X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/4a2492630c73add3c3aa8a805ba4ff343d4a58ea..6d2010ae8f7a6078e10b361c6962983bab233e0f:/bsd/vfs/vfs_cluster.c diff --git a/bsd/vfs/vfs_cluster.c b/bsd/vfs/vfs_cluster.c index 78ef11b92..0e8bd67dd 100644 --- a/bsd/vfs/vfs_cluster.c +++ b/bsd/vfs/vfs_cluster.c @@ -1,16 +1,19 @@ /* - * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2008 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ - * - * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in - * compliance with the License. Please obtain a copy of the License at - * http://www.opensource.apple.com/apsl/ and read it before using this - * file. + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER @@ -20,7 +23,7 @@ * Please see the License for the specific language governing rights and * limitations under the License. * - * @APPLE_LICENSE_HEADER_END@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* @@ -59,152 +62,527 @@ */ #include -#include -#include -#include -#include +#include +#include +#include +#include #include #include #include #include #include +#include #include #include -#include -#include +#include +#include #include #include +#include +#include +#include -#include - - -#define CL_READ 0x01 -#define CL_ASYNC 0x02 -#define CL_COMMIT 0x04 -#define CL_PAGEOUT 0x10 -#define CL_AGE 0x20 -#define CL_DUMP 0x40 -#define CL_NOZERO 0x80 -#define CL_PAGEIN 0x100 -#define CL_DEV_MEMORY 0x200 -#define CL_PRESERVE 0x400 -#define CL_THROTTLE 0x800 +#include +#include +#include +#include +#include + +#include + +#if 0 +#undef KERNEL_DEBUG +#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT +#endif + + +#define CL_READ 0x01 +#define CL_WRITE 0x02 +#define CL_ASYNC 0x04 +#define CL_COMMIT 0x08 +#define CL_PAGEOUT 0x10 +#define CL_AGE 0x20 +#define CL_NOZERO 0x40 +#define CL_PAGEIN 0x80 +#define CL_DEV_MEMORY 0x100 +#define CL_PRESERVE 0x200 +#define CL_THROTTLE 0x400 +#define CL_KEEPCACHED 0x800 +#define CL_DIRECT_IO 0x1000 +#define CL_PASSIVE 0x2000 +#define CL_IOSTREAMING 0x4000 +#define CL_CLOSE 0x8000 +#define CL_ENCRYPTED 0x10000 + +#define MAX_VECTOR_UPL_ELEMENTS 8 +#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE + +extern upl_t vector_upl_create(vm_offset_t); +extern boolean_t vector_upl_is_valid(upl_t); +extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t); +extern void vector_upl_set_pagelist(upl_t); +extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); struct clios { + lck_mtx_t io_mtxp; u_int io_completed; /* amount of io that has currently completed */ u_int io_issued; /* amount of io that was successfully issued */ int io_error; /* error code of first error encountered */ int io_wanted; /* someone is sleeping waiting for a change in state */ }; +static lck_grp_t *cl_mtx_grp; +static lck_attr_t *cl_mtx_attr; +static lck_grp_attr_t *cl_mtx_grp_attr; +static lck_mtx_t *cl_transaction_mtxp; + + +#define IO_UNKNOWN 0 +#define IO_DIRECT 1 +#define IO_CONTIG 2 +#define IO_COPY 3 + +#define PUSH_DELAY 0x01 +#define PUSH_ALL 0x02 +#define PUSH_SYNC 0x04 + + +static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); +static void cluster_wait_IO(buf_t cbp_head, int async); +static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); + +static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); + +static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, + int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); +static int cluster_iodone(buf_t bp, void *callback_arg); +static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags); +static int cluster_hard_throttle_on(vnode_t vp, uint32_t); + +static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); + +static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg); + +static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); +static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); -static void cluster_zero(upl_t upl, vm_offset_t upl_offset, - int size, struct buf *bp); -static int cluster_read_x(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_write_x(struct vnode *vp, struct uio *uio, - off_t oldEOF, off_t newEOF, off_t headOff, - off_t tailOff, int devblocksize, int flags); -static int cluster_nocopy_read(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_nocopy_write(struct vnode *vp, struct uio *uio, - off_t newEOF, int devblocksize, int flags); -static int cluster_phys_read(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_phys_write(struct vnode *vp, struct uio *uio, - off_t newEOF, int devblocksize, int flags); -static int cluster_align_phys_io(struct vnode *vp, struct uio *uio, - addr64_t usr_paddr, int xsize, int devblocksize, int flags); -static int cluster_push_x(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last, int can_delay); -static int cluster_try_push(struct vnode *vp, off_t EOF, int can_delay, int push_all); - -static int sparse_cluster_switch(struct vnode *vp, off_t EOF); -static int sparse_cluster_push(struct vnode *vp, off_t EOF, int push_all); -static int sparse_cluster_add(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last); - -static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp); -static kern_return_t vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length); +static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, + int (*)(buf_t, void *), void *callback_arg); +static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int flags, int (*)(buf_t, void *), void *callback_arg); +static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int (*)(buf_t, void *), void *callback_arg, int flags); + +static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, + off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); +static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, + int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); +static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, + int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); + +static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); + +static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); +static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag); + +static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg); + +static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg); + +static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg); +static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg); +static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg); + +static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); static kern_return_t vfs_drt_control(void **cmapp, int op_type); -int ubc_page_op_with_control __P((memory_object_control_t, off_t, int, ppnum_t *, int *)); +/* + * limit the internal I/O size so that we + * can represent it in a 32 bit int + */ +#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) +#define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE) +#define MAX_VECTS 16 +#define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE) + +#define WRITE_THROTTLE 6 +#define WRITE_THROTTLE_SSD 2 +#define WRITE_BEHIND 1 +#define WRITE_BEHIND_SSD 1 +#define PREFETCH 3 +#define PREFETCH_SSD 2 + +#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * base) +#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) +#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, (is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)) + +int ignore_is_ssd = 0; +int speculative_reads_disabled = 0; +uint32_t speculative_prefetch_max = (MAX_UPL_SIZE * 3); /* * throttle the number of async writes that * can be outstanding on a single vnode * before we issue a synchronous write */ -#define ASYNC_THROTTLE 18 -#define HARD_THROTTLE_MAXCNT 1 -#define HARD_THROTTLE_MAXSIZE (64 * 1024) +#define HARD_THROTTLE_MAXCNT 0 +#define HARD_THROTTLE_MAXSIZE (32 * 1024) int hard_throttle_on_root = 0; struct timeval priority_IO_timestamp_for_root; +void +cluster_init(void) { + /* + * allocate lock group attribute and group + */ + cl_mtx_grp_attr = lck_grp_attr_alloc_init(); + cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); + + /* + * allocate the lock attribute + */ + cl_mtx_attr = lck_attr_alloc_init(); + + cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); + + if (cl_transaction_mtxp == NULL) + panic("cluster_init: failed to allocate cl_transaction_mtxp"); +} + + +uint32_t +cluster_max_io_size(mount_t mp, int type) +{ + uint32_t max_io_size; + uint32_t segcnt; + uint32_t maxcnt; + + switch(type) { + + case CL_READ: + segcnt = mp->mnt_segreadcnt; + maxcnt = mp->mnt_maxreadcnt; + break; + case CL_WRITE: + segcnt = mp->mnt_segwritecnt; + maxcnt = mp->mnt_maxwritecnt; + break; + default: + segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); + maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); + break; + } + if (segcnt > MAX_UPL_SIZE) { + /* + * don't allow a size beyond the max UPL size we can create + */ + segcnt = MAX_UPL_SIZE; + } + max_io_size = min((segcnt * PAGE_SIZE), maxcnt); + + if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) { + /* + * don't allow a size smaller than the old fixed limit + */ + max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE); + } else { + /* + * make sure the size specified is a multiple of PAGE_SIZE + */ + max_io_size &= ~PAGE_MASK; + } + return (max_io_size); +} + + + + +#define CLW_ALLOCATE 0x01 +#define CLW_RETURNLOCKED 0x02 +#define CLW_IONOCACHE 0x04 +#define CLW_IOPASSIVE 0x08 + +/* + * if the read ahead context doesn't yet exist, + * allocate and initialize it... + * the vnode lock serializes multiple callers + * during the actual assignment... first one + * to grab the lock wins... the other callers + * will release the now unnecessary storage + * + * once the context is present, try to grab (but don't block on) + * the lock associated with it... if someone + * else currently owns it, than the read + * will run without read-ahead. this allows + * multiple readers to run in parallel and + * since there's only 1 read ahead context, + * there's no real loss in only allowing 1 + * reader to have read-ahead enabled. + */ +static struct cl_readahead * +cluster_get_rap(vnode_t vp) +{ + struct ubc_info *ubc; + struct cl_readahead *rap; + + ubc = vp->v_ubcinfo; + + if ((rap = ubc->cl_rahead) == NULL) { + MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); + + bzero(rap, sizeof *rap); + rap->cl_lastr = -1; + lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); + + vnode_lock(vp); + + if (ubc->cl_rahead == NULL) + ubc->cl_rahead = rap; + else { + lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); + FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); + rap = ubc->cl_rahead; + } + vnode_unlock(vp); + } + if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) + return(rap); + + return ((struct cl_readahead *)NULL); +} + + +/* + * if the write behind context doesn't yet exist, + * and CLW_ALLOCATE is specified, allocate and initialize it... + * the vnode lock serializes multiple callers + * during the actual assignment... first one + * to grab the lock wins... the other callers + * will release the now unnecessary storage + * + * if CLW_RETURNLOCKED is set, grab (blocking if necessary) + * the lock associated with the write behind context before + * returning + */ + +static struct cl_writebehind * +cluster_get_wbp(vnode_t vp, int flags) +{ + struct ubc_info *ubc; + struct cl_writebehind *wbp; + + ubc = vp->v_ubcinfo; + + if ((wbp = ubc->cl_wbehind) == NULL) { + + if ( !(flags & CLW_ALLOCATE)) + return ((struct cl_writebehind *)NULL); + + MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); + + bzero(wbp, sizeof *wbp); + lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); + + vnode_lock(vp); + + if (ubc->cl_wbehind == NULL) + ubc->cl_wbehind = wbp; + else { + lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); + FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); + wbp = ubc->cl_wbehind; + } + vnode_unlock(vp); + } + if (flags & CLW_RETURNLOCKED) + lck_mtx_lock(&wbp->cl_lockw); + + return (wbp); +} + + +static void +cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg) +{ + struct cl_writebehind *wbp; + + if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { + + if (wbp->cl_number) { + lck_mtx_lock(&wbp->cl_lockw); + + cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, 0, callback, callback_arg); + + lck_mtx_unlock(&wbp->cl_lockw); + } + } +} + + static int -cluster_hard_throttle_on(vp) - struct vnode *vp; +cluster_hard_throttle_on(vnode_t vp, uint32_t hard_throttle) { - static struct timeval hard_throttle_maxelapsed = { 0, 300000 }; + struct uthread *ut; + + if (hard_throttle) { + static struct timeval hard_throttle_maxelapsed = { 0, 200000 }; - if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) { - struct timeval elapsed; + if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) { + struct timeval elapsed; - if (hard_throttle_on_root) - return(1); + if (hard_throttle_on_root) + return(1); - elapsed = time; - timevalsub(&elapsed, &priority_IO_timestamp_for_root); + microuptime(&elapsed); + timevalsub(&elapsed, &priority_IO_timestamp_for_root); - if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <)) - return(1); + if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <)) + return(1); + } + } + if (throttle_get_io_policy(&ut) == IOPOL_THROTTLE) { + if (throttle_io_will_be_throttled(-1, vp->v_mount)) { + return(1); + } } return(0); } -static int -cluster_iodone(bp) - struct buf *bp; +static void +cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) { - int b_flags; - int error; - int total_size; - int total_resid; - int upl_offset; - int zero_offset; - upl_t upl; - struct buf *cbp; - struct buf *cbp_head; - struct buf *cbp_next; - struct buf *real_bp; - struct vnode *vp; - struct clios *iostate; - int commit_size; - int pg_offset; - - - cbp_head = (struct buf *)(bp->b_trans_head); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, - (int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); + lck_mtx_lock(&iostate->io_mtxp); - for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { + while ((iostate->io_issued - iostate->io_completed) > target) { + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, + iostate->io_issued, iostate->io_completed, target, 0, 0); + + iostate->io_wanted = 1; + msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, + iostate->io_issued, iostate->io_completed, target, 0, 0); + } + lck_mtx_unlock(&iostate->io_mtxp); +} + + +static int +cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags) +{ + int upl_abort_code = 0; + int page_in = 0; + int page_out = 0; + + if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) /* - * all I/O requests that are part of this transaction - * have to complete before we can process it + * direct write of any flavor, or a direct read that wasn't aligned */ - if ( !(cbp->b_flags & B_DONE)) { + ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); + else { + if (io_flags & B_PAGEIO) { + if (io_flags & B_READ) + page_in = 1; + else + page_out = 1; + } + if (io_flags & B_CACHE) + /* + * leave pages in the cache unchanged on error + */ + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; + else if (page_out && (error != ENXIO)) + /* + * transient error... leave pages unchanged + */ + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; + else if (page_in) + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; + else + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + + ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); + } + return (upl_abort_code); +} + + +static int +cluster_iodone(buf_t bp, void *callback_arg) +{ + int b_flags; + int error; + int total_size; + int total_resid; + int upl_offset; + int zero_offset; + int pg_offset = 0; + int commit_size = 0; + int upl_flags = 0; + int transaction_size = 0; + upl_t upl; + buf_t cbp; + buf_t cbp_head; + buf_t cbp_next; + buf_t real_bp; + struct clios *iostate; + boolean_t transaction_complete = FALSE; + + cbp_head = (buf_t)(bp->b_trans_head); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, + cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); + + if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { + boolean_t need_wakeup = FALSE; + + lck_mtx_lock_spin(cl_transaction_mtxp); + + bp->b_flags |= B_TDONE; + + if (bp->b_flags & B_TWANTED) { + CLR(bp->b_flags, B_TWANTED); + need_wakeup = TRUE; + } + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { + /* + * all I/O requests that are part of this transaction + * have to complete before we can process it + */ + if ( !(cbp->b_flags & B_TDONE)) { + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); + + lck_mtx_unlock(cl_transaction_mtxp); + + if (need_wakeup == TRUE) + wakeup(bp); + + return 0; + } + if (cbp->b_flags & B_EOT) + transaction_complete = TRUE; + } + lck_mtx_unlock(cl_transaction_mtxp); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)cbp_head, (int)cbp, cbp->b_bcount, cbp->b_flags, 0); + if (need_wakeup == TRUE) + wakeup(bp); - return 0; + if (transaction_complete == FALSE) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + cbp_head, 0, 0, 0, 0); + return 0; } } error = 0; @@ -213,13 +591,15 @@ cluster_iodone(bp) cbp = cbp_head; upl_offset = cbp->b_uploffset; - upl = cbp->b_pagelist; + upl = cbp->b_upl; b_flags = cbp->b_flags; real_bp = cbp->b_real_bp; - vp = cbp->b_vp; zero_offset= cbp->b_validend; iostate = (struct clios *)cbp->b_iostate; + if (real_bp) + real_bp->b_dev = cbp->b_dev; + while (cbp) { if ((cbp->b_flags & B_ERROR) && error == 0) error = cbp->b_error; @@ -229,22 +609,46 @@ cluster_iodone(bp) cbp_next = cbp->b_trans_next; - free_io_buf(cbp); + if (cbp_next == NULL) + /* + * compute the overall size of the transaction + * in case we created one that has 'holes' in it + * 'total_size' represents the amount of I/O we + * did, not the span of the transaction w/r to the UPL + */ + transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; + + if (cbp != cbp_head) + free_io_buf(cbp); cbp = cbp_next; } + if (error == 0 && total_resid) + error = EIO; + + if (error == 0) { + int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); + + if (cliodone_func != NULL) { + cbp_head->b_bcount = transaction_size; + + error = (*cliodone_func)(cbp_head, callback_arg); + } + } if (zero_offset) cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); - if ((vp->v_flag & VTHROTTLED) && (vp->v_numoutput <= (ASYNC_THROTTLE / 3))) { - vp->v_flag &= ~VTHROTTLED; - wakeup((caddr_t)&vp->v_numoutput); - } + free_io_buf(cbp_head); + if (iostate) { + int need_wakeup = 0; + /* * someone has issued multiple I/Os asynchrounsly * and is waiting for them to complete (streaming) */ + lck_mtx_lock_spin(&iostate->io_mtxp); + if (error && iostate->io_error == 0) iostate->io_error = error; @@ -256,182 +660,345 @@ cluster_iodone(bp) * this io stream to change */ iostate->io_wanted = 0; - wakeup((caddr_t)&iostate->io_wanted); + need_wakeup = 1; } + lck_mtx_unlock(&iostate->io_mtxp); + + if (need_wakeup) + wakeup((caddr_t)&iostate->io_wanted); } - if ((b_flags & B_NEED_IODONE) && real_bp) { + + if (b_flags & B_COMMIT_UPL) { + + pg_offset = upl_offset & PAGE_MASK; + commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + if (error) + upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags); + else { + upl_flags = UPL_COMMIT_FREE_ON_EMPTY; + + if ((b_flags & B_PHYS) && (b_flags & B_READ)) + upl_flags |= UPL_COMMIT_SET_DIRTY; + + if (b_flags & B_AGE) + upl_flags |= UPL_COMMIT_INACTIVATE; + + ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); + } + } + if (real_bp) { if (error) { - real_bp->b_flags |= B_ERROR; + real_bp->b_flags |= B_ERROR; real_bp->b_error = error; } real_bp->b_resid = total_resid; - biodone(real_bp); + buf_biodone(real_bp); } - if (error == 0 && total_resid) - error = EIO; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); - if (b_flags & B_COMMIT_UPL) { - pg_offset = upl_offset & PAGE_MASK; - commit_size = (pg_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + return (error); +} - if (error || (b_flags & B_NOCACHE)) { - int upl_abort_code; - if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */ - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if (b_flags & B_PGIN) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; - else - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; +uint32_t +cluster_hard_throttle_limit(vnode_t vp, uint32_t *limit, uint32_t hard_throttle) +{ + if (cluster_hard_throttle_on(vp, hard_throttle)) { + *limit = HARD_THROTTLE_MAXSIZE; + return 1; + } + return 0; +} - ubc_upl_abort_range(upl, upl_offset - pg_offset, commit_size, - upl_abort_code); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)upl, upl_offset - pg_offset, commit_size, - 0x80000000|upl_abort_code, 0); +void +cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) +{ + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, + upl_offset, size, bp, 0, 0); + + if (bp == NULL || bp->b_datap == 0) { + upl_page_info_t *pl; + addr64_t zero_addr; + + pl = ubc_upl_pageinfo(upl); + + if (upl_device_page(pl) == TRUE) { + zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset; + + bzero_phys_nc(zero_addr, size); } else { - int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY; + while (size) { + int page_offset; + int page_index; + int zero_cnt; - if (b_flags & B_PHYS) { - if (b_flags & B_READ) - upl_commit_flags |= UPL_COMMIT_SET_DIRTY; - } else if ( !(b_flags & B_PAGEOUT)) - upl_commit_flags |= UPL_COMMIT_CLEAR_DIRTY; + page_index = upl_offset / PAGE_SIZE; + page_offset = upl_offset & PAGE_MASK; - if (b_flags & B_AGE) - upl_commit_flags |= UPL_COMMIT_INACTIVATE; + zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset; + zero_cnt = min(PAGE_SIZE - page_offset, size); - ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, - upl_commit_flags); + bzero_phys(zero_addr, zero_cnt); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)upl, upl_offset - pg_offset, commit_size, - upl_commit_flags, 0); + size -= zero_cnt; + upl_offset += zero_cnt; + } } - } else - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)upl, upl_offset, 0, error, 0); + } else + bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); - return (error); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, + upl_offset, size, 0, 0, 0); } static void -cluster_zero(upl, upl_offset, size, bp) - upl_t upl; - vm_offset_t upl_offset; - int size; - struct buf *bp; +cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) { - upl_page_info_t *pl; + cbp_head->b_validend = zero_offset; + cbp_tail->b_flags |= B_EOT; +} - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, - upl_offset, size, (int)bp, 0, 0); +static void +cluster_wait_IO(buf_t cbp_head, int async) +{ + buf_t cbp; - if (bp == NULL || bp->b_data == NULL) { + if (async) { + /* + * async callback completion will not normally + * generate a wakeup upon I/O completion... + * by setting B_TWANTED, we will force a wakeup + * to occur as any outstanding I/Os complete... + * I/Os already completed will have B_TDONE already + * set and we won't cause us to block + * note that we're actually waiting for the bp to have + * completed the callback function... only then + * can we safely take back ownership of the bp + */ + lck_mtx_lock_spin(cl_transaction_mtxp); - pl = ubc_upl_pageinfo(upl); + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) + cbp->b_flags |= B_TWANTED; - while (size) { - int page_offset; - int page_index; - addr64_t zero_addr; - int zero_cnt; + lck_mtx_unlock(cl_transaction_mtxp); + } + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { - page_index = upl_offset / PAGE_SIZE; - page_offset = upl_offset & PAGE_MASK; + if (async) { + while (!ISSET(cbp->b_flags, B_TDONE)) { - zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset; - zero_cnt = min(PAGE_SIZE - page_offset, size); + lck_mtx_lock_spin(cl_transaction_mtxp); - bzero_phys(zero_addr, zero_cnt); + if (!ISSET(cbp->b_flags, B_TDONE)) { + DTRACE_IO1(wait__start, buf_t, cbp); + (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL); + DTRACE_IO1(wait__done, buf_t, cbp); + } else + lck_mtx_unlock(cl_transaction_mtxp); + } + } else + buf_biowait(cbp); + } +} - size -= zero_cnt; - upl_offset += zero_cnt; - } - } else - bzero((caddr_t)((vm_offset_t)bp->b_data + upl_offset), size); +static void +cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) +{ + buf_t cbp; + int error; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, - upl_offset, size, 0, 0, 0); + /* + * cluster_complete_transaction will + * only be called if we've issued a complete chain in synchronous mode + * or, we've already done a cluster_wait_IO on an incomplete chain + */ + if (needwait) { + for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) + buf_biowait(cbp); + } + /* + * we've already waited on all of the I/Os in this transaction, + * so mark all of the buf_t's in this transaction as B_TDONE + * so that cluster_iodone sees the transaction as completed + */ + for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) + cbp->b_flags |= B_TDONE; + + error = cluster_iodone(*cbp_head, callback_arg); + + if ( !(flags & CL_ASYNC) && error && *retval == 0) { + if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) + *retval = error; + } + *cbp_head = (buf_t)NULL; } + static int -cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, real_bp, iostate) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int non_rounded_size; - int devblocksize; - int flags; - struct buf *real_bp; - struct clios *iostate; +cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, + int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) { - struct buf *cbp; - u_int size; - u_int io_size; - int io_flags; - int error = 0; - int retval = 0; - struct buf *cbp_head = 0; - struct buf *cbp_tail = 0; - int buf_count = 0; - int pg_count; - int pg_offset; - u_int max_iosize; - u_int max_vectors; - int priv; - int zero_offset = 0; - int async_throttle; - - if (devblocksize) - size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1); - else + buf_t cbp; + u_int size; + u_int io_size; + int io_flags; + int bmap_flags; + int error = 0; + int retval = 0; + buf_t cbp_head = NULL; + buf_t cbp_tail = NULL; + int trans_count = 0; + int max_trans_count; + u_int pg_count; + int pg_offset; + u_int max_iosize; + u_int max_vectors; + int priv; + int zero_offset = 0; + int async_throttle = 0; + mount_t mp; + vm_offset_t upl_end_offset; + boolean_t need_EOT = FALSE; + + /* + * we currently don't support buffers larger than a page + */ + if (real_bp && non_rounded_size > PAGE_SIZE) + panic("%s(): Called with real buffer of size %d bytes which " + "is greater than the maximum allowed size of " + "%d bytes (the system PAGE_SIZE).\n", + __FUNCTION__, non_rounded_size, PAGE_SIZE); + + mp = vp->v_mount; + + /* + * we don't want to do any funny rounding of the size for IO requests + * coming through the DIRECT or CONTIGUOUS paths... those pages don't + * belong to us... we can't extend (nor do we need to) the I/O to fill + * out a page + */ + if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { + /* + * round the requested size up so that this I/O ends on a + * page boundary in case this is a 'write'... if the filesystem + * has blocks allocated to back the page beyond the EOF, we want to + * make sure to write out the zero's that are sitting beyond the EOF + * so that in case the filesystem doesn't explicitly zero this area + * if a hole is created via a lseek/write beyond the current EOF, + * it will return zeros when it's read back from the disk. If the + * physical allocation doesn't extend for the whole page, we'll + * only write/read from the disk up to the end of this allocation + * via the extent info returned from the VNOP_BLOCKMAP call. + */ + pg_offset = upl_offset & PAGE_MASK; + + size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; + } else { + /* + * anyone advertising a blocksize of 1 byte probably + * can't deal with us rounding up the request size + * AFP is one such filesystem/device + */ size = non_rounded_size; + } + upl_end_offset = upl_offset + size; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, - (int)f_offset, size, upl_offset, flags, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); + /* + * Set the maximum transaction size to the maximum desired number of + * buffers. + */ + max_trans_count = 8; + if (flags & CL_DEV_MEMORY) + max_trans_count = 16; if (flags & CL_READ) { - io_flags = (B_VECTORLIST | B_READ); + io_flags = B_READ; + bmap_flags = VNODE_READ; - vfs_io_attributes(vp, B_READ, &max_iosize, &max_vectors); + max_iosize = mp->mnt_maxreadcnt; + max_vectors = mp->mnt_segreadcnt; } else { - io_flags = (B_VECTORLIST | B_WRITEINPROG); + io_flags = B_WRITE; + bmap_flags = VNODE_WRITE; - vfs_io_attributes(vp, B_WRITE, &max_iosize, &max_vectors); + max_iosize = mp->mnt_maxwritecnt; + max_vectors = mp->mnt_segwritecnt; } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); + /* - * make sure the maximum iosize are at least the size of a page - * and that they are multiples of the page size + * make sure the maximum iosize is a + * multiple of the page size */ max_iosize &= ~PAGE_MASK; + /* + * Ensure the maximum iosize is sensible. + */ + if (!max_iosize) + max_iosize = PAGE_SIZE; + if (flags & CL_THROTTLE) { - if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp)) { + if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp, 1)) { if (max_iosize > HARD_THROTTLE_MAXSIZE) max_iosize = HARD_THROTTLE_MAXSIZE; async_throttle = HARD_THROTTLE_MAXCNT; - } else - async_throttle = ASYNC_THROTTLE; + } else { + if ( (flags & CL_DEV_MEMORY) ) + async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); + else { + u_int max_cluster; + u_int max_cluster_size; + u_int scale; + + max_cluster_size = MAX_CLUSTER_SIZE(vp); + + if (max_iosize > max_cluster_size) + max_cluster = max_cluster_size; + else + max_cluster = max_iosize; + + if (size < max_cluster) + max_cluster = size; + + if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) + scale = WRITE_THROTTLE_SSD; + else + scale = WRITE_THROTTLE; + + if (flags & CL_CLOSE) + scale += MAX_CLUSTERS; + + async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); + } + } } if (flags & CL_AGE) io_flags |= B_AGE; - if (flags & CL_DUMP) - io_flags |= B_NOCACHE; - if (flags & CL_PAGEIN) - io_flags |= B_PGIN; - if (flags & CL_PAGEOUT) - io_flags |= B_PAGEOUT; + if (flags & (CL_PAGEIN | CL_PAGEOUT)) + io_flags |= B_PAGEIO; + if (flags & (CL_IOSTREAMING)) + io_flags |= B_IOSTREAMING; if (flags & CL_COMMIT) io_flags |= B_COMMIT_UPL; - if (flags & CL_PRESERVE) + if (flags & CL_DIRECT_IO) io_flags |= B_PHYS; + if (flags & (CL_PRESERVE | CL_KEEPCACHED)) + io_flags |= B_CACHE; + if (flags & CL_PASSIVE) + io_flags |= B_PASSIVE; + if (flags & CL_ENCRYPTED) + io_flags |= B_ENCRYPTED_IO; + if (vp->v_flag & VSYSTEM) + io_flags |= B_META; if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { /* @@ -444,50 +1011,191 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, zero_offset = upl_offset + non_rounded_size; } while (size) { - int vsize; - int i; - int pg_resid; - int num_contig; - daddr_t lblkno; - daddr_t blkno; + daddr64_t blkno; + daddr64_t lblkno; + u_int io_size_wanted; + size_t io_size_tmp; if (size > max_iosize) io_size = max_iosize; else io_size = size; - if (error = VOP_CMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL)) { - if (error == EOPNOTSUPP) - panic("VOP_CMAP Unimplemented"); + io_size_wanted = io_size; + io_size_tmp = (size_t)io_size; + + if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) + break; + + if (io_size_tmp > io_size_wanted) + io_size = io_size_wanted; + else + io_size = (u_int)io_size_tmp; + + if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) + real_bp->b_blkno = blkno; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, + (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0); + + if (io_size == 0) { + /* + * vnop_blockmap didn't return an error... however, it did + * return an extent size of 0 which means we can't + * make forward progress on this I/O... a hole in the + * file would be returned as a blkno of -1 with a non-zero io_size + * a real extent is returned with a blkno != -1 and a non-zero io_size + */ + error = EINVAL; break; } + if ( !(flags & CL_READ) && blkno == -1) { + off_t e_offset; + int pageout_flags; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, - (int)f_offset, (int)blkno, io_size, zero_offset, 0); - - if ( (!(flags & CL_READ) && (long)blkno == -1) || io_size == 0) { + if (upl_get_internal_vectorupl(upl)) + panic("Vector UPLs should not take this code-path\n"); + /* + * we're writing into a 'hole' + */ if (flags & CL_PAGEOUT) { + /* + * if we got here via cluster_pageout + * then just error the request and return + * the 'hole' should already have been covered + */ error = EINVAL; break; - }; - - /* Try paging out the page individually before - giving up entirely and dumping it (it could - be mapped in a "hole" and require allocation - before the I/O: + } + /* + * we can get here if the cluster code happens to + * pick up a page that was dirtied via mmap vs + * a 'write' and the page targets a 'hole'... + * i.e. the writes to the cluster were sparse + * and the file was being written for the first time + * + * we can also get here if the filesystem supports + * 'holes' that are less than PAGE_SIZE.... because + * we can't know if the range in the page that covers + * the 'hole' has been dirtied via an mmap or not, + * we have to assume the worst and try to push the + * entire page to storage. + * + * Try paging out the page individually before + * giving up entirely and dumping it (the pageout + * path will insure that the zero extent accounting + * has been taken care of before we get back into cluster_io) + * + * go direct to vnode_pageout so that we don't have to + * unbusy the page from the UPL... we used to do this + * so that we could call ubc_sync_range, but that results + * in a potential deadlock if someone else races us to acquire + * that page and wins and in addition needs one of the pages + * we're continuing to hold in the UPL + */ + pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; + + if ( !(flags & CL_ASYNC)) + pageout_flags |= UPL_IOSYNC; + if ( !(flags & CL_COMMIT)) + pageout_flags |= UPL_NOCOMMIT; + + if (cbp_head) { + buf_t last_cbp; + + /* + * first we have to wait for the the current outstanding I/Os + * to complete... EOT hasn't been set yet on this transaction + * so the pages won't be released just because all of the current + * I/O linked to this transaction has completed... + */ + cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); + + /* + * we've got a transcation that + * includes the page we're about to push out through vnode_pageout... + * find the last bp in the list which will be the one that + * includes the head of this page and round it's iosize down + * to a page boundary... + */ + for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) + last_cbp = cbp; + + cbp->b_bcount &= ~PAGE_MASK; + + if (cbp->b_bcount == 0) { + /* + * this buf no longer has any I/O associated with it + */ + free_io_buf(cbp); + + if (cbp == cbp_head) { + /* + * the buf we just freed was the only buf in + * this transaction... so there's no I/O to do + */ + cbp_head = NULL; + } else { + /* + * remove the buf we just freed from + * the transaction list + */ + last_cbp->b_trans_next = NULL; + cbp_tail = last_cbp; + } + } + if (cbp_head) { + /* + * there was more to the current transaction + * than just the page we are pushing out via vnode_pageout... + * mark it as finished and complete it... we've already + * waited for the I/Os to complete above in the call to cluster_wait_IO + */ + cluster_EOT(cbp_head, cbp_tail, 0); + + cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); + + trans_count = 0; + } + } + if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { + error = EINVAL; + } + e_offset = round_page_64(f_offset + 1); + io_size = e_offset - f_offset; + + f_offset += io_size; + upl_offset += io_size; + + if (size >= io_size) + size -= io_size; + else + size = 0; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) */ - ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); - if (ubc_pushdirty_range(vp, f_offset, PAGE_SIZE_64) == 0) { - error = EINVAL; + non_rounded_size -= io_size; + + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } + if (error) { + if (size == 0) + flags &= ~CL_COMMIT; break; - }; - - f_offset += PAGE_SIZE_64; - upl_offset += PAGE_SIZE; - size -= PAGE_SIZE; + } continue; } - lblkno = (daddr_t)(f_offset / PAGE_SIZE_64); + lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64); /* * we have now figured out how much I/O we can do - this is in 'io_size' * pg_offset is the starting point in the first page for the I/O @@ -496,13 +1204,6 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, pg_offset = upl_offset & PAGE_MASK; if (flags & CL_DEV_MEMORY) { - /* - * currently, can't deal with reading 'holes' in file - */ - if ((long)blkno == -1) { - error = EINVAL; - break; - } /* * treat physical requests as one 'giant' page */ @@ -510,94 +1211,161 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, } else pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; - if ((flags & CL_READ) && (long)blkno == -1) { + if ((flags & CL_READ) && blkno == -1) { + vm_offset_t commit_offset; int bytes_to_zero; + int complete_transaction_now = 0; /* * if we're reading and blkno == -1, then we've got a * 'hole' in the file that we need to deal with by zeroing * out the affected area in the upl */ - if (zero_offset && io_size == size) { + if (io_size >= (u_int)non_rounded_size) { /* * if this upl contains the EOF and it is not a multiple of PAGE_SIZE * than 'zero_offset' will be non-zero - * if the 'hole' returned by VOP_CMAP extends all the way to the eof + * if the 'hole' returned by vnop_blockmap extends all the way to the eof * (indicated by the io_size finishing off the I/O request for this UPL) * than we're not going to issue an I/O for the * last page in this upl... we need to zero both the hole and the tail * of the page beyond the EOF, since the delayed zero-fill won't kick in */ - bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; + bytes_to_zero = non_rounded_size; + if (!(flags & CL_NOZERO)) + bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; zero_offset = 0; } else bytes_to_zero = io_size; - cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); + pg_count = 0; + + cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); - if (cbp_head) + if (cbp_head) { + int pg_resid; + /* * if there is a current I/O chain pending * then the first page of the group we just zero'd * will be handled by the I/O completion if the zero * fill started in the middle of the page */ - pg_count = (io_size - pg_offset) / PAGE_SIZE; - else { - /* - * no pending I/O to pick up that first page - * so, we have to make sure it gets committed - * here. - * set the pg_offset to 0 so that the upl_commit_range - * starts with this page - */ - pg_count = (io_size + pg_offset) / PAGE_SIZE; - pg_offset = 0; - } - if (io_size == size && ((upl_offset + io_size) & PAGE_MASK)) + commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + pg_resid = commit_offset - upl_offset; + + if (bytes_to_zero >= pg_resid) { + /* + * the last page of the current I/O + * has been completed... + * compute the number of fully zero'd + * pages that are beyond it + * plus the last page if its partial + * and we have no more I/O to issue... + * otherwise a partial page is left + * to begin the next I/O + */ + if ((int)io_size >= non_rounded_size) + pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; + else + pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; + + complete_transaction_now = 1; + } + } else { /* - * if we're done with the request for this UPL - * then we have to make sure to commit the last page - * even if we only partially zero-filled it + * no pending I/O to deal with + * so, commit all of the fully zero'd pages + * plus the last page if its partial + * and we have no more I/O to issue... + * otherwise a partial page is left + * to begin the next I/O */ - pg_count++; - - if (pg_count) { - if (pg_offset) - pg_resid = PAGE_SIZE - pg_offset; + if ((int)io_size >= non_rounded_size) + pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; else - pg_resid = 0; + pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; - if (flags & CL_COMMIT) - ubc_upl_commit_range(upl, - (upl_offset + pg_resid) & ~PAGE_MASK, - pg_count * PAGE_SIZE, - UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); + commit_offset = upl_offset & ~PAGE_MASK; + } + if ( (flags & CL_COMMIT) && pg_count) { + ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, + UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); } upl_offset += io_size; f_offset += io_size; size -= io_size; - if (cbp_head && pg_count) - goto start_io; - continue; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; - } else if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { - real_bp->b_blkno = blkno; - } + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } + if (cbp_head && (complete_transaction_now || size == 0)) { + cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); - if (pg_count > max_vectors) { - io_size -= (pg_count - max_vectors) * PAGE_SIZE; + cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); - if (io_size < 0) { + cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); + + trans_count = 0; + } + continue; + } + if (pg_count > max_vectors) { + if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { io_size = PAGE_SIZE - pg_offset; pg_count = 1; - } else + } else { + io_size -= (pg_count - max_vectors) * PAGE_SIZE; pg_count = max_vectors; + } + } + /* + * If the transaction is going to reach the maximum number of + * desired elements, truncate the i/o to the nearest page so + * that the actual i/o is initiated after this buffer is + * created and added to the i/o chain. + * + * I/O directed to physically contiguous memory + * doesn't have a requirement to make sure we 'fill' a page + */ + if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && + ((upl_offset + io_size) & PAGE_MASK)) { + vm_offset_t aligned_ofs; + + aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; + /* + * If the io_size does not actually finish off even a + * single page we have to keep adding buffers to the + * transaction despite having reached the desired limit. + * + * Eventually we get here with the page being finished + * off (and exceeded) and then we truncate the size of + * this i/o request so that it is page aligned so that + * we can finally issue the i/o on the transaction. + */ + if (aligned_ofs > upl_offset) { + io_size = aligned_ofs - upl_offset; + pg_count--; + } } - if ( !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)) + if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) /* * if we're not targeting a virtual device i.e. a disk image * it's safe to dip into the reserve pool since real devices @@ -615,51 +1383,45 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, cbp = alloc_io_buf(vp, priv); - if (flags & CL_PAGEOUT) { + u_int i; + for (i = 0; i < pg_count; i++) { - int s; - struct buf *bp; - - s = splbio(); - if (bp = incore(vp, lblkno + i)) { - if (!ISSET(bp->b_flags, B_BUSY)) { - bremfree(bp); - SET(bp->b_flags, (B_BUSY | B_INVAL)); - splx(s); - brelse(bp); - } else - panic("BUSY bp found in cluster_io"); - } - splx(s); + if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) + panic("BUSY bp found in cluster_io"); } } if (flags & CL_ASYNC) { - cbp->b_flags |= (B_CALL | B_ASYNC); - cbp->b_iodone = (void *)cluster_iodone; + if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) + panic("buf_setcallback failed\n"); } + cbp->b_cliodone = (void *)callback; cbp->b_flags |= io_flags; cbp->b_lblkno = lblkno; cbp->b_blkno = blkno; cbp->b_bcount = io_size; - cbp->b_pagelist = upl; - cbp->b_uploffset = upl_offset; - cbp->b_trans_next = (struct buf *)0; - if (cbp->b_iostate = (void *)iostate) + if (buf_setupl(cbp, upl, upl_offset)) + panic("buf_setupl failed\n"); + + cbp->b_trans_next = (buf_t)NULL; + + if ((cbp->b_iostate = (void *)iostate)) /* * caller wants to track the state of this * io... bump the amount issued against this stream */ iostate->io_issued += io_size; - if (flags & CL_READ) + if (flags & CL_READ) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, - cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0); - else + (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); + } + else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, - cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0); + (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); + } if (cbp_head) { cbp_tail->b_trans_next = cbp; @@ -667,100 +1429,116 @@ cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, } else { cbp_head = cbp; cbp_tail = cbp; + + if ( (cbp_head->b_real_bp = real_bp) ) + real_bp = (buf_t)NULL; } - (struct buf *)(cbp->b_trans_head) = cbp_head; - buf_count++; + *(buf_t *)(&cbp->b_trans_head) = cbp_head; + + trans_count++; upl_offset += io_size; f_offset += io_size; size -= io_size; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; - if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || buf_count > 8)) || size == 0) { + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } + if (size == 0) { + /* + * we have no more I/O to issue, so go + * finish the final transaction + */ + need_EOT = TRUE; + } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && + ((flags & CL_ASYNC) || trans_count > max_trans_count) ) { /* - * if we have no more I/O to issue or + * I/O directed to physically contiguous memory... + * which doesn't have a requirement to make sure we 'fill' a page + * or... * the current I/O we've prepared fully * completes the last page in this request - * and it's either an ASYNC request or + * and ... + * it's either an ASYNC request or * we've already accumulated more than 8 I/O's into - * this transaction and it's not an I/O directed to - * special DEVICE memory - * then go ahead and issue the I/O + * this transaction so mark it as complete so that + * it can finish asynchronously or via the cluster_complete_transaction + * below if the request is synchronous */ -start_io: - if (real_bp) { - cbp_head->b_flags |= B_NEED_IODONE; - cbp_head->b_real_bp = real_bp; - } else - cbp_head->b_real_bp = (struct buf *)NULL; - - if (size == 0) { - /* - * we're about to issue the last I/O for this upl - * if this was a read to the eof and the eof doesn't - * finish on a page boundary, than we need to zero-fill - * the rest of the page.... - */ - cbp_head->b_validend = zero_offset; - } else - cbp_head->b_validend = 0; - - if (flags & CL_THROTTLE) { - while (vp->v_numoutput >= async_throttle) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_io", 0); - } - } - for (cbp = cbp_head; cbp;) { - struct buf * cbp_next; + need_EOT = TRUE; + } + if (need_EOT == TRUE) + cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); - if (io_flags & B_WRITEINPROG) - cbp->b_vp->v_numoutput++; + if (flags & CL_THROTTLE) + (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); - cbp_next = cbp->b_trans_next; + if ( !(io_flags & B_READ)) + vnode_startwrite(vp); - (void) VOP_STRATEGY(cbp); - cbp = cbp_next; - } - if ( !(flags & CL_ASYNC)) { - for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) - biowait(cbp); + (void) VNOP_STRATEGY(cbp); - if (error = cluster_iodone(cbp_head)) { - if ((flags & CL_PAGEOUT) && (error == ENXIO)) - retval = 0; /* drop the error */ - else - retval = error; - error = 0; - } - } - cbp_head = (struct buf *)0; - cbp_tail = (struct buf *)0; + if (need_EOT == TRUE) { + if ( !(flags & CL_ASYNC)) + cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); - buf_count = 0; + need_EOT = FALSE; + trans_count = 0; + cbp_head = NULL; } - } + } if (error) { int abort_size; io_size = 0; - for (cbp = cbp_head; cbp;) { - struct buf * cbp_next; - - upl_offset -= cbp->b_bcount; - size += cbp->b_bcount; - io_size += cbp->b_bcount; + if (cbp_head) { + /* + * first wait until all of the outstanding I/O + * for this partial transaction has completed + */ + cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); + + /* + * Rewind the upl offset to the beginning of the + * transaction. + */ + upl_offset = cbp_head->b_uploffset; - cbp_next = cbp->b_trans_next; - free_io_buf(cbp); - cbp = cbp_next; + for (cbp = cbp_head; cbp;) { + buf_t cbp_next; + + size += cbp->b_bcount; + io_size += cbp->b_bcount; + + cbp_next = cbp->b_trans_next; + free_io_buf(cbp); + cbp = cbp_next; + } } if (iostate) { + int need_wakeup = 0; + /* * update the error condition for this stream * since we never really issued the io * just go ahead and adjust it back */ + lck_mtx_lock_spin(&iostate->io_mtxp); + if (iostate->io_error == 0) iostate->io_error = error; iostate->io_issued -= io_size; @@ -771,55 +1549,67 @@ start_io: * this io stream to change */ iostate->io_wanted = 0; - wakeup((caddr_t)&iostate->io_wanted); + need_wakeup = 1; } - } - pg_offset = upl_offset & PAGE_MASK; - abort_size = (size + pg_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; + lck_mtx_unlock(&iostate->io_mtxp); + if (need_wakeup) + wakeup((caddr_t)&iostate->io_wanted); + } if (flags & CL_COMMIT) { - int upl_abort_code; - - if (flags & CL_PRESERVE) { - ubc_upl_commit_range(upl, upl_offset - pg_offset, abort_size, - UPL_COMMIT_FREE_ON_EMPTY); - } else { - if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */ - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if (flags & CL_PAGEIN) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; - else - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + int upl_flags; - ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size, - upl_abort_code); - } + pg_offset = upl_offset & PAGE_MASK; + abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; + + upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, - (int)upl, upl_offset - pg_offset, abort_size, error, 0); - } - if (real_bp) { - real_bp->b_flags |= B_ERROR; - real_bp->b_error = error; - - biodone(real_bp); + upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); } if (retval == 0) retval = error; + } else if (cbp_head) + panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); + + if (real_bp) { + /* + * can get here if we either encountered an error + * or we completely zero-filled the request and + * no I/O was issued + */ + if (error) { + real_bp->b_flags |= B_ERROR; + real_bp->b_error = error; + } + buf_biodone(real_bp); } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, - (int)f_offset, size, upl_offset, retval, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); return (retval); } +#define reset_vector_run_state() \ + issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; static int -cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize) - struct vnode *vp; - off_t f_offset; - u_int size; - off_t filesize; - int devblocksize; +vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, + int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) +{ + vector_upl_set_pagelist(vector_upl); + + if(io_flag & CL_READ) { + if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0)) + io_flag &= ~CL_PRESERVE; /*don't zero fill*/ + else + io_flag |= CL_PRESERVE; /*zero fill*/ + } + return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg)); + +} + +static int +cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) { int pages_in_prefetch; @@ -831,16 +1621,11 @@ cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize) (int)f_offset, 0, 0, 0, 0); return(0); } - if (size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - size = (MAX_UPL_TRANSFER * PAGE_SIZE); - else - size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if ((off_t)size > (filesize - f_offset)) size = filesize - f_offset; pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; - advisory_read(vp, filesize, f_offset, size, devblocksize); + advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, (int)f_offset + size, pages_in_prefetch, 0, 1, 0); @@ -851,45 +1636,52 @@ cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize) static void -cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize) - struct vnode *vp; - daddr_t b_lblkno; - daddr_t e_lblkno; - off_t filesize; - int devblocksize; +cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, + int bflag) { - daddr_t r_lblkno; - off_t f_offset; - int size_of_prefetch; + daddr64_t r_addr; + off_t f_offset; + int size_of_prefetch; + u_int max_prefetch; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, - b_lblkno, e_lblkno, vp->v_lastr, 0, 0); + (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); - if (b_lblkno == vp->v_lastr && b_lblkno == e_lblkno) { + if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 0, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); return; } - if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) && - (b_lblkno != (vp->v_maxra + 1) || vp->v_ralen == 0))) { - vp->v_ralen = 0; - vp->v_maxra = 0; + if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { + rap->cl_ralen = 0; + rap->cl_maxra = 0; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 1, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); + + return; + } + max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD)); + if ((max_prefetch / PAGE_SIZE) > speculative_prefetch_max) + max_prefetch = (speculative_prefetch_max * PAGE_SIZE); + + if (max_prefetch <= PAGE_SIZE) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); return; } - if (e_lblkno < vp->v_maxra) { - if ((vp->v_maxra - e_lblkno) > (MAX_UPL_TRANSFER / 4)) { + if (extent->e_addr < rap->cl_maxra) { + if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); return; } } - r_lblkno = max(e_lblkno, vp->v_maxra) + 1; - f_offset = (off_t)r_lblkno * PAGE_SIZE_64; + r_addr = max(extent->e_addr, rap->cl_maxra) + 1; + f_offset = (off_t)(r_addr * PAGE_SIZE_64); size_of_prefetch = 0; @@ -897,57 +1689,60 @@ cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize) if (size_of_prefetch) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); return; } if (f_offset < filesize) { - vp->v_ralen = vp->v_ralen ? min(MAX_UPL_TRANSFER, vp->v_ralen << 1) : 1; + daddr64_t read_size; - if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen) - vp->v_ralen = min(MAX_UPL_TRANSFER, (e_lblkno + 1) - b_lblkno); + rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; - size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize); + read_size = (extent->e_addr + 1) - extent->b_addr; + + if (read_size > rap->cl_ralen) { + if (read_size > max_prefetch / PAGE_SIZE) + rap->cl_ralen = max_prefetch / PAGE_SIZE; + else + rap->cl_ralen = read_size; + } + size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); if (size_of_prefetch) - vp->v_maxra = (r_lblkno + size_of_prefetch) - 1; + rap->cl_maxra = (r_addr + size_of_prefetch) - 1; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 4, 0); + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); +} + + +int +cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags) +{ + return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); + } + int -cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int size; - off_t filesize; - int devblocksize; - int flags; +cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) { int io_size; int rounded_size; off_t max_size; int local_flags; - if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) - /* - * if we know we're issuing this I/O to a virtual device (i.e. disk image) - * then we don't want to enforce this throttle... if we do, we can - * potentially deadlock since we're stalling the pageout thread at a time - * when the disk image might need additional memory (which won't be available - * if the pageout thread can't run)... instead we'll just depend on the throttle - * that the pageout thread now has in place to deal with external files - */ - local_flags = CL_PAGEOUT; - else - local_flags = CL_PAGEOUT | CL_THROTTLE; + local_flags = CL_PAGEOUT | CL_THROTTLE; if ((flags & UPL_IOSYNC) == 0) local_flags |= CL_ASYNC; if ((flags & UPL_NOCOMMIT) == 0) local_flags |= CL_COMMIT; + if ((flags & UPL_KEEPCACHED)) + local_flags |= CL_KEEPCACHED; + if (flags & UPL_PAGING_ENCRYPTED) + local_flags |= CL_ENCRYPTED; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, @@ -992,22 +1787,22 @@ cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, fla ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, UPL_ABORT_FREE_ON_EMPTY); } - vp->v_flag |= VHASBEENPAGED; + return (cluster_io(vp, upl, upl_offset, f_offset, io_size, + local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg)); +} - return (cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize, - local_flags, (struct buf *)0, (struct clios *)0)); + +int +cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags) +{ + return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); } + int -cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int size; - off_t filesize; - int devblocksize; - int flags; +cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) { u_int io_size; int rounded_size; @@ -1022,6 +1817,10 @@ cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flag local_flags |= CL_ASYNC; if ((flags & UPL_NOCOMMIT) == 0) local_flags |= CL_COMMIT; + if (flags & UPL_IOSTREAMING) + local_flags |= CL_IOSTREAMING; + if (flags & UPL_PAGING_ENCRYPTED) + local_flags |= CL_ENCRYPTED; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, @@ -1052,293 +1851,317 @@ cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flag ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); - retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize, - local_flags | CL_READ | CL_PAGEIN, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, + local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); - if (retval == 0) { - int b_lblkno; - int e_lblkno; + return (retval); +} - b_lblkno = (int)(f_offset / PAGE_SIZE_64); - e_lblkno = (int) - ((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64); - if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF) && rounded_size == PAGE_SIZE) { - /* - * we haven't read the last page in of the file yet - * so let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); - } - vp->v_lastr = e_lblkno; - } - return (retval); +int +cluster_bp(buf_t bp) +{ + return cluster_bp_ext(bp, NULL, NULL); } + int -cluster_bp(bp) - struct buf *bp; +cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) { off_t f_offset; int flags; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, - (int)bp, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); + bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); - if (bp->b_pagelist == (upl_t) 0) - panic("cluster_bp: can't handle NULL upl yet\n"); if (bp->b_flags & B_READ) flags = CL_ASYNC | CL_READ; else flags = CL_ASYNC; + if (bp->b_flags & B_PASSIVE) + flags |= CL_PASSIVE; f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); - return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, 0, flags, bp, (struct clios *)0)); + return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg)); } + + int -cluster_write(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t oldEOF; - off_t newEOF; - off_t headOff; - off_t tailOff; - int devblocksize; - int flags; +cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) { - int prev_resid; - int clip_size; - off_t max_io_size; - struct iovec *iov; - int upl_size; - int upl_flags; - upl_t upl; - int retval = 0; + return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); +} - - if (vp->v_flag & VHASBEENPAGED) - { - /* - * this vnode had pages cleaned to it by - * the pager which indicates that either - * it's not very 'hot', or the system is - * being overwhelmed by a lot of dirty - * data being delayed in the VM cache... - * in either event, we'll push our remaining - * delayed data at this point... this will - * be more efficient than paging out 1 page at - * a time, and will also act as a throttle - * by delaying this client from writing any - * more data until all his delayed data has - * at least been queued to the uderlying driver. - */ - cluster_push(vp); - - vp->v_flag &= ~VHASBEENPAGED; - } - - if ( (!(vp->v_flag & VNOCACHE_DATA)) || (!uio) || (uio->uio_segflg != UIO_USERSPACE)) - { - /* - * go do a write through the cache if one of the following is true.... - * NOCACHE is not true - * there is no uio structure or it doesn't target USERSPACE - */ - return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)); - } - - while (uio->uio_resid && uio->uio_offset < newEOF && retval == 0) - { - /* - * we know we have a resid, so this is safe - * skip over any emtpy vectors - */ - iov = uio->uio_iov; - - while (iov->iov_len == 0) { - uio->uio_iov++; - uio->uio_iovcnt--; - iov = uio->uio_iov; - } - upl_size = PAGE_SIZE; - upl_flags = UPL_QUERY_OBJECT_TYPE; - - if ((vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) - { - /* - * the user app must have passed in an invalid address + +int +cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, + int xflags, int (*callback)(buf_t, void *), void *callback_arg) +{ + user_ssize_t cur_resid; + int retval = 0; + int flags; + int zflags; + int bflag; + int write_type = IO_COPY; + u_int32_t write_length; + + flags = xflags; + + if (flags & IO_PASSIVE) + bflag = CL_PASSIVE; + else + bflag = 0; + + if (vp->v_flag & VNOCACHE_DATA) + flags |= IO_NOCACHE; + + if (uio == NULL) { + /* + * no user data... + * this call is being made to zero-fill some range in the file */ - return (EFAULT); - } - - /* - * We check every vector target but if it is physically - * contiguous space, we skip the sanity checks. - */ - if (upl_flags & UPL_PHYS_CONTIG) - { - if (flags & IO_HEADZEROFILL) - { - flags &= ~IO_HEADZEROFILL; - - if (retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, devblocksize, IO_HEADZEROFILL)) - return(retval); - } + retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); + + return(retval); + } + /* + * do a write through the cache if one of the following is true.... + * NOCACHE is not true or NODIRECT is true + * the uio request doesn't target USERSPACE + * otherwise, find out if we want the direct or contig variant for + * the first vector in the uio request + */ + if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) + retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); + + if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) + /* + * must go through the cached variant in this case + */ + write_type = IO_COPY; - retval = cluster_phys_write(vp, uio, newEOF, devblocksize, flags); + while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { + + switch (write_type) { + + case IO_COPY: + /* + * make sure the uio_resid isn't too big... + * internally, we want to handle all of the I/O in + * chunk sizes that fit in a 32 bit int + */ + if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { + /* + * we're going to have to call cluster_write_copy + * more than once... + * + * only want the last call to cluster_write_copy to + * have the IO_TAILZEROFILL flag set and only the + * first call should have IO_HEADZEROFILL + */ + zflags = flags & ~IO_TAILZEROFILL; + flags &= ~IO_HEADZEROFILL; + + write_length = MAX_IO_REQUEST_SIZE; + } else { + /* + * last call to cluster_write_copy + */ + zflags = flags; + + write_length = (u_int32_t)cur_resid; + } + retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); + break; + + case IO_CONTIG: + zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); + + if (flags & IO_HEADZEROFILL) { + /* + * only do this once per request + */ + flags &= ~IO_HEADZEROFILL; - if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL)) - { - return (cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL)); - } - } - else if ((uio->uio_resid < PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) - { + retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, + headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); + if (retval) + break; + } + retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); + + if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { + /* + * we're done with the data from the user specified buffer(s) + * and we've been requested to zero fill at the tail + * treat this as an IO_HEADZEROFILL which doesn't require a uio + * by rearranging the args and passing in IO_HEADZEROFILL + */ + retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, + (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); + } + break; + + case IO_DIRECT: + /* + * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL + */ + retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); + break; + + case IO_UNKNOWN: + retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); + break; + } /* - * we're here because we're don't have a physically contiguous target buffer - * go do a write through the cache if one of the following is true.... - * the total xfer size is less than a page... - * we're being asked to ZEROFILL either the head or the tail of the I/O... - */ - return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)); - } - else if (((int)uio->uio_offset & PAGE_MASK) || ((int)iov->iov_base & PAGE_MASK)) - { - if (((int)uio->uio_offset & PAGE_MASK) == ((int)iov->iov_base & PAGE_MASK)) - { - /* - * Bring the file offset write up to a pagesize boundary - * this will also bring the base address to a page boundary - * since they both are currently on the same offset within a page - * note: if we get here, uio->uio_resid is greater than PAGE_SIZE - * so the computed clip_size must always be less than the current uio_resid - */ - clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64)); - - /* - * Fake the resid going into the cluster_write_x call - * and restore it on the way out. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* - * can't get both the file offset and the buffer offset aligned to a page boundary - * so fire an I/O through the cache for this entire vector - */ - clip_size = iov->iov_len; - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } - else - { - /* - * If we come in here, we know the offset into - * the file is on a pagesize boundary and the - * target buffer address is also on a page boundary + * in case we end up calling cluster_write_copy (from cluster_write_direct) + * multiple times to service a multi-vector request that is not aligned properly + * we need to update the oldEOF so that we + * don't zero-fill the head of a page if we've successfully written + * data to that area... 'cluster_write_copy' will zero-fill the head of a + * page that is beyond the oldEOF if the write is unaligned... we only + * want that to happen for the very first page of the cluster_write, + * NOT the first page of each vector making up a multi-vector write. */ - max_io_size = newEOF - uio->uio_offset; - clip_size = uio->uio_resid; - if (iov->iov_len < clip_size) - clip_size = iov->iov_len; - if (max_io_size < clip_size) - clip_size = max_io_size; - - if (clip_size < PAGE_SIZE) - { - /* - * Take care of tail end of write in this vector - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* round clip_size down to a multiple of pagesize */ - clip_size = clip_size & ~(PAGE_MASK); - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags); - if ((retval == 0) && uio->uio_resid) - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } /* end else */ - } /* end while */ - return(retval); + if (uio->uio_offset > oldEOF) + oldEOF = uio->uio_offset; + } + return (retval); } static int -cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t newEOF; - int devblocksize; - int flags; +cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, + int flags, int (*callback)(buf_t, void *), void *callback_arg) { upl_t upl; upl_page_info_t *pl; - off_t upl_f_offset; vm_offset_t upl_offset; - off_t max_io_size; - int io_size; - int io_flag; - int upl_size; - int upl_needed_size; - int pages_in_pl; + vm_offset_t vector_upl_offset = 0; + u_int32_t io_req_size; + u_int32_t offset_in_file; + u_int32_t offset_in_iovbase; + u_int32_t io_size; + int io_flag = 0; + upl_size_t upl_size, vector_upl_size = 0; + vm_size_t upl_needed_size; + mach_msg_type_number_t pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; - int i; + mach_msg_type_number_t i; int force_data_sync; - int error = 0; + int retval = 0; + int first_IO = 1; struct clios iostate; + user_addr_t iov_base; + u_int32_t mem_alignment_mask; + u_int32_t devblocksize; + u_int32_t max_upl_size; + + u_int32_t vector_upl_iosize = 0; + int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); + off_t v_upl_uio_offset = 0; + int vector_upl_index=0; + upl_t vector_upl = NULL; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, - (int)uio->uio_offset, (int)uio->uio_resid, - (int)newEOF, devblocksize, 0); /* * When we enter this routine, we know - * -- the offset into the file is on a pagesize boundary - * -- the resid is a page multiple * -- the resid will not exceed iov_len */ - cluster_try_push(vp, newEOF, 0, 1); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, + (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); + + max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); + + io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; + + if (flags & IO_PASSIVE) + io_flag |= CL_PASSIVE; iostate.io_completed = 0; iostate.io_issued = 0; iostate.io_error = 0; iostate.io_wanted = 0; - iov = uio->uio_iov; + lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); + + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + + if (devblocksize == 1) { + /* + * the AFP client advertises a devblocksize of 1 + * however, its BLOCKMAP routine maps to physical + * blocks that are PAGE_SIZE in size... + * therefore we can't ask for I/Os that aren't page aligned + * or aren't multiples of PAGE_SIZE in size + * by setting devblocksize to PAGE_SIZE, we re-instate + * the old behavior we had before the mem_alignment_mask + * changes went in... + */ + devblocksize = PAGE_SIZE; + } + +next_dwrite: + io_req_size = *write_length; + iov_base = uio_curriovbase(uio); + + offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; + offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; + + if (offset_in_file || offset_in_iovbase) { + /* + * one of the 2 important offsets is misaligned + * so fire an I/O through the cache for this entire vector + */ + goto wait_for_dwrites; + } + if (iov_base & (devblocksize - 1)) { + /* + * the offset in memory must be on a device block boundary + * so that we can guarantee that we can generate an + * I/O that ends on a page boundary in cluster_io + */ + goto wait_for_dwrites; + } + + while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { + + if (first_IO) { + cluster_syncup(vp, newEOF, callback, callback_arg); + first_IO = 0; + } + io_size = io_req_size & ~PAGE_MASK; + iov_base = uio_curriovbase(uio); - while (uio->uio_resid && uio->uio_offset < newEOF && error == 0) { - io_size = uio->uio_resid; + if (io_size > max_upl_size) + io_size = max_upl_size; - if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - io_size = MAX_UPL_TRANSFER * PAGE_SIZE; + if(useVectorUPL && (iov_base & PAGE_MASK)) { + /* + * We have an iov_base that's not page-aligned. + * Issue all I/O's that have been collected within + * this Vectored UPL. + */ + if(vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + + /* + * After this point, if we are using the Vector UPL path and the base is + * not page-aligned then the UPL with that base will be the first in the vector UPL. + */ + } - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK; + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, - (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0); + (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { pages_in_pl = 0; @@ -1347,7 +2170,7 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), &upl_size, &upl, NULL, @@ -1359,13 +2182,13 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, 0, 0, 0, kret, 0); /* - * cluster_nocopy_write: failed to get pagelist + * failed to get pagelist * * we may have already spun some portion of this request * off as async requests... we need to wait for the I/O * to complete before returning */ - goto wait_for_writes; + goto wait_for_dwrites; } pl = UPL_GET_INTERNAL_PAGE_LIST(upl); pages_in_pl = upl_size / PAGE_SIZE; @@ -1381,8 +2204,7 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) * didn't get all the pages back that we * needed... release this upl and try again */ - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort(upl, 0); } if (force_data_sync >= 3) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, @@ -1395,28 +2217,43 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) * off as async requests... we need to wait for the I/O * to complete before returning */ - goto wait_for_writes; + goto wait_for_dwrites; } /* * Consider the possibility that upl_size wasn't satisfied. */ - if (upl_size != upl_needed_size) - io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; - + if (upl_size < upl_needed_size) { + if (upl_size && upl_offset == 0) + io_size = upl_size; + else + io_size = 0; + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, - (int)upl_offset, upl_size, (int)iov->iov_base, io_size, 0); + (int)upl_offset, upl_size, (int)iov_base, io_size, 0); if (io_size == 0) { - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort(upl, 0); /* * we may have already spun some portion of this request * off as async requests... we need to wait for the I/O * to complete before returning */ - goto wait_for_writes; + goto wait_for_dwrites; + } + + if(useVectorUPL) { + vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); + if(end_off) + issueVectorUPL = 1; + /* + * After this point, if we are using a vector UPL, then + * either all the UPL elements end on a page boundary OR + * this UPL is the last element because it does not end + * on a page boundary. + */ } + /* * Now look for pages already in the cache * and throw them away. @@ -1431,10 +2268,9 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) * if there are already too many outstanding writes * wait until some complete before issuing the next */ - while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_write", 0); - } + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct"); + if (iostate.io_error) { /* * one of the earlier writes we issued ran into a hard error @@ -1443,80 +2279,164 @@ cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) * go wait for all writes that are part of this stream * to complete before returning the error to the caller */ - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort(upl, 0); - goto wait_for_writes; + goto wait_for_dwrites; } - io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, devblocksize, io_flag, (struct buf *)0, &iostate); + if(!useVectorUPL) + retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, + io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + + else { + if(!vector_upl_index) { + vector_upl = vector_upl_create(upl_offset); + v_upl_uio_offset = uio->uio_offset; + vector_upl_offset = upl_offset; + } + + vector_upl_set_subupl(vector_upl,upl,upl_size); + vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); + vector_upl_index++; + vector_upl_iosize += io_size; + vector_upl_size += upl_size; + + if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + } + + /* + * update the uio structure to + * reflect the I/O that we just issued + */ + uio_update(uio, (user_size_t)io_size); + + /* + * in case we end up calling through to cluster_write_copy to finish + * the tail of this request, we need to update the oldEOF so that we + * don't zero-fill the head of a page if we've successfully written + * data to that area... 'cluster_write_copy' will zero-fill the head of a + * page that is beyond the oldEOF if the write is unaligned... we only + * want that to happen for the very first page of the cluster_write, + * NOT the first page of each vector making up a multi-vector write. + */ + if (uio->uio_offset > oldEOF) + oldEOF = uio->uio_offset; - iov->iov_len -= io_size; - iov->iov_base += io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; + io_req_size -= io_size; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, - (int)upl_offset, (int)uio->uio_offset, (int)uio->uio_resid, error, 0); + (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); } /* end while */ -wait_for_writes: - /* - * make sure all async writes issued as part of this stream - * have completed before we return - */ - while (iostate.io_issued != iostate.io_completed) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_write", 0); - } + if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { + + retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); + + if (retval == 0 && *write_type == IO_DIRECT) { + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, + (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); + + goto next_dwrite; + } + } + +wait_for_dwrites: + + if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + + if (iostate.io_issued > iostate.io_completed) { + /* + * make sure all async writes issued as part of this stream + * have completed before we return + */ + cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); + } if (iostate.io_error) - error = iostate.io_error; + retval = iostate.io_error; + + lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); + + if (io_req_size && retval == 0) { + /* + * we couldn't handle the tail of this request in DIRECT mode + * so fire it through the copy path + * + * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set + * so we can just pass 0 in for the headOff and tailOff + */ + if (uio->uio_offset > oldEOF) + oldEOF = uio->uio_offset; + + retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); + *write_type = IO_UNKNOWN; + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, error, 4, 0); + (int)uio->uio_offset, io_req_size, retval, 4, 0); - return (error); + return (retval); } static int -cluster_phys_write(vp, uio, newEOF, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t newEOF; - int devblocksize; - int flags; +cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, + int (*callback)(buf_t, void *), void *callback_arg, int bflag) { upl_page_info_t *pl; - addr64_t src_paddr; - upl_t upl; + addr64_t src_paddr = 0; + upl_t upl[MAX_VECTS]; vm_offset_t upl_offset; - int tail_size; - int io_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; + u_int32_t tail_size = 0; + u_int32_t io_size; + u_int32_t xsize; + upl_size_t upl_size; + vm_size_t upl_needed_size; + mach_msg_type_number_t pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; + struct clios iostate; int error = 0; + int cur_upl = 0; + int num_upl = 0; + int n; + user_addr_t iov_base; + u_int32_t devblocksize; + u_int32_t mem_alignment_mask; /* * When we enter this routine, we know - * -- the resid will not exceed iov_len - * -- the vector target address is physcially contiguous + * -- the io_req_size will not exceed iov_len + * -- the target address is physically contiguous */ - cluster_try_push(vp, newEOF, 0, 1); + cluster_syncup(vp, newEOF, callback, callback_arg); + + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); + +next_cwrite: + io_size = *write_length; + + iov_base = uio_curriovbase(uio); - iov = uio->uio_iov; - io_size = iov->iov_len; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK; + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); upl_needed_size = upl_offset + io_size; pages_in_pl = 0; @@ -1525,131 +2445,240 @@ cluster_phys_write(vp, uio, newEOF, devblocksize, flags) UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); if (kret != KERN_SUCCESS) { /* - * cluster_phys_write: failed to get pagelist - * note: return kret here + * failed to get pagelist */ - return(EINVAL); + error = EINVAL; + goto wait_for_cwrites; } + num_upl++; + /* * Consider the possibility that upl_size wasn't satisfied. - * This is a failure in the physical memory case. */ if (upl_size < upl_needed_size) { - kernel_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - return(EINVAL); + /* + * This is a failure in the physical memory case. + */ + error = EINVAL; + goto wait_for_cwrites; } - pl = ubc_upl_pageinfo(upl); + pl = ubc_upl_pageinfo(upl[cur_upl]); - src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + ((addr64_t)((u_int)iov->iov_base & PAGE_MASK)); + src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { - int head_size; + u_int32_t head_size; - head_size = devblocksize - (int)(uio->uio_offset & (devblocksize - 1)); + head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); if (head_size > io_size) head_size = io_size; - error = cluster_align_phys_io(vp, uio, src_paddr, head_size, devblocksize, 0); + error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); - if (error) { - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + if (error) + goto wait_for_cwrites; - return(EINVAL); - } upl_offset += head_size; src_paddr += head_size; io_size -= head_size; + + iov_base += head_size; } + if ((u_int32_t)iov_base & mem_alignment_mask) { + /* + * request doesn't set up on a memory boundary + * the underlying DMA engine can handle... + * return an error instead of going through + * the slow copy path since the intent of this + * path is direct I/O from device memory + */ + error = EINVAL; + goto wait_for_cwrites; + } + tail_size = io_size & (devblocksize - 1); io_size -= tail_size; - if (io_size) { - /* - * issue a synchronous write to cluster_io + while (io_size && error == 0) { + + if (io_size > MAX_IO_CONTIG_SIZE) + xsize = MAX_IO_CONTIG_SIZE; + else + xsize = io_size; + /* + * request asynchronously so that we can overlap + * the preparation of the next I/O... we'll do + * the commit after all the I/O has completed + * since its all issued against the same UPL + * if there are already too many outstanding writes + * wait until some have completed before issuing the next */ - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, 0, CL_DEV_MEMORY, (struct buf *)0, (struct clios *)0); - } - if (error == 0) { + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); + + if (iostate.io_error) { + /* + * one of the earlier writes we issued ran into a hard error + * don't issue any more writes... + * go wait for all writes that are part of this stream + * to complete before returning the error to the caller + */ + goto wait_for_cwrites; + } /* - * The cluster_io write completed successfully, - * update the uio structure + * issue an asynchronous write to cluster_io */ - uio->uio_resid -= io_size; - iov->iov_len -= io_size; - iov->iov_base += io_size; - uio->uio_offset += io_size; - src_paddr += io_size; - - if (tail_size) - error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, devblocksize, 0); + error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, + xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); + + if (error == 0) { + /* + * The cluster_io write completed successfully, + * update the uio structure + */ + uio_update(uio, (user_size_t)xsize); + + upl_offset += xsize; + src_paddr += xsize; + io_size -= xsize; + } } + if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { + + error = cluster_io_type(uio, write_type, write_length, 0); + + if (error == 0 && *write_type == IO_CONTIG) { + cur_upl++; + goto next_cwrite; + } + } else + *write_type = IO_UNKNOWN; + +wait_for_cwrites: /* - * just release our hold on the physically contiguous - * region without changing any state - */ - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + * make sure all async writes that are part of this stream + * have completed before we proceed + */ + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); + + if (iostate.io_error) + error = iostate.io_error; + + lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); + + if (error == 0 && tail_size) + error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); + + for (n = 0; n < num_upl; n++) + /* + * just release our hold on each physically contiguous + * region without changing any state + */ + ubc_upl_abort(upl[n], 0); return (error); } +/* + * need to avoid a race between an msync of a range of pages dirtied via mmap + * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's + * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd + * + * we should never force-zero-fill pages that are already valid in the cache... + * the entire page contains valid data (either from disk, zero-filled or dirtied + * via an mmap) so we can only do damage by trying to zero-fill + * + */ +static int +cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) +{ + int zero_pg_index; + boolean_t need_cluster_zero = TRUE; + + if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { + + bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); + zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); + + if (upl_valid_page(pl, zero_pg_index)) { + /* + * never force zero valid pages - dirty or clean + * we'll leave these in the UPL for cluster_write_copy to deal with + */ + need_cluster_zero = FALSE; + } + } + if (need_cluster_zero == TRUE) + cluster_zero(upl, io_offset, bytes_to_zero, NULL); + + return (bytes_to_zero); +} + + static int -cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t oldEOF; - off_t newEOF; - off_t headOff; - off_t tailOff; - int devblocksize; - int flags; +cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, + off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) { upl_page_info_t *pl; upl_t upl; - vm_offset_t upl_offset; - int upl_size; + vm_offset_t upl_offset = 0; + vm_size_t upl_size; off_t upl_f_offset; int pages_in_upl; int start_offset; int xfer_resid; int io_size; - int io_flags; int io_offset; int bytes_to_zero; int bytes_to_move; kern_return_t kret; int retval = 0; - int uio_resid; + int io_resid; long long total_size; long long zero_cnt; off_t zero_off; long long zero_cnt1; off_t zero_off1; - daddr_t start_blkno; - daddr_t last_blkno; - int intersection; - + off_t write_off = 0; + int write_cnt = 0; + boolean_t first_pass = FALSE; + struct cl_extent cl; + struct cl_writebehind *wbp; + int bflag; + u_int max_cluster_pgcount; + u_int max_io_size; if (uio) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)oldEOF, (int)newEOF, 0); + (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); - uio_resid = uio->uio_resid; + io_resid = io_req_size; } else { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, 0, 0, (int)oldEOF, (int)newEOF, 0); - uio_resid = 0; + io_resid = 0; } + if (flags & IO_PASSIVE) + bflag = CL_PASSIVE; + else + bflag = 0; + zero_cnt = 0; zero_cnt1 = 0; + zero_off = 0; + zero_off1 = 0; + + max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; + max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); if (flags & IO_HEADZEROFILL) { /* @@ -1668,29 +2697,58 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) zero_cnt = newEOF - headOff; zero_off = headOff; } + } else { + if (uio && uio->uio_offset > oldEOF) { + zero_off = uio->uio_offset & ~PAGE_MASK_64; + + if (zero_off >= oldEOF) { + zero_cnt = uio->uio_offset - zero_off; + + flags |= IO_HEADZEROFILL; + } + } } if (flags & IO_TAILZEROFILL) { if (uio) { - zero_off1 = uio->uio_offset + uio->uio_resid; + zero_off1 = uio->uio_offset + io_req_size; if (zero_off1 < tailOff) zero_cnt1 = tailOff - zero_off1; } + } else { + if (uio && newEOF > oldEOF) { + zero_off1 = uio->uio_offset + io_req_size; + + if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { + zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); + + flags |= IO_TAILZEROFILL; + } + } } if (zero_cnt == 0 && uio == (struct uio *) 0) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, - retval, 0, 0, 0, 0); - return (0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, + retval, 0, 0, 0, 0); + return (0); } - - while ((total_size = (uio_resid + zero_cnt + zero_cnt1)) && retval == 0) { + if (uio) { + write_off = uio->uio_offset; + write_cnt = uio_resid(uio); + /* + * delay updating the sequential write info + * in the control block until we've obtained + * the lock for it + */ + first_pass = TRUE; + } + while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { /* * for this iteration of the loop, figure out where our starting point is */ if (zero_cnt) { start_offset = (int)(zero_off & PAGE_MASK_64); upl_f_offset = zero_off - start_offset; - } else if (uio_resid) { + } else if (io_resid) { start_offset = (int)(uio->uio_offset & PAGE_MASK_64); upl_f_offset = uio->uio_offset - start_offset; } else { @@ -1700,27 +2758,26 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); - if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - total_size = MAX_UPL_TRANSFER * PAGE_SIZE; + if (total_size > max_io_size) + total_size = max_io_size; - start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64); + cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); - if (uio && !(vp->v_flag & VNOCACHE_DATA) && - (flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0) { + if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { /* - * assumption... total_size <= uio_resid + * assumption... total_size <= io_resid * because IO_HEADZEROFILL and IO_TAILZEROFILL not set */ - if ((start_offset + total_size) > (MAX_UPL_TRANSFER * PAGE_SIZE)) - total_size -= start_offset; + if ((start_offset + total_size) > max_io_size) + total_size = max_io_size - start_offset; xfer_resid = total_size; - retval = cluster_copy_ubc_data(vp, uio, &xfer_resid, 1); - + retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); + if (retval) break; - uio_resid -= (total_size - xfer_resid); + io_resid -= (total_size - xfer_resid); total_size = xfer_resid; start_offset = (int)(uio->uio_offset & PAGE_MASK_64); upl_f_offset = uio->uio_offset - start_offset; @@ -1752,8 +2809,8 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) */ upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; + if (upl_size > max_io_size) + upl_size = max_io_size; pages_in_upl = upl_size / PAGE_SIZE; io_size = upl_size - start_offset; @@ -1764,19 +2821,24 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); + /* + * Gather the pages from the buffer cache. + * The UPL_WILL_MODIFY flag lets the UPL subsystem know + * that we intend to modify these pages. + */ kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_SET_LITE); + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY)); if (kret != KERN_SUCCESS) - panic("cluster_write: failed to get pagelist"); + panic("cluster_write_copy: failed to get pagelist"); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, - (int)upl, (int)upl_f_offset, start_offset, 0, 0); + upl, (int)upl_f_offset, start_offset, 0, 0); - if (start_offset && !upl_valid_page(pl, 0)) { + if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { int read_size; /* @@ -1786,11 +2848,11 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) */ read_size = PAGE_SIZE; - if ((upl_f_offset + read_size) > newEOF) - read_size = newEOF - upl_f_offset; + if ((upl_f_offset + read_size) > oldEOF) + read_size = oldEOF - upl_f_offset; - retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, devblocksize, - CL_READ, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, + CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); if (retval) { /* * we had an error during the read which causes us to abort @@ -1798,11 +2860,13 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * to release the rest of the pages in the upl without modifying * there state and mark the failed page in error */ - ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); + + if (upl_size > PAGE_SIZE) + ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, - (int)upl, 0, 0, retval, 0); + upl, 0, 0, retval, 0); break; } } @@ -1820,11 +2884,11 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) read_size = PAGE_SIZE; - if ((upl_f_offset + upl_offset + read_size) > newEOF) - read_size = newEOF - (upl_f_offset + upl_offset); + if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) + read_size = oldEOF - (upl_f_offset + upl_offset); - retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, devblocksize, - CL_READ, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, + CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); if (retval) { /* * we had an error during the read which causes us to abort @@ -1832,11 +2896,13 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) * need to release the rest of the pages in the upl without * modifying there state and mark the failed page in error */ - ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); + + if (upl_size > PAGE_SIZE) + ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, - (int)upl, 0, 0, retval, 0); + upl, 0, 0, retval, 0); break; } } @@ -1851,40 +2917,28 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) else bytes_to_zero = xfer_resid; - if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { - cluster_zero(upl, io_offset, bytes_to_zero, NULL); - } else { - int zero_pg_index; - - bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); - zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); - - if ( !upl_valid_page(pl, zero_pg_index)) { - cluster_zero(upl, io_offset, bytes_to_zero, NULL); + bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); - } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && - !upl_dirty_page(pl, zero_pg_index)) { - cluster_zero(upl, io_offset, bytes_to_zero, NULL); - } - } xfer_resid -= bytes_to_zero; zero_cnt -= bytes_to_zero; zero_off += bytes_to_zero; io_offset += bytes_to_zero; } - if (xfer_resid && uio_resid) { - bytes_to_move = min(uio_resid, xfer_resid); + if (xfer_resid && io_resid) { + u_int32_t io_requested; - retval = cluster_copy_upl_data(uio, upl, io_offset, bytes_to_move); + bytes_to_move = min(io_resid, xfer_resid); + io_requested = bytes_to_move; - if (retval) { + retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); + if (retval) { ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, - (int)upl, 0, 0, retval, 0); + upl, 0, 0, retval, 0); } else { - uio_resid -= bytes_to_move; + io_resid -= bytes_to_move; xfer_resid -= bytes_to_move; io_offset += bytes_to_move; } @@ -1896,34 +2950,20 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) else bytes_to_zero = xfer_resid; - if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { - cluster_zero(upl, io_offset, bytes_to_zero, NULL); - } else { - int zero_pg_index; - - bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off1 & PAGE_MASK_64)); - zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64); - - if ( !upl_valid_page(pl, zero_pg_index)) { - cluster_zero(upl, io_offset, bytes_to_zero, NULL); - } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && - !upl_dirty_page(pl, zero_pg_index)) { - cluster_zero(upl, io_offset, bytes_to_zero, NULL); - } - } + bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); + xfer_resid -= bytes_to_zero; zero_cnt1 -= bytes_to_zero; zero_off1 += bytes_to_zero; io_offset += bytes_to_zero; } - if (retval == 0) { int cl_index; - int can_delay; + int ret_cluster_try_push; io_size += start_offset; - if ((upl_f_offset + io_size) >= newEOF && io_size < upl_size) { + if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { /* * if we're extending the file with this write * we'll zero fill the rest of the page so that @@ -1932,37 +2972,57 @@ cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) */ cluster_zero(upl, io_size, upl_size - io_size, NULL); } - if (flags & IO_SYNC) + /* + * release the upl now if we hold one since... + * 1) pages in it may be present in the sparse cluster map + * and may span 2 separate buckets there... if they do and + * we happen to have to flush a bucket to make room and it intersects + * this upl, a deadlock may result on page BUSY + * 2) we're delaying the I/O... from this point forward we're just updating + * the cluster state... no need to hold the pages, so commit them + * 3) IO_SYNC is set... + * because we had to ask for a UPL that provides currenty non-present pages, the + * UPL has been automatically set to clear the dirty flags (both software and hardware) + * upon committing it... this is not the behavior we want since it's possible for + * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. + * we'll pick these pages back up later with the correct behavior specified. + * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush + * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages + * we hold since the flushing context is holding the cluster lock. + */ + ubc_upl_commit_range(upl, 0, upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); +check_cluster: + /* + * calculate the last logical block number + * that this delayed I/O encompassed + */ + cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); + + if (flags & IO_SYNC) { /* * if the IO_SYNC flag is set than we need to * bypass any clusters and immediately issue * the I/O */ goto issue_io; -check_cluster: + } /* - * calculate the last logical block number - * that this delayed I/O encompassed + * take the lock to protect our accesses + * of the writebehind and sparse cluster state */ - last_blkno = (upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64; + wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); - if (vp->v_flag & VHASDIRTY) { + if (wbp->cl_scmap) { - if ( !(vp->v_flag & VNOCACHE_DATA)) { + if ( !(flags & IO_NOCACHE)) { /* * we've fallen into the sparse * cluster method of delaying dirty pages - * first, we need to release the upl if we hold one - * since pages in it may be present in the sparse cluster map - * and may span 2 separate buckets there... if they do and - * we happen to have to flush a bucket to make room and it intersects - * this upl, a deadlock may result on page BUSY */ - if (upl_size) - ubc_upl_commit_range(upl, 0, upl_size, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); - sparse_cluster_add(vp, newEOF, start_blkno, last_blkno); + lck_mtx_unlock(&wbp->cl_lockw); continue; } @@ -1972,20 +3032,10 @@ check_cluster: * to uncached writes on the file, so go ahead * and push whatever's in the sparse map * and switch back to normal clustering - * - * see the comment above concerning a possible deadlock... */ - if (upl_size) { - ubc_upl_commit_range(upl, 0, upl_size, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); - /* - * setting upl_size to 0 keeps us from committing a - * second time in the start_new_cluster path - */ - upl_size = 0; - } - sparse_cluster_push(vp, ubc_getsize(vp), 1); + wbp->cl_number = 0; + sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg); /* * no clusters of either type present at this point * so just go directly to start_new_cluster since @@ -1994,16 +3044,24 @@ check_cluster: * to avoid the deadlock with sparse_cluster_push */ goto start_new_cluster; - } - upl_offset = 0; + } + if (first_pass) { + if (write_off == wbp->cl_last_write) + wbp->cl_seq_written += write_cnt; + else + wbp->cl_seq_written = write_cnt; - if (vp->v_clen == 0) + wbp->cl_last_write = write_off + write_cnt; + + first_pass = FALSE; + } + if (wbp->cl_number == 0) /* * no clusters currently present */ goto start_new_cluster; - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { /* * check each cluster that we currently hold * try to merge some or all of this write into @@ -2011,51 +3069,36 @@ check_cluster: * any portion of the write remains, start a * new cluster */ - if (start_blkno >= vp->v_clusters[cl_index].start_pg) { + if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { /* * the current write starts at or after the current cluster */ - if (last_blkno <= (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) { + if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { /* * we have a write that fits entirely * within the existing cluster limits */ - if (last_blkno > vp->v_clusters[cl_index].last_pg) + if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) /* * update our idea of where the cluster ends */ - vp->v_clusters[cl_index].last_pg = last_blkno; + wbp->cl_clusters[cl_index].e_addr = cl.e_addr; break; } - if (start_blkno < (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) { + if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { /* * we have a write that starts in the middle of the current cluster * but extends beyond the cluster's limit... we know this because * of the previous checks * we'll extend the current cluster to the max - * and update the start_blkno for the current write to reflect that + * and update the b_addr for the current write to reflect that * the head of it was absorbed into this cluster... * note that we'll always have a leftover tail in this case since * full absorbtion would have occurred in the clause above */ - vp->v_clusters[cl_index].last_pg = vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER; - - if (upl_size) { - int start_pg_in_upl; - - start_pg_in_upl = upl_f_offset / PAGE_SIZE_64; - - if (start_pg_in_upl < vp->v_clusters[cl_index].last_pg) { - intersection = (vp->v_clusters[cl_index].last_pg - start_pg_in_upl) * PAGE_SIZE; - - ubc_upl_commit_range(upl, upl_offset, intersection, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); - upl_f_offset += intersection; - upl_offset += intersection; - upl_size -= intersection; - } - } - start_blkno = vp->v_clusters[cl_index].last_pg; + wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; + + cl.b_addr = wbp->cl_clusters[cl_index].e_addr; } /* * we come here for the case where the current write starts @@ -2069,24 +3112,24 @@ check_cluster: /* * the current write starts in front of the cluster we're currently considering */ - if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) { + if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) { /* * we can just merge the new request into * this cluster and leave it in the cache * since the resulting cluster is still * less than the maximum allowable size */ - vp->v_clusters[cl_index].start_pg = start_blkno; + wbp->cl_clusters[cl_index].b_addr = cl.b_addr; - if (last_blkno > vp->v_clusters[cl_index].last_pg) { + if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { /* * the current write completely * envelops the existing cluster and since - * each write is limited to at most MAX_UPL_TRANSFER bytes + * each write is limited to at most max_cluster_pgcount pages * we can just use the start and last blocknos of the write * to generate the cluster limits */ - vp->v_clusters[cl_index].last_pg = last_blkno; + wbp->cl_clusters[cl_index].e_addr = cl.e_addr; } break; } @@ -2100,30 +3143,15 @@ check_cluster: * get an intersection with the current write * */ - if (last_blkno > vp->v_clusters[cl_index].last_pg - MAX_UPL_TRANSFER) { + if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { /* * the current write extends into the proposed cluster * clip the length of the current write after first combining it's * tail with the newly shaped cluster */ - vp->v_clusters[cl_index].start_pg = vp->v_clusters[cl_index].last_pg - MAX_UPL_TRANSFER; - - if (upl_size) { - intersection = (last_blkno - vp->v_clusters[cl_index].start_pg) * PAGE_SIZE; - - if (intersection > upl_size) - /* - * because the current write may consist of a number of pages found in the cache - * which are not part of the UPL, we may have an intersection that exceeds - * the size of the UPL that is also part of this write - */ - intersection = upl_size; - - ubc_upl_commit_range(upl, upl_offset + (upl_size - intersection), intersection, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); - upl_size -= intersection; - } - last_blkno = vp->v_clusters[cl_index].start_pg; + wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; + + cl.e_addr = wbp->cl_clusters[cl_index].b_addr; } /* * if we get here, there was no way to merge @@ -2134,314 +3162,282 @@ check_cluster: */ } } - if (cl_index < vp->v_clen) + if (cl_index < wbp->cl_number) /* * we found an existing cluster(s) that we * could entirely merge this I/O into */ goto delay_io; - if (vp->v_clen < MAX_CLUSTERS && !(vp->v_flag & VNOCACHE_DATA)) + if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && + wbp->cl_number == MAX_CLUSTERS && + wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { + uint32_t n; + + if (vp->v_mount->mnt_kern_flag & MNTK_SSD) + n = WRITE_BEHIND_SSD; + else + n = WRITE_BEHIND; + + while (n--) + cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg); + } + if (wbp->cl_number < MAX_CLUSTERS) { /* * we didn't find an existing cluster to * merge into, but there's room to start * a new one */ goto start_new_cluster; - + } /* * no exisitng cluster to merge with and no * room to start a new one... we'll try * pushing one of the existing ones... if none of * them are able to be pushed, we'll switch * to the sparse cluster mechanism - * cluster_try_push updates v_clen to the + * cluster_try_push updates cl_number to the * number of remaining clusters... and * returns the number of currently unused clusters */ - if (vp->v_flag & VNOCACHE_DATA) - can_delay = 0; - else - can_delay = 1; + ret_cluster_try_push = 0; + + /* + * if writes are not deferred, call cluster push immediately + */ + if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { + + ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg); + } - if (cluster_try_push(vp, newEOF, can_delay, 0) == 0) { + /* + * execute following regardless of writes being deferred or not + */ + if (ret_cluster_try_push == 0) { /* * no more room in the normal cluster mechanism * so let's switch to the more expansive but expensive * sparse mechanism.... - * first, we need to release the upl if we hold one - * since pages in it may be present in the sparse cluster map (after the cluster_switch) - * and may span 2 separate buckets there... if they do and - * we happen to have to flush a bucket to make room and it intersects - * this upl, a deadlock may result on page BUSY */ - if (upl_size) - ubc_upl_commit_range(upl, upl_offset, upl_size, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); + sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg); + sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); + + lck_mtx_unlock(&wbp->cl_lockw); + + continue; + } +start_new_cluster: + wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; + wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; + + wbp->cl_clusters[wbp->cl_number].io_flags = 0; + + if (flags & IO_NOCACHE) + wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; + + if (bflag & CL_PASSIVE) + wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; - sparse_cluster_switch(vp, newEOF); - sparse_cluster_add(vp, newEOF, start_blkno, last_blkno); + wbp->cl_number++; +delay_io: + lck_mtx_unlock(&wbp->cl_lockw); + + continue; +issue_io: + /* + * we don't hold the lock at this point + * + * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set + * so that we correctly deal with a change in state of the hardware modify bit... + * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force + * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also + * responsible for generating the correct sized I/O(s) + */ + retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg); + } + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); + + return (retval); +} + + + +int +cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) +{ + return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); +} - continue; - } - /* - * we pushed one cluster successfully, so we must be sequentially writing this file - * otherwise, we would have failed and fallen into the sparse cluster support - * so let's take the opportunity to push out additional clusters as long as we - * remain below the throttle... this will give us better I/O locality if we're - * in a copy loop (i.e. we won't jump back and forth between the read and write points - * however, we don't want to push so much out that the write throttle kicks in and - * hangs this thread up until some of the I/O completes... - */ - while (vp->v_clen && (vp->v_numoutput <= (ASYNC_THROTTLE / 2))) - cluster_try_push(vp, newEOF, 0, 0); -start_new_cluster: - if (vp->v_clen == 0) - vp->v_ciosiz = devblocksize; +int +cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) +{ + int retval = 0; + int flags; + user_ssize_t cur_resid; + u_int32_t io_size; + u_int32_t read_length = 0; + int read_type = IO_COPY; - vp->v_clusters[vp->v_clen].start_pg = start_blkno; - vp->v_clusters[vp->v_clen].last_pg = last_blkno; - vp->v_clen++; + flags = xflags; -delay_io: - if (upl_size) - ubc_upl_commit_range(upl, upl_offset, upl_size, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); - continue; -issue_io: - /* - * in order to maintain some semblance of coherency with mapped writes - * we need to write the cluster back out as a multiple of the PAGESIZE - * unless the cluster encompasses the last page of the file... in this - * case we'll round out to the nearest device block boundary - */ - io_size = upl_size; + if (vp->v_flag & VNOCACHE_DATA) + flags |= IO_NOCACHE; + if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) + flags |= IO_RAOFF; + + /* + * do a read through the cache if one of the following is true.... + * NOCACHE is not true + * the uio request doesn't target USERSPACE + * otherwise, find out if we want the direct or contig variant for + * the first vector in the uio request + */ + if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) + retval = cluster_io_type(uio, &read_type, &read_length, 0); - if ((upl_f_offset + io_size) > newEOF) { - io_size = newEOF - upl_f_offset; - io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1); - } + while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { - if (flags & IO_SYNC) - io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE; + switch (read_type) { + + case IO_COPY: + /* + * make sure the uio_resid isn't too big... + * internally, we want to handle all of the I/O in + * chunk sizes that fit in a 32 bit int + */ + if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) + io_size = MAX_IO_REQUEST_SIZE; else - io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | CL_ASYNC; + io_size = (u_int32_t)cur_resid; - if (vp->v_flag & VNOCACHE_DATA) - io_flags |= CL_DUMP; + retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); + break; + + case IO_DIRECT: + retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); + break; - retval = cluster_io(vp, upl, 0, upl_f_offset, io_size, devblocksize, - io_flags, (struct buf *)0, (struct clios *)0); + case IO_CONTIG: + retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); + break; + + case IO_UNKNOWN: + retval = cluster_io_type(uio, &read_type, &read_length, 0); + break; } } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, - retval, 0, uio_resid, 0, 0); - return (retval); } -int -cluster_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; + + +static void +cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) { - int prev_resid; - int clip_size; - off_t max_io_size; - struct iovec *iov; - int upl_size; - int upl_flags; - upl_t upl; - int retval = 0; - - - if (!((vp->v_flag & VNOCACHE_DATA) && (uio->uio_segflg == UIO_USERSPACE))) - { - /* - * go do a read through the cache if one of the following is true.... - * NOCACHE is not true - * the uio request doesn't target USERSPACE - */ - return (cluster_read_x(vp, uio, filesize, devblocksize, flags)); - } - - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) - { - /* - * we know we have a resid, so this is safe - * skip over any emtpy vectors - */ - iov = uio->uio_iov; - - while (iov->iov_len == 0) { - uio->uio_iov++; - uio->uio_iovcnt--; - iov = uio->uio_iov; - } - upl_size = PAGE_SIZE; - upl_flags = UPL_QUERY_OBJECT_TYPE; - - if ((vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) - { - /* - * the user app must have passed in an invalid address - */ - return (EFAULT); - } - - /* - * We check every vector target but if it is physically - * contiguous space, we skip the sanity checks. - */ - if (upl_flags & UPL_PHYS_CONTIG) - { - retval = cluster_phys_read(vp, uio, filesize, devblocksize, flags); - } - else if (uio->uio_resid < PAGE_SIZE) - { - /* - * we're here because we're don't have a physically contiguous target buffer - * go do a read through the cache if - * the total xfer size is less than a page... - */ - return (cluster_read_x(vp, uio, filesize, devblocksize, flags)); - } - else if (((int)uio->uio_offset & PAGE_MASK) || ((int)iov->iov_base & PAGE_MASK)) - { - if (((int)uio->uio_offset & PAGE_MASK) == ((int)iov->iov_base & PAGE_MASK)) - { - /* - * Bring the file offset read up to a pagesize boundary - * this will also bring the base address to a page boundary - * since they both are currently on the same offset within a page - * note: if we get here, uio->uio_resid is greater than PAGE_SIZE - * so the computed clip_size must always be less than the current uio_resid - */ - clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64)); - - /* - * Fake the resid going into the cluster_read_x call - * and restore it on the way out. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* - * can't get both the file offset and the buffer offset aligned to a page boundary - * so fire an I/O through the cache for this entire vector - */ - clip_size = iov->iov_len; - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } - else - { - /* - * If we come in here, we know the offset into - * the file is on a pagesize boundary - */ + int range; + int abort_flags = UPL_ABORT_FREE_ON_EMPTY; - max_io_size = filesize - uio->uio_offset; - clip_size = uio->uio_resid; - if (iov->iov_len < clip_size) - clip_size = iov->iov_len; - if (max_io_size < clip_size) - clip_size = (int)max_io_size; - - if (clip_size < PAGE_SIZE) - { - /* - * Take care of the tail end of the read in this vector. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* round clip_size down to a multiple of pagesize */ - clip_size = clip_size & ~(PAGE_MASK); - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_nocopy_read(vp, uio, filesize, devblocksize, flags); - if ((retval==0) && uio->uio_resid) - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } /* end else */ - } /* end while */ + if ((range = last_pg - start_pg)) { + if (take_reference) + abort_flags |= UPL_ABORT_REFERENCE; - return(retval); + ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); + } } + static int -cluster_read_x(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) { upl_page_info_t *pl; upl_t upl; vm_offset_t upl_offset; - int upl_size; + u_int32_t upl_size; off_t upl_f_offset; int start_offset; int start_pg; int last_pg; - int uio_last; + int uio_last = 0; int pages_in_upl; off_t max_size; off_t last_ioread_offset; off_t last_request_offset; - u_int size_of_prefetch; - int io_size; kern_return_t kret; int error = 0; int retval = 0; - u_int b_lblkno; - u_int e_lblkno; - struct clios iostate; - u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; + u_int32_t size_of_prefetch; + u_int32_t xsize; + u_int32_t io_size; + u_int32_t max_rd_size; + u_int32_t max_io_size; + u_int32_t max_prefetch; u_int rd_ahead_enabled = 1; u_int prefetch_enabled = 1; - + struct cl_readahead * rap; + struct clios iostate; + struct cl_extent extent; + int bflag; + int take_reference = 1; +#if CONFIG_EMBEDDED + struct uthread *ut; +#endif /* CONFIG_EMBEDDED */ + int policy = IOPOL_DEFAULT; + boolean_t iolock_inited = FALSE; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0); + (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); + +#if !CONFIG_EMBEDDED + policy = proc_get_task_selfdiskacc(); +#else /* !CONFIG_EMBEDDED */ + policy = current_proc()->p_iopol_disk; - if (cluster_hard_throttle_on(vp)) { - rd_ahead_enabled = 0; - prefetch_enabled = 0; + ut = get_bsdthread_info(current_thread()); - max_rd_size = HARD_THROTTLE_MAXSIZE; - } - if (vp->v_flag & (VRAOFF|VNOCACHE_DATA)) - rd_ahead_enabled = 0; + if (ut->uu_iopol_disk != IOPOL_DEFAULT) + policy = ut->uu_iopol_disk; +#endif /* !CONFIG_EMBEDDED */ + + if (policy == IOPOL_THROTTLE || (flags & IO_NOCACHE)) + take_reference = 0; + + if (flags & IO_PASSIVE) + bflag = CL_PASSIVE; + else + bflag = 0; + + max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); + max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD)); + max_rd_size = max_prefetch; - last_request_offset = uio->uio_offset + uio->uio_resid; + last_request_offset = uio->uio_offset + io_req_size; if (last_request_offset > filesize) last_request_offset = filesize; - b_lblkno = (u_int)(uio->uio_offset / PAGE_SIZE_64); - e_lblkno = (u_int)((last_request_offset - 1) / PAGE_SIZE_64); - if (vp->v_ralen && (vp->v_lastr == b_lblkno || (vp->v_lastr + 1) == b_lblkno)) { + if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { + rd_ahead_enabled = 0; + rap = NULL; + } else { + if (cluster_hard_throttle_on(vp, 1)) { + rd_ahead_enabled = 0; + prefetch_enabled = 0; + + max_rd_size = HARD_THROTTLE_MAXSIZE; + } else if (policy == IOPOL_THROTTLE) { + rd_ahead_enabled = 0; + prefetch_enabled = 0; + } + if ((rap = cluster_get_rap(vp)) == NULL) + rd_ahead_enabled = 0; + else { + extent.b_addr = uio->uio_offset / PAGE_SIZE_64; + extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; + } + } + if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { /* * determine if we already have a read-ahead in the pipe courtesy of the * last read systemcall that was issued... @@ -2449,7 +3445,7 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) * with respect to any read-ahead that might be necessary to * garner all the data needed to complete this read systemcall */ - last_ioread_offset = (vp->v_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; + last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; if (last_ioread_offset < uio->uio_offset) last_ioread_offset = (off_t)0; @@ -2458,33 +3454,24 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) } else last_ioread_offset = (off_t)0; - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) { - /* - * compute the size of the upl needed to encompass - * the requested read... limit each call to cluster_io - * to the maximum UPL size... cluster_io will clip if - * this exceeds the maximum io_size for the device, - * make sure to account for - * a starting offset that's not page aligned - */ - start_offset = (int)(uio->uio_offset & PAGE_MASK_64); - upl_f_offset = uio->uio_offset - (off_t)start_offset; - max_size = filesize - uio->uio_offset; + while (io_req_size && uio->uio_offset < filesize && retval == 0) { + + max_size = filesize - uio->uio_offset; - if ((off_t)((unsigned int)uio->uio_resid) < max_size) - io_size = uio->uio_resid; + if ((off_t)(io_req_size) < max_size) + io_size = io_req_size; else io_size = max_size; - if (!(vp->v_flag & VNOCACHE_DATA)) { + if (!(flags & IO_NOCACHE)) { while (io_size) { - u_int io_resid; - u_int io_requested; + u_int32_t io_resid; + u_int32_t io_requested; /* * if we keep finding the pages we need already in the cache, then - * don't bother to call cluster_rd_prefetch since it costs CPU cycles + * don't bother to call cluster_read_prefetch since it costs CPU cycles * to determine that we have all the pages we need... once we miss in * the cache and have issued an I/O, than we'll assume that we're likely * to continue to miss in the cache and it's to our advantage to try and prefetch @@ -2501,7 +3488,7 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (size_of_prefetch > max_rd_size) size_of_prefetch = max_rd_size; - size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, devblocksize); + size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); @@ -2514,16 +3501,19 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) * we can notice that our I/O pipe is running dry and * get the next I/O issued before it does go dry */ - if (last_ioread_offset && io_size > ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4)) - io_resid = ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4); + if (last_ioread_offset && io_size > (max_io_size / 4)) + io_resid = (max_io_size / 4); else io_resid = io_size; io_requested = io_resid; - retval = cluster_copy_ubc_data(vp, uio, &io_resid, 0); + retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); - io_size -= (io_requested - io_resid); + xsize = io_requested - io_resid; + + io_size -= xsize; + io_req_size -= xsize; if (retval || io_resid) /* @@ -2533,50 +3523,69 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) */ break; - if ((io_size == 0 || last_ioread_offset == last_request_offset) && rd_ahead_enabled) { + if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { /* * we're already finished the I/O for this read request * let's see if we should do a read-ahead */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); + cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); } } if (retval) break; if (io_size == 0) { - if (e_lblkno < vp->v_lastr) - vp->v_maxra = 0; - vp->v_lastr = e_lblkno; - + if (rap != NULL) { + if (extent.e_addr < rap->cl_lastr) + rap->cl_maxra = 0; + rap->cl_lastr = extent.e_addr; + } break; } - start_offset = (int)(uio->uio_offset & PAGE_MASK_64); - upl_f_offset = uio->uio_offset - (off_t)start_offset; - max_size = filesize - uio->uio_offset; + /* + * recompute max_size since cluster_copy_ubc_data_internal + * may have advanced uio->uio_offset + */ + max_size = filesize - uio->uio_offset; } + /* + * compute the size of the upl needed to encompass + * the requested read... limit each call to cluster_io + * to the maximum UPL size... cluster_io will clip if + * this exceeds the maximum io_size for the device, + * make sure to account for + * a starting offset that's not page aligned + */ + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + upl_f_offset = uio->uio_offset - (off_t)start_offset; + if (io_size > max_rd_size) io_size = max_rd_size; upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4) - upl_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 4; + if (flags & IO_NOCACHE) { + if (upl_size > max_io_size) + upl_size = max_io_size; + } else { + if (upl_size > max_io_size / 4) + upl_size = max_io_size / 4; + } pages_in_upl = upl_size / PAGE_SIZE; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + upl, (int)upl_f_offset, upl_size, start_offset, 0); kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_SET_LITE); + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_FILE_IO | UPL_SET_LITE); if (kret != KERN_SUCCESS) - panic("cluster_read: failed to get pagelist"); + panic("cluster_read_copy: failed to get pagelist"); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + upl, (int)upl_f_offset, upl_size, start_offset, 0); /* * scan from the beginning of the upl looking for the first @@ -2611,10 +3620,15 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) * we may have to clip the size of it to keep from reading past * the end of the last physical block associated with the file */ + if (iolock_inited == FALSE) { + lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); + + iolock_inited = TRUE; + } upl_offset = start_pg * PAGE_SIZE; io_size = (last_pg - start_pg) * PAGE_SIZE; - if ((upl_f_offset + upl_offset + io_size) > filesize) + if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) io_size = filesize - (upl_f_offset + upl_offset); /* @@ -2622,7 +3636,19 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) */ error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, - io_size, devblocksize, CL_READ | CL_ASYNC, (struct buf *)0, &iostate); + io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); + + if (rap) { + if (extent.e_addr < rap->cl_maxra) { + /* + * we've just issued a read for a block that should have been + * in the cache courtesy of the read-ahead engine... something + * has gone wrong with the pipeline, so reset the read-ahead + * logic which will cause us to restart from scratch + */ + rap->cl_maxra = 0; + } + } } if (error == 0) { /* @@ -2637,8 +3663,19 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (!upl_valid_page(pl, uio_last)) break; } + if (uio_last < pages_in_upl) { + /* + * there were some invalid pages beyond the valid pages + * that we didn't issue an I/O for, just release them + * unchanged now, so that any prefetch/readahed can + * include them + */ + ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, + (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); + } + /* - * compute size to transfer this round, if uio->uio_resid is + * compute size to transfer this round, if io_req_size is * still non-zero after this attempt, we'll loop around and * set up for another I/O. */ @@ -2647,25 +3684,32 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (val_size > max_size) val_size = max_size; - if (val_size > uio->uio_resid) - val_size = uio->uio_resid; + if (val_size > io_req_size) + val_size = io_req_size; - if (last_ioread_offset == 0) + if ((uio->uio_offset + val_size) > last_ioread_offset) last_ioread_offset = uio->uio_offset + val_size; if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { - /* - * if there's still I/O left to do for this request, and... - * we're not in hard throttle mode, then issue a - * pre-fetch I/O... the I/O latency will overlap - * with the copying of the data - */ - size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, devblocksize); - last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); + if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { + /* + * if there's still I/O left to do for this request, and... + * we're not in hard throttle mode, and... + * we're close to using up the previous prefetch, then issue a + * new pre-fetch I/O... the I/O latency will overlap + * with the copying of the data + */ + if (size_of_prefetch > max_rd_size) + size_of_prefetch = max_rd_size; + + size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); + + last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); - if (last_ioread_offset > last_request_offset) - last_ioread_offset = last_request_offset; + if (last_ioread_offset > last_request_offset) + last_ioread_offset = last_request_offset; + } } else if ((uio->uio_offset + val_size) == last_request_offset) { /* @@ -2675,48 +3719,59 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) * explicitly disabled it */ if (rd_ahead_enabled) - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); - - if (e_lblkno < vp->v_lastr) - vp->v_maxra = 0; - vp->v_lastr = e_lblkno; + cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); + + if (rap != NULL) { + if (extent.e_addr < rap->cl_lastr) + rap->cl_maxra = 0; + rap->cl_lastr = extent.e_addr; + } } - while (iostate.io_issued != iostate.io_completed) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_read_x", 0); - } + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); + if (iostate.io_error) error = iostate.io_error; - else - retval = cluster_copy_upl_data(uio, upl, start_offset, val_size); + else { + u_int32_t io_requested; + + io_requested = val_size; + + retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); + + io_req_size -= (val_size - io_requested); + } + } else { + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); } if (start_pg < last_pg) { /* * compute the range of pages that we actually issued an I/O for * and either commit them as valid if the I/O succeeded - * or abort them if the I/O failed + * or abort them if the I/O failed or we're not supposed to + * keep them in the cache */ io_size = (last_pg - start_pg) * PAGE_SIZE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, - (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); - if (error || (vp->v_flag & VNOCACHE_DATA)) + if (error || (flags & IO_NOCACHE)) ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, - UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - else - ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, - UPL_COMMIT_CLEAR_DIRTY | - UPL_COMMIT_FREE_ON_EMPTY | - UPL_COMMIT_INACTIVATE); + UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + else { + int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; + + if (take_reference) + commit_flags |= UPL_COMMIT_INACTIVATE; + else + commit_flags |= UPL_COMMIT_SPECULATE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, - (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); + ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); } if ((last_pg - start_pg) < pages_in_upl) { - int cur_pg; - int commit_flags; - /* * the set of pages that we issued an I/O for did not encompass * the entire upl... so just release these without modifying @@ -2725,244 +3780,404 @@ cluster_read_x(vp, uio, filesize, devblocksize, flags) if (error) ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, - (int)upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); + upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); - if (start_pg) { - /* - * we found some already valid pages at the beginning of - * the upl commit these back to the inactive list with - * reference cleared - */ - for (cur_pg = 0; cur_pg < start_pg; cur_pg++) { - commit_flags = UPL_COMMIT_FREE_ON_EMPTY - | UPL_COMMIT_INACTIVATE; - - if (upl_dirty_page(pl, cur_pg)) - commit_flags |= UPL_COMMIT_SET_DIRTY; - - if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA)) - ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, - UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - else - ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, - PAGE_SIZE, commit_flags); - } - } - if (last_pg < uio_last) { - /* - * we found some already valid pages immediately after the - * pages we issued I/O for, commit these back to the - * inactive list with reference cleared - */ - for (cur_pg = last_pg; cur_pg < uio_last; cur_pg++) { - commit_flags = UPL_COMMIT_FREE_ON_EMPTY - | UPL_COMMIT_INACTIVATE; - - if (upl_dirty_page(pl, cur_pg)) - commit_flags |= UPL_COMMIT_SET_DIRTY; - - if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA)) - ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, - UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - else - ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, - PAGE_SIZE, commit_flags); - } - } - if (uio_last < pages_in_upl) { - /* - * there were some invalid pages beyond the valid pages - * that we didn't issue an I/O for, just release them - * unchanged - */ - ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, - (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); - } + /* + * handle any valid pages at the beginning of + * the upl... release these appropriately + */ + cluster_read_upl_release(upl, 0, start_pg, take_reference); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, - (int)upl, -1, -1, 0, 0); + /* + * handle any valid pages immediately after the + * pages we issued I/O for... ... release these appropriately + */ + cluster_read_upl_release(upl, last_pg, uio_last, take_reference); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); } } if (retval == 0) retval = error; + + if (io_req_size) { + if (cluster_hard_throttle_on(vp, 1)) { + rd_ahead_enabled = 0; + prefetch_enabled = 0; + + max_rd_size = HARD_THROTTLE_MAXSIZE; + } else { + if (max_rd_size == HARD_THROTTLE_MAXSIZE) { + /* + * coming out of throttled state + */ + if (policy != IOPOL_THROTTLE) { + if (rap != NULL) + rd_ahead_enabled = 1; + prefetch_enabled = 1; + } + max_rd_size = max_prefetch; + last_ioread_offset = 0; + } + } + } + } + if (iolock_inited == TRUE) { + if (iostate.io_issued > iostate.io_completed) { + /* + * cluster_io returned an error after it + * had already issued some I/O. we need + * to wait for that I/O to complete before + * we can destroy the iostate mutex... + * 'retval' already contains the early error + * so no need to pick it up from iostate.io_error + */ + cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); + } + lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); + } + if (rap != NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, + (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); + + lck_mtx_unlock(&rap->cl_lockr); + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, + (int)uio->uio_offset, io_req_size, 0, retval, 0); } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); return (retval); } static int -cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int flags, int (*callback)(buf_t, void *), void *callback_arg) { upl_t upl; upl_page_info_t *pl; - vm_offset_t upl_offset; - off_t max_io_size; - int io_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; + off_t max_io_size; + vm_offset_t upl_offset, vector_upl_offset = 0; + upl_size_t upl_size, vector_upl_size = 0; + vm_size_t upl_needed_size; + unsigned int pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; - int i; + unsigned int i; int force_data_sync; int retval = 0; + int no_zero_fill = 0; + int io_flag = 0; + int misaligned = 0; struct clios iostate; - u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE; - u_int max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 2; - + user_addr_t iov_base; + u_int32_t io_req_size; + u_int32_t offset_in_file; + u_int32_t offset_in_iovbase; + u_int32_t io_size; + u_int32_t io_min; + u_int32_t xsize; + u_int32_t devblocksize; + u_int32_t mem_alignment_mask; + u_int32_t max_upl_size; + u_int32_t max_rd_size; + u_int32_t max_rd_ahead; + boolean_t strict_uncached_IO = FALSE; + + u_int32_t vector_upl_iosize = 0; + int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); + off_t v_upl_uio_offset = 0; + int vector_upl_index=0; + upl_t vector_upl = NULL; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0); + (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); - /* - * When we enter this routine, we know - * -- the offset into the file is on a pagesize boundary - * -- the resid is a page multiple - * -- the resid will not exceed iov_len - */ + max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); + + max_rd_size = max_upl_size; + max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); + + io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; + + if (flags & IO_PASSIVE) + io_flag |= CL_PASSIVE; iostate.io_completed = 0; iostate.io_issued = 0; iostate.io_error = 0; iostate.io_wanted = 0; - iov = uio->uio_iov; + lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); + + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, + (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); + + if (devblocksize == 1) { + /* + * the AFP client advertises a devblocksize of 1 + * however, its BLOCKMAP routine maps to physical + * blocks that are PAGE_SIZE in size... + * therefore we can't ask for I/Os that aren't page aligned + * or aren't multiples of PAGE_SIZE in size + * by setting devblocksize to PAGE_SIZE, we re-instate + * the old behavior we had before the mem_alignment_mask + * changes went in... + */ + devblocksize = PAGE_SIZE; + } + + strict_uncached_IO = ubc_strict_uncached_IO(vp); + +next_dread: + io_req_size = *read_length; + iov_base = uio_curriovbase(uio); + + max_io_size = filesize - uio->uio_offset; + + if ((off_t)io_req_size > max_io_size) + io_req_size = max_io_size; + + offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); + offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; - if (cluster_hard_throttle_on(vp)) { - max_rd_size = HARD_THROTTLE_MAXSIZE; - max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1; + if (offset_in_file || offset_in_iovbase) { + /* + * one of the 2 important offsets is misaligned + * so fire an I/O through the cache for this entire vector + */ + misaligned = 1; } - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) { + if (iov_base & (devblocksize - 1)) { + /* + * the offset in memory must be on a device block boundary + * so that we can guarantee that we can generate an + * I/O that ends on a page boundary in cluster_io + */ + misaligned = 1; + } + /* + * When we get to this point, we know... + * -- the offset into the file is on a devblocksize boundary + */ - max_io_size = filesize - uio->uio_offset; + while (io_req_size && retval == 0) { + u_int32_t io_start; - if (max_io_size < (off_t)((unsigned int)uio->uio_resid)) - io_size = max_io_size; - else - io_size = uio->uio_resid; + if (cluster_hard_throttle_on(vp, 1)) { + max_rd_size = HARD_THROTTLE_MAXSIZE; + max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1; + } else { + max_rd_size = max_upl_size; + max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); + } + io_start = io_size = io_req_size; /* * First look for pages already in the cache * and move them to user space. + * + * cluster_copy_ubc_data returns the resid + * in io_size */ - retval = cluster_copy_ubc_data(vp, uio, &io_size, 0); - - if (retval) { + if (strict_uncached_IO == FALSE) { + retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); + } + /* + * calculate the number of bytes actually copied + * starting size - residual + */ + xsize = io_start - io_size; + + io_req_size -= xsize; + + if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { /* - * we may have already spun some portion of this request - * off as async requests... we need to wait for the I/O - * to complete before returning + * We found something in the cache or we have an iov_base that's not + * page-aligned. + * + * Issue all I/O's that have been collected within this Vectored UPL. + */ + if(vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + + if(xsize) + useVectorUPL = 0; + + /* + * After this point, if we are using the Vector UPL path and the base is + * not page-aligned then the UPL with that base will be the first in the vector UPL. + */ + } + + /* + * check to see if we are finished with this request... + */ + if (io_req_size == 0 || misaligned) { + /* + * see if there's another uio vector to + * process that's of type IO_DIRECT + * + * break out of while loop to get there */ - goto wait_for_reads; + break; } /* - * If we are already finished with this read, then return + * assume the request ends on a device block boundary */ - if (io_size == 0) { - /* + io_min = devblocksize; + + /* + * we can handle I/O's in multiples of the device block size + * however, if io_size isn't a multiple of devblocksize we + * want to clip it back to the nearest page boundary since + * we are going to have to go through cluster_read_copy to + * deal with the 'overhang'... by clipping it to a PAGE_SIZE + * multiple, we avoid asking the drive for the same physical + * blocks twice.. once for the partial page at the end of the + * request and a 2nd time for the page we read into the cache + * (which overlaps the end of the direct read) in order to + * get at the overhang bytes + */ + if (io_size & (devblocksize - 1)) { + /* + * request does NOT end on a device block boundary + * so clip it back to a PAGE_SIZE boundary + */ + io_size &= ~PAGE_MASK; + io_min = PAGE_SIZE; + } + if (retval || io_size < io_min) { + /* + * either an error or we only have the tail left to + * complete via the copy path... * we may have already spun some portion of this request * off as async requests... we need to wait for the I/O * to complete before returning */ - goto wait_for_reads; + goto wait_for_dreads; } - max_io_size = io_size; - if (max_io_size > max_rd_size) - max_io_size = max_rd_size; + if (strict_uncached_IO == FALSE) { - io_size = 0; + if ((xsize = io_size) > max_rd_size) + xsize = max_rd_size; - ubc_range_op(vp, uio->uio_offset, uio->uio_offset + max_io_size, UPL_ROP_ABSENT, &io_size); + io_size = 0; - if (io_size == 0) - /* - * we may have already spun some portion of this request - * off as async requests... we need to wait for the I/O - * to complete before returning - */ - goto wait_for_reads; + ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); + + if (io_size == 0) { + /* + * a page must have just come into the cache + * since the first page in this range is no + * longer absent, go back and re-evaluate + */ + continue; + } + } + + iov_base = uio_curriovbase(uio); - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK; + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, - (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0); + (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); + + if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) + no_zero_fill = 1; + else + no_zero_fill = 0; for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { pages_in_pl = 0; upl_size = upl_needed_size; upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; - kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, force_data_sync); + if (no_zero_fill) + upl_flags |= UPL_NOZEROFILL; + if (force_data_sync) + upl_flags |= UPL_FORCE_DATA_SYNC; + + kret = vm_map_create_upl(current_map(), + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); if (kret != KERN_SUCCESS) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, (int)upl_offset, upl_size, io_size, kret, 0); /* - * cluster_nocopy_read: failed to get pagelist + * failed to get pagelist * * we may have already spun some portion of this request * off as async requests... we need to wait for the I/O * to complete before returning */ - goto wait_for_reads; + goto wait_for_dreads; } pages_in_pl = upl_size / PAGE_SIZE; pl = UPL_GET_INTERNAL_PAGE_LIST(upl); for (i = 0; i < pages_in_pl; i++) { - if (!upl_valid_page(pl, i)) + if (!upl_page_present(pl, i)) break; } if (i == pages_in_pl) break; - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort(upl, 0); } if (force_data_sync >= 3) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, (int)upl_offset, upl_size, io_size, kret, 0); - goto wait_for_reads; + goto wait_for_dreads; } /* * Consider the possibility that upl_size wasn't satisfied. */ - if (upl_size != upl_needed_size) - io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; - + if (upl_size < upl_needed_size) { + if (upl_size && upl_offset == 0) + io_size = upl_size; + else + io_size = 0; + } if (io_size == 0) { - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - goto wait_for_reads; + ubc_upl_abort(upl, 0); + goto wait_for_dreads; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, (int)upl_offset, upl_size, io_size, kret, 0); + if(useVectorUPL) { + vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); + if(end_off) + issueVectorUPL = 1; + /* + * After this point, if we are using a vector UPL, then + * either all the UPL elements end on a page boundary OR + * this UPL is the last element because it does not end + * on a page boundary. + */ + } + /* * request asynchronously so that we can overlap * the preparation of the next I/O * if there are already too many outstanding reads * wait until some have completed before issuing the next read */ - while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0); - } + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); + if (iostate.io_error) { /* * one of the earlier reads we issued ran into a hard error @@ -2971,152 +4186,236 @@ cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) * go wait for any other reads to complete before * returning the error to the caller */ - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort(upl, 0); - goto wait_for_reads; + goto wait_for_dreads; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, - (int)upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); + upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); + + + if(!useVectorUPL) { + if (no_zero_fill) + io_flag &= ~CL_PRESERVE; + else + io_flag |= CL_PRESERVE; + + retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); - retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, devblocksize, - CL_PRESERVE | CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO, - (struct buf *)0, &iostate); + } else { + + if(!vector_upl_index) { + vector_upl = vector_upl_create(upl_offset); + v_upl_uio_offset = uio->uio_offset; + vector_upl_offset = upl_offset; + } + vector_upl_set_subupl(vector_upl,upl, upl_size); + vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); + vector_upl_index++; + vector_upl_size += upl_size; + vector_upl_iosize += io_size; + + if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + } /* * update the uio structure */ - iov->iov_base += io_size; - iov->iov_len -= io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; + uio_update(uio, (user_size_t)io_size); + + io_req_size -= io_size; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, - (int)upl, (int)uio->uio_offset, (int)uio->uio_resid, retval, 0); + upl, (int)uio->uio_offset, io_req_size, retval, 0); + + } /* end while */ + + if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { + + retval = cluster_io_type(uio, read_type, read_length, 0); + + if (retval == 0 && *read_type == IO_DIRECT) { + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, + (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); + + goto next_dread; + } + } - } /* end while */ +wait_for_dreads: -wait_for_reads: + if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } /* * make sure all async reads that are part of this stream * have completed before we return */ - while (iostate.io_issued != iostate.io_completed) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0); - } + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); + if (iostate.io_error) - retval = iostate.io_error; + retval = iostate.io_error; + + lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); + + if (io_req_size && retval == 0) { + /* + * we couldn't handle the tail of this request in DIRECT mode + * so fire it through the copy path + */ + retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); + *read_type = IO_UNKNOWN; + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, 6, retval, 0); + (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); return (retval); } static int -cluster_phys_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int (*callback)(buf_t, void *), void *callback_arg, int flags) { upl_page_info_t *pl; - upl_t upl; + upl_t upl[MAX_VECTS]; vm_offset_t upl_offset; - addr64_t dst_paddr; + addr64_t dst_paddr = 0; + user_addr_t iov_base; off_t max_size; - int io_size; - int tail_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; + upl_size_t upl_size; + vm_size_t upl_needed_size; + mach_msg_type_number_t pages_in_pl; int upl_flags; kern_return_t kret; - struct iovec *iov; struct clios iostate; - int error; + int error= 0; + int cur_upl = 0; + int num_upl = 0; + int n; + u_int32_t xsize; + u_int32_t io_size; + u_int32_t devblocksize; + u_int32_t mem_alignment_mask; + u_int32_t tail_size = 0; + int bflag; + + if (flags & IO_PASSIVE) + bflag = CL_PASSIVE; + else + bflag = 0; /* * When we enter this routine, we know - * -- the resid will not exceed iov_len - * -- the target address is physically contiguous + * -- the read_length will not exceed the current iov_len + * -- the target address is physically contiguous for read_length */ + cluster_syncup(vp, filesize, callback, callback_arg); + + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; - iov = uio->uio_iov; + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); + +next_cread: + io_size = *read_length; max_size = filesize - uio->uio_offset; - if (max_size > (off_t)((unsigned int)iov->iov_len)) - io_size = iov->iov_len; - else + if (io_size > max_size) io_size = max_size; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK; + iov_base = uio_curriovbase(uio); + + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); upl_needed_size = upl_offset + io_size; - error = 0; pages_in_pl = 0; upl_size = upl_needed_size; upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, + (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); + kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, + (int)upl_offset, upl_size, io_size, kret, 0); if (kret != KERN_SUCCESS) { /* - * cluster_phys_read: failed to get pagelist + * failed to get pagelist */ - return(EINVAL); + error = EINVAL; + goto wait_for_creads; } + num_upl++; + if (upl_size < upl_needed_size) { /* * The upl_size wasn't satisfied. */ - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - - return(EINVAL); + error = EINVAL; + goto wait_for_creads; } - pl = ubc_upl_pageinfo(upl); + pl = ubc_upl_pageinfo(upl[cur_upl]); - dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + ((addr64_t)((u_int)iov->iov_base & PAGE_MASK)); + dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { - int head_size; + u_int32_t head_size; - head_size = devblocksize - (int)(uio->uio_offset & (devblocksize - 1)); + head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); if (head_size > io_size) head_size = io_size; - error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, devblocksize, CL_READ); + error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); - if (error) { - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + if (error) + goto wait_for_creads; - return(EINVAL); - } upl_offset += head_size; dst_paddr += head_size; io_size -= head_size; + + iov_base += head_size; } + if ((u_int32_t)iov_base & mem_alignment_mask) { + /* + * request doesn't set up on a memory boundary + * the underlying DMA engine can handle... + * return an error instead of going through + * the slow copy path since the intent of this + * path is direct I/O to device memory + */ + error = EINVAL; + goto wait_for_creads; + } + tail_size = io_size & (devblocksize - 1); - io_size -= tail_size; - iostate.io_completed = 0; - iostate.io_issued = 0; - iostate.io_error = 0; - iostate.io_wanted = 0; + io_size -= tail_size; while (io_size && error == 0) { - int xsize; - if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - xsize = MAX_UPL_TRANSFER * PAGE_SIZE; + if (io_size > MAX_IO_CONTIG_SIZE) + xsize = MAX_IO_CONTIG_SIZE; else xsize = io_size; /* @@ -3127,68 +4426,153 @@ cluster_phys_read(vp, uio, filesize, devblocksize, flags) * if there are already too many outstanding reads * wait until some have completed before issuing the next */ - while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_phys_read", 0); - } + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, xsize, 0, - CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC, - (struct buf *)0, &iostate); + if (iostate.io_error) { + /* + * one of the earlier reads we issued ran into a hard error + * don't issue any more reads... + * go wait for any other reads to complete before + * returning the error to the caller + */ + goto wait_for_creads; + } + error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, + CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, + (buf_t)NULL, &iostate, callback, callback_arg); /* * The cluster_io read was issued successfully, * update the uio structure */ if (error == 0) { - uio->uio_resid -= xsize; - iov->iov_len -= xsize; - iov->iov_base += xsize; - uio->uio_offset += xsize; - dst_paddr += xsize; - upl_offset += xsize; - io_size -= xsize; + uio_update(uio, (user_size_t)xsize); + + dst_paddr += xsize; + upl_offset += xsize; + io_size -= xsize; } } + if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { + + error = cluster_io_type(uio, read_type, read_length, 0); + + if (error == 0 && *read_type == IO_CONTIG) { + cur_upl++; + goto next_cread; + } + } else + *read_type = IO_UNKNOWN; + +wait_for_creads: /* * make sure all async reads that are part of this stream * have completed before we proceed */ - while (iostate.io_issued != iostate.io_completed) { - iostate.io_wanted = 1; - tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_phys_read", 0); - } - if (iostate.io_error) { + if (iostate.io_issued > iostate.io_completed) + cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); + + if (iostate.io_error) error = iostate.io_error; - } + + lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); + if (error == 0 && tail_size) - error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, devblocksize, CL_READ); + error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); - /* - * just release our hold on the physically contiguous - * region without changing any state - */ - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + for (n = 0; n < num_upl; n++) + /* + * just release our hold on each physically contiguous + * region without changing any state + */ + ubc_upl_abort(upl[n], 0); return (error); } +static int +cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) +{ + user_size_t iov_len; + user_addr_t iov_base = 0; + upl_t upl; + upl_size_t upl_size; + int upl_flags; + int retval = 0; + + /* + * skip over any emtpy vectors + */ + uio_update(uio, (user_size_t)0); + + iov_len = uio_curriovlen(uio); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); + + if (iov_len) { + iov_base = uio_curriovbase(uio); + /* + * make sure the size of the vector isn't too big... + * internally, we want to handle all of the I/O in + * chunk sizes that fit in a 32 bit int + */ + if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) + upl_size = MAX_IO_REQUEST_SIZE; + else + upl_size = (u_int32_t)iov_len; + + upl_flags = UPL_QUERY_OBJECT_TYPE; + + if ((vm_map_get_upl(current_map(), + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { + /* + * the user app must have passed in an invalid address + */ + retval = EFAULT; + } + if (upl_size == 0) + retval = EFAULT; + + *io_length = upl_size; + + if (upl_flags & UPL_PHYS_CONTIG) + *io_type = IO_CONTIG; + else if (iov_len >= min_length) + *io_type = IO_DIRECT; + else + *io_type = IO_COPY; + } else { + /* + * nothing left to do for this uio + */ + *io_length = 0; + *io_type = IO_UNKNOWN; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); + + return (retval); +} + + /* * generate advisory I/O's in the largest chunks possible * the completed pages will be released into the VM cache */ int -advisory_read(vp, filesize, f_offset, resid, devblocksize) - struct vnode *vp; - off_t filesize; - off_t f_offset; - int resid; - int devblocksize; +advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) +{ + return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); +} + +int +advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) { upl_page_info_t *pl; upl_t upl; vm_offset_t upl_offset; - int upl_size; + int upl_size; off_t upl_f_offset; int start_offset; int start_pg; @@ -3200,12 +4584,19 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) int retval = 0; int issued_io; int skip_range; + uint32_t max_io_size; - if (!UBCINFOEXISTS(vp)) + + if ( !UBCINFOEXISTS(vp)) + return(EINVAL); + + if (resid < 0) return(EINVAL); + max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, - (int)f_offset, resid, (int)filesize, devblocksize, 0); + (int)f_offset, resid, (int)filesize, 0, 0); while (resid && f_offset < filesize && retval == 0) { /* @@ -3226,8 +4617,8 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) io_size = max_size; upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; + if ((uint32_t)upl_size > max_io_size) + upl_size = max_io_size; skip_range = 0; /* @@ -3259,14 +4650,14 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) pages_in_upl = upl_size / PAGE_SIZE; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + upl, (int)upl_f_offset, upl_size, start_offset, 0); kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_RET_ONLY_ABSENT | UPL_SET_LITE); + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_RET_ONLY_ABSENT | UPL_SET_LITE); if (kret != KERN_SUCCESS) return(retval); issued_io = 0; @@ -3284,7 +4675,7 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + upl, (int)upl_f_offset, upl_size, start_offset, 0); for (last_pg = 0; last_pg < pages_in_upl; ) { @@ -3320,14 +4711,14 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) upl_offset = start_pg * PAGE_SIZE; io_size = (last_pg - start_pg) * PAGE_SIZE; - if ((upl_f_offset + upl_offset + io_size) > filesize) + if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) io_size = filesize - (upl_f_offset + upl_offset); /* * issue an asynchronous read to cluster_io */ - retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, devblocksize, - CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, + CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); issued_io = 1; } @@ -3351,90 +4742,209 @@ advisory_read(vp, filesize, f_offset, resid, devblocksize) int -cluster_push(vp) - struct vnode *vp; +cluster_push(vnode_t vp, int flags) { - int retval; + return cluster_push_ext(vp, flags, NULL, NULL); +} - if (!UBCINFOEXISTS(vp) || (vp->v_clen == 0 && !(vp->v_flag & VHASDIRTY))) - return(0); +int +cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + int retval; + int my_sparse_wait = 0; + struct cl_writebehind *wbp; + + if ( !UBCINFOEXISTS(vp)) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0); + return (0); + } + /* return if deferred write is set */ + if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { + return (0); + } + if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0); + return (0); + } + if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) { + lck_mtx_unlock(&wbp->cl_lockw); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0); + return(0); + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, - vp->v_flag & VHASDIRTY, vp->v_clen, 0, 0, 0); + wbp->cl_scmap, wbp->cl_number, flags, 0, 0); + + /* + * if we have an fsync in progress, we don't want to allow any additional + * sync/fsync/close(s) to occur until it finishes. + * note that its possible for writes to continue to occur to this file + * while we're waiting and also once the fsync starts to clean if we're + * in the sparse map case + */ + while (wbp->cl_sparse_wait) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0); + + msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0); + } + if (flags & IO_SYNC) { + my_sparse_wait = 1; + wbp->cl_sparse_wait = 1; + + /* + * this is an fsync (or equivalent)... we must wait for any existing async + * cleaning operations to complete before we evaulate the current state + * and finish cleaning... this insures that all writes issued before this + * fsync actually get cleaned to the disk before this fsync returns + */ + while (wbp->cl_sparse_pushes) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0); - if (vp->v_flag & VHASDIRTY) { - sparse_cluster_push(vp, ubc_getsize(vp), 1); + msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); - vp->v_clen = 0; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0); + } + } + if (wbp->cl_scmap) { + void *scmap; + + if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { + + scmap = wbp->cl_scmap; + wbp->cl_scmap = NULL; + + wbp->cl_sparse_pushes++; + + lck_mtx_unlock(&wbp->cl_lockw); + + sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg); + + lck_mtx_lock(&wbp->cl_lockw); + + wbp->cl_sparse_pushes--; + + if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) + wakeup((caddr_t)&wbp->cl_sparse_pushes); + } else { + sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg); + } retval = 1; - } else - retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1); + } else { + retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg); + } + lck_mtx_unlock(&wbp->cl_lockw); + + if (flags & IO_SYNC) + (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); + + if (my_sparse_wait) { + /* + * I'm the owner of the serialization token + * clear it and wakeup anyone that is waiting + * for me to finish + */ + lck_mtx_lock(&wbp->cl_lockw); + + wbp->cl_sparse_wait = 0; + wakeup((caddr_t)&wbp->cl_sparse_wait); + lck_mtx_unlock(&wbp->cl_lockw); + } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, - vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0); + wbp->cl_scmap, wbp->cl_number, retval, 0, 0); return (retval); } -int -cluster_release(vp) - struct vnode *vp; +__private_extern__ void +cluster_release(struct ubc_info *ubc) { - off_t offset; - u_int length; + struct cl_writebehind *wbp; + struct cl_readahead *rap; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0); + if ((wbp = ubc->cl_wbehind)) { + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); + + if (wbp->cl_scmap) + vfs_drt_control(&(wbp->cl_scmap), 0); + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); + } - if (vp->v_flag & VHASDIRTY) { - vfs_drt_control(&(vp->v_scmap), 0); + rap = ubc->cl_rahead; - vp->v_flag &= ~VHASDIRTY; + if (wbp != NULL) { + lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); + FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0); + if ((rap = ubc->cl_rahead)) { + lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); + FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); + } + ubc->cl_rahead = NULL; + ubc->cl_wbehind = NULL; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); } static int -cluster_try_push(vp, EOF, can_delay, push_all) - struct vnode *vp; - off_t EOF; - int can_delay; - int push_all; +cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) { int cl_index; int cl_index1; int min_index; int cl_len; - int cl_total; int cl_pushed = 0; - struct v_cluster l_clusters[MAX_CLUSTERS]; + struct cl_wextent l_clusters[MAX_CLUSTERS]; + u_int max_cluster_pgcount; + + max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; + /* + * the write behind context exists and has + * already been locked... + */ + if (wbp->cl_number == 0) + /* + * no clusters to push + * return number of empty slots + */ + return (MAX_CLUSTERS); + /* * make a local 'sorted' copy of the clusters - * and clear vp->v_clen so that new clusters can + * and clear wbp->cl_number so that new clusters can * be developed */ - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { - for (min_index = -1, cl_index1 = 0; cl_index1 < vp->v_clen; cl_index1++) { - if (vp->v_clusters[cl_index1].start_pg == vp->v_clusters[cl_index1].last_pg) + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { + if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) continue; if (min_index == -1) min_index = cl_index1; - else if (vp->v_clusters[cl_index1].start_pg < vp->v_clusters[min_index].start_pg) + else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) min_index = cl_index1; } if (min_index == -1) break; - l_clusters[cl_index].start_pg = vp->v_clusters[min_index].start_pg; - l_clusters[cl_index].last_pg = vp->v_clusters[min_index].last_pg; - vp->v_clusters[min_index].start_pg = vp->v_clusters[min_index].last_pg; + l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; + l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; + l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; + + wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; } - cl_len = cl_index; - vp->v_clen = 0; + wbp->cl_number = 0; - if (can_delay && cl_len == MAX_CLUSTERS) { + cl_len = cl_index; + + if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) { int i; /* @@ -3444,12 +4954,12 @@ cluster_try_push(vp, EOF, can_delay, push_all) * used for managing more random I/O patterns * * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... - * that's why we're in try_push with can_delay true... + * that's why we're in try_push with PUSH_DELAY... * * check to make sure that all the clusters except the last one are 'full'... and that each cluster * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above - * so we can just make a simple pass through up, to but not including the last one... - * note that last_pg is not inclusive, so it will be equal to the start_pg of the next cluster if they + * so we can just make a simple pass through, up to, but not including the last one... + * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they * are sequential * * we let the last one be partial as long as it was adjacent to the previous one... @@ -3457,27 +4967,42 @@ cluster_try_push(vp, EOF, can_delay, push_all) * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... */ for (i = 0; i < MAX_CLUSTERS - 1; i++) { - if ((l_clusters[i].last_pg - l_clusters[i].start_pg) != MAX_UPL_TRANSFER) + if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) goto dont_try; - if (l_clusters[i].last_pg != l_clusters[i+1].start_pg) + if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) goto dont_try; } } for (cl_index = 0; cl_index < cl_len; cl_index++) { + int flags; + struct cl_extent cl; + + flags = io_flags & (IO_PASSIVE|IO_CLOSE); + /* - * try to push each cluster in turn... cluster_push_x may not - * push the cluster if can_delay is TRUE and the cluster doesn't - * meet the critera for an immediate push + * try to push each cluster in turn... */ - if (cluster_push_x(vp, EOF, l_clusters[cl_index].start_pg, l_clusters[cl_index].last_pg, can_delay)) { - l_clusters[cl_index].start_pg = 0; - l_clusters[cl_index].last_pg = 0; + if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) + flags |= IO_NOCACHE; - cl_pushed++; + if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) + flags |= IO_PASSIVE; - if (push_all == 0) - break; - } + if (push_flag & PUSH_SYNC) + flags |= IO_SYNC; + + cl.b_addr = l_clusters[cl_index].b_addr; + cl.e_addr = l_clusters[cl_index].e_addr; + + cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg); + + l_clusters[cl_index].b_addr = 0; + l_clusters[cl_index].e_addr = 0; + + cl_pushed++; + + if ( !(push_flag & PUSH_ALL) ) + break; } dont_try: if (cl_len > cl_pushed) { @@ -3485,72 +5010,67 @@ dont_try: * we didn't push all of the clusters, so * lets try to merge them back in to the vnode */ - if ((MAX_CLUSTERS - vp->v_clen) < (cl_len - cl_pushed)) { + if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { /* * we picked up some new clusters while we were trying to - * push the old ones (I don't think this can happen because - * I'm holding the lock, but just in case)... the sum of the + * push the old ones... this can happen because I've dropped + * the vnode lock... the sum of the * leftovers plus the new cluster count exceeds our ability * to represent them, so switch to the sparse cluster mechanism + * + * collect the active public clusters... */ - - /* - * first collect the new clusters sitting in the vp - */ - sparse_cluster_switch(vp, EOF); + sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { - if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg) + if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) continue; - vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg; - vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg; + wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; + wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; + wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; cl_index1++; } /* * update the cluster count */ - vp->v_clen = cl_index1; + wbp->cl_number = cl_index1; /* * and collect the original clusters that were moved into the * local storage for sorting purposes */ - sparse_cluster_switch(vp, EOF); + sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); } else { /* * we've got room to merge the leftovers back in * just append them starting at the next 'hole' - * represented by vp->v_clen + * represented by wbp->cl_number */ - for (cl_index = 0, cl_index1 = vp->v_clen; cl_index < cl_len; cl_index++) { - if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg) + for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { + if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) continue; - vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg; - vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg; + wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; + wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; + wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; cl_index1++; } /* * update the cluster count */ - vp->v_clen = cl_index1; + wbp->cl_number = cl_index1; } } - return(MAX_CLUSTERS - vp->v_clen); + return (MAX_CLUSTERS - wbp->cl_number); } static int -cluster_push_x(vp, EOF, first, last, can_delay) - struct vnode *vp; - off_t EOF; - daddr_t first; - daddr_t last; - int can_delay; +cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg) { upl_page_info_t *pl; upl_t upl; @@ -3563,20 +5083,27 @@ cluster_push_x(vp, EOF, first, last, can_delay) int io_size; int io_flags; int upl_flags; + int bflag; int size; + int error = 0; + int retval; kern_return_t kret; + if (flags & IO_PASSIVE) + bflag = CL_PASSIVE; + else + bflag = 0; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, - vp->v_clen, first, last, EOF, 0); + (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); - if ((pages_in_upl = last - first) == 0) { + if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); - return (1); + return (0); } upl_size = pages_in_upl * PAGE_SIZE; - upl_f_offset = ((off_t)first) * PAGE_SIZE_64; + upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); if (upl_f_offset + upl_size >= EOF) { @@ -3588,7 +5115,7 @@ cluster_push_x(vp, EOF, first, last, can_delay) */ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); - return(1); + return(0); } size = EOF - upl_f_offset; @@ -3599,7 +5126,19 @@ cluster_push_x(vp, EOF, first, last, can_delay) KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); - if (vp->v_flag & VNOCACHE_DATA) + /* + * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior + * + * - only pages that are currently dirty are returned... these are the ones we need to clean + * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set + * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page + * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if + * someone dirties this page while the I/O is in progress, we don't lose track of the new state + * + * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) + */ + + if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; else upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; @@ -3613,7 +5152,7 @@ cluster_push_x(vp, EOF, first, last, can_delay) if (kret != KERN_SUCCESS) panic("cluster_push: failed to get pagelist"); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, (int)upl, upl_f_offset, 0, 0, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); /* * since we only asked for the dirty pages back @@ -3633,7 +5172,7 @@ cluster_push_x(vp, EOF, first, last, can_delay) ubc_upl_abort(upl, 0); KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); - return(1); + return(0); } for (last_pg = 0; last_pg < pages_in_upl; ) { @@ -3675,132 +5214,163 @@ cluster_push_x(vp, EOF, first, last, can_delay) io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); - if (vp->v_flag & VNOCACHE_DATA) - io_flags = CL_THROTTLE | CL_COMMIT | CL_ASYNC | CL_DUMP; - else - io_flags = CL_THROTTLE | CL_COMMIT | CL_ASYNC; + io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; + + if ( !(flags & IO_SYNC)) + io_flags |= CL_ASYNC; + + if (flags & IO_CLOSE) + io_flags |= CL_CLOSE; - cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, vp->v_ciosiz, io_flags, (struct buf *)0, (struct clios *)0); + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, + io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + + if (error == 0 && retval) + error = retval; size -= io_size; } KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); - return(1); + return(error); } -static int -sparse_cluster_switch(struct vnode *vp, off_t EOF) +/* + * sparse_cluster_switch is called with the write behind lock held + */ +static void +sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) { - int cl_index; + int cl_index; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0); - if ( !(vp->v_flag & VHASDIRTY)) { - vp->v_flag |= VHASDIRTY; - vp->v_scdirty = 0; - vp->v_scmap = 0; - } - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { - int flags; - int start_pg; - int last_pg; + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + int flags; + struct cl_extent cl; + + for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { - for (start_pg = vp->v_clusters[cl_index].start_pg; start_pg < vp->v_clusters[cl_index].last_pg; start_pg++) { + if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { + if (flags & UPL_POP_DIRTY) { + cl.e_addr = cl.b_addr + 1; - if (ubc_page_op(vp, (off_t)(((off_t)start_pg) * PAGE_SIZE_64), 0, 0, &flags) == KERN_SUCCESS) { - if (flags & UPL_POP_DIRTY) - sparse_cluster_add(vp, EOF, start_pg, start_pg + 1); + sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg); + } } } } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0); + wbp->cl_number = 0; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0); } -static int -sparse_cluster_push(struct vnode *vp, off_t EOF, int push_all) +/* + * sparse_cluster_push must be called with the write-behind lock held if the scmap is + * still associated with the write-behind context... however, if the scmap has been disassociated + * from the write-behind context (the cluster_push case), the wb lock is not held + */ +static void +sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) { - daddr_t first; - daddr_t last; - off_t offset; - u_int length; + struct cl_extent cl; + off_t offset; + u_int length; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, (int)vp, (int)vp->v_scmap, vp->v_scdirty, push_all, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0); - if (push_all) - vfs_drt_control(&(vp->v_scmap), 1); + if (push_flag & PUSH_ALL) + vfs_drt_control(scmap, 1); for (;;) { - if (vfs_drt_get_cluster(&(vp->v_scmap), &offset, &length) != KERN_SUCCESS) { - vp->v_flag &= ~VHASDIRTY; - vp->v_clen = 0; + if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) break; - } - first = (daddr_t)(offset / PAGE_SIZE_64); - last = (daddr_t)((offset + length) / PAGE_SIZE_64); - cluster_push_x(vp, EOF, first, last, 0); + cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); + cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); - vp->v_scdirty -= (last - first); + cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg); - if (push_all == 0) + if ( !(push_flag & PUSH_ALL) ) break; } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); } -static int -sparse_cluster_add(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last) +/* + * sparse_cluster_add is called with the write behind lock held + */ +static void +sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) { - u_int new_dirty; - u_int length; - off_t offset; + u_int new_dirty; + u_int length; + off_t offset; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (int)vp->v_scmap, vp->v_scdirty, first, last, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); - offset = (off_t)first * PAGE_SIZE_64; - length = (last - first) * PAGE_SIZE; + offset = (off_t)(cl->b_addr * PAGE_SIZE_64); + length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; - while (vfs_drt_mark_pages(&(vp->v_scmap), offset, length, &new_dirty) != KERN_SUCCESS) { + while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { /* * no room left in the map * only a partial update was done * push out some pages and try again */ - vp->v_scdirty += new_dirty; - - sparse_cluster_push(vp, EOF, 0); + sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg); offset += (new_dirty * PAGE_SIZE_64); length -= (new_dirty * PAGE_SIZE); } - vp->v_scdirty += new_dirty; - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); } static int -cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int xsize, int devblocksize, int flags) +cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) { - struct iovec *iov; upl_page_info_t *pl; upl_t upl; addr64_t ubc_paddr; kern_return_t kret; int error = 0; + int did_read = 0; + int abort_flags; + int upl_flags; + int bflag; + + if (flags & IO_PASSIVE) + bflag = CL_PASSIVE; + else + bflag = 0; - iov = uio->uio_iov; + upl_flags = UPL_SET_LITE; + if ( !(flags & CL_READ) ) { + /* + * "write" operation: let the UPL subsystem know + * that we intend to modify the buffer cache pages + * we're gathering. + */ + upl_flags |= UPL_WILL_MODIFY; + } else { + /* + * indicate that there is no need to pull the + * mapping for this page... we're only going + * to read from it, not modify it. + */ + upl_flags |= UPL_FILE_IO; + } kret = ubc_create_upl(vp, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, &upl, &pl, - UPL_SET_LITE); + upl_flags); if (kret != KERN_SUCCESS) return(EINVAL); @@ -3809,13 +5379,14 @@ cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int /* * issue a synchronous read to cluster_io */ - error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize, - CL_READ, (struct buf *)0, (struct clios *)0); + error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, + CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); if (error) { ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); return(error); } + did_read = 1; } ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); @@ -3836,16 +5407,18 @@ cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int /* * issue a synchronous write to cluster_io */ - error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize, - 0, (struct buf *)0, (struct clios *)0); - } - if (error == 0) { - uio->uio_offset += xsize; - iov->iov_base += xsize; - iov->iov_len -= xsize; - uio->uio_resid -= xsize; + error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, + bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); } - ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + if (error == 0) + uio_update(uio, (user_size_t)xsize); + + if (did_read) + abort_flags = UPL_ABORT_FREE_ON_EMPTY; + else + abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + + ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); return (error); } @@ -3853,35 +5426,44 @@ cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int int -cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int xsize) +cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) { int pg_offset; int pg_index; int csize; int segflg; int retval = 0; + int xsize; upl_page_info_t *pl; - boolean_t funnel_state = FALSE; + xsize = *io_resid; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, upl_offset, xsize, 0); - - if (xsize >= (16 * 1024)) - funnel_state = thread_funnel_set(kernel_flock, FALSE); + (int)uio->uio_offset, upl_offset, xsize, 0, 0); segflg = uio->uio_segflg; switch(segflg) { + case UIO_USERSPACE32: + case UIO_USERISPACE32: + uio->uio_segflg = UIO_PHYS_USERSPACE32; + break; + case UIO_USERSPACE: case UIO_USERISPACE: uio->uio_segflg = UIO_PHYS_USERSPACE; break; + case UIO_USERSPACE64: + case UIO_USERISPACE64: + uio->uio_segflg = UIO_PHYS_USERSPACE64; + break; + case UIO_SYSSPACE: uio->uio_segflg = UIO_PHYS_SYSSPACE; break; + } pl = ubc_upl_pageinfo(upl); @@ -3901,49 +5483,62 @@ cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int xsize) xsize -= csize; csize = min(PAGE_SIZE, xsize); } - uio->uio_segflg = segflg; + *io_resid = xsize; - if (funnel_state == TRUE) - thread_funnel_set(kernel_flock, TRUE); + uio->uio_segflg = segflg; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, retval, segflg, 0); + (int)uio->uio_offset, xsize, retval, segflg, 0); return (retval); } int -cluster_copy_ubc_data(struct vnode *vp, struct uio *uio, int *io_resid, int mark_dirty) +cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) +{ + + return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1)); +} + + +static int +cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) { int segflg; int io_size; int xsize; int start_offset; - off_t f_offset; int retval = 0; memory_object_control_t control; - int op_flags = UPL_POP_SET | UPL_POP_BUSY; - boolean_t funnel_state = FALSE; + io_size = *io_resid; KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, 0, *io_resid, 0); + (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); control = ubc_getobject(vp, UBC_FLAGS_NONE); + if (control == MEMORY_OBJECT_CONTROL_NULL) { KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, retval, 3, 0); + (int)uio->uio_offset, io_size, retval, 3, 0); return(0); } - if (mark_dirty) - op_flags |= UPL_POP_DIRTY; - segflg = uio->uio_segflg; switch(segflg) { + case UIO_USERSPACE32: + case UIO_USERISPACE32: + uio->uio_segflg = UIO_PHYS_USERSPACE32; + break; + + case UIO_USERSPACE64: + case UIO_USERISPACE64: + uio->uio_segflg = UIO_PHYS_USERSPACE64; + break; + case UIO_USERSPACE: case UIO_USERISPACE: uio->uio_segflg = UIO_PHYS_USERSPACE; @@ -3953,51 +5548,35 @@ cluster_copy_ubc_data(struct vnode *vp, struct uio *uio, int *io_resid, int mark uio->uio_segflg = UIO_PHYS_SYSSPACE; break; } - io_size = *io_resid; - start_offset = (int)(uio->uio_offset & PAGE_MASK_64); - f_offset = uio->uio_offset - start_offset; - xsize = min(PAGE_SIZE - start_offset, io_size); - - while (io_size && retval == 0) { - ppnum_t pgframe; - if (ubc_page_op_with_control(control, f_offset, op_flags, &pgframe, 0) != KERN_SUCCESS) - break; - - if (funnel_state == FALSE && io_size >= (16 * 1024)) - funnel_state = thread_funnel_set(kernel_flock, FALSE); - - retval = uiomove64((addr64_t)(((addr64_t)pgframe << 12) + start_offset), xsize, uio); - - ubc_page_op_with_control(control, f_offset, UPL_POP_CLR | UPL_POP_BUSY, 0, 0); + if ( (io_size = *io_resid) ) { + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + xsize = uio_resid(uio); - io_size -= xsize; - start_offset = 0; - f_offset = uio->uio_offset; - xsize = min(PAGE_SIZE, io_size); + retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, + start_offset, io_size, mark_dirty, take_reference); + xsize -= uio_resid(uio); + io_size -= xsize; } uio->uio_segflg = segflg; *io_resid = io_size; - if (funnel_state == TRUE) - thread_funnel_set(kernel_flock, TRUE); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, retval, 0x80000000 | segflg, 0); + (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); return(retval); } int -is_file_clean(struct vnode *vp, off_t filesize) +is_file_clean(vnode_t vp, off_t filesize) { off_t f_offset; int flags; int total_dirty = 0; for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { - if (ubc_page_op(vp, f_offset, 0, 0, &flags) == KERN_SUCCESS) { + if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { if (flags & UPL_POP_DIRTY) { total_dirty++; } @@ -4092,6 +5671,14 @@ is_file_clean(struct vnode *vp, off_t filesize) #define DRT_HASH_SMALL_MODULUS 23 #define DRT_HASH_LARGE_MODULUS 401 +/* + * Physical memory required before the large hash modulus is permitted. + * + * On small memory systems, the large hash modulus can lead to phsyical + * memory starvation, so we avoid using it there. + */ +#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ + #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ @@ -4172,7 +5759,6 @@ struct vfs_drt_clustermap { * lastclean, iskips */ -static void vfs_drt_sanity(struct vfs_drt_clustermap *cmap); static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, @@ -4185,7 +5771,7 @@ static kern_return_t vfs_drt_do_mark_pages( void **cmapp, u_int64_t offset, u_int length, - int *setcountp, + u_int *setcountp, int dirty); static void vfs_drt_trace( struct vfs_drt_clustermap *cmap, @@ -4210,7 +5796,8 @@ vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) struct vfs_drt_clustermap *cmap, *ocmap; kern_return_t kret; u_int64_t offset; - int nsize, i, active_buckets, index, copycount; + u_int32_t i; + int nsize, active_buckets, index, copycount; ocmap = NULL; if (cmapp != NULL) @@ -4234,8 +5821,12 @@ vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) * see whether we should grow to the large one. */ if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { - /* if the ring is nearly full */ - if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) { + /* + * If the ring is nearly full and we are allowed to + * use the large modulus, upgrade. + */ + if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && + (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { nsize = DRT_HASH_LARGE_MODULUS; } else { nsize = DRT_HASH_SMALL_MODULUS; @@ -4289,6 +5880,7 @@ vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) if (kret != KERN_SUCCESS) { /* XXX need to bail out gracefully here */ panic("vfs_drt: new cluster map mysteriously too small"); + index = 0; } /* copy */ DRT_HASH_COPY(ocmap, i, cmap, index); @@ -4325,8 +5917,6 @@ vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap) { - kern_return_t ret; - kmem_free(kernel_map, (vm_offset_t)cmap, (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); return(KERN_SUCCESS); @@ -4339,8 +5929,8 @@ vfs_drt_free_map(struct vfs_drt_clustermap *cmap) static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) { - kern_return_t kret; - int index, i, tries; + int index; + u_int32_t i; offset = DRT_ALIGN_ADDRESS(offset); index = DRT_HASH(cmap, offset); @@ -4384,7 +5974,8 @@ vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *inde { struct vfs_drt_clustermap *cmap; kern_return_t kret; - int index, i; + u_int32_t index; + u_int32_t i; cmap = *cmapp; @@ -4439,7 +6030,7 @@ vfs_drt_do_mark_pages( void **private, u_int64_t offset, u_int length, - int *setcountp, + u_int *setcountp, int dirty) { struct vfs_drt_clustermap *cmap, **cmapp; @@ -4517,7 +6108,7 @@ vfs_drt_do_mark_pages( } } DRT_HASH_SET_COUNT(cmap, index, ecount); -next: + offset += pgcount * PAGE_SIZE; length -= pgcount * PAGE_SIZE; } @@ -4554,17 +6145,19 @@ next: * Returns KERN_SUCCESS if all the pages were successfully marked. */ static kern_return_t -vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp) +vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) { /* XXX size unused, drop from interface */ return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); } +#if 0 static kern_return_t vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) { return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); } +#endif /* * Get a cluster of dirty pages. @@ -4592,7 +6185,8 @@ vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) struct vfs_drt_clustermap *cmap; u_int64_t offset; u_int length; - int index, i, j, fs, ls; + u_int32_t j; + int index, i, fs, ls; /* sanity */ if ((cmapp == NULL) || (*cmapp == NULL)) @@ -4691,12 +6285,22 @@ vfs_drt_control(void **cmapp, int op_type) * Emit a summary of the state of the clustermap into the trace buffer * along with some caller-provided data. */ +#if KDEBUG static void -vfs_drt_trace(struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) +vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) { KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); } +#else +static void +vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, + __unused int arg1, __unused int arg2, __unused int arg3, + __unused int arg4) +{ +} +#endif +#if 0 /* * Perform basic sanity check on the hash entry summary count * vs. the actual bits set in the entry. @@ -4719,3 +6323,4 @@ vfs_drt_sanity(struct vfs_drt_clustermap *cmap) panic("bits_on = %d, index = %d\n", bits_on, index); } } +#endif