X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/43866e378188c25dd1e2208016ab3cbeb086ae6c..c18c124eaa464aaaa5549e99e5a70fc9cbb50944:/bsd/hfs/hfs_readwrite.c diff --git a/bsd/hfs/hfs_readwrite.c b/bsd/hfs/hfs_readwrite.c index 8bde675da..f09bdc7d2 100644 --- a/bsd/hfs/hfs_readwrite.c +++ b/bsd/hfs/hfs_readwrite.c @@ -1,16 +1,19 @@ /* - * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2015 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ - * - * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in - * compliance with the License. Please obtain a copy of the License at - * http://www.opensource.apple.com/apsl/ and read it before using this - * file. + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER @@ -20,7 +23,7 @@ * Please see the License for the specific language governing rights and * limitations under the License. * - * @APPLE_LICENSE_HEADER_END@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* @(#)hfs_readwrite.c 1.0 * @@ -35,400 +38,554 @@ #include #include #include +#include #include #include +#include #include +#include #include +#include #include +#include +#include +#include +#include +#include +#include +#include +#include #include #include +#include + #include +#include #include #include "hfs.h" +#include "hfs_attrlist.h" #include "hfs_endian.h" +#include "hfs_fsctl.h" #include "hfs_quota.h" #include "hfscommon/headers/FileMgrInternal.h" #include "hfscommon/headers/BTreesInternal.h" #include "hfs_cnode.h" #include "hfs_dbg.h" -extern int overflow_extents(struct filefork *fp); - #define can_cluster(size) ((((size & (4096-1))) == 0) && (size <= (MAXPHYSIO/2))) enum { MAXHFSFILESIZE = 0x7FFFFFFF /* this needs to go in the mount structure */ }; -extern u_int32_t GetLogicalBlockSize(struct vnode *vp); +/* from bsd/hfs/hfs_vfsops.c */ +extern int hfs_vfs_vget (struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context); +static int hfs_clonefile(struct vnode *, int, int, int); +static int hfs_clonesysfile(struct vnode *, int, int, int, kauth_cred_t, struct proc *); +static int hfs_minorupdate(struct vnode *vp); +static int do_hfs_truncate(struct vnode *vp, off_t length, int flags, int skip, vfs_context_t context); -/***************************************************************************** -* -* Operations on vnodes -* -*****************************************************************************/ +/* from bsd/hfs/hfs_vnops.c */ +extern decmpfs_cnode* hfs_lazy_init_decmpfs_cnode (struct cnode *cp); -/* -#% read vp L L L -# - vop_read { - IN struct vnode *vp; - INOUT struct uio *uio; - IN int ioflag; - IN struct ucred *cred; - */ +int flush_cache_on_write = 0; +SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write, CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0, "always flush the drive cache on writes to uncached files"); + +/* + * Read data from a file. + */ int -hfs_read(ap) - struct vop_read_args /* { - struct vnode *a_vp; - struct uio *a_uio; - int a_ioflag; - struct ucred *a_cred; - } */ *ap; +hfs_vnop_read(struct vnop_read_args *ap) { - register struct uio *uio = ap->a_uio; - register struct vnode *vp = ap->a_vp; + /* + struct vnop_read_args { + struct vnodeop_desc *a_desc; + vnode_t a_vp; + struct uio *a_uio; + int a_ioflag; + vfs_context_t a_context; + }; + */ + + uio_t uio = ap->a_uio; + struct vnode *vp = ap->a_vp; struct cnode *cp; struct filefork *fp; - struct buf *bp; - daddr_t logBlockNo; - u_long fragSize, moveSize, startOffset, ioxfersize; - int devBlockSize = 0; - off_t bytesRemaining; + struct hfsmount *hfsmp; + off_t filesize; + off_t filebytes; + off_t start_resid = uio_resid(uio); + off_t offset = uio_offset(uio); int retval = 0; - off_t filesize; - off_t filebytes; + int took_truncate_lock = 0; + int io_throttle = 0; + int throttled_count = 0; /* Preflight checks */ - if (vp->v_type != VREG && vp->v_type != VLNK) - return (EISDIR); /* HFS can only read files */ - if (uio->uio_resid == 0) + if (!vnode_isreg(vp)) { + /* can only read regular files */ + if (vnode_isdir(vp)) + return (EISDIR); + else + return (EPERM); + } + if (start_resid == 0) return (0); /* Nothing left to do */ - if (uio->uio_offset < 0) + if (offset < 0) return (EINVAL); /* cant read from a negative offset */ + if ((ap->a_ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) == + (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) { + /* Don't allow unencrypted io request from user space */ + return EPERM; + } + + + +#if HFS_COMPRESSION + if (VNODE_IS_RSRC(vp)) { + if (hfs_hides_rsrc(ap->a_context, VTOC(vp), 1)) { /* 1 == don't take the cnode lock */ + return 0; + } + /* otherwise read the resource fork normally */ + } else { + int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ + if (compressed) { + retval = decmpfs_read_compressed(ap, &compressed, VTOCMP(vp)); + if (compressed) { + if (retval == 0) { + /* successful read, update the access time */ + VTOC(vp)->c_touch_acctime = TRUE; + + /* compressed files are not hot file candidates */ + if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { + VTOF(vp)->ff_bytesread = 0; + } + } + return retval; + } + /* otherwise the file was converted back to a regular file while we were reading it */ + retval = 0; + } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) { + int error; + + error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP); + if (error) { + return error; + } + + } + } +#endif /* HFS_COMPRESSION */ + cp = VTOC(vp); fp = VTOF(vp); + hfsmp = VTOHFS(vp); + +#if CONFIG_PROTECT + if ((retval = cp_handle_vnop (vp, CP_READ_ACCESS, ap->a_ioflag)) != 0) { + goto exit; + } +#endif + + /* + * If this read request originated from a syscall (as opposed to + * an in-kernel page fault or something), then set it up for + * throttle checks + */ + if (ap->a_ioflag & IO_SYSCALL_DISPATCH) { + io_throttle = IO_RETURN_ON_THROTTLE; + } + +read_again: + + /* Protect against a size change. */ + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); + took_truncate_lock = 1; + filesize = fp->ff_size; - filebytes = (off_t)fp->ff_blocks * (off_t)VTOVCB(vp)->blockSize; - if (uio->uio_offset > filesize) { - if ((!ISHFSPLUS(VTOVCB(vp))) && (uio->uio_offset > (off_t)MAXHFSFILESIZE)) - return (EFBIG); - else - return (0); + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; + + /* + * Check the file size. Note that per POSIX spec, we return 0 at + * file EOF, so attempting a read at an offset that is too big + * should just return 0 on HFS+. Since the return value was initialized + * to 0 above, we just jump to exit. HFS Standard has its own behavior. + */ + if (offset > filesize) { + if ((hfsmp->hfs_flags & HFS_STANDARD) && + (offset > (off_t)MAXHFSFILESIZE)) { + retval = EFBIG; + } + goto exit; } - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); + KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_START, + (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, (int)filebytes, 0); + retval = cluster_read(vp, uio, filesize, ap->a_ioflag |io_throttle); - if (UBCISVALID(vp)) { - retval = cluster_read(vp, uio, filesize, devBlockSize, 0); - } else { + cp->c_touch_acctime = TRUE; + + KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_END, + (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); + + /* + * Keep track blocks read + */ + if (hfsmp->hfc_stage == HFC_RECORDING && retval == 0) { + int took_cnode_lock = 0; + off_t bytesread; + + bytesread = start_resid - uio_resid(uio); - for (retval = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { - - if ((bytesRemaining = (filesize - uio->uio_offset)) <= 0) - break; - - logBlockNo = (daddr_t)(uio->uio_offset / PAGE_SIZE_64); - startOffset = (u_long) (uio->uio_offset & PAGE_MASK_64); - fragSize = PAGE_SIZE; - - if (((logBlockNo * PAGE_SIZE) + fragSize) < filesize) - ioxfersize = fragSize; - else { - ioxfersize = filesize - (logBlockNo * PAGE_SIZE); - ioxfersize = (ioxfersize + (devBlockSize - 1)) & ~(devBlockSize - 1); - } - moveSize = ioxfersize; - moveSize -= startOffset; - - if (bytesRemaining < moveSize) - moveSize = bytesRemaining; - - if (uio->uio_resid < moveSize) { - moveSize = uio->uio_resid; - }; - if (moveSize == 0) { - break; - }; - - if (( uio->uio_offset + fragSize) >= filesize) { - retval = bread(vp, logBlockNo, ioxfersize, NOCRED, &bp); - - } else if (logBlockNo - 1 == vp->v_lastr && !(vp->v_flag & VRAOFF)) { - daddr_t nextLogBlockNo = logBlockNo + 1; - int nextsize; - - if (((nextLogBlockNo * PAGE_SIZE) + - (daddr_t)fragSize) < filesize) - nextsize = fragSize; - else { - nextsize = filesize - (nextLogBlockNo * PAGE_SIZE); - nextsize = (nextsize + (devBlockSize - 1)) & ~(devBlockSize - 1); - } - retval = breadn(vp, logBlockNo, ioxfersize, &nextLogBlockNo, &nextsize, 1, NOCRED, &bp); - } else { - retval = bread(vp, logBlockNo, ioxfersize, NOCRED, &bp); - }; - - if (retval != E_NONE) { - if (bp) { - brelse(bp); - bp = NULL; - } - break; - }; - vp->v_lastr = logBlockNo; - - /* - * We should only get non-zero b_resid when an I/O retval - * has occurred, which should cause us to break above. - * However, if the short read did not cause an retval, - * then we want to ensure that we do not uiomove bad - * or uninitialized data. - */ - ioxfersize -= bp->b_resid; - - if (ioxfersize < moveSize) { /* XXX PPD This should take the offset into account, too! */ - if (ioxfersize == 0) - break; - moveSize = ioxfersize; - } - if ((startOffset + moveSize) > bp->b_bcount) - panic("hfs_read: bad startOffset or moveSize\n"); - - if ((retval = uiomove((caddr_t)bp->b_data + startOffset, (int)moveSize, uio))) - break; - - if (S_ISREG(cp->c_mode) && - (((startOffset + moveSize) == fragSize) || (uio->uio_offset == filesize))) { - bp->b_flags |= B_AGE; - }; - - brelse(bp); - /* Start of loop resets bp to NULL before reaching outside this block... */ - } - - if (bp != NULL) { - brelse(bp); - } - } - - cp->c_flag |= C_ACCESS; - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, (int)filebytes, 0); + /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ + if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + took_cnode_lock = 1; + } + /* + * If this file hasn't been seen since the start of + * the current sampling period then start over. + */ + if (cp->c_atime < hfsmp->hfc_timebase) { + struct timeval tv; + + fp->ff_bytesread = bytesread; + microtime(&tv); + cp->c_atime = tv.tv_sec; + } else { + fp->ff_bytesread += bytesread; + } + if (took_cnode_lock) + hfs_unlock(cp); + } +exit: + if (took_truncate_lock) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + } + if (retval == EAGAIN) { + throttle_lowpri_io(1); + throttled_count++; + retval = 0; + goto read_again; + } + if (throttled_count) { + throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread())); + } return (retval); } /* - * Write data to a file or directory. -#% write vp L L L -# - vop_write { - IN struct vnode *vp; - INOUT struct uio *uio; - IN int ioflag; - IN struct ucred *cred; - - */ + * Write data to a file. + */ int -hfs_write(ap) - struct vop_write_args /* { - struct vnode *a_vp; - struct uio *a_uio; - int a_ioflag; - struct ucred *a_cred; - } */ *ap; +hfs_vnop_write(struct vnop_write_args *ap) { + uio_t uio = ap->a_uio; struct vnode *vp = ap->a_vp; - struct uio *uio = ap->a_uio; struct cnode *cp; struct filefork *fp; - struct buf *bp; - struct proc *p; - struct timeval tv; - ExtendedVCB *vcb; - int devBlockSize = 0; - daddr_t logBlockNo; - long fragSize; - off_t origFileSize, currOffset, writelimit, bytesToAdd; - off_t actualBytesAdded; - u_long blkoffset, resid, xfersize, clearSize; - int eflags, ioflag; - int retval; - off_t filebytes; - u_long fileblocks; struct hfsmount *hfsmp; - int started_tr = 0, grabbed_lock = 0; + kauth_cred_t cred = NULL; + off_t origFileSize; + off_t writelimit; + off_t bytesToAdd = 0; + off_t actualBytesAdded; + off_t filebytes; + off_t offset; + ssize_t resid; + int eflags; + int ioflag = ap->a_ioflag; + int retval = 0; + int lockflags; + int cnode_locked = 0; + int partialwrite = 0; + int do_snapshot = 1; + time_t orig_ctime=VTOC(vp)->c_ctime; + int took_truncate_lock = 0; + int io_return_on_throttle = 0; + int throttled_count = 0; + struct rl_entry *invalid_range; + +#if HFS_COMPRESSION + if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ + int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); + switch(state) { + case FILE_IS_COMPRESSED: + return EACCES; + case FILE_IS_CONVERTING: + /* if FILE_IS_CONVERTING, we allow writes but do not + bother with snapshots or else we will deadlock. + */ + do_snapshot = 0; + break; + default: + printf("invalid state %d for compressed file\n", state); + /* fall through */ + } + } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) { + int error; + + error = check_for_dataless_file(vp, NAMESPACE_HANDLER_WRITE_OP); + if (error != 0) { + return error; + } + } + + if (do_snapshot) { + check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, uio); + } + +#endif + + if ((ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) == + (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) { + /* Don't allow unencrypted io request from user space */ + return EPERM; + } + - ioflag = ap->a_ioflag; + resid = uio_resid(uio); + offset = uio_offset(uio); - if (uio->uio_offset < 0) + if (offset < 0) return (EINVAL); - if (uio->uio_resid == 0) + if (resid == 0) return (E_NONE); - if (vp->v_type != VREG && vp->v_type != VLNK) - return (EISDIR); /* Can only write files */ + if (!vnode_isreg(vp)) + return (EPERM); /* Can only write regular files */ cp = VTOC(vp); fp = VTOF(vp); - vcb = VTOVCB(vp); - fileblocks = fp->ff_blocks; - filebytes = (off_t)fileblocks * (off_t)vcb->blockSize; - - if (ioflag & IO_APPEND) - uio->uio_offset = fp->ff_size; - if ((cp->c_flags & APPEND) && uio->uio_offset != fp->ff_size) - return (EPERM); + hfsmp = VTOHFS(vp); - // XXXdbg - don't allow modification of the journal or journal_info_block - if (VTOHFS(vp)->jnl && cp->c_datafork) { - struct HFSPlusExtentDescriptor *extd; +#if CONFIG_PROTECT + if ((retval = cp_handle_vnop (vp, CP_WRITE_ACCESS, 0)) != 0) { + goto exit; + } +#endif - extd = &cp->c_datafork->ff_data.cf_extents[0]; - if (extd->startBlock == VTOVCB(vp)->vcbJinfoBlock || extd->startBlock == VTOHFS(vp)->jnl_start) { - return EPERM; - } + eflags = kEFDeferMask; /* defer file block allocations */ +#if HFS_SPARSE_DEV + /* + * When the underlying device is sparse and space + * is low (< 8MB), stop doing delayed allocations + * and begin doing synchronous I/O. + */ + if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && + (hfs_freeblks(hfsmp, 0) < 2048)) { + eflags &= ~kEFDeferMask; + ioflag |= IO_SYNC; } +#endif /* HFS_SPARSE_DEV */ - writelimit = uio->uio_offset + uio->uio_resid; + if ((ioflag & (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) == + (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) { + io_return_on_throttle = IO_RETURN_ON_THROTTLE; + } +again: /* - * Maybe this should be above the vnode op call, but so long as - * file servers have no limits, I don't think it matters. + * Protect against a size change. + * + * Note: If took_truncate_lock is true, then we previously got the lock shared + * but needed to upgrade to exclusive. So try getting it exclusive from the + * start. */ - p = uio->uio_procp; - if (vp->v_type == VREG && p && - writelimit > p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { - psignal(p, SIGXFSZ); - return (EFBIG); + if (ioflag & IO_APPEND || took_truncate_lock) { + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + } + else { + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); } - p = current_proc(); + took_truncate_lock = 1; - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); + /* Update UIO */ + if (ioflag & IO_APPEND) { + uio_setoffset(uio, fp->ff_size); + offset = fp->ff_size; + } + if ((cp->c_bsdflags & APPEND) && offset != fp->ff_size) { + retval = EPERM; + goto exit; + } - resid = uio->uio_resid; origFileSize = fp->ff_size; - eflags = kEFDeferMask; /* defer file block allocations */ - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + writelimit = offset + resid; + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; /* - * NOTE: In the following loop there are two positions tracked: - * currOffset is the current I/O starting offset. currOffset - * is never >LEOF; the LEOF is nudged along with currOffset as - * data is zeroed or written. uio->uio_offset is the start of - * the current I/O operation. It may be arbitrarily beyond - * currOffset. + * We may need an exclusive truncate lock for several reasons, all + * of which are because we may be writing to a (portion of a) block + * for the first time, and we need to make sure no readers see the + * prior, uninitialized contents of the block. The cases are: + * + * 1. We have unallocated (delayed allocation) blocks. We may be + * allocating new blocks to the file and writing to them. + * (A more precise check would be whether the range we're writing + * to contains delayed allocation blocks.) + * 2. We need to extend the file. The bytes between the old EOF + * and the new EOF are not yet initialized. This is important + * even if we're not allocating new blocks to the file. If the + * old EOF and new EOF are in the same block, we still need to + * protect that range of bytes until they are written for the + * first time. + * 3. The write overlaps some invalid ranges (delayed zero fill; that + * part of the file has been allocated, but not yet written). + * + * If we had a shared lock with the above cases, we need to try to upgrade + * to an exclusive lock. If the upgrade fails, we will lose the shared + * lock, and will need to take the truncate lock again; the took_truncate_lock + * flag will still be set, causing us to try for an exclusive lock next time. * - * The following is true at all times: - * currOffset <= LEOF <= uio->uio_offset <= writelimit + * NOTE: Testing for #3 (delayed zero fill) needs to be done while the cnode + * lock is held, since it protects the range lists. + */ + if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) && + ((fp->ff_unallocblocks != 0) || + (writelimit > origFileSize))) { + if (lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock) == FALSE) { + /* + * Lock upgrade failed and we lost our shared lock, try again. + * Note: we do not set took_truncate_lock=0 here. Leaving it + * set to 1 will cause us to try to get the lock exclusive. + */ + goto again; + } + else { + /* Store the owner in the c_truncatelockowner field if we successfully upgrade */ + cp->c_truncatelockowner = current_thread(); + } + } + + if ( (retval = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + goto exit; + } + cnode_locked = 1; + + /* + * Now that we have the cnode lock, see if there are delayed zero fill ranges + * overlapping our write. If so, we need the truncate lock exclusive (see above). */ - currOffset = MIN(uio->uio_offset, fp->ff_size); + if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) && + (rl_scan(&fp->ff_invalidranges, offset, writelimit-1, &invalid_range) != RL_NOOVERLAP)) { + /* + * When testing, it appeared that calling lck_rw_lock_shared_to_exclusive() causes + * a deadlock, rather than simply returning failure. (That is, it apparently does + * not behave like a "try_lock"). Since this condition is rare, just drop the + * cnode lock and try again. Since took_truncate_lock is set, we will + * automatically take the truncate lock exclusive. + */ + hfs_unlock(cp); + cnode_locked = 0; + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + goto again; + } + + KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_START, + (int)offset, uio_resid(uio), (int)fp->ff_size, + (int)filebytes, 0); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)fp->ff_size, (int)filebytes, 0); - retval = 0; + /* Check if we do not need to extend the file */ + if (writelimit <= filebytes) { + goto sizeok; + } - /* Now test if we need to extend the file */ - /* Doing so will adjust the filebytes for us */ + cred = vfs_context_ucred(ap->a_context); + bytesToAdd = writelimit - filebytes; #if QUOTA - if(writelimit > filebytes) { - bytesToAdd = writelimit - filebytes; - - retval = hfs_chkdq(cp, (int64_t)(roundup(bytesToAdd, vcb->blockSize)), - ap->a_cred, 0); - if (retval) - return (retval); - } + retval = hfs_chkdq(cp, (int64_t)(roundup(bytesToAdd, hfsmp->blockSize)), + cred, 0); + if (retval) + goto exit; #endif /* QUOTA */ - hfsmp = VTOHFS(vp); - if (writelimit > filebytes) { - hfs_global_shared_lock_acquire(hfsmp); - grabbed_lock = 1; - } - if (hfsmp->jnl && (writelimit > filebytes)) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - hfs_global_shared_lock_release(hfsmp); - return EINVAL; - } - started_tr = 1; + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto exit; } while (writelimit > filebytes) { - bytesToAdd = writelimit - filebytes; - if (suser(ap->a_cred, NULL) != 0) + if (cred && suser(cred, NULL) != 0) eflags |= kEFReserveMask; - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, current_proc()); - if (retval != E_NONE) - break; - - retval = MacToVFSError(ExtendFileC (vcb, (FCB*)fp, bytesToAdd, + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + /* Files that are changing size are not hot file candidates. */ + if (hfsmp->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } + retval = MacToVFSError(ExtendFileC (hfsmp, (FCB*)fp, bytesToAdd, 0, eflags, &actualBytesAdded)); - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, p); + hfs_systemfile_unlock(hfsmp, lockflags); + if ((actualBytesAdded == 0) && (retval == E_NONE)) retval = ENOSPC; if (retval != E_NONE) break; - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_NONE, - (int)uio->uio_offset, uio->uio_resid, (int)fp->ff_size, (int)filebytes, 0); + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; + KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_NONE, + (int)offset, uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); } + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + (void) hfs_end_transaction(hfsmp); - // XXXdbg - if (started_tr) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - started_tr = 0; - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - grabbed_lock = 0; + /* + * If we didn't grow the file enough try a partial write. + * POSIX expects this behavior. + */ + if ((retval == ENOSPC) && (filebytes > offset)) { + retval = 0; + partialwrite = 1; + uio_setresid(uio, (uio_resid(uio) - bytesToAdd)); + resid -= bytesToAdd; + writelimit = filebytes; } - - if (UBCISVALID(vp) && retval == E_NONE) { +sizeok: + if (retval == E_NONE) { off_t filesize; off_t zero_off; off_t tail_off; off_t inval_start; off_t inval_end; - off_t io_start, io_end; + off_t io_start; int lflag; - struct rl_entry *invalid_range; if (writelimit > fp->ff_size) filesize = writelimit; else filesize = fp->ff_size; - lflag = (ioflag & IO_SYNC); + lflag = ioflag & ~(IO_TAILZEROFILL | IO_HEADZEROFILL | IO_NOZEROVALID | IO_NOZERODIRTY); - if (uio->uio_offset <= fp->ff_size) { - zero_off = uio->uio_offset & ~PAGE_MASK_64; + if (offset <= fp->ff_size) { + zero_off = offset & ~PAGE_MASK_64; /* Check to see whether the area between the zero_offset and the start of the transfer to see whether is invalid and should be zero-filled as part of the transfer: */ - if (rl_scan(&fp->ff_invalidranges, zero_off, uio->uio_offset - 1, &invalid_range) != RL_NOOVERLAP) - lflag |= IO_HEADZEROFILL; + if (offset > zero_off) { + if (rl_scan(&fp->ff_invalidranges, zero_off, offset - 1, &invalid_range) != RL_NOOVERLAP) + lflag |= IO_HEADZEROFILL; + } } else { off_t eof_page_base = fp->ff_size & ~PAGE_MASK_64; @@ -445,7 +602,7 @@ hfs_write(ap) will be handled by the cluser_write of the actual data. */ inval_start = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; - inval_end = uio->uio_offset & ~PAGE_MASK_64; + inval_end = offset & ~PAGE_MASK_64; zero_off = fp->ff_size; if ((fp->ff_size & PAGE_MASK_64) && @@ -469,6 +626,7 @@ hfs_write(ap) }; if (inval_start < inval_end) { + struct timeval tv; /* There's some range of data that's going to be marked invalid */ if (zero_off < inval_start) { @@ -476,20 +634,26 @@ hfs_write(ap) and the actual write will start on a page past inval_end. Now's the last chance to zero-fill the page containing the EOF: */ - retval = cluster_write(vp, (struct uio *) 0, + hfs_unlock(cp); + cnode_locked = 0; + retval = cluster_write(vp, (uio_t) 0, fp->ff_size, inval_start, - zero_off, (off_t)0, devBlockSize, + zero_off, (off_t)0, lflag | IO_HEADZEROFILL | IO_NOZERODIRTY); + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + cnode_locked = 1; if (retval) goto ioerr_exit; + offset = uio_offset(uio); }; /* Mark the remaining area of the newly allocated space as invalid: */ rl_add(inval_start, inval_end - 1 , &fp->ff_invalidranges); - cp->c_zftimeout = time.tv_sec + ZFTIMELIMIT; + microuptime(&tv); + cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; zero_off = fp->ff_size = inval_end; }; - if (uio->uio_offset > zero_off) lflag |= IO_HEADZEROFILL; + if (offset > zero_off) lflag |= IO_HEADZEROFILL; }; /* Check to see whether the area between the end of the write and the end of @@ -513,1526 +677,4723 @@ hfs_write(ap) * made readable (removed from the invalid ranges) before cluster_write * tries to write it: */ - io_start = (lflag & IO_HEADZEROFILL) ? zero_off : uio->uio_offset; - io_end = (lflag & IO_TAILZEROFILL) ? tail_off : writelimit; + io_start = (lflag & IO_HEADZEROFILL) ? zero_off : offset; if (io_start < fp->ff_size) { + off_t io_end; + + io_end = (lflag & IO_TAILZEROFILL) ? tail_off : writelimit; rl_remove(io_start, io_end - 1, &fp->ff_invalidranges); }; - retval = cluster_write(vp, uio, fp->ff_size, filesize, zero_off, - tail_off, devBlockSize, lflag | IO_NOZERODIRTY); - - if (uio->uio_offset > fp->ff_size) { - fp->ff_size = uio->uio_offset; - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ + hfs_unlock(cp); + cnode_locked = 0; + + /* + * We need to tell UBC the fork's new size BEFORE calling + * cluster_write, in case any of the new pages need to be + * paged out before cluster_write completes (which does happen + * in embedded systems due to extreme memory pressure). + * Similarly, we need to tell hfs_vnop_pageout what the new EOF + * will be, so that it can pass that on to cluster_pageout, and + * allow those pageouts. + * + * We don't update ff_size yet since we don't want pageins to + * be able to see uninitialized data between the old and new + * EOF, until cluster_write has completed and initialized that + * part of the file. + * + * The vnode pager relies on the file size last given to UBC via + * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or + * ff_size (whichever is larger). NOTE: ff_new_size is always + * zero, unless we are extending the file via write. + */ + if (filesize > fp->ff_size) { + fp->ff_new_size = filesize; + ubc_setsize(vp, filesize); } - if (resid > uio->uio_resid) - cp->c_flag |= C_CHANGE | C_UPDATE; - } else { - while (retval == E_NONE && uio->uio_resid > 0) { - logBlockNo = currOffset / PAGE_SIZE; - blkoffset = currOffset & PAGE_MASK; + retval = cluster_write(vp, uio, fp->ff_size, filesize, zero_off, + tail_off, lflag | IO_NOZERODIRTY | io_return_on_throttle); + if (retval) { + fp->ff_new_size = 0; /* no longer extending; use ff_size */ + + if (retval == EAGAIN) { + /* + * EAGAIN indicates that we still have I/O to do, but + * that we now need to be throttled + */ + if (resid != uio_resid(uio)) { + /* + * did manage to do some I/O before returning EAGAIN + */ + resid = uio_resid(uio); + offset = uio_offset(uio); - if ((filebytes - currOffset) < PAGE_SIZE_64) - fragSize = filebytes - ((off_t)logBlockNo * PAGE_SIZE_64); - else - fragSize = PAGE_SIZE; - xfersize = fragSize - blkoffset; - - /* Make any adjustments for boundary conditions */ - if (currOffset + (off_t)xfersize > writelimit) - xfersize = writelimit - currOffset; - - /* - * There is no need to read into bp if: - * We start on a block boundary and will overwrite the whole block - * - * OR - */ - if ((blkoffset == 0) && (xfersize >= fragSize)) { - bp = getblk(vp, logBlockNo, fragSize, 0, 0, BLK_READ); - retval = 0; - - if (bp->b_blkno == -1) { - brelse(bp); - retval = EIO; /* XXX */ - break; + cp->c_touch_chgtime = TRUE; + cp->c_touch_modtime = TRUE; + hfs_incr_gencount(cp); } - } else { - - if (currOffset == fp->ff_size && blkoffset == 0) { - bp = getblk(vp, logBlockNo, fragSize, 0, 0, BLK_READ); - retval = 0; - if (bp->b_blkno == -1) { - brelse(bp); - retval = EIO; /* XXX */ - break; - } - } else { + if (filesize > fp->ff_size) { /* - * This I/O transfer is not sufficiently aligned, - * so read the affected block into a buffer: + * we called ubc_setsize before the call to + * cluster_write... since we only partially + * completed the I/O, we need to + * re-adjust our idea of the filesize based + * on our interim EOF */ - retval = bread(vp, logBlockNo, fragSize, ap->a_cred, &bp); - if (retval != E_NONE) { - if (bp) - brelse(bp); - break; - } + ubc_setsize(vp, offset); + + fp->ff_size = offset; } + goto exit; } - - /* See if we are starting to write within file boundaries: - * If not, then we need to present a "hole" for the area - * between the current EOF and the start of the current - * I/O operation: - * - * Note that currOffset is only less than uio_offset if - * uio_offset > LEOF... - */ - if (uio->uio_offset > currOffset) { - clearSize = MIN(uio->uio_offset - currOffset, xfersize); - bzero(bp->b_data + blkoffset, clearSize); - currOffset += clearSize; - blkoffset += clearSize; - xfersize -= clearSize; - } - - if (xfersize > 0) { - retval = uiomove((caddr_t)bp->b_data + blkoffset, (int)xfersize, uio); - currOffset += xfersize; - } - - if (ioflag & IO_SYNC) { - (void)VOP_BWRITE(bp); - } else if ((xfersize + blkoffset) == fragSize) { - bp->b_flags |= B_AGE; - bawrite(bp); - } else { - bdwrite(bp); + if (filesize > origFileSize) { + ubc_setsize(vp, origFileSize); } - - /* Update the EOF if we just extended the file - * (the PEOF has already been moved out and the - * block mapping table has been updated): - */ - if (currOffset > fp->ff_size) { - fp->ff_size = currOffset; - if (UBCISVALID(vp)) - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ + goto ioerr_exit; + } + + if (filesize > origFileSize) { + fp->ff_size = filesize; + + /* Files that are changing size are not hot file candidates. */ + if (hfsmp->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; } - if (retval || (resid == 0)) - break; - cp->c_flag |= C_CHANGE | C_UPDATE; - } /* endwhile */ + } + fp->ff_new_size = 0; /* ff_size now has the correct size */ + } + if (partialwrite) { + uio_setresid(uio, (uio_resid(uio) + bytesToAdd)); + resid += bytesToAdd; + } + + // XXXdbg - see radar 4871353 for more info + { + if (flush_cache_on_write && ((ioflag & IO_NOCACHE) || vnode_isnocache(vp))) { + VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL); + } } ioerr_exit: - /* - * If we successfully wrote any data, and we are not the superuser - * we clear the setuid and setgid bits as a precaution against - * tampering. - */ - if (resid > uio->uio_resid && ap->a_cred && ap->a_cred->cr_uid != 0) - cp->c_mode &= ~(S_ISUID | S_ISGID); + if (resid > uio_resid(uio)) { + if (!cnode_locked) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + cnode_locked = 1; + } + + cp->c_touch_chgtime = TRUE; + cp->c_touch_modtime = TRUE; + hfs_incr_gencount(cp); + /* + * If we successfully wrote any data, and we are not the superuser + * we clear the setuid and setgid bits as a precaution against + * tampering. + */ + if (cp->c_mode & (S_ISUID | S_ISGID)) { + cred = vfs_context_ucred(ap->a_context); + if (cred && suser(cred, NULL)) { + cp->c_mode &= ~(S_ISUID | S_ISGID); + } + } + } if (retval) { if (ioflag & IO_UNIT) { - (void)VOP_TRUNCATE(vp, origFileSize, - ioflag & IO_SYNC, ap->a_cred, uio->uio_procp); - uio->uio_offset -= resid - uio->uio_resid; - uio->uio_resid = resid; - filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + (void)hfs_truncate(vp, origFileSize, ioflag & IO_SYNC, + 0, ap->a_context); + uio_setoffset(uio, (uio_offset(uio) - (resid - uio_resid(uio)))); + uio_setresid(uio, resid); + filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; } - } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { - tv = time; - retval = VOP_UPDATE(vp, &tv, &tv, 1); - } + } else if ((ioflag & IO_SYNC) && (resid > uio_resid(uio))) + retval = hfs_update(vp, TRUE); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, (int)fp->ff_size, (int)filebytes, 0); + /* Updating vcbWrCnt doesn't need to be atomic. */ + hfsmp->vcbWrCnt++; + + KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_END, + (int)uio_offset(uio), uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); +exit: + if (cnode_locked) + hfs_unlock(cp); + + if (took_truncate_lock) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + } + if (retval == EAGAIN) { + throttle_lowpri_io(1); + throttled_count++; + retval = 0; + goto again; + } + if (throttled_count) { + throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread())); + } return (retval); } +/* support for the "bulk-access" fcntl */ -/* - -#% ioctl vp U U U -# - vop_ioctl { - IN struct vnode *vp; - IN u_long command; - IN caddr_t data; - IN int fflag; - IN struct ucred *cred; - IN struct proc *p; - - */ +#define CACHE_LEVELS 16 +#define NUM_CACHE_ENTRIES (64*16) +#define PARENT_IDS_FLAG 0x100 +struct access_cache { + int numcached; + int cachehits; /* these two for statistics gathering */ + int lookups; + unsigned int *acache; + unsigned char *haveaccess; +}; -/* ARGSUSED */ -int -hfs_ioctl(ap) - struct vop_ioctl_args /* { - struct vnode *a_vp; - int a_command; - caddr_t a_data; - int a_fflag; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; -{ - switch (ap->a_command) { - case 1: { - register struct cnode *cp; - register struct vnode *vp; - register struct radvisory *ra; - struct filefork *fp; - int devBlockSize = 0; - int error; +struct access_t { + uid_t uid; /* IN: effective user id */ + short flags; /* IN: access requested (i.e. R_OK) */ + short num_groups; /* IN: number of groups user belongs to */ + int num_files; /* IN: number of files to process */ + int *file_ids; /* IN: array of file ids */ + gid_t *groups; /* IN: array of groups */ + short *access; /* OUT: access info for each file (0 for 'has access') */ +} __attribute__((unavailable)); // this structure is for reference purposes only + +struct user32_access_t { + uid_t uid; /* IN: effective user id */ + short flags; /* IN: access requested (i.e. R_OK) */ + short num_groups; /* IN: number of groups user belongs to */ + int num_files; /* IN: number of files to process */ + user32_addr_t file_ids; /* IN: array of file ids */ + user32_addr_t groups; /* IN: array of groups */ + user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ +}; - vp = ap->a_vp; +struct user64_access_t { + uid_t uid; /* IN: effective user id */ + short flags; /* IN: access requested (i.e. R_OK) */ + short num_groups; /* IN: number of groups user belongs to */ + int num_files; /* IN: number of files to process */ + user64_addr_t file_ids; /* IN: array of file ids */ + user64_addr_t groups; /* IN: array of groups */ + user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ +}; - if (vp->v_type != VREG) - return EINVAL; - - VOP_LEASE(vp, ap->a_p, ap->a_cred, LEASE_READ); - error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, ap->a_p); - if (error) - return (error); - ra = (struct radvisory *)(ap->a_data); - cp = VTOC(vp); - fp = VTOF(vp); +// these are the "extended" versions of the above structures +// note that it is crucial that they be different sized than +// the regular version +struct ext_access_t { + uint32_t flags; /* IN: access requested (i.e. R_OK) */ + uint32_t num_files; /* IN: number of files to process */ + uint32_t map_size; /* IN: size of the bit map */ + uint32_t *file_ids; /* IN: Array of file ids */ + char *bitmap; /* OUT: hash-bitmap of interesting directory ids */ + short *access; /* OUT: access info for each file (0 for 'has access') */ + uint32_t num_parents; /* future use */ + cnid_t *parents; /* future use */ +} __attribute__((unavailable)); // this structure is for reference purposes only + +struct user32_ext_access_t { + uint32_t flags; /* IN: access requested (i.e. R_OK) */ + uint32_t num_files; /* IN: number of files to process */ + uint32_t map_size; /* IN: size of the bit map */ + user32_addr_t file_ids; /* IN: Array of file ids */ + user32_addr_t bitmap; /* OUT: hash-bitmap of interesting directory ids */ + user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ + uint32_t num_parents; /* future use */ + user32_addr_t parents; /* future use */ +}; - if (ra->ra_offset >= fp->ff_size) { - VOP_UNLOCK(vp, 0, ap->a_p); - return (EFBIG); - } - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); +struct user64_ext_access_t { + uint32_t flags; /* IN: access requested (i.e. R_OK) */ + uint32_t num_files; /* IN: number of files to process */ + uint32_t map_size; /* IN: size of the bit map */ + user64_addr_t file_ids; /* IN: array of file ids */ + user64_addr_t bitmap; /* IN: array of groups */ + user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ + uint32_t num_parents;/* future use */ + user64_addr_t parents;/* future use */ +}; - error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count, devBlockSize); - VOP_UNLOCK(vp, 0, ap->a_p); - return (error); +/* + * Perform a binary search for the given parent_id. Return value is + * the index if there is a match. If no_match_indexp is non-NULL it + * will be assigned with the index to insert the item (even if it was + * not found). + */ +static int cache_binSearch(cnid_t *array, unsigned int hi, cnid_t parent_id, int *no_match_indexp) +{ + int index=-1; + unsigned int lo=0; + + do { + unsigned int mid = ((hi - lo)/2) + lo; + unsigned int this_id = array[mid]; + + if (parent_id == this_id) { + hi = mid; + break; } + + if (parent_id < this_id) { + hi = mid; + continue; + } + + if (parent_id > this_id) { + lo = mid + 1; + continue; + } + } while(lo < hi); - case 2: /* F_READBOOTBLOCKS */ - case 3: /* F_WRITEBOOTBLOCKS */ - { - struct vnode *vp = ap->a_vp; - struct vnode *devvp = NULL; - struct fbootstraptransfer *btd = (struct fbootstraptransfer *)ap->a_data; - int devBlockSize; - int error; - struct iovec aiov; - struct uio auio; - u_long blockNumber; - u_long blockOffset; - u_long xfersize; - struct buf *bp; - - if ((vp->v_flag & VROOT) == 0) return EINVAL; - if (btd->fbt_offset + btd->fbt_length > 1024) return EINVAL; - - devvp = VTOHFS(vp)->hfs_devvp; - aiov.iov_base = btd->fbt_buffer; - aiov.iov_len = btd->fbt_length; - - auio.uio_iov = &aiov; - auio.uio_iovcnt = 1; - auio.uio_offset = btd->fbt_offset; - auio.uio_resid = btd->fbt_length; - auio.uio_segflg = UIO_USERSPACE; - auio.uio_rw = (ap->a_command == 3) ? UIO_WRITE : UIO_READ; /* F_WRITEBOOTSTRAP / F_READBOOTSTRAP */ - auio.uio_procp = ap->a_p; - - VOP_DEVBLOCKSIZE(devvp, &devBlockSize); - - while (auio.uio_resid > 0) { - blockNumber = auio.uio_offset / devBlockSize; - error = bread(devvp, blockNumber, devBlockSize, ap->a_cred, &bp); - if (error) { - if (bp) brelse(bp); - return error; - }; - - blockOffset = auio.uio_offset % devBlockSize; - xfersize = devBlockSize - blockOffset; - error = uiomove((caddr_t)bp->b_data + blockOffset, (int)xfersize, &auio); - if (error) { - brelse(bp); - return error; - }; - if (auio.uio_rw == UIO_WRITE) { - error = VOP_BWRITE(bp); - if (error) return error; - } else { - brelse(bp); - }; - }; - }; - return 0; - - case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */ - { - *(time_t *)(ap->a_data) = to_bsd_time(VTOVCB(ap->a_vp)->localCreateDate); - return 0; - } - - default: - return (ENOTTY); + /* check if lo and hi converged on the match */ + if (parent_id == array[hi]) { + index = hi; + } + + if (no_match_indexp) { + *no_match_indexp = hi; } - /* Should never get here */ - return 0; + return index; } - -/* ARGSUSED */ -int -hfs_select(ap) - struct vop_select_args /* { - struct vnode *a_vp; - int a_which; - int a_fflags; - struct ucred *a_cred; - void *a_wql; - struct proc *a_p; - } */ *ap; -{ - /* - * We should really check to see if I/O is possible. - */ - return (1); + + +static int +lookup_bucket(struct access_cache *cache, int *indexp, cnid_t parent_id) +{ + unsigned int hi; + int matches = 0; + int index, no_match_index; + + if (cache->numcached == 0) { + *indexp = 0; + return 0; // table is empty, so insert at index=0 and report no match + } + + if (cache->numcached > NUM_CACHE_ENTRIES) { + cache->numcached = NUM_CACHE_ENTRIES; + } + + hi = cache->numcached - 1; + + index = cache_binSearch(cache->acache, hi, parent_id, &no_match_index); + + /* if no existing entry found, find index for new one */ + if (index == -1) { + index = no_match_index; + matches = 0; + } else { + matches = 1; + } + + *indexp = index; + return matches; } /* - * Bmap converts a the logical block number of a file to its physical block - * number on the disk. - */ - -/* - * vp - address of vnode file the file - * bn - which logical block to convert to a physical block number. - * vpp - returns the vnode for the block special file holding the filesystem - * containing the file of interest - * bnp - address of where to return the filesystem physical block number -#% bmap vp L L L -#% bmap vpp - U - -# - vop_bmap { - IN struct vnode *vp; - IN daddr_t bn; - OUT struct vnode **vpp; - IN daddr_t *bnp; - OUT int *runp; - */ -/* - * Converts a logical block number to a physical block, and optionally returns - * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize. - * The physical block number is based on the device block size, currently its 512. - * The block run is returned in logical blocks, and is the REMAINING amount of blocks + * Add a node to the access_cache at the given index (or do a lookup first + * to find the index if -1 is passed in). We currently do a replace rather + * than an insert if the cache is full. */ - -int -hfs_bmap(ap) - struct vop_bmap_args /* { - struct vnode *a_vp; - daddr_t a_bn; - struct vnode **a_vpp; - daddr_t *a_bnp; - int *a_runp; - } */ *ap; +static void +add_node(struct access_cache *cache, int index, cnid_t nodeID, int access) { - struct vnode *vp = ap->a_vp; - struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - struct hfsmount *hfsmp = VTOHFS(vp); - int retval = E_NONE; - daddr_t logBlockSize; - size_t bytesContAvail = 0; - off_t blockposition; - struct proc *p = NULL; - int lockExtBtree; - struct rl_entry *invalid_range; - enum rl_overlaptype overlaptype; + int lookup_index = -1; + + /* need to do a lookup first if -1 passed for index */ + if (index == -1) { + if (lookup_bucket(cache, &lookup_index, nodeID)) { + if (cache->haveaccess[lookup_index] != access && cache->haveaccess[lookup_index] == ESRCH) { + // only update an entry if the previous access was ESRCH (i.e. a scope checking error) + cache->haveaccess[lookup_index] = access; + } - /* - * Check for underlying vnode requests and ensure that logical - * to physical mapping is requested. - */ - if (ap->a_vpp != NULL) - *ap->a_vpp = cp->c_devvp; - if (ap->a_bnp == NULL) - return (0); + /* mission accomplished */ + return; + } else { + index = lookup_index; + } - /* Only clustered I/O should have delayed allocations. */ - DBG_ASSERT(fp->ff_unallocblocks == 0); + } - logBlockSize = GetLogicalBlockSize(vp); - blockposition = (off_t)ap->a_bn * (off_t)logBlockSize; + /* if the cache is full, do a replace rather than an insert */ + if (cache->numcached >= NUM_CACHE_ENTRIES) { + cache->numcached = NUM_CACHE_ENTRIES-1; - lockExtBtree = overflow_extents(fp); - if (lockExtBtree) { - p = current_proc(); - retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, - LK_EXCLUSIVE | LK_CANRECURSE, p); - if (retval) - return (retval); + if (index > cache->numcached) { + index = cache->numcached; } + } - retval = MacToVFSError( - MapFileBlockC (HFSTOVCB(hfsmp), - (FCB*)fp, - MAXPHYSIO, - blockposition, - ap->a_bnp, - &bytesContAvail)); + if (index < cache->numcached && index < NUM_CACHE_ENTRIES && nodeID > cache->acache[index]) { + index++; + } - if (lockExtBtree) (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); - - if (retval == E_NONE) { - /* Adjust the mapping information for invalid file ranges: */ - overlaptype = rl_scan(&fp->ff_invalidranges, - blockposition, - blockposition + MAXPHYSIO - 1, - &invalid_range); - if (overlaptype != RL_NOOVERLAP) { - switch(overlaptype) { - case RL_MATCHINGOVERLAP: - case RL_OVERLAPCONTAINSRANGE: - case RL_OVERLAPSTARTSBEFORE: - /* There's no valid block for this byte offset: */ - *ap->a_bnp = (daddr_t)-1; - bytesContAvail = invalid_range->rl_end + 1 - blockposition; - break; - - case RL_OVERLAPISCONTAINED: - case RL_OVERLAPENDSAFTER: - /* The range of interest hits an invalid block before the end: */ - if (invalid_range->rl_start == blockposition) { - /* There's actually no valid information to be had starting here: */ - *ap->a_bnp = (daddr_t)-1; - if ((fp->ff_size > (invalid_range->rl_end + 1)) && - (invalid_range->rl_end + 1 - blockposition < bytesContAvail)) { - bytesContAvail = invalid_range->rl_end + 1 - blockposition; - }; - } else { - bytesContAvail = invalid_range->rl_start - blockposition; - }; - break; - }; - if (bytesContAvail > MAXPHYSIO) bytesContAvail = MAXPHYSIO; - }; - - /* Figure out how many read ahead blocks there are */ - if (ap->a_runp != NULL) { - if (can_cluster(logBlockSize)) { - /* Make sure this result never goes negative: */ - *ap->a_runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1; - } else { - *ap->a_runp = 0; - }; - }; - }; - - return (retval); + if (index >= 0 && index < cache->numcached) { + /* only do bcopy if we're inserting */ + bcopy( cache->acache+index, cache->acache+(index+1), (cache->numcached - index)*sizeof(int) ); + bcopy( cache->haveaccess+index, cache->haveaccess+(index+1), (cache->numcached - index)*sizeof(unsigned char) ); + } + + cache->acache[index] = nodeID; + cache->haveaccess[index] = access; + cache->numcached++; } -/* blktooff converts logical block number to file offset */ -int -hfs_blktooff(ap) - struct vop_blktooff_args /* { - struct vnode *a_vp; - daddr_t a_lblkno; - off_t *a_offset; - } */ *ap; -{ - if (ap->a_vp == NULL) - return (EINVAL); - *ap->a_offset = (off_t)ap->a_lblkno * PAGE_SIZE_64; +struct cinfo { + uid_t uid; + gid_t gid; + mode_t mode; + cnid_t parentcnid; + u_int16_t recflags; +}; - return(0); +static int +snoop_callback(const cnode_t *cp, void *arg) +{ + struct cinfo *cip = arg; + + cip->uid = cp->c_uid; + cip->gid = cp->c_gid; + cip->mode = cp->c_mode; + cip->parentcnid = cp->c_parentcnid; + cip->recflags = cp->c_attr.ca_recflags; + + return (0); } -int -hfs_offtoblk(ap) - struct vop_offtoblk_args /* { - struct vnode *a_vp; - off_t a_offset; - daddr_t *a_lblkno; - } */ *ap; -{ - if (ap->a_vp == NULL) - return (EINVAL); - *ap->a_lblkno = ap->a_offset / PAGE_SIZE_64; +/* + * Lookup the cnid's attr info (uid, gid, and mode) as well as its parent id. If the item + * isn't incore, then go to the catalog. + */ +static int +do_attr_lookup(struct hfsmount *hfsmp, struct access_cache *cache, cnid_t cnid, + struct cnode *skip_cp, CatalogKey *keyp, struct cat_attr *cnattrp) +{ + int error = 0; + + /* if this id matches the one the fsctl was called with, skip the lookup */ + if (cnid == skip_cp->c_cnid) { + cnattrp->ca_uid = skip_cp->c_uid; + cnattrp->ca_gid = skip_cp->c_gid; + cnattrp->ca_mode = skip_cp->c_mode; + cnattrp->ca_recflags = skip_cp->c_attr.ca_recflags; + keyp->hfsPlus.parentID = skip_cp->c_parentcnid; + } else { + struct cinfo c_info; + + /* otherwise, check the cnode hash incase the file/dir is incore */ + error = hfs_chash_snoop(hfsmp, cnid, 0, snoop_callback, &c_info); + + if (error == EACCES) { + // File is deleted + return ENOENT; + } else if (!error) { + cnattrp->ca_uid = c_info.uid; + cnattrp->ca_gid = c_info.gid; + cnattrp->ca_mode = c_info.mode; + cnattrp->ca_recflags = c_info.recflags; + keyp->hfsPlus.parentID = c_info.parentcnid; + } else { + int lockflags; - return(0); + if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp))) + throttle_lowpri_io(1); + + lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); + + /* lookup this cnid in the catalog */ + error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp); + + hfs_systemfile_unlock(hfsmp, lockflags); + + cache->lookups++; + } + } + + return (error); } -int -hfs_cmap(ap) - struct vop_cmap_args /* { - struct vnode *a_vp; - off_t a_foffset; - size_t a_size; - daddr_t *a_bpn; - size_t *a_run; - void *a_poff; - } */ *ap; + +/* + * Compute whether we have access to the given directory (nodeID) and all its parents. Cache + * up to CACHE_LEVELS as we progress towards the root. + */ +static int +do_access_check(struct hfsmount *hfsmp, int *err, struct access_cache *cache, HFSCatalogNodeID nodeID, + struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred, + struct vfs_context *my_context, + char *bitmap, + uint32_t map_size, + cnid_t* parents, + uint32_t num_parents) { - struct hfsmount *hfsmp = VTOHFS(ap->a_vp); - struct filefork *fp = VTOF(ap->a_vp); - size_t bytesContAvail = 0; - int retval = E_NONE; - int lockExtBtree = 0; - struct proc *p = NULL; - struct rl_entry *invalid_range; - enum rl_overlaptype overlaptype; - int started_tr = 0, grabbed_lock = 0; + int myErr = 0; + int myResult; + HFSCatalogNodeID thisNodeID; + unsigned int myPerms; + struct cat_attr cnattr; + int cache_index = -1, scope_index = -1, scope_idx_start = -1; + CatalogKey catkey; + + int i = 0, ids_to_cache = 0; + int parent_ids[CACHE_LEVELS]; + + thisNodeID = nodeID; + while (thisNodeID >= kRootDirID) { + myResult = 0; /* default to "no access" */ + + /* check the cache before resorting to hitting the catalog */ + + /* ASSUMPTION: access info of cached entries is "final"... i.e. no need + * to look any further after hitting cached dir */ + + if (lookup_bucket(cache, &cache_index, thisNodeID)) { + cache->cachehits++; + myErr = cache->haveaccess[cache_index]; + if (scope_index != -1) { + if (myErr == ESRCH) { + myErr = 0; + } + } else { + scope_index = 0; // so we'll just use the cache result + scope_idx_start = ids_to_cache; + } + myResult = (myErr == 0) ? 1 : 0; + goto ExitThisRoutine; + } - /* - * Check for underlying vnode requests and ensure that logical - * to physical mapping is requested. - */ - if (ap->a_bpn == NULL) - return (0); - p = current_proc(); - retry: - if (fp->ff_unallocblocks) { - lockExtBtree = 1; + if (parents) { + int tmp; + tmp = cache_binSearch(parents, num_parents-1, thisNodeID, NULL); + if (scope_index == -1) + scope_index = tmp; + if (tmp != -1 && scope_idx_start == -1 && ids_to_cache < CACHE_LEVELS) { + scope_idx_start = ids_to_cache; + } + } - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - grabbed_lock = 1; + /* remember which parents we want to cache */ + if (ids_to_cache < CACHE_LEVELS) { + parent_ids[ids_to_cache] = thisNodeID; + ids_to_cache++; + } + // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"... + if (bitmap && map_size) { + bitmap[(thisNodeID/8)%(map_size)]|=(1<<(thisNodeID&7)); + } + - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - hfs_global_shared_lock_release(hfsmp); - return EINVAL; - } else { - started_tr = 1; - } - } + /* do the lookup (checks the cnode hash, then the catalog) */ + myErr = do_attr_lookup(hfsmp, cache, thisNodeID, skip_cp, &catkey, &cnattr); + if (myErr) { + goto ExitThisRoutine; /* no access */ + } - if (retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_EXCLUSIVE | LK_CANRECURSE, p)) { - if (started_tr) { - journal_end_transaction(hfsmp->jnl); - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - } - return (retval); - } - } else if (overflow_extents(fp)) { - lockExtBtree = 1; - if (retval = hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_EXCLUSIVE | LK_CANRECURSE, p)) { - return retval; - } + /* Root always gets access. */ + if (suser(myp_ucred, NULL) == 0) { + thisNodeID = catkey.hfsPlus.parentID; + myResult = 1; + continue; } - /* - * Check for any delayed allocations. - */ - if (fp->ff_unallocblocks) { - SInt64 reqbytes, actbytes; + // if the thing has acl's, do the full permission check + if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { + struct vnode *vp; - // - // Make sure we have a transaction. It's possible - // that we came in and fp->ff_unallocblocks was zero - // but during the time we blocked acquiring the extents - // btree, ff_unallocblocks became non-zero and so we - // will need to start a transaction. - // - if (hfsmp->jnl && started_tr == 0) { - if (lockExtBtree) { - (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); - lockExtBtree = 0; - } - - goto retry; - } + /* get the vnode for this cnid */ + myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0, 0); + if ( myErr ) { + myResult = 0; + goto ExitThisRoutine; + } - reqbytes = (SInt64)fp->ff_unallocblocks * - (SInt64)HFSTOVCB(hfsmp)->blockSize; - /* - * Release the blocks on loan and aquire some real ones. - * Note that we can race someone else for these blocks - * (and lose) so cmap needs to handle a failure here. - * Currently this race can't occur because all allocations - * are protected by an exclusive lock on the Extents - * Overflow file. - */ - HFSTOVCB(hfsmp)->loanedBlocks -= fp->ff_unallocblocks; - FTOC(fp)->c_blocks -= fp->ff_unallocblocks; - fp->ff_blocks -= fp->ff_unallocblocks; - fp->ff_unallocblocks = 0; + thisNodeID = VTOC(vp)->c_parentcnid; - while (retval == 0 && reqbytes > 0) { - retval = MacToVFSError(ExtendFileC(HFSTOVCB(hfsmp), - (FCB*)fp, reqbytes, 0, - kEFAllMask | kEFNoClumpMask, &actbytes)); - if (retval == 0 && actbytes == 0) - retval = ENOSPC; + hfs_unlock(VTOC(vp)); - if (retval) { - fp->ff_unallocblocks = - reqbytes / HFSTOVCB(hfsmp)->blockSize; - HFSTOVCB(hfsmp)->loanedBlocks += fp->ff_unallocblocks; - FTOC(fp)->c_blocks += fp->ff_unallocblocks; - fp->ff_blocks += fp->ff_unallocblocks; - } - reqbytes -= actbytes; - } + if (vnode_vtype(vp) == VDIR) { + myErr = vnode_authorize(vp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), my_context); + } else { + myErr = vnode_authorize(vp, NULL, KAUTH_VNODE_READ_DATA, my_context); + } - if (retval) { - (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); - if (started_tr) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - } - return (retval); + vnode_put(vp); + if (myErr) { + myResult = 0; + goto ExitThisRoutine; + } + } else { + unsigned int flags; + int mode = cnattr.ca_mode & S_IFMT; + myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, cnattr.ca_mode, hfsmp->hfs_mp,myp_ucred, theProcPtr); + + if (mode == S_IFDIR) { + flags = R_OK | X_OK; + } else { + flags = R_OK; + } + if ( (myPerms & flags) != flags) { + myResult = 0; + myErr = EACCES; + goto ExitThisRoutine; /* no access */ } - VTOC(ap->a_vp)->c_flag |= C_MODIFIED; + + /* up the hierarchy we go */ + thisNodeID = catkey.hfsPlus.parentID; } + } - retval = MacToVFSError( - MapFileBlockC (HFSTOVCB(hfsmp), - (FCB *)fp, - ap->a_size, - ap->a_foffset, - ap->a_bpn, - &bytesContAvail)); + /* if here, we have access to this node */ + myResult = 1; - if (lockExtBtree) - (void) hfs_metafilelocking(hfsmp, kHFSExtentsFileID, LK_RELEASE, p); + ExitThisRoutine: + if (parents && myErr == 0 && scope_index == -1) { + myErr = ESRCH; + } + + if (myErr) { + myResult = 0; + } + *err = myErr; - // XXXdbg - if (started_tr) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - started_tr = 0; - } - if (grabbed_lock) { - hfs_global_shared_lock_release(hfsmp); - grabbed_lock = 0; + /* cache the parent directory(ies) */ + for (i = 0; i < ids_to_cache; i++) { + if (myErr == 0 && parents && (scope_idx_start == -1 || i > scope_idx_start)) { + add_node(cache, -1, parent_ids[i], ESRCH); + } else { + add_node(cache, -1, parent_ids[i], myErr); } - - if (retval == E_NONE) { - /* Adjust the mapping information for invalid file ranges: */ - overlaptype = rl_scan(&fp->ff_invalidranges, - ap->a_foffset, - ap->a_foffset + (off_t)bytesContAvail - 1, - &invalid_range); - if (overlaptype != RL_NOOVERLAP) { - switch(overlaptype) { - case RL_MATCHINGOVERLAP: - case RL_OVERLAPCONTAINSRANGE: - case RL_OVERLAPSTARTSBEFORE: - /* There's no valid block for this byte offset: */ - *ap->a_bpn = (daddr_t)-1; - - /* There's no point limiting the amount to be returned if the - invalid range that was hit extends all the way to the EOF - (i.e. there's no valid bytes between the end of this range - and the file's EOF): - */ - if ((fp->ff_size > (invalid_range->rl_end + 1)) && - (invalid_range->rl_end + 1 - ap->a_foffset < bytesContAvail)) { - bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; - }; - break; - - case RL_OVERLAPISCONTAINED: - case RL_OVERLAPENDSAFTER: - /* The range of interest hits an invalid block before the end: */ - if (invalid_range->rl_start == ap->a_foffset) { - /* There's actually no valid information to be had starting here: */ - *ap->a_bpn = (daddr_t)-1; - if ((fp->ff_size > (invalid_range->rl_end + 1)) && - (invalid_range->rl_end + 1 - ap->a_foffset < bytesContAvail)) { - bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; - }; - } else { - bytesContAvail = invalid_range->rl_start - ap->a_foffset; - }; - break; - }; - if (bytesContAvail > ap->a_size) bytesContAvail = ap->a_size; - }; - - if (ap->a_run) *ap->a_run = bytesContAvail; - }; - - if (ap->a_poff) - *(int *)ap->a_poff = 0; + } - return (retval); + return (myResult); } - -/* - * Read or write a buffer that is not contiguous on disk. We loop over - * each device block, copying to or from caller's buffer. - * - * We could be a bit more efficient by transferring as much data as is - * contiguous. But since this routine should rarely be called, and that - * would be more complicated; best to keep it simple. - */ static int -hfs_strategy_fragmented(struct buf *bp) +do_bulk_access_check(struct hfsmount *hfsmp, struct vnode *vp, + struct vnop_ioctl_args *ap, int arg_size, vfs_context_t context) { - register struct vnode *vp = bp->b_vp; - register struct cnode *cp = VTOC(vp); - register struct vnode *devvp = cp->c_devvp; - caddr_t ioaddr; /* Address of fragment within bp */ - struct buf *frag = NULL; /* For reading or writing a single block */ - int retval = 0; - long remaining; /* Bytes (in bp) left to transfer */ - off_t offset; /* Logical offset of current fragment in vp */ - u_long block_size; /* Size of one device block (and one I/O) */ + boolean_t is64bit; + + /* + * NOTE: on entry, the vnode has an io_ref. In case this vnode + * happens to be in our list of file_ids, we'll note it + * avoid calling hfs_chashget_nowait() on that id as that + * will cause a "locking against myself" panic. + */ + Boolean check_leaf = true; + + struct user64_ext_access_t *user_access_structp; + struct user64_ext_access_t tmp_user_access; + struct access_cache cache; + + int error = 0, prev_parent_check_ok=1; + unsigned int i; + + short flags; + unsigned int num_files = 0; + int map_size = 0; + int num_parents = 0; + int *file_ids=NULL; + short *access=NULL; + char *bitmap=NULL; + cnid_t *parents=NULL; + int leaf_index; - /* Make sure we redo this mapping for the next I/O */ - bp->b_blkno = bp->b_lblkno; + cnid_t cnid; + cnid_t prevParent_cnid = 0; + unsigned int myPerms; + short myaccess = 0; + struct cat_attr cnattr; + CatalogKey catkey; + struct cnode *skip_cp = VTOC(vp); + kauth_cred_t cred = vfs_context_ucred(context); + proc_t p = vfs_context_proc(context); + + is64bit = proc_is64bit(p); + + /* initialize the local cache and buffers */ + cache.numcached = 0; + cache.cachehits = 0; + cache.lookups = 0; + cache.acache = NULL; + cache.haveaccess = NULL; + + /* struct copyin done during dispatch... need to copy file_id array separately */ + if (ap->a_data == NULL) { + error = EINVAL; + goto err_exit_bulk_access; + } + + if (is64bit) { + if (arg_size != sizeof(struct user64_ext_access_t)) { + error = EINVAL; + goto err_exit_bulk_access; + } + + user_access_structp = (struct user64_ext_access_t *)ap->a_data; + + } else if (arg_size == sizeof(struct user32_access_t)) { + struct user32_access_t *accessp = (struct user32_access_t *)ap->a_data; + + // convert an old style bulk-access struct to the new style + tmp_user_access.flags = accessp->flags; + tmp_user_access.num_files = accessp->num_files; + tmp_user_access.map_size = 0; + tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); + tmp_user_access.bitmap = USER_ADDR_NULL; + tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); + tmp_user_access.num_parents = 0; + user_access_structp = &tmp_user_access; + + } else if (arg_size == sizeof(struct user32_ext_access_t)) { + struct user32_ext_access_t *accessp = (struct user32_ext_access_t *)ap->a_data; + + // up-cast from a 32-bit version of the struct + tmp_user_access.flags = accessp->flags; + tmp_user_access.num_files = accessp->num_files; + tmp_user_access.map_size = accessp->map_size; + tmp_user_access.num_parents = accessp->num_parents; + + tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); + tmp_user_access.bitmap = CAST_USER_ADDR_T(accessp->bitmap); + tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); + tmp_user_access.parents = CAST_USER_ADDR_T(accessp->parents); + + user_access_structp = &tmp_user_access; + } else { + error = EINVAL; + goto err_exit_bulk_access; + } + + map_size = user_access_structp->map_size; + + num_files = user_access_structp->num_files; + + num_parents= user_access_structp->num_parents; + + if (num_files < 1) { + goto err_exit_bulk_access; + } + if (num_files > 1024) { + error = EINVAL; + goto err_exit_bulk_access; + } + + if (num_parents > 1024) { + error = EINVAL; + goto err_exit_bulk_access; + } + + file_ids = (int *) kalloc(sizeof(int) * num_files); + access = (short *) kalloc(sizeof(short) * num_files); + if (map_size) { + bitmap = (char *) kalloc(sizeof(char) * map_size); + } + + if (num_parents) { + parents = (cnid_t *) kalloc(sizeof(cnid_t) * num_parents); + } + + cache.acache = (unsigned int *) kalloc(sizeof(int) * NUM_CACHE_ENTRIES); + cache.haveaccess = (unsigned char *) kalloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES); + + if (file_ids == NULL || access == NULL || (map_size != 0 && bitmap == NULL) || cache.acache == NULL || cache.haveaccess == NULL) { + if (file_ids) { + kfree(file_ids, sizeof(int) * num_files); + } + if (bitmap) { + kfree(bitmap, sizeof(char) * map_size); + } + if (access) { + kfree(access, sizeof(short) * num_files); + } + if (cache.acache) { + kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); + } + if (cache.haveaccess) { + kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); + } + if (parents) { + kfree(parents, sizeof(cnid_t) * num_parents); + } + return ENOMEM; + } + + // make sure the bitmap is zero'ed out... + if (bitmap) { + bzero(bitmap, (sizeof(char) * map_size)); + } + + if ((error = copyin(user_access_structp->file_ids, (caddr_t)file_ids, + num_files * sizeof(int)))) { + goto err_exit_bulk_access; + } - /* Set up the logical position and number of bytes to read/write */ - offset = (off_t) bp->b_lblkno * (off_t) GetLogicalBlockSize(vp); - block_size = VTOHFS(vp)->hfs_phys_block_size; + if (num_parents) { + if ((error = copyin(user_access_structp->parents, (caddr_t)parents, + num_parents * sizeof(cnid_t)))) { + goto err_exit_bulk_access; + } + } - /* Get an empty buffer to do the deblocking */ - frag = geteblk(block_size); - if (ISSET(bp->b_flags, B_READ)) - SET(frag->b_flags, B_READ); - - for (ioaddr = bp->b_data, remaining = bp->b_bcount; remaining != 0; - ioaddr += block_size, offset += block_size, - remaining -= block_size) { - frag->b_resid = frag->b_bcount; - CLR(frag->b_flags, B_DONE); - - /* Map the current position to a physical block number */ - retval = VOP_CMAP(vp, offset, block_size, &frag->b_lblkno, - NULL, NULL); - if (retval != 0) - break; + flags = user_access_structp->flags; + if ((flags & (F_OK | R_OK | W_OK | X_OK)) == 0) { + flags = R_OK; + } + + /* check if we've been passed leaf node ids or parent ids */ + if (flags & PARENT_IDS_FLAG) { + check_leaf = false; + } + + /* Check access to each file_id passed in */ + for (i = 0; i < num_files; i++) { + leaf_index=-1; + cnid = (cnid_t) file_ids[i]; + + /* root always has access */ + if ((!parents) && (!suser(cred, NULL))) { + access[i] = 0; + continue; + } + + if (check_leaf) { + /* do the lookup (checks the cnode hash, then the catalog) */ + error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr); + if (error) { + access[i] = (short) error; + continue; + } + + if (parents) { + // Check if the leaf matches one of the parent scopes + leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL); + if (leaf_index >= 0 && parents[leaf_index] == cnid) + prev_parent_check_ok = 0; + else if (leaf_index >= 0) + prev_parent_check_ok = 1; + } - /* - * Did we try to read a hole? - * (Should never happen for metadata!) - */ - if ((long)frag->b_lblkno == -1) { - bzero(ioaddr, block_size); - continue; + // if the thing has acl's, do the full permission check + if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { + struct vnode *cvp; + int myErr = 0; + /* get the vnode for this cnid */ + myErr = hfs_vget(hfsmp, cnid, &cvp, 0, 0); + if ( myErr ) { + access[i] = myErr; + continue; } - /* If writing, copy before I/O */ - if (!ISSET(bp->b_flags, B_READ)) - bcopy(ioaddr, frag->b_data, block_size); - - /* Call the device to do the I/O and wait for it */ - frag->b_blkno = frag->b_lblkno; - frag->b_vp = devvp; /* Used to dispatch via VOP_STRATEGY */ - frag->b_dev = devvp->v_rdev; - retval = VOP_STRATEGY(frag); - frag->b_vp = NULL; - if (retval != 0) - break; - retval = biowait(frag); - if (retval != 0) - break; + hfs_unlock(VTOC(cvp)); + + if (vnode_vtype(cvp) == VDIR) { + myErr = vnode_authorize(cvp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), context); + } else { + myErr = vnode_authorize(cvp, NULL, KAUTH_VNODE_READ_DATA, context); + } + + vnode_put(cvp); + if (myErr) { + access[i] = myErr; + continue; + } + } else { + /* before calling CheckAccess(), check the target file for read access */ + myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, + cnattr.ca_mode, hfsmp->hfs_mp, cred, p); - /* If reading, copy after the I/O */ - if (ISSET(bp->b_flags, B_READ)) - bcopy(frag->b_data, ioaddr, block_size); + /* fail fast if no access */ + if ((myPerms & flags) == 0) { + access[i] = EACCES; + continue; + } + } + } else { + /* we were passed an array of parent ids */ + catkey.hfsPlus.parentID = cnid; + } + + /* if the last guy had the same parent and had access, we're done */ + if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) { + cache.cachehits++; + access[i] = 0; + continue; } - frag->b_vp = NULL; - // - // XXXdbg - in the case that this is a meta-data block, it won't affect - // the journal because this bp is for a physical disk block, - // not a logical block that is part of the catalog or extents - // files. - SET(frag->b_flags, B_INVAL); - brelse(frag); - - if ((bp->b_error = retval) != 0) - SET(bp->b_flags, B_ERROR); + myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID, + skip_cp, p, cred, context,bitmap, map_size, parents, num_parents); + + if (myaccess || (error == ESRCH && leaf_index != -1)) { + access[i] = 0; // have access.. no errors to report + } else { + access[i] = (error != 0 ? (short) error : EACCES); + } + + prevParent_cnid = catkey.hfsPlus.parentID; + } + + /* copyout the access array */ + if ((error = copyout((caddr_t)access, user_access_structp->access, + num_files * sizeof (short)))) { + goto err_exit_bulk_access; + } + if (map_size && bitmap) { + if ((error = copyout((caddr_t)bitmap, user_access_structp->bitmap, + map_size * sizeof (char)))) { + goto err_exit_bulk_access; + } + } - biodone(bp); /* This I/O is now complete */ - return retval; + + err_exit_bulk_access: + + if (file_ids) + kfree(file_ids, sizeof(int) * num_files); + if (parents) + kfree(parents, sizeof(cnid_t) * num_parents); + if (bitmap) + kfree(bitmap, sizeof(char) * map_size); + if (access) + kfree(access, sizeof(short) * num_files); + if (cache.acache) + kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); + if (cache.haveaccess) + kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); + + return (error); } +/* end "bulk-access" support */ + + /* - * Calculate the logical to physical mapping if not done already, - * then call the device strategy routine. -# -#vop_strategy { -# IN struct buf *bp; - */ + * Control filesystem operating characteristics. + */ int -hfs_strategy(ap) - struct vop_strategy_args /* { - struct buf *a_bp; - } */ *ap; +hfs_vnop_ioctl( struct vnop_ioctl_args /* { + vnode_t a_vp; + long a_command; + caddr_t a_data; + int a_fflag; + vfs_context_t a_context; + } */ *ap) { - register struct buf *bp = ap->a_bp; - register struct vnode *vp = bp->b_vp; - register struct cnode *cp = VTOC(vp); - int retval = 0; - off_t offset; - size_t bytes_contig; + struct vnode * vp = ap->a_vp; + struct hfsmount *hfsmp = VTOHFS(vp); + vfs_context_t context = ap->a_context; + kauth_cred_t cred = vfs_context_ucred(context); + proc_t p = vfs_context_proc(context); + struct vfsstatfs *vfsp; + boolean_t is64bit; + off_t jnl_start, jnl_size; + struct hfs_journal_info *jip; +#if HFS_COMPRESSION + int compressed = 0; + off_t uncompressed_size = -1; + int decmpfs_error = 0; - if ( !(bp->b_flags & B_VECTORLIST)) { - if (vp->v_type == VBLK || vp->v_type == VCHR) - panic("hfs_strategy: device vnode passed!"); - - if (bp->b_flags & B_PAGELIST) { - /* - * If we have a page list associated with this bp, - * then go through cluster_bp since it knows how to - * deal with a page request that might span non- - * contiguous physical blocks on the disk... - */ - retval = cluster_bp(bp); - vp = cp->c_devvp; - bp->b_dev = vp->v_rdev; - - return (retval); + if (ap->a_command == F_RDADVISE) { + /* we need to inspect the decmpfs state of the file as early as possible */ + compressed = hfs_file_is_compressed(VTOC(vp), 0); + if (compressed) { + if (VNODE_IS_RSRC(vp)) { + /* if this is the resource fork, treat it as if it were empty */ + uncompressed_size = 0; + } else { + decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0); + if (decmpfs_error != 0) { + /* failed to get the uncompressed size, we'll check for this later */ + uncompressed_size = -1; + } + } + } + } +#endif /* HFS_COMPRESSION */ + + is64bit = proc_is64bit(p); + +#if CONFIG_PROTECT + { + int error = 0; + if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) { + return error; + } + } +#endif /* CONFIG_PROTECT */ + + switch (ap->a_command) { + + case HFS_GETPATH: + { + struct vnode *file_vp; + cnid_t cnid; + int outlen; + char *bufptr; + int error; + int flags = 0; + + /* Caller must be owner of file system. */ + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); + } + /* Target vnode must be file system's root. */ + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + bufptr = (char *)ap->a_data; + cnid = strtoul(bufptr, NULL, 10); + if (ap->a_fflag & HFS_GETPATH_VOLUME_RELATIVE) { + flags |= BUILDPATH_VOLUME_RELATIVE; + } + + /* We need to call hfs_vfs_vget to leverage the code that will + * fix the origin list for us if needed, as opposed to calling + * hfs_vget, since we will need the parent for build_path call. + */ + + if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) { + return (error); + } + error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, flags, context); + vnode_put(file_vp); + + return (error); + } + + case HFS_TRANSFER_DOCUMENT_ID: + { + struct cnode *cp = NULL; + int error; + u_int32_t to_fd = *(u_int32_t *)ap->a_data; + struct fileproc *to_fp; + struct vnode *to_vp; + struct cnode *to_cp; + + cp = VTOC(vp); + + if ((error = fp_getfvp(p, to_fd, &to_fp, &to_vp)) != 0) { + //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error); + return error; + } + if ( (error = vnode_getwithref(to_vp)) ) { + file_drop(to_fd); + return error; + } + + if (VTOHFS(to_vp) != hfsmp) { + error = EXDEV; + goto transfer_cleanup; + } + + int need_unlock = 1; + to_cp = VTOC(to_vp); + error = hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK); + if (error != 0) { + //printf("could not lock the pair of cnodes (error %d)\n", error); + goto transfer_cleanup; + } + + if (!(cp->c_bsdflags & UF_TRACKED)) { + error = EINVAL; + } else if (to_cp->c_bsdflags & UF_TRACKED) { + // + // if the destination is already tracked, return an error + // as otherwise it's a silent deletion of the target's + // document-id + // + error = EEXIST; + } else if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode) || S_ISLNK(cp->c_attr.ca_mode)) { + // + // we can use the FndrExtendedFileInfo because the doc-id is the first + // thing in both it and the ExtendedDirInfo struct which is fixed in + // format and can not change layout + // + struct FndrExtendedFileInfo *f_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)cp->c_finderinfo + 16); + struct FndrExtendedFileInfo *to_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)to_cp->c_finderinfo + 16); + + if (f_extinfo->document_id == 0) { + uint32_t new_id; + + hfs_unlockpair(cp, to_cp); // have to unlock to be able to get a new-id + + if ((error = hfs_generate_document_id(hfsmp, &new_id)) == 0) { + // + // re-lock the pair now that we have the document-id + // + hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK); + f_extinfo->document_id = new_id; + } else { + goto transfer_cleanup; + } + } + + to_extinfo->document_id = f_extinfo->document_id; + f_extinfo->document_id = 0; + //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid); + + // make sure the destination is also UF_TRACKED + to_cp->c_bsdflags |= UF_TRACKED; + cp->c_bsdflags &= ~UF_TRACKED; + + // mark the cnodes dirty + cp->c_flag |= C_MODIFIED | C_FORCEUPDATE; + to_cp->c_flag |= C_MODIFIED | C_FORCEUPDATE; + + int lockflags; + if ((error = hfs_start_transaction(hfsmp)) == 0) { + + lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK); + + (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL); + (void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr, NULL, NULL); + + hfs_systemfile_unlock (hfsmp, lockflags); + (void) hfs_end_transaction(hfsmp); + } + +#if CONFIG_FSE + add_fsevent(FSE_DOCID_CHANGED, context, + FSE_ARG_DEV, hfsmp->hfs_raw_dev, + FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode # + FSE_ARG_INO, (ino64_t)to_cp->c_fileid, // dst inode # + FSE_ARG_INT32, to_extinfo->document_id, + FSE_ARG_DONE); + + hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents + need_unlock = 0; + + if (need_fsevent(FSE_STAT_CHANGED, vp)) { + add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, vp, FSE_ARG_DONE); + } + if (need_fsevent(FSE_STAT_CHANGED, to_vp)) { + add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, to_vp, FSE_ARG_DONE); + } +#else + hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents + need_unlock = 0; +#endif + } + + if (need_unlock) { + hfs_unlockpair(cp, to_cp); + } + + transfer_cleanup: + vnode_put(to_vp); + file_drop(to_fd); + + return error; + } + + + + case HFS_PREV_LINK: + case HFS_NEXT_LINK: + { + cnid_t linkfileid; + cnid_t nextlinkid; + cnid_t prevlinkid; + int error; + + /* Caller must be owner of file system. */ + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); + } + /* Target vnode must be file system's root. */ + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + linkfileid = *(cnid_t *)ap->a_data; + if (linkfileid < kHFSFirstUserCatalogNodeID) { + return (EINVAL); + } + if ((error = hfs_lookup_siblinglinks(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) { + return (error); + } + if (ap->a_command == HFS_NEXT_LINK) { + *(cnid_t *)ap->a_data = nextlinkid; + } else { + *(cnid_t *)ap->a_data = prevlinkid; + } + return (0); + } + + case HFS_RESIZE_PROGRESS: { + + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + /* file system must not be mounted read-only */ + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data); + } + + case HFS_RESIZE_VOLUME: { + u_int64_t newsize; + u_int64_t cursize; + + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + + /* filesystem must not be mounted read only */ + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + newsize = *(u_int64_t *)ap->a_data; + cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize; + + if (newsize > cursize) { + return hfs_extendfs(hfsmp, *(u_int64_t *)ap->a_data, context); + } else if (newsize < cursize) { + return hfs_truncatefs(hfsmp, *(u_int64_t *)ap->a_data, context); + } else { + return (0); + } + } + case HFS_CHANGE_NEXT_ALLOCATION: { + int error = 0; /* Assume success */ + u_int32_t location; + + if (vnode_vfsisrdonly(vp)) { + return (EROFS); + } + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (!vnode_isvroot(vp)) { + return (EINVAL); + } + hfs_lock_mount(hfsmp); + location = *(u_int32_t *)ap->a_data; + if ((location >= hfsmp->allocLimit) && + (location != HFS_NO_UPDATE_NEXT_ALLOCATION)) { + error = EINVAL; + goto fail_change_next_allocation; + } + /* Return previous value. */ + *(u_int32_t *)ap->a_data = hfsmp->nextAllocation; + if (location == HFS_NO_UPDATE_NEXT_ALLOCATION) { + /* On magic value for location, set nextAllocation to next block + * after metadata zone and set flag in mount structure to indicate + * that nextAllocation should not be updated again. + */ + if (hfsmp->hfs_metazone_end != 0) { + HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1); + } + hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION; + } else { + hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION; + HFS_UPDATE_NEXT_ALLOCATION(hfsmp, location); + } + MarkVCBDirty(hfsmp); +fail_change_next_allocation: + hfs_unlock_mount(hfsmp); + return (error); + } + +#if HFS_SPARSE_DEV + case HFS_SETBACKINGSTOREINFO: { + struct vnode * bsfs_rootvp; + struct vnode * di_vp; + struct hfs_backingstoreinfo *bsdata; + int error = 0; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { + return (EALREADY); + } + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + bsdata = (struct hfs_backingstoreinfo *)ap->a_data; + if (bsdata == NULL) { + return (EINVAL); + } + if ((error = file_vnode(bsdata->backingfd, &di_vp))) { + return (error); + } + if ((error = vnode_getwithref(di_vp))) { + file_drop(bsdata->backingfd); + return(error); + } + + if (vnode_mount(vp) == vnode_mount(di_vp)) { + (void)vnode_put(di_vp); + file_drop(bsdata->backingfd); + return (EINVAL); + } + + /* + * Obtain the backing fs root vnode and keep a reference + * on it. This reference will be dropped in hfs_unmount. + */ + error = VFS_ROOT(vnode_mount(di_vp), &bsfs_rootvp, NULL); /* XXX use context! */ + if (error) { + (void)vnode_put(di_vp); + file_drop(bsdata->backingfd); + return (error); + } + vnode_ref(bsfs_rootvp); + vnode_put(bsfs_rootvp); + + hfs_lock_mount(hfsmp); + hfsmp->hfs_backingfs_rootvp = bsfs_rootvp; + hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE; + hfsmp->hfs_sparsebandblks = bsdata->bandsize / hfsmp->blockSize * 4; + hfs_unlock_mount(hfsmp); + + /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */ + + /* + * If the sparse image is on a sparse image file (as opposed to a sparse + * bundle), then we may need to limit the free space to the maximum size + * of a file on that volume. So we query (using pathconf), and if we get + * a meaningful result, we cache the number of blocks for later use in + * hfs_freeblks(). + */ + hfsmp->hfs_backingfs_maxblocks = 0; + if (vnode_vtype(di_vp) == VREG) { + int terr; + int hostbits; + terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context); + if (terr == 0 && hostbits != 0 && hostbits < 64) { + u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits; + + hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize; + } + } + + /* The free extent cache is managed differently for sparse devices. + * There is a window between which the volume is mounted and the + * device is marked as sparse, so the free extent cache for this + * volume is currently initialized as normal volume (sorted by block + * count). Reset the cache so that it will be rebuilt again + * for sparse device (sorted by start block). + */ + ResetVCBFreeExtCache(hfsmp); + + (void)vnode_put(di_vp); + file_drop(bsdata->backingfd); + return (0); + } + case HFS_CLRBACKINGSTOREINFO: { + struct vnode * tmpvp; + + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && + hfsmp->hfs_backingfs_rootvp) { + + hfs_lock_mount(hfsmp); + hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE; + tmpvp = hfsmp->hfs_backingfs_rootvp; + hfsmp->hfs_backingfs_rootvp = NULLVP; + hfsmp->hfs_sparsebandblks = 0; + hfs_unlock_mount(hfsmp); + + vnode_rele(tmpvp); + } + return (0); + } +#endif /* HFS_SPARSE_DEV */ + + /* Change the next CNID stored in the VH */ + case HFS_CHANGE_NEXTCNID: { + int error = 0; /* Assume success */ + u_int32_t fileid; + int wraparound = 0; + int lockflags = 0; + + if (vnode_vfsisrdonly(vp)) { + return (EROFS); + } + vfsp = vfs_statfs(HFSTOVFS(hfsmp)); + if (suser(cred, NULL) && + kauth_cred_getuid(cred) != vfsp->f_owner) { + return (EACCES); /* must be owner of file system */ + } + + fileid = *(u_int32_t *)ap->a_data; + + /* Must have catalog lock excl. to advance the CNID pointer */ + lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG , HFS_EXCLUSIVE_LOCK); + + hfs_lock_mount(hfsmp); + + /* If it is less than the current next CNID, force the wraparound bit to be set */ + if (fileid < hfsmp->vcbNxtCNID) { + wraparound=1; + } + + /* Return previous value. */ + *(u_int32_t *)ap->a_data = hfsmp->vcbNxtCNID; + + hfsmp->vcbNxtCNID = fileid; + + if (wraparound) { + hfsmp->vcbAtrb |= kHFSCatalogNodeIDsReusedMask; + } + + MarkVCBDirty(hfsmp); + hfs_unlock_mount(hfsmp); + hfs_systemfile_unlock (hfsmp, lockflags); + + return (error); + } + + case F_FREEZE_FS: { + struct mount *mp; + + mp = vnode_mount(vp); + hfsmp = VFSTOHFS(mp); + + if (!(hfsmp->jnl)) + return (ENOTSUP); + + vfsp = vfs_statfs(mp); + + if (kauth_cred_getuid(cred) != vfsp->f_owner && + !kauth_cred_issuser(cred)) + return (EACCES); + + return hfs_freeze(hfsmp); + } + + case F_THAW_FS: { + vfsp = vfs_statfs(vnode_mount(vp)); + if (kauth_cred_getuid(cred) != vfsp->f_owner && + !kauth_cred_issuser(cred)) + return (EACCES); + + return hfs_thaw(hfsmp, current_proc()); + } + + case HFS_BULKACCESS_FSCTL: { + int size; + + if (hfsmp->hfs_flags & HFS_STANDARD) { + return EINVAL; + } + + if (is64bit) { + size = sizeof(struct user64_access_t); + } else { + size = sizeof(struct user32_access_t); + } + + return do_bulk_access_check(hfsmp, vp, ap, size, context); + } + + case HFS_EXT_BULKACCESS_FSCTL: { + int size; + + if (hfsmp->hfs_flags & HFS_STANDARD) { + return EINVAL; + } + + if (is64bit) { + size = sizeof(struct user64_ext_access_t); + } else { + size = sizeof(struct user32_ext_access_t); + } + + return do_bulk_access_check(hfsmp, vp, ap, size, context); + } + + case HFS_SET_XATTREXTENTS_STATE: { + int state; + + if (ap->a_data == NULL) { + return (EINVAL); + } + + state = *(int *)ap->a_data; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + /* Super-user can enable or disable extent-based extended + * attribute support on a volume + * Note: Starting Mac OS X 10.7, extent-based extended attributes + * are enabled by default, so any change will be transient only + * till the volume is remounted. + */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return (EPERM); + } + if (state == 0 || state == 1) + return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state); + else + return (EINVAL); + } + + case F_SETSTATICCONTENT: { + int error; + int enable_static = 0; + struct cnode *cp = NULL; + /* + * lock the cnode, decorate the cnode flag, and bail out. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data) { + /* + * Note that even though ap->a_data is of type caddr_t, + * the fcntl layer at the syscall handler will pass in NULL + * or 1 depending on what the argument supplied to the fcntl + * was. So it is in fact correct to check the ap->a_data + * argument for zero or non-zero value when deciding whether or not + * to enable the static bit in the cnode. + */ + enable_static = 1; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + cp = VTOC(vp); + + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + if (enable_static) { + cp->c_flag |= C_SSD_STATIC; + } + else { + cp->c_flag &= ~C_SSD_STATIC; + } + hfs_unlock (cp); + } + return error; + } + + case F_SET_GREEDY_MODE: { + int error; + int enable_greedy_mode = 0; + struct cnode *cp = NULL; + /* + * lock the cnode, decorate the cnode flag, and bail out. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data) { + /* + * Note that even though ap->a_data is of type caddr_t, + * the fcntl layer at the syscall handler will pass in NULL + * or 1 depending on what the argument supplied to the fcntl + * was. So it is in fact correct to check the ap->a_data + * argument for zero or non-zero value when deciding whether or not + * to enable the greedy mode bit in the cnode. + */ + enable_greedy_mode = 1; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + cp = VTOC(vp); + + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + if (enable_greedy_mode) { + cp->c_flag |= C_SSD_GREEDY_MODE; + } + else { + cp->c_flag &= ~C_SSD_GREEDY_MODE; + } + hfs_unlock (cp); + } + return error; + } + + case F_SETIOTYPE: { + int error; + uint32_t iotypeflag = 0; + + struct cnode *cp = NULL; + /* + * lock the cnode, decorate the cnode flag, and bail out. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data == NULL) { + return EINVAL; + } + + /* + * Note that even though ap->a_data is of type caddr_t, we + * can only use 32 bits of flag values. + */ + iotypeflag = (uint32_t) ap->a_data; + switch (iotypeflag) { + case F_IOTYPE_ISOCHRONOUS: + break; + default: + return EINVAL; + } + + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + cp = VTOC(vp); + + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + switch (iotypeflag) { + case F_IOTYPE_ISOCHRONOUS: + cp->c_flag |= C_IO_ISOCHRONOUS; + break; + default: + break; + } + hfs_unlock (cp); + } + return error; + } + + case F_MAKECOMPRESSED: { + int error = 0; + uint32_t gen_counter; + struct cnode *cp = NULL; + int reset_decmp = 0; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return EROFS; + } + + /* + * acquire & lock the cnode. + * VFS should have already authenticated the caller for us. + */ + + if (ap->a_data) { + /* + * Cast the pointer into a uint32_t so we can extract the + * supplied generation counter. + */ + gen_counter = *((uint32_t*)ap->a_data); + } + else { + return EINVAL; + } + +#if HFS_COMPRESSION + cp = VTOC(vp); + /* Grab truncate lock first; we may truncate the file */ + hfs_lock_truncate (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + + error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return error; + } + + /* Are there any other usecounts/FDs? */ + if (vnode_isinuse(vp, 1)) { + hfs_unlock(cp); + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return EBUSY; + } + + /* now we have the cnode locked down; Validate arguments */ + if (cp->c_attr.ca_flags & (UF_IMMUTABLE | UF_COMPRESSED)) { + /* EINVAL if you are trying to manipulate an IMMUTABLE file */ + hfs_unlock(cp); + hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT); + return EINVAL; + } + + if ((hfs_get_gencount (cp)) == gen_counter) { + /* + * OK, the gen_counter matched. Go for it: + * Toggle state bits, truncate file, and suppress mtime update + */ + reset_decmp = 1; + cp->c_bsdflags |= UF_COMPRESSED; + + error = hfs_truncate(vp, 0, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, + ap->a_context); + } + else { + error = ESTALE; + } + + /* Unlock cnode before executing decmpfs ; they may need to get an EA */ + hfs_unlock(cp); + + /* + * Reset the decmp state while still holding the truncate lock. We need to + * serialize here against a listxattr on this node which may occur at any + * time. + * + * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed, + * that will still potentially require getting the com.apple.decmpfs EA. If the + * EA is required, then we can't hold the cnode lock, because the getxattr call is + * generic(through VFS), and can't pass along any info telling it that we're already + * holding it (the lock). If we don't serialize, then we risk listxattr stopping + * and trying to fill in the hfs_file_is_compressed info during the callback + * operation, which will result in deadlock against the b-tree node. + * + * So, to serialize against listxattr (which will grab buf_t meta references on + * the b-tree blocks), we hold the truncate lock as we're manipulating the + * decmpfs payload. + */ + if ((reset_decmp) && (error == 0)) { + decmpfs_cnode *dp = VTOCMP (vp); + if (dp != NULL) { + decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0); + } + + /* Initialize the decmpfs node as needed */ + (void) hfs_file_is_compressed (cp, 0); /* ok to take lock */ + } + + hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT); + +#endif + return error; + } + + case F_SETBACKINGSTORE: { + + int error = 0; + + /* + * See comment in F_SETSTATICCONTENT re: using + * a null check for a_data + */ + if (ap->a_data) { + error = hfs_set_backingstore (vp, 1); + } + else { + error = hfs_set_backingstore (vp, 0); + } + + return error; + } + + case F_GETPATH_MTMINFO: { + int error = 0; + + int *data = (int*) ap->a_data; + + /* Ask if this is a backingstore vnode */ + error = hfs_is_backingstore (vp, data); + + return error; + } + + case F_FULLFSYNC: { + int error; + + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + error = hfs_fsync(vp, MNT_WAIT, TRUE, p); + hfs_unlock(VTOC(vp)); + } + + return error; + } + + case F_CHKCLEAN: { + register struct cnode *cp; + int error; + + if (!vnode_isreg(vp)) + return EINVAL; + + error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error == 0) { + cp = VTOC(vp); + /* + * used by regression test to determine if + * all the dirty pages (via write) have been cleaned + * after a call to 'fsysnc'. + */ + error = is_file_clean(vp, VTOF(vp)->ff_size); + hfs_unlock(cp); + } + return (error); + } + + case F_RDADVISE: { + register struct radvisory *ra; + struct filefork *fp; + int error; + + if (!vnode_isreg(vp)) + return EINVAL; + + ra = (struct radvisory *)(ap->a_data); + fp = VTOF(vp); + + /* Protect against a size change. */ + hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + +#if HFS_COMPRESSION + if (compressed && (uncompressed_size == -1)) { + /* fetching the uncompressed size failed above, so return the error */ + error = decmpfs_error; + } else if ((compressed && (ra->ra_offset >= uncompressed_size)) || + (!compressed && (ra->ra_offset >= fp->ff_size))) { + error = EFBIG; + } +#else /* HFS_COMPRESSION */ + if (ra->ra_offset >= fp->ff_size) { + error = EFBIG; + } +#endif /* HFS_COMPRESSION */ + else { + error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count); + } + + hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT); + return (error); + } + + case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */ + { + if (is64bit) { + *(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); + } + else { + *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); + } + return 0; + } + + case SPOTLIGHT_FSCTL_GET_MOUNT_TIME: + *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time; + break; + + case SPOTLIGHT_FSCTL_GET_LAST_MTIME: + *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime; + break; + + case HFS_FSCTL_GET_VERY_LOW_DISK: + *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_dangerlimit; + break; + + case HFS_FSCTL_SET_VERY_LOW_DISK: + if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) { + return EINVAL; + } + + hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data; + break; + + case HFS_FSCTL_GET_LOW_DISK: + *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_warninglimit; + break; + + case HFS_FSCTL_SET_LOW_DISK: + if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel + || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) { + + return EINVAL; + } + + hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data; + break; + + case HFS_FSCTL_GET_DESIRED_DISK: + *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_desiredlevel; + break; + + case HFS_FSCTL_SET_DESIRED_DISK: + if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) { + return EINVAL; + } + + hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data; + break; + + case HFS_VOLUME_STATUS: + *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions; + break; + + case HFS_SET_BOOT_INFO: + if (!vnode_isvroot(vp)) + return(EINVAL); + if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner)) + return(EACCES); /* must be superuser or owner of filesystem */ + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + hfs_lock_mount (hfsmp); + bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo)); + hfs_unlock_mount (hfsmp); + (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0); + break; + + case HFS_GET_BOOT_INFO: + if (!vnode_isvroot(vp)) + return(EINVAL); + hfs_lock_mount (hfsmp); + bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo)); + hfs_unlock_mount(hfsmp); + break; + + case HFS_MARK_BOOT_CORRUPT: + /* Mark the boot volume corrupt by setting + * kHFSVolumeInconsistentBit in the volume header. This will + * force fsck_hfs on next mount. + */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + + /* Allowed only on the root vnode of the boot volume */ + if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) || + !vnode_isvroot(vp)) { + return EINVAL; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n"); + hfs_mark_inconsistent(hfsmp, HFS_FSCK_FORCED); + break; + + case HFS_FSCTL_GET_JOURNAL_INFO: + jip = (struct hfs_journal_info*)ap->a_data; + + if (vp == NULLVP) + return EINVAL; + + if (hfsmp->jnl == NULL) { + jnl_start = 0; + jnl_size = 0; + } else { + jnl_start = (off_t)(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset; + jnl_size = (off_t)hfsmp->jnl_size; + } + + jip->jstart = jnl_start; + jip->jsize = jnl_size; + break; + + case HFS_SET_ALWAYS_ZEROFILL: { + struct cnode *cp = VTOC(vp); + + if (*(int *)ap->a_data) { + cp->c_flag |= C_ALWAYS_ZEROFILL; + } else { + cp->c_flag &= ~C_ALWAYS_ZEROFILL; + } + break; + } + + case HFS_DISABLE_METAZONE: { + /* Only root can disable metadata zone */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + if (hfsmp->hfs_flags & HFS_READ_ONLY) { + return (EROFS); + } + + /* Disable metadata zone now */ + (void) hfs_metadatazone_init(hfsmp, true); + printf ("hfs: Disabling metadata zone on %s\n", hfsmp->vcbVN); + break; + } + + + case HFS_FSINFO_METADATA_BLOCKS: { + int error; + struct hfsinfo_metadata *hinfo; + + hinfo = (struct hfsinfo_metadata *)ap->a_data; + + /* Get information about number of metadata blocks */ + error = hfs_getinfo_metadata_blocks(hfsmp, hinfo); + if (error) { + return error; + } + + break; + } + + case HFS_GET_FSINFO: { + hfs_fsinfo *fsinfo = (hfs_fsinfo *)ap->a_data; + + /* Only root is allowed to get fsinfo */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + + /* + * Make sure that the caller's version number matches with + * the kernel's version number. This will make sure that + * if the structures being read/written into are changed + * by the kernel, the caller will not read incorrect data. + * + * The first three fields --- request_type, version and + * flags are same for all the hfs_fsinfo structures, so + * we can access the version number by assuming any + * structure for now. + */ + if (fsinfo->header.version != HFS_FSINFO_VERSION) { + return ENOTSUP; + } + + /* Make sure that the current file system is not marked inconsistent */ + if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) { + return EIO; + } + + return hfs_get_fsinfo(hfsmp, ap->a_data); + } + + case HFS_CS_FREESPACE_TRIM: { + int error = 0; + int lockflags = 0; + + /* Only root allowed */ + if (!kauth_cred_issuser(kauth_cred_get())) { + return EACCES; + } + + /* + * This core functionality is similar to hfs_scan_blocks(). + * The main difference is that hfs_scan_blocks() is called + * as part of mount where we are assured that the journal is + * empty to start with. This fcntl() can be called on a + * mounted volume, therefore it has to flush the content of + * the journal as well as ensure the state of summary table. + * + * This fcntl scans over the entire allocation bitmap, + * creates list of all the free blocks, and issues TRIM + * down to the underlying device. This can take long time + * as it can generate up to 512MB of read I/O. + */ + + if ((hfsmp->hfs_flags & HFS_SUMMARY_TABLE) == 0) { + error = hfs_init_summary(hfsmp); + if (error) { + printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp->vcbVN); + return error; + } + } + + /* + * The journal maintains list of recently deallocated blocks to + * issue DKIOCUNMAPs when the corresponding journal transaction is + * flushed to the disk. To avoid any race conditions, we only + * want one active trim list and only one thread issuing DKIOCUNMAPs. + * Therefore we make sure that the journal trim list is sync'ed, + * empty, and not modifiable for the duration of our scan. + * + * Take the journal lock before flushing the journal to the disk. + * We will keep on holding the journal lock till we don't get the + * bitmap lock to make sure that no new journal transactions can + * start. This will make sure that the journal trim list is not + * modified after the journal flush and before getting bitmap lock. + * We can release the journal lock after we acquire the bitmap + * lock as it will prevent any further block deallocations. + */ + hfs_journal_lock(hfsmp); + + /* Flush the journal and wait for all I/Os to finish up */ + error = hfs_journal_flush(hfsmp, TRUE); + if (error) { + hfs_journal_unlock(hfsmp); + return error; + } + + /* Take bitmap lock to ensure it is not being modified */ + lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); + + /* Release the journal lock */ + hfs_journal_unlock(hfsmp); + + /* + * ScanUnmapBlocks reads the bitmap in large block size + * (up to 1MB) unlike the runtime which reads the bitmap + * in the 4K block size. This can cause buf_t collisions + * and potential data corruption. To avoid this, we + * invalidate all the existing buffers associated with + * the bitmap vnode before scanning it. + * + * Note: ScanUnmapBlock() cleans up all the buffers + * after itself, so there won't be any large buffers left + * for us to clean up after it returns. + */ + error = buf_invalidateblks(hfsmp->hfs_allocation_vp, 0, 0, 0); + if (error) { + hfs_systemfile_unlock(hfsmp, lockflags); + return error; + } + + /* Traverse bitmap and issue DKIOCUNMAPs */ + error = ScanUnmapBlocks(hfsmp); + hfs_systemfile_unlock(hfsmp, lockflags); + if (error) { + return error; + } + + break; + } + + default: + return (ENOTTY); + } + + return 0; +} + +/* + * select + */ +int +hfs_vnop_select(__unused struct vnop_select_args *ap) +/* + struct vnop_select_args { + vnode_t a_vp; + int a_which; + int a_fflags; + void *a_wql; + vfs_context_t a_context; + }; +*/ +{ + /* + * We should really check to see if I/O is possible. + */ + return (1); +} + +/* + * Converts a logical block number to a physical block, and optionally returns + * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize. + * The physical block number is based on the device block size, currently its 512. + * The block run is returned in logical blocks, and is the REMAINING amount of blocks + */ +int +hfs_bmap(struct vnode *vp, daddr_t bn, struct vnode **vpp, daddr64_t *bnp, unsigned int *runp) +{ + struct filefork *fp = VTOF(vp); + struct hfsmount *hfsmp = VTOHFS(vp); + int retval = E_NONE; + u_int32_t logBlockSize; + size_t bytesContAvail = 0; + off_t blockposition; + int lockExtBtree; + int lockflags = 0; + + /* + * Check for underlying vnode requests and ensure that logical + * to physical mapping is requested. + */ + if (vpp != NULL) + *vpp = hfsmp->hfs_devvp; + if (bnp == NULL) + return (0); + + logBlockSize = GetLogicalBlockSize(vp); + blockposition = (off_t)bn * logBlockSize; + + lockExtBtree = overflow_extents(fp); + + if (lockExtBtree) + lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_EXCLUSIVE_LOCK); + + retval = MacToVFSError( + MapFileBlockC (HFSTOVCB(hfsmp), + (FCB*)fp, + MAXPHYSIO, + blockposition, + bnp, + &bytesContAvail)); + + if (lockExtBtree) + hfs_systemfile_unlock(hfsmp, lockflags); + + if (retval == E_NONE) { + /* Figure out how many read ahead blocks there are */ + if (runp != NULL) { + if (can_cluster(logBlockSize)) { + /* Make sure this result never goes negative: */ + *runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1; + } else { + *runp = 0; + } + } + } + return (retval); +} + +/* + * Convert logical block number to file offset. + */ +int +hfs_vnop_blktooff(struct vnop_blktooff_args *ap) +/* + struct vnop_blktooff_args { + vnode_t a_vp; + daddr64_t a_lblkno; + off_t *a_offset; + }; +*/ +{ + if (ap->a_vp == NULL) + return (EINVAL); + *ap->a_offset = (off_t)ap->a_lblkno * (off_t)GetLogicalBlockSize(ap->a_vp); + + return(0); +} + +/* + * Convert file offset to logical block number. + */ +int +hfs_vnop_offtoblk(struct vnop_offtoblk_args *ap) +/* + struct vnop_offtoblk_args { + vnode_t a_vp; + off_t a_offset; + daddr64_t *a_lblkno; + }; +*/ +{ + if (ap->a_vp == NULL) + return (EINVAL); + *ap->a_lblkno = (daddr64_t)(ap->a_offset / (off_t)GetLogicalBlockSize(ap->a_vp)); + + return(0); +} + +/* + * Map file offset to physical block number. + * + * If this function is called for write operation, and if the file + * had virtual blocks allocated (delayed allocation), real blocks + * are allocated by calling ExtendFileC(). + * + * If this function is called for read operation, and if the file + * had virtual blocks allocated (delayed allocation), no change + * to the size of file is done, and if required, rangelist is + * searched for mapping. + * + * System file cnodes are expected to be locked (shared or exclusive). + */ +int +hfs_vnop_blockmap(struct vnop_blockmap_args *ap) +/* + struct vnop_blockmap_args { + vnode_t a_vp; + off_t a_foffset; + size_t a_size; + daddr64_t *a_bpn; + size_t *a_run; + void *a_poff; + int a_flags; + vfs_context_t a_context; + }; +*/ +{ + struct vnode *vp = ap->a_vp; + struct cnode *cp; + struct filefork *fp; + struct hfsmount *hfsmp; + size_t bytesContAvail = 0; + int retval = E_NONE; + int syslocks = 0; + int lockflags = 0; + struct rl_entry *invalid_range; + enum rl_overlaptype overlaptype; + int started_tr = 0; + int tooklock = 0; + +#if HFS_COMPRESSION + if (VNODE_IS_RSRC(vp)) { + /* allow blockmaps to the resource fork */ + } else { + if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ + int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); + switch(state) { + case FILE_IS_COMPRESSED: + return ENOTSUP; + case FILE_IS_CONVERTING: + /* if FILE_IS_CONVERTING, we allow blockmap */ + break; + default: + printf("invalid state %d for compressed file\n", state); + /* fall through */ + } + } + } +#endif /* HFS_COMPRESSION */ + + /* Do not allow blockmap operation on a directory */ + if (vnode_isdir(vp)) { + return (ENOTSUP); + } + + /* + * Check for underlying vnode requests and ensure that logical + * to physical mapping is requested. + */ + if (ap->a_bpn == NULL) + return (0); + + if ( !vnode_issystem(vp) && !vnode_islnk(vp) && !vnode_isswap(vp)) { + if (VTOC(vp)->c_lockowner != current_thread()) { + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + tooklock = 1; + } + } + hfsmp = VTOHFS(vp); + cp = VTOC(vp); + fp = VTOF(vp); + +retry: + /* Check virtual blocks only when performing write operation */ + if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto exit; + } else { + started_tr = 1; + } + syslocks = SFL_EXTENTS | SFL_BITMAP; + + } else if (overflow_extents(fp)) { + syslocks = SFL_EXTENTS; + } + + if (syslocks) + lockflags = hfs_systemfile_lock(hfsmp, syslocks, HFS_EXCLUSIVE_LOCK); + + /* + * Check for any delayed allocations. + */ + if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { + int64_t actbytes; + u_int32_t loanedBlocks; + + // + // Make sure we have a transaction. It's possible + // that we came in and fp->ff_unallocblocks was zero + // but during the time we blocked acquiring the extents + // btree, ff_unallocblocks became non-zero and so we + // will need to start a transaction. + // + if (started_tr == 0) { + if (syslocks) { + hfs_systemfile_unlock(hfsmp, lockflags); + syslocks = 0; + } + goto retry; + } + + /* + * Note: ExtendFileC will Release any blocks on loan and + * aquire real blocks. So we ask to extend by zero bytes + * since ExtendFileC will account for the virtual blocks. + */ + + loanedBlocks = fp->ff_unallocblocks; + retval = ExtendFileC(hfsmp, (FCB*)fp, 0, 0, + kEFAllMask | kEFNoClumpMask, &actbytes); + + if (retval) { + fp->ff_unallocblocks = loanedBlocks; + cp->c_blocks += loanedBlocks; + fp->ff_blocks += loanedBlocks; + + hfs_lock_mount (hfsmp); + hfsmp->loanedBlocks += loanedBlocks; + hfs_unlock_mount (hfsmp); + + hfs_systemfile_unlock(hfsmp, lockflags); + cp->c_flag |= C_MODIFIED; + if (started_tr) { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + + hfs_end_transaction(hfsmp); + started_tr = 0; + } + goto exit; + } + } + + retval = MapFileBlockC(hfsmp, (FCB *)fp, ap->a_size, ap->a_foffset, + ap->a_bpn, &bytesContAvail); + if (syslocks) { + hfs_systemfile_unlock(hfsmp, lockflags); + syslocks = 0; + } + + if (started_tr) { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + hfs_end_transaction(hfsmp); + started_tr = 0; + } + if (retval) { + /* On write, always return error because virtual blocks, if any, + * should have been allocated in ExtendFileC(). We do not + * allocate virtual blocks on read, therefore return error + * only if no virtual blocks are allocated. Otherwise we search + * rangelist for zero-fills + */ + if ((MacToVFSError(retval) != ERANGE) || + (ap->a_flags & VNODE_WRITE) || + ((ap->a_flags & VNODE_READ) && (fp->ff_unallocblocks == 0))) { + goto exit; + } + + /* Validate if the start offset is within logical file size */ + if (ap->a_foffset >= fp->ff_size) { + goto exit; + } + + /* + * At this point, we have encountered a failure during + * MapFileBlockC that resulted in ERANGE, and we are not servicing + * a write, and there are borrowed blocks. + * + * However, the cluster layer will not call blockmap for + * blocks that are borrowed and in-cache. We have to assume that + * because we observed ERANGE being emitted from MapFileBlockC, this + * extent range is not valid on-disk. So we treat this as a + * mapping that needs to be zero-filled prior to reading. + * + * Note that under certain circumstances (such as non-contiguous + * userland VM mappings in the calling process), cluster_io + * may be forced to split a large I/O driven by hfs_vnop_write + * into multiple sub-I/Os that necessitate a RMW cycle. If this is + * the case here, then we have already removed the invalid range list + * mapping prior to getting to this blockmap call, so we should not + * search the invalid rangelist for this byte range. + */ + + bytesContAvail = fp->ff_size - ap->a_foffset; + /* + * Clip the contiguous available bytes to, at most, the allowable + * maximum or the amount requested. + */ + + if (bytesContAvail > ap->a_size) { + bytesContAvail = ap->a_size; + } + + *ap->a_bpn = (daddr64_t) -1; + retval = 0; + + goto exit; + } + + /* MapFileC() found a valid extent in the filefork. Search the + * mapping information further for invalid file ranges + */ + overlaptype = rl_scan(&fp->ff_invalidranges, ap->a_foffset, + ap->a_foffset + (off_t)bytesContAvail - 1, + &invalid_range); + if (overlaptype != RL_NOOVERLAP) { + switch(overlaptype) { + case RL_MATCHINGOVERLAP: + case RL_OVERLAPCONTAINSRANGE: + case RL_OVERLAPSTARTSBEFORE: + /* There's no valid block for this byte offset */ + *ap->a_bpn = (daddr64_t)-1; + /* There's no point limiting the amount to be returned + * if the invalid range that was hit extends all the way + * to the EOF (i.e. there's no valid bytes between the + * end of this range and the file's EOF): + */ + if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && + ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { + bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; + } + break; + + case RL_OVERLAPISCONTAINED: + case RL_OVERLAPENDSAFTER: + /* The range of interest hits an invalid block before the end: */ + if (invalid_range->rl_start == ap->a_foffset) { + /* There's actually no valid information to be had starting here: */ + *ap->a_bpn = (daddr64_t)-1; + if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && + ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { + bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; + } + } else { + bytesContAvail = invalid_range->rl_start - ap->a_foffset; + } + break; + + case RL_NOOVERLAP: + break; + } /* end switch */ + if (bytesContAvail > ap->a_size) + bytesContAvail = ap->a_size; + } + +exit: + if (retval == 0) { + if (ap->a_run) + *ap->a_run = bytesContAvail; + + if (ap->a_poff) + *(int *)ap->a_poff = 0; + } + + if (tooklock) + hfs_unlock(cp); + + return (MacToVFSError(retval)); +} + +/* + * prepare and issue the I/O + * buf_strategy knows how to deal + * with requests that require + * fragmented I/Os + */ +int +hfs_vnop_strategy(struct vnop_strategy_args *ap) +{ + buf_t bp = ap->a_bp; + vnode_t vp = buf_vnode(bp); + int error = 0; + + /* Mark buffer as containing static data if cnode flag set */ + if (VTOC(vp)->c_flag & C_SSD_STATIC) { + buf_markstatic(bp); + } + + /* Mark buffer as containing static data if cnode flag set */ + if (VTOC(vp)->c_flag & C_SSD_GREEDY_MODE) { + bufattr_markgreedymode(&bp->b_attr); + } + + /* mark buffer as containing burst mode data if cnode flag set */ + if (VTOC(vp)->c_flag & C_IO_ISOCHRONOUS) { + bufattr_markisochronous(&bp->b_attr); + } + +#if CONFIG_PROTECT + cnode_t *cp = NULL; + + if ((!bufattr_rawencrypted(&bp->b_attr)) && + ((cp = cp_get_protected_cnode(vp)) != NULL)) { + /* + * We rely upon the truncate lock to protect the + * CP cache key from getting tossed prior to our IO finishing here. + * Nearly all cluster io calls to manipulate file payload from HFS + * take the truncate lock before calling into the cluster + * layer to ensure the file size does not change, or that they + * have exclusive right to change the EOF of the file. + * That same guarantee protects us here since the code that + * deals with CP lock events must now take the truncate lock + * before doing anything. + * + * There is 1 exception here: + * 1) One exception should be the VM swapfile IO, because HFS will + * funnel the VNOP_PAGEOUT directly into a cluster_pageout call for the + * swapfile code only without holding the truncate lock. This is because + * individual swapfiles are maintained at fixed-length sizes by the VM code. + * In non-swapfile IO we use PAGEOUT_V2 semantics which allow us to + * create our own UPL and thus take the truncate lock before calling + * into the cluster layer. In that case, however, we are not concerned + * with the CP blob being wiped out in the middle of the IO + * because there isn't anything to toss; the VM swapfile key stays + * in-core as long as the file is open. + */ + + + /* + * Last chance: If this data protected I/O does not have unwrapped keys + * present, then try to get them. We already know that it should, by this point. + */ + if (cp->c_cpentry->cp_flags & (CP_KEY_FLUSHED | CP_NEEDS_KEYS)) { + int io_op = ( (buf_flags(bp) & B_READ) ? CP_READ_ACCESS : CP_WRITE_ACCESS); + if ((error = cp_handle_vnop(vp, io_op, 0)) != 0) { + /* + * We have to be careful here. By this point in the I/O path, VM or the cluster + * engine has prepared a buf_t with the proper file offsets and all the rest, + * so simply erroring out will result in us leaking this particular buf_t. + * We need to properly decorate the buf_t just as buf_strategy would so as + * to make it appear that the I/O errored out with the particular error code. + */ + buf_seterror (bp, error); + buf_biodone(bp); + return error; + } + } + + /* + *NB: + * For filesystem resize, we may not have access to the underlying + * file's cache key for whatever reason (device may be locked). However, + * we do not need it since we are going to use the temporary HFS-wide resize key + * which is generated once we start relocating file content. If this file's I/O + * should be done using the resize key, it will have been supplied already, so + * do not attach the file's cp blob to the buffer. + */ + if ((cp->c_cpentry->cp_flags & CP_RELOCATION_INFLIGHT) == 0) { + buf_setcpaddr(bp, cp->c_cpentry); + } + } +#endif /* CONFIG_PROTECT */ + + error = buf_strategy(VTOHFS(vp)->hfs_devvp, ap); + + return error; +} + +static int +hfs_minorupdate(struct vnode *vp) { + struct cnode *cp = VTOC(vp); + cp->c_flag &= ~C_MODIFIED; + cp->c_touch_acctime = 0; + cp->c_touch_chgtime = 0; + cp->c_touch_modtime = 0; + + return 0; +} + +int +do_hfs_truncate(struct vnode *vp, off_t length, int flags, int truncateflags, vfs_context_t context) +{ + register struct cnode *cp = VTOC(vp); + struct filefork *fp = VTOF(vp); + kauth_cred_t cred = vfs_context_ucred(context); + int retval; + off_t bytesToAdd; + off_t actualBytesAdded; + off_t filebytes; + u_int32_t fileblocks; + int blksize; + struct hfsmount *hfsmp; + int lockflags; + int skipupdate = (truncateflags & HFS_TRUNCATE_SKIPUPDATE); + int suppress_times = (truncateflags & HFS_TRUNCATE_SKIPTIMES); + + blksize = VTOVCB(vp)->blockSize; + fileblocks = fp->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)blksize; + + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_START, + (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); + + if (length < 0) + return (EINVAL); + + /* This should only happen with a corrupt filesystem */ + if ((off_t)fp->ff_size < 0) + return (EINVAL); + + if ((!ISHFSPLUS(VTOVCB(vp))) && (length > (off_t)MAXHFSFILESIZE)) + return (EFBIG); + + hfsmp = VTOHFS(vp); + + retval = E_NONE; + + /* Files that are changing size are not hot file candidates. */ + if (hfsmp->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } + + /* + * We cannot just check if fp->ff_size == length (as an optimization) + * since there may be extra physical blocks that also need truncation. + */ +#if QUOTA + if ((retval = hfs_getinoquota(cp))) + return(retval); +#endif /* QUOTA */ + + /* + * Lengthen the size of the file. We must ensure that the + * last byte of the file is allocated. Since the smallest + * value of ff_size is 0, length will be at least 1. + */ + if (length > (off_t)fp->ff_size) { +#if QUOTA + retval = hfs_chkdq(cp, (int64_t)(roundup(length - filebytes, blksize)), + cred, 0); + if (retval) + goto Err_Exit; +#endif /* QUOTA */ + /* + * If we don't have enough physical space then + * we need to extend the physical size. + */ + if (length > filebytes) { + int eflags; + u_int32_t blockHint = 0; + + /* All or nothing and don't round up to clumpsize. */ + eflags = kEFAllMask | kEFNoClumpMask; + + if (cred && (suser(cred, NULL) != 0)) { + eflags |= kEFReserveMask; /* keep a reserve */ + } + + /* + * Allocate Journal and Quota files in metadata zone. + */ + if (filebytes == 0 && + hfsmp->hfs_flags & HFS_METADATA_ZONE && + hfs_virtualmetafile(cp)) { + eflags |= kEFMetadataMask; + blockHint = hfsmp->hfs_metazone_start; + } + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto Err_Exit; + } + + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + /* + * Keep growing the file as long as the current EOF is + * less than the desired value. + */ + while ((length > filebytes) && (retval == E_NONE)) { + bytesToAdd = length - filebytes; + retval = MacToVFSError(ExtendFileC(VTOVCB(vp), + (FCB*)fp, + bytesToAdd, + blockHint, + eflags, + &actualBytesAdded)); + + filebytes = (off_t)fp->ff_blocks * (off_t)blksize; + if (actualBytesAdded == 0 && retval == E_NONE) { + if (length > filebytes) + length = filebytes; + break; + } + } /* endwhile */ + + hfs_systemfile_unlock(hfsmp, lockflags); + + if (hfsmp->jnl) { + if (skipupdate) { + (void) hfs_minorupdate(vp); + } + else { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + } + } + + hfs_end_transaction(hfsmp); + + if (retval) + goto Err_Exit; + + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE, + (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); + } + + if (ISSET(flags, IO_NOZEROFILL)) { + // An optimisation for the hibernation file + if (vnode_isswap(vp)) + rl_remove_all(&fp->ff_invalidranges); + } else { + if (UBCINFOEXISTS(vp) && (vnode_issystem(vp) == 0) && retval == E_NONE) { + struct rl_entry *invalid_range; + off_t zero_limit; + + zero_limit = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; + if (length < zero_limit) zero_limit = length; + + if (length > (off_t)fp->ff_size) { + struct timeval tv; + + /* Extending the file: time to fill out the current last page w. zeroes? */ + if ((fp->ff_size & PAGE_MASK_64) && + (rl_scan(&fp->ff_invalidranges, fp->ff_size & ~PAGE_MASK_64, + fp->ff_size - 1, &invalid_range) == RL_NOOVERLAP)) { + + /* There's some valid data at the start of the (current) last page + of the file, so zero out the remainder of that page to ensure the + entire page contains valid data. Since there is no invalid range + possible past the (current) eof, there's no need to remove anything + from the invalid range list before calling cluster_write(): */ + hfs_unlock(cp); + retval = cluster_write(vp, (struct uio *) 0, fp->ff_size, zero_limit, + fp->ff_size, (off_t)0, + (flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY); + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + if (retval) goto Err_Exit; + + /* Merely invalidate the remaining area, if necessary: */ + if (length > zero_limit) { + microuptime(&tv); + rl_add(zero_limit, length - 1, &fp->ff_invalidranges); + cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; + } + } else { + /* The page containing the (current) eof is invalid: just add the + remainder of the page to the invalid list, along with the area + being newly allocated: + */ + microuptime(&tv); + rl_add(fp->ff_size, length - 1, &fp->ff_invalidranges); + cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; + }; + } + } else { + panic("hfs_truncate: invoked on non-UBC object?!"); + }; + } + if (suppress_times == 0) { + cp->c_touch_modtime = TRUE; + } + fp->ff_size = length; + + } else { /* Shorten the size of the file */ + + // An optimisation for the hibernation file + if (ISSET(flags, IO_NOZEROFILL) && vnode_isswap(vp)) { + rl_remove_all(&fp->ff_invalidranges); + } else if ((off_t)fp->ff_size > length) { + /* Any space previously marked as invalid is now irrelevant: */ + rl_remove(length, fp->ff_size - 1, &fp->ff_invalidranges); + } + + /* + * Account for any unmapped blocks. Note that the new + * file length can still end up with unmapped blocks. + */ + if (fp->ff_unallocblocks > 0) { + u_int32_t finalblks; + u_int32_t loanedBlocks; + + hfs_lock_mount(hfsmp); + loanedBlocks = fp->ff_unallocblocks; + cp->c_blocks -= loanedBlocks; + fp->ff_blocks -= loanedBlocks; + fp->ff_unallocblocks = 0; + + hfsmp->loanedBlocks -= loanedBlocks; + + finalblks = (length + blksize - 1) / blksize; + if (finalblks > fp->ff_blocks) { + /* calculate required unmapped blocks */ + loanedBlocks = finalblks - fp->ff_blocks; + hfsmp->loanedBlocks += loanedBlocks; + + fp->ff_unallocblocks = loanedBlocks; + cp->c_blocks += loanedBlocks; + fp->ff_blocks += loanedBlocks; + } + hfs_unlock_mount (hfsmp); + } + +#if QUOTA + off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize); +#endif /* QUOTA */ + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto Err_Exit; + } + + if (fp->ff_unallocblocks == 0) { + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + retval = MacToVFSError(TruncateFileC(VTOVCB(vp), (FCB*)fp, length, 0, + FORK_IS_RSRC (fp), FTOC(fp)->c_fileid, false)); + + hfs_systemfile_unlock(hfsmp, lockflags); + } + if (hfsmp->jnl) { + if (retval == 0) { + fp->ff_size = length; + } + if (skipupdate) { + (void) hfs_minorupdate(vp); + } + else { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + } + } + hfs_end_transaction(hfsmp); + + filebytes = (off_t)fp->ff_blocks * (off_t)blksize; + if (retval) + goto Err_Exit; +#if QUOTA + /* These are bytesreleased */ + (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0); +#endif /* QUOTA */ + + /* + * Only set update flag if the logical length changes & we aren't + * suppressing modtime updates. + */ + if (((off_t)fp->ff_size != length) && (suppress_times == 0)) { + cp->c_touch_modtime = TRUE; + } + fp->ff_size = length; + } + if (cp->c_mode & (S_ISUID | S_ISGID)) { + if (!vfs_context_issuser(context)) { + cp->c_mode &= ~(S_ISUID | S_ISGID); + skipupdate = 0; + } + } + if (skipupdate) { + retval = hfs_minorupdate(vp); + } + else { + cp->c_touch_chgtime = TRUE; /* status changed */ + if (suppress_times == 0) { + cp->c_touch_modtime = TRUE; /* file data was modified */ + + /* + * If we are not suppressing the modtime update, then + * update the gen count as well. + */ + if (S_ISREG(cp->c_attr.ca_mode) || S_ISLNK (cp->c_attr.ca_mode)) { + hfs_incr_gencount(cp); + } + } + + retval = hfs_update(vp, MNT_WAIT); + } + if (retval) { + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE, + -1, -1, -1, retval, 0); + } + +Err_Exit: + + KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_END, + (int)length, (int)fp->ff_size, (int)filebytes, retval, 0); + + return (retval); +} + +/* + * Preparation which must be done prior to deleting the catalog record + * of a file or directory. In order to make the on-disk as safe as possible, + * we remove the catalog entry before releasing the bitmap blocks and the + * overflow extent records. However, some work must be done prior to deleting + * the catalog record. + * + * When calling this function, the cnode must exist both in memory and on-disk. + * If there are both resource fork and data fork vnodes, this function should + * be called on both. + */ + +int +hfs_prepare_release_storage (struct hfsmount *hfsmp, struct vnode *vp) { + + struct filefork *fp = VTOF(vp); + struct cnode *cp = VTOC(vp); +#if QUOTA + int retval = 0; +#endif /* QUOTA */ + + /* Cannot truncate an HFS directory! */ + if (vnode_isdir(vp)) { + return (EISDIR); + } + + /* + * See the comment below in hfs_truncate for why we need to call + * setsize here. Essentially we want to avoid pending IO if we + * already know that the blocks are going to be released here. + * This function is only called when totally removing all storage for a file, so + * we can take a shortcut and immediately setsize (0); + */ + ubc_setsize(vp, 0); + + /* This should only happen with a corrupt filesystem */ + if ((off_t)fp->ff_size < 0) + return (EINVAL); + + /* + * We cannot just check if fp->ff_size == length (as an optimization) + * since there may be extra physical blocks that also need truncation. + */ +#if QUOTA + if ((retval = hfs_getinoquota(cp))) { + return(retval); + } +#endif /* QUOTA */ + + /* Wipe out any invalid ranges which have yet to be backed by disk */ + rl_remove(0, fp->ff_size - 1, &fp->ff_invalidranges); + + /* + * Account for any unmapped blocks. Since we're deleting the + * entire file, we don't have to worry about just shrinking + * to a smaller number of borrowed blocks. + */ + if (fp->ff_unallocblocks > 0) { + u_int32_t loanedBlocks; + + hfs_lock_mount (hfsmp); + loanedBlocks = fp->ff_unallocblocks; + cp->c_blocks -= loanedBlocks; + fp->ff_blocks -= loanedBlocks; + fp->ff_unallocblocks = 0; + + hfsmp->loanedBlocks -= loanedBlocks; + + hfs_unlock_mount (hfsmp); + } + + return 0; +} + + +/* + * Special wrapper around calling TruncateFileC. This function is useable + * even when the catalog record does not exist any longer, making it ideal + * for use when deleting a file. The simplification here is that we know + * that we are releasing all blocks. + * + * Note that this function may be called when there is no vnode backing + * the file fork in question. We may call this from hfs_vnop_inactive + * to clear out resource fork data (and may not want to clear out the data + * fork yet). As a result, we pointer-check both sets of inputs before + * doing anything with them. + * + * The caller is responsible for saving off a copy of the filefork(s) + * embedded within the cnode prior to calling this function. The pointers + * supplied as arguments must be valid even if the cnode is no longer valid. + */ + +int +hfs_release_storage (struct hfsmount *hfsmp, struct filefork *datafork, + struct filefork *rsrcfork, u_int32_t fileid) { + + off_t filebytes; + u_int32_t fileblocks; + int blksize = 0; + int error = 0; + int lockflags; + + blksize = hfsmp->blockSize; + + /* Data Fork */ + if (datafork) { + datafork->ff_size = 0; + + fileblocks = datafork->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)blksize; + + /* We killed invalid ranges and loaned blocks before we removed the catalog entry */ + + while (filebytes > 0) { + if (filebytes > HFS_BIGFILE_SIZE) { + filebytes -= HFS_BIGFILE_SIZE; + } else { + filebytes = 0; + } + + /* Start a transaction, and wipe out as many blocks as we can in this iteration */ + if (hfs_start_transaction(hfsmp) != 0) { + error = EINVAL; + break; + } + + if (datafork->ff_unallocblocks == 0) { + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(datafork)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), datafork, filebytes, 1, 0, fileid, false)); + + hfs_systemfile_unlock(hfsmp, lockflags); + } + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + + /* Finish the transaction and start over if necessary */ + hfs_end_transaction(hfsmp); + + if (error) { + break; + } + } + } + + /* Resource fork */ + if (error == 0 && rsrcfork) { + rsrcfork->ff_size = 0; + + fileblocks = rsrcfork->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)blksize; + + /* We killed invalid ranges and loaned blocks before we removed the catalog entry */ + + while (filebytes > 0) { + if (filebytes > HFS_BIGFILE_SIZE) { + filebytes -= HFS_BIGFILE_SIZE; + } else { + filebytes = 0; + } + + /* Start a transaction, and wipe out as many blocks as we can in this iteration */ + if (hfs_start_transaction(hfsmp) != 0) { + error = EINVAL; + break; + } + + if (rsrcfork->ff_unallocblocks == 0) { + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(rsrcfork)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), rsrcfork, filebytes, 1, 1, fileid, false)); + + hfs_systemfile_unlock(hfsmp, lockflags); + } + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + + /* Finish the transaction and start over if necessary */ + hfs_end_transaction(hfsmp); + + if (error) { + break; + } + } + } + + return error; +} + +errno_t hfs_ubc_setsize(vnode_t vp, off_t len, bool have_cnode_lock) +{ + errno_t error; + + /* + * Call ubc_setsize to give the VM subsystem a chance to do + * whatever it needs to with existing pages before we delete + * blocks. Note that symlinks don't use the UBC so we'll + * get back ENOENT in that case. + */ + if (have_cnode_lock) { + error = ubc_setsize_ex(vp, len, UBC_SETSIZE_NO_FS_REENTRY); + if (error == EAGAIN) { + cnode_t *cp = VTOC(vp); + + if (cp->c_truncatelockowner != current_thread()) { +#if DEVELOPMENT || DEBUG + panic("hfs: hfs_ubc_setsize called without exclusive truncate lock!"); +#else + printf("hfs: hfs_ubc_setsize called without exclusive truncate lock!\n"); +#endif + } + + hfs_unlock(cp); + error = ubc_setsize_ex(vp, len, 0); + hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK); + } + } else + error = ubc_setsize_ex(vp, len, 0); + + return error == ENOENT ? 0 : error; +} + +/* + * Truncate a cnode to at most length size, freeing (or adding) the + * disk blocks. + */ +int +hfs_truncate(struct vnode *vp, off_t length, int flags, + int truncateflags, vfs_context_t context) +{ + struct filefork *fp = VTOF(vp); + off_t filebytes; + u_int32_t fileblocks; + int blksize; + errno_t error = 0; + struct cnode *cp = VTOC(vp); + + /* Cannot truncate an HFS directory! */ + if (vnode_isdir(vp)) { + return (EISDIR); + } + /* A swap file cannot change size. */ + if (vnode_isswap(vp) && length && !ISSET(flags, IO_NOAUTH)) { + return (EPERM); + } + + blksize = VTOVCB(vp)->blockSize; + fileblocks = fp->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)blksize; + + bool caller_has_cnode_lock = (cp->c_lockowner == current_thread()); + + error = hfs_ubc_setsize(vp, length, caller_has_cnode_lock); + if (error) + return error; + + if (!caller_has_cnode_lock) { + error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + if (error) + return error; + } + + // have to loop truncating or growing files that are + // really big because otherwise transactions can get + // enormous and consume too many kernel resources. + + if (length < filebytes) { + while (filebytes > length) { + if ((filebytes - length) > HFS_BIGFILE_SIZE) { + filebytes -= HFS_BIGFILE_SIZE; + } else { + filebytes = length; + } + cp->c_flag |= C_FORCEUPDATE; + error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context); + if (error) + break; + } + } else if (length > filebytes) { + while (filebytes < length) { + if ((length - filebytes) > HFS_BIGFILE_SIZE) { + filebytes += HFS_BIGFILE_SIZE; + } else { + filebytes = length; + } + cp->c_flag |= C_FORCEUPDATE; + error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context); + if (error) + break; } + } else /* Same logical size */ { + + error = do_hfs_truncate(vp, length, flags, truncateflags, context); + } + /* Files that are changing size are not hot file candidates. */ + if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } + + if (!caller_has_cnode_lock) + hfs_unlock(cp); + + // Make sure UBC's size matches up (in case we didn't completely succeed) + errno_t err2 = hfs_ubc_setsize(vp, fp->ff_size, caller_has_cnode_lock); + if (!error) + error = err2; + + return error; +} + + +/* + * Preallocate file storage space. + */ +int +hfs_vnop_allocate(struct vnop_allocate_args /* { + vnode_t a_vp; + off_t a_length; + u_int32_t a_flags; + off_t *a_bytesallocated; + off_t a_offset; + vfs_context_t a_context; + } */ *ap) +{ + struct vnode *vp = ap->a_vp; + struct cnode *cp; + struct filefork *fp; + ExtendedVCB *vcb; + off_t length = ap->a_length; + off_t startingPEOF; + off_t moreBytesRequested; + off_t actualBytesAdded; + off_t filebytes; + u_int32_t fileblocks; + int retval, retval2; + u_int32_t blockHint; + u_int32_t extendFlags; /* For call to ExtendFileC */ + struct hfsmount *hfsmp; + kauth_cred_t cred = vfs_context_ucred(ap->a_context); + int lockflags; + time_t orig_ctime; + + *(ap->a_bytesallocated) = 0; + + if (!vnode_isreg(vp)) + return (EISDIR); + if (length < (off_t)0) + return (EINVAL); + + cp = VTOC(vp); + + orig_ctime = VTOC(vp)->c_ctime; + + check_for_tracked_file(vp, orig_ctime, ap->a_length == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL); + + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + goto Err_Exit; + } + + fp = VTOF(vp); + hfsmp = VTOHFS(vp); + vcb = VTOVCB(vp); + + fileblocks = fp->ff_blocks; + filebytes = (off_t)fileblocks * (off_t)vcb->blockSize; + + if ((ap->a_flags & ALLOCATEFROMVOL) && (length < filebytes)) { + retval = EINVAL; + goto Err_Exit; + } + + /* Fill in the flags word for the call to Extend the file */ + + extendFlags = kEFNoClumpMask; + if (ap->a_flags & ALLOCATECONTIG) + extendFlags |= kEFContigMask; + if (ap->a_flags & ALLOCATEALL) + extendFlags |= kEFAllMask; + if (cred && suser(cred, NULL) != 0) + extendFlags |= kEFReserveMask; + if (hfs_virtualmetafile(cp)) + extendFlags |= kEFMetadataMask; + + retval = E_NONE; + blockHint = 0; + startingPEOF = filebytes; + + if (ap->a_flags & ALLOCATEFROMPEOF) + length += filebytes; + else if (ap->a_flags & ALLOCATEFROMVOL) + blockHint = ap->a_offset / VTOVCB(vp)->blockSize; + + /* If no changes are necesary, then we're done */ + if (filebytes == length) + goto Std_Exit; + + /* + * Lengthen the size of the file. We must ensure that the + * last byte of the file is allocated. Since the smallest + * value of filebytes is 0, length will be at least 1. + */ + if (length > filebytes) { + off_t total_bytes_added = 0, orig_request_size; + + orig_request_size = moreBytesRequested = length - filebytes; +#if QUOTA + retval = hfs_chkdq(cp, + (int64_t)(roundup(moreBytesRequested, vcb->blockSize)), + cred, 0); + if (retval) + goto Err_Exit; + +#endif /* QUOTA */ + /* + * Metadata zone checks. + */ + if (hfsmp->hfs_flags & HFS_METADATA_ZONE) { + /* + * Allocate Journal and Quota files in metadata zone. + */ + if (hfs_virtualmetafile(cp)) { + blockHint = hfsmp->hfs_metazone_start; + } else if ((blockHint >= hfsmp->hfs_metazone_start) && + (blockHint <= hfsmp->hfs_metazone_end)) { + /* + * Move blockHint outside metadata zone. + */ + blockHint = hfsmp->hfs_metazone_end + 1; + } + } + + + while ((length > filebytes) && (retval == E_NONE)) { + off_t bytesRequested; + + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto Err_Exit; + } + + /* Protect extents b-tree and allocation bitmap */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + if (moreBytesRequested >= HFS_BIGFILE_SIZE) { + bytesRequested = HFS_BIGFILE_SIZE; + } else { + bytesRequested = moreBytesRequested; + } + + if (extendFlags & kEFContigMask) { + // if we're on a sparse device, this will force it to do a + // full scan to find the space needed. + hfsmp->hfs_flags &= ~HFS_DID_CONTIG_SCAN; + } + + retval = MacToVFSError(ExtendFileC(vcb, + (FCB*)fp, + bytesRequested, + blockHint, + extendFlags, + &actualBytesAdded)); + + if (retval == E_NONE) { + *(ap->a_bytesallocated) += actualBytesAdded; + total_bytes_added += actualBytesAdded; + moreBytesRequested -= actualBytesAdded; + if (blockHint != 0) { + blockHint += actualBytesAdded / vcb->blockSize; + } + } + filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + + hfs_systemfile_unlock(hfsmp, lockflags); + + if (hfsmp->jnl) { + (void) hfs_update(vp, TRUE); + (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); + } + + hfs_end_transaction(hfsmp); + } + + + /* + * if we get an error and no changes were made then exit + * otherwise we must do the hfs_update to reflect the changes + */ + if (retval && (startingPEOF == filebytes)) + goto Err_Exit; + + /* + * Adjust actualBytesAdded to be allocation block aligned, not + * clump size aligned. + * NOTE: So what we are reporting does not affect reality + * until the file is closed, when we truncate the file to allocation + * block size. + */ + if (total_bytes_added != 0 && orig_request_size < total_bytes_added) + *(ap->a_bytesallocated) = + roundup(orig_request_size, (off_t)vcb->blockSize); + + } else { /* Shorten the size of the file */ + + /* + * N.B. At present, this code is never called. If and when we + * do start using it, it looks like there might be slightly + * strange semantics with the file size: it's possible for the + * file size to *increase* e.g. if current file size is 5, + * length is 1024 and filebytes is 4096, the file size will + * end up being 1024 bytes. This isn't necessarily a problem + * but it's not consistent with the code above which doesn't + * change the file size. + */ + + retval = hfs_truncate(vp, length, 0, 0, ap->a_context); + filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; + + /* + * if we get an error and no changes were made then exit + * otherwise we must do the hfs_update to reflect the changes + */ + if (retval && (startingPEOF == filebytes)) goto Err_Exit; +#if QUOTA + /* These are bytesreleased */ + (void) hfs_chkdq(cp, (int64_t)-((startingPEOF - filebytes)), NOCRED,0); +#endif /* QUOTA */ + + if (fp->ff_size > filebytes) { + fp->ff_size = filebytes; + + hfs_ubc_setsize(vp, fp->ff_size, true); + } + } + +Std_Exit: + cp->c_touch_chgtime = TRUE; + cp->c_touch_modtime = TRUE; + retval2 = hfs_update(vp, MNT_WAIT); + + if (retval == 0) + retval = retval2; +Err_Exit: + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + hfs_unlock(cp); + return (retval); +} + + +/* + * Pagein for HFS filesystem + */ +int +hfs_vnop_pagein(struct vnop_pagein_args *ap) +/* + struct vnop_pagein_args { + vnode_t a_vp, + upl_t a_pl, + vm_offset_t a_pl_offset, + off_t a_f_offset, + size_t a_size, + int a_flags + vfs_context_t a_context; + }; +*/ +{ + vnode_t vp; + struct cnode *cp; + struct filefork *fp; + int error = 0; + upl_t upl; + upl_page_info_t *pl; + off_t f_offset; + off_t page_needed_f_offset; + int offset; + int isize; + int upl_size; + int pg_index; + boolean_t truncate_lock_held = FALSE; + boolean_t file_converted = FALSE; + kern_return_t kret; + + vp = ap->a_vp; + cp = VTOC(vp); + fp = VTOF(vp); + +#if CONFIG_PROTECT + if ((error = cp_handle_vnop(vp, CP_READ_ACCESS | CP_WRITE_ACCESS, 0)) != 0) { + /* + * If we errored here, then this means that one of two things occurred: + * 1. there was a problem with the decryption of the key. + * 2. the device is locked and we are not allowed to access this particular file. + * + * Either way, this means that we need to shut down this upl now. As long as + * the pl pointer is NULL (meaning that we're supposed to create the UPL ourselves) + * then we create a upl and immediately abort it. + */ + if (ap->a_pl == NULL) { + /* create the upl */ + ubc_create_upl (vp, ap->a_f_offset, ap->a_size, &upl, &pl, + UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT); + /* mark the range as needed so it doesn't immediately get discarded upon abort */ + ubc_upl_range_needed (upl, ap->a_pl_offset / PAGE_SIZE, 1); + + /* Abort the range */ + ubc_upl_abort_range (upl, 0, ap->a_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); + } + + + return error; + } +#endif /* CONFIG_PROTECT */ + + if (ap->a_pl != NULL) { /* - * If we don't already know the filesystem relative block - * number then get it using VOP_BMAP(). If VOP_BMAP() - * returns the block number as -1 then we've got a hole in - * the file. Although HFS filesystems don't create files with - * holes, invalidating of subranges of the file (lazy zero - * filling) may create such a situation. + * this can only happen for swap files now that + * we're asking for V2 paging behavior... + * so don't need to worry about decompression, or + * keeping track of blocks read or taking the truncate lock + */ + error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, + ap->a_size, (off_t)fp->ff_size, ap->a_flags); + goto pagein_done; + } + + page_needed_f_offset = ap->a_f_offset + ap->a_pl_offset; + +retry_pagein: + /* + * take truncate lock (shared/recursive) to guard against + * zero-fill thru fsync interfering, but only for v2 + * + * the HFS_RECURSE_TRUNCLOCK arg indicates that we want the + * lock shared and we are allowed to recurse 1 level if this thread already + * owns the lock exclusively... this can legally occur + * if we are doing a shrinking ftruncate against a file + * that is mapped private, and the pages being truncated + * do not currently exist in the cache... in that case + * we will have to page-in the missing pages in order + * to provide them to the private mapping... we must + * also call hfs_unlock_truncate with a postive been_recursed + * arg to indicate that if we have recursed, there is no need to drop + * the lock. Allowing this simple recursion is necessary + * in order to avoid a certain deadlock... since the ftruncate + * already holds the truncate lock exclusively, if we try + * to acquire it shared to protect the pagein path, we will + * hang this thread + * + * NOTE: The if () block below is a workaround in order to prevent a + * VM deadlock. See rdar://7853471. + * + * If we are in a forced unmount, then launchd will still have the + * dyld_shared_cache file mapped as it is trying to reboot. If we + * take the truncate lock here to service a page fault, then our + * thread could deadlock with the forced-unmount. The forced unmount + * thread will try to reclaim the dyld_shared_cache vnode, but since it's + * marked C_DELETED, it will call ubc_setsize(0). As a result, the unmount + * thread will think it needs to copy all of the data out of the file + * and into a VM copy object. If we hold the cnode lock here, then that + * VM operation will not be able to proceed, because we'll set a busy page + * before attempting to grab the lock. Note that this isn't as simple as "don't + * call ubc_setsize" because doing that would just shift the problem to the + * ubc_msync done before the vnode is reclaimed. + * + * So, if a forced unmount on this volume is in flight AND the cnode is + * marked C_DELETED, then just go ahead and do the page in without taking + * the lock (thus suspending pagein_v2 semantics temporarily). Since it's on a file + * that is not going to be available on the next mount, this seems like a + * OK solution from a correctness point of view, even though it is hacky. + */ + if (vfs_isforce(vp->v_mount)) { + if (cp->c_flag & C_DELETED) { + /* If we don't get it, then just go ahead and operate without the lock */ + truncate_lock_held = hfs_try_trunclock(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); + } + } + else { + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); + truncate_lock_held = TRUE; + } + + kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT); + + if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) { + error = EINVAL; + goto pagein_done; + } + ubc_upl_range_needed(upl, ap->a_pl_offset / PAGE_SIZE, 1); + + upl_size = isize = ap->a_size; + + /* + * Scan from the back to find the last page in the UPL, so that we + * aren't looking at a UPL that may have already been freed by the + * preceding aborts/completions. + */ + for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { + if (upl_page_present(pl, --pg_index)) + break; + if (pg_index == 0) { + /* + * no absent pages were found in the range specified + * just abort the UPL to get rid of it and then we're done + */ + ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); + goto pagein_done; + } + } + /* + * initialize the offset variables before we touch the UPL. + * f_offset is the position into the file, in bytes + * offset is the position into the UPL, in bytes + * pg_index is the pg# of the UPL we're operating on + * isize is the offset into the UPL of the last page that is present. + */ + isize = ((pg_index + 1) * PAGE_SIZE); + pg_index = 0; + offset = 0; + f_offset = ap->a_f_offset; + + while (isize) { + int xsize; + int num_of_pages; + + if ( !upl_page_present(pl, pg_index)) { + /* + * we asked for RET_ONLY_ABSENT, so it's possible + * to get back empty slots in the UPL. + * just skip over them + */ + f_offset += PAGE_SIZE; + offset += PAGE_SIZE; + isize -= PAGE_SIZE; + pg_index++; + + continue; + } + /* + * We know that we have at least one absent page. + * Now checking to see how many in a row we have */ - if (bp->b_blkno == bp->b_lblkno) { - offset = (off_t) bp->b_lblkno * - (off_t) GetLogicalBlockSize(vp); - - if ((retval = VOP_CMAP(vp, offset, bp->b_bcount, - &bp->b_blkno, &bytes_contig, NULL))) { - bp->b_error = retval; - bp->b_flags |= B_ERROR; - biodone(bp); - return (retval); - } - if (bytes_contig < bp->b_bcount) - { + num_of_pages = 1; + xsize = isize - PAGE_SIZE; + + while (xsize) { + if ( !upl_page_present(pl, pg_index + num_of_pages)) + break; + num_of_pages++; + xsize -= PAGE_SIZE; + } + xsize = num_of_pages * PAGE_SIZE; + +#if HFS_COMPRESSION + if (VNODE_IS_RSRC(vp)) { + /* allow pageins of the resource fork */ + } else { + int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ + + if (compressed) { + + if (truncate_lock_held) { + /* + * can't hold the truncate lock when calling into the decmpfs layer + * since it calls back into this layer... even though we're only + * holding the lock in shared mode, and the re-entrant path only + * takes the lock shared, we can deadlock if some other thread + * tries to grab the lock exclusively in between. + */ + hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); + truncate_lock_held = FALSE; + } + ap->a_pl = upl; + ap->a_pl_offset = offset; + ap->a_f_offset = f_offset; + ap->a_size = xsize; + + error = decmpfs_pagein_compressed(ap, &compressed, VTOCMP(vp)); + /* + * note that decpfs_pagein_compressed can change the state of + * 'compressed'... it will set it to 0 if the file is no longer + * compressed once the compression lock is successfully taken + * i.e. we would block on that lock while the file is being inflated + */ + if (compressed) { + if (error == 0) { + /* successful page-in, update the access time */ + VTOC(vp)->c_touch_acctime = TRUE; + + /* compressed files are not hot file candidates */ + if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { + fp->ff_bytesread = 0; + } + } else if (error == EAGAIN) { + /* + * EAGAIN indicates someone else already holds the compression lock... + * to avoid deadlocking, we'll abort this range of pages with an + * indication that the pagein needs to be redriven + */ + ubc_upl_abort_range(upl, (upl_offset_t) offset, xsize, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_RESTART); + } else if (error == ENOSPC) { + + if (upl_size == PAGE_SIZE) + panic("decmpfs_pagein_compressed: couldn't ubc_upl_map a single page\n"); + + ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY); + + ap->a_size = PAGE_SIZE; + ap->a_pl = NULL; + ap->a_pl_offset = 0; + ap->a_f_offset = page_needed_f_offset; + + goto retry_pagein; + } + goto pagein_next_range; + } + else { + /* + * Set file_converted only if the file became decompressed while we were + * paging in. If it were still compressed, we would re-start the loop using the goto + * in the above block. This avoid us overloading truncate_lock_held as our retry_pagein + * condition below, since we could have avoided taking the truncate lock to prevent + * a deadlock in the force unmount case. + */ + file_converted = TRUE; + } + } + if (file_converted == TRUE) { /* - * We were asked to read a block that wasn't - * contiguous, so we have to read each of the - * pieces and copy them into the buffer. - * Since ordinary file I/O goes through - * cluster_io (which won't ask us for - * discontiguous data), this is probably an - * attempt to read or write metadata. + * the file was converted back to a regular file after we first saw it as compressed + * we need to abort the upl, retake the truncate lock, recreate the UPL and start over + * reset a_size so that we consider what remains of the original request + * and null out a_upl and a_pl_offset. + * + * We should only be able to get into this block if the decmpfs_pagein_compressed + * successfully decompressed the range in question for this file. */ - return hfs_strategy_fragmented(bp); + ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY); + + ap->a_size = isize; + ap->a_pl = NULL; + ap->a_pl_offset = 0; + + /* Reset file_converted back to false so that we don't infinite-loop. */ + file_converted = FALSE; + goto retry_pagein; } - if ((long)bp->b_blkno == -1) - clrbuf(bp); } - if ((long)bp->b_blkno == -1) { - biodone(bp); - return (0); - } - if (bp->b_validend == 0) { +#endif + error = cluster_pagein(vp, upl, offset, f_offset, xsize, (off_t)fp->ff_size, ap->a_flags); + + /* + * Keep track of blocks read. + */ + if ( !vnode_isswap(vp) && VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) { + int bytesread; + int took_cnode_lock = 0; + + if (ap->a_f_offset == 0 && fp->ff_size < PAGE_SIZE) + bytesread = fp->ff_size; + else + bytesread = xsize; + + /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ + if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff && cp->c_lockowner != current_thread()) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + took_cnode_lock = 1; + } /* - * Record the exact size of the I/O transfer about to - * be made: + * If this file hasn't been seen since the start of + * the current sampling period then start over. */ - bp->b_validend = bp->b_bcount; + if (cp->c_atime < VTOHFS(vp)->hfc_timebase) { + struct timeval tv; + + fp->ff_bytesread = bytesread; + microtime(&tv); + cp->c_atime = tv.tv_sec; + } else { + fp->ff_bytesread += bytesread; + } + cp->c_touch_acctime = TRUE; + if (took_cnode_lock) + hfs_unlock(cp); } +pagein_next_range: + f_offset += xsize; + offset += xsize; + isize -= xsize; + pg_index += num_of_pages; + + error = 0; } - vp = cp->c_devvp; - bp->b_dev = vp->v_rdev; - return VOCALL (vp->v_op, VOFFSET(vop_strategy), ap); -} +pagein_done: + if (truncate_lock_held == TRUE) { + /* Note 1 is passed to hfs_unlock_truncate in been_recursed argument */ + hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); + } + return (error); +} -/* -# -#% truncate vp L L L -# -vop_truncate { - IN struct vnode *vp; - IN off_t length; - IN int flags; (IO_SYNC) - IN struct ucred *cred; - IN struct proc *p; -}; - * Truncate a cnode to at most length size, freeing (or adding) the - * disk blocks. +/* + * Pageout for HFS filesystem. */ -int hfs_truncate(ap) - struct vop_truncate_args /* { - struct vnode *a_vp; - off_t a_length; - int a_flags; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; +int +hfs_vnop_pageout(struct vnop_pageout_args *ap) +/* + struct vnop_pageout_args { + vnode_t a_vp, + upl_t a_pl, + vm_offset_t a_pl_offset, + off_t a_f_offset, + size_t a_size, + int a_flags + vfs_context_t a_context; + }; +*/ { - register struct vnode *vp = ap->a_vp; - register struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - off_t length; - long vflags; - struct timeval tv; - int retval; - off_t bytesToAdd; - off_t actualBytesAdded; - off_t filebytes; - u_long fileblocks; - int blksize; - struct hfsmount *hfsmp; - - if (vp->v_type != VREG && vp->v_type != VLNK) - return (EISDIR); /* cannot truncate an HFS directory! */ + vnode_t vp = ap->a_vp; + struct cnode *cp; + struct filefork *fp; + int retval = 0; + off_t filesize; + upl_t upl; + upl_page_info_t* pl; + vm_offset_t a_pl_offset; + int a_flags; + int is_pageoutv2 = 0; + kern_return_t kret; - length = ap->a_length; - blksize = VTOVCB(vp)->blockSize; - fileblocks = fp->ff_blocks; - filebytes = (off_t)fileblocks * (off_t)blksize; + cp = VTOC(vp); + fp = VTOF(vp); + + /* + * Figure out where the file ends, for pageout purposes. If + * ff_new_size > ff_size, then we're in the middle of extending the + * file via a write, so it is safe (and necessary) that we be able + * to pageout up to that point. + */ + filesize = fp->ff_size; + if (fp->ff_new_size > filesize) + filesize = fp->ff_new_size; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_START, - (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); + a_flags = ap->a_flags; + a_pl_offset = ap->a_pl_offset; - if (length < 0) - return (EINVAL); + /* + * we can tell if we're getting the new or old behavior from the UPL + */ + if ((upl = ap->a_pl) == NULL) { + int request_flags; - if ((!ISHFSPLUS(VTOVCB(vp))) && (length > (off_t)MAXHFSFILESIZE)) - return (EFBIG); + is_pageoutv2 = 1; + /* + * we're in control of any UPL we commit + * make sure someone hasn't accidentally passed in UPL_NOCOMMIT + */ + a_flags &= ~UPL_NOCOMMIT; + a_pl_offset = 0; - hfsmp = VTOHFS(vp); + /* + * For V2 semantics, we want to take the cnode truncate lock + * shared to guard against the file size changing via zero-filling. + * + * However, we have to be careful because we may be invoked + * via the ubc_msync path to write out dirty mmap'd pages + * in response to a lock event on a content-protected + * filesystem (e.g. to write out class A files). + * As a result, we want to take the truncate lock 'SHARED' with + * the mini-recursion locktype so that we don't deadlock/panic + * because we may be already holding the truncate lock exclusive to force any other + * IOs to have blocked behind us. + */ + hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); - tv = time; - retval = E_NONE; + if (a_flags & UPL_MSYNC) { + request_flags = UPL_UBC_MSYNC | UPL_RET_ONLY_DIRTY; + } + else { + request_flags = UPL_UBC_PAGEOUT | UPL_RET_ONLY_DIRTY; + } + + kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, request_flags); - /* - * We cannot just check if fp->ff_size == length (as an optimization) - * since there may be extra physical blocks that also need truncation. + if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) { + retval = EINVAL; + goto pageout_done; + } + } + /* + * from this point forward upl points at the UPL we're working with + * it was either passed in or we succesfully created it */ -#if QUOTA - if (retval = hfs_getinoquota(cp)) - return(retval); -#endif /* QUOTA */ - /* - * Lengthen the size of the file. We must ensure that the - * last byte of the file is allocated. Since the smallest - * value of ff_size is 0, length will be at least 1. + /* + * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own + * UPL instead of relying on the UPL passed into us. We go ahead and do that here, + * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for + * N dirty ranges in the UPL. Note that this is almost a direct copy of the + * logic in vnode_pageout except that we need to do it after grabbing the truncate + * lock in HFS so that we don't lock invert ourselves. + * + * Note that we can still get into this function on behalf of the default pager with + * non-V2 behavior (swapfiles). However in that case, we did not grab locks above + * since fsync and other writing threads will grab the locks, then mark the + * relevant pages as busy. But the pageout codepath marks the pages as busy, + * and THEN would attempt to grab the truncate lock, which would result in deadlock. So + * we do not try to grab anything for the pre-V2 case, which should only be accessed + * by the paging/VM system. */ - if (length > fp->ff_size) { -#if QUOTA - retval = hfs_chkdq(cp, (int64_t)(roundup(length - filebytes, blksize)), - ap->a_cred, 0); - if (retval) - goto Err_Exit; -#endif /* QUOTA */ - /* - * If we don't have enough physical space then - * we need to extend the physical size. - */ - if (length > filebytes) { - int eflags; - /* All or nothing and don't round up to clumpsize. */ - eflags = kEFAllMask | kEFNoClumpMask; + if (is_pageoutv2) { + off_t f_offset; + int offset; + int isize; + int pg_index; + int error; + int error_ret = 0; - if (suser(ap->a_cred, NULL) != 0) - eflags |= kEFReserveMask; /* keep a reserve */ + isize = ap->a_size; + f_offset = ap->a_f_offset; - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } + /* + * Scan from the back to find the last page in the UPL, so that we + * aren't looking at a UPL that may have already been freed by the + * preceding aborts/completions. + */ + for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { + if (upl_page_present(pl, --pg_index)) + break; + if (pg_index == 0) { + ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); + goto pageout_done; } + } - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - - goto Err_Exit; - } + /* + * initialize the offset variables before we touch the UPL. + * a_f_offset is the position into the file, in bytes + * offset is the position into the UPL, in bytes + * pg_index is the pg# of the UPL we're operating on. + * isize is the offset into the UPL of the last non-clean page. + */ + isize = ((pg_index + 1) * PAGE_SIZE); - while ((length > filebytes) && (retval == E_NONE)) { - bytesToAdd = length - filebytes; - retval = MacToVFSError(ExtendFileC(VTOVCB(vp), - (FCB*)fp, - bytesToAdd, - 0, - eflags, - &actualBytesAdded)); + offset = 0; + pg_index = 0; - filebytes = (off_t)fp->ff_blocks * (off_t)blksize; - if (actualBytesAdded == 0 && retval == E_NONE) { - if (length > filebytes) - length = filebytes; - break; - } - } /* endwhile */ + while (isize) { + int xsize; + int num_of_pages; - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); + if ( !upl_page_present(pl, pg_index)) { + /* + * we asked for RET_ONLY_DIRTY, so it's possible + * to get back empty slots in the UPL. + * just skip over them + */ + f_offset += PAGE_SIZE; + offset += PAGE_SIZE; + isize -= PAGE_SIZE; + pg_index++; - // XXXdbg - if (hfsmp->jnl) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); + continue; + } + if ( !upl_dirty_page(pl, pg_index)) { + panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index, upl); + } - if (retval) - goto Err_Exit; + /* + * We know that we have at least one dirty page. + * Now checking to see how many in a row we have + */ + num_of_pages = 1; + xsize = isize - PAGE_SIZE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE, - (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); + while (xsize) { + if ( !upl_dirty_page(pl, pg_index + num_of_pages)) + break; + num_of_pages++; + xsize -= PAGE_SIZE; + } + xsize = num_of_pages * PAGE_SIZE; + + if (!vnode_isswap(vp)) { + off_t end_of_range; + int tooklock; + + tooklock = 0; + + if (cp->c_lockowner != current_thread()) { + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + /* + * we're in the v2 path, so we are the + * owner of the UPL... we may have already + * processed some of the UPL, so abort it + * from the current working offset to the + * end of the UPL + */ + ubc_upl_abort_range(upl, + offset, + ap->a_size - offset, + UPL_ABORT_FREE_ON_EMPTY); + goto pageout_done; + } + tooklock = 1; + } + end_of_range = f_offset + xsize - 1; + + if (end_of_range >= filesize) { + end_of_range = (off_t)(filesize - 1); + } + if (f_offset < filesize) { + rl_remove(f_offset, end_of_range, &fp->ff_invalidranges); + cp->c_flag |= C_MODIFIED; /* leof is dirty */ + } + if (tooklock) { + hfs_unlock(cp); + } + } + if ((error = cluster_pageout(vp, upl, offset, f_offset, + xsize, filesize, a_flags))) { + if (error_ret == 0) + error_ret = error; + } + f_offset += xsize; + offset += xsize; + isize -= xsize; + pg_index += num_of_pages; } - - if (!(ap->a_flags & IO_NOZEROFILL)) { - if (UBCINFOEXISTS(vp) && retval == E_NONE) { - struct rl_entry *invalid_range; - int devBlockSize; - off_t zero_limit; - - zero_limit = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; - if (length < zero_limit) zero_limit = length; - - if (length > fp->ff_size) { - /* Extending the file: time to fill out the current last page w. zeroes? */ - if ((fp->ff_size & PAGE_MASK_64) && - (rl_scan(&fp->ff_invalidranges, fp->ff_size & ~PAGE_MASK_64, - fp->ff_size - 1, &invalid_range) == RL_NOOVERLAP)) { - - /* There's some valid data at the start of the (current) last page - of the file, so zero out the remainder of that page to ensure the - entire page contains valid data. Since there is no invalid range - possible past the (current) eof, there's no need to remove anything - from the invalid range list before calling cluster_write(): */ - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); - retval = cluster_write(vp, (struct uio *) 0, fp->ff_size, zero_limit, - fp->ff_size, (off_t)0, devBlockSize, - (ap->a_flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY); - if (retval) goto Err_Exit; - - /* Merely invalidate the remaining area, if necessary: */ - if (length > zero_limit) { - rl_add(zero_limit, length - 1, &fp->ff_invalidranges); - cp->c_zftimeout = time.tv_sec + ZFTIMELIMIT; - } - } else { - /* The page containing the (current) eof is invalid: just add the - remainder of the page to the invalid list, along with the area - being newly allocated: - */ - rl_add(fp->ff_size, length - 1, &fp->ff_invalidranges); - cp->c_zftimeout = time.tv_sec + ZFTIMELIMIT; - }; + /* capture errnos bubbled out of cluster_pageout if they occurred */ + if (error_ret != 0) { + retval = error_ret; + } + } /* end block for v2 pageout behavior */ + else { + if (!vnode_isswap(vp)) { + off_t end_of_range; + int tooklock = 0; + + if (cp->c_lockowner != current_thread()) { + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { + if (!(a_flags & UPL_NOCOMMIT)) { + ubc_upl_abort_range(upl, + a_pl_offset, + ap->a_size, + UPL_ABORT_FREE_ON_EMPTY); + } + goto pageout_done; } - } else { - panic("hfs_truncate: invoked on non-UBC object?!"); - }; + tooklock = 1; + } + end_of_range = ap->a_f_offset + ap->a_size - 1; + + if (end_of_range >= filesize) { + end_of_range = (off_t)(filesize - 1); + } + if (ap->a_f_offset < filesize) { + rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges); + cp->c_flag |= C_MODIFIED; /* leof is dirty */ + } + + if (tooklock) { + hfs_unlock(cp); + } } - cp->c_flag |= C_UPDATE; - fp->ff_size = length; + /* + * just call cluster_pageout for old pre-v2 behavior + */ + retval = cluster_pageout(vp, upl, a_pl_offset, ap->a_f_offset, + ap->a_size, filesize, a_flags); + } - if (UBCISVALID(vp)) - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ + /* + * If data was written, update the modification time of the file + * but only if it's mapped writable; we will have touched the + * modifcation time for direct writes. + */ + if (retval == 0 && (ubc_is_mapped_writable(vp) + || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING))) { + hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); - } else { /* Shorten the size of the file */ + // Check again with lock + bool mapped_writable = ubc_is_mapped_writable(vp); + if (mapped_writable + || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING)) { + cp->c_touch_modtime = TRUE; + cp->c_touch_chgtime = TRUE; - if (fp->ff_size > length) { /* - * Any buffers that are past the truncation point need to be - * invalidated (to maintain buffer cache consistency). For - * simplicity, we invalidate all the buffers by calling vinvalbuf. + * We only need to increment the generation counter if + * it's currently mapped writable because we incremented + * the counter in hfs_vnop_mnomap. */ - if (UBCISVALID(vp)) - ubc_setsize(vp, length); /* XXX check errors */ + if (mapped_writable) + hfs_incr_gencount(VTOC(vp)); - vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA; - retval = vinvalbuf(vp, vflags, ap->a_cred, ap->a_p, 0, 0); - - /* Any space previously marked as invalid is now irrelevant: */ - rl_remove(length, fp->ff_size - 1, &fp->ff_invalidranges); + /* + * If setuid or setgid bits are set and this process is + * not the superuser then clear the setuid and setgid bits + * as a precaution against tampering. + */ + if ((cp->c_mode & (S_ISUID | S_ISGID)) && + (vfs_context_suser(ap->a_context) != 0)) { + cp->c_mode &= ~(S_ISUID | S_ISGID); + } } + hfs_unlock(cp); + } + +pageout_done: + if (is_pageoutv2) { /* - * Account for any unmapped blocks. Note that the new - * file length can still end up with unmapped blocks. + * Release the truncate lock. Note that because + * we may have taken the lock recursively by + * being invoked via ubc_msync due to lockdown, + * we should release it recursively, too. */ - if (fp->ff_unallocblocks > 0) { - u_int32_t finalblks; - - /* lock extents b-tree */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, - LK_EXCLUSIVE, ap->a_p); - if (retval) - goto Err_Exit; + hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); + } + return (retval); +} - VTOVCB(vp)->loanedBlocks -= fp->ff_unallocblocks; - cp->c_blocks -= fp->ff_unallocblocks; - fp->ff_blocks -= fp->ff_unallocblocks; - fp->ff_unallocblocks = 0; +/* + * Intercept B-Tree node writes to unswap them if necessary. + */ +int +hfs_vnop_bwrite(struct vnop_bwrite_args *ap) +{ + int retval = 0; + register struct buf *bp = ap->a_bp; + register struct vnode *vp = buf_vnode(bp); + BlockDescriptor block; - finalblks = (length + blksize - 1) / blksize; - if (finalblks > fp->ff_blocks) { - /* calculate required unmapped blocks */ - fp->ff_unallocblocks = finalblks - fp->ff_blocks; - VTOVCB(vp)->loanedBlocks += fp->ff_unallocblocks; - cp->c_blocks += fp->ff_unallocblocks; - fp->ff_blocks += fp->ff_unallocblocks; - } - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, - LK_RELEASE, ap->a_p); - } + /* Trap B-Tree writes */ + if ((VTOC(vp)->c_fileid == kHFSExtentsFileID) || + (VTOC(vp)->c_fileid == kHFSCatalogFileID) || + (VTOC(vp)->c_fileid == kHFSAttributesFileID) || + (vp == VTOHFS(vp)->hfc_filevp)) { - /* - * For a TBE process the deallocation of the file blocks is - * delayed until the file is closed. And hfs_close calls - * truncate with the IO_NDELAY flag set. So when IO_NDELAY - * isn't set, we make sure this isn't a TBE process. + /* + * Swap and validate the node if it is in native byte order. + * This is always be true on big endian, so we always validate + * before writing here. On little endian, the node typically has + * been swapped and validated when it was written to the journal, + * so we won't do anything here. */ - if ((ap->a_flags & IO_NDELAY) || (!ISSET(ap->a_p->p_flag, P_TBE))) { -#if QUOTA - off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize); -#endif /* QUOTA */ - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } - } - - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - goto Err_Exit; - } - - if (fp->ff_unallocblocks == 0) - retval = MacToVFSError(TruncateFileC(VTOVCB(vp), - (FCB*)fp, length, false)); - - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); - - // XXXdbg - if (hfsmp->jnl) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - - filebytes = (off_t)fp->ff_blocks * (off_t)blksize; + if (((u_int16_t *)((char *)buf_dataptr(bp) + buf_count(bp) - 2))[0] == 0x000e) { + /* Prepare the block pointer */ + block.blockHeader = bp; + block.buffer = (char *)buf_dataptr(bp); + block.blockNum = buf_lblkno(bp); + /* not found in cache ==> came from disk */ + block.blockReadFromDisk = (buf_fromcache(bp) == 0); + block.blockSize = buf_count(bp); + + /* Endian un-swap B-Tree node */ + retval = hfs_swap_BTNode (&block, vp, kSwapBTNodeHostToBig, false); if (retval) - goto Err_Exit; -#if QUOTA - /* These are bytesreleased */ - (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0); -#endif /* QUOTA */ + panic("hfs_vnop_bwrite: about to write corrupt node!\n"); } - /* Only set update flag if the logical length changes */ - if (fp->ff_size != length) - cp->c_flag |= C_UPDATE; - fp->ff_size = length; - } - cp->c_flag |= C_CHANGE; - retval = VOP_UPDATE(vp, &tv, &tv, MNT_WAIT); - if (retval) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE, - -1, -1, -1, retval, 0); } -Err_Exit: - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_END, - (int)length, (int)fp->ff_size, (int)filebytes, retval, 0); + /* This buffer shouldn't be locked anymore but if it is clear it */ + if ((buf_flags(bp) & B_LOCKED)) { + // XXXdbg + if (VTOHFS(vp)->jnl) { + panic("hfs: CLEARING the lock bit on bp %p\n", bp); + } + buf_clearflags(bp, B_LOCKED); + } + retval = vn_bwrite (ap); return (retval); } - - /* -# -#% allocate vp L L L -# -vop_allocate { - IN struct vnode *vp; - IN off_t length; - IN int flags; - OUT off_t *bytesallocated; - IN off_t offset; - IN struct ucred *cred; - IN struct proc *p; -}; - * allocate a cnode to at most length size + * Relocate a file to a new location on disk + * cnode must be locked on entry + * + * Relocation occurs by cloning the file's data from its + * current set of blocks to a new set of blocks. During + * the relocation all of the blocks (old and new) are + * owned by the file. + * + * ----------------- + * |///////////////| + * ----------------- + * 0 N (file offset) + * + * ----------------- ----------------- + * |///////////////| | | STEP 1 (acquire new blocks) + * ----------------- ----------------- + * 0 N N+1 2N + * + * ----------------- ----------------- + * |///////////////| |///////////////| STEP 2 (clone data) + * ----------------- ----------------- + * 0 N N+1 2N + * + * ----------------- + * |///////////////| STEP 3 (head truncate blocks) + * ----------------- + * 0 N + * + * During steps 2 and 3 page-outs to file offsets less + * than or equal to N are suspended. + * + * During step 3 page-ins to the file get suspended. */ -int hfs_allocate(ap) - struct vop_allocate_args /* { - struct vnode *a_vp; - off_t a_length; - u_int32_t a_flags; - off_t *a_bytesallocated; - off_t a_offset; - struct ucred *a_cred; - struct proc *a_p; - } */ *ap; +int +hfs_relocate(struct vnode *vp, u_int32_t blockHint, kauth_cred_t cred, + struct proc *p) { - struct vnode *vp = ap->a_vp; - struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - off_t length = ap->a_length; - off_t startingPEOF; - off_t moreBytesRequested; - off_t actualBytesAdded; - off_t filebytes; - u_long fileblocks; - long vflags; - struct timeval tv; - int retval, retval2; - UInt32 blockHint; - UInt32 extendFlags =0; /* For call to ExtendFileC */ - struct hfsmount *hfsmp; - + struct cnode *cp; + struct filefork *fp; + struct hfsmount *hfsmp; + u_int32_t headblks; + u_int32_t datablks; + u_int32_t blksize; + u_int32_t growsize; + u_int32_t nextallocsave; + daddr64_t sector_a, sector_b; + int eflags; + off_t newbytes; + int retval; + int lockflags = 0; + int took_trunc_lock = 0; + int started_tr = 0; + enum vtype vnodetype; + + vnodetype = vnode_vtype(vp); + if (vnodetype != VREG) { + /* Not allowed to move symlinks. */ + return (EPERM); + } + hfsmp = VTOHFS(vp); + if (hfsmp->hfs_flags & HFS_FRAGMENTED_FREESPACE) { + return (ENOSPC); + } - *(ap->a_bytesallocated) = 0; - fileblocks = fp->ff_blocks; - filebytes = (off_t)fileblocks * (off_t)VTOVCB(vp)->blockSize; - - if (length < (off_t)0) - return (EINVAL); - if (vp->v_type != VREG && vp->v_type != VLNK) - return (EISDIR); - if ((ap->a_flags & ALLOCATEFROMVOL) && (length <= filebytes)) + cp = VTOC(vp); + fp = VTOF(vp); + if (fp->ff_unallocblocks) return (EINVAL); - /* Fill in the flags word for the call to Extend the file */ - - if (ap->a_flags & ALLOCATECONTIG) - extendFlags |= kEFContigMask; +#if CONFIG_PROTECT + /* + * + * Disable HFS file relocation on content-protected filesystems + */ + if (cp_fs_protected (hfsmp->hfs_mp)) { + return EINVAL; + } +#endif + /* If it's an SSD, also disable HFS relocation */ + if (hfsmp->hfs_flags & HFS_SSD) { + return EINVAL; + } - if (ap->a_flags & ALLOCATEALL) - extendFlags |= kEFAllMask; - if (suser(ap->a_cred, NULL) != 0) - extendFlags |= kEFReserveMask; + blksize = hfsmp->blockSize; + if (blockHint == 0) + blockHint = hfsmp->nextAllocation; - tv = time; - retval = E_NONE; - blockHint = 0; - startingPEOF = filebytes; + if (fp->ff_size > 0x7fffffff) { + return (EFBIG); + } - if (ap->a_flags & ALLOCATEFROMPEOF) - length += filebytes; - else if (ap->a_flags & ALLOCATEFROMVOL) - blockHint = ap->a_offset / VTOVCB(vp)->blockSize; + // + // We do not believe that this call to hfs_fsync() is + // necessary and it causes a journal transaction + // deadlock so we are removing it. + // + //if (vnodetype == VREG && !vnode_issystem(vp)) { + // retval = hfs_fsync(vp, MNT_WAIT, 0, p); + // if (retval) + // return (retval); + //} + + if (!vnode_issystem(vp) && (vnodetype != VLNK)) { + hfs_unlock(cp); + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); + /* Force lock since callers expects lock to be held. */ + if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS))) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return (retval); + } + /* No need to continue if file was removed. */ + if (cp->c_flag & C_NOEXISTS) { + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return (ENOENT); + } + took_trunc_lock = 1; + } + headblks = fp->ff_blocks; + datablks = howmany(fp->ff_size, blksize); + growsize = datablks * blksize; + eflags = kEFContigMask | kEFAllMask | kEFNoClumpMask; + if (blockHint >= hfsmp->hfs_metazone_start && + blockHint <= hfsmp->hfs_metazone_end) + eflags |= kEFMetadataMask; + + if (hfs_start_transaction(hfsmp) != 0) { + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + return (EINVAL); + } + started_tr = 1; + /* + * Protect the extents b-tree and the allocation bitmap + * during MapFileBlockC and ExtendFileC operations. + */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); - /* If no changes are necesary, then we're done */ - if (filebytes == length) - goto Std_Exit; + retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize - 1, §or_a, NULL); + if (retval) { + retval = MacToVFSError(retval); + goto out; + } /* - * Lengthen the size of the file. We must ensure that the - * last byte of the file is allocated. Since the smallest - * value of filebytes is 0, length will be at least 1. + * STEP 1 - acquire new allocation blocks. */ - if (length > filebytes) { - moreBytesRequested = length - filebytes; - -#if QUOTA - retval = hfs_chkdq(cp, - (int64_t)(roundup(moreBytesRequested, VTOVCB(vp)->blockSize)), - ap->a_cred, 0); - if (retval) - return (retval); + nextallocsave = hfsmp->nextAllocation; + retval = ExtendFileC(hfsmp, (FCB*)fp, growsize, blockHint, eflags, &newbytes); + if (eflags & kEFMetadataMask) { + hfs_lock_mount(hfsmp); + HFS_UPDATE_NEXT_ALLOCATION(hfsmp, nextallocsave); + MarkVCBDirty(hfsmp); + hfs_unlock_mount(hfsmp); + } -#endif /* QUOTA */ - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } + retval = MacToVFSError(retval); + if (retval == 0) { + cp->c_flag |= C_MODIFIED; + if (newbytes < growsize) { + retval = ENOSPC; + goto restore; + } else if (fp->ff_blocks < (headblks + datablks)) { + printf("hfs_relocate: allocation failed id=%u, vol=%s\n", cp->c_cnid, hfsmp->vcbVN); + retval = ENOSPC; + goto restore; } - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); + retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize, §or_b, NULL); if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); + retval = MacToVFSError(retval); + } else if ((sector_a + 1) == sector_b) { + retval = ENOSPC; + goto restore; + } else if ((eflags & kEFMetadataMask) && + ((((u_int64_t)sector_b * hfsmp->hfs_logical_block_size) / blksize) > + hfsmp->hfs_metazone_end)) { +#if 0 + const char * filestr; + char emptystr = '\0'; + + if (cp->c_desc.cd_nameptr != NULL) { + filestr = (const char *)&cp->c_desc.cd_nameptr[0]; + } else if (vnode_name(vp) != NULL) { + filestr = vnode_name(vp); + } else { + filestr = &emptystr; } - hfs_global_shared_lock_release(hfsmp); - goto Err_Exit; - } - - retval = MacToVFSError(ExtendFileC(VTOVCB(vp), - (FCB*)fp, - moreBytesRequested, - blockHint, - extendFlags, - &actualBytesAdded)); - - *(ap->a_bytesallocated) = actualBytesAdded; - filebytes = (off_t)fp->ff_blocks * (off_t)VTOVCB(vp)->blockSize; - - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); - - // XXXdbg - if (hfsmp->jnl) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); +#endif + retval = ENOSPC; + goto restore; } - hfs_global_shared_lock_release(hfsmp); + } + /* Done with system locks and journal for now. */ + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; + hfs_end_transaction(hfsmp); + started_tr = 0; + if (retval) { /* - * if we get an error and no changes were made then exit - * otherwise we must do the VOP_UPDATE to reflect the changes - */ - if (retval && (startingPEOF == filebytes)) - goto Err_Exit; - - /* - * Adjust actualBytesAdded to be allocation block aligned, not - * clump size aligned. - * NOTE: So what we are reporting does not affect reality - * until the file is closed, when we truncate the file to allocation - * block size. + * Check to see if failure is due to excessive fragmentation. */ - if ((actualBytesAdded != 0) && (moreBytesRequested < actualBytesAdded)) - *(ap->a_bytesallocated) = - roundup(moreBytesRequested, (off_t)VTOVCB(vp)->blockSize); - - } else { /* Shorten the size of the file */ - - if (fp->ff_size > length) { - /* - * Any buffers that are past the truncation point need to be - * invalidated (to maintain buffer cache consistency). For - * simplicity, we invalidate all the buffers by calling vinvalbuf. - */ - vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA; - (void) vinvalbuf(vp, vflags, ap->a_cred, ap->a_p, 0, 0); - } - - // XXXdbg - hfs_global_shared_lock_acquire(hfsmp); - if (hfsmp->jnl) { - if (journal_start_transaction(hfsmp->jnl) != 0) { - retval = EINVAL; - goto Err_Exit; - } + if ((retval == ENOSPC) && + (hfs_freeblks(hfsmp, 0) > (datablks * 2))) { + hfsmp->hfs_flags |= HFS_FRAGMENTED_FREESPACE; } + goto out; + } + /* + * STEP 2 - clone file data into the new allocation blocks. + */ - /* lock extents b-tree (also protects volume bitmap) */ - retval = hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_EXCLUSIVE, ap->a_p); - if (retval) { - if (hfsmp->jnl) { - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - - goto Err_Exit; - } - - retval = MacToVFSError( - TruncateFileC( - VTOVCB(vp), - (FCB*)fp, - length, - false)); - (void) hfs_metafilelocking(VTOHFS(vp), kHFSExtentsFileID, LK_RELEASE, ap->a_p); - filebytes = (off_t)fp->ff_blocks * (off_t)VTOVCB(vp)->blockSize; + if (vnodetype == VLNK) + retval = EPERM; + else if (vnode_issystem(vp)) + retval = hfs_clonesysfile(vp, headblks, datablks, blksize, cred, p); + else + retval = hfs_clonefile(vp, headblks, datablks, blksize); + + /* Start transaction for step 3 or for a restore. */ + if (hfs_start_transaction(hfsmp) != 0) { + retval = EINVAL; + goto out; + } + started_tr = 1; + if (retval) + goto restore; - if (hfsmp->jnl) { - hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); - journal_end_transaction(hfsmp->jnl); - } - hfs_global_shared_lock_release(hfsmp); - + /* + * STEP 3 - switch to cloned data and remove old blocks. + */ + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + + retval = HeadTruncateFile(hfsmp, (FCB*)fp, headblks); + + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; + if (retval) + goto restore; +out: + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + + if (lockflags) { + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; + } - /* - * if we get an error and no changes were made then exit - * otherwise we must do the VOP_UPDATE to reflect the changes - */ - if (retval && (startingPEOF == filebytes)) goto Err_Exit; -#if QUOTA - /* These are bytesreleased */ - (void) hfs_chkdq(cp, (int64_t)-((startingPEOF - filebytes)), NOCRED,0); -#endif /* QUOTA */ + /* Push cnode's new extent data to disk. */ + if (retval == 0) { + (void) hfs_update(vp, MNT_WAIT); + } + if (hfsmp->jnl) { + if (cp->c_cnid < kHFSFirstUserCatalogNodeID) + (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); + else + (void) hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); + } +exit: + if (started_tr) + hfs_end_transaction(hfsmp); - if (fp->ff_size > filebytes) { - fp->ff_size = filebytes; + return (retval); - if (UBCISVALID(vp)) - ubc_setsize(vp, fp->ff_size); /* XXX check errors */ - } +restore: + if (fp->ff_blocks == headblks) { + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + goto exit; + } + /* + * Give back any newly allocated space. + */ + if (lockflags == 0) { + lockflags = SFL_BITMAP; + if (overflow_extents(fp)) + lockflags |= SFL_EXTENTS; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); } -Std_Exit: - cp->c_flag |= C_CHANGE | C_UPDATE; - retval2 = VOP_UPDATE(vp, &tv, &tv, MNT_WAIT); + (void) TruncateFileC(hfsmp, (FCB*)fp, fp->ff_size, 0, FORK_IS_RSRC(fp), + FTOC(fp)->c_fileid, false); - if (retval == 0) - retval = retval2; -Err_Exit: - return (retval); + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; + + if (took_trunc_lock) + hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); + goto exit; } /* - * pagein for HFS filesystem + * Clone a file's data within the file. + * */ -int -hfs_pagein(ap) - struct vop_pagein_args /* { - struct vnode *a_vp, - upl_t a_pl, - vm_offset_t a_pl_offset, - off_t a_f_offset, - size_t a_size, - struct ucred *a_cred, - int a_flags - } */ *ap; +static int +hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize) { - register struct vnode *vp = ap->a_vp; - int devBlockSize = 0; - int error; - - if (vp->v_type != VREG && vp->v_type != VLNK) - panic("hfs_pagein: vp not UBC type\n"); + caddr_t bufp; + size_t bufsize; + size_t copysize; + size_t iosize; + size_t offset; + off_t writebase; + uio_t auio; + int error = 0; + + writebase = blkstart * blksize; + copysize = blkcnt * blksize; + iosize = bufsize = MIN(copysize, 128 * 1024); + offset = 0; + + hfs_unlock(VTOC(vp)); + +#if CONFIG_PROTECT + if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) { + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + return (error); + } +#endif /* CONFIG_PROTECT */ - VOP_DEVBLOCKSIZE(VTOC(vp)->c_devvp, &devBlockSize); + if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + return (ENOMEM); + } - error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, - ap->a_size, (off_t)VTOF(vp)->ff_size, devBlockSize, - ap->a_flags); - return (error); -} + auio = uio_create(1, 0, UIO_SYSSPACE, UIO_READ); -/* - * pageout for HFS filesystem. - */ -int -hfs_pageout(ap) - struct vop_pageout_args /* { - struct vnode *a_vp, - upl_t a_pl, - vm_offset_t a_pl_offset, - off_t a_f_offset, - size_t a_size, - struct ucred *a_cred, - int a_flags - } */ *ap; -{ - struct vnode *vp = ap->a_vp; - struct cnode *cp = VTOC(vp); - struct filefork *fp = VTOF(vp); - int retval; - int devBlockSize = 0; - off_t end_of_range; - off_t filesize; + while (offset < copysize) { + iosize = MIN(copysize - offset, iosize); - if (UBCINVALID(vp)) - panic("hfs_pageout: Not a VREG: vp=%x", vp); + uio_reset(auio, offset, UIO_SYSSPACE, UIO_READ); + uio_addiov(auio, (uintptr_t)bufp, iosize); - VOP_DEVBLOCKSIZE(cp->c_devvp, &devBlockSize); - filesize = fp->ff_size; - end_of_range = ap->a_f_offset + ap->a_size - 1; + error = cluster_read(vp, auio, copysize, IO_NOCACHE); + if (error) { + printf("hfs_clonefile: cluster_read failed - %d\n", error); + break; + } + if (uio_resid(auio) != 0) { + printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", (int64_t)uio_resid(auio)); + error = EIO; + break; + } - if (end_of_range >= filesize) - end_of_range = (off_t)(filesize - 1); - if (ap->a_f_offset < filesize) - rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges); + uio_reset(auio, writebase + offset, UIO_SYSSPACE, UIO_WRITE); + uio_addiov(auio, (uintptr_t)bufp, iosize); - retval = cluster_pageout(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, ap->a_size, - filesize, devBlockSize, ap->a_flags); + error = cluster_write(vp, auio, writebase + offset, + writebase + offset + iosize, + uio_offset(auio), 0, IO_NOCACHE | IO_SYNC); + if (error) { + printf("hfs_clonefile: cluster_write failed - %d\n", error); + break; + } + if (uio_resid(auio) != 0) { + printf("hfs_clonefile: cluster_write failed - uio_resid not zero\n"); + error = EIO; + break; + } + offset += iosize; + } + uio_free(auio); - /* - * If we successfully wrote any data, and we are not the superuser - * we clear the setuid and setgid bits as a precaution against - * tampering. - */ - if (retval == 0 && ap->a_cred && ap->a_cred->cr_uid != 0) - cp->c_mode &= ~(S_ISUID | S_ISGID); + if ((blksize & PAGE_MASK)) { + /* + * since the copy may not have started on a PAGE + * boundary (or may not have ended on one), we + * may have pages left in the cache since NOCACHE + * will let partially written pages linger... + * lets just flush the entire range to make sure + * we don't have any pages left that are beyond + * (or intersect) the real LEOF of this file + */ + ubc_msync(vp, writebase, writebase + offset, NULL, UBC_INVALIDATE | UBC_PUSHDIRTY); + } else { + /* + * No need to call ubc_msync or hfs_invalbuf + * since the file was copied using IO_NOCACHE and + * the copy was done starting and ending on a page + * boundary in the file. + */ + } + kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); - return (retval); + hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); + return (error); } /* - * Intercept B-Tree node writes to unswap them if necessary. -# -#vop_bwrite { -# IN struct buf *bp; + * Clone a system (metadata) file. + * */ -int -hfs_bwrite(ap) - struct vop_bwrite_args /* { - struct buf *a_bp; - } */ *ap; +static int +hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, + kauth_cred_t cred, struct proc *p) { - int retval = 0; - register struct buf *bp = ap->a_bp; - register struct vnode *vp = bp->b_vp; -#if BYTE_ORDER == LITTLE_ENDIAN - BlockDescriptor block; + caddr_t bufp; + char * offset; + size_t bufsize; + size_t iosize; + struct buf *bp = NULL; + daddr64_t blkno; + daddr64_t blk; + daddr64_t start_blk; + daddr64_t last_blk; + int breadcnt; + int i; + int error = 0; + + + iosize = GetLogicalBlockSize(vp); + bufsize = MIN(blkcnt * blksize, 1024 * 1024) & ~(iosize - 1); + breadcnt = bufsize / iosize; + + if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { + return (ENOMEM); + } + start_blk = ((daddr64_t)blkstart * blksize) / iosize; + last_blk = ((daddr64_t)blkcnt * blksize) / iosize; + blkno = 0; + + while (blkno < last_blk) { + /* + * Read up to a megabyte + */ + offset = bufp; + for (i = 0, blk = blkno; (i < breadcnt) && (blk < last_blk); ++i, ++blk) { + error = (int)buf_meta_bread(vp, blk, iosize, cred, &bp); + if (error) { + printf("hfs_clonesysfile: meta_bread error %d\n", error); + goto out; + } + if (buf_count(bp) != iosize) { + printf("hfs_clonesysfile: b_bcount is only %d\n", buf_count(bp)); + goto out; + } + bcopy((char *)buf_dataptr(bp), offset, iosize); - /* Trap B-Tree writes */ - if ((VTOC(vp)->c_fileid == kHFSExtentsFileID) || - (VTOC(vp)->c_fileid == kHFSCatalogFileID)) { + buf_markinvalid(bp); + buf_brelse(bp); + bp = NULL; - /* Swap if the B-Tree node is in native byte order */ - if (((UInt16 *)((char *)bp->b_data + bp->b_bcount - 2))[0] == 0x000e) { - /* Prepare the block pointer */ - block.blockHeader = bp; - block.buffer = bp->b_data; - /* not found in cache ==> came from disk */ - block.blockReadFromDisk = (bp->b_flags & B_CACHE) == 0; - block.blockSize = bp->b_bcount; - - /* Endian un-swap B-Tree node */ - SWAP_BT_NODE (&block, ISHFSPLUS (VTOVCB(vp)), VTOC(vp)->c_fileid, 1); + offset += iosize; + } + + /* + * Write up to a megabyte + */ + offset = bufp; + for (i = 0; (i < breadcnt) && (blkno < last_blk); ++i, ++blkno) { + bp = buf_getblk(vp, start_blk + blkno, iosize, 0, 0, BLK_META); + if (bp == NULL) { + printf("hfs_clonesysfile: getblk failed on blk %qd\n", start_blk + blkno); + error = EIO; + goto out; + } + bcopy(offset, (char *)buf_dataptr(bp), iosize); + error = (int)buf_bwrite(bp); + bp = NULL; + if (error) + goto out; + offset += iosize; } - - /* We don't check to make sure that it's 0x0e00 because it could be all zeros */ } -#endif - /* This buffer shouldn't be locked anymore but if it is clear it */ - if (ISSET(bp->b_flags, B_LOCKED)) { - // XXXdbg - if (VTOHFS(vp)->jnl) { - panic("hfs: CLEARING the lock bit on bp 0x%x\n", bp); - } - CLR(bp->b_flags, B_LOCKED); - printf("hfs_bwrite: called with lock bit set\n"); +out: + if (bp) { + buf_brelse(bp); } - retval = vn_bwrite (ap); - return (retval); + kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); + + error = hfs_fsync(vp, MNT_WAIT, 0, p); + + return (error); }