X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/4a3eedf9ecc9bbe3f3a5c6ce5e53ad199d639d32..4d15aeb193b2c68f1d38666c317f8d3734f5f083:/osfmk/i386/mp_desc.c diff --git a/osfmk/i386/mp_desc.c b/osfmk/i386/mp_desc.c index 75bbe25cf..a886ae736 100644 --- a/osfmk/i386/mp_desc.c +++ b/osfmk/i386/mp_desc.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * @@ -63,30 +63,111 @@ #include #include #include +#include #include #include +#include #include -#include #include #include #include +#if defined(__i386__) || defined(__x86_64__) +#include +#endif /* i386 */ +#if CONFIG_MCA #include +#endif #include -#include - -/* - * The i386 needs an interrupt stack to keep the PCB stack from being - * overrun by interrupts. All interrupt stacks MUST lie at lower addresses - * than any thread`s kernel stack. - */ +#define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE) +#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE) + +// Declare macros that will declare the externs +#define TRAP(n, name) extern void *name ; +#define TRAP_ERR(n, name) extern void *name ; +#define TRAP_SPC(n, name) extern void *name ; +#define TRAP_IST1(n, name) extern void *name ; +#define TRAP_IST2(n, name) extern void *name ; +#define INTERRUPT(n) extern void *_intr_ ## n ; +#define USER_TRAP(n, name) extern void *name ; +#define USER_TRAP_SPC(n, name) extern void *name ; + +// Include the table to declare the externs +#include "../x86_64/idt_table.h" + +// Undef the macros, then redefine them so we can declare the table +#undef TRAP +#undef TRAP_ERR +#undef TRAP_SPC +#undef TRAP_IST1 +#undef TRAP_IST2 +#undef INTERRUPT +#undef USER_TRAP +#undef USER_TRAP_SPC + +#define TRAP(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 0, \ + K_INTR_GATE, \ + 0 \ + }, + +#define TRAP_ERR TRAP +#define TRAP_SPC TRAP + +#define TRAP_IST1(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 1, \ + K_INTR_GATE, \ + 0 \ + }, + +#define TRAP_IST2(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 2, \ + K_INTR_GATE, \ + 0 \ + }, + +#define INTERRUPT(n) \ + [n] = { \ + (uintptr_t)&_intr_ ## n,\ + KERNEL64_CS, \ + 0, \ + K_INTR_GATE, \ + 0 \ + }, + +#define USER_TRAP(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 0, \ + U_INTR_GATE, \ + 0 \ + }, + +#define USER_TRAP_SPC USER_TRAP + +// Declare the table using the macros we just set up +struct fake_descriptor64 master_idt64[IDTSZ] + __attribute__ ((section("__HIB,__desc"))) + __attribute__ ((aligned(PAGE_SIZE))) = { +#include "../x86_64/idt_table.h" +}; /* * First cpu`s interrupt stack. */ -extern uint32_t low_intstack[]; /* bottom */ +extern uint32_t low_intstack[]; /* bottom */ extern uint32_t low_eintstack[]; /* top */ /* @@ -94,18 +175,17 @@ extern uint32_t low_eintstack[]; /* top */ * The master cpu (cpu 0) has its data area statically allocated; * others are allocated dynamically and this array is updated at runtime. */ -cpu_data_t cpu_data_master; -cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] &cpu_data_master }; +static cpu_data_t cpu_data_master = { + .cpu_this = &cpu_data_master, + .cpu_nanotime = &pal_rtc_nanotime_info, + .cpu_int_stack_top = (vm_offset_t) low_eintstack, +}; +cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master }; -decl_simple_lock_data(,cpu_lock); /* protects real_ncpus */ +decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */ unsigned int real_ncpus = 1; unsigned int max_ncpus = MAX_CPUS; -extern void *hi_remap_text; -#define HI_TEXT(lo_text) \ - (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE) - -extern void hi_sysenter(void); extern void hi64_sysenter(void); extern void hi64_syscall(void); @@ -122,41 +202,6 @@ extern void hi64_syscall(void); * Allocate and initialize the per-processor descriptor tables. */ -struct fake_descriptor ldt_desc_pattern = { - (unsigned int) 0, - LDTSZ_MIN * sizeof(struct fake_descriptor) - 1, - 0, - ACC_P|ACC_PL_K|ACC_LDT -}; - -struct fake_descriptor tss_desc_pattern = { - (unsigned int) 0, - sizeof(struct i386_tss) - 1, - 0, - ACC_P|ACC_PL_K|ACC_TSS -}; - -struct fake_descriptor cpudata_desc_pattern = { - (unsigned int) 0, - sizeof(cpu_data_t)-1, - SZ_32, - ACC_P|ACC_PL_K|ACC_DATA_W -}; - -struct fake_descriptor userwindow_desc_pattern = { - (unsigned int) 0, - ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1, - SZ_32 | SZ_G, - ACC_P|ACC_PL_U|ACC_DATA_W -}; - -struct fake_descriptor physwindow_desc_pattern = { - (unsigned int) 0, - PAGE_SIZE - 1, - SZ_32, - ACC_P|ACC_PL_K|ACC_DATA_W -}; - /* * This is the expanded, 64-bit variant of the kernel LDT descriptor. * When switching to 64-bit mode this replaces KERNEL_LDT entry @@ -164,7 +209,7 @@ struct fake_descriptor physwindow_desc_pattern = { * in the uber-space remapping window on the kernel. */ struct fake_descriptor64 kernel_ldt_desc64 = { - FAKE_UBER64(&master_ldt), + 0, LDTSZ_MIN*sizeof(struct fake_descriptor)-1, 0, ACC_P|ACC_PL_K|ACC_LDT, @@ -176,244 +221,248 @@ struct fake_descriptor64 kernel_ldt_desc64 = { * It is follows pattern of the KERNEL_LDT. */ struct fake_descriptor64 kernel_tss_desc64 = { - FAKE_UBER64(&master_ktss64), + 0, sizeof(struct x86_64_tss)-1, 0, ACC_P|ACC_PL_K|ACC_TSS, 0 }; +/* + * Convert a descriptor from fake to real format. + * + * Fake descriptor format: + * bytes 0..3 base 31..0 + * bytes 4..5 limit 15..0 + * byte 6 access byte 2 | limit 19..16 + * byte 7 access byte 1 + * + * Real descriptor format: + * bytes 0..1 limit 15..0 + * bytes 2..3 base 15..0 + * byte 4 base 23..16 + * byte 5 access byte 1 + * byte 6 access byte 2 | limit 19..16 + * byte 7 base 31..24 + * + * Fake gate format: + * bytes 0..3 offset + * bytes 4..5 selector + * byte 6 word count << 4 (to match fake descriptor) + * byte 7 access byte 1 + * + * Real gate format: + * bytes 0..1 offset 15..0 + * bytes 2..3 selector + * byte 4 word count + * byte 5 access byte 1 + * bytes 6..7 offset 31..16 + */ +void +fix_desc(void *d, int num_desc) { + //early_kprintf("fix_desc(%x, %x)\n", d, num_desc); + uint8_t *desc = (uint8_t*) d; + + do { + if ((desc[7] & 0x14) == 0x04) { /* gate */ + uint32_t offset; + uint16_t selector; + uint8_t wordcount; + uint8_t acc; + + offset = *((uint32_t*)(desc)); + selector = *((uint32_t*)(desc+4)); + wordcount = desc[6] >> 4; + acc = desc[7]; + + *((uint16_t*)desc) = offset & 0xFFFF; + *((uint16_t*)(desc+2)) = selector; + desc[4] = wordcount; + desc[5] = acc; + *((uint16_t*)(desc+6)) = offset >> 16; + + } else { /* descriptor */ + uint32_t base; + uint16_t limit; + uint8_t acc1, acc2; + + base = *((uint32_t*)(desc)); + limit = *((uint16_t*)(desc+4)); + acc2 = desc[6]; + acc1 = desc[7]; + + *((uint16_t*)(desc)) = limit; + *((uint16_t*)(desc+2)) = base & 0xFFFF; + desc[4] = (base >> 16) & 0xFF; + desc[5] = acc1; + desc[6] = acc2; + desc[7] = base >> 24; + } + desc += 8; + } while (--num_desc); +} + void -cpu_desc_init( - cpu_data_t *cdp, - boolean_t is_boot_cpu) +fix_desc64(void *descp, int count) { - cpu_desc_table_t *cdt = cdp->cpu_desc_tablep; - cpu_desc_index_t *cdi = &cdp->cpu_desc_index; + struct fake_descriptor64 *fakep; + union { + struct real_gate64 gate; + struct real_descriptor64 desc; + } real; + int i; + + fakep = (struct fake_descriptor64 *) descp; + + for (i = 0; i < count; i++, fakep++) { + /* + * Construct the real decriptor locally. + */ - if (is_boot_cpu) { - /* - * Master CPU uses the tables built at boot time. - * Just set the index pointers to the high shared-mapping space. - * Note that the sysenter stack uses empty space above the ktss - * in the HIGH_FIXED_KTSS page. In this case we don't map the - * the real master_sstk in low memory. - */ - cdi->cdi_ktss = (struct i386_tss *) - pmap_index_to_virt(HIGH_FIXED_KTSS) ; - cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) + - (vm_offset_t) &master_sstk.top - - (vm_offset_t) &master_sstk; -#if MACH_KDB - cdi->cdi_dbtss = (struct i386_tss *) - pmap_index_to_virt(HIGH_FIXED_DBTSS); -#endif /* MACH_KDB */ - cdi->cdi_gdt = (struct fake_descriptor *) - pmap_index_to_virt(HIGH_FIXED_GDT); - cdi->cdi_idt = (struct fake_descriptor *) - pmap_index_to_virt(HIGH_FIXED_IDT); - cdi->cdi_ldt = (struct fake_descriptor *) - pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN); - } else { - - vm_offset_t cpu_hi_desc; - - cpu_hi_desc = pmap_cpu_high_shared_remap(cdp->cpu_number, - HIGH_CPU_DESC, - (vm_offset_t) cdt, 1); - - /* - * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one - * block (cpu_desc_table) and double-mapped into high shared space - * in one page window. - * Also, a transient stack for the fast sysenter path. The top of - * which is set at context switch time to point to the PCB using - * the high address. - */ - cdi->cdi_gdt = (struct fake_descriptor *) (cpu_hi_desc + - offsetof(cpu_desc_table_t, gdt[0])); - cdi->cdi_idt = (struct fake_descriptor *) (cpu_hi_desc + - offsetof(cpu_desc_table_t, idt[0])); - cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc + - offsetof(cpu_desc_table_t, ktss)); - cdi->cdi_sstk = cpu_hi_desc + - offsetof(cpu_desc_table_t, sstk.top); - - /* - * LDT descriptors are mapped into a seperate area. - */ - cdi->cdi_ldt = (struct fake_descriptor *) - pmap_cpu_high_shared_remap( - cdp->cpu_number, - HIGH_CPU_LDT_BEGIN, - (vm_offset_t) cdp->cpu_ldtp, - HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1); - - /* - * Copy the tables - */ - bcopy((char *)master_idt, - (char *)cdt->idt, - sizeof(master_idt)); - bcopy((char *)master_gdt, - (char *)cdt->gdt, - sizeof(master_gdt)); - bcopy((char *)master_ldt, - (char *)cdp->cpu_ldtp, - sizeof(master_ldt)); - bzero((char *)&cdt->ktss, - sizeof(struct i386_tss)); - -#if MACH_KDB - cdi->cdi_dbtss = (struct i386_tss *) (cpu_hi_desc + - offsetof(cpu_desc_table_t, dbtss)); - bcopy((char *)&master_dbtss, - (char *)&cdt->dbtss, - sizeof(struct i386_tss)); -#endif /* MACH_KDB */ - - /* - * Fix up the entries in the GDT to point to - * this LDT and this TSS. - */ - cdt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern; - cdt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) cdi->cdi_ldt; - fix_desc(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); - - cdt->gdt[sel_idx(USER_LDT)] = ldt_desc_pattern; - cdt->gdt[sel_idx(USER_LDT)].offset = (vm_offset_t) cdi->cdi_ldt; - fix_desc(&cdt->gdt[sel_idx(USER_LDT)], 1); - - cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern; - cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss; - fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); - - cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern; - cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp; - fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1); - -#if MACH_KDB - cdt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern; - cdt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) cdi->cdi_dbtss; - fix_desc(&cdt->gdt[sel_idx(DEBUG_TSS)], 1); - - cdt->dbtss.esp0 = (int)(db_task_stack_store + - (INTSTACK_SIZE * (cdp->cpu_number)) - sizeof (natural_t)); - cdt->dbtss.esp = cdt->dbtss.esp0; - cdt->dbtss.eip = (int)&db_task_start; -#endif /* MACH_KDB */ - - cdt->ktss.ss0 = KERNEL_DS; - cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */ - - cpu_userwindow_init(cdp->cpu_number); - cpu_physwindow_init(cdp->cpu_number); + bzero((void *) &real, sizeof(real)); + + switch (fakep->access & ACC_TYPE) { + case 0: + break; + case ACC_CALL_GATE: + case ACC_INTR_GATE: + case ACC_TRAP_GATE: + real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); + real.gate.selector16 = fakep->lim_or_seg & 0xFFFF; + real.gate.IST = fakep->size_or_IST & 0x7; + real.gate.access8 = fakep->access; + real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF); + real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32); + break; + default: /* Otherwise */ + real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF; + real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); + real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF); + real.desc.access8 = fakep->access; + real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF; + real.desc.granularity4 = fakep->size_or_IST; + real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF); + real.desc.base_top32 = (uint32_t)(fakep->offset64>>32); + } + /* + * Now copy back over the fake structure. + */ + bcopy((void *) &real, (void *) fakep, sizeof(real)); } +} + +static void +cpu_gdt_alias(vm_map_offset_t gdt, vm_map_offset_t alias) +{ + pt_entry_t *pte = NULL; + + /* Require page alignment */ + assert(page_aligned(gdt)); + assert(page_aligned(alias)); + + pte = pmap_pte(kernel_pmap, alias); + pmap_store_pte(pte, kvtophys(gdt) | INTEL_PTE_REF + | INTEL_PTE_MOD + | INTEL_PTE_WIRED + | INTEL_PTE_VALID + | INTEL_PTE_WRITE + | INTEL_PTE_NX); + /* TLB flush unneccessry because target processor isn't running yet */ } + void -cpu_desc_init64( - cpu_data_t *cdp, - boolean_t is_boot_cpu) +cpu_desc_init64(cpu_data_t *cdp) { - cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) - cdp->cpu_desc_tablep; cpu_desc_index_t *cdi = &cdp->cpu_desc_index; - if (is_boot_cpu) { + if (cdp == &cpu_data_master) { /* * Master CPU uses the tables built at boot time. * Just set the index pointers to the low memory space. - * Note that in 64-bit mode these are addressed in the - * double-mapped window (uber-space). */ - cdi->cdi_ktss = (struct i386_tss *) &master_ktss64; + cdi->cdi_ktss = (void *)&master_ktss64; cdi->cdi_sstk = (vm_offset_t) &master_sstk.top; - cdi->cdi_gdt = master_gdt; - cdi->cdi_idt = (struct fake_descriptor *) &master_idt64; - cdi->cdi_ldt = (struct fake_descriptor *) &master_ldt; + cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS; + cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; + cdi->cdi_ldt = (struct fake_descriptor *) master_ldt; - /* Replace the expanded LDT and TSS slots in the GDT: */ + /* Replace the expanded LDTs and TSS slots in the GDT */ + kernel_ldt_desc64.offset64 = (uintptr_t) &master_ldt; *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] = kernel_ldt_desc64; + *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] = + kernel_ldt_desc64; + kernel_tss_desc64.offset64 = (uintptr_t) &master_ktss64; *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] = kernel_tss_desc64; - /* - * Fix up the expanded descriptors for 64-bit. - */ + /* Fix up the expanded descriptors for 64-bit. */ fix_desc64((void *) &master_idt64, IDTSZ); fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1); + fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1); fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1); /* - * Set the double-fault stack as IST1 in the 64-bit TSS + * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS + * Note: this will be dynamically re-allocated in VM later. */ - master_ktss64.ist1 = UBER64(df_task_stack_end); + master_ktss64.ist2 = (uintptr_t) low_eintstack; + master_ktss64.ist1 = (uintptr_t) low_eintstack + - sizeof(x86_64_intr_stack_frame_t); + + } else if (cdi->cdi_ktss == NULL) { /* Skipping re-init on wake */ + cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep; - } else { /* * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel - * heap (cpu_desc_table) and double-mapped in uber-space - * (over 4GB). + * heap (cpu_desc_table). * LDT descriptors are mapped into a separate area. + * GDT descriptors are addressed by alias to avoid sgdt leaks to user-space. */ - cdi->cdi_gdt = (struct fake_descriptor *)cdt->gdt; - cdi->cdi_idt = (struct fake_descriptor *)cdt->idt; - cdi->cdi_ktss = (struct i386_tss *)&cdt->ktss; + cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; + cdi->cdi_gdt.ptr = (void *)CPU_GDT_ALIAS(cdp->cpu_number); + cdi->cdi_ktss = (void *)&cdt->ktss; cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top; cdi->cdi_ldt = cdp->cpu_ldtp; + /* Make the virtual alias address for the GDT */ + cpu_gdt_alias((vm_map_offset_t) &cdt->gdt, + (vm_map_offset_t) cdi->cdi_gdt.ptr); + /* * Copy the tables */ - bcopy((char *)master_idt64, - (char *)cdt->idt, - sizeof(master_idt64)); - bcopy((char *)master_gdt, - (char *)cdt->gdt, - sizeof(master_gdt)); - bcopy((char *)master_ldt, - (char *)cdp->cpu_ldtp, - sizeof(master_ldt)); - bcopy((char *)&master_ktss64, - (char *)&cdt->ktss, - sizeof(struct x86_64_tss)); + bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt)); + bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt)); + bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss)); /* * Fix up the entries in the GDT to point to * this LDT and this TSS. */ - kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt; + kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt; *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] = kernel_ldt_desc64; fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); - kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt; + kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt; *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] = kernel_ldt_desc64; fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1); - kernel_tss_desc64.offset[0] = (vm_offset_t) cdi->cdi_ktss; + kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktss; *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] = kernel_tss_desc64; fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); - cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern; - cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp; - fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1); - - /* Set double-fault stack as IST1 */ - cdt->ktss.ist1 = UBER64((unsigned long)cdt->dfstk - + sizeof(cdt->dfstk)); - - /* - * Allocate copyio windows. - */ - cpu_userwindow_init(cdp->cpu_number); - cpu_physwindow_init(cdp->cpu_number); + /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */ + bzero((void *) cdt->fstk, sizeof(cdt->fstk)); + cdt->ktss.ist2 = (unsigned long)cdt->fstk + sizeof(cdt->fstk); + cdt->ktss.ist1 = cdt->ktss.ist2 + - sizeof(x86_64_intr_stack_frame_t); } /* Require that the top of the sysenter stack is 16-byte aligned */ @@ -421,16 +470,46 @@ cpu_desc_init64( panic("cpu_desc_init64() sysenter stack not 16-byte aligned"); } + +void +cpu_desc_load64(cpu_data_t *cdp) +{ + cpu_desc_index_t *cdi = &cdp->cpu_desc_index; + + /* Stuff the kernel per-cpu data area address into the MSRs */ + wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); + wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); + + /* + * Ensure the TSS segment's busy bit is clear. This is required + * for the case of reloading descriptors at wake to avoid + * their complete re-initialization. + */ + gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; + + /* Load the GDT, LDT, IDT and TSS */ + cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1; + cdi->cdi_idt.size = 0x1000 + cdp->cpu_number; + lgdt((uintptr_t *) &cdi->cdi_gdt); + lidt((uintptr_t *) &cdi->cdi_idt); + lldt(KERNEL_LDT); + set_tr(KERNEL_TSS); + +#if GPROF // Hack to enable mcount to work on K64 + __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS))); +#endif +} + + /* - * Set MSRs for sysenter/sysexit for 64-bit. + * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit. */ static void -fast_syscall_init64(void) +fast_syscall_init64(__unused cpu_data_t *cdp) { wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); - wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64(hi64_sysenter)); - wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk())); - + wrmsr64(MSR_IA32_SYSENTER_EIP, (uintptr_t) hi64_sysenter); + wrmsr64(MSR_IA32_SYSENTER_ESP, current_sstk()); /* Enable syscall/sysret */ wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE); @@ -439,9 +518,9 @@ fast_syscall_init64(void) * Note USER_CS because sysret uses this + 16 when returning to * 64-bit code. */ - wrmsr64(MSR_IA32_LSTAR, UBER64(hi64_syscall)); - wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | - (((uint64_t)KERNEL64_CS) << 32)); + wrmsr64(MSR_IA32_LSTAR, (uintptr_t) hi64_syscall); + wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | + (((uint64_t)KERNEL64_CS) << 32)); /* * Emulate eflags cleared by sysenter but note that * we also clear the trace trap to avoid the complications @@ -451,29 +530,8 @@ fast_syscall_init64(void) */ wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT); - /* - * Set the Kernel GS base MSR to point to per-cpu data in uber-space. - * The uber-space handler (hi64_syscall) uses the swapgs instruction. - */ - wrmsr64(MSR_IA32_KERNEL_GS_BASE, - UBER64((unsigned long)current_cpu_datap())); - -#if ONLY_SAFE_FOR_LINDA_SERIAL - kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n", - rdmsr64(MSR_IA32_KERNEL_GS_BASE)); -#endif } -/* - * Set MSRs for sysenter/sysexit - */ -static void -fast_syscall_init(void) -{ - wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0); - wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0); - wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0); -} cpu_data_t * cpu_data_alloc(boolean_t is_boot_cpu) @@ -483,29 +541,21 @@ cpu_data_alloc(boolean_t is_boot_cpu) if (is_boot_cpu) { assert(real_ncpus == 1); - simple_lock_init(&cpu_lock, 0); - cdp = &cpu_data_master; + cdp = cpu_datap(0); if (cdp->cpu_processor == NULL) { + simple_lock_init(&ncpus_lock, 0); cdp->cpu_processor = cpu_processor_alloc(TRUE); +#if NCOPY_WINDOWS > 0 cdp->cpu_pmap = pmap_cpu_alloc(TRUE); - cdp->cpu_this = cdp; - cdp->cpu_is64bit = FALSE; - cdp->cpu_int_stack_top = (vm_offset_t) low_eintstack; - cpu_desc_init(cdp, TRUE); - fast_syscall_init(); +#endif } return cdp; } - /* Check count before making allocations */ - if (real_ncpus >= max_ncpus) - return NULL; - /* * Allocate per-cpu data: */ - ret = kmem_alloc(kernel_map, - (vm_offset_t *) &cdp, sizeof(cpu_data_t)); + ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU); if (ret != KERN_SUCCESS) { printf("cpu_data_alloc() failed, ret=%d\n", ret); goto abort; @@ -513,15 +563,12 @@ cpu_data_alloc(boolean_t is_boot_cpu) bzero((void*) cdp, sizeof(cpu_data_t)); cdp->cpu_this = cdp; - /* Propagate mode */ - cdp->cpu_is64bit = cpu_mode_is64bit(); - /* * Allocate interrupt stack: */ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp->cpu_int_stack_top, - INTSTACK_SIZE); + INTSTACK_SIZE, VM_KERN_MEMORY_CPU); if (ret != KERN_SUCCESS) { printf("cpu_data_alloc() int stack failed, ret=%d\n", ret); goto abort; @@ -531,12 +578,11 @@ cpu_data_alloc(boolean_t is_boot_cpu) /* * Allocate descriptor table: - * Size depends on cpu mode. */ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp->cpu_desc_tablep, - cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t) - : sizeof(cpu_desc_table_t)); + sizeof(cpu_desc_table64_t), + VM_KERN_MEMORY_CPU); if (ret != KERN_SUCCESS) { printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret); goto abort; @@ -547,30 +593,42 @@ cpu_data_alloc(boolean_t is_boot_cpu) */ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp->cpu_ldtp, - sizeof(struct real_descriptor) * LDTSZ); + sizeof(struct real_descriptor) * LDTSZ, + VM_KERN_MEMORY_CPU); if (ret != KERN_SUCCESS) { printf("cpu_data_alloc() ldt failed, ret=%d\n", ret); goto abort; } +#if CONFIG_MCA /* Machine-check shadow register allocation. */ mca_cpu_alloc(cdp); +#endif + + simple_lock(&ncpus_lock); - simple_lock(&cpu_lock); - if (real_ncpus >= max_ncpus) { - simple_unlock(&cpu_lock); - goto abort; - } cpu_data_ptr[real_ncpus] = cdp; cdp->cpu_number = real_ncpus; real_ncpus++; - simple_unlock(&cpu_lock); + simple_unlock(&ncpus_lock); + + /* + * Before this cpu has been assigned a real thread context, + * we give it a fake, unique, non-zero thread id which the locking + * primitives use as their lock value. + * Note that this does not apply to the boot processor, cpu 0, which + * transitions to a thread context well before other processors are + * started. + */ + cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number; + + cdp->cpu_nanotime = &pal_rtc_nanotime_info; kprintf("cpu_data_alloc(%d) %p desc_table: %p " "ldt: %p " - "int_stack: 0x%x-0x%x\n", + "int_stack: 0x%lx-0x%lx\n", cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp, - cdp->cpu_int_stack_top - INTSTACK_SIZE, cdp->cpu_int_stack_top); + (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top)); return cdp; @@ -578,7 +636,7 @@ abort: if (cdp) { if (cdp->cpu_desc_tablep) kfree((void *) cdp->cpu_desc_tablep, - sizeof(*cdp->cpu_desc_tablep)); + sizeof(cpu_desc_table64_t)); if (cdp->cpu_int_stack_top) kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE), INTSTACK_SIZE); @@ -587,22 +645,88 @@ abort: return NULL; } +boolean_t +valid_user_data_selector(uint16_t selector) +{ + sel_t sel = selector_to_sel(selector); + + if (selector == 0) + return (TRUE); + + if (sel.ti == SEL_LDT) + return (TRUE); + else if (sel.index < GDTSZ) { + if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) + return (TRUE); + } + + return (FALSE); +} + +boolean_t +valid_user_code_selector(uint16_t selector) +{ + sel_t sel = selector_to_sel(selector); + + if (selector == 0) + return (FALSE); + + if (sel.ti == SEL_LDT) { + if (sel.rpl == USER_PRIV) + return (TRUE); + } + else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { + if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) + return (TRUE); + /* Explicitly validate the system code selectors + * even if not instantaneously privileged, + * since they are dynamically re-privileged + * at context switch + */ + if ((selector == USER_CS) || (selector == USER64_CS)) + return (TRUE); + } + + return (FALSE); +} + +boolean_t +valid_user_stack_selector(uint16_t selector) +{ + sel_t sel = selector_to_sel(selector); + + if (selector == 0) + return (FALSE); + + if (sel.ti == SEL_LDT) { + if (sel.rpl == USER_PRIV) + return (TRUE); + } + else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { + if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) + return (TRUE); + } + + return (FALSE); +} + boolean_t valid_user_segment_selectors(uint16_t cs, - uint16_t ss, - uint16_t ds, - uint16_t es, - uint16_t fs, - uint16_t gs) + uint16_t ss, + uint16_t ds, + uint16_t es, + uint16_t fs, + uint16_t gs) { return valid_user_code_selector(cs) && - valid_user_stack_selector(ss) && - valid_user_data_selector(ds) && - valid_user_data_selector(es) && - valid_user_data_selector(fs) && - valid_user_data_selector(gs); + valid_user_stack_selector(ss) && + valid_user_data_selector(ds) && + valid_user_data_selector(es) && + valid_user_data_selector(fs) && + valid_user_data_selector(gs); } +#if NCOPY_WINDOWS > 0 static vm_offset_t user_window_base = 0; @@ -610,23 +734,22 @@ void cpu_userwindow_init(int cpu) { cpu_data_t *cdp = cpu_data_ptr[cpu]; - cpu_desc_index_t *cdi = &cdp->cpu_desc_index; - vm_offset_t user_window; - vm_offset_t vaddr; + vm_offset_t user_window; + vm_offset_t vaddr; int num_cpus; num_cpus = ml_get_max_cpus(); if (cpu >= num_cpus) - panic("cpu_userwindow_init: cpu > num_cpus"); + panic("cpu_userwindow_init: cpu > num_cpus"); if (user_window_base == 0) { - if (vm_allocate(kernel_map, &vaddr, - (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE, - VM_FLAGS_ANYWHERE) != KERN_SUCCESS) - panic("cpu_userwindow_init: " - "couldn't allocate user map window"); + if (vm_allocate(kernel_map, &vaddr, + (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE, + VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) + panic("cpu_userwindow_init: " + "couldn't allocate user map window"); /* * window must start on a page table boundary @@ -652,100 +775,106 @@ cpu_userwindow_init(int cpu) user_window); } - user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE); + user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE); cdp->cpu_copywindow_base = user_window; + /* + * Abuse this pdp entry, the pdp now actually points to + * an array of copy windows addresses. + */ cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window); - cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern; - cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)].offset = user_window; - - fix_desc(&cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)], 1); - } void cpu_physwindow_init(int cpu) { cpu_data_t *cdp = cpu_data_ptr[cpu]; - cpu_desc_index_t *cdi = &cdp->cpu_desc_index; - vm_offset_t phys_window; + vm_offset_t phys_window = cdp->cpu_physwindow_base; - if (vm_allocate(kernel_map, &phys_window, - PAGE_SIZE, VM_FLAGS_ANYWHERE) + if (phys_window == 0) { + if (vm_allocate(kernel_map, &phys_window, + PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) - panic("cpu_physwindow_init: couldn't allocate phys map window"); - - /* - * make sure the page that encompasses the - * pte pointer we're interested in actually - * exists in the page table - */ - pmap_expand(kernel_pmap, phys_window); - - cdp->cpu_physwindow_base = phys_window; - cdp->cpu_physwindow_ptep = vtopte(phys_window); + panic("cpu_physwindow_init: " + "couldn't allocate phys map window"); - cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern; - cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window; + /* + * make sure the page that encompasses the + * pte pointer we're interested in actually + * exists in the page table + */ + pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE); - fix_desc(&cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)], 1); + cdp->cpu_physwindow_base = phys_window; + cdp->cpu_physwindow_ptep = vtopte(phys_window); + } } +#endif /* NCOPY_WINDOWS > 0 */ - -typedef struct { - uint16_t length; - uint32_t offset[2]; -} __attribute__((__packed__)) table_descriptor64_t; - -extern table_descriptor64_t gdtptr64; -extern table_descriptor64_t idtptr64; /* * Load the segment descriptor tables for the current processor. */ void -cpu_desc_load64(cpu_data_t *cdp) +cpu_mode_init(cpu_data_t *cdp) { - cpu_desc_index_t *cdi = &cdp->cpu_desc_index; - - /* - * Load up the new descriptors etc - * ml_load_desc64() expects these global pseudo-descriptors: - * gdtptr64 -> master_gdt - * idtptr64 -> master_idt64 - * These are 10-byte descriptors with 64-bit addresses into - * uber-space. - */ - gdtptr64.length = sizeof(master_gdt) - 1; - gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt; - gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32; - idtptr64.length = sizeof(master_idt64) - 1; - idtptr64.offset[0] = (uint32_t) cdi->cdi_idt; - idtptr64.offset[1] = KERNEL_UBER_BASE_HI32; - - /* Make sure busy bit is cleared in the TSS */ - gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; - - ml_load_desc64(); - -#if ONLY_SAFE_FOR_LINDA_SERIAL - kprintf("64-bit descriptor tables loaded\n"); -#endif + fast_syscall_init64(cdp); } +/* + * Allocate a new interrupt stack for the boot processor from the + * heap rather than continue to use the statically allocated space. + * Also switch to a dynamically allocated cpu data area. + */ void -cpu_mode_init(cpu_data_t *cdp) +cpu_data_realloc(void) { - if (cpu_mode_is64bit()) { - cpu_IA32e_enable(cdp); - cpu_desc_load64(cdp); - fast_syscall_init64(); - } else { - fast_syscall_init(); + int ret; + vm_offset_t istk; + vm_offset_t fstk; + cpu_data_t *cdp; + boolean_t istate; + + ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + panic("cpu_data_realloc() stack alloc, ret=%d\n", ret); + } + bzero((void*) istk, INTSTACK_SIZE); + istk += INTSTACK_SIZE; + + ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret); } - /* Call for per-cpu pmap mode initialization */ - pmap_cpu_init(); + /* Copy old contents into new area and make fix-ups */ + assert(cpu_number() == 0); + bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t)); + cdp->cpu_this = cdp; + cdp->cpu_int_stack_top = istk; + timer_call_queue_init(&cdp->rtclock_timer.queue); -} + /* Allocate the separate fault stack */ + ret = kmem_alloc(kernel_map, &fstk, PAGE_SIZE, VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + panic("cpu_data_realloc() fault stack alloc, ret=%d\n", ret); + } + bzero((void*) fstk, PAGE_SIZE); + fstk += PAGE_SIZE; + /* + * With interrupts disabled commmit the new areas. + */ + istate = ml_set_interrupts_enabled(FALSE); + cpu_data_ptr[0] = cdp; + master_ktss64.ist2 = (uintptr_t) fstk; + master_ktss64.ist1 = (uintptr_t) fstk + - sizeof(x86_64_intr_stack_frame_t); + wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); + wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); + (void) ml_set_interrupts_enabled(istate); + + kprintf("Reallocated master cpu data: %p," + " interrupt stack: %p, fault stack: %p\n", + (void *) cdp, (void *) istk, (void *) fstk); +}