X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/2dced7af2b695f87fe26496a3e73c219b7880cbc..cc8bc92ae4a8e9f1a1ab61bf83d34ad8150b3405:/osfmk/kern/zalloc.c diff --git a/osfmk/kern/zalloc.c b/osfmk/kern/zalloc.c index 6bcab735d..699dc3c74 100644 --- a/osfmk/kern/zalloc.c +++ b/osfmk/kern/zalloc.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2000-2014 Apple Inc. All rights reserved. + * Copyright (c) 2000-2016 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * @@ -63,7 +63,6 @@ * data blocks for which quick allocation/deallocation is possible. */ #include -#include #include #include @@ -74,8 +73,10 @@ #include #include +#include #include #include +#include #include #include #include @@ -85,7 +86,6 @@ #include #include #include -#include #include #include @@ -101,52 +101,15 @@ #include #include +#include + /* - * ZONE_ALIAS_ADDR - * - * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate - * a virtual page from the zone_map, but before zcram-ing the allocated memory - * into the zone, the page is translated to use the alias address of the page - * in the static kernel region. zone_gc reverses that translation when - * scanning the freelist to collect free pages so that it can look up the page - * in the zone_page_table, and free it to kmem_free. - * - * The static kernel region is a flat 1:1 mapping of physical memory passed - * to xnu by the booter. It is mapped to the range: - * [gVirtBase, gVirtBase + gPhysSize] - * - * Accessing memory via the static kernel region is faster due to the - * entire region being mapped via large pages, cutting down - * on TLB misses. - * - * zinit favors using PAGE_SIZE backing allocations for a zone unless it would - * waste more than 10% space to use a single page, in order to take advantage - * of the speed benefit for as many zones as possible. - * - * Zones with > PAGE_SIZE allocations can't take advantage of this - * because kernel_memory_allocate doesn't give out physically contiguous pages. - * - * zone_virtual_addr() - * - translates an address from the static kernel region to the zone_map - * - returns the same address if it's not from the static kernel region - * It relies on the fact that a physical page mapped to the - * zone_map is not mapped anywhere else (except the static kernel region). - * - * zone_alias_addr() - * - translates a virtual memory address from the zone_map to the - * corresponding address in the static kernel region - * + * ZONE_ALIAS_ADDR (deprecated) */ -#if !ZONE_ALIAS_ADDR #define from_zone_map(addr, size) \ ((vm_offset_t)(addr) >= zone_map_min_address && \ ((vm_offset_t)(addr) + size - 1) < zone_map_max_address ) -#else -#define from_zone_map(addr, size) \ - ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \ - ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address ) -#endif /* * Zone Corruption Debugging @@ -248,6 +211,9 @@ vm_size_t zp_tiny_zone_limit = 0; uintptr_t zp_poisoned_cookie = 0; uintptr_t zp_nopoison_cookie = 0; +#if VM_MAX_TAG_ZONES +boolean_t zone_tagging_on; +#endif /* VM_MAX_TAG_ZONES */ /* * initialize zone poisoning @@ -352,13 +318,10 @@ zp_init(void) #endif } -/* zone_map page count for page table structure */ -uint64_t zone_map_table_page_count = 0; - /* * These macros are used to keep track of the number * of pages being used by the zone currently. The - * z->page_count is protected by the zone lock. + * z->page_count is not protected by the zone lock. */ #define ZONE_PAGE_COUNT_INCR(z, count) \ { \ @@ -370,11 +333,27 @@ uint64_t zone_map_table_page_count = 0; OSAddAtomic64(-count, &(z->page_count)); \ } +vm_map_t zone_map = VM_MAP_NULL; + /* for is_sane_zone_element and garbage collection */ vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */ vm_offset_t zone_map_max_address = 0; +/* Globals for random boolean generator for elements in free list */ +#define MAX_ENTROPY_PER_ZCRAM 4 +#define RANDOM_BOOL_GEN_SEED_COUNT 4 +static unsigned int bool_gen_seed[RANDOM_BOOL_GEN_SEED_COUNT]; +static unsigned int bool_gen_global = 0; +decl_simple_lock_data(, bool_gen_lock) + +/* VM region for all metadata structures */ +vm_offset_t zone_metadata_region_min = 0; +vm_offset_t zone_metadata_region_max = 0; +decl_lck_mtx_data(static ,zone_metadata_region_lck) +lck_attr_t zone_metadata_lock_attr; +lck_mtx_ext_t zone_metadata_region_lck_ext; + /* Helpful for walking through a zone's free element list. */ struct zone_free_element { struct zone_free_element *next; @@ -382,14 +361,139 @@ struct zone_free_element { /* void *backup_ptr; */ }; +/* + * Protects zone_array, num_zones, num_zones_in_use, and zone_empty_bitmap + */ +decl_simple_lock_data(, all_zones_lock) +unsigned int num_zones_in_use; +unsigned int num_zones; + +#define MAX_ZONES 288 +struct zone zone_array[MAX_ZONES]; + +/* Used to keep track of empty slots in the zone_array */ +bitmap_t zone_empty_bitmap[BITMAP_LEN(MAX_ZONES)]; + +#if DEBUG || DEVELOPMENT +/* + * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one thread goes through at a time. + * Or we can end up with multiple test zones (if a second zinit() comes through before zdestroy()), which could lead us to + * run out of zones. + */ +decl_simple_lock_data(, zone_test_lock) +static boolean_t zone_test_running = FALSE; +static zone_t test_zone_ptr = NULL; +#endif /* DEBUG || DEVELOPMENT */ + +#define PAGE_METADATA_GET_ZINDEX(page_meta) \ + (page_meta->zindex) + +#define PAGE_METADATA_GET_ZONE(page_meta) \ + (&(zone_array[page_meta->zindex])) + +#define PAGE_METADATA_SET_ZINDEX(page_meta, index) \ + page_meta->zindex = (index); + struct zone_page_metadata { - queue_chain_t pages; - struct zone_free_element *elements; - zone_t zone; - uint16_t alloc_count; - uint16_t free_count; + queue_chain_t pages; /* linkage pointer for metadata lists */ + + /* Union for maintaining start of element free list and real metadata (for multipage allocations) */ + union { + /* + * The start of the freelist can be maintained as a 32-bit offset instead of a pointer because + * the free elements would be at max ZONE_MAX_ALLOC_SIZE bytes away from the metadata. Offset + * from start of the allocation chunk to free element list head. + */ + uint32_t freelist_offset; + /* + * This field is used to lookup the real metadata for multipage allocations, where we mark the + * metadata for all pages except the first as "fake" metadata using MULTIPAGE_METADATA_MAGIC. + * Offset from this fake metadata to real metadata of allocation chunk (-ve offset). + */ + uint32_t real_metadata_offset; + }; + + /* + * For the first page in the allocation chunk, this represents the total number of free elements in + * the chunk. + */ + uint16_t free_count; + unsigned zindex : ZINDEX_BITS; /* Zone index within the zone_array */ + unsigned page_count : PAGECOUNT_BITS; /* Count of pages within the allocation chunk */ }; +/* Macro to get page index (within zone_map) of page containing element */ +#define PAGE_INDEX_FOR_ELEMENT(element) \ + (((vm_offset_t)trunc_page(element) - zone_map_min_address) / PAGE_SIZE) + +/* Macro to get metadata structure given a page index in zone_map */ +#define PAGE_METADATA_FOR_PAGE_INDEX(index) \ + (zone_metadata_region_min + ((index) * sizeof(struct zone_page_metadata))) + +/* Macro to get index (within zone_map) for given metadata */ +#define PAGE_INDEX_FOR_METADATA(page_meta) \ + (((vm_offset_t)page_meta - zone_metadata_region_min) / sizeof(struct zone_page_metadata)) + +/* Macro to get page for given page index in zone_map */ +#define PAGE_FOR_PAGE_INDEX(index) \ + (zone_map_min_address + (PAGE_SIZE * (index))) + +/* Macro to get the actual metadata for a given address */ +#define PAGE_METADATA_FOR_ELEMENT(element) \ + (struct zone_page_metadata *)(PAGE_METADATA_FOR_PAGE_INDEX(PAGE_INDEX_FOR_ELEMENT(element))) + +/* Magic value to indicate empty element free list */ +#define PAGE_METADATA_EMPTY_FREELIST ((uint32_t)(~0)) + +boolean_t is_zone_map_nearing_exhaustion(void); +extern void vm_pageout_garbage_collect(int collect); + +static inline void * +page_metadata_get_freelist(struct zone_page_metadata *page_meta) +{ + assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC); + if (page_meta->freelist_offset == PAGE_METADATA_EMPTY_FREELIST) + return NULL; + else { + if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) + return (void *)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)) + page_meta->freelist_offset); + else + return (void *)((vm_offset_t)page_meta + page_meta->freelist_offset); + } +} + +static inline void +page_metadata_set_freelist(struct zone_page_metadata *page_meta, void *addr) +{ + assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC); + if (addr == NULL) + page_meta->freelist_offset = PAGE_METADATA_EMPTY_FREELIST; + else { + if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) + page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta))); + else + page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - (vm_offset_t)page_meta); + } +} + +static inline struct zone_page_metadata * +page_metadata_get_realmeta(struct zone_page_metadata *page_meta) +{ + assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC); + return (struct zone_page_metadata *)((vm_offset_t)page_meta - page_meta->real_metadata_offset); +} + +static inline void +page_metadata_set_realmeta(struct zone_page_metadata *page_meta, struct zone_page_metadata *real_meta) +{ + assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC); + assert(PAGE_METADATA_GET_ZINDEX(real_meta) != MULTIPAGE_METADATA_MAGIC); + assert((vm_offset_t)page_meta > (vm_offset_t)real_meta); + vm_offset_t offset = (vm_offset_t)page_meta - (vm_offset_t)real_meta; + assert(offset <= UINT32_MAX); + page_meta->real_metadata_offset = (uint32_t)offset; +} + /* The backup pointer is stored in the last pointer-sized location in an element. */ static inline vm_offset_t * get_backup_ptr(vm_size_t elem_size, @@ -398,12 +502,549 @@ get_backup_ptr(vm_size_t elem_size, return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); } +/* + * Routine to populate a page backing metadata in the zone_metadata_region. + * Must be called without the zone lock held as it might potentially block. + */ +static inline void +zone_populate_metadata_page(struct zone_page_metadata *page_meta) +{ + vm_offset_t page_metadata_begin = trunc_page(page_meta); + vm_offset_t page_metadata_end = trunc_page((vm_offset_t)page_meta + sizeof(struct zone_page_metadata)); + + for(;page_metadata_begin <= page_metadata_end; page_metadata_begin += PAGE_SIZE) { + if (pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) + continue; + /* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */ + lck_mtx_lock(&zone_metadata_region_lck); + if (0 == pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) { + kern_return_t __unused ret = kernel_memory_populate(zone_map, + page_metadata_begin, + PAGE_SIZE, + KMA_KOBJECT, + VM_KERN_MEMORY_OSFMK); + + /* should not fail with the given arguments */ + assert(ret == KERN_SUCCESS); + } + lck_mtx_unlock(&zone_metadata_region_lck); + } + return; +} + +static inline uint16_t +get_metadata_alloc_count(struct zone_page_metadata *page_meta) +{ + assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC); + struct zone *z = PAGE_METADATA_GET_ZONE(page_meta); + return ((page_meta->page_count * PAGE_SIZE) / z->elem_size); +} + +/* + * Routine to lookup metadata for any given address. + * If init is marked as TRUE, this should be called without holding the zone lock + * since the initialization might block. + */ static inline struct zone_page_metadata * -get_zone_page_metadata(struct zone_free_element *element) +get_zone_page_metadata(struct zone_free_element *element, boolean_t init) +{ + struct zone_page_metadata *page_meta = 0; + + if (from_zone_map(element, sizeof(struct zone_free_element))) { + page_meta = (struct zone_page_metadata *)(PAGE_METADATA_FOR_ELEMENT(element)); + if (init) + zone_populate_metadata_page(page_meta); + } else { + page_meta = (struct zone_page_metadata *)(trunc_page((vm_offset_t)element)); + } + if (init) + __nosan_bzero((char *)page_meta, sizeof(struct zone_page_metadata)); + return ((PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC) ? page_meta : page_metadata_get_realmeta(page_meta)); +} + +/* Routine to get the page for a given metadata */ +static inline vm_offset_t +get_zone_page(struct zone_page_metadata *page_meta) +{ + if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) + return (vm_offset_t)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta))); + else + return (vm_offset_t)(trunc_page(page_meta)); +} + +/* + * ZTAGS + */ + +#if VM_MAX_TAG_ZONES + +// for zones with tagging enabled: + +// calculate a pointer to the tag base entry, +// holding either a uint32_t the first tag offset for a page in the zone map, +// or two uint16_t tags if the page can only hold one or two elements + +#define ZTAGBASE(zone, element) \ + (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_map_min_address)]) + +// pointer to the tag for an element +#define ZTAG(zone, element) \ + ({ \ + vm_tag_t * result; \ + if ((zone)->tags_inline) { \ + result = (vm_tag_t *) ZTAGBASE((zone), (element)); \ + if ((page_mask & element) >= (zone)->elem_size) result++; \ + } else { \ + result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / (zone)->elem_size]; \ + } \ + result; \ + }) + + +static vm_offset_t zone_tagbase_min; +static vm_offset_t zone_tagbase_max; +static vm_offset_t zone_tagbase_map_size; +static vm_map_t zone_tagbase_map; + +static vm_offset_t zone_tags_min; +static vm_offset_t zone_tags_max; +static vm_offset_t zone_tags_map_size; +static vm_map_t zone_tags_map; + +// simple heap allocator for allocating the tags for new memory + +decl_lck_mtx_data(,ztLock) /* heap lock */ +enum +{ + ztFreeIndexCount = 8, + ztFreeIndexMax = (ztFreeIndexCount - 1), + ztTagsPerBlock = 4 +}; + +struct ztBlock +{ +#if __LITTLE_ENDIAN__ + uint64_t free:1, + next:21, + prev:21, + size:21; +#else +// ztBlock needs free bit least significant +#error !__LITTLE_ENDIAN__ +#endif +}; +typedef struct ztBlock ztBlock; + +static ztBlock * ztBlocks; +static uint32_t ztBlocksCount; +static uint32_t ztBlocksFree; + +static uint32_t +ztLog2up(uint32_t size) +{ + if (1 == size) size = 0; + else size = 32 - __builtin_clz(size - 1); + return (size); +} + +static uint32_t +ztLog2down(uint32_t size) +{ + size = 31 - __builtin_clz(size); + return (size); +} + +static void +ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags) +{ + vm_map_offset_t addr = (vm_map_offset_t) address; + vm_map_offset_t page, end; + + page = trunc_page(addr); + end = round_page(addr + size); + + for (; page < end; page += page_size) + { + if (!pmap_find_phys(kernel_pmap, page)) + { + kern_return_t __unused + ret = kernel_memory_populate(map, page, PAGE_SIZE, + KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG); + assert(ret == KERN_SUCCESS); + } + } +} + +static boolean_t +ztPresent(const void * address, size_t size) +{ + vm_map_offset_t addr = (vm_map_offset_t) address; + vm_map_offset_t page, end; + boolean_t result; + + page = trunc_page(addr); + end = round_page(addr + size); + for (result = TRUE; (page < end); page += page_size) + { + result = pmap_find_phys(kernel_pmap, page); + if (!result) break; + } + return (result); +} + + +void __unused +ztDump(boolean_t sanity); +void __unused +ztDump(boolean_t sanity) +{ + uint32_t q, cq, p; + + for (q = 0; q <= ztFreeIndexMax; q++) + { + p = q; + do + { + if (sanity) + { + cq = ztLog2down(ztBlocks[p].size); + if (cq > ztFreeIndexMax) cq = ztFreeIndexMax; + if (!ztBlocks[p].free + || ((p != q) && (q != cq)) + || (ztBlocks[ztBlocks[p].next].prev != p) + || (ztBlocks[ztBlocks[p].prev].next != p)) + { + kprintf("zterror at %d", p); + ztDump(FALSE); + kprintf("zterror at %d", p); + assert(FALSE); + } + continue; + } + kprintf("zt[%03d]%c %d, %d, %d\n", + p, ztBlocks[p].free ? 'F' : 'A', + ztBlocks[p].next, ztBlocks[p].prev, + ztBlocks[p].size); + p = ztBlocks[p].next; + if (p == q) break; + } + while (p != q); + if (!sanity) printf("\n"); + } + if (!sanity) printf("-----------------------\n"); +} + + + +#define ZTBDEQ(idx) \ + ztBlocks[ztBlocks[(idx)].prev].next = ztBlocks[(idx)].next; \ + ztBlocks[ztBlocks[(idx)].next].prev = ztBlocks[(idx)].prev; + +static void +ztFree(zone_t zone __unused, uint32_t index, uint32_t count) +{ + uint32_t q, w, p, size, merge; + + assert(count); + ztBlocksFree += count; + + // merge with preceding + merge = (index + count); + if ((merge < ztBlocksCount) + && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) + && ztBlocks[merge].free) + { + ZTBDEQ(merge); + count += ztBlocks[merge].size; + } + + // merge with following + merge = (index - 1); + if ((merge > ztFreeIndexMax) + && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) + && ztBlocks[merge].free) + { + size = ztBlocks[merge].size; + count += size; + index -= size; + ZTBDEQ(index); + } + + q = ztLog2down(count); + if (q > ztFreeIndexMax) q = ztFreeIndexMax; + w = q; + // queue in order of size + while (TRUE) + { + p = ztBlocks[w].next; + if (p == q) break; + if (ztBlocks[p].size >= count) break; + w = p; + } + ztBlocks[p].prev = index; + ztBlocks[w].next = index; + + // fault in first + ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); + + // mark first & last with free flag and size + ztBlocks[index].free = TRUE; + ztBlocks[index].size = count; + ztBlocks[index].prev = w; + ztBlocks[index].next = p; + if (count > 1) + { + index += (count - 1); + // fault in last + ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); + ztBlocks[index].free = TRUE; + ztBlocks[index].size = count; + } +} + +static uint32_t +ztAlloc(zone_t zone, uint32_t count) +{ + uint32_t q, w, p, leftover; + + assert(count); + + q = ztLog2up(count); + if (q > ztFreeIndexMax) q = ztFreeIndexMax; + do + { + w = q; + while (TRUE) + { + p = ztBlocks[w].next; + if (p == q) break; + if (ztBlocks[p].size >= count) + { + // dequeue, mark both ends allocated + ztBlocks[w].next = ztBlocks[p].next; + ztBlocks[ztBlocks[p].next].prev = w; + ztBlocks[p].free = FALSE; + ztBlocksFree -= ztBlocks[p].size; + if (ztBlocks[p].size > 1) ztBlocks[p + ztBlocks[p].size - 1].free = FALSE; + + // fault all the allocation + ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0); + // mark last as allocated + if (count > 1) ztBlocks[p + count - 1].free = FALSE; + // free remainder + leftover = ztBlocks[p].size - count; + if (leftover) ztFree(zone, p + ztBlocks[p].size - leftover, leftover); + + return (p); + } + w = p; + } + q++; + } + while (q <= ztFreeIndexMax); + + return (-1U); +} + +static void +ztInit(vm_size_t max_zonemap_size, lck_grp_t * group) +{ + kern_return_t ret; + vm_map_kernel_flags_t vmk_flags; + uint32_t idx; + + lck_mtx_init(&ztLock, group, LCK_ATTR_NULL); + + // allocate submaps VM_KERN_MEMORY_DIAG + + zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t); + vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + vmk_flags.vmkf_permanent = TRUE; + ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size, + FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, + &zone_tagbase_map); + + if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed"); + zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size); + + zone_tags_map_size = 2048*1024 * sizeof(vm_tag_t); + vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + vmk_flags.vmkf_permanent = TRUE; + ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size, + FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, + &zone_tags_map); + + if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed"); + zone_tags_max = zone_tags_min + round_page(zone_tags_map_size); + + ztBlocks = (ztBlock *) zone_tags_min; + ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock)); + + // initialize the qheads + lck_mtx_lock(&ztLock); + + ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0); + for (idx = 0; idx < ztFreeIndexCount; idx++) + { + ztBlocks[idx].free = TRUE; + ztBlocks[idx].next = idx; + ztBlocks[idx].prev = idx; + ztBlocks[idx].size = 0; + } + // free remaining space + ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount); + + lck_mtx_unlock(&ztLock); +} + +static void +ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size) +{ + uint32_t * tagbase; + uint32_t count, block, blocks, idx; + size_t pages; + + pages = atop(size); + tagbase = ZTAGBASE(zone, mem); + + lck_mtx_lock(&ztLock); + + // fault tagbase + ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0); + + if (!zone->tags_inline) + { + // allocate tags + count = (uint32_t)(size / zone->elem_size); + blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); + block = ztAlloc(zone, blocks); + if (-1U == block) ztDump(false); + assert(-1U != block); + } + + lck_mtx_unlock(&ztLock); + + if (!zone->tags_inline) + { + // set tag base for each page + block *= ztTagsPerBlock; + for (idx = 0; idx < pages; idx++) + { + tagbase[idx] = block + (uint32_t)((ptoa(idx) + (zone->elem_size - 1)) / zone->elem_size); + } + } +} + +static void +ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size) +{ + uint32_t * tagbase; + uint32_t count, block, blocks, idx; + size_t pages; + + // set tag base for each page + pages = atop(size); + tagbase = ZTAGBASE(zone, mem); + block = tagbase[0]; + for (idx = 0; idx < pages; idx++) + { + tagbase[idx] = 0xFFFFFFFF; + } + + lck_mtx_lock(&ztLock); + if (!zone->tags_inline) + { + count = (uint32_t)(size / zone->elem_size); + blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); + assert(block != 0xFFFFFFFF); + block /= ztTagsPerBlock; + ztFree(NULL /* zone is unlocked */, block, blocks); + } + + lck_mtx_unlock(&ztLock); +} + +uint32_t +zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size) +{ + zone_t z; + uint32_t idx; + + simple_lock(&all_zones_lock); + + for (idx = 0; idx < num_zones; idx++) + { + z = &(zone_array[idx]); + if (!z->tags) continue; + if (tag_zone_index != z->tag_zone_index) continue; + *elem_size = z->elem_size; + break; + } + + simple_unlock(&all_zones_lock); + + if (idx == num_zones) idx = -1U; + + return (idx); +} + +#endif /* VM_MAX_TAG_ZONES */ + +/* Routine to get the size of a zone allocated address. If the address doesnt belong to the + * zone_map, returns 0. + */ +vm_size_t +zone_element_size(void *addr, zone_t *z) { - return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element)); + struct zone *src_zone; + if (from_zone_map(addr, sizeof(void *))) { + struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE); + src_zone = PAGE_METADATA_GET_ZONE(page_meta); + if (z) { + *z = src_zone; + } + return (src_zone->elem_size); + } else { +#if CONFIG_GZALLOC + vm_size_t gzsize; + if (gzalloc_element_size(addr, z, &gzsize)) { + return gzsize; + } +#endif /* CONFIG_GZALLOC */ + + return 0; + } +} + +#if DEBUG || DEVELOPMENT + +vm_size_t +zone_element_info(void *addr, vm_tag_t * ptag) +{ + vm_size_t size = 0; + vm_tag_t tag = VM_KERN_MEMORY_NONE; + struct zone * src_zone; + + if (from_zone_map(addr, sizeof(void *))) { + struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE); + src_zone = PAGE_METADATA_GET_ZONE(page_meta); +#if VM_MAX_TAG_ZONES + if (__improbable(src_zone->tags)) { + tag = (ZTAG(src_zone, (vm_offset_t) addr)[0] >> 1); + } +#endif /* VM_MAX_TAG_ZONES */ + size = src_zone->elem_size; + } else { +#if CONFIG_GZALLOC + gzalloc_element_size(addr, NULL, &size); +#endif /* CONFIG_GZALLOC */ + } + *ptag = tag; + return size; } +#endif /* DEBUG || DEVELOPMENT */ + /* * Zone checking helper function. * A pointer that satisfies these conditions is OK to be a freelist next pointer @@ -428,23 +1069,6 @@ is_sane_zone_ptr(zone_t zone, * zone using foreign memory is properly tagged with allows_foreign */ if (zone->collectable && !zone->allows_foreign) { -#if ZONE_ALIAS_ADDR - /* - * If this address is in the static kernel region, it might be - * the alias address of a valid zone element. - * If we tried to find the zone_virtual_addr() of an invalid - * address in the static kernel region, it will panic, so don't - * check addresses in this region. - * - * TODO: Use a safe variant of zone_virtual_addr to - * make this check more accurate - * - * The static kernel region is mapped at: - * [gVirtBase, gVirtBase + gPhysSize] - */ - if ((addr - gVirtBase) < gPhysSize) - return TRUE; -#endif /* check if addr is from zone map */ if (addr >= zone_map_min_address && (addr + obj_size - 1) < zone_map_max_address ) @@ -509,9 +1133,11 @@ backup_ptr_mismatch_panic(zone_t zone, vm_offset_t backup) { vm_offset_t likely_backup; + vm_offset_t likely_primary; + likely_primary = primary ^ zp_nopoison_cookie; boolean_t sane_backup; - boolean_t sane_primary = is_sane_zone_element(zone, primary); + boolean_t sane_primary = is_sane_zone_element(zone, likely_primary); boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE; #if defined(__LP64__) @@ -532,12 +1158,12 @@ backup_ptr_mismatch_panic(zone_t zone, /* The primary is definitely the corrupted one */ if (!sane_primary && sane_backup) - zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); + zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); /* The backup is definitely the corrupted one */ if (sane_primary && !sane_backup) zone_element_was_modified_panic(zone, element, backup, - (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), + (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), zone->elem_size - sizeof(vm_offset_t)); /* @@ -547,64 +1173,12 @@ backup_ptr_mismatch_panic(zone_t zone, * primary pointer has been overwritten with a sane but incorrect address. */ if (sane_primary && sane_backup) - zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); + zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); /* Neither are sane, so just guess. */ - zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); -} - -/* - * Sets the next element of tail to elem. - * elem can be NULL. - * Preserves the poisoning state of the element. - */ -static inline void -append_zone_element(zone_t zone, - struct zone_free_element *tail, - struct zone_free_element *elem) -{ - vm_offset_t *backup = get_backup_ptr(zone->elem_size, (vm_offset_t *) tail); - - vm_offset_t old_backup = *backup; - - vm_offset_t old_next = (vm_offset_t) tail->next; - vm_offset_t new_next = (vm_offset_t) elem; - - if (old_next == (old_backup ^ zp_nopoison_cookie)) - *backup = new_next ^ zp_nopoison_cookie; - else if (old_next == (old_backup ^ zp_poisoned_cookie)) - *backup = new_next ^ zp_poisoned_cookie; - else - backup_ptr_mismatch_panic(zone, - (vm_offset_t) tail, - old_next, - old_backup); - - tail->next = elem; -} - - -/* - * Insert a linked list of elements (delineated by head and tail) at the head of - * the zone free list. Every element in the list being added has already gone - * through append_zone_element, so their backup pointers are already - * set properly. - * Precondition: There should be no elements after tail - */ -static inline void -add_list_to_zone(zone_t zone, - struct zone_free_element *head, - struct zone_free_element *tail) -{ - assert(tail->next == NULL); - assert(!zone->use_page_list); - - append_zone_element(zone, tail, zone->free_elements); - - zone->free_elements = head; + zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); } - /* * Adds the element to the head of the zone's free list * Keeps a backup next-pointer at the end of the element @@ -620,13 +1194,9 @@ free_to_zone(zone_t zone, vm_offset_t *primary = (vm_offset_t *) element; vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); - if (zone->use_page_list) { - page_meta = get_zone_page_metadata((struct zone_free_element *)element); - assert(page_meta->zone == zone); - old_head = (vm_offset_t)page_meta->elements; - } else { - old_head = (vm_offset_t)zone->free_elements; - } + page_meta = get_zone_page_metadata((struct zone_free_element *)element, FALSE); + assert(PAGE_METADATA_GET_ZONE(page_meta) == zone); + old_head = (vm_offset_t)page_metadata_get_freelist(page_meta); #if MACH_ASSERT if (__improbable(!is_sane_zone_element(zone, old_head))) @@ -647,33 +1217,35 @@ free_to_zone(zone_t zone, *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); - /* Insert this element at the head of the free list */ - *primary = old_head; - if (zone->use_page_list) { - page_meta->elements = (struct zone_free_element *)element; - page_meta->free_count++; - if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { - if (page_meta->free_count == 1) { - /* first foreign element freed on page, move from all_used */ - remqueue((queue_entry_t)page_meta); - enqueue_tail(&zone->pages.any_free_foreign, (queue_entry_t)page_meta); - } else { - /* no other list transitions */ - } - } else if (page_meta->free_count == page_meta->alloc_count) { - /* whether the page was on the intermediate or all_used, queue, move it to free */ - remqueue((queue_entry_t)page_meta); - enqueue_tail(&zone->pages.all_free, (queue_entry_t)page_meta); - } else if (page_meta->free_count == 1) { - /* first free element on page, move from all_used */ - remqueue((queue_entry_t)page_meta); - enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); + /* + * Insert this element at the head of the free list. We also xor the + * primary pointer with the zp_nopoison_cookie to make sure a free + * element does not provide the location of the next free element directly. + */ + *primary = old_head ^ zp_nopoison_cookie; + page_metadata_set_freelist(page_meta, (struct zone_free_element *)element); + page_meta->free_count++; + if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { + if (page_meta->free_count == 1) { + /* first foreign element freed on page, move from all_used */ + re_queue_tail(&zone->pages.any_free_foreign, &(page_meta->pages)); + } else { + /* no other list transitions */ } - } else { - zone->free_elements = (struct zone_free_element *)element; + } else if (page_meta->free_count == get_metadata_alloc_count(page_meta)) { + /* whether the page was on the intermediate or all_used, queue, move it to free */ + re_queue_tail(&zone->pages.all_free, &(page_meta->pages)); + zone->count_all_free_pages += page_meta->page_count; + } else if (page_meta->free_count == 1) { + /* first free element on page, move from all_used */ + re_queue_tail(&zone->pages.intermediate, &(page_meta->pages)); } zone->count--; zone->countfree++; + +#if KASAN_ZALLOC + kasan_poison_range(element, zone->elem_size, ASAN_HEAP_FREED); +#endif } @@ -684,6 +1256,7 @@ free_to_zone(zone_t zone, */ static inline vm_offset_t try_alloc_from_zone(zone_t zone, + vm_tag_t tag __unused, boolean_t* check_poison) { vm_offset_t element; @@ -692,40 +1265,37 @@ try_alloc_from_zone(zone_t zone, *check_poison = FALSE; /* if zone is empty, bail */ - if (zone->use_page_list) { - if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) - page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); - else if (!queue_empty(&zone->pages.intermediate)) - page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); - else if (!queue_empty(&zone->pages.all_free)) - page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); - else { - return 0; - } - - /* Check if page_meta passes is_sane_zone_element */ - if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) - panic("zalloc: invalid metadata structure %p for freelist of zone %s\n", - (void *) page_meta, zone->zone_name); - assert(page_meta->zone == zone); - element = (vm_offset_t)page_meta->elements; + if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) + page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); + else if (!queue_empty(&zone->pages.intermediate)) + page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); + else if (!queue_empty(&zone->pages.all_free)) { + page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); + assert(zone->count_all_free_pages >= page_meta->page_count); + zone->count_all_free_pages -= page_meta->page_count; } else { - if (zone->free_elements == NULL) - return 0; - - element = (vm_offset_t)zone->free_elements; + return 0; } - -#if MACH_ASSERT - if (__improbable(!is_sane_zone_element(zone, element))) + /* Check if page_meta passes is_sane_zone_element */ + if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) + panic("zalloc: invalid metadata structure %p for freelist of zone %s\n", + (void *) page_meta, zone->zone_name); + assert(PAGE_METADATA_GET_ZONE(page_meta) == zone); + element = (vm_offset_t)page_metadata_get_freelist(page_meta); + + if (__improbable(!is_sane_zone_ptr(zone, element, zone->elem_size))) panic("zfree: invalid head pointer %p for freelist of zone %s\n", (void *) element, zone->zone_name); -#endif vm_offset_t *primary = (vm_offset_t *) element; vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); - vm_offset_t next_element = *primary; + /* + * Since the primary next pointer is xor'ed with zp_nopoison_cookie + * for obfuscation, retrieve the original value back + */ + vm_offset_t next_element = *primary ^ zp_nopoison_cookie; + vm_offset_t next_element_primary = *primary; vm_offset_t next_element_backup = *backup; /* @@ -733,7 +1303,7 @@ try_alloc_from_zone(zone_t zone, * should have been, and print it appropriately */ if (__improbable(!is_sane_zone_element(zone, next_element))) - backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup); + backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup); /* Check the backup pointer for the regular cookie */ if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) { @@ -741,7 +1311,7 @@ try_alloc_from_zone(zone_t zone, /* Check for the poisoned cookie instead */ if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) /* Neither cookie is valid, corruption has occurred */ - backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup); + backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup); /* * Element was marked as poisoned, so check its integrity before using it. @@ -749,141 +1319,60 @@ try_alloc_from_zone(zone_t zone, *check_poison = TRUE; } - if (zone->use_page_list) { - - /* Make sure the page_meta is at the correct offset from the start of page */ - if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element))) - panic("zalloc: metadata located at incorrect location on page of zone %s\n", - zone->zone_name); - - /* Make sure next_element belongs to the same page as page_meta */ - if (next_element) { - if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element))) - panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n", - (void *)next_element, (void *)element, zone->zone_name); - } + /* Make sure the page_meta is at the correct offset from the start of page */ + if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element, FALSE))) + panic("zalloc: Incorrect metadata %p found in zone %s page queue. Expected metadata: %p\n", + page_meta, zone->zone_name, get_zone_page_metadata((struct zone_free_element *)element, FALSE)); + + /* Make sure next_element belongs to the same page as page_meta */ + if (next_element) { + if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element, FALSE))) + panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n", + (void *)next_element, (void *)element, zone->zone_name); } /* Remove this element from the free list */ - if (zone->use_page_list) { - - page_meta->elements = (struct zone_free_element *)next_element; - page_meta->free_count--; + page_metadata_set_freelist(page_meta, (struct zone_free_element *)next_element); + page_meta->free_count--; - if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { - if (page_meta->free_count == 0) { - /* move to all used */ - remqueue((queue_entry_t)page_meta); - enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); - } else { - /* no other list transitions */ + if (page_meta->free_count == 0) { + /* move to all used */ + re_queue_tail(&zone->pages.all_used, &(page_meta->pages)); + } else { + if (!zone->allows_foreign || from_zone_map(element, zone->elem_size)) { + if (get_metadata_alloc_count(page_meta) == page_meta->free_count + 1) { + /* remove from free, move to intermediate */ + re_queue_tail(&zone->pages.intermediate, &(page_meta->pages)); } - } else if (page_meta->free_count == 0) { - /* remove from intermediate or free, move to all_used */ - remqueue((queue_entry_t)page_meta); - enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); - } else if (page_meta->alloc_count == page_meta->free_count + 1) { - /* remove from free, move to intermediate */ - remqueue((queue_entry_t)page_meta); - enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); } - } else { - zone->free_elements = (struct zone_free_element *)next_element; } zone->countfree--; zone->count++; zone->sum_count++; +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags)) { + // set the tag with b0 clear so the block remains inuse + ZTAG(zone, element)[0] = (tag << 1); + } +#endif /* VM_MAX_TAG_ZONES */ + + +#if KASAN_ZALLOC + kasan_poison_range(element, zone->elem_size, ASAN_VALID); +#endif + return element; } - /* * End of zone poisoning */ -/* - * Fake zones for things that want to report via zprint but are not actually zones. - */ -struct fake_zone_info { - const char* name; - void (*init)(int); - void (*query)(int *, - vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *, - uint64_t *, int *, int *, int *); -}; - -static const struct fake_zone_info fake_zones[] = { -}; -static const unsigned int num_fake_zones = - sizeof (fake_zones) / sizeof (fake_zones[0]); - /* * Zone info options */ -boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */ -#define ZINFO_SLOTS 200 /* for now */ -#define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1) - -/* - * Support for garbage collection of unused zone pages - * - * The kernel virtually allocates the "zone map" submap of the kernel - * map. When an individual zone needs more storage, memory is allocated - * out of the zone map, and the two-level "zone_page_table" is - * on-demand expanded so that it has entries for those pages. - * zone_page_init()/zone_page_alloc() initialize "alloc_count" - * to the number of zone elements that occupy the zone page (which may - * be a minimum of 1, including if a zone element spans multiple - * pages). - * - * Asynchronously, the zone_gc() logic attempts to walk zone free - * lists to see if all the elements on a zone page are free. If - * "collect_count" (which it increments during the scan) matches - * "alloc_count", the zone page is a candidate for collection and the - * physical page is returned to the VM system. During this process, the - * first word of the zone page is re-used to maintain a linked list of - * to-be-collected zone pages. - */ -typedef uint32_t zone_page_index_t; -#define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU) - -struct zone_page_table_entry { - volatile uint16_t alloc_count; - volatile uint16_t collect_count; -}; - -#define ZONE_PAGE_USED 0 -#define ZONE_PAGE_UNUSED 0xffff - -/* Forwards */ -void zone_page_init( - vm_offset_t addr, - vm_size_t size); - -void zone_page_alloc( - vm_offset_t addr, - vm_size_t size); - -void zone_page_free_element( - zone_page_index_t *free_page_head, - zone_page_index_t *free_page_tail, - vm_offset_t addr, - vm_size_t size); - -void zone_page_collect( - vm_offset_t addr, - vm_size_t size); - -boolean_t zone_page_collectable( - vm_offset_t addr, - vm_size_t size); - -void zone_page_keep( - vm_offset_t addr, - vm_size_t size); - -void zone_display_zprint(void); +#define ZINFO_SLOTS MAX_ZONES /* for now */ zone_t zone_find_largest(void); @@ -906,20 +1395,6 @@ void zalloc_async( static thread_call_data_t call_async_alloc; -vm_map_t zone_map = VM_MAP_NULL; - -zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */ - -zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */ - -/* - * The VM system gives us an initial chunk of memory. - * It has to be big enough to allocate the zone_zone - * all the way through the pmap zone. - */ - -vm_offset_t zdata; -vm_size_t zdata_size; /* * Align elements that use the zone page list to 32 byte boundaries. */ @@ -927,7 +1402,7 @@ vm_size_t zdata_size; #define zone_wakeup(zone) thread_wakeup((event_t)(zone)) #define zone_sleep(zone) \ - (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT); + (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN_ALWAYS, (event_t)(zone), THREAD_UNINT); /* * The zone_locks_grp allows for collecting lock statistics. @@ -947,22 +1422,6 @@ MACRO_END #define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock) -/* - * Garbage collection map information - */ -#define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32) -struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE]; -vm_size_t zone_page_table_used_size; -unsigned int zone_pages; -unsigned int zone_page_table_second_level_size; /* power of 2 */ -unsigned int zone_page_table_second_level_shift_amount; - -#define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount) -#define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1)) - -void zone_page_table_expand(zone_page_index_t pindex); -struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex); - /* * Exclude more than one concurrent garbage collection */ @@ -973,21 +1432,10 @@ lck_grp_t zone_gc_lck_grp; lck_grp_attr_t zone_gc_lck_grp_attr; lck_mtx_ext_t zone_gc_lck_ext; -/* - * Protects first_zone, last_zone, num_zones, - * and the next_zone field of zones. - */ -decl_simple_lock_data(, all_zones_lock) -zone_t first_zone; -zone_t *last_zone; -unsigned int num_zones; - boolean_t zone_gc_allowed = TRUE; -boolean_t zone_gc_forced = FALSE; boolean_t panic_include_zprint = FALSE; -boolean_t zone_gc_allowed_by_time_throttle = TRUE; -vm_offset_t panic_kext_memory_info = 0; +mach_memory_info_t *panic_kext_memory_info = NULL; vm_size_t panic_kext_memory_size = 0; #define ZALLOC_DEBUG_ZONEGC 0x00000001 @@ -1024,30 +1472,37 @@ uint32_t zalloc_debug = 0; * corrupted to examine its history. This should lead to the source of the corruption. */ +static boolean_t log_records_init = FALSE; static int log_records; /* size of the log, expressed in number of records */ -#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */ +#define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */ + +static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING; +static int num_zones_logged = 0; static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */ /* Log allocations and frees to help debug a zone element corruption */ boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */ +/* Making pointer scanning leaks detection possible for all zones */ + +#if DEBUG || DEVELOPMENT +boolean_t leak_scan_debug_flag = FALSE; /* enabled by "-zl" boot-arg */ +#endif /* DEBUG || DEVELOPMENT */ + /* * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to - * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note - * that the larger the size of the log, the slower the system will run due to linear searching in the log, - * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000 - * records since going much larger than this tends to make the system unresponsive and unbootable on small - * memory configurations. The default value is 4000 records. + * the number of records you want in the log. For example, "zrecs=10" sets it to 10 records. Since this + * is the number of stacks suspected of leaking, we don't need many records. */ #if defined(__LP64__) -#define ZRECORDS_MAX 128000 /* Max records allowed in the log */ +#define ZRECORDS_MAX 2560 /* Max records allowed in the log */ #else -#define ZRECORDS_MAX 8000 /* Max records allowed in the log */ +#define ZRECORDS_MAX 1536 /* Max records allowed in the log */ #endif -#define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */ +#define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */ /* * Each record in the log contains a pointer to the zone element it refers to, @@ -1065,12 +1520,6 @@ boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-ar #define ZOP_ALLOC 1 #define ZOP_FREE 0 -/* - * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest - */ -static btlog_t *zlog_btlog; /* the log itself, dynamically allocated when logging is enabled */ -static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */ - /* * Decide if we want to log this zone by doing a string compare between a zone name and the name * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not @@ -1078,8 +1527,8 @@ static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds * match a space in the zone name. */ -static int -log_this_zone(const char *zonename, const char *logname) +int +track_this_zone(const char *zonename, const char *logname) { int len; const char *zc = zonename; @@ -1117,7 +1566,7 @@ log_this_zone(const char *zonename, const char *logname) * the buffer for the records has been allocated. */ -#define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest) +#define DO_LOGGING(z) (z->zone_logging == TRUE && z->zlog_btlog) extern boolean_t kmem_alloc_ready; @@ -1215,6 +1664,15 @@ zleak_init(vm_size_t max_zonemap_size) zleak_global_tracking_threshold = max_zonemap_size / 2; zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; +#if CONFIG_EMBEDDED + if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) { + zleak_enable_flag = TRUE; + printf("zone leak detection enabled\n"); + } else { + zleak_enable_flag = FALSE; + printf("zone leak detection disabled\n"); + } +#else /* CONFIG_EMBEDDED */ /* -zleakoff (flag to disable zone leak monitor) */ if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) { zleak_enable_flag = FALSE; @@ -1223,6 +1681,7 @@ zleak_init(vm_size_t max_zonemap_size) zleak_enable_flag = TRUE; printf("zone leak detection enabled\n"); } +#endif /* CONFIG_EMBEDDED */ /* zfactor=XXXX (override how often to sample the zone allocator) */ if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { @@ -1518,65 +1977,6 @@ zleak_free(uintptr_t addr, * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix. */ -/* - * This function captures a backtrace from the current stack and - * returns the number of frames captured, limited by max_frames. - * It's fast because it does no checking to make sure there isn't bad data. - * Since it's only called from threads that we're going to keep executing, - * if there's bad data we were going to die eventually. - * If this function is inlined, it doesn't record the frame of the function it's inside. - * (because there's no stack frame!) - */ - -uint32_t -fastbacktrace(uintptr_t* bt, uint32_t max_frames) -{ - uintptr_t* frameptr = NULL, *frameptr_next = NULL; - uintptr_t retaddr = 0; - uint32_t frame_index = 0, frames = 0; - uintptr_t kstackb, kstackt; - thread_t cthread = current_thread(); - - if (__improbable(cthread == NULL)) - return 0; - - kstackb = cthread->kernel_stack; - kstackt = kstackb + kernel_stack_size; - /* Load stack frame pointer (EBP on x86) into frameptr */ - frameptr = __builtin_frame_address(0); - if (((uintptr_t)frameptr > kstackt) || ((uintptr_t)frameptr < kstackb)) - frameptr = NULL; - - while (frameptr != NULL && frame_index < max_frames ) { - /* Next frame pointer is pointed to by the previous one */ - frameptr_next = (uintptr_t*) *frameptr; - - /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */ - /* That also means the return address is worthless, so don't record it */ - if (frameptr_next == NULL) - break; - /* Verify thread stack bounds */ - if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb)) - break; - /* Pull return address from one spot above the frame pointer */ - retaddr = *(frameptr + 1); - - /* Store it in the backtrace array */ - bt[frame_index++] = retaddr; - - frameptr = frameptr_next; - } - - /* Save the number of frames captured for return value */ - frames = frame_index; - - /* Fill in the rest of the backtrace with zeros */ - while (frame_index < max_frames) - bt[frame_index++] = 0; - - return frames; -} - /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */ uintptr_t hash_mix(uintptr_t x) @@ -1639,11 +2039,39 @@ hashaddr(uintptr_t pt, uint32_t max_size) /* End of all leak-detection code */ #pragma mark - +#define ZONE_MAX_ALLOC_SIZE (32 * 1024) +#define ZONE_ALLOC_FRAG_PERCENT(alloc_size, ele_size) (((alloc_size % ele_size) * 100) / alloc_size) + +/* Used to manage copying in of new zone names */ +static vm_offset_t zone_names_start; +static vm_offset_t zone_names_next; + +static vm_size_t +compute_element_size(vm_size_t requested_size) +{ + vm_size_t element_size = requested_size; + + /* Zone elements must fit both a next pointer and a backup pointer */ + vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2; + if (element_size < minimum_element_size) + element_size = minimum_element_size; + + /* + * Round element size to a multiple of sizeof(pointer) + * This also enforces that allocations will be aligned on pointer boundaries + */ + element_size = ((element_size-1) + sizeof(vm_offset_t)) - + ((element_size-1) % sizeof(vm_offset_t)); + + return element_size; +} + /* * zinit initializes a new zone. The zone data structures themselves * are stored in a zone, which is initially a static structure that * is initialized by zone_init. */ + zone_t zinit( vm_size_t size, /* the size of an element */ @@ -1651,101 +2079,104 @@ zinit( vm_size_t alloc, /* allocation size */ const char *name) /* a name for the zone */ { - zone_t z; - boolean_t use_page_list = FALSE; - - if (zone_zone == ZONE_NULL) { - - z = (struct zone *)zdata; - /* special handling in zcram() because the first element is being used */ - } else - z = (zone_t) zalloc(zone_zone); - - if (z == ZONE_NULL) - return(ZONE_NULL); + zone_t z; - /* Zone elements must fit both a next pointer and a backup pointer */ - vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2; - if (size < minimum_element_size) - size = minimum_element_size; + size = compute_element_size(size); - /* - * Round element size to a multiple of sizeof(pointer) - * This also enforces that allocations will be aligned on pointer boundaries - */ - size = ((size-1) + sizeof(vm_offset_t)) - - ((size-1) % sizeof(vm_offset_t)); + simple_lock(&all_zones_lock); - if (alloc == 0) - alloc = PAGE_SIZE; + assert(num_zones < MAX_ZONES); + assert(num_zones_in_use <= num_zones); - alloc = round_page(alloc); - max = round_page(max); + /* If possible, find a previously zdestroy'ed zone in the zone_array that we can reuse instead of initializing a new zone. */ + for (int index = bitmap_first(zone_empty_bitmap, MAX_ZONES); + index >= 0 && index < (int)num_zones; + index = bitmap_next(zone_empty_bitmap, index)) { + z = &(zone_array[index]); - /* - * we look for an allocation size with less than 1% waste - * up to 5 pages in size... - * otherwise, we look for an allocation size with least fragmentation - * in the range of 1 - 5 pages - * This size will be used unless - * the user suggestion is larger AND has less fragmentation - */ -#if ZONE_ALIAS_ADDR - /* Favor PAGE_SIZE allocations unless we waste >10% space */ - if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10)) - alloc = PAGE_SIZE; - else -#endif -#if defined(__LP64__) - if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8)) + /* + * If the zone name and the element size are the same, we can just reuse the old zone struct. + * Otherwise hand out a new zone from the zone_array. + */ + if (!strcmp(z->zone_name, name)) { + vm_size_t old_size = z->elem_size; +#if KASAN_ZALLOC + old_size -= z->kasan_redzone * 2; #endif - { - vm_size_t best, waste; unsigned int i; - best = PAGE_SIZE; - waste = best % size; - - for (i = 1; i <= 5; i++) { - vm_size_t tsize, twaste; - - tsize = i * PAGE_SIZE; - - if ((tsize % size) < (tsize / 100)) { - alloc = tsize; - goto use_this_allocation; + if (old_size == size) { + /* Clear the empty bit for this zone, increment num_zones_in_use, and mark the zone as valid again. */ + bitmap_clear(zone_empty_bitmap, index); + num_zones_in_use++; + z->zone_valid = TRUE; + + /* All other state is already set up since the zone was previously in use. Return early. */ + simple_unlock(&all_zones_lock); + return (z); } - twaste = tsize % size; - if (twaste < waste) - best = tsize, waste = twaste; } - if (alloc <= best || (alloc % size >= waste)) - alloc = best; } -use_this_allocation: - if (max && (max < alloc)) - max = alloc; + + /* If we're here, it means we didn't find a zone above that we could simply reuse. Set up a new zone. */ + + /* Clear the empty bit for the new zone */ + bitmap_clear(zone_empty_bitmap, num_zones); + + z = &(zone_array[num_zones]); + z->index = num_zones; + + num_zones++; + num_zones_in_use++; /* - * Opt into page list tracking if we can reliably map an allocation - * to its page_metadata, and if the wastage in the tail of - * the allocation is not too large + * Initialize the zone lock here before dropping the all_zones_lock. Otherwise we could race with + * zalloc_async() and try to grab the zone lock before it has been initialized, causing a panic. */ + lock_zone_init(z); - /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */ - if (alloc == PAGE_SIZE && zone_zone != ZONE_NULL) { - vm_offset_t first_element_offset; - size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); + simple_unlock(&all_zones_lock); - if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) { - first_element_offset = zone_page_metadata_size; +#if KASAN_ZALLOC + /* Expand the zone allocation size to include the redzones. For page-multiple + * zones add a full guard page because they likely require alignment. kalloc + * and fakestack handles its own KASan state, so ignore those zones. */ + /* XXX: remove this when zinit_with_options() is a thing */ + const char *kalloc_name = "kalloc."; + const char *fakestack_name = "fakestack."; + if (strncmp(name, kalloc_name, strlen(kalloc_name)) == 0) { + z->kasan_redzone = 0; + } else if (strncmp(name, fakestack_name, strlen(fakestack_name)) == 0) { + z->kasan_redzone = 0; + } else { + if ((size % PAGE_SIZE) != 0) { + z->kasan_redzone = KASAN_GUARD_SIZE; } else { - first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); + z->kasan_redzone = PAGE_SIZE; } + max = (max / size) * (size + z->kasan_redzone * 2); + size += z->kasan_redzone * 2; + } +#endif - if (((PAGE_SIZE - first_element_offset) % size) <= PAGE_SIZE / 100) { - use_page_list = TRUE; + max = round_page(max); + + vm_size_t best_alloc = PAGE_SIZE; + + if ((size % PAGE_SIZE) == 0) { + /* zero fragmentation by definition */ + best_alloc = size; + } else { + vm_size_t alloc_size; + for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) { + if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) { + best_alloc = alloc_size; + } } } + alloc = best_alloc; + if (max && (max < alloc)) + max = alloc; + z->free_elements = NULL; queue_init(&z->pages.any_free_foreign); queue_init(&z->pages.all_free); @@ -1756,13 +2187,12 @@ use_this_allocation: z->max_size = max; z->elem_size = size; z->alloc_size = alloc; - z->zone_name = name; z->count = 0; z->countfree = 0; + z->count_all_free_pages = 0; z->sum_count = 0LL; z->doing_alloc_without_vm_priv = FALSE; z->doing_alloc_with_vm_priv = FALSE; - z->doing_gc = FALSE; z->exhaustible = FALSE; z->collectable = TRUE; z->allows_foreign = FALSE; @@ -1775,66 +2205,166 @@ use_this_allocation: z->async_prio_refill = FALSE; z->gzalloc_exempt = FALSE; z->alignment_required = FALSE; - z->use_page_list = use_page_list; + z->zone_replenishing = FALSE; z->prio_refill_watermark = 0; z->zone_replenish_thread = NULL; z->zp_count = 0; + z->kasan_quarantine = TRUE; + z->zone_valid = TRUE; + #if CONFIG_ZLEAKS z->zleak_capture = 0; z->zleak_on = FALSE; #endif /* CONFIG_ZLEAKS */ -#if ZONE_DEBUG - z->active_zones.next = z->active_zones.prev = NULL; - zone_debug_enable(z); -#endif /* ZONE_DEBUG */ - lock_zone_init(z); - /* - * Add the zone to the all-zones list. - * If we are tracking zone info per task, and we have - * already used all the available stat slots, then keep - * using the overflow zone slot. + * If the VM is ready to handle kmem_alloc requests, copy the zone name passed in. + * + * Else simply maintain a pointer to the name string. The only zones we'll actually have + * to do this for would be the VM-related zones that are created very early on before any + * kexts can be loaded (unloaded). So we should be fine with just a pointer in this case. */ - z->next_zone = ZONE_NULL; - simple_lock(&all_zones_lock); - *last_zone = z; - last_zone = &z->next_zone; - z->index = num_zones; - if (zinfo_per_task) { - if (num_zones > ZONES_MAX) - z->index = ZONES_MAX; - } - num_zones++; - simple_unlock(&all_zones_lock); + if (kmem_alloc_ready) { + size_t len = MIN(strlen(name)+1, MACH_ZONE_NAME_MAX_LEN); + + if (zone_names_start == 0 || ((zone_names_next - zone_names_start) + len) > PAGE_SIZE) { + printf("zalloc: allocating memory for zone names buffer\n"); + kern_return_t retval = kmem_alloc_kobject(kernel_map, &zone_names_start, + PAGE_SIZE, VM_KERN_MEMORY_OSFMK); + if (retval != KERN_SUCCESS) { + panic("zalloc: zone_names memory allocation failed"); + } + bzero((char *)zone_names_start, PAGE_SIZE); + zone_names_next = zone_names_start; + } - /* - * Check if we should be logging this zone. If so, remember the zone pointer. - */ - if (log_this_zone(z->zone_name, zone_name_to_log)) { - zone_of_interest = z; + strlcpy((char *)zone_names_next, name, len); + z->zone_name = (char *)zone_names_next; + zone_names_next += len; + } else { + z->zone_name = name; } /* - * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are - * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to - * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one - * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again - * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized - * right now. + * Check for and set up zone leak detection if requested via boot-args. We recognized two + * boot-args: + * + * zlog= + * zrecs= + * + * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to + * control the size of the log. If zrecs is not specified, a default value is used. */ - if (zone_of_interest != NULL && zlog_btlog == NULL && kmem_alloc_ready) { - zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, NULL, NULL, NULL); - if (zlog_btlog) { - printf("zone: logging started for zone %s\n", zone_of_interest->zone_name); - } else { - printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); - zone_of_interest = NULL; + + if (num_zones_logged < max_num_zones_to_log) { + + int i = 1; /* zlog0 isn't allowed. */ + boolean_t zone_logging_enabled = FALSE; + char zlog_name[MAX_ZONE_NAME] = ""; /* Temp. buffer to create the strings zlog1, zlog2 etc... */ + + while (i <= max_num_zones_to_log) { + + snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i); + + if (PE_parse_boot_argn(zlog_name, zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { + if (track_this_zone(z->zone_name, zone_name_to_log)) { + if (z->zone_valid) { + z->zone_logging = TRUE; + zone_logging_enabled = TRUE; + num_zones_logged++; + break; + } + } + } + i++; + } + + if (zone_logging_enabled == FALSE) { + /* + * Backwards compat. with the old boot-arg used to specify single zone logging i.e. zlog + * Needs to happen after the newer zlogn checks because the prefix will match all the zlogn + * boot-args. + */ + if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { + if (track_this_zone(z->zone_name, zone_name_to_log)) { + if (z->zone_valid) { + z->zone_logging = TRUE; + zone_logging_enabled = TRUE; + num_zones_logged++; + } + } + } + } + + if (log_records_init == FALSE && zone_logging_enabled == TRUE) { + if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { + /* + * Don't allow more than ZRECORDS_MAX records even if the user asked for more. + * This prevents accidentally hogging too much kernel memory and making the system + * unusable. + */ + + log_records = MIN(ZRECORDS_MAX, log_records); + log_records_init = TRUE; + } else { + log_records = ZRECORDS_DEFAULT; + log_records_init = TRUE; + } + } + + /* + * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are + * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to + * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one + * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again + * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized + * right now. + */ + if (kmem_alloc_ready) { + + zone_t curr_zone = NULL; + unsigned int max_zones = 0, zone_idx = 0; + + simple_lock(&all_zones_lock); + max_zones = num_zones; + simple_unlock(&all_zones_lock); + + for (zone_idx = 0; zone_idx < max_zones; zone_idx++) { + + curr_zone = &(zone_array[zone_idx]); + + if (!curr_zone->zone_valid) { + continue; + } + + /* + * We work with the zone unlocked here because we could end up needing the zone lock to + * enable logging for this zone e.g. need a VM object to allocate memory to enable logging for the + * VM objects zone. + * + * We don't expect these zones to be needed at this early a time in boot and so take this chance. + */ + if (curr_zone->zone_logging && curr_zone->zlog_btlog == NULL) { + + curr_zone->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */); + + if (curr_zone->zlog_btlog) { + + printf("zone: logging started for zone %s\n", curr_zone->zone_name); + } else { + printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); + curr_zone->zone_logging = FALSE; + } + } + + } } } + #if CONFIG_GZALLOC gzalloc_zone_init(z); #endif + return(z); } unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count; @@ -1844,12 +2374,17 @@ static void zone_replenish_thread(zone_t); /* High priority VM privileged thread used to asynchronously refill a designated * zone, such as the reserved VM map entry zone. */ -static void zone_replenish_thread(zone_t z) { +__attribute__((noreturn)) +static void +zone_replenish_thread(zone_t z) +{ vm_size_t free_size; current_thread()->options |= TH_OPT_VMPRIV; for (;;) { lock_zone(z); + assert(z->zone_valid); + z->zone_replenishing = TRUE; assert(z->prio_refill_watermark != 0); while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) { assert(z->doing_alloc_without_vm_priv == FALSE); @@ -1869,23 +2404,20 @@ static void zone_replenish_thread(zone_t z) { if (z->noencrypt) zflags |= KMA_NOENCRYPT; + /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */ + if (is_zone_map_nearing_exhaustion()) { + thread_wakeup((event_t) &vm_pageout_garbage_collect); + } + kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); if (kr == KERN_SUCCESS) { -#if ZONE_ALIAS_ADDR - if (alloc_size == PAGE_SIZE) - space = zone_alias_addr(space); -#endif zcram(z, space, alloc_size); } else if (kr == KERN_RESOURCE_SHORTAGE) { VM_PAGE_WAIT(); } else if (kr == KERN_NO_SPACE) { kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); if (kr == KERN_SUCCESS) { -#if ZONE_ALIAS_ADDR - if (alloc_size == PAGE_SIZE) - space = zone_alias_addr(space); -#endif zcram(z, space, alloc_size); } else { assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC); @@ -1894,16 +2426,18 @@ static void zone_replenish_thread(zone_t z) { } lock_zone(z); + assert(z->zone_valid); zone_replenish_loops++; } - unlock_zone(z); + z->zone_replenishing = FALSE; /* Signal any potential throttled consumers, terminating * their timer-bounded waits. */ thread_wakeup(z); assert_wait(&z->zone_replenish_thread, THREAD_UNINT); + unlock_zone(z); thread_block(THREAD_CONTINUE_NULL); zone_replenish_wakeups++; } @@ -1924,6 +2458,171 @@ zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) { thread_deallocate(z->zone_replenish_thread); } +void +zdestroy(zone_t z) +{ + unsigned int zindex; + + assert(z != NULL); + + lock_zone(z); + assert(z->zone_valid); + + /* Assert that the zone does not have any allocations in flight */ + assert(z->doing_alloc_without_vm_priv == FALSE); + assert(z->doing_alloc_with_vm_priv == FALSE); + assert(z->async_pending == FALSE); + assert(z->waiting == FALSE); + assert(z->async_prio_refill == FALSE); + +#if !KASAN_ZALLOC + /* + * Unset the valid bit. We'll hit an assert failure on further operations on this zone, until zinit() is called again. + * Leave the zone valid for KASan as we will see zfree's on quarantined free elements even after the zone is destroyed. + */ + z->zone_valid = FALSE; +#endif + unlock_zone(z); + + /* Dump all the free elements */ + drop_free_elements(z); + +#if CONFIG_GZALLOC + /* If the zone is gzalloc managed dump all the elements in the free cache */ + gzalloc_empty_free_cache(z); +#endif + + lock_zone(z); + +#if !KASAN_ZALLOC + /* Assert that all counts are zero */ + assert(z->count == 0); + assert(z->countfree == 0); + assert(z->cur_size == 0); + assert(z->page_count == 0); + assert(z->count_all_free_pages == 0); + + /* Assert that all queues except the foreign queue are empty. The zone allocator doesn't know how to free up foreign memory. */ + assert(queue_empty(&z->pages.all_used)); + assert(queue_empty(&z->pages.intermediate)); + assert(queue_empty(&z->pages.all_free)); +#endif + + zindex = z->index; + + unlock_zone(z); + + simple_lock(&all_zones_lock); + + assert(!bitmap_test(zone_empty_bitmap, zindex)); + /* Mark the zone as empty in the bitmap */ + bitmap_set(zone_empty_bitmap, zindex); + num_zones_in_use--; + assert(num_zones_in_use > 0); + + simple_unlock(&all_zones_lock); +} + +/* Initialize the metadata for an allocation chunk */ +static inline void +zcram_metadata_init(vm_offset_t newmem, vm_size_t size, struct zone_page_metadata *chunk_metadata) +{ + struct zone_page_metadata *page_metadata; + + /* The first page is the real metadata for this allocation chunk. We mark the others as fake metadata */ + size -= PAGE_SIZE; + newmem += PAGE_SIZE; + + for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { + page_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE); + assert(page_metadata != chunk_metadata); + PAGE_METADATA_SET_ZINDEX(page_metadata, MULTIPAGE_METADATA_MAGIC); + page_metadata_set_realmeta(page_metadata, chunk_metadata); + page_metadata->free_count = 0; + } + return; +} + + +/* + * Boolean Random Number Generator for generating booleans to randomize + * the order of elements in newly zcram()'ed memory. The algorithm is a + * modified version of the KISS RNG proposed in the paper: + * http://stat.fsu.edu/techreports/M802.pdf + * The modifications have been documented in the technical paper + * paper from UCL: + * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf + */ + +static void random_bool_gen_entropy( + int *buffer, + int count) +{ + + int i, t; + simple_lock(&bool_gen_lock); + for (i = 0; i < count; i++) { + bool_gen_seed[1] ^= (bool_gen_seed[1] << 5); + bool_gen_seed[1] ^= (bool_gen_seed[1] >> 7); + bool_gen_seed[1] ^= (bool_gen_seed[1] << 22); + t = bool_gen_seed[2] + bool_gen_seed[3] + bool_gen_global; + bool_gen_seed[2] = bool_gen_seed[3]; + bool_gen_global = t < 0; + bool_gen_seed[3] = t &2147483647; + bool_gen_seed[0] += 1411392427; + buffer[i] = (bool_gen_seed[0] + bool_gen_seed[1] + bool_gen_seed[3]); + } + simple_unlock(&bool_gen_lock); +} + +static boolean_t random_bool_gen( + int *buffer, + int index, + int bufsize) +{ + int valindex, bitpos; + valindex = (index / (8 * sizeof(int))) % bufsize; + bitpos = index % (8 * sizeof(int)); + return (boolean_t)(buffer[valindex] & (1 << bitpos)); +} + +static void +random_free_to_zone( + zone_t zone, + vm_offset_t newmem, + vm_offset_t first_element_offset, + int element_count, + int *entropy_buffer) +{ + vm_offset_t last_element_offset; + vm_offset_t element_addr; + vm_size_t elem_size; + int index; + + assert(element_count <= ZONE_CHUNK_MAXELEMENTS); + elem_size = zone->elem_size; + last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size); + for (index = 0; index < element_count; index++) { + assert(first_element_offset <= last_element_offset); + if ( +#if DEBUG || DEVELOPMENT + leak_scan_debug_flag || __improbable(zone->tags) || +#endif /* DEBUG || DEVELOPMENT */ + random_bool_gen(entropy_buffer, index, MAX_ENTROPY_PER_ZCRAM)) { + element_addr = newmem + first_element_offset; + first_element_offset += elem_size; + } else { + element_addr = newmem + last_element_offset; + last_element_offset -= elem_size; + } + if (element_addr != (vm_offset_t)zone) { + zone->count++; /* compensate for free_to_zone */ + free_to_zone(zone, element_addr, FALSE); + } + zone->cur_size += elem_size; + } +} + /* * Cram the given memory into the specified zone. Update the zone page count accordingly. */ @@ -1935,6 +2634,8 @@ zcram( { vm_size_t elem_size; boolean_t from_zm = FALSE; + int element_count; + int entropy_buffer[MAX_ENTROPY_PER_ZCRAM]; /* Basic sanity checks */ assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); @@ -1943,122 +2644,124 @@ zcram( elem_size = zone->elem_size; + KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, zone->index, size); + if (from_zone_map(newmem, size)) from_zm = TRUE; + if (!from_zm) { + /* We cannot support elements larger than page size for foreign memory because we + * put metadata on the page itself for each page of foreign memory. We need to do + * this in order to be able to reach the metadata when any element is freed + */ + assert((zone->allows_foreign == TRUE) && (zone->elem_size <= (PAGE_SIZE - sizeof(struct zone_page_metadata)))); + } + if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name, (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size); - if (from_zm && !zone->use_page_list) - zone_page_init(newmem, size); - ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE)); - lock_zone(zone); + random_bool_gen_entropy(entropy_buffer, MAX_ENTROPY_PER_ZCRAM); + + /* + * Initialize the metadata for all pages. We dont need the zone lock + * here because we are not manipulating any zone related state yet. + */ - if (zone->use_page_list) { - struct zone_page_metadata *page_metadata; - size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); + struct zone_page_metadata *chunk_metadata; + size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); - assert((newmem & PAGE_MASK) == 0); - assert((size & PAGE_MASK) == 0); - for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { + assert((newmem & PAGE_MASK) == 0); + assert((size & PAGE_MASK) == 0); - vm_size_t pos_in_page; - page_metadata = (struct zone_page_metadata *)(newmem); - - page_metadata->pages.next = NULL; - page_metadata->pages.prev = NULL; - page_metadata->elements = NULL; - page_metadata->zone = zone; - page_metadata->alloc_count = 0; - page_metadata->free_count = 0; + chunk_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE); + chunk_metadata->pages.next = NULL; + chunk_metadata->pages.prev = NULL; + page_metadata_set_freelist(chunk_metadata, 0); + PAGE_METADATA_SET_ZINDEX(chunk_metadata, zone->index); + chunk_metadata->free_count = 0; + assert((size / PAGE_SIZE) <= ZONE_CHUNK_MAXPAGES); + chunk_metadata->page_count = (unsigned)(size / PAGE_SIZE); + + zcram_metadata_init(newmem, size, chunk_metadata); + +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags)) { + assert(from_zm); + ztMemoryAdd(zone, newmem, size); + } +#endif /* VM_MAX_TAG_ZONES */ + + lock_zone(zone); + assert(zone->zone_valid); + enqueue_tail(&zone->pages.all_used, &(chunk_metadata->pages)); - enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata); + if (!from_zm) { + /* We cannot support elements larger than page size for foreign memory because we + * put metadata on the page itself for each page of foreign memory. We need to do + * this in order to be able to reach the metadata when any element is freed + */ - vm_offset_t first_element_offset; + for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { + vm_offset_t first_element_offset = 0; if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){ first_element_offset = zone_page_metadata_size; } else { first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); } - - for (pos_in_page = first_element_offset; (newmem + pos_in_page + elem_size) < (vm_offset_t)(newmem + PAGE_SIZE); pos_in_page += elem_size) { - page_metadata->alloc_count++; - zone->count++; /* compensate for free_to_zone */ - free_to_zone(zone, newmem + pos_in_page, FALSE); - zone->cur_size += elem_size; - } + element_count = (int)((PAGE_SIZE - first_element_offset) / elem_size); + random_free_to_zone(zone, newmem, first_element_offset, element_count, entropy_buffer); } } else { - while (size >= elem_size) { - zone->count++; /* compensate for free_to_zone */ - if (newmem == (vm_offset_t)zone) { - /* Don't free zone_zone zone */ - } else { - free_to_zone(zone, newmem, FALSE); - } - if (from_zm) - zone_page_alloc(newmem, elem_size); - size -= elem_size; - newmem += elem_size; - zone->cur_size += elem_size; - } + element_count = (int)(size / elem_size); + random_free_to_zone(zone, newmem, 0, element_count, entropy_buffer); } unlock_zone(zone); -} - - -/* - * Steal memory for the zone package. Called from - * vm_page_bootstrap(). - */ -void -zone_steal_memory(void) -{ -#if CONFIG_GZALLOC - gzalloc_configure(); -#endif - /* Request enough early memory to get to the pmap zone */ - zdata_size = 12 * sizeof(struct zone); - zdata_size = round_page(zdata_size); - zdata = (vm_offset_t)pmap_steal_memory(zdata_size); -} + + KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zone->index); +} /* * Fill a zone with enough memory to contain at least nelem elements. - * Memory is obtained with kmem_alloc_kobject from the kernel_map. * Return the number of elements actually put into the zone, which may * be more than the caller asked for since the memory allocation is - * rounded up to a full page. + * rounded up to the next zone allocation size. */ int zfill( zone_t zone, int nelem) { - kern_return_t kr; - vm_size_t size; + kern_return_t kr; vm_offset_t memory; - int nalloc; - assert(nelem > 0); - if (nelem <= 0) - return 0; - size = nelem * zone->elem_size; - size = round_page(size); - kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE); - if (kr != KERN_SUCCESS) + vm_size_t alloc_size = zone->alloc_size; + vm_size_t elem_per_alloc = alloc_size / zone->elem_size; + vm_size_t nalloc = (nelem + elem_per_alloc - 1) / elem_per_alloc; + + /* Don't mix-and-match zfill with foreign memory */ + assert(!zone->allows_foreign); + + /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */ + if (is_zone_map_nearing_exhaustion()) { + thread_wakeup((event_t) &vm_pageout_garbage_collect); + } + + kr = kernel_memory_allocate(zone_map, &memory, nalloc * alloc_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_ZONE); + if (kr != KERN_SUCCESS) { + printf("%s: kernel_memory_allocate() of %lu bytes failed\n", + __func__, (unsigned long)(nalloc * alloc_size)); return 0; + } - zone_change(zone, Z_FOREIGN, TRUE); - zcram(zone, memory, size); - nalloc = (int)(size / zone->elem_size); - assert(nalloc >= nelem); + for (vm_size_t i = 0; i < nalloc; i++) { + zcram(zone, memory + i * alloc_size, alloc_size); + } - return nalloc; + return (int)(nalloc * elem_per_alloc); } /* @@ -2070,10 +2773,7 @@ void zone_bootstrap(void) { char temp_buf[16]; - - if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) { - zinfo_per_task = TRUE; - } + unsigned int i; if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug))) zalloc_debug = 0; @@ -2081,95 +2781,147 @@ zone_bootstrap(void) /* Set up zone element poisoning */ zp_init(); + /* Seed the random boolean generator for elements in zone free list */ + for (i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) { + bool_gen_seed[i] = (unsigned int)early_random(); + } + simple_lock_init(&bool_gen_lock, 0); + /* should zlog log to debug zone corruption instead of leaks? */ if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) { corruption_debug_flag = TRUE; } - /* - * Check for and set up zone leak detection if requested via boot-args. We recognized two - * boot-args: - * - * zlog= - * zrecs= - * - * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to - * control the size of the log. If zrecs is not specified, a default value is used. - */ - - if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { - if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { - - /* - * Don't allow more than ZRECORDS_MAX records even if the user asked for more. - * This prevents accidentally hogging too much kernel memory and making the system - * unusable. - */ - - log_records = MIN(ZRECORDS_MAX, log_records); - - } else { - log_records = ZRECORDS_DEFAULT; - } +#if DEBUG || DEVELOPMENT +#if VM_MAX_TAG_ZONES + /* enable tags for zones that ask for */ + if (PE_parse_boot_argn("-zt", temp_buf, sizeof(temp_buf))) { + zone_tagging_on = TRUE; + } +#endif /* VM_MAX_TAG_ZONES */ + /* disable element location randomization in a page */ + if (PE_parse_boot_argn("-zl", temp_buf, sizeof(temp_buf))) { + leak_scan_debug_flag = TRUE; } +#endif simple_lock_init(&all_zones_lock, 0); - first_zone = ZONE_NULL; - last_zone = &first_zone; + num_zones_in_use = 0; num_zones = 0; + /* Mark all zones as empty */ + bitmap_full(zone_empty_bitmap, BITMAP_LEN(MAX_ZONES)); + zone_names_next = zone_names_start = 0; + +#if DEBUG || DEVELOPMENT + simple_lock_init(&zone_test_lock, 0); +#endif /* DEBUG || DEVELOPMENT */ + thread_call_setup(&call_async_alloc, zalloc_async, NULL); - /* assertion: nobody else called zinit before us */ - assert(zone_zone == ZONE_NULL); - /* initializing global lock group for zones */ lck_grp_attr_setdefault(&zone_locks_grp_attr); lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr); - zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone), - sizeof(struct zone), "zones"); - zone_change(zone_zone, Z_COLLECT, FALSE); - zone_change(zone_zone, Z_CALLERACCT, FALSE); - zone_change(zone_zone, Z_NOENCRYPT, TRUE); - - zcram(zone_zone, zdata, zdata_size); - VM_PAGE_MOVE_STOLEN(atop_64(zdata_size)); - - /* initialize fake zones and zone info if tracking by task */ - if (zinfo_per_task) { - vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS; - unsigned int i; - - for (i = 0; i < num_fake_zones; i++) - fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i); - zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX, - zisize, "per task zinfo"); - zone_change(zinfo_zone, Z_CALLERACCT, FALSE); - } + lck_attr_setdefault(&zone_metadata_lock_attr); + lck_mtx_init_ext(&zone_metadata_region_lck, &zone_metadata_region_lck_ext, &zone_locks_grp, &zone_metadata_lock_attr); } -void -zinfo_task_init(task_t task) +/* + * We're being very conservative here and picking a value of 95%. We might need to lower this if + * we find that we're not catching the problem and are still hitting zone map exhaustion panics. + */ +#define ZONE_MAP_JETSAM_LIMIT_DEFAULT 95 + +/* + * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit. + * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default. + */ +unsigned int zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT; + +/* + * Returns pid of the task with the largest number of VM map entries. + */ +extern pid_t find_largest_process_vm_map_entries(void); + +/* + * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills. + * For any other pid we try to kill that process synchronously. + */ +boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid); + +void get_zone_map_size(uint64_t *current_size, uint64_t *capacity) { - if (zinfo_per_task) { - task->tkm_zinfo = zalloc(zinfo_zone); - memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS); - } else { - task->tkm_zinfo = NULL; + *current_size = zone_map->size; + *capacity = vm_map_max(zone_map) - vm_map_min(zone_map); +} + +void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size) +{ + zone_t largest_zone = zone_find_largest(); + strlcpy(zone_name, largest_zone->zone_name, zone_name_len); + *zone_size = largest_zone->cur_size; +} + +boolean_t is_zone_map_nearing_exhaustion(void) +{ + uint64_t size = zone_map->size; + uint64_t capacity = vm_map_max(zone_map) - vm_map_min(zone_map); + if (size > ((capacity * zone_map_jetsam_limit) / 100)) { + return TRUE; } + return FALSE; } -void -zinfo_task_free(task_t task) +extern zone_t vm_map_entry_zone; +extern zone_t vm_object_zone; + +#define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98 + +/* + * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread + * to walk through the jetsam priority bands and kill processes. + */ +static void kill_process_in_largest_zone(void) { - assert(task != kernel_task); - if (task->tkm_zinfo != NULL) { - zfree(zinfo_zone, task->tkm_zinfo); - task->tkm_zinfo = NULL; + pid_t pid = -1; + zone_t largest_zone = zone_find_largest(); + + printf("zone_map_exhaustion: Zone map size %lld, capacity %lld [jetsam limit %d%%]\n", (uint64_t)zone_map->size, + (uint64_t)(vm_map_max(zone_map) - vm_map_min(zone_map)), zone_map_jetsam_limit); + printf("zone_map_exhaustion: Largest zone %s, size %lu\n", largest_zone->zone_name, (uintptr_t)largest_zone->cur_size); + + /* + * We want to make sure we don't call this function from userspace. Or we could end up trying to synchronously kill the process + * whose context we're in, causing the system to hang. + */ + assert(current_task() == kernel_task); + + /* + * If vm_object_zone is the largest, check to see if the number of elements in vm_map_entry_zone is comparable. If so, consider + * vm_map_entry_zone as the largest. This lets us target a specific process to jetsam to quickly recover from the zone map bloat. + */ + if (largest_zone == vm_object_zone) { + int vm_object_zone_count = vm_object_zone->count; + int vm_map_entry_zone_count = vm_map_entry_zone->count; + /* Is the VM map entries zone count >= 98% of the VM objects zone count? */ + if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) { + largest_zone = vm_map_entry_zone; + printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", (uintptr_t)largest_zone->cur_size); + } + } + + /* TODO: Extend this to check for the largest process in other zones as well. */ + if (largest_zone == vm_map_entry_zone) { + pid = find_largest_process_vm_map_entries(); + } else { + printf("zone_map_exhaustion: Nothing to do for the largest zone [%s]. Waking up memorystatus thread.\n", largest_zone->zone_name); + } + if (!memorystatus_kill_on_zone_map_exhaustion(pid)) { + printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid); } } - + /* Global initialization of Zone Allocator. * Runs after zone_bootstrap. */ @@ -2180,9 +2932,18 @@ zone_init( kern_return_t retval; vm_offset_t zone_min; vm_offset_t zone_max; + vm_offset_t zone_metadata_space; + unsigned int zone_pages; + vm_map_kernel_flags_t vmk_flags; + +#if VM_MAX_TAG_ZONES + if (zone_tagging_on) ztInit(max_zonemap_size, &zone_locks_grp); +#endif + vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; + vmk_flags.vmkf_permanent = TRUE; retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, - FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE), + FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE, &zone_map); if (retval != KERN_SUCCESS) @@ -2197,35 +2958,27 @@ zone_init( zone_map_min_address = zone_min; zone_map_max_address = zone_max; + zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); + zone_metadata_space = round_page(zone_pages * sizeof(struct zone_page_metadata)); + retval = kernel_memory_allocate(zone_map, &zone_metadata_region_min, zone_metadata_space, + 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_OSFMK); + if (retval != KERN_SUCCESS) + panic("zone_init: zone_metadata_region initialization failed!"); + zone_metadata_region_max = zone_metadata_region_min + zone_metadata_space; + #if defined(__LP64__) /* * ensure that any vm_page_t that gets created from * the vm_page zone can be packed properly (see vm_page.h * for the packing requirements */ - if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_min_address)) != (vm_page_t)zone_map_min_address) - panic("VM_PAGE_PACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address); + if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_metadata_region_max))) != (vm_page_t)zone_metadata_region_max) + panic("VM_PAGE_PACK_PTR failed on zone_metadata_region_max - %p", (void *)zone_metadata_region_max); - if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address)) != (vm_page_t)zone_map_max_address) + if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address))) != (vm_page_t)zone_map_max_address) panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address); #endif - zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); - zone_page_table_used_size = sizeof(zone_page_table); - - zone_page_table_second_level_size = 1; - zone_page_table_second_level_shift_amount = 0; - - /* - * Find the power of 2 for the second level that allows - * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE - * slots. - */ - while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) { - zone_page_table_second_level_size <<= 1; - zone_page_table_second_level_shift_amount++; - } - lck_grp_attr_setdefault(&zone_gc_lck_grp_attr); lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr); lck_attr_setdefault(&zone_gc_lck_attr); @@ -2237,70 +2990,15 @@ zone_init( */ zleak_init(max_zonemap_size); #endif /* CONFIG_ZLEAKS */ -} - -void -zone_page_table_expand(zone_page_index_t pindex) -{ - unsigned int first_index; - struct zone_page_table_entry * volatile * first_level_ptr; - - assert(pindex < zone_pages); - - first_index = zone_page_table_first_level_slot(pindex); - first_level_ptr = &zone_page_table[first_index]; - - if (*first_level_ptr == NULL) { - /* - * We were able to verify the old first-level slot - * had NULL, so attempt to populate it. - */ - - vm_offset_t second_level_array = 0; - vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry)); - zone_page_index_t i; - struct zone_page_table_entry *entry_array; - - if (kmem_alloc_kobject(zone_map, &second_level_array, - second_level_size, VM_KERN_MEMORY_OSFMK) != KERN_SUCCESS) { - panic("zone_page_table_expand"); - } - zone_map_table_page_count += (second_level_size / PAGE_SIZE); - - /* - * zone_gc() may scan the "zone_page_table" directly, - * so make sure any slots have a valid unused state. - */ - entry_array = (struct zone_page_table_entry *)second_level_array; - for (i=0; i < zone_page_table_second_level_size; i++) { - entry_array[i].alloc_count = ZONE_PAGE_UNUSED; - entry_array[i].collect_count = 0; - } - - if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) { - /* Old slot was NULL, replaced with expanded level */ - OSAddAtomicLong(second_level_size, &zone_page_table_used_size); - } else { - /* Old slot was not NULL, someone else expanded first */ - kmem_free(zone_map, second_level_array, second_level_size); - zone_map_table_page_count -= (second_level_size / PAGE_SIZE); - } - } else { - /* Old slot was not NULL, already been expanded */ - } -} -struct zone_page_table_entry * -zone_page_table_lookup(zone_page_index_t pindex) -{ - unsigned int first_index = zone_page_table_first_level_slot(pindex); - struct zone_page_table_entry *second_level = zone_page_table[first_index]; - - if (second_level) { - return &second_level[zone_page_table_second_level_slot(pindex)]; - } +#if VM_MAX_TAG_ZONES + if (zone_tagging_on) vm_allocation_zones_init(); +#endif - return NULL; + int jetsam_limit_temp = 0; + if (PE_parse_boot_argn("zone_map_jetsam_limit", &jetsam_limit_temp, sizeof (jetsam_limit_temp)) && + jetsam_limit_temp > 0 && jetsam_limit_temp <= 100) + zone_map_jetsam_limit = jetsam_limit_temp; } extern volatile SInt32 kfree_nop_count; @@ -2308,6 +3006,8 @@ extern volatile SInt32 kfree_nop_count; #pragma mark - #pragma mark zalloc_canblock +extern boolean_t early_boot_complete; + /* * zalloc returns an element from the specified zone. */ @@ -2315,16 +3015,19 @@ static void * zalloc_internal( zone_t zone, boolean_t canblock, - boolean_t nopagewait) + boolean_t nopagewait, + vm_size_t +#if !VM_MAX_TAG_ZONES + __unused +#endif + reqsize, + vm_tag_t tag) { vm_offset_t addr = 0; kern_return_t retval; uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ int numsaved = 0; boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE; -#if CONFIG_GZALLOC || ZONE_DEBUG - boolean_t did_gzalloc = FALSE; -#endif thread_t thr = current_thread(); boolean_t check_poison = FALSE; boolean_t set_doing_alloc_with_vm_priv = FALSE; @@ -2333,13 +3036,27 @@ zalloc_internal( uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ #endif /* CONFIG_ZLEAKS */ +#if KASAN + /* + * KASan uses zalloc() for fakestack, which can be called anywhere. However, + * we make sure these calls can never block. + */ + boolean_t irq_safe = FALSE; + const char *fakestack_name = "fakestack."; + if (strncmp(zone->zone_name, fakestack_name, strlen(fakestack_name)) == 0) { + irq_safe = TRUE; + } +#elif MACH_ASSERT + /* In every other case, zalloc() from interrupt context is unsafe. */ + const boolean_t irq_safe = FALSE; +#endif + assert(zone != ZONE_NULL); + assert(irq_safe || ml_get_interrupts_enabled() || ml_is_quiescing() || debug_mode_active() || !early_boot_complete); #if CONFIG_GZALLOC addr = gzalloc_alloc(zone, canblock); - did_gzalloc = (addr != 0); #endif - /* * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. */ @@ -2354,29 +3071,40 @@ zalloc_internal( if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { /* Avoid backtracing twice if zone logging is on */ if (numsaved == 0) - zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); + zleak_tracedepth = backtrace(zbt, MAX_ZTRACE_DEPTH); else zleak_tracedepth = numsaved; } #endif /* CONFIG_ZLEAKS */ +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags)) vm_tag_will_update_zone(tag, zone->tag_zone_index); +#endif /* VM_MAX_TAG_ZONES */ + lock_zone(zone); + assert(zone->zone_valid); if (zone->async_prio_refill && zone->zone_replenish_thread) { - do { - vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size)); - vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size; - zone_replenish_wakeup = (zfreec < zrefillwm); - zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0); + vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size)); + vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size; + zone_replenish_wakeup = (zfreec < zrefillwm); + zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0)); + do { if (zone_replenish_wakeup) { zone_replenish_wakeups_initiated++; - unlock_zone(zone); /* Signal the potentially waiting * refill thread. */ thread_wakeup(&zone->zone_replenish_thread); + /* We don't want to wait around for zone_replenish_thread to bump up the free count + * if we're in zone_gc(). This keeps us from deadlocking with zone_replenish_thread. + */ + if (thr->options & TH_OPT_ZONE_GC) + break; + + unlock_zone(zone); /* Scheduling latencies etc. may prevent * the refill thread from keeping up * with demand. Throttle consumers @@ -2389,13 +3117,27 @@ zalloc_internal( thread_block(THREAD_CONTINUE_NULL); } lock_zone(zone); + assert(zone->zone_valid); } + + zfreec = (zone->cur_size - (zone->count * zone->elem_size)); + zrefillwm = zone->prio_refill_watermark * zone->elem_size; + zone_replenish_wakeup = (zfreec < zrefillwm); + zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0)); + } while (zone_alloc_throttle == TRUE); } if (__probable(addr == 0)) - addr = try_alloc_from_zone(zone, &check_poison); + addr = try_alloc_from_zone(zone, tag, &check_poison); + /* If we're here because of zone_gc(), we didn't wait for zone_replenish_thread to finish. + * So we need to ensure that we did successfully grab an element. And we only need to assert + * this for zones that have a replenish thread configured (in this case, the Reserved VM map + * entries zone). + */ + if (thr->options & TH_OPT_ZONE_GC && zone->async_prio_refill) + assert(addr != 0); while ((addr == 0) && canblock) { /* @@ -2421,16 +3163,6 @@ zalloc_internal( */ zone->waiting = TRUE; zone_sleep(zone); - } else if (zone->doing_gc) { - /* - * zone_gc() is running. Since we need an element - * from the free list that is currently being - * collected, set the waiting bit and - * wait for the GC process to finish - * before trying again - */ - zone->waiting = TRUE; - zone_sleep(zone); } else { vm_offset_t space; vm_size_t alloc_size; @@ -2463,6 +3195,14 @@ zalloc_internal( panic("zalloc: zone \"%s\" empty.", zone->zone_name); } } + /* + * It is possible that a BG thread is refilling/expanding the zone + * and gets pre-empted during that operation. That blocks all other + * threads from making progress leading to a watchdog timeout. To + * avoid that, boost the thread priority using the rwlock boost + */ + set_thread_rwlock_boost(); + if ((thr->options & TH_OPT_VMPRIV)) { zone->doing_alloc_with_vm_priv = TRUE; set_doing_alloc_with_vm_priv = TRUE; @@ -2483,13 +3223,13 @@ zalloc_internal( if (zone->noencrypt) zflags |= KMA_NOENCRYPT; + /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */ + if (is_zone_map_nearing_exhaustion()) { + thread_wakeup((event_t) &vm_pageout_garbage_collect); + } + retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); if (retval == KERN_SUCCESS) { -#if ZONE_ALIAS_ADDR - if (alloc_size == PAGE_SIZE) - space = zone_alias_addr(space); -#endif - #if CONFIG_ZLEAKS if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) { if (zone_map->size >= zleak_global_tracking_threshold) { @@ -2514,11 +3254,6 @@ zalloc_internal( } else if (retval != KERN_RESOURCE_SHORTAGE) { retry++; - if (retry == 2) { - zone_gc(TRUE); - printf("zalloc did gc\n"); - zone_display_zprint(); - } if (retry == 3) { panic_include_zprint = TRUE; #if CONFIG_ZLEAKS @@ -2540,6 +3275,7 @@ zalloc_internal( } } lock_zone(zone); + assert(zone->zone_valid); if (set_doing_alloc_with_vm_priv == TRUE) zone->doing_alloc_with_vm_priv = FALSE; @@ -2550,7 +3286,9 @@ zalloc_internal( zone->waiting = FALSE; zone_wakeup(zone); } - addr = try_alloc_from_zone(zone, &check_poison); + clear_thread_rwlock_boost(); + + addr = try_alloc_from_zone(zone, tag, &check_poison); if (addr == 0 && retval == KERN_RESOURCE_SHORTAGE) { if (nopagewait == TRUE) @@ -2559,10 +3297,11 @@ zalloc_internal( VM_PAGE_WAIT(); lock_zone(zone); + assert(zone->zone_valid); } } if (addr == 0) - addr = try_alloc_from_zone(zone, &check_poison); + addr = try_alloc_from_zone(zone, tag, &check_poison); } #if CONFIG_ZLEAKS @@ -2584,30 +3323,24 @@ zalloc_internal( unlock_zone(zone); thread_call_enter(&call_async_alloc); lock_zone(zone); - addr = try_alloc_from_zone(zone, &check_poison); + assert(zone->zone_valid); + addr = try_alloc_from_zone(zone, tag, &check_poison); } - /* - * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is - * suspected, so this code rarely executes. We need to do this code while still holding the zone lock - * since it protects the various log related data structures. - */ +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags) && addr) { + if (reqsize) reqsize = zone->elem_size - reqsize; + vm_tag_update_zone_size(tag, zone->tag_zone_index, zone->elem_size, reqsize); + } +#endif /* VM_MAX_TAG_ZONES */ - if (__improbable(DO_LOGGING(zone) && addr)) { - btlog_add_entry(zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved); - } + unlock_zone(zone); vm_offset_t inner_size = zone->elem_size; - -#if ZONE_DEBUG - if (!did_gzalloc && addr && zone_debug_enabled(zone)) { - enqueue_tail(&zone->active_zones, (queue_entry_t)addr); - addr += ZONE_DEBUG_OFFSET; - inner_size -= ZONE_DEBUG_OFFSET; - } -#endif - unlock_zone(zone); + if (__improbable(DO_LOGGING(zone) && addr)) { + btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved); + } if (__improbable(check_poison && addr)) { vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; @@ -2633,49 +3366,60 @@ zalloc_internal( *primary = ZP_POISON; *backup = ZP_POISON; + +#if DEBUG || DEVELOPMENT + if (__improbable(leak_scan_debug_flag && !(zone->elem_size & (sizeof(uintptr_t) - 1)))) { + int count, idx; + /* Fill element, from tail, with backtrace in reverse order */ + if (numsaved == 0) numsaved = backtrace(zbt, MAX_ZTRACE_DEPTH); + count = (int) (zone->elem_size / sizeof(uintptr_t)); + if (count >= numsaved) count = numsaved - 1; + for (idx = 0; idx < count; idx++) ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1]; + } +#endif /* DEBUG || DEVELOPMENT */ } TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr); - if (addr) { - task_t task; - zinfo_usage_t zinfo; - vm_size_t sz = zone->elem_size; - - if (zone->caller_acct) - ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz); - else - ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz); - - if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) - OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc); +#if KASAN_ZALLOC + /* Fixup the return address to skip the redzone */ + if (zone->kasan_redzone) { + addr = kasan_alloc(addr, zone->elem_size, + zone->elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone); } +#endif + return((void *)addr); } - void * zalloc(zone_t zone) { - return (zalloc_internal(zone, TRUE, FALSE)); + return (zalloc_internal(zone, TRUE, FALSE, 0, VM_KERN_MEMORY_NONE)); } void * zalloc_noblock(zone_t zone) { - return (zalloc_internal(zone, FALSE, FALSE)); + return (zalloc_internal(zone, FALSE, FALSE, 0, VM_KERN_MEMORY_NONE)); } void * zalloc_nopagewait(zone_t zone) { - return (zalloc_internal(zone, TRUE, TRUE)); + return (zalloc_internal(zone, TRUE, TRUE, 0, VM_KERN_MEMORY_NONE)); +} + +void * +zalloc_canblock_tag(zone_t zone, boolean_t canblock, vm_size_t reqsize, vm_tag_t tag) +{ + return (zalloc_internal(zone, canblock, FALSE, reqsize, tag)); } void * zalloc_canblock(zone_t zone, boolean_t canblock) { - return (zalloc_internal(zone, canblock, FALSE)); + return (zalloc_internal(zone, canblock, FALSE, 0, VM_KERN_MEMORY_NONE)); } @@ -2684,128 +3428,46 @@ zalloc_async( __unused thread_call_param_t p0, __unused thread_call_param_t p1) { - zone_t current_z = NULL, head_z; + zone_t current_z = NULL; unsigned int max_zones, i; void *elt = NULL; boolean_t pending = FALSE; simple_lock(&all_zones_lock); - head_z = first_zone; max_zones = num_zones; simple_unlock(&all_zones_lock); - current_z = head_z; for (i = 0; i < max_zones; i++) { + current_z = &(zone_array[i]); + + if (current_z->no_callout == TRUE) { + /* async_pending will never be set */ + continue; + } + lock_zone(current_z); - if (current_z->async_pending == TRUE) { + if (current_z->zone_valid && current_z->async_pending == TRUE) { current_z->async_pending = FALSE; pending = TRUE; } unlock_zone(current_z); if (pending == TRUE) { - elt = zalloc_canblock(current_z, TRUE); + elt = zalloc_canblock_tag(current_z, TRUE, 0, VM_KERN_MEMORY_OSFMK); zfree(current_z, elt); pending = FALSE; } - /* - * This is based on assumption that zones never get - * freed once allocated and linked. - * Hence a read outside of lock is OK. - */ - current_z = current_z->next_zone; } } /* * zget returns an element from the specified zone * and immediately returns nothing if there is nothing there. - * - * This form should be used when you can not block (like when - * processing an interrupt). - * - * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its - * friend vm_page_more_fictitious can block, so it doesn't seem like - * this is used for interrupts any more.... */ void * zget( - register zone_t zone) + zone_t zone) { - vm_offset_t addr; - boolean_t check_poison = FALSE; - -#if CONFIG_ZLEAKS - uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */ - uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ -#endif /* CONFIG_ZLEAKS */ - - assert( zone != ZONE_NULL ); - -#if CONFIG_ZLEAKS - /* - * Zone leak detection: capture a backtrace - */ - if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { - zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); - } -#endif /* CONFIG_ZLEAKS */ - - if (!lock_try_zone(zone)) - return NULL; - - addr = try_alloc_from_zone(zone, &check_poison); - - vm_offset_t inner_size = zone->elem_size; - -#if ZONE_DEBUG - if (addr && zone_debug_enabled(zone)) { - enqueue_tail(&zone->active_zones, (queue_entry_t)addr); - addr += ZONE_DEBUG_OFFSET; - inner_size -= ZONE_DEBUG_OFFSET; - } -#endif /* ZONE_DEBUG */ - -#if CONFIG_ZLEAKS - /* - * Zone leak detection: record the allocation - */ - if (zone->zleak_on && zleak_tracedepth > 0 && addr) { - /* Sampling can fail if another sample is happening at the same time in a different zone. */ - if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { - /* If it failed, roll back the counter so we sample the next allocation instead. */ - zone->zleak_capture = zleak_sample_factor; - } - } -#endif /* CONFIG_ZLEAKS */ - - unlock_zone(zone); - - if (__improbable(check_poison && addr)) { - vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; - vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr); - - for ( ; element_cursor < backup ; element_cursor++) - if (__improbable(*element_cursor != ZP_POISON)) - zone_element_was_modified_panic(zone, - addr, - *element_cursor, - ZP_POISON, - ((vm_offset_t)element_cursor) - addr); - } - - if (addr) { - /* - * Clear out the old next pointer and backup to avoid leaking the cookie - * and so that only values on the freelist have a valid cookie - */ - vm_offset_t *primary = (vm_offset_t *) addr; - vm_offset_t *backup = get_backup_ptr(inner_size, primary); - - *primary = ZP_POISON; - *backup = ZP_POISON; - } - - return((void *) addr); + return zalloc_internal(zone, FALSE, TRUE, 0, VM_KERN_MEMORY_NONE); } /* Keep this FALSE by default. Large memory machine run orders of magnitude @@ -2817,55 +3479,43 @@ static void zone_check_freelist(zone_t zone, vm_offset_t elem) struct zone_free_element *this; struct zone_page_metadata *thispage; - if (zone->use_page_list) { - if (zone->allows_foreign) { - for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); - !queue_end(&zone->pages.any_free_foreign, (queue_entry_t)thispage); - thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { - for (this = thispage->elements; - this != NULL; - this = this->next) { - if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) - panic("zone_check_freelist"); - } - } - } - for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); - !queue_end(&zone->pages.all_free, (queue_entry_t)thispage); - thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { - for (this = thispage->elements; + if (zone->allows_foreign) { + for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); + !queue_end(&zone->pages.any_free_foreign, &(thispage->pages)); + thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) { + for (this = page_metadata_get_freelist(thispage); this != NULL; this = this->next) { if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) panic("zone_check_freelist"); } } - for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); - !queue_end(&zone->pages.intermediate, (queue_entry_t)thispage); - thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { - for (this = thispage->elements; - this != NULL; - this = this->next) { - if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) - panic("zone_check_freelist"); - } + } + for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); + !queue_end(&zone->pages.all_free, &(thispage->pages)); + thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) { + for (this = page_metadata_get_freelist(thispage); + this != NULL; + this = this->next) { + if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) + panic("zone_check_freelist"); } - } else { - for (this = zone->free_elements; - this != NULL; - this = this->next) { + } + for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); + !queue_end(&zone->pages.intermediate, &(thispage->pages)); + thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) { + for (this = page_metadata_get_freelist(thispage); + this != NULL; + this = this->next) { if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) panic("zone_check_freelist"); } } } -static zone_t zone_last_bogus_zone = ZONE_NULL; -static vm_offset_t zone_last_bogus_elem = 0; - void zfree( - register zone_t zone, + zone_t zone, void *addr) { vm_offset_t elem = (vm_offset_t) addr; @@ -2873,43 +3523,31 @@ zfree( int numsaved = 0; boolean_t gzfreed = FALSE; boolean_t poison = FALSE; +#if VM_MAX_TAG_ZONES + vm_tag_t tag; +#endif /* VM_MAX_TAG_ZONES */ assert(zone != ZONE_NULL); -#if 1 - if (zone->use_page_list) { - struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr); - if (zone != page_meta->zone) { - /* - * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from - * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair - * some cases of this, if: - * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case - * we can swap the zone_t - * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage, - * and dereferencing page_meta->zone might panic. - * To distinguish the two, we enumerate the zone list to match it up. - * We do not handle the case where an incorrect zone is passed that does not have use_page_list set, - * even if the true zone did have this set. - */ - zone_t fixed_zone = NULL; - int fixed_i, max_zones; - - simple_lock(&all_zones_lock); - max_zones = num_zones; - fixed_zone = first_zone; - simple_unlock(&all_zones_lock); - - for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) { - if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) { - /* we can fix this */ - printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name); - zone = fixed_zone; - break; - } - } +#if KASAN_ZALLOC + /* + * Resize back to the real allocation size and hand off to the KASan + * quarantine. `addr` may then point to a different allocation. + */ + vm_size_t usersz = zone->elem_size - 2 * zone->kasan_redzone; + vm_size_t sz = usersz; + if (addr && zone->kasan_redzone) { + kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC); + addr = (void *)kasan_dealloc((vm_address_t)addr, &sz); + assert(sz == zone->elem_size); + } + if (addr && zone->kasan_quarantine) { + kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, &zone, usersz, true); + if (!addr) { + return; } } + elem = (vm_offset_t)addr; #endif /* @@ -2923,25 +3561,24 @@ zfree( /* Basic sanity checks */ if (zone == ZONE_NULL || elem == (vm_offset_t)0) panic("zfree: NULL"); - /* zone_gc assumes zones are never freed */ - if (zone == zone_zone) - panic("zfree: freeing to zone_zone breaks zone_gc!"); #endif #if CONFIG_GZALLOC gzfreed = gzalloc_free(zone, addr); #endif + if (!gzfreed) { + struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE); + if (zone != PAGE_METADATA_GET_ZONE(page_meta)) { + panic("Element %p from zone %s caught being freed to wrong zone %s\n", addr, PAGE_METADATA_GET_ZONE(page_meta)->zone_name, zone->zone_name); + } + } + TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr); if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign && !from_zone_map(elem, zone->elem_size))) { -#if MACH_ASSERT panic("zfree: non-allocated memory in collectable zone!"); -#endif - zone_last_bogus_zone = zone; - zone_last_bogus_elem = elem; - return; } if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) { @@ -2955,11 +3592,6 @@ zfree( vm_offset_t inner_size = zone->elem_size; -#if ZONE_DEBUG - if (!gzfreed && zone_debug_enabled(zone)) { - inner_size -= ZONE_DEBUG_OFFSET; - } -#endif uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale); if (inner_size <= zp_tiny_zone_limit) @@ -2979,8 +3611,6 @@ zfree( } } - lock_zone(zone); - /* * See if we're doing logging on this zone. There are two styles of logging used depending on * whether we're trying to catch a leak or corruption. See comments above in zalloc for details. @@ -2992,7 +3622,7 @@ zfree( * We're logging to catch a corruption. Add a record of this zfree operation * to log. */ - btlog_add_entry(zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved); + btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved); } else { /* * We're logging to catch a leak. Remove any record we might have for this @@ -3000,35 +3630,27 @@ zfree( * overflowed and that's OK. Since the log is of a limited size, old records * get overwritten if there are more zallocs than zfrees. */ - btlog_remove_entries_for_element(zlog_btlog, (void *)addr); + btlog_remove_entries_for_element(zone->zlog_btlog, (void *)addr); } } -#if ZONE_DEBUG - if (!gzfreed && zone_debug_enabled(zone)) { - queue_t tmp_elem; - - elem -= ZONE_DEBUG_OFFSET; - if (zone_check) { - /* check the zone's consistency */ + lock_zone(zone); + assert(zone->zone_valid); - for (tmp_elem = queue_first(&zone->active_zones); - !queue_end(tmp_elem, &zone->active_zones); - tmp_elem = queue_next(tmp_elem)) - if (elem == (vm_offset_t)tmp_elem) - break; - if (elem != (vm_offset_t)tmp_elem) - panic("zfree()ing element from wrong zone"); - } - remqueue((queue_t) elem); - } -#endif /* ZONE_DEBUG */ if (zone_check) { zone_check_freelist(zone, elem); } - if (__probable(!gzfreed)) + if (__probable(!gzfreed)) { +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags)) { + tag = (ZTAG(zone, elem)[0] >> 1); + // set the tag with b0 clear so the block remains inuse + ZTAG(zone, elem)[0] = 0xFFFE; + } +#endif /* VM_MAX_TAG_ZONES */ free_to_zone(zone, elem, poison); + } #if MACH_ASSERT if (zone->count < 0) @@ -3046,34 +3668,15 @@ zfree( } #endif /* CONFIG_ZLEAKS */ - /* - * If elements have one or more pages, and memory is low, - * request to run the garbage collection in the zone the next - * time the pageout thread runs. - */ - if (zone->elem_size >= PAGE_SIZE && - vm_pool_low()){ - zone_gc_forced = TRUE; +#if VM_MAX_TAG_ZONES + if (__improbable(zone->tags) && __probable(!gzfreed)) { + vm_tag_update_zone_size(tag, zone->tag_zone_index, -((int64_t)zone->elem_size), 0); } - unlock_zone(zone); - - { - thread_t thr = current_thread(); - task_t task; - zinfo_usage_t zinfo; - vm_size_t sz = zone->elem_size; +#endif /* VM_MAX_TAG_ZONES */ - if (zone->caller_acct) - ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz); - else - ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz); - - if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) - OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free); - } + unlock_zone(zone); } - /* Change a zone's flags. * This routine must be called immediately after zinit. */ @@ -3108,6 +3711,16 @@ zone_change( case Z_NOCALLOUT: zone->no_callout = value; break; + case Z_TAGS_ENABLED: +#if VM_MAX_TAG_ZONES + { + static int tag_zone_index; + zone->tags = TRUE; + zone->tags_inline = (((page_size + zone->elem_size - 1) / zone->elem_size) <= (sizeof(uint32_t) / sizeof(uint16_t))); + zone->tag_zone_index = OSAddAtomic(1, &tag_zone_index); + } +#endif /* VM_MAX_TAG_ZONES */ + break; case Z_GZALLOC_EXEMPT: zone->gzalloc_exempt = value; #if CONFIG_GZALLOC @@ -3116,20 +3729,21 @@ zone_change( break; case Z_ALIGNMENT_REQUIRED: zone->alignment_required = value; - /* - * Disable the page list optimization here to provide - * more of an alignment guarantee. This prevents - * the alignment from being modified by the metadata stored - * at the beginning of the page. - */ - zone->use_page_list = FALSE; -#if ZONE_DEBUG - zone_debug_disable(zone); +#if KASAN_ZALLOC + if (zone->kasan_redzone == KASAN_GUARD_SIZE) { + /* Don't disturb alignment with the redzone for zones with + * specific alignment requirements. */ + zone->elem_size -= zone->kasan_redzone * 2; + zone->kasan_redzone = 0; + } #endif #if CONFIG_GZALLOC gzalloc_reconfigure(zone); #endif break; + case Z_KASAN_QUARANTINE: + zone->kasan_quarantine = value; + break; default: panic("Zone_change: Wrong Item Type!"); /* break; */ @@ -3157,224 +3771,70 @@ zone_free_count(zone_t zone) return(free_count); } -/* - * Zone garbage collection subroutines - */ - -boolean_t -zone_page_collectable( - vm_offset_t addr, - vm_size_t size) -{ - struct zone_page_table_entry *zp; - zone_page_index_t i, j; - -#if ZONE_ALIAS_ADDR - addr = zone_virtual_addr(addr); -#endif -#if MACH_ASSERT - if (!from_zone_map(addr, size)) - panic("zone_page_collectable"); -#endif - - i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); - j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); - - for (; i <= j; i++) { - zp = zone_page_table_lookup(i); - if (zp->collect_count == zp->alloc_count) - return (TRUE); - } - - return (FALSE); -} - -void -zone_page_keep( - vm_offset_t addr, - vm_size_t size) -{ - struct zone_page_table_entry *zp; - zone_page_index_t i, j; - -#if ZONE_ALIAS_ADDR - addr = zone_virtual_addr(addr); -#endif -#if MACH_ASSERT - if (!from_zone_map(addr, size)) - panic("zone_page_keep"); -#endif - - i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); - j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); - - for (; i <= j; i++) { - zp = zone_page_table_lookup(i); - zp->collect_count = 0; - } -} - -void -zone_page_collect( - vm_offset_t addr, - vm_size_t size) -{ - struct zone_page_table_entry *zp; - zone_page_index_t i, j; - -#if ZONE_ALIAS_ADDR - addr = zone_virtual_addr(addr); -#endif -#if MACH_ASSERT - if (!from_zone_map(addr, size)) - panic("zone_page_collect"); -#endif - - i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); - j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); - - for (; i <= j; i++) { - zp = zone_page_table_lookup(i); - ++zp->collect_count; - } -} - +/* Drops the elements in the free queue of a zone. Called by zone_gc() on each zone, and when a zone is zdestroy'ed. */ void -zone_page_init( - vm_offset_t addr, - vm_size_t size) +drop_free_elements(zone_t z) { - struct zone_page_table_entry *zp; - zone_page_index_t i, j; - -#if ZONE_ALIAS_ADDR - addr = zone_virtual_addr(addr); -#endif -#if MACH_ASSERT - if (!from_zone_map(addr, size)) - panic("zone_page_init"); -#endif - - i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); - j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); - - for (; i <= j; i++) { - /* make sure entry exists before marking unused */ - zone_page_table_expand(i); - - zp = zone_page_table_lookup(i); - assert(zp); - zp->alloc_count = ZONE_PAGE_UNUSED; - zp->collect_count = 0; + vm_size_t elt_size, size_freed; + int total_freed_pages = 0; + uint64_t old_all_free_count; + struct zone_page_metadata *page_meta; + queue_head_t page_meta_head; + + lock_zone(z); + if (queue_empty(&z->pages.all_free)) { + unlock_zone(z); + return; } -} - -void -zone_page_alloc( - vm_offset_t addr, - vm_size_t size) -{ - struct zone_page_table_entry *zp; - zone_page_index_t i, j; - -#if ZONE_ALIAS_ADDR - addr = zone_virtual_addr(addr); -#endif -#if MACH_ASSERT - if (!from_zone_map(addr, size)) - panic("zone_page_alloc"); -#endif - - i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); - j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); - - for (; i <= j; i++) { - zp = zone_page_table_lookup(i); - assert(zp); - - /* - * Set alloc_count to ZONE_PAGE_USED if - * it was previously set to ZONE_PAGE_UNUSED. - */ - if (zp->alloc_count == ZONE_PAGE_UNUSED) - zp->alloc_count = ZONE_PAGE_USED; - ++zp->alloc_count; + /* + * Snatch all of the free elements away from the zone. + */ + elt_size = z->elem_size; + old_all_free_count = z->count_all_free_pages; + queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages); + queue_init(&z->pages.all_free); + z->count_all_free_pages = 0; + unlock_zone(z); + + /* Iterate through all elements to find out size and count of elements we snatched */ + size_freed = 0; + queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) { + assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */ + size_freed += elt_size * page_meta->free_count; } -} - -void -zone_page_free_element( - zone_page_index_t *free_page_head, - zone_page_index_t *free_page_tail, - vm_offset_t addr, - vm_size_t size) -{ - struct zone_page_table_entry *zp; - zone_page_index_t i, j; -#if ZONE_ALIAS_ADDR - addr = zone_virtual_addr(addr); -#endif -#if MACH_ASSERT - if (!from_zone_map(addr, size)) - panic("zone_page_free_element"); + /* Update the zone size and free element count */ + lock_zone(z); + z->cur_size -= size_freed; + z->countfree -= size_freed/elt_size; + unlock_zone(z); + + while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) { + vm_address_t free_page_address; + /* Free the pages for metadata and account for them */ + free_page_address = get_zone_page(page_meta); + ZONE_PAGE_COUNT_DECR(z, page_meta->page_count); + total_freed_pages += page_meta->page_count; + old_all_free_count -= page_meta->page_count; +#if KASAN_ZALLOC + kasan_poison_range(free_page_address, page_meta->page_count * PAGE_SIZE, ASAN_VALID); #endif - - /* Clear out the old next and backup pointers */ - vm_offset_t *primary = (vm_offset_t *) addr; - vm_offset_t *backup = get_backup_ptr(size, primary); - - *primary = ZP_POISON; - *backup = ZP_POISON; - - i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); - j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); - - for (; i <= j; i++) { - zp = zone_page_table_lookup(i); - - if (zp->collect_count > 0) - --zp->collect_count; - if (--zp->alloc_count == 0) { - vm_address_t free_page_address; - vm_address_t prev_free_page_address; - - zp->alloc_count = ZONE_PAGE_UNUSED; - zp->collect_count = 0; - - - /* - * This element was the last one on this page, re-use the page's - * storage for a page freelist - */ - free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i); - *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID; - - if (*free_page_head == ZONE_PAGE_INDEX_INVALID) { - *free_page_head = i; - *free_page_tail = i; - } else { - prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail)); - *(zone_page_index_t *)prev_free_page_address = i; - *free_page_tail = i; - } +#if VM_MAX_TAG_ZONES + if (z->tags) ztMemoryRemove(z, free_page_address, (page_meta->page_count * PAGE_SIZE)); +#endif /* VM_MAX_TAG_ZONES */ + kmem_free(zone_map, free_page_address, (page_meta->page_count * PAGE_SIZE)); + if (current_thread()->options & TH_OPT_ZONE_GC) { + thread_yield_to_preemption(); } } -} - -#define ZONEGC_SMALL_ELEMENT_SIZE 4096 + /* We freed all the pages from the all_free list for this zone */ + assert(old_all_free_count == 0); -struct { - uint64_t zgc_invoked; - uint64_t zgc_bailed; - uint32_t pgs_freed; - - uint32_t elems_collected, - elems_freed, - elems_kept; -} zgc_stats; + if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) + kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); +} /* Zone garbage collection * @@ -3382,532 +3842,153 @@ struct { * zones that are marked collectable looking for reclaimable * pages. zone_gc is called by consider_zone_gc when the system * begins to run out of memory. + * + * We should ensure that zone_gc never blocks. */ void -zone_gc(boolean_t all_zones) +zone_gc(boolean_t consider_jetsams) { unsigned int max_zones; zone_t z; unsigned int i; - uint32_t old_pgs_freed; - zone_page_index_t zone_free_page_head; - zone_page_index_t zone_free_page_tail; - thread_t mythread = current_thread(); + + if (consider_jetsams) { + kill_process_in_largest_zone(); + /* + * If we do end up jetsamming something, we need to do a zone_gc so that + * we can reclaim free zone elements and update the zone map size. + * Fall through. + */ + } lck_mtx_lock(&zone_gc_lock); - zgc_stats.zgc_invoked++; - old_pgs_freed = zgc_stats.pgs_freed; + current_thread()->options |= TH_OPT_ZONE_GC; simple_lock(&all_zones_lock); max_zones = num_zones; - z = first_zone; simple_unlock(&all_zones_lock); if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) - kprintf("zone_gc(all_zones=%s) starting...\n", all_zones ? "TRUE" : "FALSE"); - - /* - * it's ok to allow eager kernel preemption while - * while holding a zone lock since it's taken - * as a spin lock (which prevents preemption) - */ - thread_set_eager_preempt(mythread); - -#if MACH_ASSERT - for (i = 0; i < zone_pages; i++) { - struct zone_page_table_entry *zp; - - zp = zone_page_table_lookup(i); - assert(!zp || (zp->collect_count == 0)); - } -#endif /* MACH_ASSERT */ - - for (i = 0; i < max_zones; i++, z = z->next_zone) { - unsigned int n, m; - vm_size_t elt_size, size_freed; - struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail; - int kmem_frees = 0, total_freed_pages = 0; - struct zone_page_metadata *page_meta; - queue_head_t page_meta_head; + kprintf("zone_gc() starting...\n"); + for (i = 0; i < max_zones; i++) { + z = &(zone_array[i]); assert(z != ZONE_NULL); - if (!z->collectable) + if (!z->collectable) { continue; - - if (all_zones == FALSE && z->elem_size < ZONEGC_SMALL_ELEMENT_SIZE && !z->use_page_list) + } + + if (queue_empty(&z->pages.all_free)) { continue; + } + + drop_free_elements(z); + } - lock_zone(z); + current_thread()->options &= ~TH_OPT_ZONE_GC; - elt_size = z->elem_size; + lck_mtx_unlock(&zone_gc_lock); +} - /* - * Do a quick feasibility check before we scan the zone: - * skip unless there is likelihood of getting pages back - * (i.e we need a whole allocation block's worth of free - * elements before we can garbage collect) and - * the zone has more than 10 percent of it's elements free - * or the element size is a multiple of the PAGE_SIZE - */ - if ((elt_size & PAGE_MASK) && - !z->use_page_list && - (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) || - ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) { - unlock_zone(z); - continue; - } +extern vm_offset_t kmapoff_kaddr; +extern unsigned int kmapoff_pgcnt; - z->doing_gc = TRUE; +/* + * consider_zone_gc: + * + * Called by the pageout daemon when the system needs more free pages. + */ +void +consider_zone_gc(boolean_t consider_jetsams) +{ + if (kmapoff_kaddr != 0) { /* - * Snatch all of the free elements away from the zone. + * One-time reclaim of kernel_map resources we allocated in + * early boot. */ + (void) vm_deallocate(kernel_map, + kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); + kmapoff_kaddr = 0; + } - if (z->use_page_list) { - queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages); - queue_init(&z->pages.all_free); - } else { - scan = (void *)z->free_elements; - z->free_elements = 0; - } - - unlock_zone(z); - - if (z->use_page_list) { - /* - * For zones that maintain page lists (which in turn - * track free elements on those pages), zone_gc() - * is incredibly easy, and we bypass all the logic - * for scanning elements and mapping them to - * collectable pages - */ - - size_freed = 0; - - queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) { - assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */ + if (zone_gc_allowed) + zone_gc(consider_jetsams); +} - zgc_stats.elems_freed += page_meta->free_count; - size_freed += elt_size * page_meta->free_count; - zgc_stats.elems_collected += page_meta->free_count; - } - - lock_zone(z); +kern_return_t +task_zone_info( + __unused task_t task, + __unused mach_zone_name_array_t *namesp, + __unused mach_msg_type_number_t *namesCntp, + __unused task_zone_info_array_t *infop, + __unused mach_msg_type_number_t *infoCntp) +{ + return KERN_FAILURE; +} - if (size_freed > 0) { - z->cur_size -= size_freed; - z->countfree -= size_freed/elt_size; - } +kern_return_t +mach_zone_info( + host_priv_t host, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp, + mach_zone_info_array_t *infop, + mach_msg_type_number_t *infoCntp) +{ + return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL)); +} - z->doing_gc = FALSE; - if (z->waiting) { - z->waiting = FALSE; - zone_wakeup(z); - } - unlock_zone(z); +kern_return_t +mach_memory_info( + host_priv_t host, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp, + mach_zone_info_array_t *infop, + mach_msg_type_number_t *infoCntp, + mach_memory_info_array_t *memoryInfop, + mach_msg_type_number_t *memoryInfoCntp) +{ + mach_zone_name_t *names; + vm_offset_t names_addr; + vm_size_t names_size; - if (queue_empty(&page_meta_head)) - continue; + mach_zone_info_t *info; + vm_offset_t info_addr; + vm_size_t info_size; - thread_clear_eager_preempt(mythread); + mach_memory_info_t *memory_info; + vm_offset_t memory_info_addr; + vm_size_t memory_info_size; + vm_size_t memory_info_vmsize; + unsigned int num_info; - while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) { - vm_address_t free_page_address; + unsigned int max_zones, used_zones, i; + zone_t z; + mach_zone_name_t *zn; + mach_zone_info_t *zi; + kern_return_t kr; + + vm_size_t used; + vm_map_copy_t copy; + uint64_t zones_collectable_bytes = 0; - free_page_address = trunc_page((vm_address_t)page_meta); -#if ZONE_ALIAS_ADDR - free_page_address = zone_virtual_addr(free_page_address); + if (host == HOST_NULL) + return KERN_INVALID_HOST; +#if CONFIG_DEBUGGER_FOR_ZONE_INFO + if (!PE_i_can_has_debugger(NULL)) + return KERN_INVALID_HOST; #endif - kmem_free(zone_map, free_page_address, PAGE_SIZE); - ZONE_PAGE_COUNT_DECR(z, 1); - total_freed_pages++; - zgc_stats.pgs_freed += 1; - - if (++kmem_frees == 32) { - thread_yield_internal(1); - kmem_frees = 0; - } - } - if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) - kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); - - thread_set_eager_preempt(mythread); - continue; /* go to next zone */ - } - - /* - * Pass 1: - * - * Determine which elements we can attempt to collect - * and count them up in the page table. Foreign elements - * are returned to the zone. - */ - - prev = (void *)&scan; - elt = scan; - n = 0; tail = keep = NULL; - - zone_free_page_head = ZONE_PAGE_INDEX_INVALID; - zone_free_page_tail = ZONE_PAGE_INDEX_INVALID; - - - while (elt != NULL) { - if (from_zone_map(elt, elt_size)) { - zone_page_collect((vm_offset_t)elt, elt_size); - - prev = elt; - elt = elt->next; - - ++zgc_stats.elems_collected; - } - else { - if (keep == NULL) - keep = tail = elt; - else { - append_zone_element(z, tail, elt); - tail = elt; - } - - append_zone_element(z, prev, elt->next); - elt = elt->next; - append_zone_element(z, tail, NULL); - } - - /* - * Dribble back the elements we are keeping. - * If there are none, give some elements that we haven't looked at yet - * back to the freelist so that others waiting on the zone don't get stuck - * for too long. This might prevent us from recovering some memory, - * but allows us to avoid having to allocate new memory to serve requests - * while zone_gc has all the free memory tied up. - * - */ - - if (++n >= 50) { - if (z->waiting == TRUE) { - /* z->waiting checked without lock held, rechecked below after locking */ - lock_zone(z); - - if (keep != NULL) { - add_list_to_zone(z, keep, tail); - tail = keep = NULL; - } else { - m =0; - base_elt = elt; - base_prev = prev; - while ((elt != NULL) && (++m < 50)) { - prev = elt; - elt = elt->next; - } - if (m !=0 ) { - /* Extract the elements from the list and - * give them back */ - append_zone_element(z, prev, NULL); - add_list_to_zone(z, base_elt, prev); - append_zone_element(z, base_prev, elt); - prev = base_prev; - } - } - - if (z->waiting) { - z->waiting = FALSE; - zone_wakeup(z); - } - - unlock_zone(z); - } - n =0; - } - } - - /* - * Return any remaining elements. - */ - - if (keep != NULL) { - lock_zone(z); - - add_list_to_zone(z, keep, tail); - - if (z->waiting) { - z->waiting = FALSE; - zone_wakeup(z); - } - - unlock_zone(z); - } - - /* - * Pass 2: - * - * Determine which pages we can reclaim and - * free those elements. - */ - - size_freed = 0; - elt = scan; - n = 0; tail = keep = NULL; - - while (elt != NULL) { - if (zone_page_collectable((vm_offset_t)elt, elt_size)) { - struct zone_free_element *next_elt = elt->next; - - size_freed += elt_size; - - /* - * If this is the last allocation on the page(s), - * we may use their storage to maintain the linked - * list of free-able pages. So store elt->next because - * "elt" may be scribbled over. - */ - zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size); - - elt = next_elt; - - ++zgc_stats.elems_freed; - } - else { - zone_page_keep((vm_offset_t)elt, elt_size); - - if (keep == NULL) - keep = tail = elt; - else { - append_zone_element(z, tail, elt); - tail = elt; - } - - elt = elt->next; - append_zone_element(z, tail, NULL); - - ++zgc_stats.elems_kept; - } - - /* - * Dribble back the elements we are keeping, - * and update the zone size info. - */ - - if (++n >= 50) { - lock_zone(z); - - z->cur_size -= size_freed; - z->countfree -= size_freed/elt_size; - size_freed = 0; - - if (keep != NULL) { - add_list_to_zone(z, keep, tail); - } - - if (z->waiting) { - z->waiting = FALSE; - zone_wakeup(z); - } - - unlock_zone(z); - - n = 0; tail = keep = NULL; - } - } - - /* - * Return any remaining elements, and update - * the zone size info. - */ - - lock_zone(z); - - if (size_freed > 0 || keep != NULL) { - - z->cur_size -= size_freed; - z->countfree -= size_freed/elt_size; - - if (keep != NULL) { - add_list_to_zone(z, keep, tail); - } - - } - - z->doing_gc = FALSE; - if (z->waiting) { - z->waiting = FALSE; - zone_wakeup(z); - } - unlock_zone(z); - - if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID) - continue; - - /* - * we don't want to allow eager kernel preemption while holding the - * various locks taken in the kmem_free path of execution - */ - thread_clear_eager_preempt(mythread); - - - /* - * This loop counts the number of pages that should be freed by the - * next loop that tries to coalesce the kmem_frees() - */ - uint32_t pages_to_free_count = 0; - vm_address_t fpa; - zone_page_index_t index; - for (index = zone_free_page_head; index != ZONE_PAGE_INDEX_INVALID;) { - pages_to_free_count++; - fpa = zone_map_min_address + PAGE_SIZE * ((vm_size_t)index); - index = *(zone_page_index_t *)fpa; - } - - /* - * Reclaim the pages we are freeing. - */ - while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { - zone_page_index_t zind = zone_free_page_head; - vm_address_t free_page_address; - int page_count; - - /* - * Use the first word of the page about to be freed to find the next free page - */ - free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind); - zone_free_page_head = *(zone_page_index_t *)free_page_address; - - page_count = 1; - total_freed_pages++; - - while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { - zone_page_index_t next_zind = zone_free_page_head; - vm_address_t next_free_page_address; - - next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind); - - if (next_free_page_address == (free_page_address - PAGE_SIZE)) { - free_page_address = next_free_page_address; - } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count))) - break; - - zone_free_page_head = *(zone_page_index_t *)next_free_page_address; - page_count++; - total_freed_pages++; - } - kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE); - ZONE_PAGE_COUNT_DECR(z, page_count); - zgc_stats.pgs_freed += page_count; - pages_to_free_count -= page_count; - - if (++kmem_frees == 32) { - thread_yield_internal(1); - kmem_frees = 0; - } - } - - /* Check that we actually free the exact number of pages we were supposed to */ - assert(pages_to_free_count == 0); - - if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) - kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); - - thread_set_eager_preempt(mythread); - } - - if (old_pgs_freed == zgc_stats.pgs_freed) - zgc_stats.zgc_bailed++; - - thread_clear_eager_preempt(mythread); - - lck_mtx_unlock(&zone_gc_lock); - -} - -extern vm_offset_t kmapoff_kaddr; -extern unsigned int kmapoff_pgcnt; - -/* - * consider_zone_gc: - * - * Called by the pageout daemon when the system needs more free pages. - */ - -void -consider_zone_gc(boolean_t force) -{ - boolean_t all_zones = FALSE; - - if (kmapoff_kaddr != 0) { - /* - * One-time reclaim of kernel_map resources we allocated in - * early boot. - */ - (void) vm_deallocate(kernel_map, - kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); - kmapoff_kaddr = 0; - } - - if (zone_gc_allowed && - (zone_gc_allowed_by_time_throttle || - zone_gc_forced || - force)) { - if (zone_gc_allowed_by_time_throttle == TRUE) { - zone_gc_allowed_by_time_throttle = FALSE; - all_zones = TRUE; - } - zone_gc_forced = FALSE; - - zone_gc(all_zones); - } -} - -/* - * By default, don't attempt zone GC more frequently - * than once / 1 minutes. - */ -void -compute_zone_gc_throttle(void *arg __unused) -{ - zone_gc_allowed_by_time_throttle = TRUE; -} - - -#if CONFIG_TASK_ZONE_INFO - -kern_return_t -task_zone_info( - task_t task, - mach_zone_name_array_t *namesp, - mach_msg_type_number_t *namesCntp, - task_zone_info_array_t *infop, - mach_msg_type_number_t *infoCntp) -{ - mach_zone_name_t *names; - vm_offset_t names_addr; - vm_size_t names_size; - task_zone_info_t *info; - vm_offset_t info_addr; - vm_size_t info_size; - unsigned int max_zones, i; - zone_t z; - mach_zone_name_t *zn; - task_zone_info_t *zi; - kern_return_t kr; - - vm_size_t used; - vm_map_copy_t copy; - - - if (task == TASK_NULL) - return KERN_INVALID_TASK; - - /* - * We assume that zones aren't freed once allocated. - * We won't pick up any zones that are allocated later. - */ + /* + * We assume that zones aren't freed once allocated. + * We won't pick up any zones that are allocated later. + */ simple_lock(&all_zones_lock); - max_zones = (unsigned int)(num_zones + num_fake_zones); - z = first_zone; + max_zones = (unsigned int)(num_zones); simple_unlock(&all_zones_lock); names_size = round_page(max_zones * sizeof *names); @@ -3925,87 +4006,45 @@ task_zone_info( names_addr, names_size); return kr; } - - info = (task_zone_info_t *) info_addr; + info = (mach_zone_info_t *) info_addr; zn = &names[0]; zi = &info[0]; - for (i = 0; i < max_zones - num_fake_zones; i++) { + used_zones = max_zones; + for (i = 0; i < max_zones; i++) { struct zone zcopy; - + z = &(zone_array[i]); assert(z != ZONE_NULL); lock_zone(z); + if (!z->zone_valid) { + unlock_zone(z); + used_zones--; + continue; + } zcopy = *z; unlock_zone(z); - simple_lock(&all_zones_lock); - z = z->next_zone; - simple_unlock(&all_zones_lock); - /* assuming here the name data is static */ - (void) strncpy(zn->mzn_name, zcopy.zone_name, + (void) __nosan_strncpy(zn->mzn_name, zcopy.zone_name, sizeof zn->mzn_name); zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; - zi->tzi_count = (uint64_t)zcopy.count; - zi->tzi_cur_size = ptoa_64(zcopy.page_count); - zi->tzi_max_size = (uint64_t)zcopy.max_size; - zi->tzi_elem_size = (uint64_t)zcopy.elem_size; - zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size; - zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size; - zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible; - zi->tzi_collectable = (uint64_t)zcopy.collectable; - zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct; - if (task->tkm_zinfo != NULL) { - zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc; - zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free; - } else { - zi->tzi_task_alloc = 0; - zi->tzi_task_free = 0; - } - zn++; - zi++; - } - - /* - * loop through the fake zones and fill them using the specialized - * functions - */ - for (i = 0; i < num_fake_zones; i++) { - int count, collectable, exhaustible, caller_acct, index; - vm_size_t cur_size, max_size, elem_size, alloc_size; - uint64_t sum_size; - - strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); - zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; - fake_zones[i].query(&count, &cur_size, - &max_size, &elem_size, - &alloc_size, &sum_size, - &collectable, &exhaustible, &caller_acct); - zi->tzi_count = (uint64_t)count; - zi->tzi_cur_size = (uint64_t)cur_size; - zi->tzi_max_size = (uint64_t)max_size; - zi->tzi_elem_size = (uint64_t)elem_size; - zi->tzi_alloc_size = (uint64_t)alloc_size; - zi->tzi_sum_size = sum_size; - zi->tzi_collectable = (uint64_t)collectable; - zi->tzi_exhaustible = (uint64_t)exhaustible; - zi->tzi_caller_acct = (uint64_t)caller_acct; - if (task->tkm_zinfo != NULL) { - index = ZINFO_SLOTS - num_fake_zones + i; - zi->tzi_task_alloc = task->tkm_zinfo[index].alloc; - zi->tzi_task_free = task->tkm_zinfo[index].free; - } else { - zi->tzi_task_alloc = 0; - zi->tzi_task_free = 0; - } + zi->mzi_count = (uint64_t)zcopy.count; + zi->mzi_cur_size = ptoa_64(zcopy.page_count); + zi->mzi_max_size = (uint64_t)zcopy.max_size; + zi->mzi_elem_size = (uint64_t)zcopy.elem_size; + zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; + zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; + zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; + zi->mzi_collectable = (uint64_t)zcopy.collectable; + zones_collectable_bytes += ((uint64_t)zcopy.count_all_free_pages * PAGE_SIZE); zn++; zi++; } - used = max_zones * sizeof *names; + used = used_zones * sizeof *names; if (used != names_size) bzero((char *) (names_addr + used), names_size - used); @@ -4014,9 +4053,9 @@ task_zone_info( assert(kr == KERN_SUCCESS); *namesp = (mach_zone_name_t *) copy; - *namesCntp = max_zones; + *namesCntp = used_zones; - used = max_zones * sizeof *info; + used = used_zones * sizeof *info; if (used != info_size) bzero((char *) (info_addr + used), info_size - used); @@ -4025,112 +4064,16 @@ task_zone_info( (vm_map_size_t)used, TRUE, ©); assert(kr == KERN_SUCCESS); - *infop = (task_zone_info_t *) copy; - *infoCntp = max_zones; - - return KERN_SUCCESS; -} - -#else /* CONFIG_TASK_ZONE_INFO */ - -kern_return_t -task_zone_info( - __unused task_t task, - __unused mach_zone_name_array_t *namesp, - __unused mach_msg_type_number_t *namesCntp, - __unused task_zone_info_array_t *infop, - __unused mach_msg_type_number_t *infoCntp) -{ - return KERN_FAILURE; -} - -#endif /* CONFIG_TASK_ZONE_INFO */ - -kern_return_t -mach_zone_info( - host_priv_t host, - mach_zone_name_array_t *namesp, - mach_msg_type_number_t *namesCntp, - mach_zone_info_array_t *infop, - mach_msg_type_number_t *infoCntp) -{ - return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL)); -} - -kern_return_t -mach_memory_info( - host_priv_t host, - mach_zone_name_array_t *namesp, - mach_msg_type_number_t *namesCntp, - mach_zone_info_array_t *infop, - mach_msg_type_number_t *infoCntp, - mach_memory_info_array_t *memoryInfop, - mach_msg_type_number_t *memoryInfoCntp) -{ - mach_zone_name_t *names; - vm_offset_t names_addr; - vm_size_t names_size; - - mach_zone_info_t *info; - vm_offset_t info_addr; - vm_size_t info_size; - - mach_memory_info_t *memory_info; - vm_offset_t memory_info_addr; - vm_size_t memory_info_size; - vm_size_t memory_info_vmsize; - unsigned int num_sites; - - unsigned int max_zones, i; - zone_t z; - mach_zone_name_t *zn; - mach_zone_info_t *zi; - kern_return_t kr; + *infop = (mach_zone_info_t *) copy; + *infoCntp = used_zones; - vm_size_t used; - vm_map_copy_t copy; - - - if (host == HOST_NULL) - return KERN_INVALID_HOST; -#if CONFIG_DEBUGGER_FOR_ZONE_INFO - if (!PE_i_can_has_debugger(NULL)) - return KERN_INVALID_HOST; -#endif - - /* - * We assume that zones aren't freed once allocated. - * We won't pick up any zones that are allocated later. - */ - - simple_lock(&all_zones_lock); - max_zones = (unsigned int)(num_zones + num_fake_zones); - z = first_zone; - simple_unlock(&all_zones_lock); - - names_size = round_page(max_zones * sizeof *names); - kr = kmem_alloc_pageable(ipc_kernel_map, - &names_addr, names_size, VM_KERN_MEMORY_IPC); - if (kr != KERN_SUCCESS) - return kr; - names = (mach_zone_name_t *) names_addr; - - info_size = round_page(max_zones * sizeof *info); - kr = kmem_alloc_pageable(ipc_kernel_map, - &info_addr, info_size, VM_KERN_MEMORY_IPC); - if (kr != KERN_SUCCESS) { - kmem_free(ipc_kernel_map, - names_addr, names_size); - return kr; - } - info = (mach_zone_info_t *) info_addr; - - num_sites = 0; + num_info = 0; memory_info_addr = 0; + if (memoryInfop && memoryInfoCntp) { - num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT; - memory_info_size = num_sites * sizeof(*info); + num_info = vm_page_diagnose_estimate(); + memory_info_size = num_info * sizeof(*memory_info); memory_info_vmsize = round_page(memory_info_size); kr = kmem_alloc_pageable(ipc_kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC); @@ -4142,270 +4085,116 @@ mach_memory_info( return kr; } - kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, - VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE); + kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, + VM_PROT_READ|VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE); assert(kr == KERN_SUCCESS); memory_info = (mach_memory_info_t *) memory_info_addr; - vm_page_diagnose(memory_info, num_sites); + vm_page_diagnose(memory_info, num_info, zones_collectable_bytes); kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE); assert(kr == KERN_SUCCESS); - } - - zn = &names[0]; - zi = &info[0]; - - for (i = 0; i < max_zones - num_fake_zones; i++) { - struct zone zcopy; - - assert(z != ZONE_NULL); - - lock_zone(z); - zcopy = *z; - unlock_zone(z); - - simple_lock(&all_zones_lock); - z = z->next_zone; - simple_unlock(&all_zones_lock); - - /* assuming here the name data is static */ - (void) strncpy(zn->mzn_name, zcopy.zone_name, - sizeof zn->mzn_name); - zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; - - zi->mzi_count = (uint64_t)zcopy.count; - zi->mzi_cur_size = ptoa_64(zcopy.page_count); - zi->mzi_max_size = (uint64_t)zcopy.max_size; - zi->mzi_elem_size = (uint64_t)zcopy.elem_size; - zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; - zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; - zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; - zi->mzi_collectable = (uint64_t)zcopy.collectable; - zn++; - zi++; - } - - /* - * loop through the fake zones and fill them using the specialized - * functions - */ - for (i = 0; i < num_fake_zones; i++) { - int count, collectable, exhaustible, caller_acct; - vm_size_t cur_size, max_size, elem_size, alloc_size; - uint64_t sum_size; - - strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); - zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; - fake_zones[i].query(&count, &cur_size, - &max_size, &elem_size, - &alloc_size, &sum_size, - &collectable, &exhaustible, &caller_acct); - zi->mzi_count = (uint64_t)count; - zi->mzi_cur_size = (uint64_t)cur_size; - zi->mzi_max_size = (uint64_t)max_size; - zi->mzi_elem_size = (uint64_t)elem_size; - zi->mzi_alloc_size = (uint64_t)alloc_size; - zi->mzi_sum_size = sum_size; - zi->mzi_collectable = (uint64_t)collectable; - zi->mzi_exhaustible = (uint64_t)exhaustible; - - zn++; - zi++; - } - - used = max_zones * sizeof *names; - if (used != names_size) - bzero((char *) (names_addr + used), names_size - used); - - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, - (vm_map_size_t)used, TRUE, ©); - assert(kr == KERN_SUCCESS); - - *namesp = (mach_zone_name_t *) copy; - *namesCntp = max_zones; - - used = max_zones * sizeof *info; - - if (used != info_size) - bzero((char *) (info_addr + used), info_size - used); - - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, - (vm_map_size_t)used, TRUE, ©); - assert(kr == KERN_SUCCESS); - - *infop = (mach_zone_info_t *) copy; - *infoCntp = max_zones; - - if (memoryInfop && memoryInfoCntp) - { + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr, (vm_map_size_t)memory_info_size, TRUE, ©); assert(kr == KERN_SUCCESS); *memoryInfop = (mach_memory_info_t *) copy; - *memoryInfoCntp = num_sites; + *memoryInfoCntp = num_info; } return KERN_SUCCESS; } -/* - * host_zone_info - LEGACY user interface for Mach zone information - * Should use mach_zone_info() instead! - */ -kern_return_t -host_zone_info( - host_priv_t host, - zone_name_array_t *namesp, - mach_msg_type_number_t *namesCntp, - zone_info_array_t *infop, - mach_msg_type_number_t *infoCntp) +uint64_t +get_zones_collectable_bytes(void) { - zone_name_t *names; - vm_offset_t names_addr; - vm_size_t names_size; - zone_info_t *info; - vm_offset_t info_addr; - vm_size_t info_size; - unsigned int max_zones, i; - zone_t z; - zone_name_t *zn; - zone_info_t *zi; - kern_return_t kr; - - vm_size_t used; - vm_map_copy_t copy; - - - if (host == HOST_NULL) - return KERN_INVALID_HOST; -#if CONFIG_DEBUGGER_FOR_ZONE_INFO - if (!PE_i_can_has_debugger(NULL)) - return KERN_INVALID_HOST; -#endif - -#if defined(__LP64__) - if (!thread_is_64bit(current_thread())) - return KERN_NOT_SUPPORTED; -#else - if (thread_is_64bit(current_thread())) - return KERN_NOT_SUPPORTED; -#endif - - /* - * We assume that zones aren't freed once allocated. - * We won't pick up any zones that are allocated later. - */ + zone_t z; + unsigned int i, max_zones; + uint64_t zones_collectable_bytes = 0; simple_lock(&all_zones_lock); - max_zones = (unsigned int)(num_zones + num_fake_zones); - z = first_zone; + max_zones = (unsigned int)(num_zones); simple_unlock(&all_zones_lock); - names_size = round_page(max_zones * sizeof *names); - kr = kmem_alloc_pageable(ipc_kernel_map, - &names_addr, names_size, VM_KERN_MEMORY_IPC); - if (kr != KERN_SUCCESS) - return kr; - names = (zone_name_t *) names_addr; - - info_size = round_page(max_zones * sizeof *info); - kr = kmem_alloc_pageable(ipc_kernel_map, - &info_addr, info_size, VM_KERN_MEMORY_IPC); - if (kr != KERN_SUCCESS) { - kmem_free(ipc_kernel_map, - names_addr, names_size); - return kr; - } - - info = (zone_info_t *) info_addr; - - zn = &names[0]; - zi = &info[0]; - - for (i = 0; i < max_zones - num_fake_zones; i++) { - struct zone zcopy; - + for (i = 0; i < max_zones; i++) { + z = &(zone_array[i]); assert(z != ZONE_NULL); lock_zone(z); - zcopy = *z; + zones_collectable_bytes += ((uint64_t)z->count_all_free_pages * PAGE_SIZE); unlock_zone(z); - - simple_lock(&all_zones_lock); - z = z->next_zone; - simple_unlock(&all_zones_lock); - - /* assuming here the name data is static */ - (void) strncpy(zn->zn_name, zcopy.zone_name, - sizeof zn->zn_name); - zn->zn_name[sizeof zn->zn_name - 1] = '\0'; - - zi->zi_count = zcopy.count; - zi->zi_cur_size = ptoa(zcopy.page_count); - zi->zi_max_size = zcopy.max_size; - zi->zi_elem_size = zcopy.elem_size; - zi->zi_alloc_size = zcopy.alloc_size; - zi->zi_exhaustible = zcopy.exhaustible; - zi->zi_collectable = zcopy.collectable; - - zn++; - zi++; - } - - /* - * loop through the fake zones and fill them using the specialized - * functions - */ - for (i = 0; i < num_fake_zones; i++) { - int caller_acct; - uint64_t sum_space; - strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name); - zn->zn_name[sizeof zn->zn_name - 1] = '\0'; - fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size, - &zi->zi_max_size, &zi->zi_elem_size, - &zi->zi_alloc_size, &sum_space, - &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct); - zn++; - zi++; } - used = max_zones * sizeof *names; - if (used != names_size) - bzero((char *) (names_addr + used), names_size - used); - - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, - (vm_map_size_t)used, TRUE, ©); - assert(kr == KERN_SUCCESS); - - *namesp = (zone_name_t *) copy; - *namesCntp = max_zones; + return zones_collectable_bytes; +} - used = max_zones * sizeof *info; - if (used != info_size) - bzero((char *) (info_addr + used), info_size - used); +#if DEBUG || DEVELOPMENT - kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, - (vm_map_size_t)used, TRUE, ©); - assert(kr == KERN_SUCCESS); +kern_return_t +mach_memory_info_check(void) +{ + mach_memory_info_t * memory_info; + mach_memory_info_t * info; + zone_t zone; + unsigned int idx, num_info, max_zones; + vm_offset_t memory_info_addr; + kern_return_t kr; + size_t memory_info_size, memory_info_vmsize; + uint64_t top_wired, zonestotal, total; + + num_info = vm_page_diagnose_estimate(); + memory_info_size = num_info * sizeof(*memory_info); + memory_info_vmsize = round_page(memory_info_size); + kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG); + assert (kr == KERN_SUCCESS); + + memory_info = (mach_memory_info_t *) memory_info_addr; + vm_page_diagnose(memory_info, num_info, 0); - *infop = (zone_info_t *) copy; - *infoCntp = max_zones; + simple_lock(&all_zones_lock); + max_zones = num_zones; + simple_unlock(&all_zones_lock); - return KERN_SUCCESS; + top_wired = total = zonestotal = 0; + for (idx = 0; idx < max_zones; idx++) + { + zone = &(zone_array[idx]); + assert(zone != ZONE_NULL); + lock_zone(zone); + zonestotal += ptoa_64(zone->page_count); + unlock_zone(zone); + } + for (idx = 0; idx < num_info; idx++) + { + info = &memory_info[idx]; + if (!info->size) continue; + if (VM_KERN_COUNT_WIRED == info->site) top_wired = info->size; + if (VM_KERN_SITE_HIDE & info->flags) continue; + if (!(VM_KERN_SITE_WIRED & info->flags)) continue; + total += info->size; + } + total += zonestotal; + + printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", total, top_wired, zonestotal, top_wired - total); + + kmem_free(kernel_map, memory_info_addr, memory_info_vmsize); + + return (kr); } +#endif /* DEBUG || DEVELOPMENT */ + kern_return_t mach_zone_force_gc( host_t host) { - if (host == HOST_NULL) return KERN_INVALID_HOST; - consider_zone_gc(TRUE); - +#if DEBUG || DEVELOPMENT + consider_zone_gc(FALSE); +#endif /* DEBUG || DEVELOPMENT */ return (KERN_SUCCESS); } @@ -4417,35 +4206,6 @@ extern unsigned int inuse_ptepages_count; extern long long alloc_ptepages_count; #endif -void zone_display_zprint() -{ - unsigned int i; - zone_t the_zone; - - if(first_zone!=NULL) { - the_zone = first_zone; - for (i = 0; i < num_zones; i++) { - if(the_zone->cur_size > (1024*1024)) { - printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size); - } - - if(the_zone->next_zone == NULL) { - break; - } - - the_zone = the_zone->next_zone; - } - } - - printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total)); - -#if defined(__i386__) || defined (__x86_64__) - printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count)); -#endif - - printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total); -} - zone_t zone_find_largest(void) { @@ -4455,21 +4215,15 @@ zone_find_largest(void) zone_t zone_largest; simple_lock(&all_zones_lock); - the_zone = first_zone; max_zones = num_zones; simple_unlock(&all_zones_lock); - zone_largest = the_zone; + zone_largest = &(zone_array[0]); for (i = 0; i < max_zones; i++) { + the_zone = &(zone_array[i]); if (the_zone->cur_size > zone_largest->cur_size) { zone_largest = the_zone; } - - if (the_zone->next_zone == NULL) { - break; - } - - the_zone = the_zone->next_zone; } return zone_largest; } @@ -4483,26 +4237,224 @@ zone_find_largest(void) || !queue_empty(&z->pages.intermediate) \ || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign))) -void -zone_debug_enable( - zone_t z) + +#endif /* ZONE_DEBUG */ + + +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +#if DEBUG || DEVELOPMENT + +static uintptr_t * +zone_copy_all_allocations_inqueue(zone_t z, queue_head_t * queue, uintptr_t * elems) { - if (zone_debug_enabled(z) || zone_in_use(z) || - z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET)) - return; - queue_init(&z->active_zones); - z->elem_size += ZONE_DEBUG_OFFSET; + struct zone_page_metadata *page_meta; + vm_offset_t free, elements; + vm_offset_t idx, numElements, freeCount, bytesAvail, metaSize; + + queue_iterate(queue, page_meta, struct zone_page_metadata *, pages) + { + elements = get_zone_page(page_meta); + bytesAvail = ptoa(page_meta->page_count); + freeCount = 0; + if (z->allows_foreign && !from_zone_map(elements, z->elem_size)) + { + metaSize = (sizeof(struct zone_page_metadata) + ZONE_ELEMENT_ALIGNMENT - 1) & ~(ZONE_ELEMENT_ALIGNMENT - 1); + bytesAvail -= metaSize; + elements += metaSize; + } + numElements = bytesAvail / z->elem_size; + // construct array of all possible elements + for (idx = 0; idx < numElements; idx++) + { + elems[idx] = INSTANCE_PUT(elements + idx * z->elem_size); + } + // remove from the array all free elements + free = (vm_offset_t)page_metadata_get_freelist(page_meta); + while (free) + { + // find idx of free element + for (idx = 0; (idx < numElements) && (elems[idx] != INSTANCE_PUT(free)); idx++) {} + assert(idx < numElements); + // remove it + bcopy(&elems[idx + 1], &elems[idx], (numElements - (idx + 1)) * sizeof(elems[0])); + numElements--; + freeCount++; + // next free element + vm_offset_t *primary = (vm_offset_t *) free; + free = *primary ^ zp_nopoison_cookie; + } + elems += numElements; + } + + return (elems); } -void -zone_debug_disable( - zone_t z) +kern_return_t +zone_leaks(const char * zoneName, uint32_t nameLen, leak_site_proc proc, void * refCon) { - if (!zone_debug_enabled(z) || zone_in_use(z)) - return; - z->elem_size -= ZONE_DEBUG_OFFSET; - z->active_zones.next = z->active_zones.prev = NULL; + uintptr_t zbt[MAX_ZTRACE_DEPTH]; + zone_t zone; + uintptr_t * array; + uintptr_t * next; + uintptr_t element, bt; + uint32_t idx, count, found; + uint32_t btidx, btcount, nobtcount, btfound; + uint32_t elemSize; + uint64_t maxElems; + unsigned int max_zones; + kern_return_t kr; + + simple_lock(&all_zones_lock); + max_zones = num_zones; + simple_unlock(&all_zones_lock); + + for (idx = 0; idx < max_zones; idx++) + { + if (!strncmp(zoneName, zone_array[idx].zone_name, nameLen)) break; + } + if (idx >= max_zones) return (KERN_INVALID_NAME); + zone = &zone_array[idx]; + + elemSize = (uint32_t) zone->elem_size; + maxElems = ptoa(zone->page_count) / elemSize; + + if ((zone->alloc_size % elemSize) + && !leak_scan_debug_flag) return (KERN_INVALID_CAPABILITY); + + kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array, + maxElems * sizeof(uintptr_t), VM_KERN_MEMORY_DIAG); + if (KERN_SUCCESS != kr) return (kr); + + lock_zone(zone); + + next = array; + next = zone_copy_all_allocations_inqueue(zone, &zone->pages.any_free_foreign, next); + next = zone_copy_all_allocations_inqueue(zone, &zone->pages.intermediate, next); + next = zone_copy_all_allocations_inqueue(zone, &zone->pages.all_used, next); + count = (uint32_t)(next - array); + + unlock_zone(zone); + + zone_leaks_scan(array, count, (uint32_t)zone->elem_size, &found); + assert(found <= count); + + for (idx = 0; idx < count; idx++) + { + element = array[idx]; + if (kInstanceFlagReferenced & element) continue; + element = INSTANCE_PUT(element) & ~kInstanceFlags; + } + + if (zone->zlog_btlog && !corruption_debug_flag) + { + // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found + btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon); + } + + for (nobtcount = idx = 0; idx < count; idx++) + { + element = array[idx]; + if (!element) continue; + if (kInstanceFlagReferenced & element) continue; + element = INSTANCE_PUT(element) & ~kInstanceFlags; + + // see if we can find any backtrace left in the element + btcount = (typeof(btcount)) (zone->elem_size / sizeof(uintptr_t)); + if (btcount >= MAX_ZTRACE_DEPTH) btcount = MAX_ZTRACE_DEPTH - 1; + for (btfound = btidx = 0; btidx < btcount; btidx++) + { + bt = ((uintptr_t *)element)[btcount - 1 - btidx]; + if (!VM_KERNEL_IS_SLID(bt)) break; + zbt[btfound++] = bt; + } + if (btfound) (*proc)(refCon, 1, elemSize, &zbt[0], btfound); + else nobtcount++; + } + if (nobtcount) + { + // fake backtrace when we found nothing + zbt[0] = (uintptr_t) &zalloc; + (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1); + } + + kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t)); + + return (KERN_SUCCESS); +} + +boolean_t +kdp_is_in_zone(void *addr, const char *zone_name) +{ + zone_t z; + return (zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name)); } +boolean_t +run_zone_test(void) +{ + int i = 0, max_iter = 5; + void * test_ptr; + zone_t test_zone; -#endif /* ZONE_DEBUG */ + simple_lock(&zone_test_lock); + if (!zone_test_running) { + zone_test_running = TRUE; + } else { + simple_unlock(&zone_test_lock); + printf("run_zone_test: Test already running.\n"); + return FALSE; + } + simple_unlock(&zone_test_lock); + + printf("run_zone_test: Testing zinit(), zalloc(), zfree() and zdestroy() on zone \"test_zone_sysctl\"\n"); + + /* zinit() and zdestroy() a zone with the same name a bunch of times, verify that we get back the same zone each time */ + do { + test_zone = zinit(sizeof(uint64_t), 100 * sizeof(uint64_t), sizeof(uint64_t), "test_zone_sysctl"); + if (test_zone == NULL) { + printf("run_zone_test: zinit() failed\n"); + return FALSE; + } + +#if KASAN_ZALLOC + if (test_zone_ptr == NULL && zone_free_count(test_zone) != 0) { +#else + if (zone_free_count(test_zone) != 0) { +#endif + printf("run_zone_test: free count is not zero\n"); + return FALSE; + } + + if (test_zone_ptr == NULL) { + /* Stash the zone pointer returned on the fist zinit */ + printf("run_zone_test: zone created for the first time\n"); + test_zone_ptr = test_zone; + } else if (test_zone != test_zone_ptr) { + printf("run_zone_test: old zone pointer and new zone pointer don't match\n"); + return FALSE; + } + + test_ptr = zalloc(test_zone); + if (test_ptr == NULL) { + printf("run_zone_test: zalloc() failed\n"); + return FALSE; + } + zfree(test_zone, test_ptr); + + zdestroy(test_zone); + i++; + + printf("run_zone_test: Iteration %d successful\n", i); + } while (i < max_iter); + + printf("run_zone_test: Test passed\n"); + + simple_lock(&zone_test_lock); + zone_test_running = FALSE; + simple_unlock(&zone_test_lock); + + return TRUE; +} + +#endif /* DEBUG || DEVELOPMENT */