X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/2d21ac55c334faf3a56e5634905ed6987fc787d4..d9a64523371fa019c4575bb400cbbc3a50ac9903:/osfmk/kern/processor.c diff --git a/osfmk/kern/processor.c b/osfmk/kern/processor.c index 9ef40cd53..479094c30 100644 --- a/osfmk/kern/processor.c +++ b/osfmk/kern/processor.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2000-2007 Apple Inc. All rights reserved. + * Copyright (c) 2000-2009 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * @@ -78,6 +78,14 @@ #include #include +#include + +#if defined(CONFIG_XNUPOST) + +#include + +#endif /* CONFIG_XNUPOST */ + /* * Exported interface */ @@ -89,10 +97,14 @@ struct pset_node pset_node0; decl_simple_lock_data(static,pset_node_lock) queue_head_t tasks; +queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */ +queue_head_t corpse_tasks; int tasks_count; +int terminated_tasks_count; queue_head_t threads; int threads_count; -decl_mutex_data(,tasks_threads_lock) +decl_lck_mtx_data(,tasks_threads_lock) +decl_lck_mtx_data(,tasks_corpse_lock) processor_t processor_list; unsigned int processor_count; @@ -101,15 +113,43 @@ decl_simple_lock_data(,processor_list_lock) uint32_t processor_avail_count; -processor_t master_processor; -int master_cpu = 0; +processor_t master_processor; +int master_cpu = 0; +boolean_t sched_stats_active = FALSE; + +processor_t processor_array[MAX_SCHED_CPUS] = { 0 }; + +#if defined(CONFIG_XNUPOST) +kern_return_t ipi_test(void); +extern void arm64_ipi_test(void); + +kern_return_t +ipi_test() +{ +#if __arm64__ + processor_t p; + + for (p = processor_list; p != NULL; p = p->processor_list) { + thread_bind(p); + thread_block(THREAD_CONTINUE_NULL); + kprintf("Running IPI test on cpu %d\n", p->cpu_id); + arm64_ipi_test(); + } + + /* unbind thread from specific cpu */ + thread_bind(PROCESSOR_NULL); + thread_block(THREAD_CONTINUE_NULL); + + T_PASS("Done running IPI tests"); +#else + T_PASS("Unsupported platform. Not running IPI tests"); + +#endif /* __arm64__ */ + + return KERN_SUCCESS; +} +#endif /* defined(CONFIG_XNUPOST) */ -/* Forwards */ -kern_return_t processor_set_things( - processor_set_t pset, - mach_port_t **thing_list, - mach_msg_type_number_t *count, - int type); void processor_bootstrap(void) @@ -119,9 +159,10 @@ processor_bootstrap(void) simple_lock_init(&pset_node_lock, 0); - mutex_init(&tasks_threads_lock, 0); queue_init(&tasks); + queue_init(&terminated_tasks); queue_init(&threads); + queue_init(&corpse_tasks); simple_lock_init(&processor_list_lock, 0); @@ -132,40 +173,93 @@ processor_bootstrap(void) /* * Initialize the given processor for the cpu - * indicated by slot_num, and assign to the + * indicated by cpu_id, and assign to the * specified processor set. */ void processor_init( - processor_t p, - int slot_num, - processor_set_t pset) -{ - run_queue_init(&p->runq); - - p->state = PROCESSOR_OFF_LINE; - p->active_thread = p->next_thread = p->idle_thread = THREAD_NULL; - p->processor_set = pset; - p->current_pri = MINPRI; - timer_call_setup(&p->quantum_timer, thread_quantum_expire, p); - p->deadline = UINT64_MAX; - p->timeslice = 0; - p->processor_self = IP_NULL; - simple_lock_init(&p->lock, 0); - processor_data_init(p); - PROCESSOR_DATA(p, slot_num) = slot_num; - p->processor_list = NULL; + processor_t processor, + int cpu_id, + processor_set_t pset) +{ + spl_t s; + + if (processor != master_processor) { + /* Scheduler state for master_processor initialized in sched_init() */ + SCHED(processor_init)(processor); + } + + assert(cpu_id < MAX_SCHED_CPUS); + + processor->state = PROCESSOR_OFF_LINE; + processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL; + processor->processor_set = pset; + processor_state_update_idle(processor); + processor->starting_pri = MINPRI; + processor->cpu_id = cpu_id; + timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor); + processor->quantum_end = UINT64_MAX; + processor->deadline = UINT64_MAX; + processor->first_timeslice = FALSE; + processor->processor_primary = processor; /* no SMT relationship known at this point */ + processor->processor_secondary = NULL; + processor->is_SMT = FALSE; + processor->is_recommended = (pset->recommended_bitmask & (1ULL << cpu_id)) ? TRUE : FALSE; + processor->processor_self = IP_NULL; + processor_data_init(processor); + processor->processor_list = NULL; + processor->cpu_quiesce_state = CPU_QUIESCE_COUNTER_NONE; + processor->cpu_quiesce_last_checkin = 0; + + s = splsched(); + pset_lock(pset); + bit_set(pset->cpu_bitmask, cpu_id); + if (pset->cpu_set_count++ == 0) + pset->cpu_set_low = pset->cpu_set_hi = cpu_id; + else { + pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low; + pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi; + } + pset_unlock(pset); + splx(s); simple_lock(&processor_list_lock); if (processor_list == NULL) - processor_list = p; + processor_list = processor; else - processor_list_tail->processor_list = p; - processor_list_tail = p; + processor_list_tail->processor_list = processor; + processor_list_tail = processor; processor_count++; + processor_array[cpu_id] = processor; simple_unlock(&processor_list_lock); } +void +processor_set_primary( + processor_t processor, + processor_t primary) +{ + assert(processor->processor_primary == primary || processor->processor_primary == processor); + /* Re-adjust primary point for this (possibly) secondary processor */ + processor->processor_primary = primary; + + assert(primary->processor_secondary == NULL || primary->processor_secondary == processor); + if (primary != processor) { + /* Link primary to secondary, assumes a 2-way SMT model + * We'll need to move to a queue if any future architecture + * requires otherwise. + */ + assert(processor->processor_secondary == NULL); + primary->processor_secondary = processor; + /* Mark both processors as SMT siblings */ + primary->is_SMT = TRUE; + processor->is_SMT = TRUE; + + processor_set_t pset = processor->processor_set; + atomic_bit_clear(&pset->primary_map, processor->cpu_id, memory_order_relaxed); + } +} + processor_set_t processor_pset( processor_t processor) @@ -173,6 +267,34 @@ processor_pset( return (processor->processor_set); } +void +processor_state_update_idle(processor_t processor) +{ + processor->current_pri = IDLEPRI; + processor->current_sfi_class = SFI_CLASS_KERNEL; + processor->current_recommended_pset_type = PSET_SMP; + processor->current_perfctl_class = PERFCONTROL_CLASS_IDLE; +} + +void +processor_state_update_from_thread(processor_t processor, thread_t thread) +{ + processor->current_pri = thread->sched_pri; + processor->current_sfi_class = thread->sfi_class; + processor->current_recommended_pset_type = recommended_pset_type(thread); + processor->current_perfctl_class = thread_get_perfcontrol_class(thread); +} + +void +processor_state_update_explicit(processor_t processor, int pri, sfi_class_id_t sfi_class, + pset_cluster_type_t pset_type, perfcontrol_class_t perfctl_class) +{ + processor->current_pri = pri; + processor->current_sfi_class = sfi_class; + processor->current_recommended_pset_type = pset_type; + processor->current_perfctl_class = perfctl_class; +} + pset_node_t pset_node_root(void) { @@ -183,6 +305,10 @@ processor_set_t pset_create( pset_node_t node) { + /* some schedulers do not support multiple psets */ + if (SCHED(multiple_psets_enabled) == FALSE) + return processor_pset(master_processor); + processor_set_t *prev, pset = kalloc(sizeof (*pset)); if (pset != PROCESSOR_SET_NULL) { @@ -202,6 +328,33 @@ pset_create( return (pset); } +/* + * Find processor set in specified node with specified cluster_id. + * Returns default_pset if not found. + */ +processor_set_t +pset_find( + uint32_t cluster_id, + processor_set_t default_pset) +{ + simple_lock(&pset_node_lock); + pset_node_t node = &pset_node0; + processor_set_t pset = NULL; + + do { + pset = node->psets; + while (pset != NULL) { + if (pset->pset_cluster_id == cluster_id) + break; + pset = pset->pset_list; + } + } while ((node = node->node_list) != NULL); + simple_unlock(&pset_node_lock); + if (pset == NULL) + return default_pset; + return (pset); +} + /* * Initialize the given processor_set structure. */ @@ -210,17 +363,36 @@ pset_init( processor_set_t pset, pset_node_t node) { - queue_init(&pset->active_queue); - queue_init(&pset->idle_queue); - pset->idle_count = 0; - pset->processor_count = 0; - pset->high_hint = PROCESSOR_NULL; - pset->low_hint = PROCESSOR_NULL; + if (pset != &pset0) { + /* Scheduler state for pset0 initialized in sched_init() */ + SCHED(pset_init)(pset); + SCHED(rt_init)(pset); + } + + pset->online_processor_count = 0; + pset->load_average = 0; + pset->cpu_set_low = pset->cpu_set_hi = 0; + pset->cpu_set_count = 0; + pset->last_chosen = -1; + pset->cpu_bitmask = 0; + pset->recommended_bitmask = ~0ULL; + pset->primary_map = ~0ULL; + pset->cpu_state_map[PROCESSOR_OFF_LINE] = ~0ULL; + for (uint i = PROCESSOR_SHUTDOWN; i < PROCESSOR_STATE_LEN; i++) { + pset->cpu_state_map[i] = 0; + } + pset->pending_AST_cpu_mask = 0; +#if defined(CONFIG_SCHED_DEFERRED_AST) + pset->pending_deferred_AST_cpu_mask = 0; +#endif + pset->pending_spill_cpu_mask = 0; pset_lock_init(pset); pset->pset_self = IP_NULL; pset->pset_name_self = IP_NULL; pset->pset_list = PROCESSOR_SET_NULL; pset->node = node; + pset->pset_cluster_type = PSET_SMP; + pset->pset_cluster_id = 0; } kern_return_t @@ -248,38 +420,38 @@ processor_info_count( kern_return_t processor_info( - register processor_t processor, + processor_t processor, processor_flavor_t flavor, host_t *host, processor_info_t info, mach_msg_type_number_t *count) { - register int slot_num, state; + int cpu_id, state; kern_return_t result; if (processor == PROCESSOR_NULL) return (KERN_INVALID_ARGUMENT); - slot_num = PROCESSOR_DATA(processor, slot_num); + cpu_id = processor->cpu_id; switch (flavor) { case PROCESSOR_BASIC_INFO: { - register processor_basic_info_t basic_info; + processor_basic_info_t basic_info; if (*count < PROCESSOR_BASIC_INFO_COUNT) return (KERN_FAILURE); basic_info = (processor_basic_info_t) info; - basic_info->cpu_type = slot_type(slot_num); - basic_info->cpu_subtype = slot_subtype(slot_num); + basic_info->cpu_type = slot_type(cpu_id); + basic_info->cpu_subtype = slot_subtype(cpu_id); state = processor->state; if (state == PROCESSOR_OFF_LINE) basic_info->running = FALSE; else basic_info->running = TRUE; - basic_info->slot_num = slot_num; + basic_info->slot_num = cpu_id; if (processor == master_processor) basic_info->is_master = TRUE; else @@ -293,18 +465,71 @@ processor_info( case PROCESSOR_CPU_LOAD_INFO: { - register processor_cpu_load_info_t cpu_load_info; - - if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT) + processor_cpu_load_info_t cpu_load_info; + timer_t idle_state; + uint64_t idle_time_snapshot1, idle_time_snapshot2; + uint64_t idle_time_tstamp1, idle_time_tstamp2; + + /* + * We capture the accumulated idle time twice over + * the course of this function, as well as the timestamps + * when each were last updated. Since these are + * all done using non-atomic racy mechanisms, the + * most we can infer is whether values are stable. + * timer_grab() is the only function that can be + * used reliably on another processor's per-processor + * data. + */ + + if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT) return (KERN_FAILURE); - cpu_load_info = (processor_cpu_load_info_t) info; - cpu_load_info->cpu_ticks[CPU_STATE_USER] = - timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval; - cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = - timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval; - cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = - timer_grab(&PROCESSOR_DATA(processor, idle_state)) / hz_tick_interval; + cpu_load_info = (processor_cpu_load_info_t) info; + if (precise_user_kernel_time) { + cpu_load_info->cpu_ticks[CPU_STATE_USER] = + (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval); + cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = + (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval); + } else { + uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) + + timer_grab(&PROCESSOR_DATA(processor, system_state)); + + cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval); + cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0; + } + + idle_state = &PROCESSOR_DATA(processor, idle_state); + idle_time_snapshot1 = timer_grab(idle_state); + idle_time_tstamp1 = idle_state->tstamp; + + /* + * Idle processors are not continually updating their + * per-processor idle timer, so it may be extremely + * out of date, resulting in an over-representation + * of non-idle time between two measurement + * intervals by e.g. top(1). If we are non-idle, or + * have evidence that the timer is being updated + * concurrently, we consider its value up-to-date. + */ + if (PROCESSOR_DATA(processor, current_state) != idle_state) { + cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = + (uint32_t)(idle_time_snapshot1 / hz_tick_interval); + } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) || + (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){ + /* Idle timer is being updated concurrently, second stamp is good enough */ + cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = + (uint32_t)(idle_time_snapshot2 / hz_tick_interval); + } else { + /* + * Idle timer may be very stale. Fortunately we have established + * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging + */ + idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1; + + cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = + (uint32_t)(idle_time_snapshot1 / hz_tick_interval); + } + cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0; *count = PROCESSOR_CPU_LOAD_INFO_COUNT; @@ -314,7 +539,7 @@ processor_info( } default: - result = cpu_info(flavor, slot_num, info, count); + result = cpu_info(flavor, cpu_id, info, count); if (result == KERN_SUCCESS) *host = &realhost; @@ -340,7 +565,7 @@ processor_start( prev = thread_bind(processor); thread_block(THREAD_CONTINUE_NULL); - result = cpu_start(PROCESSOR_DATA(processor, slot_num)); + result = cpu_start(processor->cpu_id); thread_bind(prev); @@ -357,7 +582,7 @@ processor_start( return (KERN_FAILURE); } - processor->state = PROCESSOR_START; + pset_update_processor_state(pset, processor, PROCESSOR_START); pset_unlock(pset); splx(s); @@ -369,7 +594,7 @@ processor_start( if (result != KERN_SUCCESS) { s = splsched(); pset_lock(pset); - processor->state = PROCESSOR_OFF_LINE; + pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); pset_unlock(pset); splx(s); @@ -388,7 +613,7 @@ processor_start( if (result != KERN_SUCCESS) { s = splsched(); pset_lock(pset); - processor->state = PROCESSOR_OFF_LINE; + pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); pset_unlock(pset); splx(s); @@ -400,6 +625,7 @@ processor_start( thread->bound_processor = processor; processor->next_thread = thread; thread->state = TH_RUN; + thread->last_made_runnable_time = mach_absolute_time(); thread_unlock(thread); splx(s); @@ -409,12 +635,11 @@ processor_start( if (processor->processor_self == IP_NULL) ipc_processor_init(processor); - result = cpu_start(PROCESSOR_DATA(processor, slot_num)); + result = cpu_start(processor->cpu_id); if (result != KERN_SUCCESS) { s = splsched(); pset_lock(pset); - processor->state = PROCESSOR_OFF_LINE; - timer_call_shutdown(processor); + pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); pset_unlock(pset); splx(s); @@ -445,7 +670,7 @@ processor_control( if (processor == PROCESSOR_NULL) return(KERN_INVALID_ARGUMENT); - return(cpu_control(PROCESSOR_DATA(processor, slot_num), info, count)); + return(cpu_control(processor->cpu_id, info, count)); } kern_return_t @@ -471,6 +696,9 @@ processor_get_assignment( { int state; + if (processor == PROCESSOR_NULL) + return(KERN_INVALID_ARGUMENT); + state = processor->state; if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE) return(KERN_FAILURE); @@ -492,7 +720,7 @@ processor_set_info( return(KERN_INVALID_ARGUMENT); if (flavor == PROCESSOR_SET_BASIC_INFO) { - register processor_set_basic_info_t basic_info; + processor_set_basic_info_t basic_info; if (*count < PROCESSOR_SET_BASIC_INFO_COUNT) return(KERN_FAILURE); @@ -506,7 +734,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) { - register policy_timeshare_base_t ts_base; + policy_timeshare_base_t ts_base; if (*count < POLICY_TIMESHARE_BASE_COUNT) return(KERN_FAILURE); @@ -519,7 +747,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) { - register policy_fifo_base_t fifo_base; + policy_fifo_base_t fifo_base; if (*count < POLICY_FIFO_BASE_COUNT) return(KERN_FAILURE); @@ -532,7 +760,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_RR_DEFAULT) { - register policy_rr_base_t rr_base; + policy_rr_base_t rr_base; if (*count < POLICY_RR_BASE_COUNT) return(KERN_FAILURE); @@ -546,7 +774,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) { - register policy_timeshare_limit_t ts_limit; + policy_timeshare_limit_t ts_limit; if (*count < POLICY_TIMESHARE_LIMIT_COUNT) return(KERN_FAILURE); @@ -559,7 +787,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_FIFO_LIMITS) { - register policy_fifo_limit_t fifo_limit; + policy_fifo_limit_t fifo_limit; if (*count < POLICY_FIFO_LIMIT_COUNT) return(KERN_FAILURE); @@ -572,7 +800,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_RR_LIMITS) { - register policy_rr_limit_t rr_limit; + policy_rr_limit_t rr_limit; if (*count < POLICY_RR_LIMIT_COUNT) return(KERN_FAILURE); @@ -585,7 +813,7 @@ processor_set_info( return(KERN_SUCCESS); } else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) { - register int *enabled; + int *enabled; if (*count < (sizeof(*enabled)/sizeof(int))) return(KERN_FAILURE); @@ -619,7 +847,7 @@ processor_set_statistics( return (KERN_INVALID_PROCESSOR_SET); if (flavor == PROCESSOR_SET_LOAD_INFO) { - register processor_set_load_info_t load_info; + processor_set_load_info_t load_info; if (*count < PROCESSOR_SET_LOAD_INFO_COUNT) return(KERN_FAILURE); @@ -684,9 +912,6 @@ processor_set_policy_disable( return (KERN_INVALID_ARGUMENT); } -#define THING_TASK 0 -#define THING_THREAD 1 - /* * processor_set_things: * @@ -694,167 +919,227 @@ processor_set_policy_disable( */ kern_return_t processor_set_things( - processor_set_t pset, - mach_port_t **thing_list, - mach_msg_type_number_t *count, - int type) + processor_set_t pset, + void **thing_list, + mach_msg_type_number_t *count, + int type) { - unsigned int actual; /* this many things */ - unsigned int maxthings; unsigned int i; + task_t task; + thread_t thread; + + task_t *task_list; + unsigned int actual_tasks; + vm_size_t task_size, task_size_needed; + + thread_t *thread_list; + unsigned int actual_threads; + vm_size_t thread_size, thread_size_needed; + void *addr, *newaddr; vm_size_t size, size_needed; - void *addr; if (pset == PROCESSOR_SET_NULL || pset != &pset0) return (KERN_INVALID_ARGUMENT); - size = 0; - addr = NULL; + task_size = 0; + task_size_needed = 0; + task_list = NULL; + actual_tasks = 0; - for (;;) { - mutex_lock(&tasks_threads_lock); + thread_size = 0; + thread_size_needed = 0; + thread_list = NULL; + actual_threads = 0; - if (type == THING_TASK) - maxthings = tasks_count; - else - maxthings = threads_count; + for (;;) { + lck_mtx_lock(&tasks_threads_lock); /* do we have the memory we need? */ + if (type == PSET_THING_THREAD) + thread_size_needed = threads_count * sizeof(void *); +#if !CONFIG_MACF + else +#endif + task_size_needed = tasks_count * sizeof(void *); - size_needed = maxthings * sizeof (mach_port_t); - if (size_needed <= size) + if (task_size_needed <= task_size && + thread_size_needed <= thread_size) break; /* unlock and allocate more memory */ - mutex_unlock(&tasks_threads_lock); + lck_mtx_unlock(&tasks_threads_lock); - if (size != 0) - kfree(addr, size); + /* grow task array */ + if (task_size_needed > task_size) { + if (task_size != 0) + kfree(task_list, task_size); - assert(size_needed > 0); - size = size_needed; + assert(task_size_needed > 0); + task_size = task_size_needed; - addr = kalloc(size); - if (addr == 0) - return (KERN_RESOURCE_SHORTAGE); - } + task_list = (task_t *)kalloc(task_size); + if (task_list == NULL) { + if (thread_size != 0) + kfree(thread_list, thread_size); + return (KERN_RESOURCE_SHORTAGE); + } + } - /* OK, have memory and the list locked */ + /* grow thread array */ + if (thread_size_needed > thread_size) { + if (thread_size != 0) + kfree(thread_list, thread_size); + + assert(thread_size_needed > 0); + thread_size = thread_size_needed; - actual = 0; - switch (type) { + thread_list = (thread_t *)kalloc(thread_size); + if (thread_list == 0) { + if (task_size != 0) + kfree(task_list, task_size); + return (KERN_RESOURCE_SHORTAGE); + } + } + } - case THING_TASK: { - task_t task, *task_list = (task_t *)addr; + /* OK, have memory and the list locked */ + /* If we need it, get the thread list */ + if (type == PSET_THING_THREAD) { + for (thread = (thread_t)queue_first(&threads); + !queue_end(&threads, (queue_entry_t)thread); + thread = (thread_t)queue_next(&thread->threads)) { +#if defined(SECURE_KERNEL) + if (thread->task != kernel_task) { +#endif + thread_reference_internal(thread); + thread_list[actual_threads++] = thread; +#if defined(SECURE_KERNEL) + } +#endif + } + } +#if !CONFIG_MACF + else { +#endif + /* get a list of the tasks */ for (task = (task_t)queue_first(&tasks); - !queue_end(&tasks, (queue_entry_t)task); - task = (task_t)queue_next(&task->tasks)) { + !queue_end(&tasks, (queue_entry_t)task); + task = (task_t)queue_next(&task->tasks)) { #if defined(SECURE_KERNEL) if (task != kernel_task) { #endif task_reference_internal(task); - task_list[actual++] = task; + task_list[actual_tasks++] = task; #if defined(SECURE_KERNEL) } #endif } - - break; - } - - case THING_THREAD: { - thread_t thread, *thread_list = (thread_t *)addr; - - for (thread = (thread_t)queue_first(&threads); - !queue_end(&threads, (queue_entry_t)thread); - thread = (thread_t)queue_next(&thread->threads)) { - thread_reference_internal(thread); - thread_list[actual++] = thread; - } - - break; +#if !CONFIG_MACF } +#endif - } - - mutex_unlock(&tasks_threads_lock); - - if (actual < maxthings) - size_needed = actual * sizeof (mach_port_t); + lck_mtx_unlock(&tasks_threads_lock); - if (actual == 0) { - /* no things, so return null pointer and deallocate memory */ - *thing_list = NULL; - *count = 0; +#if CONFIG_MACF + unsigned int j, used; - if (size != 0) - kfree(addr, size); + /* for each task, make sure we are allowed to examine it */ + for (i = used = 0; i < actual_tasks; i++) { + if (mac_task_check_expose_task(task_list[i])) { + task_deallocate(task_list[i]); + continue; + } + task_list[used++] = task_list[i]; } - else { - /* if we allocated too much, must copy */ + actual_tasks = used; + task_size_needed = actual_tasks * sizeof(void *); - if (size_needed < size) { - void *newaddr; + if (type == PSET_THING_THREAD) { - newaddr = kalloc(size_needed); - if (newaddr == 0) { - switch (type) { + /* for each thread (if any), make sure it's task is in the allowed list */ + for (i = used = 0; i < actual_threads; i++) { + boolean_t found_task = FALSE; - case THING_TASK: { - task_t *task_list = (task_t *)addr; - - for (i = 0; i < actual; i++) - task_deallocate(task_list[i]); + task = thread_list[i]->task; + for (j = 0; j < actual_tasks; j++) { + if (task_list[j] == task) { + found_task = TRUE; break; } - - case THING_THREAD: { - thread_t *thread_list = (thread_t *)addr; - - for (i = 0; i < actual; i++) - thread_deallocate(thread_list[i]); - break; - } - - } - - kfree(addr, size); - return (KERN_RESOURCE_SHORTAGE); } - - bcopy((void *) addr, (void *) newaddr, size_needed); - kfree(addr, size); - addr = newaddr; + if (found_task) + thread_list[used++] = thread_list[i]; + else + thread_deallocate(thread_list[i]); } + actual_threads = used; + thread_size_needed = actual_threads * sizeof(void *); + + /* done with the task list */ + for (i = 0; i < actual_tasks; i++) + task_deallocate(task_list[i]); + kfree(task_list, task_size); + task_size = 0; + actual_tasks = 0; + task_list = NULL; + } +#endif - *thing_list = (mach_port_t *)addr; - *count = actual; - - /* do the conversion that Mig should handle */ - - switch (type) { - - case THING_TASK: { - task_t *task_list = (task_t *)addr; - - for (i = 0; i < actual; i++) - (*thing_list)[i] = convert_task_to_port(task_list[i]); - break; + if (type == PSET_THING_THREAD) { + if (actual_threads == 0) { + /* no threads available to return */ + assert(task_size == 0); + if (thread_size != 0) + kfree(thread_list, thread_size); + *thing_list = NULL; + *count = 0; + return KERN_SUCCESS; } + size_needed = actual_threads * sizeof(void *); + size = thread_size; + addr = thread_list; + } else { + if (actual_tasks == 0) { + /* no tasks available to return */ + assert(thread_size == 0); + if (task_size != 0) + kfree(task_list, task_size); + *thing_list = NULL; + *count = 0; + return KERN_SUCCESS; + } + size_needed = actual_tasks * sizeof(void *); + size = task_size; + addr = task_list; + } - case THING_THREAD: { - thread_t *thread_list = (thread_t *)addr; - - for (i = 0; i < actual; i++) - (*thing_list)[i] = convert_thread_to_port(thread_list[i]); - break; + /* if we allocated too much, must copy */ + if (size_needed < size) { + newaddr = kalloc(size_needed); + if (newaddr == 0) { + for (i = 0; i < actual_tasks; i++) { + if (type == PSET_THING_THREAD) + thread_deallocate(thread_list[i]); + else + task_deallocate(task_list[i]); + } + if (size) + kfree(addr, size); + return (KERN_RESOURCE_SHORTAGE); } - } + bcopy((void *) addr, (void *) newaddr, size_needed); + kfree(addr, size); + + addr = newaddr; + size = size_needed; } + *thing_list = (void **)addr; + *count = (unsigned int)size / sizeof(void *); + return (KERN_SUCCESS); } @@ -870,7 +1155,17 @@ processor_set_tasks( task_array_t *task_list, mach_msg_type_number_t *count) { - return(processor_set_things(pset, (mach_port_t **)task_list, count, THING_TASK)); + kern_return_t ret; + mach_msg_type_number_t i; + + ret = processor_set_things(pset, (void **)task_list, count, PSET_THING_TASK); + if (ret != KERN_SUCCESS) + return ret; + + /* do the conversion that Mig should handle */ + for (i = 0; i < *count; i++) + (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]); + return KERN_SUCCESS; } /* @@ -887,6 +1182,15 @@ processor_set_threads( { return KERN_FAILURE; } +#elif defined(CONFIG_EMBEDDED) +kern_return_t +processor_set_threads( + __unused processor_set_t pset, + __unused thread_array_t *thread_list, + __unused mach_msg_type_number_t *count) +{ + return KERN_NOT_SUPPORTED; +} #else kern_return_t processor_set_threads( @@ -894,7 +1198,17 @@ processor_set_threads( thread_array_t *thread_list, mach_msg_type_number_t *count) { - return(processor_set_things(pset, (mach_port_t **)thread_list, count, THING_THREAD)); + kern_return_t ret; + mach_msg_type_number_t i; + + ret = processor_set_things(pset, (void **)thread_list, count, PSET_THING_THREAD); + if (ret != KERN_SUCCESS) + return ret; + + /* do the conversion that Mig should handle */ + for (i = 0; i < *count; i++) + (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]); + return KERN_SUCCESS; } #endif @@ -933,3 +1247,10 @@ __unused processor_set_t pset) { return; } + +pset_cluster_type_t +recommended_pset_type(thread_t thread) +{ + (void)thread; + return PSET_SMP; +}