread(); + struct uthread * ut = get_bsdthread_info(cur_act); + + kq->kq_state |= KQ_SEL; + wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset, + (wait_queue_link_t)wql); } - splx(s); - return (retnum); -} -/*ARGSUSED*/ -static int -kqueue_close(struct file *fp, struct proc *p) -{ - struct kqueue *kq = (struct kqueue *)fp->f_data; - struct filedesc *fdp = p->p_fd; - struct knote **knp, *kn, *kn0; - int i; + if (kqueue_begin_processing(kq) == -1) { + kqunlock(kq); + return (0); + } - for (i = 0; i < fdp->fd_knlistsize; i++) { - knp = &SLIST_FIRST(&fdp->fd_knlist[i]); - kn = *knp; - while (kn != NULL) { - kn0 = SLIST_NEXT(kn, kn_link); - if (kq == kn->kn_kq) { - kn->kn_fop->f_detach(kn); - fdrop(kn->kn_fp, p); - knote_free(kn); - *knp = kn0; - } else { - knp = &SLIST_NEXT(kn, kn_link); + if (kq->kq_count != 0) { + /* + * there is something queued - but it might be a + * KN_STAYQUEUED knote, which may or may not have + * any events pending. So, we have to walk the + * list of knotes to see, and peek at the stay- + * queued ones to be really sure. + */ + while ((kn = (struct knote *)TAILQ_FIRST(&kq->kq_head)) != NULL) { + if ((kn->kn_status & KN_STAYQUEUED) == 0) { + retnum = 1; + goto out; } - kn = kn0; - } - } - if (fdp->fd_knhashmask != 0) { - for (i = 0; i < fdp->fd_knhashmask + 1; i++) { - knp = &SLIST_FIRST(&fdp->fd_knhash[i]); - kn = *knp; - while (kn != NULL) { - kn0 = SLIST_NEXT(kn, kn_link); - if (kq == kn->kn_kq) { - kn->kn_fop->f_detach(kn); - /* XXX non-fd release of kn->kn_ptr */ - knote_free(kn); - *knp = kn0; + + TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); + TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe); + + if (kqlock2knoteuse(kq, kn)) { + unsigned peek; + + peek = kn->kn_fop->f_peek(kn); + if (knoteuse2kqlock(kq, kn)) { + if (peek > 0) { + retnum = 1; + goto out; + } } else { - knp = &SLIST_NEXT(kn, kn_link); + retnum = 0; } - kn = kn0; } } } - _FREE(kq, M_KQUEUE); - fp->f_data = NULL; +out: + /* Return knotes to active queue */ + while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) { + TAILQ_REMOVE(&inprocessq, kn, kn_tqe); + kn->kn_tq = &kq->kq_head; + TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); + } + + kqueue_end_processing(kq); + kqunlock(kq); + return (retnum); +} + +/* + * kqueue_close - + */ +/*ARGSUSED*/ +static int +kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) +{ + struct kqueue *kq = (struct kqueue *)fg->fg_data; + + kqueue_dealloc(kq); + fg->fg_data = NULL; return (0); } /*ARGSUSED*/ +/* + * The callers has taken a use-count reference on this kqueue and will donate it + * to the kqueue we are being added to. This keeps the kqueue from closing until + * that relationship is torn down. + */ static int -kqueue_kqfilter(struct file *fp, struct knote *kn, struct proc *p) +kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx) { struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; + struct kqueue *parentkq = kn->kn_kq; + + if (parentkq == kq || + kn->kn_filter != EVFILT_READ) + return (1); + + /* + * We have to avoid creating a cycle when nesting kqueues + * inside another. Rather than trying to walk the whole + * potential DAG of nested kqueues, we just use a simple + * ceiling protocol. When a kqueue is inserted into another, + * we check that the (future) parent is not already nested + * into another kqueue at a lower level than the potenial + * child (because it could indicate a cycle). If that test + * passes, we just mark the nesting levels accordingly. + */ - if (kn->kn_filter != EVFILT_READ || (kq->kq_state & KQ_SEL)) + kqlock(parentkq); + if (parentkq->kq_level > 0 && + parentkq->kq_level < kq->kq_level) + { + kqunlock(parentkq); return (1); + } else { + /* set parent level appropriately */ + if (parentkq->kq_level == 0) + parentkq->kq_level = 2; + if (parentkq->kq_level < kq->kq_level + 1) + parentkq->kq_level = kq->kq_level + 1; + kqunlock(parentkq); + + kn->kn_fop = &kqread_filtops; + kqlock(kq); + KNOTE_ATTACH(&kq->kq_sel.si_note, kn); + /* indicate nesting in child, if needed */ + if (kq->kq_level == 0) + kq->kq_level = 1; + kqunlock(kq); + return (0); + } +} - kn->kn_fop = &kqread_filtops; - KNOTE_ATTACH(&kq->kq_sel.si_note, kn); +/* + * kqueue_drain - called when kq is closed + */ +/*ARGSUSED*/ +static int +kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) +{ + struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data; + kqlock(kq); + kqueue_wakeup(kq, 1); + kqunlock(kq); return (0); } /*ARGSUSED*/ int -kqueue_stat(struct file *fp, struct stat *st, struct proc *p) +kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p) { - struct kqueue *kq = (struct kqueue *)fp->f_data; - - bzero((void *)st, sizeof(*st)); - st->st_size = kq->kq_count; - st->st_blksize = sizeof(struct kevent); - st->st_mode = S_IFIFO; + kqlock(kq); + if (isstat64 != 0) { + struct stat64 *sb64 = (struct stat64 *)ub; + + bzero((void *)sb64, sizeof(*sb64)); + sb64->st_size = kq->kq_count; + if (kq->kq_state & KQ_KEV64) + sb64->st_blksize = sizeof(struct kevent64_s); + else + sb64->st_blksize = IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : sizeof(struct user32_kevent); + sb64->st_mode = S_IFIFO; + } else { + struct stat *sb = (struct stat *)ub; + + bzero((void *)sb, sizeof(*sb)); + sb->st_size = kq->kq_count; + if (kq->kq_state & KQ_KEV64) + sb->st_blksize = sizeof(struct kevent64_s); + else + sb->st_blksize = IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : sizeof(struct user32_kevent); + sb->st_mode = S_IFIFO; + } + kqunlock(kq); return (0); } +/* + * Called with the kqueue locked + */ static void -kqueue_wakeup(struct kqueue *kq) +kqueue_wakeup(struct kqueue *kq, int closed) { - - if (kq->kq_state & KQ_SLEEP) { - kq->kq_state &= ~KQ_SLEEP; - wakeup(kq); + if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) { + kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); + wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT, + (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED); } - if (kq->kq_state & KQ_SEL) { - // kq->kq_state &= ~KQ_SEL; /* remove for now */ - selwakeup(&kq->kq_sel); - } else - KNOTE(&kq->kq_sel.si_note, 0); } void @@ -940,159 +2526,322 @@ klist_init(struct klist *list) SLIST_INIT(list); } + /* - * walk down a list of knotes, activating them if their event has triggered. + * Query/Post each knote in the object's list + * + * The object lock protects the list. It is assumed + * that the filter/event routine for the object can + * determine that the object is already locked (via + * the hint) and not deadlock itself. + * + * The object lock should also hold off pending + * detach/drop operations. But we'll prevent it here + * too - just in case. */ void knote(struct klist *list, long hint) { struct knote *kn; - SLIST_FOREACH(kn, list, kn_selnext) - if (kn->kn_fop->f_event(kn, hint)) - KNOTE_ACTIVATE(kn); + SLIST_FOREACH(kn, list, kn_selnext) { + struct kqueue *kq = kn->kn_kq; + + kqlock(kq); + if (kqlock2knoteuse(kq, kn)) { + int result; + + /* call the event with only a use count */ + result = kn->kn_fop->f_event(kn, hint); + + /* if its not going away and triggered */ + if (knoteuse2kqlock(kq, kn) && result) + knote_activate(kn, 1); + /* lock held again */ + } + kqunlock(kq); + } } /* * attach a knote to the specified list. Return true if this is the first entry. + * The list is protected by whatever lock the object it is associated with uses. */ int knote_attach(struct klist *list, struct knote *kn) { int ret = SLIST_EMPTY(list); SLIST_INSERT_HEAD(list, kn, kn_selnext); - return ret; + return (ret); } /* * detach a knote from the specified list. Return true if that was the last entry. + * The list is protected by whatever lock the object it is associated with uses. */ int knote_detach(struct klist *list, struct knote *kn) { SLIST_REMOVE(list, kn, knote, kn_selnext); - return SLIST_EMPTY(list); + return (SLIST_EMPTY(list)); } /* - * remove all knotes from a specified klist + * For a given knote, link a provided wait queue directly with the kqueue. + * Wakeups will happen via recursive wait queue support. But nothing will move + * the knote to the active list at wakeup (nothing calls knote()). Instead, + * we permanently enqueue them here. + * + * kqueue and knote references are held by caller. + * + * caller provides the wait queue link structure. */ -void -knote_remove(struct proc *p, struct klist *list) +int +knote_link_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t wql) { - struct knote *kn; + struct kqueue *kq = kn->kn_kq; + kern_return_t kr; - while ((kn = SLIST_FIRST(list)) != NULL) { - kn->kn_fop->f_detach(kn); - knote_drop(kn, p); + kr = wait_queue_link_noalloc(wq, kq->kq_wqs, wql); + if (kr == KERN_SUCCESS) { + knote_markstayqueued(kn); + return (0); + } else { + return (EINVAL); } } +/* + * Unlink the provided wait queue from the kqueue associated with a knote. + * Also remove it from the magic list of directly attached knotes. + * + * Note that the unlink may have already happened from the other side, so + * ignore any failures to unlink and just remove it from the kqueue list. + * + * On success, caller is responsible for the link structure + */ +int +knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t *wqlp) +{ + struct kqueue *kq = kn->kn_kq; + kern_return_t kr; + + kr = wait_queue_unlink_nofree(wq, kq->kq_wqs, wqlp); + knote_clearstayqueued(kn); + return ((kr != KERN_SUCCESS) ? EINVAL : 0); +} + /* * remove all knotes referencing a specified fd + * + * Essentially an inlined knote_remove & knote_drop + * when we know for sure that the thing is a file + * + * Entered with the proc_fd lock already held. + * It returns the same way, but may drop it temporarily. */ void knote_fdclose(struct proc *p, int fd) { struct filedesc *fdp = p->p_fd; - struct klist *list = &fdp->fd_knlist[fd]; + struct klist *list; + struct knote *kn; - knote_remove(p, list); + list = &fdp->fd_knlist[fd]; + while ((kn = SLIST_FIRST(list)) != NULL) { + struct kqueue *kq = kn->kn_kq; + + if (kq->kq_p != p) + panic("%s: proc mismatch (kq->kq_p=%p != p=%p)", + __func__, kq->kq_p, p); + + kqlock(kq); + proc_fdunlock(p); + + /* + * Convert the lock to a drop ref. + * If we get it, go ahead and drop it. + * Otherwise, we waited for it to + * be dropped by the other guy, so + * it is safe to move on in the list. + */ + if (kqlock2knotedrop(kq, kn)) { + kn->kn_fop->f_detach(kn); + knote_drop(kn, p); + } + + proc_fdlock(p); + + /* the fd tables may have changed - start over */ + list = &fdp->fd_knlist[fd]; + } } -static void -knote_fdpattach(struct knote *kn, struct filedesc *fdp) +/* proc_fdlock held on entry (and exit) */ +static int +knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p) { - struct klist *list; - int size; + struct klist *list = NULL; if (! kn->kn_fop->f_isfd) { if (fdp->fd_knhashmask == 0) - fdp->fd_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, + fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, &fdp->fd_knhashmask); list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; - goto done; - } - - if (fdp->fd_knlistsize <= kn->kn_id) { - size = fdp->fd_knlistsize; - while (size <= kn->kn_id) - size += KQEXTENT; - MALLOC(list, struct klist *, - size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); - bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, - fdp->fd_knlistsize * sizeof(struct klist *)); - bzero((caddr_t)list + - fdp->fd_knlistsize * sizeof(struct klist *), - (size - fdp->fd_knlistsize) * sizeof(struct klist *)); - if (fdp->fd_knlist != NULL) + } else { + if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { + u_int size = 0; + + if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur + || kn->kn_id >= (uint64_t)maxfiles) + return (EINVAL); + + /* have to grow the fd_knlist */ + size = fdp->fd_knlistsize; + while (size <= kn->kn_id) + size += KQEXTENT; + + if (size >= (UINT_MAX/sizeof(struct klist *))) + return (EINVAL); + + MALLOC(list, struct klist *, + size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); + if (list == NULL) + return (ENOMEM); + + bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, + fdp->fd_knlistsize * sizeof(struct klist *)); + bzero((caddr_t)list + + fdp->fd_knlistsize * sizeof(struct klist *), + (size - fdp->fd_knlistsize) * sizeof(struct klist *)); FREE(fdp->fd_knlist, M_KQUEUE); - fdp->fd_knlistsize = size; - fdp->fd_knlist = list; + fdp->fd_knlist = list; + fdp->fd_knlistsize = size; + } + list = &fdp->fd_knlist[kn->kn_id]; } - list = &fdp->fd_knlist[kn->kn_id]; -done: SLIST_INSERT_HEAD(list, kn, kn_link); - kn->kn_status = 0; + return (0); } + + /* * should be called at spl == 0, since we don't want to hold spl * while calling fdrop and free. */ static void -knote_drop(struct knote *kn, struct proc *p) +knote_drop(struct knote *kn, __unused struct proc *ctxp) { - struct filedesc *fdp = p->p_fd; + struct kqueue *kq = kn->kn_kq; + struct proc *p = kq->kq_p; + struct filedesc *fdp = p->p_fd; struct klist *list; + int needswakeup; + proc_fdlock(p); if (kn->kn_fop->f_isfd) list = &fdp->fd_knlist[kn->kn_id]; else list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; SLIST_REMOVE(list, kn, knote, kn_link); - if (kn->kn_status & KN_QUEUED) - knote_dequeue(kn); + kqlock(kq); + knote_dequeue(kn); + needswakeup = (kn->kn_status & KN_USEWAIT); + kqunlock(kq); + proc_fdunlock(p); + + if (needswakeup) + wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, + THREAD_AWAKENED); + if (kn->kn_fop->f_isfd) - fdrop(kn->kn_fp, p); + fp_drop(p, kn->kn_id, kn->kn_fp, 0); + knote_free(kn); } - +/* called with kqueue lock held */ static void -knote_enqueue(struct knote *kn) +knote_activate(struct knote *kn, int propagate) { struct kqueue *kq = kn->kn_kq; - int s = splhigh(); - KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); + kn->kn_status |= KN_ACTIVE; + knote_enqueue(kn); + kqueue_wakeup(kq, 0); + + /* this is a real event: wake up the parent kq, too */ + if (propagate) + KNOTE(&kq->kq_sel.si_note, 0); +} + +/* called with kqueue lock held */ +static void +knote_deactivate(struct knote *kn) +{ + kn->kn_status &= ~KN_ACTIVE; + knote_dequeue(kn); +} - TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); - kn->kn_status |= KN_QUEUED; - kq->kq_count++; - splx(s); - kqueue_wakeup(kq); +/* called with kqueue lock held */ +static void +knote_enqueue(struct knote *kn) +{ + if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED || + (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) { + struct kqtailq *tq = kn->kn_tq; + struct kqueue *kq = kn->kn_kq; + + TAILQ_INSERT_TAIL(tq, kn, kn_tqe); + kn->kn_status |= KN_QUEUED; + kq->kq_count++; + } } +/* called with kqueue lock held */ static void knote_dequeue(struct knote *kn) { struct kqueue *kq = kn->kn_kq; - int s = splhigh(); - KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); + if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) { + struct kqtailq *tq = kn->kn_tq; - TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); - kn->kn_status &= ~KN_QUEUED; - kq->kq_count--; - splx(s); + TAILQ_REMOVE(tq, kn, kn_tqe); + kn->kn_tq = &kq->kq_head; + kn->kn_status &= ~KN_QUEUED; + kq->kq_count--; + } } void knote_init(void) { - knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone"); + knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), + 8192, "knote zone"); + + /* allocate kq lock group attribute and group */ + kq_lck_grp_attr = lck_grp_attr_alloc_init(); + + kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr); + + /* Allocate kq lock attribute */ + kq_lck_attr = lck_attr_alloc_init(); + + /* Initialize the timer filter lock */ + lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr); + +#if VM_PRESSURE_EVENTS + /* Initialize the vm pressure list lock */ + vm_pressure_init(kq_lck_grp, kq_lck_attr); +#endif + +#if CONFIG_MEMORYSTATUS + /* Initialize the memorystatus list lock */ + memorystatus_kevent_init(kq_lck_grp, kq_lck_attr); +#endif } SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) @@ -1105,9 +2854,10 @@ knote_alloc(void) static void knote_free(struct knote *kn) { - zfree(knote_zone, (vm_offset_t)kn); + zfree(knote_zone, kn); } +#if SOCKETS #include #include #include @@ -1118,197 +2868,661 @@ knote_free(struct knote *kn) #include #include +#ifndef ROUNDUP64 +#define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) +#endif + +#ifndef ADVANCE64 +#define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) +#endif -int raw_usrreq(); -struct pr_usrreqs event_usrreqs; +static lck_grp_attr_t *kev_lck_grp_attr; +static lck_attr_t *kev_lck_attr; +static lck_grp_t *kev_lck_grp; +static decl_lck_rw_data(,kev_lck_data); +static lck_rw_t *kev_rwlock = &kev_lck_data; + +static int kev_attach(struct socket *so, int proto, struct proc *p); +static int kev_detach(struct socket *so); +static int kev_control(struct socket *so, u_long cmd, caddr_t data, + struct ifnet *ifp, struct proc *p); +static lck_mtx_t * event_getlock(struct socket *, int); +static int event_lock(struct socket *, int, void *); +static int event_unlock(struct socket *, int, void *); + +static int event_sofreelastref(struct socket *); +static void kev_delete(struct kern_event_pcb *); + +static struct pr_usrreqs event_usrreqs = { + .pru_attach = kev_attach, + .pru_control = kev_control, + .pru_detach = kev_detach, + .pru_soreceive = soreceive, +}; -struct protosw eventsw[] = { - { - SOCK_RAW, &systemdomain, SYSPROTO_EVENT, PR_ATOMIC, - 0, 0, 0, 0, - 0, - 0, 0, 0, 0, - 0, &event_usrreqs - } +static struct protosw eventsw[] = { +{ + .pr_type = SOCK_RAW, + .pr_protocol = SYSPROTO_EVENT, + .pr_flags = PR_ATOMIC, + .pr_usrreqs = &event_usrreqs, + .pr_lock = event_lock, + .pr_unlock = event_unlock, + .pr_getlock = event_getlock, +} }; +__private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS; +__private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS; + +SYSCTL_NODE(_net_systm, OID_AUTO, kevt, + CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family"); + +struct kevtstat kevtstat; +SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats, + CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, + kevt_getstat, "S,kevtstat", ""); + +SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist, + CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, + kevt_pcblist, "S,xkevtpcb", ""); + +static lck_mtx_t * +event_getlock(struct socket *so, int locktype) +{ +#pragma unused(locktype) + struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; + + if (so->so_pcb != NULL) { + if (so->so_usecount < 0) + panic("%s: so=%p usecount=%d lrh= %s\n", __func__, + so, so->so_usecount, solockhistory_nr(so)); + /* NOTREACHED */ + } else { + panic("%s: so=%p NULL NO so_pcb %s\n", __func__, + so, solockhistory_nr(so)); + /* NOTREACHED */ + } + return (&ev_pcb->evp_mtx); +} + +static int +event_lock(struct socket *so, int refcount, void *lr) +{ + void *lr_saved; + + if (lr == NULL) + lr_saved = __builtin_return_address(0); + else + lr_saved = lr; + + if (so->so_pcb != NULL) { + lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); + } else { + panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__, + so, lr_saved, solockhistory_nr(so)); + /* NOTREACHED */ + } + + if (so->so_usecount < 0) { + panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__, + so, so->so_pcb, lr_saved, so->so_usecount, + solockhistory_nr(so)); + /* NOTREACHED */ + } + + if (refcount) + so->so_usecount++; + + so->lock_lr[so->next_lock_lr] = lr_saved; + so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; + return (0); +} + +static int +event_unlock(struct socket *so, int refcount, void *lr) +{ + void *lr_saved; + lck_mtx_t *mutex_held; + + if (lr == NULL) + lr_saved = __builtin_return_address(0); + else + lr_saved = lr; + + if (refcount) + so->so_usecount--; + + if (so->so_usecount < 0) { + panic("%s: so=%p usecount=%d lrh= %s\n", __func__, + so, so->so_usecount, solockhistory_nr(so)); + /* NOTREACHED */ + } + if (so->so_pcb == NULL) { + panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__, + so, so->so_usecount, (void *)lr_saved, + solockhistory_nr(so)); + /* NOTREACHED */ + } + mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); + + lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); + so->unlock_lr[so->next_unlock_lr] = lr_saved; + so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; + + if (so->so_usecount == 0) { + VERIFY(so->so_flags & SOF_PCBCLEARING); + event_sofreelastref(so); + } else { + lck_mtx_unlock(mutex_held); + } + + return (0); +} + +static int +event_sofreelastref(struct socket *so) +{ + struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; + + lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED); + + so->so_pcb = NULL; + + /* + * Disable upcall in the event another thread is in kev_post_msg() + * appending record to the receive socket buffer, since sbwakeup() + * may release the socket lock otherwise. + */ + so->so_rcv.sb_flags &= ~SB_UPCALL; + so->so_snd.sb_flags &= ~SB_UPCALL; + so->so_event = sonullevent; + lck_mtx_unlock(&(ev_pcb->evp_mtx)); + + lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED); + lck_rw_lock_exclusive(kev_rwlock); + LIST_REMOVE(ev_pcb, evp_link); + kevtstat.kes_pcbcount--; + kevtstat.kes_gencnt++; + lck_rw_done(kev_rwlock); + kev_delete(ev_pcb); + + sofreelastref(so, 1); + return (0); +} + +static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw)); + static struct kern_event_head kern_event_head; -static u_long static_event_id = 0; +static u_int32_t static_event_id = 0; + +#define EVPCB_ZONE_MAX 65536 +#define EVPCB_ZONE_NAME "kerneventpcb" +static struct zone *ev_pcb_zone; /* - * Install the protosw's for the NKE manager. Invoked at - * extension load time + * Install the protosw's for the NKE manager. Invoked at extension load time */ -int -kern_event_init(void) +void +kern_event_init(struct domain *dp) { - int retval; + struct protosw *pr; + int i; + + VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); + VERIFY(dp == systemdomain); + + kev_lck_grp_attr = lck_grp_attr_alloc_init(); + if (kev_lck_grp_attr == NULL) { + panic("%s: lck_grp_attr_alloc_init failed\n", __func__); + /* NOTREACHED */ + } + + kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol", + kev_lck_grp_attr); + if (kev_lck_grp == NULL) { + panic("%s: lck_grp_alloc_init failed\n", __func__); + /* NOTREACHED */ + } + + kev_lck_attr = lck_attr_alloc_init(); + if (kev_lck_attr == NULL) { + panic("%s: lck_attr_alloc_init failed\n", __func__); + /* NOTREACHED */ + } + + lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr); + if (kev_rwlock == NULL) { + panic("%s: lck_mtx_alloc_init failed\n", __func__); + /* NOTREACHED */ + } + + for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++) + net_add_proto(pr, dp, 1); - if ((retval = net_add_proto(eventsw, &systemdomain)) == 0) - return(KERN_SUCCESS); - - log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval); - return(retval); + ev_pcb_zone = zinit(sizeof(struct kern_event_pcb), + EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME); + if (ev_pcb_zone == NULL) { + panic("%s: failed allocating ev_pcb_zone", __func__); + /* NOTREACHED */ + } + zone_change(ev_pcb_zone, Z_EXPAND, TRUE); + zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE); } -int kev_attach(struct socket *so, int proto, struct proc *p) +static int +kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) { - int error; - struct kern_event_pcb *ev_pcb; + int error = 0; + struct kern_event_pcb *ev_pcb; - error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); - if (error) - return error; + error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); + if (error != 0) + return (error); - ev_pcb = _MALLOC(sizeof(struct kern_event_pcb), M_PCB, M_WAITOK); - if (ev_pcb == 0) - return ENOBUFS; + if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) { + return (ENOBUFS); + } + bzero(ev_pcb, sizeof(struct kern_event_pcb)); + lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr); - ev_pcb->ev_socket = so; - ev_pcb->vendor_code_filter = 0xffffffff; + ev_pcb->evp_socket = so; + ev_pcb->evp_vendor_code_filter = 0xffffffff; - so->so_pcb = (caddr_t) ev_pcb; - LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link); + so->so_pcb = (caddr_t) ev_pcb; + lck_rw_lock_exclusive(kev_rwlock); + LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link); + kevtstat.kes_pcbcount++; + kevtstat.kes_gencnt++; + lck_rw_done(kev_rwlock); - return 0; + return (error); } +static void +kev_delete(struct kern_event_pcb *ev_pcb) +{ + VERIFY(ev_pcb != NULL); + lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp); + zfree(ev_pcb_zone, ev_pcb); +} -int kev_detach(struct socket *so) +static int +kev_detach(struct socket *so) { - struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; + struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; - if (ev_pcb != 0) { - LIST_REMOVE(ev_pcb, ev_link); - FREE(ev_pcb, M_PCB); - so->so_pcb = 0; - } + if (ev_pcb != NULL) { + soisdisconnected(so); + so->so_flags |= SOF_PCBCLEARING; + } - return 0; + return (0); } +/* + * For now, kev_vendor_code and mbuf_tags use the same + * mechanism. + */ +errno_t kev_vendor_code_find( + const char *string, + u_int32_t *out_vendor_code) +{ + if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { + return (EINVAL); + } + return (net_str_id_find_internal(string, out_vendor_code, + NSI_VENDOR_CODE, 1)); +} -int kev_post_msg(struct kev_msg *event_msg) +errno_t +kev_msg_post(struct kev_msg *event_msg) { - struct mbuf *m, *m2; - struct kern_event_pcb *ev_pcb; - struct kern_event_msg *ev; - char *tmp; - int total_size; - int i; + mbuf_tag_id_t min_vendor, max_vendor; + + net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); + if (event_msg == NULL) + return (EINVAL); + + /* + * Limit third parties to posting events for registered vendor codes + * only + */ + if (event_msg->vendor_code < min_vendor || + event_msg->vendor_code > max_vendor) { + OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor); + return (EINVAL); + } + return (kev_post_msg(event_msg)); +} + +int +kev_post_msg(struct kev_msg *event_msg) +{ + struct mbuf *m, *m2; + struct kern_event_pcb *ev_pcb; + struct kern_event_msg *ev; + char *tmp; + u_int32_t total_size; + int i; - m = m_get(M_DONTWAIT, MT_DATA); - if (m == 0) - return ENOBUFS; + /* Verify the message is small enough to fit in one mbuf w/o cluster */ + total_size = KEV_MSG_HEADER_SIZE; - ev = mtod(m, struct kern_event_msg *); - total_size = KEV_MSG_HEADER_SIZE; + for (i = 0; i < 5; i++) { + if (event_msg->dv[i].data_length == 0) + break; + total_size += event_msg->dv[i].data_length; + } - tmp = (char *) &ev->event_data[0]; - for (i = 0; i < 5; i++) { - if (event_msg->dv[i].data_length == 0) - break; + if (total_size > MLEN) { + OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig); + return (EMSGSIZE); + } - total_size += event_msg->dv[i].data_length; - bcopy(event_msg->dv[i].data_ptr, tmp, - event_msg->dv[i].data_length); - tmp += event_msg->dv[i].data_length; - } + m = m_get(M_DONTWAIT, MT_DATA); + if (m == 0) { + OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); + return (ENOMEM); + } + ev = mtod(m, struct kern_event_msg *); + total_size = KEV_MSG_HEADER_SIZE; + tmp = (char *) &ev->event_data[0]; + for (i = 0; i < 5; i++) { + if (event_msg->dv[i].data_length == 0) + break; - ev->id = ++static_event_id; - ev->total_size = total_size; - ev->vendor_code = event_msg->vendor_code; - ev->kev_class = event_msg->kev_class; - ev->kev_subclass = event_msg->kev_subclass; - ev->event_code = event_msg->event_code; + total_size += event_msg->dv[i].data_length; + bcopy(event_msg->dv[i].data_ptr, tmp, + event_msg->dv[i].data_length); + tmp += event_msg->dv[i].data_length; + } - m->m_len = total_size; - for (ev_pcb = LIST_FIRST(&kern_event_head); - ev_pcb; - ev_pcb = LIST_NEXT(ev_pcb, ev_link)) { + ev->id = ++static_event_id; + ev->total_size = total_size; + ev->vendor_code = event_msg->vendor_code; + ev->kev_class = event_msg->kev_class; + ev->kev_subclass = event_msg->kev_subclass; + ev->event_code = event_msg->event_code; + + m->m_len = total_size; + lck_rw_lock_shared(kev_rwlock); + for (ev_pcb = LIST_FIRST(&kern_event_head); + ev_pcb; + ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { + lck_mtx_lock(&ev_pcb->evp_mtx); + if (ev_pcb->evp_socket->so_pcb == NULL) { + lck_mtx_unlock(&ev_pcb->evp_mtx); + continue; + } + if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) { + if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) { + lck_mtx_unlock(&ev_pcb->evp_mtx); + continue; + } - if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) { - if (ev_pcb->vendor_code_filter != ev->vendor_code) - continue; + if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) { + if (ev_pcb->evp_class_filter != ev->kev_class) { + lck_mtx_unlock(&ev_pcb->evp_mtx); + continue; + } - if (ev_pcb->class_filter != KEV_ANY_CLASS) { - if (ev_pcb->class_filter != ev->kev_class) - continue; + if ((ev_pcb->evp_subclass_filter != + KEV_ANY_SUBCLASS) && + (ev_pcb->evp_subclass_filter != + ev->kev_subclass)) { + lck_mtx_unlock(&ev_pcb->evp_mtx); + continue; + } + } + } - if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) && - (ev_pcb->subclass_filter != ev->kev_subclass)) - continue; - } - } + m2 = m_copym(m, 0, m->m_len, M_NOWAIT); + if (m2 == 0) { + OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); + m_free(m); + lck_mtx_unlock(&ev_pcb->evp_mtx); + lck_rw_done(kev_rwlock); + return (ENOMEM); + } + if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) { + /* + * We use "m" for the socket stats as it would be + * unsafe to use "m2" + */ + so_inc_recv_data_stat(ev_pcb->evp_socket, + 1, m->m_len, SO_TC_BE); - m2 = m_copym(m, 0, m->m_len, M_NOWAIT); - if (m2 == 0) { - m_free(m); - return ENOBUFS; - } + sorwakeup(ev_pcb->evp_socket); + OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted); + } else { + OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock); + } + lck_mtx_unlock(&ev_pcb->evp_mtx); + } + m_free(m); + lck_rw_done(kev_rwlock); - sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2); - sorwakeup(ev_pcb->ev_socket); - } + return (0); +} +static int +kev_control(struct socket *so, + u_long cmd, + caddr_t data, + __unused struct ifnet *ifp, + __unused struct proc *p) +{ + struct kev_request *kev_req = (struct kev_request *) data; + struct kern_event_pcb *ev_pcb; + struct kev_vendor_code *kev_vendor; + u_int32_t *id_value = (u_int32_t *) data; + + switch (cmd) { + case SIOCGKEVID: + *id_value = static_event_id; + break; + case SIOCSKEVFILT: + ev_pcb = (struct kern_event_pcb *) so->so_pcb; + ev_pcb->evp_vendor_code_filter = kev_req->vendor_code; + ev_pcb->evp_class_filter = kev_req->kev_class; + ev_pcb->evp_subclass_filter = kev_req->kev_subclass; + break; + case SIOCGKEVFILT: + ev_pcb = (struct kern_event_pcb *) so->so_pcb; + kev_req->vendor_code = ev_pcb->evp_vendor_code_filter; + kev_req->kev_class = ev_pcb->evp_class_filter; + kev_req->kev_subclass = ev_pcb->evp_subclass_filter; + break; + case SIOCGKEVVENDOR: + kev_vendor = (struct kev_vendor_code *)data; + /* Make sure string is NULL terminated */ + kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0; + return (net_str_id_find_internal(kev_vendor->vendor_string, + &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0)); + default: + return (ENOTSUP); + } - m_free(m); - return 0; + return (0); } +int +kevt_getstat SYSCTL_HANDLER_ARGS +{ +#pragma unused(oidp, arg1, arg2) + int error = 0; + + lck_rw_lock_shared(kev_rwlock); + + if (req->newptr != USER_ADDR_NULL) { + error = EPERM; + goto done; + } + if (req->oldptr == USER_ADDR_NULL) { + req->oldidx = sizeof(struct kevtstat); + goto done; + } + + error = SYSCTL_OUT(req, &kevtstat, + MIN(sizeof(struct kevtstat), req->oldlen)); +done: + lck_rw_done(kev_rwlock); + + return (error); +} -int kev_control(so, cmd, data, ifp, p) - struct socket *so; - u_long cmd; - caddr_t data; - register struct ifnet *ifp; - struct proc *p; +__private_extern__ int +kevt_pcblist SYSCTL_HANDLER_ARGS { - struct kev_request *kev_req = (struct kev_request *) data; - int stat = 0; - struct kern_event_pcb *ev_pcb; - u_long *id_value = (u_long *) data; +#pragma unused(oidp, arg1, arg2) + int error = 0; + int n, i; + struct xsystmgen xsg; + void *buf = NULL; + size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) + + ROUNDUP64(sizeof (struct xsocket_n)) + + 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) + + ROUNDUP64(sizeof (struct xsockstat_n)); + struct kern_event_pcb *ev_pcb; + + buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); + if (buf == NULL) + return (ENOMEM); + lck_rw_lock_shared(kev_rwlock); - switch (cmd) { + n = kevtstat.kes_pcbcount; - case SIOCGKEVID: - *id_value = static_event_id; - break; + if (req->oldptr == USER_ADDR_NULL) { + req->oldidx = (n + n/8) * item_size; + goto done; + } + if (req->newptr != USER_ADDR_NULL) { + error = EPERM; + goto done; + } + bzero(&xsg, sizeof (xsg)); + xsg.xg_len = sizeof (xsg); + xsg.xg_count = n; + xsg.xg_gen = kevtstat.kes_gencnt; + xsg.xg_sogen = so_gencnt; + error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); + if (error) { + goto done; + } + /* + * We are done if there is no pcb + */ + if (n == 0) { + goto done; + } - case SIOCSKEVFILT: - ev_pcb = (struct kern_event_pcb *) so->so_pcb; - ev_pcb->vendor_code_filter = kev_req->vendor_code; - ev_pcb->class_filter = kev_req->kev_class; - ev_pcb->subclass_filter = kev_req->kev_subclass; - break; + i = 0; + for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head); + i < n && ev_pcb != NULL; + i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { + struct xkevtpcb *xk = (struct xkevtpcb *)buf; + struct xsocket_n *xso = (struct xsocket_n *) + ADVANCE64(xk, sizeof (*xk)); + struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) + ADVANCE64(xso, sizeof (*xso)); + struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) + ADVANCE64(xsbrcv, sizeof (*xsbrcv)); + struct xsockstat_n *xsostats = (struct xsockstat_n *) + ADVANCE64(xsbsnd, sizeof (*xsbsnd)); + + bzero(buf, item_size); + + lck_mtx_lock(&ev_pcb->evp_mtx); + + xk->kep_len = sizeof(struct xkevtpcb); + xk->kep_kind = XSO_EVT; + xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb); + xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter; + xk->kep_class_filter = ev_pcb->evp_class_filter; + xk->kep_subclass_filter = ev_pcb->evp_subclass_filter; + + sotoxsocket_n(ev_pcb->evp_socket, xso); + sbtoxsockbuf_n(ev_pcb->evp_socket ? + &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv); + sbtoxsockbuf_n(ev_pcb->evp_socket ? + &ev_pcb->evp_socket->so_snd : NULL, xsbsnd); + sbtoxsockstat_n(ev_pcb->evp_socket, xsostats); + + lck_mtx_unlock(&ev_pcb->evp_mtx); + + error = SYSCTL_OUT(req, buf, item_size); + } - case SIOCGKEVFILT: - ev_pcb = (struct kern_event_pcb *) so->so_pcb; - kev_req->vendor_code = ev_pcb->vendor_code_filter; - kev_req->kev_class = ev_pcb->class_filter; - kev_req->kev_subclass = ev_pcb->subclass_filter; - break; + if (error == 0) { + /* + * Give the user an updated idea of our state. + * If the generation differs from what we told + * her before, she knows that something happened + * while we were processing this request, and it + * might be necessary to retry. + */ + bzero(&xsg, sizeof (xsg)); + xsg.xg_len = sizeof (xsg); + xsg.xg_count = n; + xsg.xg_gen = kevtstat.kes_gencnt; + xsg.xg_sogen = so_gencnt; + error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); + if (error) { + goto done; + } + } - default: - return EOPNOTSUPP; - } +done: + lck_rw_done(kev_rwlock); - return 0; + return (error); } +#endif /* SOCKETS */ -struct pr_usrreqs event_usrreqs = { - pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp, - pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp, - pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp, - pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp, - pru_sosend_notsupp, soreceive, sopoll -}; + +int +fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo) +{ + struct vinfo_stat * st; + + st = &kinfo->kq_stat; + + st->vst_size = kq->kq_count; + if (kq->kq_state & KQ_KEV64) + st->vst_blksize = sizeof(struct kevent64_s); + else + st->vst_blksize = sizeof(struct kevent); + st->vst_mode = S_IFIFO; + if (kq->kq_state & KQ_SEL) + kinfo->kq_state |= PROC_KQUEUE_SELECT; + if (kq->kq_state & KQ_SLEEP) + kinfo->kq_state |= PROC_KQUEUE_SLEEP; + + return (0); +} +void +knote_markstayqueued(struct knote *kn) +{ + kqlock(kn->kn_kq); + kn->kn_status |= KN_STAYQUEUED; + knote_enqueue(kn); + kqunlock(kn->kn_kq); +} +void +knote_clearstayqueued(struct knote *kn) +{ + kqlock(kn->kn_kq); + kn->kn_status &= ~KN_STAYQUEUED; + knote_dequeue(kn); + kqunlock(kn->kn_kq); +}