X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/2d21ac55c334faf3a56e5634905ed6987fc787d4..0a7de7458d150b5d4dffc935ba399be265ef0a1a:/osfmk/vm/vm_fault.c diff --git a/osfmk/vm/vm_fault.c b/osfmk/vm/vm_fault.c index 87ffc3ee7..331777917 100644 --- a/osfmk/vm/vm_fault.c +++ b/osfmk/vm/vm_fault.c @@ -1,8 +1,8 @@ /* - * Copyright (c) 2000-2007 Apple Inc. All rights reserved. + * Copyright (c) 2000-2009 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ - * + * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in @@ -11,10 +11,10 @@ * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. - * + * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. - * + * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, @@ -22,34 +22,34 @@ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. - * + * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ */ -/* +/* * Mach Operating System * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University * All Rights Reserved. - * + * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. - * + * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. - * + * * Carnegie Mellon requests users of this software to return to - * + * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 - * + * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ @@ -64,16 +64,15 @@ #include #include -#include #include #include #include -#include /* for error codes */ +#include /* for error codes */ #include #include #include - /* For memory_object_data_{request,unlock} */ +/* For memory_object_data_{request,unlock} */ #include #include @@ -88,9 +87,10 @@ #include #include #include +#include -#include - +#include +#include #include #include #include @@ -101,54 +101,132 @@ #include #include #include -#include /* Needed by some vm_page.h macros */ +#include /* Needed by some vm_page.h macros */ +#include -#include +#include +#include +#include -#define VM_FAULT_CLASSIFY 0 +#include -/* Zero-filled pages are marked "m->zero_fill" and put on the - * special zero-fill inactive queue only if they belong to - * an object at least this big. - */ -#define VM_ZF_OBJECT_SIZE_THRESHOLD (0x200000) +#define VM_FAULT_CLASSIFY 0 #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ -int vm_object_pagein_throttle = 16; +unsigned int vm_object_pagein_throttle = 16; -extern int cs_debug; +/* + * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which + * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts + * of memory if they're buggy and can run the system completely out of swap space. If this happens, we + * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps + * keep the UI active so that the user has a chance to kill the offending task before the system + * completely hangs. + * + * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied + * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold + * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a + * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again. + */ -#if MACH_KDB -extern struct db_watchpoint *db_watchpoint_list; -#endif /* MACH_KDB */ +extern void throttle_lowpri_io(int); +extern struct vnode *vnode_pager_lookup_vnode(memory_object_t); -/* Forward declarations of internal routines. */ -extern kern_return_t vm_fault_wire_fast( - vm_map_t map, - vm_map_offset_t va, - vm_map_entry_t entry, - pmap_t pmap, - vm_map_offset_t pmap_addr); +uint64_t vm_hard_throttle_threshold; -extern void vm_fault_continue(void); -extern void vm_fault_copy_cleanup( - vm_page_t page, - vm_page_t top_page); -extern void vm_fault_copy_dst_cleanup( - vm_page_t page); +#define NEED_TO_HARD_THROTTLE_THIS_TASK() (vm_wants_task_throttled(current_task()) || \ + ((vm_page_free_count < vm_page_throttle_limit || \ + HARD_THROTTLE_LIMIT_REACHED()) && \ + proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED)) -#if VM_FAULT_CLASSIFY -extern void vm_fault_classify(vm_object_t object, - vm_object_offset_t offset, - vm_prot_t fault_type); + +#define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */ +#define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */ + +#define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6 +#define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000 + + +boolean_t current_thread_aborted(void); + +/* Forward declarations of internal routines. */ +static kern_return_t vm_fault_wire_fast( + vm_map_t map, + vm_map_offset_t va, + vm_prot_t prot, + vm_tag_t wire_tag, + vm_map_entry_t entry, + pmap_t pmap, + vm_map_offset_t pmap_addr, + ppnum_t *physpage_p); + +static kern_return_t vm_fault_internal( + vm_map_t map, + vm_map_offset_t vaddr, + vm_prot_t caller_prot, + boolean_t change_wiring, + vm_tag_t wire_tag, + int interruptible, + pmap_t pmap, + vm_map_offset_t pmap_addr, + ppnum_t *physpage_p); + +static void vm_fault_copy_cleanup( + vm_page_t page, + vm_page_t top_page); + +static void vm_fault_copy_dst_cleanup( + vm_page_t page); + +#if VM_FAULT_CLASSIFY +extern void vm_fault_classify(vm_object_t object, + vm_object_offset_t offset, + vm_prot_t fault_type); extern void vm_fault_classify_init(void); #endif +unsigned long vm_pmap_enter_blocked = 0; +unsigned long vm_pmap_enter_retried = 0; + +unsigned long vm_cs_validates = 0; +unsigned long vm_cs_revalidates = 0; +unsigned long vm_cs_query_modified = 0; +unsigned long vm_cs_validated_dirtied = 0; +unsigned long vm_cs_bitmap_validated = 0; +#if PMAP_CS +uint64_t vm_cs_defer_to_pmap_cs = 0; +uint64_t vm_cs_defer_to_pmap_cs_not = 0; +#endif /* PMAP_CS */ + +void vm_pre_fault(vm_map_offset_t); + +extern char *kdp_compressor_decompressed_page; +extern addr64_t kdp_compressor_decompressed_page_paddr; +extern ppnum_t kdp_compressor_decompressed_page_ppnum; + +struct vmrtfr { + int vmrtfr_maxi; + int vmrtfr_curi; + int64_t vmrtf_total; + vm_rtfault_record_t *vm_rtf_records; +} vmrtfrs; +#define VMRTF_DEFAULT_BUFSIZE (4096) +#define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t)) +int vmrtf_num_records = VMRTF_NUM_RECORDS_DEFAULT; + +static void vm_rtfrecord_lock(void); +static void vm_rtfrecord_unlock(void); +static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int); + +lck_spin_t vm_rtfr_slock; +extern lck_grp_t vm_page_lck_grp_bucket; +extern lck_attr_t vm_page_lck_attr; + /* * Routine: vm_fault_init * Purpose: @@ -157,8 +235,56 @@ extern void vm_fault_classify_init(void); void vm_fault_init(void) { + int i, vm_compressor_temp; + boolean_t need_default_val = TRUE; + /* + * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is + * computed as a percentage of available memory, and the percentage used is scaled inversely with + * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems + * and reduce the value down to 10% for very large memory configurations. This helps give us a + * definition of a memory hog that makes more sense relative to the amount of ram in the machine. + * The formula here simply uses the number of gigabytes of ram to adjust the percentage. + */ + + vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100; + + /* + * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry. + */ + + if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof(vm_compressor_temp))) { + for (i = 0; i < VM_PAGER_MAX_MODES; i++) { + if (vm_compressor_temp > 0 && + ((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) { + need_default_val = FALSE; + vm_compressor_mode = vm_compressor_temp; + break; + } + } + if (need_default_val) { + printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp); + } + } + if (need_default_val) { + /* If no boot arg or incorrect boot arg, try device tree. */ + PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode)); + } + printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode); } +void +vm_rtfault_record_init(void) +{ + PE_parse_boot_argn("vm_rtfault_records", &vmrtf_num_records, sizeof(vmrtf_num_records)); + + assert(vmrtf_num_records >= 1); + vmrtf_num_records = MAX(vmrtf_num_records, 1); + size_t kallocsz = vmrtf_num_records * sizeof(vm_rtfault_record_t); + vmrtfrs.vm_rtf_records = kalloc(kallocsz); + bzero(vmrtfrs.vm_rtf_records, kallocsz); + vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1; + lck_spin_init(&vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); +} /* * Routine: vm_fault_cleanup * Purpose: @@ -175,14 +301,14 @@ vm_fault_init(void) */ void vm_fault_cleanup( - register vm_object_t object, - register vm_page_t top_page) + vm_object_t object, + vm_page_t top_page) { vm_object_paging_end(object); vm_object_unlock(object); if (top_page != VM_PAGE_NULL) { - object = top_page->object; + object = VM_PAGE_OBJECT(top_page); vm_object_lock(object); VM_PAGE_FREE(top_page); @@ -191,35 +317,20 @@ vm_fault_cleanup( } } -#if MACH_CLUSTER_STATS -#define MAXCLUSTERPAGES 16 -struct { - unsigned long pages_in_cluster; - unsigned long pages_at_higher_offsets; - unsigned long pages_at_lower_offsets; -} cluster_stats_in[MAXCLUSTERPAGES]; -#define CLUSTER_STAT(clause) clause -#define CLUSTER_STAT_HIGHER(x) \ - ((cluster_stats_in[(x)].pages_at_higher_offsets)++) -#define CLUSTER_STAT_LOWER(x) \ - ((cluster_stats_in[(x)].pages_at_lower_offsets)++) -#define CLUSTER_STAT_CLUSTER(x) \ - ((cluster_stats_in[(x)].pages_in_cluster)++) -#else /* MACH_CLUSTER_STATS */ -#define CLUSTER_STAT(clause) -#endif /* MACH_CLUSTER_STATS */ - #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) -boolean_t vm_page_deactivate_behind = TRUE; -/* - * default sizes given VM_BEHAVIOR_DEFAULT reference behavior +boolean_t vm_page_deactivate_behind = TRUE; +/* + * default sizes given VM_BEHAVIOR_DEFAULT reference behavior */ -int vm_default_ahead = 0; -int vm_default_behind = MAX_UPL_TRANSFER; +#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128 +#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */ + /* we use it to size an array on the stack */ + +int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW; -#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) +#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) /* * vm_page_is_sequential @@ -233,90 +344,95 @@ int vm_default_behind = MAX_UPL_TRANSFER; static void vm_fault_is_sequential( - vm_object_t object, - vm_object_offset_t offset, - vm_behavior_t behavior) + vm_object_t object, + vm_object_offset_t offset, + vm_behavior_t behavior) { - vm_object_offset_t last_alloc; - int sequential; - int orig_sequential; + vm_object_offset_t last_alloc; + int sequential; + int orig_sequential; - last_alloc = object->last_alloc; + last_alloc = object->last_alloc; sequential = object->sequential; orig_sequential = sequential; switch (behavior) { case VM_BEHAVIOR_RANDOM: - /* + /* * reset indicator of sequential behavior */ - sequential = 0; - break; + sequential = 0; + break; case VM_BEHAVIOR_SEQUENTIAL: - if (offset && last_alloc == offset - PAGE_SIZE_64) { - /* + if (offset && last_alloc == offset - PAGE_SIZE_64) { + /* * advance indicator of sequential behavior */ - if (sequential < MAX_SEQUENTIAL_RUN) - sequential += PAGE_SIZE; + if (sequential < MAX_SEQUENTIAL_RUN) { + sequential += PAGE_SIZE; + } } else { - /* + /* * reset indicator of sequential behavior */ - sequential = 0; + sequential = 0; } - break; + break; case VM_BEHAVIOR_RSEQNTL: - if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { - /* + if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { + /* * advance indicator of sequential behavior */ - if (sequential > -MAX_SEQUENTIAL_RUN) - sequential -= PAGE_SIZE; + if (sequential > -MAX_SEQUENTIAL_RUN) { + sequential -= PAGE_SIZE; + } } else { - /* + /* * reset indicator of sequential behavior */ - sequential = 0; + sequential = 0; } - break; + break; case VM_BEHAVIOR_DEFAULT: default: - if (offset && last_alloc == (offset - PAGE_SIZE_64)) { - /* + if (offset && last_alloc == (offset - PAGE_SIZE_64)) { + /* * advance indicator of sequential behavior */ - if (sequential < 0) - sequential = 0; - if (sequential < MAX_SEQUENTIAL_RUN) - sequential += PAGE_SIZE; - + if (sequential < 0) { + sequential = 0; + } + if (sequential < MAX_SEQUENTIAL_RUN) { + sequential += PAGE_SIZE; + } } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { - /* + /* * advance indicator of sequential behavior */ - if (sequential > 0) - sequential = 0; - if (sequential > -MAX_SEQUENTIAL_RUN) - sequential -= PAGE_SIZE; + if (sequential > 0) { + sequential = 0; + } + if (sequential > -MAX_SEQUENTIAL_RUN) { + sequential -= PAGE_SIZE; + } } else { - /* + /* * reset indicator of sequential behavior */ - sequential = 0; + sequential = 0; } - break; + break; } if (sequential != orig_sequential) { - if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { - /* + if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { + /* * if someone else has already updated object->sequential * don't bother trying to update it or object->last_alloc */ - return; + return; } } /* @@ -334,6 +450,8 @@ vm_fault_is_sequential( } +int vm_page_deactivate_behind_count = 0; + /* * vm_page_deactivate_behind * @@ -349,16 +467,23 @@ vm_fault_is_sequential( static boolean_t vm_fault_deactivate_behind( - vm_object_t object, - vm_object_offset_t offset, - vm_behavior_t behavior) + vm_object_t object, + vm_object_offset_t offset, + vm_behavior_t behavior) { - vm_page_t m = NULL; - int sequential_run; - int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; - + int n; + int pages_in_run = 0; + int max_pages_in_run = 0; + int sequential_run; + int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; + vm_object_offset_t run_offset = 0; + vm_object_offset_t pg_offset = 0; + vm_page_t m; + vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER]; + + pages_in_run = 0; #if TRACEFAULTPAGE - dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ #endif if (object == kernel_object || vm_page_deactivate_behind == FALSE) { @@ -370,117 +495,245 @@ vm_fault_deactivate_behind( return FALSE; } if ((sequential_run = object->sequential)) { - if (sequential_run < 0) { - sequential_behavior = VM_BEHAVIOR_RSEQNTL; - sequential_run = 0 - sequential_run; - } else { - sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; - } + if (sequential_run < 0) { + sequential_behavior = VM_BEHAVIOR_RSEQNTL; + sequential_run = 0 - sequential_run; + } else { + sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; + } } switch (behavior) { case VM_BEHAVIOR_RANDOM: break; case VM_BEHAVIOR_SEQUENTIAL: - if (sequential_run >= (int)PAGE_SIZE) - m = vm_page_lookup(object, offset - PAGE_SIZE_64); + if (sequential_run >= (int)PAGE_SIZE) { + run_offset = 0 - PAGE_SIZE_64; + max_pages_in_run = 1; + } break; case VM_BEHAVIOR_RSEQNTL: - if (sequential_run >= (int)PAGE_SIZE) - m = vm_page_lookup(object, offset + PAGE_SIZE_64); + if (sequential_run >= (int)PAGE_SIZE) { + run_offset = PAGE_SIZE_64; + max_pages_in_run = 1; + } break; case VM_BEHAVIOR_DEFAULT: default: - { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; + { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; - /* + /* * determine if the run of sequential accesss has been * long enough on an object with default access behavior * to consider it for deactivation */ - if ((uint64_t)sequential_run >= behind) { - if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { - if (offset >= behind) - m = vm_page_lookup(object, offset - behind); + if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) { + /* + * the comparisons between offset and behind are done + * in this kind of odd fashion in order to prevent wrap around + * at the end points + */ + if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { + if (offset >= behind) { + run_offset = 0 - behind; + pg_offset = PAGE_SIZE_64; + max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; + } } else { - if (offset < -behind) - m = vm_page_lookup(object, offset + behind); + if (offset < -behind) { + run_offset = behind; + pg_offset = 0 - PAGE_SIZE_64; + max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; + } } } - break; + break;} } + for (n = 0; n < max_pages_in_run; n++) { + m = vm_page_lookup(object, offset + run_offset + (n * pg_offset)); + + if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) { + page_run[pages_in_run++] = m; + + /* + * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... + * + * a TLB flush isn't really needed here since at worst we'll miss the reference bit being + * updated in the PTE if a remote processor still has this mapping cached in its TLB when the + * new reference happens. If no futher references happen on the page after that remote TLB flushes + * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue + * by pageout_scan, which is just fine since the last reference would have happened quite far + * in the past (TLB caches don't hang around for very long), and of course could just as easily + * have happened before we did the deactivate_behind. + */ + pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); + } } - if (m) { - if (!m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) { - pmap_clear_reference(m->phys_page); - m->deactivated = TRUE; + if (pages_in_run) { + vm_page_lockspin_queues(); + + for (n = 0; n < pages_in_run; n++) { + m = page_run[n]; + + vm_page_deactivate_internal(m, FALSE); + + vm_page_deactivate_behind_count++; #if TRACEFAULTPAGE - dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ #endif - return TRUE; } + vm_page_unlock_queues(); + + return TRUE; } return FALSE; } +#if (DEVELOPMENT || DEBUG) +uint32_t vm_page_creation_throttled_hard = 0; +uint32_t vm_page_creation_throttled_soft = 0; +uint64_t vm_page_creation_throttle_avoided = 0; +#endif /* DEVELOPMENT || DEBUG */ + +static int +vm_page_throttled(boolean_t page_kept) +{ + clock_sec_t elapsed_sec; + clock_sec_t tv_sec; + clock_usec_t tv_usec; + + thread_t thread = current_thread(); + + if (thread->options & TH_OPT_VMPRIV) { + return 0; + } + + if (thread->t_page_creation_throttled) { + thread->t_page_creation_throttled = 0; + + if (page_kept == FALSE) { + goto no_throttle; + } + } + if (NEED_TO_HARD_THROTTLE_THIS_TASK()) { +#if (DEVELOPMENT || DEBUG) + thread->t_page_creation_throttled_hard++; + OSAddAtomic(1, &vm_page_creation_throttled_hard); +#endif /* DEVELOPMENT || DEBUG */ + return HARD_THROTTLE_DELAY; + } + + if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) && + thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) { + if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) { +#if (DEVELOPMENT || DEBUG) + OSAddAtomic64(1, &vm_page_creation_throttle_avoided); +#endif + goto no_throttle; + } + clock_get_system_microtime(&tv_sec, &tv_usec); + + elapsed_sec = tv_sec - thread->t_page_creation_time; + + if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS || + (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) { + if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) { + /* + * we'll reset our stats to give a well behaved app + * that was unlucky enough to accumulate a bunch of pages + * over a long period of time a chance to get out of + * the throttled state... we reset the counter and timestamp + * so that if it stays under the rate limit for the next second + * it will be back in our good graces... if it exceeds it, it + * will remain in the throttled state + */ + thread->t_page_creation_time = tv_sec; + thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1); + } + VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1); + + thread->t_page_creation_throttled = 1; + + if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) { +#if (DEVELOPMENT || DEBUG) + thread->t_page_creation_throttled_hard++; + OSAddAtomic(1, &vm_page_creation_throttled_hard); +#endif /* DEVELOPMENT || DEBUG */ + return HARD_THROTTLE_DELAY; + } else { +#if (DEVELOPMENT || DEBUG) + thread->t_page_creation_throttled_soft++; + OSAddAtomic(1, &vm_page_creation_throttled_soft); +#endif /* DEVELOPMENT || DEBUG */ + return SOFT_THROTTLE_DELAY; + } + } + thread->t_page_creation_time = tv_sec; + thread->t_page_creation_count = 0; + } +no_throttle: + thread->t_page_creation_count++; + + return 0; +} + + /* * check for various conditions that would * prevent us from creating a ZF page... * cleanup is based on being called from vm_fault_page * * object must be locked - * object == m->object + * object == m->vmp_object */ static vm_fault_return_t -vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state) +vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle) { - if (object->shadow_severed) { - /* - * the shadow chain was severed - * just have to return an error at this point + int throttle_delay; + + if (object->shadow_severed || + VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { + /* + * Either: + * 1. the shadow chain was severed, + * 2. the purgeable object is volatile or empty and is marked + * to fault on access while volatile. + * Just have to return an error at this point */ - if (m != VM_PAGE_NULL) - VM_PAGE_FREE(m); + if (m != VM_PAGE_NULL) { + VM_PAGE_FREE(m); + } vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_ERROR); + return VM_FAULT_MEMORY_ERROR; } - if (vm_backing_store_low) { - /* - * are we protecting the system from - * backing store exhaustion. If so - * sleep unless we are privileged. - */ - if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { - - if (m != VM_PAGE_NULL) - VM_PAGE_FREE(m); + if (page_throttle == TRUE) { + if ((throttle_delay = vm_page_throttled(FALSE))) { + /* + * we're throttling zero-fills... + * treat this as if we couldn't grab a page + */ + if (m != VM_PAGE_NULL) { + VM_PAGE_FREE(m); + } vm_fault_cleanup(object, first_m); - assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); + VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); - thread_block(THREAD_CONTINUE_NULL); + delay(throttle_delay); + + if (current_thread_aborted()) { + thread_interrupt_level(interruptible_state); + return VM_FAULT_INTERRUPTED; + } thread_interrupt_level(interruptible_state); - return (VM_FAULT_RETRY); + return VM_FAULT_MEMORY_SHORTAGE; } } - if (VM_PAGE_ZFILL_THROTTLED()) { - /* - * we're throttling zero-fills... - * treat this as if we couldn't grab a page - */ - if (m != VM_PAGE_NULL) - VM_PAGE_FREE(m); - vm_fault_cleanup(object, first_m); - - thread_interrupt_level(interruptible_state); - - return (VM_FAULT_MEMORY_SHORTAGE); - } - return (VM_FAULT_SUCCESS); + return VM_FAULT_SUCCESS; } @@ -488,13 +741,16 @@ vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t int * do the work to zero fill a page and * inject it into the correct paging queue * - * m->object must be locked + * m->vmp_object must be locked * page queue lock must NOT be held */ static int vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) { - int my_fault = DBG_ZERO_FILL_FAULT; + int my_fault = DBG_ZERO_FILL_FAULT; + vm_object_t object; + + object = VM_PAGE_OBJECT(m); /* * This is is a zero-fill page fault... @@ -508,43 +764,53 @@ vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) * execution. i.e. it is the responsibility * of higher layers to call for an instruction * sync after changing the contents and before - * sending a program into this area. We + * sending a program into this area. We * choose this approach for performance */ - m->pmapped = TRUE; + m->vmp_pmapped = TRUE; - m->cs_validated = FALSE; - m->cs_tainted = FALSE; + m->vmp_cs_validated = FALSE; + m->vmp_cs_tainted = FALSE; + m->vmp_cs_nx = FALSE; - if (no_zero_fill == TRUE) - my_fault = DBG_NZF_PAGE_FAULT; - else { + if (no_zero_fill == TRUE) { + my_fault = DBG_NZF_PAGE_FAULT; + + if (m->vmp_absent && m->vmp_busy) { + return my_fault; + } + } else { vm_page_zero_fill(m); VM_STAT_INCR(zero_fill_count); DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); } - assert(!m->laundry); - assert(m->object != kernel_object); - //assert(m->pageq.next == NULL && m->pageq.prev == NULL); - - if (!IP_VALID(memory_manager_default) && - (m->object->purgable == VM_PURGABLE_DENY || - m->object->purgable == VM_PURGABLE_NONVOLATILE)) { - vm_page_lock_queues(); + assert(!m->vmp_laundry); + assert(object != kernel_object); + //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); + + if (!VM_DYNAMIC_PAGING_ENABLED() && + (object->purgable == VM_PURGABLE_DENY || + object->purgable == VM_PURGABLE_NONVOLATILE || + object->purgable == VM_PURGABLE_VOLATILE)) { + vm_page_lockspin_queues(); - queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); - m->throttled = TRUE; - vm_page_throttled_count++; + if (!VM_DYNAMIC_PAGING_ENABLED()) { + assert(!VM_PAGE_WIRED(m)); - vm_page_unlock_queues(); - } else { - if (m->object->size > VM_ZF_OBJECT_SIZE_THRESHOLD) { - m->zero_fill = TRUE; - OSAddAtomic(1, (SInt32 *)&vm_zf_count); + /* + * can't be on the pageout queue since we don't + * have a pager to try and clean to + */ + vm_page_queues_remove(m, TRUE); + vm_page_check_pageable_safe(m); + vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; + vm_page_throttled_count++; } + vm_page_unlock_queues(); } - return (my_fault); + return my_fault; } @@ -558,7 +824,7 @@ vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) * The required permissions for the page is given * in "fault_type". Desired permissions are included * in "protection". - * fault_info is passed along to determine pagein cluster + * fault_info is passed along to determine pagein cluster * limits... it contains the expected reference pattern, * cluster size if available, etc... * @@ -589,138 +855,107 @@ vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) * be destroyed when this guarantee is no longer required. * The "result_page" is also left busy. It is not removed * from the pageout queues. + * Special Case: + * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the + * fault succeeded but there's no VM page (i.e. the VM object + * does not actually hold VM pages, but device memory or + * large pages). The object is still locked and we still hold a + * paging_in_progress reference. */ +unsigned int vm_fault_page_blocked_access = 0; +unsigned int vm_fault_page_forced_retry = 0; vm_fault_return_t vm_fault_page( /* Arguments: */ - vm_object_t first_object, /* Object to begin search */ - vm_object_offset_t first_offset, /* Offset into object */ - vm_prot_t fault_type, /* What access is requested */ - boolean_t must_be_resident,/* Must page be resident? */ + vm_object_t first_object, /* Object to begin search */ + vm_object_offset_t first_offset, /* Offset into object */ + vm_prot_t fault_type, /* What access is requested */ + boolean_t must_be_resident,/* Must page be resident? */ + boolean_t caller_lookup, /* caller looked up page */ /* Modifies in place: */ - vm_prot_t *protection, /* Protection for mapping */ + vm_prot_t *protection, /* Protection for mapping */ + vm_page_t *result_page, /* Page found, if successful */ /* Returns: */ - vm_page_t *result_page, /* Page found, if successful */ - vm_page_t *top_page, /* Page in top object, if - * not result_page. */ + vm_page_t *top_page, /* Page in top object, if + * not result_page. */ int *type_of_fault, /* if non-null, fill in with type of fault - * COW, zero-fill, etc... returned in trace point */ + * COW, zero-fill, etc... returned in trace point */ /* More arguments: */ - kern_return_t *error_code, /* code if page is in error */ - boolean_t no_zero_fill, /* don't zero fill absent pages */ -#if MACH_PAGEMAP - boolean_t data_supply, /* treat as data_supply if - * it is a write fault and a full - * page is provided */ -#else - __unused boolean_t data_supply, -#endif + kern_return_t *error_code, /* code if page is in error */ + boolean_t no_zero_fill, /* don't zero fill absent pages */ + boolean_t data_supply, /* treat as data_supply if + * it is a write fault and a full + * page is provided */ vm_object_fault_info_t fault_info) { - vm_page_t m; - vm_object_t object; - vm_object_offset_t offset; - vm_page_t first_m; - vm_object_t next_object; - vm_object_t copy_object; - boolean_t look_for_page; - vm_prot_t access_required = fault_type; - vm_prot_t wants_copy_flag; - CLUSTER_STAT(int pages_at_higher_offsets;) - CLUSTER_STAT(int pages_at_lower_offsets;) - kern_return_t wait_result; - boolean_t interruptible_state; - vm_fault_return_t error; - int my_fault; - uint32_t try_failed_count; - int interruptible; /* how may fault be interrupted? */ - memory_object_t pager; + vm_page_t m; + vm_object_t object; + vm_object_offset_t offset; + vm_page_t first_m; + vm_object_t next_object; + vm_object_t copy_object; + boolean_t look_for_page; + boolean_t force_fault_retry = FALSE; + vm_prot_t access_required = fault_type; + vm_prot_t wants_copy_flag; + kern_return_t wait_result; + wait_interrupt_t interruptible_state; + boolean_t data_already_requested = FALSE; + vm_behavior_t orig_behavior; + vm_size_t orig_cluster_size; + vm_fault_return_t error; + int my_fault; + uint32_t try_failed_count; + int interruptible; /* how may fault be interrupted? */ + int external_state = VM_EXTERNAL_STATE_UNKNOWN; + memory_object_t pager; + vm_fault_return_t retval; + int grab_options; /* - * MACH page map - an optional optimization where a bit map is maintained - * by the VM subsystem for internal objects to indicate which pages of - * the object currently reside on backing store. This existence map - * duplicates information maintained by the vnode pager. It is - * created at the time of the first pageout against the object, i.e. - * at the same time pager for the object is created. The optimization - * is designed to eliminate pager interaction overhead, if it is - * 'known' that the page does not exist on backing store. - * - * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is - * either marked as paged out in the existence map for the object or no - * existence map exists for the object. MUST_ASK_PAGER() is one of the - * criteria in the decision to invoke the pager. It is also used as one - * of the criteria to terminate the scan for adjacent pages in a clustered - * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for - * permanent objects. Note also that if the pager for an internal object - * has not been created, the pager is not invoked regardless of the value - * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object - * for which a pager has been created. + * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is + * marked as paged out in the compressor pager or the pager doesn't exist. + * Note also that if the pager for an internal object + * has not been created, the pager is not invoked regardless of the value + * of MUST_ASK_PAGER(). * * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset - * is marked as paged out in the existence map for the object. PAGED_OUT() + * is marked as paged out in the compressor pager. * PAGED_OUT() is used to determine if a page has already been pushed * into a copy object in order to avoid a redundant page out operation. */ -#if MACH_PAGEMAP -#define MUST_ASK_PAGER(o, f) (vm_external_state_get((o)->existence_map, (f)) \ - != VM_EXTERNAL_STATE_ABSENT) -#define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ - == VM_EXTERNAL_STATE_EXISTS) -#else -#define MUST_ASK_PAGER(o, f) (TRUE) -#define PAGED_OUT(o, f) (FALSE) -#endif +#define MUST_ASK_PAGER(o, f, s) \ + ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT) + +#define PAGED_OUT(o, f) \ + (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS) /* * Recovery actions */ -#define PREPARE_RELEASE_PAGE(m) \ - MACRO_BEGIN \ - vm_page_lock_queues(); \ - MACRO_END - -#define DO_RELEASE_PAGE(m) \ - MACRO_BEGIN \ - PAGE_WAKEUP_DONE(m); \ - if (!m->active && !m->inactive && !m->throttled)\ - vm_page_activate(m); \ - vm_page_unlock_queues(); \ - MACRO_END - -#define RELEASE_PAGE(m) \ - MACRO_BEGIN \ - PREPARE_RELEASE_PAGE(m); \ - DO_RELEASE_PAGE(m); \ +#define RELEASE_PAGE(m) \ + MACRO_BEGIN \ + PAGE_WAKEUP_DONE(m); \ + if ( !VM_PAGE_PAGEABLE(m)) { \ + vm_page_lockspin_queues(); \ + if ( !VM_PAGE_PAGEABLE(m)) { \ + if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \ + vm_page_deactivate(m); \ + else \ + vm_page_activate(m); \ + } \ + vm_page_unlock_queues(); \ + } \ MACRO_END #if TRACEFAULTPAGE - dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ #endif - -#if MACH_KDB - /* - * If there are watchpoints set, then - * we don't want to give away write permission - * on a read fault. Make the task write fault, - * so that the watchpoint code notices the access. - */ - if (db_watchpoint_list) { - /* - * If we aren't asking for write permission, - * then don't give it away. We're using write - * faults to set the dirty bit. - */ - if (!(fault_type & VM_PROT_WRITE)) - *protection &= ~VM_PROT_WRITE; - } -#endif /* MACH_KDB */ - interruptible = fault_info->interruptible; interruptible_state = thread_interrupt_level(interruptible); - + /* * INVARIANTS (through entire routine): * @@ -754,8 +989,8 @@ vm_fault_page( XPR(XPR_VM_FAULT, - "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", - (integer_t)object, offset, fault_type, *protection, 0); + "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", + object, offset, fault_type, *protection, 0); /* * default type of fault @@ -764,61 +999,114 @@ vm_fault_page( while (TRUE) { #if TRACEFAULTPAGE - dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ #endif + + grab_options = 0; +#if CONFIG_SECLUDED_MEMORY + if (object->can_grab_secluded) { + grab_options |= VM_PAGE_GRAB_SECLUDED; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + if (!object->alive) { - /* + /* * object is no longer valid * clean up and return error */ vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_ERROR); + return VM_FAULT_MEMORY_ERROR; + } + + if (!object->pager_created && object->phys_contiguous) { + /* + * A physically-contiguous object without a pager: + * must be a "large page" object. We do not deal + * with VM pages for this object. + */ + caller_lookup = FALSE; + m = VM_PAGE_NULL; + goto phys_contig_object; + } + + if (object->blocked_access) { + /* + * Access to this VM object has been blocked. + * Replace our "paging_in_progress" reference with + * a "activity_in_progress" reference and wait for + * access to be unblocked. + */ + caller_lookup = FALSE; /* no longer valid after sleep */ + vm_object_activity_begin(object); + vm_object_paging_end(object); + while (object->blocked_access) { + vm_object_sleep(object, + VM_OBJECT_EVENT_UNBLOCKED, + THREAD_UNINT); + } + vm_fault_page_blocked_access++; + vm_object_paging_begin(object); + vm_object_activity_end(object); } /* * See whether the page at 'offset' is resident */ - m = vm_page_lookup(object, offset); + if (caller_lookup == TRUE) { + /* + * The caller has already looked up the page + * and gave us the result in "result_page". + * We can use this for the first lookup but + * it loses its validity as soon as we unlock + * the object. + */ + m = *result_page; + caller_lookup = FALSE; /* no longer valid after that */ + } else { + m = vm_page_lookup(object, offset); + } #if TRACEFAULTPAGE - dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ #endif if (m != VM_PAGE_NULL) { - - if (m->busy) { - /* + if (m->vmp_busy) { + /* * The page is being brought in, * wait for it and then retry. - * - * A possible optimization: if the page - * is known to be resident, we can ignore - * pages that are absent (regardless of - * whether they're busy). */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ #endif wait_result = PAGE_SLEEP(object, m, interruptible); + XPR(XPR_VM_FAULT, "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", - (integer_t)object, offset, - (integer_t)m, 0, 0); + object, offset, + m, 0, 0); counter(c_vm_fault_page_block_busy_kernel++); if (wait_result != THREAD_AWAKENED) { vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - if (wait_result == THREAD_RESTART) - return (VM_FAULT_RETRY); - else - return (VM_FAULT_INTERRUPTED); + if (wait_result == THREAD_RESTART) { + return VM_FAULT_RETRY; + } else { + return VM_FAULT_INTERRUPTED; + } } continue; } + if (m->vmp_laundry) { + m->vmp_free_when_done = FALSE; - if (m->phys_page == vm_page_guard_addr) { + if (!m->vmp_cleaning) { + vm_pageout_steal_laundry(m, FALSE); + } + } + if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { /* * Guard page: off limits ! */ @@ -829,12 +1117,14 @@ vm_fault_page( * be just to wire or unwire it. * Let's pretend it succeeded... */ - m->busy = TRUE; + m->vmp_busy = TRUE; *result_page = m; assert(first_m == VM_PAGE_NULL); *top_page = first_m; - if (type_of_fault) + if (type_of_fault) { *type_of_fault = DBG_GUARD_FAULT; + } + thread_interrupt_level(interruptible_state); return VM_FAULT_SUCCESS; } else { /* @@ -847,41 +1137,42 @@ vm_fault_page( } } - if (m->error) { - /* + if (m->vmp_error) { + /* * The page is in error, give up now. */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ #endif - if (error_code) - *error_code = KERN_MEMORY_ERROR; + if (error_code) { + *error_code = KERN_MEMORY_ERROR; + } VM_PAGE_FREE(m); vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_ERROR); + return VM_FAULT_MEMORY_ERROR; } - if (m->restart) { - /* + if (m->vmp_restart) { + /* * The pager wants us to restart * at the top of the chain, * typically because it has moved the * page to another pager, then do so. */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ #endif VM_PAGE_FREE(m); vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_RETRY); + return VM_FAULT_RETRY; } - if (m->absent) { - /* + if (m->vmp_absent) { + /* * The page isn't busy, but is absent, * therefore it's deemed "unavailable". * @@ -890,7 +1181,7 @@ vm_fault_page( * next object (if there is one). */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ #endif next_object = object->shadow; @@ -906,23 +1197,24 @@ vm_fault_page( /* * check for any conditions that prevent * us from creating a new zero-fill page - * vm_fault_check will do all of the + * vm_fault_check will do all of the * fault cleanup in the case of an error condition * including resetting the thread_interrupt_level */ - error = vm_fault_check(object, m, first_m, interruptible_state); + error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE); - if (error != VM_FAULT_SUCCESS) - return (error); + if (error != VM_FAULT_SUCCESS) { + return error; + } XPR(XPR_VM_FAULT, "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", - (integer_t)object, offset, - (integer_t)m, - (integer_t)first_object, 0); + object, offset, + m, + first_object, 0); if (object != first_object) { - /* + /* * free the absent page we just found */ VM_PAGE_FREE(m); @@ -934,7 +1226,7 @@ vm_fault_page( vm_object_unlock(object); /* - * grab the original page we + * grab the original page we * 'soldered' in place and * retake lock on 'first_object' */ @@ -946,12 +1238,15 @@ vm_fault_page( vm_object_lock(object); } else { - /* + /* * we're going to use the absent page we just found * so convert it to a 'busy' page */ - m->absent = FALSE; - m->busy = TRUE; + m->vmp_absent = FALSE; + m->vmp_busy = TRUE; + } + if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { + m->vmp_absent = TRUE; } /* * zero-fill the page and put it on @@ -961,36 +1256,36 @@ vm_fault_page( break; } else { - if (must_be_resident) + if (must_be_resident) { vm_object_paging_end(object); - else if (object != first_object) { + } else if (object != first_object) { vm_object_paging_end(object); VM_PAGE_FREE(m); } else { first_m = m; - m->absent = FALSE; - m->busy = TRUE; + m->vmp_absent = FALSE; + m->vmp_busy = TRUE; vm_page_lockspin_queues(); - VM_PAGE_QUEUES_REMOVE(m); + vm_page_queues_remove(m, FALSE); vm_page_unlock_queues(); } XPR(XPR_VM_FAULT, "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", - (integer_t)object, offset, - (integer_t)next_object, - offset+object->shadow_offset,0); + object, offset, + next_object, + offset + object->vo_shadow_offset, 0); - offset += object->shadow_offset; - fault_info->lo_offset += object->shadow_offset; - fault_info->hi_offset += object->shadow_offset; + offset += object->vo_shadow_offset; + fault_info->lo_offset += object->vo_shadow_offset; + fault_info->hi_offset += object->vo_shadow_offset; access_required = VM_PROT_READ; vm_object_lock(next_object); vm_object_unlock(object); object = next_object; vm_object_paging_begin(object); - + /* * reset to default type of fault */ @@ -999,7 +1294,7 @@ vm_fault_page( continue; } } - if ((m->cleaning) + if ((m->vmp_cleaning) && ((object != first_object) || (object->copy != VM_OBJECT_NULL)) && (fault_type & VM_PROT_WRITE)) { /* @@ -1013,26 +1308,26 @@ vm_fault_page( * wired mapping. */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ #endif XPR(XPR_VM_FAULT, "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", - (integer_t)object, offset, - (integer_t)m, 0, 0); + object, offset, + m, 0, 0); /* * take an extra ref so that object won't die */ vm_object_reference_locked(object); vm_fault_cleanup(object, first_m); - + counter(c_vm_fault_page_block_backoff_kernel++); vm_object_lock(object); assert(object->ref_count > 0); m = vm_page_lookup(object, offset); - if (m != VM_PAGE_NULL && m->cleaning) { + if (m != VM_PAGE_NULL && m->vmp_cleaning) { PAGE_ASSERT_WAIT(m, interruptible); vm_object_unlock(object); @@ -1046,51 +1341,35 @@ vm_fault_page( vm_object_deallocate(object); thread_interrupt_level(interruptible_state); - return (VM_FAULT_RETRY); + return VM_FAULT_RETRY; } } - if (type_of_fault == NULL && m->speculative) { - /* + if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) && + !(fault_info != NULL && fault_info->stealth)) { + /* * If we were passed a non-NULL pointer for * "type_of_fault", than we came from * vm_fault... we'll let it deal with * this condition, since it - * needs to see m->speculative to correctly + * needs to see m->vmp_speculative to correctly * account the pageins, otherwise... * take it off the speculative queue, we'll * let the caller of vm_fault_page deal * with getting it onto the correct queue + * + * If the caller specified in fault_info that + * it wants a "stealth" fault, we also leave + * the page in the speculative queue. */ - vm_page_lockspin_queues(); - VM_PAGE_QUEUES_REMOVE(m); - vm_page_unlock_queues(); - } - - if (m->encrypted) { - /* - * ENCRYPTED SWAP: - * the user needs access to a page that we - * encrypted before paging it out. - * Decrypt the page now. - * Keep it busy to prevent anyone from - * accessing it during the decryption. - */ - m->busy = TRUE; - vm_page_decrypt(m, 0); - assert(object == m->object); - assert(m->busy); - PAGE_WAKEUP_DONE(m); - - /* - * Retry from the top, in case - * something changed while we were - * decrypting. - */ - continue; + vm_page_lockspin_queues(); + if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { + vm_page_queues_remove(m, FALSE); + } + vm_page_unlock_queues(); } - ASSERT_PAGE_DECRYPTED(m); + assert(object == VM_PAGE_OBJECT(m)); - if (m->object->code_signed) { + if (object->code_signed) { /* * CODE SIGNING: * We just paged in a page from a signed @@ -1110,18 +1389,18 @@ vm_fault_page( * remove the page from the queue, but not the object */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ #endif XPR(XPR_VM_FAULT, "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", - (integer_t)object, offset, (integer_t)m, 0, 0); - assert(!m->busy); - assert(!m->absent); + object, offset, m, 0, 0); + assert(!m->vmp_busy); + assert(!m->vmp_absent); - m->busy = TRUE; + m->vmp_busy = TRUE; break; } - + /* * we get here when there is no page present in the object at @@ -1130,30 +1409,60 @@ vm_fault_page( * this object can provide the data or we're the top object... * object is locked; m == NULL */ - look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset) == TRUE) && !data_supply); - + + if (must_be_resident) { + if (fault_type == VM_PROT_NONE && + object == kernel_object) { + /* + * We've been called from vm_fault_unwire() + * while removing a map entry that was allocated + * with KMA_KOBJECT and KMA_VAONLY. This page + * is not present and there's nothing more to + * do here (nothing to unwire). + */ + vm_fault_cleanup(object, first_m); + thread_interrupt_level(interruptible_state); + + return VM_FAULT_MEMORY_ERROR; + } + + goto dont_look_for_page; + } + + /* Don't expect to fault pages into the kernel object. */ + assert(object != kernel_object); + + data_supply = FALSE; + + look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply); + #if TRACEFAULTPAGE - dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ #endif - if ((look_for_page || (object == first_object)) && !must_be_resident && !object->phys_contiguous) { + if (!look_for_page && object == first_object && !object->phys_contiguous) { /* - * Allocate a new page for this object/offset pair + * Allocate a new page for this object/offset pair as a placeholder */ - m = vm_page_grab(); + m = vm_page_grab_options(grab_options); #if TRACEFAULTPAGE - dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ #endif if (m == VM_PAGE_NULL) { - vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_SHORTAGE); + return VM_FAULT_MEMORY_SHORTAGE; + } + + if (fault_info && fault_info->batch_pmap_op == TRUE) { + vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); + } else { + vm_page_insert(m, object, offset); } - vm_page_insert(m, object, offset); } - if (look_for_page && !must_be_resident) { - kern_return_t rc; + if (look_for_page) { + kern_return_t rc; + int my_fault_type; /* * If the memory manager is not ready, we @@ -1161,14 +1470,15 @@ vm_fault_page( */ if (!object->pager_ready) { #if TRACEFAULTPAGE - dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ #endif - if (m != VM_PAGE_NULL) - VM_PAGE_FREE(m); + if (m != VM_PAGE_NULL) { + VM_PAGE_FREE(m); + } XPR(XPR_VM_FAULT, - "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", - (integer_t)object, offset, 0, 0, 0); + "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", + object, offset, 0, 0, 0); /* * take an extra ref so object won't die @@ -1184,8 +1494,9 @@ vm_fault_page( wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); vm_object_unlock(object); - if (wait_result == THREAD_WAITING) + if (wait_result == THREAD_WAITING) { wait_result = thread_block(THREAD_CONTINUE_NULL); + } vm_object_deallocate(object); goto backoff; @@ -1194,7 +1505,7 @@ vm_fault_page( vm_object_deallocate(object); thread_interrupt_level(interruptible_state); - return (VM_FAULT_RETRY); + return VM_FAULT_RETRY; } } if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { @@ -1204,10 +1515,11 @@ vm_fault_page( * wait for them to be resolved now. */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ #endif - if (m != VM_PAGE_NULL) + if (m != VM_PAGE_NULL) { VM_PAGE_FREE(m); + } /* * take an extra ref so object won't die */ @@ -1220,8 +1532,8 @@ vm_fault_page( vm_object_lock(object); assert(object->ref_count > 0); - if (object->paging_in_progress > vm_object_pagein_throttle) { - vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible); + if (object->paging_in_progress >= vm_object_pagein_throttle) { + vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible); vm_object_unlock(object); wait_result = thread_block(THREAD_CONTINUE_NULL); @@ -1233,27 +1545,153 @@ vm_fault_page( vm_object_deallocate(object); thread_interrupt_level(interruptible_state); - return (VM_FAULT_RETRY); + return VM_FAULT_RETRY; } } - if (m != VM_PAGE_NULL) { - /* - * Indicate that the page is waiting for data - * from the memory manager. - */ - m->list_req_pending = TRUE; - m->absent = TRUE; - } + if (object->internal) { + int compressed_count_delta; + assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); + + if (m == VM_PAGE_NULL) { + /* + * Allocate a new page for this object/offset pair as a placeholder + */ + m = vm_page_grab_options(grab_options); #if TRACEFAULTPAGE - dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ #endif + if (m == VM_PAGE_NULL) { + vm_fault_cleanup(object, first_m); + thread_interrupt_level(interruptible_state); - /* - * It's possible someone called vm_object_destroy while we weren't - * holding the object lock. If that has happened, then bail out - * here. - */ + return VM_FAULT_MEMORY_SHORTAGE; + } + + m->vmp_absent = TRUE; + if (fault_info && fault_info->batch_pmap_op == TRUE) { + vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); + } else { + vm_page_insert(m, object, offset); + } + } + assert(m->vmp_busy); + + m->vmp_absent = TRUE; + pager = object->pager; + + assert(object->paging_in_progress > 0); + vm_object_unlock(object); + + rc = vm_compressor_pager_get( + pager, + offset + object->paging_offset, + VM_PAGE_GET_PHYS_PAGE(m), + &my_fault_type, + 0, + &compressed_count_delta); + + if (type_of_fault == NULL) { + int throttle_delay; + + /* + * we weren't called from vm_fault, so we + * need to apply page creation throttling + * do it before we re-acquire any locks + */ + if (my_fault_type == DBG_COMPRESSOR_FAULT) { + if ((throttle_delay = vm_page_throttled(TRUE))) { + VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0); + delay(throttle_delay); + } + } + } + vm_object_lock(object); + assert(object->paging_in_progress > 0); + + vm_compressor_pager_count( + pager, + compressed_count_delta, + FALSE, /* shared_lock */ + object); + + switch (rc) { + case KERN_SUCCESS: + m->vmp_absent = FALSE; + m->vmp_dirty = TRUE; + if ((object->wimg_bits & + VM_WIMG_MASK) != + VM_WIMG_USE_DEFAULT) { + /* + * If the page is not cacheable, + * we can't let its contents + * linger in the data cache + * after the decompression. + */ + pmap_sync_page_attributes_phys( + VM_PAGE_GET_PHYS_PAGE(m)); + } else { + m->vmp_written_by_kernel = TRUE; + } + + /* + * If the object is purgeable, its + * owner's purgeable ledgers have been + * updated in vm_page_insert() but the + * page was also accounted for in a + * "compressed purgeable" ledger, so + * update that now. + */ + if (((object->purgable != + VM_PURGABLE_DENY) || + object->vo_ledger_tag) && + (object->vo_owner != + NULL)) { + /* + * One less compressed + * purgeable/tagged page. + */ + vm_object_owner_compressed_update( + object, + -1); + } + + break; + case KERN_MEMORY_FAILURE: + m->vmp_unusual = TRUE; + m->vmp_error = TRUE; + m->vmp_absent = FALSE; + break; + case KERN_MEMORY_ERROR: + assert(m->vmp_absent); + break; + default: + panic("vm_fault_page(): unexpected " + "error %d from " + "vm_compressor_pager_get()\n", + rc); + } + PAGE_WAKEUP_DONE(m); + + rc = KERN_SUCCESS; + goto data_requested; + } + my_fault_type = DBG_PAGEIN_FAULT; + + if (m != VM_PAGE_NULL) { + VM_PAGE_FREE(m); + m = VM_PAGE_NULL; + } + +#if TRACEFAULTPAGE + dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ +#endif + + /* + * It's possible someone called vm_object_destroy while we weren't + * holding the object lock. If that has happened, then bail out + * here. + */ pager = object->pager; @@ -1268,6 +1706,10 @@ vm_fault_page( * so we can release the object lock. */ + if (object->object_is_shared_cache) { + set_thread_rwlock_boost(); + } + vm_object_unlock(object); /* @@ -1281,16 +1723,56 @@ vm_fault_page( * and its pushing pages up into a copy of * the object that it manages. */ - if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) + if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) { wants_copy_flag = VM_PROT_WANTS_COPY; - else + } else { wants_copy_flag = VM_PROT_NONE; + } XPR(XPR_VM_FAULT, "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", - (integer_t)object, offset, (integer_t)m, - access_required | wants_copy_flag, 0); + object, offset, m, + access_required | wants_copy_flag, 0); + + if (object->copy == first_object) { + /* + * if we issue the memory_object_data_request in + * this state, we are subject to a deadlock with + * the underlying filesystem if it is trying to + * shrink the file resulting in a push of pages + * into the copy object... that push will stall + * on the placeholder page, and if the pushing thread + * is holding a lock that is required on the pagein + * path (such as a truncate lock), we'll deadlock... + * to avoid this potential deadlock, we throw away + * our placeholder page before calling memory_object_data_request + * and force this thread to retry the vm_fault_page after + * we have issued the I/O. the second time through this path + * we will find the page already in the cache (presumably still + * busy waiting for the I/O to complete) and then complete + * the fault w/o having to go through memory_object_data_request again + */ + assert(first_m != VM_PAGE_NULL); + assert(VM_PAGE_OBJECT(first_m) == first_object); + + vm_object_lock(first_object); + VM_PAGE_FREE(first_m); + vm_object_paging_end(first_object); + vm_object_unlock(first_object); + + first_m = VM_PAGE_NULL; + force_fault_retry = TRUE; + vm_fault_page_forced_retry++; + } + + if (data_already_requested == TRUE) { + orig_behavior = fault_info->behavior; + orig_cluster_size = fault_info->cluster_size; + + fault_info->behavior = VM_BEHAVIOR_RANDOM; + fault_info->cluster_size = PAGE_SIZE; + } /* * Call the memory manager to retrieve the data. */ @@ -1301,31 +1783,57 @@ vm_fault_page( access_required | wants_copy_flag, (memory_object_fault_info_t)fault_info); + if (data_already_requested == TRUE) { + fault_info->behavior = orig_behavior; + fault_info->cluster_size = orig_cluster_size; + } else { + data_already_requested = TRUE; + } + + DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); #if TRACEFAULTPAGE - dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ #endif vm_object_lock(object); - if (rc != KERN_SUCCESS) { + if (object->object_is_shared_cache) { + clear_thread_rwlock_boost(); + } +data_requested: + if (rc != KERN_SUCCESS) { vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return ((rc == MACH_SEND_INTERRUPTED) ? - VM_FAULT_INTERRUPTED : - VM_FAULT_MEMORY_ERROR); + return (rc == MACH_SEND_INTERRUPTED) ? + VM_FAULT_INTERRUPTED : + VM_FAULT_MEMORY_ERROR; + } else { + clock_sec_t tv_sec; + clock_usec_t tv_usec; + + if (my_fault_type == DBG_PAGEIN_FAULT) { + clock_get_system_microtime(&tv_sec, &tv_usec); + current_thread()->t_page_creation_time = tv_sec; + current_thread()->t_page_creation_count = 0; + } } - if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) { + if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) { + vm_fault_cleanup(object, first_m); + thread_interrupt_level(interruptible_state); + return VM_FAULT_INTERRUPTED; + } + if (force_fault_retry == TRUE) { vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_INTERRUPTED); + return VM_FAULT_RETRY; } if (m == VM_PAGE_NULL && object->phys_contiguous) { /* * No page here means that the object we - * initially looked up was "physically + * initially looked up was "physically * contiguous" (i.e. device memory). However, * with Virtual VRAM, the object might not * be backed by that device memory anymore, @@ -1336,14 +1844,15 @@ vm_fault_page( * page fault against the object's new backing * store (different memory object). */ - break; +phys_contig_object: + goto done; } /* * potentially a pagein fault * if we make it through the state checks * above, than we'll count it as such */ - my_fault = DBG_PAGEIN_FAULT; + my_fault = my_fault_type; /* * Retry with same object/offset, since new data may @@ -1352,26 +1861,27 @@ vm_fault_page( */ continue; } - +dont_look_for_page: /* - * We get here if the object has no pager, or an existence map + * We get here if the object has no pager, or an existence map * exists and indicates the page isn't present on the pager * or we're unwiring a page. If a pager exists, but there - * is no existence map, then the m->absent case above handles + * is no existence map, then the m->vmp_absent case above handles * the ZF case when the pager can't provide the page */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ #endif - if (object == first_object) + if (object == first_object) { first_m = m; - else + } else { assert(m == VM_PAGE_NULL); + } XPR(XPR_VM_FAULT, "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", - (integer_t)object, offset, (integer_t)m, - (integer_t)object->shadow, 0); + object, offset, m, + object->shadow, 0); next_object = object->shadow; @@ -1391,47 +1901,52 @@ vm_fault_page( vm_object_lock(object); } m = first_m; - assert(m->object == object); + assert(VM_PAGE_OBJECT(m) == object); first_m = VM_PAGE_NULL; /* * check for any conditions that prevent * us from creating a new zero-fill page - * vm_fault_check will do all of the + * vm_fault_check will do all of the * fault cleanup in the case of an error condition * including resetting the thread_interrupt_level */ - error = vm_fault_check(object, m, first_m, interruptible_state); + error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE); - if (error != VM_FAULT_SUCCESS) - return (error); + if (error != VM_FAULT_SUCCESS) { + return error; + } if (m == VM_PAGE_NULL) { - m = vm_page_grab(); + m = vm_page_grab_options(grab_options); if (m == VM_PAGE_NULL) { vm_fault_cleanup(object, VM_PAGE_NULL); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_SHORTAGE); + return VM_FAULT_MEMORY_SHORTAGE; } vm_page_insert(m, object, offset); } + if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { + m->vmp_absent = TRUE; + } + my_fault = vm_fault_zero_page(m, no_zero_fill); break; - } else { - /* + /* * Move on to the next object. Lock the next * object before unlocking the current one. */ - if ((object != first_object) || must_be_resident) + if ((object != first_object) || must_be_resident) { vm_object_paging_end(object); + } - offset += object->shadow_offset; - fault_info->lo_offset += object->shadow_offset; - fault_info->hi_offset += object->shadow_offset; + offset += object->vo_shadow_offset; + fault_info->lo_offset += object->vo_shadow_offset; + fault_info->hi_offset += object->vo_shadow_offset; access_required = VM_PROT_READ; vm_object_lock(next_object); @@ -1461,30 +1976,19 @@ vm_fault_page( */ #if TRACEFAULTPAGE - dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ #endif -#if EXTRA_ASSERTIONS - if (m != VM_PAGE_NULL) { - assert(m->busy && !m->absent); - assert((first_m == VM_PAGE_NULL) || - (first_m->busy && !first_m->absent && - !first_m->active && !first_m->inactive)); - } -#endif /* EXTRA_ASSERTIONS */ - - /* - * ENCRYPTED SWAP: - * If we found a page, we must have decrypted it before we - * get here... - */ - if (m != VM_PAGE_NULL) { - ASSERT_PAGE_DECRYPTED(m); - } +#if EXTRA_ASSERTIONS + assert(m->vmp_busy && !m->vmp_absent); + assert((first_m == VM_PAGE_NULL) || + (first_m->vmp_busy && !first_m->vmp_absent && + !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded)); +#endif /* EXTRA_ASSERTIONS */ XPR(XPR_VM_FAULT, "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", - (integer_t)object, offset, (integer_t)m, - (integer_t)first_object, (integer_t)first_m); + object, offset, m, + first_object, first_m); /* * If the page is being written, but isn't @@ -1492,12 +1996,11 @@ vm_fault_page( * we have to copy it into a new page owned * by the top-level object. */ - if ((object != first_object) && (m != VM_PAGE_NULL)) { - + if (object != first_object) { #if TRACEFAULTPAGE - dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ #endif - if (fault_type & VM_PROT_WRITE) { + if (fault_type & VM_PROT_WRITE) { vm_page_t copy_m; /* @@ -1506,25 +2009,6 @@ vm_fault_page( */ assert(!must_be_resident); - /* - * are we protecting the system from - * backing store exhaustion. If so - * sleep unless we are privileged. - */ - if (vm_backing_store_low) { - if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { - - RELEASE_PAGE(m); - vm_fault_cleanup(object, first_m); - - assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); - - thread_block(THREAD_CONTINUE_NULL); - thread_interrupt_level(interruptible_state); - - return (VM_FAULT_RETRY); - } - } /* * If we try to collapse first_object at this * point, we may deadlock when we try to get @@ -1544,7 +2028,7 @@ vm_fault_page( /* * Allocate a page for the copy */ - copy_m = vm_page_grab(); + copy_m = vm_page_grab_options(grab_options); if (copy_m == VM_PAGE_NULL) { RELEASE_PAGE(m); @@ -1552,12 +2036,12 @@ vm_fault_page( vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_SHORTAGE); + return VM_FAULT_MEMORY_SHORTAGE; } XPR(XPR_VM_FAULT, "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", - (integer_t)object, offset, - (integer_t)m, (integer_t)copy_m, 0); + object, offset, + m, copy_m, 0); vm_page_copy(m, copy_m); @@ -1573,15 +2057,31 @@ vm_fault_page( * access to this page, then we could * avoid the pmap_disconnect() call. */ - if (m->pmapped) - pmap_disconnect(m->phys_page); + if (m->vmp_pmapped) { + pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); + } - assert(!m->cleaning); + if (m->vmp_clustered) { + VM_PAGE_COUNT_AS_PAGEIN(m); + VM_PAGE_CONSUME_CLUSTERED(m); + } + assert(!m->vmp_cleaning); /* * We no longer need the old page or object. */ - PAGE_WAKEUP_DONE(m); + RELEASE_PAGE(m); + + /* + * This check helps with marking the object as having a sequential pattern + * Normally we'll miss doing this below because this fault is about COW to + * the first_object i.e. bring page in from disk, push to object above but + * don't update the file object's sequential pattern. + */ + if (object->internal == FALSE) { + vm_fault_is_sequential(object, offset, fault_info->behavior); + } + vm_object_paging_end(object); vm_object_unlock(object); @@ -1600,14 +2100,14 @@ vm_fault_page( */ VM_PAGE_FREE(first_m); first_m = VM_PAGE_NULL; - + /* * and replace it with the * page we just copied into */ - assert(copy_m->busy); + assert(copy_m->vmp_busy); vm_page_insert(copy_m, object, offset); - copy_m->dirty = TRUE; + SET_PAGE_DIRTY(copy_m, TRUE); m = copy_m; /* @@ -1615,13 +2115,13 @@ vm_fault_page( * way, let's try to collapse the top object. * But we have to play ugly games with * paging_in_progress to do that... - */ - vm_object_paging_end(object); + */ + vm_object_paging_end(object); vm_object_collapse(object, offset, TRUE); vm_object_paging_begin(object); - - } else - *protection &= (~VM_PROT_WRITE); + } else { + *protection &= (~VM_PROT_WRITE); + } } /* * Now check whether the page needs to be pushed into the @@ -1632,12 +2132,12 @@ vm_fault_page( */ try_failed_count = 0; - while ((copy_object = first_object->copy) != VM_OBJECT_NULL && (m != VM_PAGE_NULL)) { - vm_object_offset_t copy_offset; - vm_page_t copy_m; + while ((copy_object = first_object->copy) != VM_OBJECT_NULL) { + vm_object_offset_t copy_offset; + vm_page_t copy_m; #if TRACEFAULTPAGE - dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ #endif /* * If the page is being written, but hasn't been @@ -1652,18 +2152,18 @@ vm_fault_page( * If the page was guaranteed to be resident, * we must have already performed the copy. */ - if (must_be_resident) + if (must_be_resident) { break; + } /* * Try to get the lock on the copy_object. */ if (!vm_object_lock_try(copy_object)) { - vm_object_unlock(object); try_failed_count++; - mutex_pause(try_failed_count); /* wait a bit */ + mutex_pause(try_failed_count); /* wait a bit */ vm_object_lock(object); continue; @@ -1680,18 +2180,18 @@ vm_fault_page( /* * Does the page exist in the copy? */ - copy_offset = first_offset - copy_object->shadow_offset; + copy_offset = first_offset - copy_object->vo_shadow_offset; - if (copy_object->size <= copy_offset) + if (copy_object->vo_size <= copy_offset) { /* * Copy object doesn't cover this page -- do nothing. */ ; - else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { + } else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { /* * Page currently exists in the copy object */ - if (copy_m->busy) { + if (copy_m->vmp_busy) { /* * If the page is being brought * in, wait for it and then retry. @@ -1713,13 +2213,8 @@ vm_fault_page( copy_object->ref_count--; assert(copy_object->ref_count > 0); copy_m = vm_page_lookup(copy_object, copy_offset); - /* - * ENCRYPTED SWAP: - * it's OK if the "copy_m" page is encrypted, - * because we're not moving it nor handling its - * contents. - */ - if (copy_m != VM_PAGE_NULL && copy_m->busy) { + + if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) { PAGE_ASSERT_WAIT(copy_m, interruptible); vm_object_unlock(copy_object); @@ -1732,11 +2227,10 @@ vm_fault_page( vm_object_deallocate(copy_object); thread_interrupt_level(interruptible_state); - return (VM_FAULT_RETRY); + return VM_FAULT_RETRY; } } - } - else if (!PAGED_OUT(copy_object, copy_offset)) { + } else if (!PAGED_OUT(copy_object, copy_offset)) { /* * If PAGED_OUT is TRUE, then the page used to exist * in the copy-object, and has already been paged out. @@ -1745,32 +2239,7 @@ vm_fault_page( * for example) or it hasn't been paged out. * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) * We must copy the page to the copy object. - */ - - if (vm_backing_store_low) { - /* - * we are protecting the system from - * backing store exhaustion. If so - * sleep unless we are privileged. - */ - if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { - assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); - - RELEASE_PAGE(m); - VM_OBJ_RES_DECR(copy_object); - vm_object_lock_assert_exclusive(copy_object); - copy_object->ref_count--; - assert(copy_object->ref_count > 0); - - vm_object_unlock(copy_object); - vm_fault_cleanup(object, first_m); - thread_block(THREAD_CONTINUE_NULL); - thread_interrupt_level(interruptible_state); - - return (VM_FAULT_RETRY); - } - } - /* + * * Allocate a page for the copy */ copy_m = vm_page_alloc(copy_object, copy_offset); @@ -1787,49 +2256,50 @@ vm_fault_page( vm_fault_cleanup(object, first_m); thread_interrupt_level(interruptible_state); - return (VM_FAULT_MEMORY_SHORTAGE); + return VM_FAULT_MEMORY_SHORTAGE; } /* * Must copy page into copy-object. */ vm_page_copy(m, copy_m); - + /* * If the old page was in use by any users * of the copy-object, it must be removed * from all pmaps. (We can't know which * pmaps use it.) */ - if (m->pmapped) - pmap_disconnect(m->phys_page); + if (m->vmp_pmapped) { + pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); + } + if (m->vmp_clustered) { + VM_PAGE_COUNT_AS_PAGEIN(m); + VM_PAGE_CONSUME_CLUSTERED(m); + } /* * If there's a pager, then immediately * page out this page, using the "initialize" * option. Else, we use the copy. */ - if ((!copy_object->pager_created) -#if MACH_PAGEMAP - || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT -#endif + if ((!copy_object->pager_ready) + || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT ) { - vm_page_lockspin_queues(); - assert(!m->cleaning); + assert(!m->vmp_cleaning); vm_page_activate(copy_m); vm_page_unlock_queues(); - copy_m->dirty = TRUE; + SET_PAGE_DIRTY(copy_m, TRUE); PAGE_WAKEUP_DONE(copy_m); - } - else { - assert(copy_m->busy == TRUE); - assert(!m->cleaning); + } else { + assert(copy_m->vmp_busy == TRUE); + assert(!m->vmp_cleaning); /* * dirty is protected by the object lock */ - copy_m->dirty = TRUE; + SET_PAGE_DIRTY(copy_m, TRUE); /* * The page is already ready for pageout: @@ -1867,6 +2337,7 @@ vm_fault_page( */ vm_object_lock(object); } + /* * Because we're pushing a page upward * in the object tree, we must restart @@ -1876,8 +2347,8 @@ vm_fault_page( * wait result]. Can't turn off the page's * busy bit because we're not done with it. */ - if (m->wanted) { - m->wanted = FALSE; + if (m->vmp_wanted) { + m->vmp_wanted = FALSE; thread_wakeup_with_result((event_t) m, THREAD_RESTART); } } @@ -1892,154 +2363,203 @@ vm_fault_page( copy_object->ref_count--; assert(copy_object->ref_count > 0); - VM_OBJ_RES_DECR(copy_object); + VM_OBJ_RES_DECR(copy_object); vm_object_unlock(copy_object); break; } + +done: *result_page = m; *top_page = first_m; XPR(XPR_VM_FAULT, - "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", - (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); + "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", + object, offset, m, first_m, 0); if (m != VM_PAGE_NULL) { - if (my_fault == DBG_PAGEIN_FAULT) { + assert(VM_PAGE_OBJECT(m) == object); - VM_STAT_INCR(pageins); - DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL); - DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); - current_task()->pageins++; + retval = VM_FAULT_SUCCESS; + + if (my_fault == DBG_PAGEIN_FAULT) { + VM_PAGE_COUNT_AS_PAGEIN(m); - if (m->object->internal) { - DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL); + if (object->internal) { + my_fault = DBG_PAGEIND_FAULT; } else { - DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL); + my_fault = DBG_PAGEINV_FAULT; } - /* + /* * evaluate access pattern and update state * vm_fault_deactivate_behind depends on the * state being up to date */ - vm_fault_is_sequential(object, offset, fault_info->behavior); - + vm_fault_is_sequential(object, offset, fault_info->behavior); + vm_fault_deactivate_behind(object, offset, fault_info->behavior); + } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) { + /* + * we weren't called from vm_fault, so handle the + * accounting here for hits in the cache + */ + if (m->vmp_clustered) { + VM_PAGE_COUNT_AS_PAGEIN(m); + VM_PAGE_CONSUME_CLUSTERED(m); + } + vm_fault_is_sequential(object, offset, fault_info->behavior); vm_fault_deactivate_behind(object, offset, fault_info->behavior); + } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) { + VM_STAT_INCR(decompressions); } - if (type_of_fault) - *type_of_fault = my_fault; - } else - vm_object_unlock(object); + if (type_of_fault) { + *type_of_fault = my_fault; + } + } else { + retval = VM_FAULT_SUCCESS_NO_VM_PAGE; + assert(first_m == VM_PAGE_NULL); + assert(object == first_object); + } thread_interrupt_level(interruptible_state); #if TRACEFAULTPAGE - dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ + dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ #endif - return (VM_FAULT_SUCCESS); + return retval; backoff: thread_interrupt_level(interruptible_state); - if (wait_result == THREAD_INTERRUPTED) - return (VM_FAULT_INTERRUPTED); - return (VM_FAULT_RETRY); + if (wait_result == THREAD_INTERRUPTED) { + return VM_FAULT_INTERRUPTED; + } + return VM_FAULT_RETRY; -#undef RELEASE_PAGE +#undef RELEASE_PAGE } +/* + * CODE SIGNING: + * When soft faulting a page, we have to validate the page if: + * 1. the page is being mapped in user space + * 2. the page hasn't already been found to be "tainted" + * 3. the page belongs to a code-signed object + * 4. the page has not been validated yet or has been mapped for write. + */ +#define VM_FAULT_NEED_CS_VALIDATION(pmap, page, page_obj) \ + ((pmap) != kernel_pmap /*1*/ && \ + !(page)->vmp_cs_tainted /*2*/ && \ + (page_obj)->code_signed /*3*/ && \ + (!(page)->vmp_cs_validated || (page)->vmp_wpmapped /*4*/ )) + + /* * page queue lock must NOT be held - * m->object must be locked + * m->vmp_object must be locked * - * NOTE: m->object could be locked "shared" only if we are called + * NOTE: m->vmp_object could be locked "shared" only if we are called * from vm_fault() as part of a soft fault. If so, we must be * careful not to modify the VM object in any way that is not * legal under a shared lock... */ +extern int panic_on_cs_killed; +extern int proc_selfpid(void); +extern char *proc_name_address(void *p); unsigned long cs_enter_tainted_rejected = 0; unsigned long cs_enter_tainted_accepted = 0; kern_return_t vm_fault_enter(vm_page_t m, - pmap_t pmap, - vm_map_offset_t vaddr, - vm_prot_t prot, - boolean_t wired, - boolean_t change_wiring, - boolean_t no_cache, - int *type_of_fault) + pmap_t pmap, + vm_map_offset_t vaddr, + vm_prot_t prot, + vm_prot_t caller_prot, + boolean_t wired, + boolean_t change_wiring, + vm_tag_t wire_tag, + vm_object_fault_info_t fault_info, + boolean_t *need_retry, + int *type_of_fault) { - unsigned int cache_attr; - kern_return_t kr; - boolean_t previously_pmapped = m->pmapped; + kern_return_t kr, pe_result; + boolean_t previously_pmapped = m->vmp_pmapped; + boolean_t must_disconnect = 0; + boolean_t map_is_switched, map_is_switch_protected; + boolean_t cs_violation; + int cs_enforcement_enabled; + vm_prot_t fault_type; + vm_object_t object; + boolean_t no_cache = fault_info->no_cache; + boolean_t cs_bypass = fault_info->cs_bypass; + int pmap_options = fault_info->pmap_options; + + fault_type = change_wiring ? VM_PROT_NONE : caller_prot; + object = VM_PAGE_OBJECT(m); + + vm_object_lock_assert_held(object); + +#if KASAN + if (pmap == kernel_pmap) { + kasan_notify_address(vaddr, PAGE_SIZE); + } +#endif - vm_object_lock_assert_held(m->object); -#if DEBUG - mutex_assert(&vm_page_queue_lock, MA_NOTOWNED); -#endif /* DEBUG */ + LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); - if (m->phys_page == vm_page_guard_addr) { - assert(m->fictitious); + if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { + assert(m->vmp_fictitious); return KERN_SUCCESS; } - cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; - - if (m->object->code_signed && !m->cs_validated && - pmap != kernel_pmap) { + if (*type_of_fault == DBG_ZERO_FILL_FAULT) { + vm_object_lock_assert_exclusive(object); + } else if ((fault_type & VM_PROT_WRITE) == 0 && + (!m->vmp_wpmapped +#if VM_OBJECT_ACCESS_TRACKING + || object->access_tracking +#endif /* VM_OBJECT_ACCESS_TRACKING */ + )) { /* - * CODE SIGNING: - * This page comes from a VM object backed by a - * signed memory object and it hasn't been validated yet. - * We're about to enter it into a process address space, - * so we need to validate its signature now. + * This is not a "write" fault, so we + * might not have taken the object lock + * exclusively and we might not be able + * to update the "wpmapped" bit in + * vm_fault_enter(). + * Let's just grant read access to + * the page for now and we'll + * soft-fault again if we need write + * access later... */ - vm_object_lock_assert_exclusive(m->object); - - /* VM map still locked, so 1 ref will remain on VM object */ - vm_page_validate_cs(m); + /* This had better not be a JIT page. */ + if (!pmap_has_prot_policy(prot)) { + prot &= ~VM_PROT_WRITE; + } else { + assert(cs_bypass); + } } + if (m->vmp_pmapped == FALSE) { + if (m->vmp_clustered) { + if (*type_of_fault == DBG_CACHE_HIT_FAULT) { + /* + * found it in the cache, but this + * is the first fault-in of the page (m->vmp_pmapped == FALSE) + * so it must have come in as part of + * a cluster... account 1 pagein against it + */ + if (object->internal) { + *type_of_fault = DBG_PAGEIND_FAULT; + } else { + *type_of_fault = DBG_PAGEINV_FAULT; + } - if (m->pmapped == FALSE) { - /* - * This is the first time this page is being - * mapped in an address space (pmapped == FALSE). - * - * Part of that page may still be in the data cache - * and not flushed to memory. In case we end up - * accessing that page via the instruction cache, - * we need to ensure that the 2 caches are in sync. - */ - pmap_sync_page_data_phys(m->phys_page); - - if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) { - /* - * found it in the cache, but this - * is the first fault-in of the page (m->pmapped == FALSE) - * so it must have come in as part of - * a cluster... account 1 pagein against it - */ - VM_STAT_INCR(pageins); - DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL); - - if (m->object->internal) { - DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL); - } else { - DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL); + VM_PAGE_COUNT_AS_PAGEIN(m); } - - current_task()->pageins++; - - *type_of_fault = DBG_PAGEIN_FAULT; + VM_PAGE_CONSUME_CLUSTERED(m); } - VM_PAGE_CONSUME_CLUSTERED(m); - - } else if (cache_attr != VM_WIMG_DEFAULT) - pmap_sync_page_attributes_phys(m->phys_page); + } if (*type_of_fault != DBG_COW_FAULT) { DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); @@ -2049,107 +2569,802 @@ vm_fault_enter(vm_page_t m, } } - if (m->cs_tainted) { + /* Validate code signature if necessary. */ + if (!cs_bypass && + VM_FAULT_NEED_CS_VALIDATION(pmap, m, object)) { + vm_object_lock_assert_exclusive(object); + + if (m->vmp_cs_validated) { + vm_cs_revalidates++; + } + + /* VM map is locked, so 1 ref will remain on VM object - + * so no harm if vm_page_validate_cs drops the object lock */ + +#if PMAP_CS + if (fault_info->pmap_cs_associated && + pmap_cs_enforced(pmap) && + !m->vmp_cs_validated && + !m->vmp_cs_tainted && + !m->vmp_cs_nx && + (prot & VM_PROT_EXECUTE) && + (caller_prot & VM_PROT_EXECUTE)) { + /* + * With pmap_cs, the pmap layer will validate the + * code signature for any executable pmap mapping. + * No need for us to validate this page too: + * in pmap_cs we trust... + */ + vm_cs_defer_to_pmap_cs++; + } else { + vm_cs_defer_to_pmap_cs_not++; + vm_page_validate_cs(m); + } +#else /* PMAP_CS */ + vm_page_validate_cs(m); +#endif /* PMAP_CS */ + } + +#define page_immutable(m, prot) ((m)->vmp_cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/ ) +#define page_nx(m) ((m)->vmp_cs_nx) + + map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) && + (pmap == vm_map_pmap(current_thread()->map))); + map_is_switch_protected = current_thread()->map->switch_protect; + + /* If the map is switched, and is switch-protected, we must protect + * some pages from being write-faulted: immutable pages because by + * definition they may not be written, and executable pages because that + * would provide a way to inject unsigned code. + * If the page is immutable, we can simply return. However, we can't + * immediately determine whether a page is executable anywhere. But, + * we can disconnect it everywhere and remove the executable protection + * from the current map. We do that below right before we do the + * PMAP_ENTER. + */ + cs_enforcement_enabled = cs_process_enforcement(NULL); + + if (cs_enforcement_enabled && map_is_switched && + map_is_switch_protected && page_immutable(m, prot) && + (prot & VM_PROT_WRITE)) { + return KERN_CODESIGN_ERROR; + } + + if (cs_enforcement_enabled && page_nx(m) && (prot & VM_PROT_EXECUTE)) { + if (cs_debug) { + printf("page marked to be NX, not letting it be mapped EXEC\n"); + } + return KERN_CODESIGN_ERROR; + } + + /* A page could be tainted, or pose a risk of being tainted later. + * Check whether the receiving process wants it, and make it feel + * the consequences (that hapens in cs_invalid_page()). + * For CS Enforcement, two other conditions will + * cause that page to be tainted as well: + * - pmapping an unsigned page executable - this means unsigned code; + * - writeable mapping of a validated page - the content of that page + * can be changed without the kernel noticing, therefore unsigned + * code can be created + */ + if (cs_bypass) { + /* code-signing is bypassed */ + cs_violation = FALSE; + } else if (m->vmp_cs_tainted) { + /* tainted page */ + cs_violation = TRUE; + } else if (!cs_enforcement_enabled) { + /* no further code-signing enforcement */ + cs_violation = FALSE; + } else if (page_immutable(m, prot) && + ((prot & VM_PROT_WRITE) || + m->vmp_wpmapped)) { /* - * CODE SIGNING: - * This page has been tainted and can not be trusted. - * Let's notify the current process and let it take any - * necessary precautions before we enter the tainted page - * into its address space. + * The page should be immutable, but is in danger of being + * modified. + * This is the case where we want policy from the code + * directory - is the page immutable or not? For now we have + * to assume that code pages will be immutable, data pages not. + * We'll assume a page is a code page if it has a code directory + * and we fault for execution. + * That is good enough since if we faulted the code page for + * writing in another map before, it is wpmapped; if we fault + * it for writing in this map later it will also be faulted for + * executing at the same time; and if we fault for writing in + * another map later, we will disconnect it from this pmap so + * we'll notice the change. */ - if (cs_invalid_page()) { - /* reject the tainted page: abort the page fault */ - kr = KERN_MEMORY_ERROR; + cs_violation = TRUE; + } else if (!m->vmp_cs_validated && + (prot & VM_PROT_EXECUTE) +#if PMAP_CS + /* + * Executable pages will be validated by pmap_cs; + * in pmap_cs we trust... + * If pmap_cs is turned off, this is a code-signing + * violation. + */ + && !(pmap_cs_enforced(pmap)) +#endif /* PMAP_CS */ + ) { + cs_violation = TRUE; + } else { + cs_violation = FALSE; + } + + if (cs_violation) { + /* We will have a tainted page. Have to handle the special case + * of a switched map now. If the map is not switched, standard + * procedure applies - call cs_invalid_page(). + * If the map is switched, the real owner is invalid already. + * There is no point in invalidating the switching process since + * it will not be executing from the map. So we don't call + * cs_invalid_page() in that case. */ + boolean_t reject_page, cs_killed; + if (map_is_switched) { + assert(pmap == vm_map_pmap(current_thread()->map)); + assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE)); + reject_page = FALSE; + } else { + if (cs_debug > 5) { + printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n", + object->code_signed ? "yes" : "no", + m->vmp_cs_validated ? "yes" : "no", + m->vmp_cs_tainted ? "yes" : "no", + m->vmp_wpmapped ? "yes" : "no", + (int)prot); + } + reject_page = cs_invalid_page((addr64_t) vaddr, &cs_killed); + } + + if (reject_page) { + /* reject the invalid page: abort the page fault */ + int pid; + const char *procname; + task_t task; + vm_object_t file_object, shadow; + vm_object_offset_t file_offset; + char *pathname, *filename; + vm_size_t pathname_len, filename_len; + boolean_t truncated_path; +#define __PATH_MAX 1024 + struct timespec mtime, cs_mtime; + int shadow_depth; + os_reason_t codesigning_exit_reason = OS_REASON_NULL; + + kr = KERN_CODESIGN_ERROR; cs_enter_tainted_rejected++; + + /* get process name and pid */ + procname = "?"; + task = current_task(); + pid = proc_selfpid(); + if (task->bsd_info != NULL) { + procname = proc_name_address(task->bsd_info); + } + + /* get file's VM object */ + file_object = object; + file_offset = m->vmp_offset; + for (shadow = file_object->shadow, + shadow_depth = 0; + shadow != VM_OBJECT_NULL; + shadow = file_object->shadow, + shadow_depth++) { + vm_object_lock_shared(shadow); + if (file_object != object) { + vm_object_unlock(file_object); + } + file_offset += file_object->vo_shadow_offset; + file_object = shadow; + } + + mtime.tv_sec = 0; + mtime.tv_nsec = 0; + cs_mtime.tv_sec = 0; + cs_mtime.tv_nsec = 0; + + /* get file's pathname and/or filename */ + pathname = NULL; + filename = NULL; + pathname_len = 0; + filename_len = 0; + truncated_path = FALSE; + /* no pager -> no file -> no pathname, use "" in that case */ + if (file_object->pager != NULL) { + pathname = (char *)kalloc(__PATH_MAX * 2); + if (pathname) { + pathname[0] = '\0'; + pathname_len = __PATH_MAX; + filename = pathname + pathname_len; + filename_len = __PATH_MAX; + } + vnode_pager_get_object_name(file_object->pager, + pathname, + pathname_len, + filename, + filename_len, + &truncated_path); + if (pathname) { + /* safety first... */ + pathname[__PATH_MAX - 1] = '\0'; + filename[__PATH_MAX - 1] = '\0'; + } + vnode_pager_get_object_mtime(file_object->pager, + &mtime, + &cs_mtime); + } + printf("CODE SIGNING: process %d[%s]: " + "rejecting invalid page at address 0x%llx " + "from offset 0x%llx in file \"%s%s%s\" " + "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " + "(signed:%d validated:%d tainted:%d nx:%d " + "wpmapped:%d dirty:%d depth:%d)\n", + pid, procname, (addr64_t) vaddr, + file_offset, + (pathname ? pathname : ""), + (truncated_path ? "/.../" : ""), + (truncated_path ? filename : ""), + cs_mtime.tv_sec, cs_mtime.tv_nsec, + ((cs_mtime.tv_sec == mtime.tv_sec && + cs_mtime.tv_nsec == mtime.tv_nsec) + ? "==" + : "!="), + mtime.tv_sec, mtime.tv_nsec, + object->code_signed, + m->vmp_cs_validated, + m->vmp_cs_tainted, + m->vmp_cs_nx, + m->vmp_wpmapped, + m->vmp_dirty, + shadow_depth); + + /* + * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page + * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the + * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler + * will deal with the segmentation fault. + */ + if (cs_killed) { + KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, + pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE, 0, 0); + + codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); + if (codesigning_exit_reason == NULL) { + printf("vm_fault_enter: failed to allocate codesigning exit reason\n"); + } else { + mach_vm_address_t data_addr = 0; + struct codesigning_exit_reason_info *ceri = NULL; + uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(1, sizeof(*ceri)); + + if (os_reason_alloc_buffer_noblock(codesigning_exit_reason, reason_buffer_size_estimate)) { + printf("vm_fault_enter: failed to allocate buffer for codesigning exit reason\n"); + } else { + if (KERN_SUCCESS == kcdata_get_memory_addr(&codesigning_exit_reason->osr_kcd_descriptor, + EXIT_REASON_CODESIGNING_INFO, sizeof(*ceri), &data_addr)) { + ceri = (struct codesigning_exit_reason_info *)data_addr; + static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname)); + + ceri->ceri_virt_addr = vaddr; + ceri->ceri_file_offset = file_offset; + if (pathname) { + strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname)); + } else { + ceri->ceri_pathname[0] = '\0'; + } + if (filename) { + strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename)); + } else { + ceri->ceri_filename[0] = '\0'; + } + ceri->ceri_path_truncated = (truncated_path); + ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec; + ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec; + ceri->ceri_page_modtime_secs = mtime.tv_sec; + ceri->ceri_page_modtime_nsecs = mtime.tv_nsec; + ceri->ceri_object_codesigned = (object->code_signed); + ceri->ceri_page_codesig_validated = (m->vmp_cs_validated); + ceri->ceri_page_codesig_tainted = (m->vmp_cs_tainted); + ceri->ceri_page_codesig_nx = (m->vmp_cs_nx); + ceri->ceri_page_wpmapped = (m->vmp_wpmapped); + ceri->ceri_page_slid = 0; + ceri->ceri_page_dirty = (m->vmp_dirty); + ceri->ceri_page_shadow_depth = shadow_depth; + } else { +#if DEBUG || DEVELOPMENT + panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason"); +#else + printf("vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n"); +#endif /* DEBUG || DEVELOPMENT */ + /* Free the buffer */ + os_reason_alloc_buffer_noblock(codesigning_exit_reason, 0); + } + } + } + + set_thread_exit_reason(current_thread(), codesigning_exit_reason, FALSE); + } + if (panic_on_cs_killed && + object->object_is_shared_cache) { + panic("CODE SIGNING: process %d[%s]: " + "rejecting invalid page at address 0x%llx " + "from offset 0x%llx in file \"%s%s%s\" " + "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " + "(signed:%d validated:%d tainted:%d nx:%d" + "wpmapped:%d dirty:%d depth:%d)\n", + pid, procname, (addr64_t) vaddr, + file_offset, + (pathname ? pathname : ""), + (truncated_path ? "/.../" : ""), + (truncated_path ? filename : ""), + cs_mtime.tv_sec, cs_mtime.tv_nsec, + ((cs_mtime.tv_sec == mtime.tv_sec && + cs_mtime.tv_nsec == mtime.tv_nsec) + ? "==" + : "!="), + mtime.tv_sec, mtime.tv_nsec, + object->code_signed, + m->vmp_cs_validated, + m->vmp_cs_tainted, + m->vmp_cs_nx, + m->vmp_wpmapped, + m->vmp_dirty, + shadow_depth); + } + + if (file_object != object) { + vm_object_unlock(file_object); + } + if (pathname_len != 0) { + kfree(pathname, __PATH_MAX * 2); + pathname = NULL; + filename = NULL; + } } else { - /* proceed with the tainted page */ + /* proceed with the invalid page */ kr = KERN_SUCCESS; + if (!m->vmp_cs_validated && + !object->code_signed) { + /* + * This page has not been (fully) validated but + * does not belong to a code-signed object + * so it should not be forcefully considered + * as tainted. + * We're just concerned about it here because + * we've been asked to "execute" it but that + * does not mean that it should cause other + * accesses to fail. + * This happens when a debugger sets a + * breakpoint and we then execute code in + * that page. Marking the page as "tainted" + * would cause any inspection tool ("leaks", + * "vmmap", "CrashReporter", ...) to get killed + * due to code-signing violation on that page, + * even though they're just reading it and not + * executing from it. + */ + } else { + /* + * Page might have been tainted before or not; + * now it definitively is. If the page wasn't + * tainted, we must disconnect it from all + * pmaps later, to force existing mappings + * through that code path for re-consideration + * of the validity of that page. + */ + must_disconnect = !m->vmp_cs_tainted; + m->vmp_cs_tainted = TRUE; + } cs_enter_tainted_accepted++; } - if (cs_debug || kr != KERN_SUCCESS) { - printf("CODESIGNING: vm_fault_enter(0x%llx): " - "page %p obj %p off 0x%llx *** TAINTED ***\n", - (long long)vaddr, m, m->object, m->offset); + if (kr != KERN_SUCCESS) { + if (cs_debug) { + printf("CODESIGNING: vm_fault_enter(0x%llx): " + "*** INVALID PAGE ***\n", + (long long)vaddr); + } +#if !SECURE_KERNEL + if (cs_enforcement_panic) { + panic("CODESIGNING: panicking on invalid page\n"); + } +#endif } } else { /* proceed with the valid page */ kr = KERN_SUCCESS; } - if (kr == KERN_SUCCESS) { - /* - * NOTE: we may only hold the vm_object lock SHARED - * at this point, but the update of pmapped is ok - * since this is the ONLY bit updated behind the SHARED - * lock... however, we need to figure out how to do an atomic - * update on a bit field to make this less fragile... right - * now I don'w know how to coerce 'C' to give me the offset info - * that's needed for an AtomicCompareAndSwap - */ - m->pmapped = TRUE; - - PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired); - } + boolean_t page_queues_locked = FALSE; +#define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \ +MACRO_BEGIN \ + if (! page_queues_locked) { \ + page_queues_locked = TRUE; \ + vm_page_lockspin_queues(); \ + } \ +MACRO_END +#define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \ +MACRO_BEGIN \ + if (page_queues_locked) { \ + page_queues_locked = FALSE; \ + vm_page_unlock_queues(); \ + } \ +MACRO_END /* * Hold queues lock to manipulate * the page queues. Change wiring * case is obvious. */ - if (change_wiring) { - vm_page_lockspin_queues(); + assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object); + +#if CONFIG_BACKGROUND_QUEUE + vm_page_update_background_state(m); +#endif + if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { + /* + * Compressor pages are neither wired + * nor pageable and should never change. + */ + assert(object == compressor_object); + } else if (change_wiring) { + __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); if (wired) { if (kr == KERN_SUCCESS) { - vm_page_wire(m); + vm_page_wire(m, wire_tag, TRUE); } } else { - vm_page_unwire(m); + vm_page_unwire(m, TRUE); } - vm_page_unlock_queues(); - + /* we keep the page queues lock, if we need it later */ } else { - if (kr != KERN_SUCCESS) { - vm_page_lock_queues(); - vm_page_deactivate(m); - vm_page_unlock_queues(); - } else { - if (((!m->active && !m->inactive) || no_cache) && !m->wire_count && !m->throttled) { - vm_page_lockspin_queues(); + if (object->internal == TRUE) { + /* + * don't allow anonymous pages on + * the speculative queues + */ + no_cache = FALSE; + } + if (kr != KERN_SUCCESS) { + __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); + vm_page_deactivate(m); + /* we keep the page queues lock, if we need it later */ + } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || + (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) || + (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || + ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) && + !VM_PAGE_WIRED(m)) { + if (vm_page_local_q && + (*type_of_fault == DBG_COW_FAULT || + *type_of_fault == DBG_ZERO_FILL_FAULT)) { + struct vpl *lq; + uint32_t lid; + + assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); + + __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); + vm_object_lock_assert_exclusive(object); + /* - * test again now that we hold the page queue lock + * we got a local queue to stuff this + * new page on... + * its safe to manipulate local and + * local_id at this point since we're + * behind an exclusive object lock and + * the page is not on any global queue. + * + * we'll use the current cpu number to + * select the queue note that we don't + * need to disable preemption... we're + * going to be behind the local queue's + * lock to do the real work */ - if (((!m->active && !m->inactive) || no_cache) && !m->wire_count) { + lid = cpu_number(); + + lq = &vm_page_local_q[lid].vpl_un.vpl; + + VPL_LOCK(&lq->vpl_lock); + + vm_page_check_pageable_safe(m); + vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq); + m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q; + m->vmp_local_id = lid; + lq->vpl_count++; + if (object->internal) { + lq->vpl_internal_count++; + } else { + lq->vpl_external_count++; + } + + VPL_UNLOCK(&lq->vpl_lock); + + if (lq->vpl_count > vm_page_local_q_soft_limit) { /* - * If this is a no_cache mapping and the page has never been - * mapped before or was previously a no_cache page, then we - * want to leave pages in the speculative state so that they - * can be readily recycled if free memory runs low. Otherwise - * the page is activated as normal. + * we're beyond the soft limit + * for the local queue + * vm_page_reactivate_local will + * 'try' to take the global page + * queue lock... if it can't + * that's ok... we'll let the + * queue continue to grow up + * to the hard limit... at that + * point we'll wait for the + * lock... once we've got the + * lock, we'll transfer all of + * the pages from the local + * queue to the global active + * queue */ + vm_page_reactivate_local(lid, FALSE, FALSE); + } + } else { + __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); - if (no_cache && (!previously_pmapped || m->no_cache)) { - m->no_cache = TRUE; + /* + * test again now that we hold the + * page queue lock + */ + if (!VM_PAGE_WIRED(m)) { + if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { + vm_page_queues_remove(m, FALSE); - if (m->active || m->inactive) - VM_PAGE_QUEUES_REMOVE(m); + VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); + VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1); + } - if (!m->speculative) - vm_page_speculate(m, TRUE); + if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) || + no_cache) { + /* + * If this is a no_cache mapping + * and the page has never been + * mapped before or was + * previously a no_cache page, + * then we want to leave pages + * in the speculative state so + * that they can be readily + * recycled if free memory runs + * low. Otherwise the page is + * activated as normal. + */ - } else if (!m->active && !m->inactive) - vm_page_activate(m); + if (no_cache && + (!previously_pmapped || + m->vmp_no_cache)) { + m->vmp_no_cache = TRUE; + if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) { + vm_page_speculate(m, FALSE); + } + } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) { + vm_page_activate(m); + } + } } + /* we keep the page queues lock, if we need it later */ + } + } + } + /* we're done with the page queues lock, if we ever took it */ + __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); - vm_page_unlock_queues(); + + /* If we have a KERN_SUCCESS from the previous checks, we either have + * a good page, or a tainted page that has been accepted by the process. + * In both cases the page will be entered into the pmap. + * If the page is writeable, we need to disconnect it from other pmaps + * now so those processes can take note. + */ + if (kr == KERN_SUCCESS) { + /* + * NOTE: we may only hold the vm_object lock SHARED + * at this point, so we need the phys_page lock to + * properly serialize updating the pmapped and + * xpmapped bits + */ + if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) { + ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); + + pmap_lock_phys_page(phys_page); + /* + * go ahead and take the opportunity + * to set 'pmapped' here so that we don't + * need to grab this lock a 2nd time + * just below + */ + m->vmp_pmapped = TRUE; + + if (!m->vmp_xpmapped) { + m->vmp_xpmapped = TRUE; + + pmap_unlock_phys_page(phys_page); + + if (!object->internal) { + OSAddAtomic(1, &vm_page_xpmapped_external_count); + } + +#if defined(__arm__) || defined(__arm64__) + pmap_sync_page_data_phys(phys_page); +#else + if (object->internal && + object->pager != NULL) { + /* + * This page could have been + * uncompressed by the + * compressor pager and its + * contents might be only in + * the data cache. + * Since it's being mapped for + * "execute" for the fist time, + * make sure the icache is in + * sync. + */ + assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); + pmap_sync_page_data_phys(phys_page); + } +#endif + } else { + pmap_unlock_phys_page(phys_page); + } + } else { + if (m->vmp_pmapped == FALSE) { + ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); + + pmap_lock_phys_page(phys_page); + m->vmp_pmapped = TRUE; + pmap_unlock_phys_page(phys_page); + } + } + + if (fault_type & VM_PROT_WRITE) { + if (m->vmp_wpmapped == FALSE) { + vm_object_lock_assert_exclusive(object); + if (!object->internal && object->pager) { + task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vnode_pager_lookup_vnode(object->pager)); + } + m->vmp_wpmapped = TRUE; + } + if (must_disconnect) { + /* + * We can only get here + * because of the CSE logic + */ + assert(cs_enforcement_enabled); + pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); + /* + * If we are faulting for a write, we can clear + * the execute bit - that will ensure the page is + * checked again before being executable, which + * protects against a map switch. + * This only happens the first time the page + * gets tainted, so we won't get stuck here + * to make an already writeable page executable. + */ + if (!cs_bypass) { + assert(!pmap_has_prot_policy(prot)); + prot &= ~VM_PROT_EXECUTE; + } + } + } + assert(VM_PAGE_OBJECT(m) == object); + +#if VM_OBJECT_ACCESS_TRACKING + if (object->access_tracking) { + DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type); + if (fault_type & VM_PROT_WRITE) { + object->access_tracking_writes++; + vm_object_access_tracking_writes++; + } else { + object->access_tracking_reads++; + vm_object_access_tracking_reads++; } } +#endif /* VM_OBJECT_ACCESS_TRACKING */ + +#if PMAP_CS + /* + * If CS enforcement is on, we don't ask for an executable page if the + * fault does not call for execution, because that can fail in + * situations where the caller only actually wanted read access. + * However, it may be better to instead retry without execute on + * failure, or pass a flag into pmap_enter to do the right thing. + */ + // TODO: maybe do something better than masking out VM_PROT_EXECUTE on non-execute faults + if (pmap_cs_enforced(pmap) && !(caller_prot & VM_PROT_EXECUTE)) { + prot &= ~VM_PROT_EXECUTE; + } +#endif + + /* Prevent a deadlock by not + * holding the object lock if we need to wait for a page in + * pmap_enter() - */ + PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0, + wired, + pmap_options | PMAP_OPTIONS_NOWAIT, + pe_result); +#if __x86_64__ + if (pe_result == KERN_INVALID_ARGUMENT && + pmap == PMAP_NULL && + wired) { + /* + * Wiring a page in a pmap-less VM map: + * VMware's "vmmon" kernel extension does this + * to grab pages. + * Let it proceed even though the PMAP_ENTER() failed. + */ + pe_result = KERN_SUCCESS; + } +#endif /* __x86_64__ */ + + if (pe_result == KERN_RESOURCE_SHORTAGE) { + if (need_retry) { + /* + * this will be non-null in the case where we hold the lock + * on the top-object in this chain... we can't just drop + * the lock on the object we're inserting the page into + * and recall the PMAP_ENTER since we can still cause + * a deadlock if one of the critical paths tries to + * acquire the lock on the top-object and we're blocked + * in PMAP_ENTER waiting for memory... our only recourse + * is to deal with it at a higher level where we can + * drop both locks. + */ + *need_retry = TRUE; + vm_pmap_enter_retried++; + goto after_the_pmap_enter; + } + /* The nonblocking version of pmap_enter did not succeed. + * and we don't need to drop other locks and retry + * at the level above us, so + * use the blocking version instead. Requires marking + * the page busy and unlocking the object */ + boolean_t was_busy = m->vmp_busy; + + vm_object_lock_assert_exclusive(object); + + m->vmp_busy = TRUE; + vm_object_unlock(object); + + PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, + 0, wired, + pmap_options, pe_result); + + assert(VM_PAGE_OBJECT(m) == object); + + /* Take the object lock again. */ + vm_object_lock(object); + + /* If the page was busy, someone else will wake it up. + * Otherwise, we have to do it now. */ + assert(m->vmp_busy); + if (!was_busy) { + PAGE_WAKEUP_DONE(m); + } + vm_pmap_enter_blocked++; + } + + kr = pe_result; } + +after_the_pmap_enter: return kr; } +void +vm_pre_fault(vm_map_offset_t vaddr) +{ + if (pmap_find_phys(current_map()->pmap, vaddr) == 0) { + vm_fault(current_map(), /* map */ + vaddr, /* vaddr */ + VM_PROT_READ, /* fault_type */ + FALSE, /* change_wiring */ + VM_KERN_MEMORY_NONE, /* tag - not wiring */ + THREAD_UNINT, /* interruptible */ + NULL, /* caller_pmap */ + 0 /* caller_pmap_addr */); + } +} + /* * Routine: vm_fault @@ -2166,79 +3381,164 @@ vm_fault_enter(vm_page_t m, */ extern int _map_enter_debug; +extern uint64_t get_current_unique_pid(void); unsigned long vm_fault_collapse_total = 0; unsigned long vm_fault_collapse_skipped = 0; + +kern_return_t +vm_fault_external( + vm_map_t map, + vm_map_offset_t vaddr, + vm_prot_t fault_type, + boolean_t change_wiring, + int interruptible, + pmap_t caller_pmap, + vm_map_offset_t caller_pmap_addr) +{ + return vm_fault_internal(map, vaddr, fault_type, change_wiring, vm_tag_bt(), + interruptible, caller_pmap, caller_pmap_addr, + NULL); +} + kern_return_t vm_fault( - vm_map_t map, - vm_map_offset_t vaddr, - vm_prot_t fault_type, - boolean_t change_wiring, - int interruptible, - pmap_t caller_pmap, - vm_map_offset_t caller_pmap_addr) + vm_map_t map, + vm_map_offset_t vaddr, + vm_prot_t fault_type, + boolean_t change_wiring, + vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ + int interruptible, + pmap_t caller_pmap, + vm_map_offset_t caller_pmap_addr) +{ + return vm_fault_internal(map, vaddr, fault_type, change_wiring, wire_tag, + interruptible, caller_pmap, caller_pmap_addr, + NULL); +} + +kern_return_t +vm_fault_internal( + vm_map_t map, + vm_map_offset_t vaddr, + vm_prot_t caller_prot, + boolean_t change_wiring, + vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ + int interruptible, + pmap_t caller_pmap, + vm_map_offset_t caller_pmap_addr, + ppnum_t *physpage_p) { - vm_map_version_t version; /* Map version for verificiation */ - boolean_t wired; /* Should mapping be wired down? */ - vm_object_t object; /* Top-level object */ - vm_object_offset_t offset; /* Top-level offset */ - vm_prot_t prot; /* Protection for mapping */ - vm_object_t old_copy_object; /* Saved copy object */ - vm_page_t result_page; /* Result of vm_fault_page */ - vm_page_t top_page; /* Placeholder page */ - kern_return_t kr; - - vm_page_t m; /* Fast access to result_page */ - kern_return_t error_code; - vm_object_t cur_object; - vm_object_offset_t cur_offset; - vm_page_t cur_m; - vm_object_t new_object; + vm_map_version_t version; /* Map version for verificiation */ + boolean_t wired; /* Should mapping be wired down? */ + vm_object_t object; /* Top-level object */ + vm_object_offset_t offset; /* Top-level offset */ + vm_prot_t prot; /* Protection for mapping */ + vm_object_t old_copy_object; /* Saved copy object */ + vm_page_t result_page; /* Result of vm_fault_page */ + vm_page_t top_page; /* Placeholder page */ + kern_return_t kr; + + vm_page_t m; /* Fast access to result_page */ + kern_return_t error_code; + vm_object_t cur_object; + vm_object_t m_object = NULL; + vm_object_offset_t cur_offset; + vm_page_t cur_m; + vm_object_t new_object; int type_of_fault; - pmap_t pmap; - boolean_t interruptible_state; - vm_map_t real_map = map; - vm_map_t original_map = map; - vm_prot_t original_fault_type; - struct vm_object_fault_info fault_info; - boolean_t need_collapse = FALSE; - int object_lock_type = 0; - int cur_object_lock_type; - - - KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, - (int)((uint64_t)vaddr >> 32), - (int)vaddr, - 0, - 0, - 0); + pmap_t pmap; + wait_interrupt_t interruptible_state; + vm_map_t real_map = map; + vm_map_t original_map = map; + boolean_t object_locks_dropped = FALSE; + vm_prot_t fault_type; + vm_prot_t original_fault_type; + struct vm_object_fault_info fault_info = {}; + boolean_t need_collapse = FALSE; + boolean_t need_retry = FALSE; + boolean_t *need_retry_ptr = NULL; + int object_lock_type = 0; + int cur_object_lock_type; + vm_object_t top_object = VM_OBJECT_NULL; + vm_object_t written_on_object = VM_OBJECT_NULL; + memory_object_t written_on_pager = NULL; + vm_object_offset_t written_on_offset = 0; + int throttle_delay; + int compressed_count_delta; + int grab_options; + vm_map_offset_t trace_vaddr; + vm_map_offset_t trace_real_vaddr; +#if DEVELOPMENT || DEBUG + vm_map_offset_t real_vaddr; + + real_vaddr = vaddr; +#endif /* DEVELOPMENT || DEBUG */ + trace_real_vaddr = vaddr; + vaddr = vm_map_trunc_page(vaddr, PAGE_MASK); + + if (map == kernel_map) { + trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr); + trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr); + } else { + trace_vaddr = vaddr; + } + + KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, + (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, + ((uint64_t)trace_vaddr >> 32), + trace_vaddr, + (map == kernel_map), + 0, + 0); if (get_preemption_level() != 0) { - KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, - (int)((uint64_t)vaddr >> 32), - (int)vaddr, - KERN_FAILURE, - 0, - 0); - - return (KERN_FAILURE); + KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, + (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, + ((uint64_t)trace_vaddr >> 32), + trace_vaddr, + KERN_FAILURE, + 0, + 0); + + return KERN_FAILURE; + } + + thread_t cthread = current_thread(); + boolean_t rtfault = (cthread->sched_mode == TH_MODE_REALTIME); + uint64_t fstart = 0; + + if (rtfault) { + fstart = mach_continuous_time(); } + interruptible_state = thread_interrupt_level(interruptible); + fault_type = (change_wiring ? VM_PROT_NONE : caller_prot); + VM_STAT_INCR(faults); current_task()->faults++; original_fault_type = fault_type; - if (fault_type & VM_PROT_WRITE) - object_lock_type = OBJECT_LOCK_EXCLUSIVE; - else - object_lock_type = OBJECT_LOCK_SHARED; + if (fault_type & VM_PROT_WRITE) { + object_lock_type = OBJECT_LOCK_EXCLUSIVE; + } else { + object_lock_type = OBJECT_LOCK_SHARED; + } cur_object_lock_type = OBJECT_LOCK_SHARED; + if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) { + if (compressor_map) { + if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) { + panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p", (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map)); + } + } + } RetryFault: + assert(written_on_object == VM_OBJECT_NULL); + /* * assume we will hit a page in the cache * otherwise, explicitly override with @@ -2255,10 +3555,10 @@ RetryFault: vm_map_lock_read(map); kr = vm_map_lookup_locked(&map, vaddr, fault_type, - object_lock_type, &version, - &object, &offset, &prot, &wired, - &fault_info, - &real_map); + object_lock_type, &version, + &object, &offset, &prot, &wired, + &fault_info, + &real_map); if (kr != KERN_SUCCESS) { vm_map_unlock_read(map); @@ -2266,6 +3566,10 @@ RetryFault: } pmap = real_map->pmap; fault_info.interruptible = interruptible; + fault_info.stealth = FALSE; + fault_info.io_sync = FALSE; + fault_info.mark_zf_absent = FALSE; + fault_info.batch_pmap_op = FALSE; /* * If the page is wired, we must fault for the current protection @@ -2273,26 +3577,24 @@ RetryFault: */ if (wired) { fault_type = prot | VM_PROT_WRITE; - /* * since we're treating this fault as a 'write' * we must hold the top object lock exclusively */ if (object_lock_type == OBJECT_LOCK_SHARED) { - - object_lock_type = OBJECT_LOCK_EXCLUSIVE; + object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(object) == FALSE) { - /* + /* * couldn't upgrade, so explictly * take the lock exclusively */ - vm_object_lock(object); + vm_object_lock(object); } } } -#if VM_FAULT_CLASSIFY +#if VM_FAULT_CLASSIFY /* * Temporary data gathering code */ @@ -2312,7 +3614,7 @@ RetryFault: * and use the original fault path (which doesn't hold * the map lock, and relies on busy pages). * The give up cases include: - * - Have to talk to pager. + * - Have to talk to pager. * - Page is busy, absent or in error. * - Pager has locked out desired access. * - Fault needs to be restarted. @@ -2320,7 +3622,7 @@ RetryFault: * * The code is an infinite loop that moves one level down * the shadow chain each time. cur_object and cur_offset - * refer to the current object being examined. object and offset + * refer to the current object being examined. object and offset * are the original object from the map. The loop is at the * top level if and only if object and cur_object are the same. * @@ -2330,6 +3632,24 @@ RetryFault: * */ +#if defined(__arm64__) + /* + * Fail if reading an execute-only page in a + * pmap that enforces execute-only protection. + */ + if (fault_type == VM_PROT_READ && + (prot & VM_PROT_EXECUTE) && + !(prot & VM_PROT_READ) && + pmap_enforces_execute_only(pmap)) { + vm_object_unlock(object); + vm_map_unlock_read(map); + if (real_map != map) { + vm_map_unlock(real_map); + } + kr = KERN_PROTECTION_FAILURE; + goto done; + } +#endif /* * If this page is to be inserted in a copy delay object @@ -2337,51 +3657,74 @@ RetryFault: * copy delay strategy is implemented in the slow fault page. */ if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && - object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) - goto handle_copy_delay; + object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) { + goto handle_copy_delay; + } cur_object = object; cur_offset = offset; + grab_options = 0; +#if CONFIG_SECLUDED_MEMORY + if (object->can_grab_secluded) { + grab_options |= VM_PAGE_GRAB_SECLUDED; + } +#endif /* CONFIG_SECLUDED_MEMORY */ + while (TRUE) { + if (!cur_object->pager_created && + cur_object->phys_contiguous) { /* superpage */ + break; + } + + if (cur_object->blocked_access) { + /* + * Access to this VM object has been blocked. + * Let the slow path handle it. + */ + break; + } + m = vm_page_lookup(cur_object, cur_offset); + m_object = NULL; if (m != VM_PAGE_NULL) { - if (m->busy) { - wait_result_t result; + m_object = cur_object; + + if (m->vmp_busy) { + wait_result_t result; /* * in order to do the PAGE_ASSERT_WAIT, we must * have object that 'm' belongs to locked exclusively */ if (object != cur_object) { - vm_object_unlock(object); - if (cur_object_lock_type == OBJECT_LOCK_SHARED) { - - cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; + cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(cur_object) == FALSE) { - /* + /* * couldn't upgrade so go do a full retry - * immediately since we've already dropped - * the top object lock associated with this page - * and the current one got dropped due to the - * failed upgrade... the state is no longer valid + * immediately since we can no longer be + * certain about cur_object (since we + * don't hold a reference on it)... + * first drop the top object lock */ - vm_map_unlock_read(map); - if (real_map != map) - vm_map_unlock(real_map); + vm_object_unlock(object); + + vm_map_unlock_read(map); + if (real_map != map) { + vm_map_unlock(real_map); + } goto RetryFault; } } } else if (object_lock_type == OBJECT_LOCK_SHARED) { - - object_lock_type = OBJECT_LOCK_EXCLUSIVE; + object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(object) == FALSE) { - /* + /* * couldn't upgrade, so explictly take the lock * exclusively and go relookup the page since we * will have dropped the object lock and @@ -2390,83 +3733,80 @@ RetryFault: * no need for a full retry since we're * at the top level of the object chain */ - vm_object_lock(object); + vm_object_lock(object); continue; } } + if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) { + /* + * m->vmp_busy == TRUE and the object is locked exclusively + * if m->pageout_queue == TRUE after we acquire the + * queues lock, we are guaranteed that it is stable on + * the pageout queue and therefore reclaimable + * + * NOTE: this is only true for the internal pageout queue + * in the compressor world + */ + assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); + + vm_page_lock_queues(); + + if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { + vm_pageout_throttle_up(m); + vm_page_unlock_queues(); + + PAGE_WAKEUP_DONE(m); + goto reclaimed_from_pageout; + } + vm_page_unlock_queues(); + } + if (object != cur_object) { + vm_object_unlock(object); + } + vm_map_unlock_read(map); - if (real_map != map) - vm_map_unlock(real_map); + if (real_map != map) { + vm_map_unlock(real_map); + } result = PAGE_ASSERT_WAIT(m, interruptible); vm_object_unlock(cur_object); if (result == THREAD_WAITING) { - result = thread_block(THREAD_CONTINUE_NULL); + result = thread_block(THREAD_CONTINUE_NULL); counter(c_vm_fault_page_block_busy_kernel++); } - if (result == THREAD_AWAKENED || result == THREAD_RESTART) - goto RetryFault; + if (result == THREAD_AWAKENED || result == THREAD_RESTART) { + goto RetryFault; + } kr = KERN_ABORTED; goto done; } - if (m->phys_page == vm_page_guard_addr) { - /* - * Guard page: let the slow path deal with it - */ - break; - } - if (m->unusual && (m->error || m->restart || m->private || m->absent)) { - /* - * Unusual case... let the slow path deal with it - */ - break; - } - if (m->encrypted) { - /* - * ENCRYPTED SWAP: - * We've soft-faulted (because it's not in the page - * table) on an encrypted page. - * Keep the page "busy" so that no one messes with - * it during the decryption. - * Release the extra locks we're holding, keep only - * the page's VM object lock. - * - * in order to set 'busy' on 'm', we must - * have object that 'm' belongs to locked exclusively - */ - if (object != cur_object) { - vm_object_unlock(object); - +reclaimed_from_pageout: + if (m->vmp_laundry) { + if (object != cur_object) { if (cur_object_lock_type == OBJECT_LOCK_SHARED) { + cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; - cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; - - if (vm_object_lock_upgrade(cur_object) == FALSE) { - /* - * couldn't upgrade so go do a full retry - * immediately since we've already dropped - * the top object lock associated with this page - * and the current one got dropped due to the - * failed upgrade... the state is no longer valid - */ - vm_map_unlock_read(map); - if (real_map != map) - vm_map_unlock(real_map); + vm_object_unlock(object); + vm_object_unlock(cur_object); - goto RetryFault; + vm_map_unlock_read(map); + if (real_map != map) { + vm_map_unlock(real_map); } + + goto RetryFault; } } else if (object_lock_type == OBJECT_LOCK_SHARED) { - - object_lock_type = OBJECT_LOCK_EXCLUSIVE; + object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(object) == FALSE) { - /* + /* * couldn't upgrade, so explictly take the lock * exclusively and go relookup the page since we * will have dropped the object lock and @@ -2475,57 +3815,67 @@ RetryFault: * no need for a full retry since we're * at the top level of the object chain */ - vm_object_lock(object); + vm_object_lock(object); continue; } } - m->busy = TRUE; + vm_pageout_steal_laundry(m, FALSE); + } + if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { + /* + * Guard page: let the slow path deal with it + */ + break; + } + if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) { + /* + * Unusual case... let the slow path deal with it + */ + break; + } + if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) { + if (object != cur_object) { + vm_object_unlock(object); + } vm_map_unlock_read(map); - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); - - vm_page_decrypt(m, 0); - - assert(m->busy); - PAGE_WAKEUP_DONE(m); - + } vm_object_unlock(cur_object); - /* - * Retry from the top, in case anything - * changed while we were decrypting... - */ - goto RetryFault; + kr = KERN_MEMORY_ERROR; + goto done; } - ASSERT_PAGE_DECRYPTED(m); + assert(m_object == VM_PAGE_OBJECT(m)); - if (m->object->code_signed && !m->cs_validated) { + if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m, m_object) || + (physpage_p != NULL && (prot & VM_PROT_WRITE))) { +upgrade_for_validation: /* - * We will need to validate this page + * We might need to validate this page * against its code signature, so we * want to hold the VM object exclusively. */ - if (object != cur_object) { + if (object != cur_object) { if (cur_object_lock_type == OBJECT_LOCK_SHARED) { vm_object_unlock(object); vm_object_unlock(cur_object); - cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; + cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; vm_map_unlock_read(map); - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); + } goto RetryFault; } - } else if (object_lock_type == OBJECT_LOCK_SHARED) { - - object_lock_type = OBJECT_LOCK_EXCLUSIVE; + object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(object) == FALSE) { - /* + /* * couldn't upgrade, so explictly take the lock * exclusively and go relookup the page since we * will have dropped the object lock and @@ -2534,7 +3884,7 @@ RetryFault: * no need for a full retry since we're * at the top level of the object chain */ - vm_object_lock(object); + vm_object_lock(object); continue; } @@ -2547,23 +3897,46 @@ RetryFault: * --> must disallow write. */ - if (object == cur_object && object->copy == VM_OBJECT_NULL) + if (object == cur_object && object->copy == VM_OBJECT_NULL) { goto FastPmapEnter; + } if ((fault_type & VM_PROT_WRITE) == 0) { + if (!pmap_has_prot_policy(prot)) { + prot &= ~VM_PROT_WRITE; + } else { + /* + * For a protection that the pmap cares + * about, we must hand over the full + * set of protections (so that the pmap + * layer can apply any desired policy). + * This means that cs_bypass must be + * set, as this can force us to pass + * RWX. + */ + assert(fault_info.cs_bypass); + } - prot &= ~VM_PROT_WRITE; - - /* - * Set up to map the page... - * mark the page busy, drop - * unneeded object lock - */ - if (object != cur_object) { - /* - * don't need the original object anymore + if (object != cur_object) { + /* + * We still need to hold the top object + * lock here to prevent a race between + * a read fault (taking only "shared" + * locks) and a write fault (taking + * an "exclusive" lock on the top + * object. + * Otherwise, as soon as we release the + * top lock, the write fault could + * proceed and actually complete before + * the read fault, and the copied page's + * translation could then be overwritten + * by the read fault's translation for + * the original page. + * + * Let's just record what the top object + * is and we'll release it later. */ - vm_object_unlock(object); + top_object = object; /* * switch to the object that has the new page @@ -2572,68 +3945,149 @@ RetryFault: object_lock_type = cur_object_lock_type; } FastPmapEnter: + assert(m_object == VM_PAGE_OBJECT(m)); + /* * prepare for the pmap_enter... * object and map are both locked * m contains valid data - * object == m->object + * object == m->vmp_object * cur_object == NULL or it's been unlocked * no paging references on either object or cur_object */ -#if MACH_KDB - if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0) - prot &= ~VM_PROT_WRITE; -#endif + if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) { + need_retry_ptr = &need_retry; + } else { + need_retry_ptr = NULL; + } + if (caller_pmap) { - kr = vm_fault_enter(m, - caller_pmap, - caller_pmap_addr, - prot, - wired, - change_wiring, - fault_info.no_cache, - &type_of_fault); + kr = vm_fault_enter(m, + caller_pmap, + caller_pmap_addr, + prot, + caller_prot, + wired, + change_wiring, + wire_tag, + &fault_info, + need_retry_ptr, + &type_of_fault); } else { - kr = vm_fault_enter(m, - pmap, - vaddr, - prot, - wired, - change_wiring, - fault_info.no_cache, - &type_of_fault); + kr = vm_fault_enter(m, + pmap, + vaddr, + prot, + caller_prot, + wired, + change_wiring, + wire_tag, + &fault_info, + need_retry_ptr, + &type_of_fault); } +#if DEVELOPMENT || DEBUG + { + int event_code = 0; + + if (m_object->internal) { + event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); + } else if (m_object->object_is_shared_cache) { + event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); + } else { + event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); + } + + KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0); - if (need_collapse == TRUE) - vm_object_collapse(object, offset, TRUE); + DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); + } +#endif + if (kr == KERN_SUCCESS && + physpage_p != NULL) { + /* for vm_map_wire_and_extract() */ + *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); + if (prot & VM_PROT_WRITE) { + vm_object_lock_assert_exclusive(m_object); + m->vmp_dirty = TRUE; + } + } + + if (top_object != VM_OBJECT_NULL) { + /* + * It's safe to drop the top object + * now that we've done our + * vm_fault_enter(). Any other fault + * in progress for that virtual + * address will either find our page + * and translation or put in a new page + * and translation. + */ + vm_object_unlock(top_object); + top_object = VM_OBJECT_NULL; + } - if (type_of_fault == DBG_PAGEIN_FAULT) { - /* + if (need_collapse == TRUE) { + vm_object_collapse(object, offset, TRUE); + } + + if (need_retry == FALSE && + (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) { + /* * evaluate access pattern and update state * vm_fault_deactivate_behind depends on the * state being up to date */ - vm_fault_is_sequential(object, cur_offset, fault_info.behavior); + vm_fault_is_sequential(m_object, cur_offset, fault_info.behavior); - vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior); + vm_fault_deactivate_behind(m_object, cur_offset, fault_info.behavior); } /* * That's it, clean up and return. */ - if (m->busy) - PAGE_WAKEUP_DONE(m); + if (m->vmp_busy) { + PAGE_WAKEUP_DONE(m); + } + + if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) { + vm_object_paging_begin(m_object); + assert(written_on_object == VM_OBJECT_NULL); + written_on_object = m_object; + written_on_pager = m_object->pager; + written_on_offset = m_object->paging_offset + m->vmp_offset; + } vm_object_unlock(object); vm_map_unlock_read(map); - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); + } + + if (need_retry == TRUE) { + /* + * vm_fault_enter couldn't complete the PMAP_ENTER... + * at this point we don't hold any locks so it's safe + * to ask the pmap layer to expand the page table to + * accommodate this mapping... once expanded, we'll + * re-drive the fault which should result in vm_fault_enter + * being able to successfully enter the mapping this time around + */ + (void)pmap_enter_options( + pmap, vaddr, 0, 0, 0, 0, 0, + PMAP_OPTIONS_NOENTER, NULL); + need_retry = FALSE; + goto RetryFault; + } goto done; } /* * COPY ON WRITE FAULT - * + */ + assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); + + /* * If objects match, then * object->copy must not be NULL (else control * would be in previous code block), and we @@ -2641,35 +4095,43 @@ FastPmapEnter: * with which we can't cope with here. */ if (cur_object == object) { - /* + /* * must take the slow path to * deal with the copy push */ break; } - assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); /* * This is now a shadow based copy on write * fault -- it requires a copy up the shadow * chain. - * + */ + assert(m_object == VM_PAGE_OBJECT(m)); + + if ((cur_object_lock_type == OBJECT_LOCK_SHARED) && + VM_FAULT_NEED_CS_VALIDATION(NULL, m, m_object)) { + goto upgrade_for_validation; + } + + /* * Allocate a page in the original top level * object. Give up if allocate fails. Also * need to remember current page, as it's the * source of the copy. * - * at this point we hold locks on both + * at this point we hold locks on both * object and cur_object... no need to take * paging refs or mark pages BUSY since * we don't drop either object lock until * the page has been copied and inserted */ cur_m = m; - m = vm_page_grab(); + m = vm_page_grab_options(grab_options); + m_object = NULL; if (m == VM_PAGE_NULL) { - /* + /* * no free page currently available... * must take the slow path */ @@ -2683,19 +4145,26 @@ FastPmapEnter: */ vm_page_copy(cur_m, m); vm_page_insert(m, object, offset); - m->dirty = TRUE; + m_object = object; + SET_PAGE_DIRTY(m, FALSE); /* * Now cope with the source page and object */ - if (object->ref_count > 1 && cur_m->pmapped) - pmap_disconnect(cur_m->phys_page); + if (object->ref_count > 1 && cur_m->vmp_pmapped) { + pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m)); + } + if (cur_m->vmp_clustered) { + VM_PAGE_COUNT_AS_PAGEIN(cur_m); + VM_PAGE_CONSUME_CLUSTERED(cur_m); + vm_fault_is_sequential(cur_object, cur_offset, fault_info.behavior); + } need_collapse = TRUE; if (!cur_object->internal && cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { - /* + /* * The object from which we've just * copied a page is most probably backed * by a vnode. We don't want to waste too @@ -2703,45 +4172,267 @@ FastPmapEnter: * and create a bottleneck when several tasks * map the same file. */ - if (cur_object->copy == object) { - /* + if (cur_object->copy == object) { + /* * Shared mapping or no COW yet. * We can never collapse a copy * object into its backing object. */ - need_collapse = FALSE; - } else if (cur_object->copy == object->shadow && - object->shadow->resident_page_count == 0) { - /* - * Shared mapping after a COW occurred. + need_collapse = FALSE; + } else if (cur_object->copy == object->shadow && + object->shadow->resident_page_count == 0) { + /* + * Shared mapping after a COW occurred. + */ + need_collapse = FALSE; + } + } + vm_object_unlock(cur_object); + + if (need_collapse == FALSE) { + vm_fault_collapse_skipped++; + } + vm_fault_collapse_total++; + + type_of_fault = DBG_COW_FAULT; + VM_STAT_INCR(cow_faults); + DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); + current_task()->cow_faults++; + + goto FastPmapEnter; + } else { + /* + * No page at cur_object, cur_offset... m == NULL + */ + if (cur_object->pager_created) { + int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; + + if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) { + int my_fault_type; + int c_flags = C_DONT_BLOCK; + boolean_t insert_cur_object = FALSE; + + /* + * May have to talk to a pager... + * if so, take the slow path by + * doing a 'break' from the while (TRUE) loop + * + * external_state will only be set to VM_EXTERNAL_STATE_EXISTS + * if the compressor is active and the page exists there + */ + if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) { + break; + } + + if (map == kernel_map || real_map == kernel_map) { + /* + * can't call into the compressor with the kernel_map + * lock held, since the compressor may try to operate + * on the kernel map in order to return an empty c_segment + */ + break; + } + if (object != cur_object) { + if (fault_type & VM_PROT_WRITE) { + c_flags |= C_KEEP; + } else { + insert_cur_object = TRUE; + } + } + if (insert_cur_object == TRUE) { + if (cur_object_lock_type == OBJECT_LOCK_SHARED) { + cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; + + if (vm_object_lock_upgrade(cur_object) == FALSE) { + /* + * couldn't upgrade so go do a full retry + * immediately since we can no longer be + * certain about cur_object (since we + * don't hold a reference on it)... + * first drop the top object lock + */ + vm_object_unlock(object); + + vm_map_unlock_read(map); + if (real_map != map) { + vm_map_unlock(real_map); + } + + goto RetryFault; + } + } + } else if (object_lock_type == OBJECT_LOCK_SHARED) { + object_lock_type = OBJECT_LOCK_EXCLUSIVE; + + if (object != cur_object) { + /* + * we can't go for the upgrade on the top + * lock since the upgrade may block waiting + * for readers to drain... since we hold + * cur_object locked at this point, waiting + * for the readers to drain would represent + * a lock order inversion since the lock order + * for objects is the reference order in the + * shadown chain + */ + vm_object_unlock(object); + vm_object_unlock(cur_object); + + vm_map_unlock_read(map); + if (real_map != map) { + vm_map_unlock(real_map); + } + + goto RetryFault; + } + if (vm_object_lock_upgrade(object) == FALSE) { + /* + * couldn't upgrade, so explictly take the lock + * exclusively and go relookup the page since we + * will have dropped the object lock and + * a different thread could have inserted + * a page at this offset + * no need for a full retry since we're + * at the top level of the object chain + */ + vm_object_lock(object); + + continue; + } + } + m = vm_page_grab_options(grab_options); + m_object = NULL; + + if (m == VM_PAGE_NULL) { + /* + * no free page currently available... + * must take the slow path + */ + break; + } + + /* + * The object is and remains locked + * so no need to take a + * "paging_in_progress" reference. + */ + boolean_t shared_lock; + if ((object == cur_object && + object_lock_type == OBJECT_LOCK_EXCLUSIVE) || + (object != cur_object && + cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) { + shared_lock = FALSE; + } else { + shared_lock = TRUE; + } + + kr = vm_compressor_pager_get( + cur_object->pager, + (cur_offset + + cur_object->paging_offset), + VM_PAGE_GET_PHYS_PAGE(m), + &my_fault_type, + c_flags, + &compressed_count_delta); + + vm_compressor_pager_count( + cur_object->pager, + compressed_count_delta, + shared_lock, + cur_object); + + if (kr != KERN_SUCCESS) { + vm_page_release(m, FALSE); + m = VM_PAGE_NULL; + break; + } + m->vmp_dirty = TRUE; + + /* + * If the object is purgeable, its + * owner's purgeable ledgers will be + * updated in vm_page_insert() but the + * page was also accounted for in a + * "compressed purgeable" ledger, so + * update that now. */ - need_collapse = FALSE; - } - } - vm_object_unlock(cur_object); + if (object != cur_object && + !insert_cur_object) { + /* + * We're not going to insert + * the decompressed page into + * the object it came from. + * + * We're dealing with a + * copy-on-write fault on + * "object". + * We're going to decompress + * the page directly into the + * target "object" while + * keepin the compressed + * page for "cur_object", so + * no ledger update in that + * case. + */ + } else if (((cur_object->purgable == + VM_PURGABLE_DENY) && + (!cur_object->vo_ledger_tag)) || + (cur_object->vo_owner == + NULL)) { + /* + * "cur_object" is not purgeable + * and is not ledger-taged, or + * there's no owner for it, + * so no owner's ledgers to + * update. + */ + } else { + /* + * One less compressed + * purgeable/tagged page for + * cur_object's owner. + */ + vm_object_owner_compressed_update( + cur_object, + -1); + } - if (need_collapse == FALSE) - vm_fault_collapse_skipped++; - vm_fault_collapse_total++; + if (insert_cur_object) { + vm_page_insert(m, cur_object, cur_offset); + m_object = cur_object; + } else { + vm_page_insert(m, object, offset); + m_object = object; + } - type_of_fault = DBG_COW_FAULT; - VM_STAT_INCR(cow_faults); - DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); - current_task()->cow_faults++; + if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) { + /* + * If the page is not cacheable, + * we can't let its contents + * linger in the data cache + * after the decompression. + */ + pmap_sync_page_attributes_phys(VM_PAGE_GET_PHYS_PAGE(m)); + } - goto FastPmapEnter; + type_of_fault = my_fault_type; - } else { - /* - * No page at cur_object, cur_offset... m == NULL - */ - if (cur_object->pager_created) { - if (MUST_ASK_PAGER(cur_object, cur_offset) == TRUE) { - /* - * May have to talk to a pager... - * take the slow path. - */ - break; + VM_STAT_INCR(decompressions); + + if (cur_object != object) { + if (insert_cur_object) { + top_object = object; + /* + * switch to the object that has the new page + */ + object = cur_object; + object_lock_type = cur_object_lock_type; + } else { + vm_object_unlock(cur_object); + cur_object = object; + } + } + goto FastPmapEnter; } /* * existence map present and indicates @@ -2753,87 +4444,62 @@ FastPmapEnter: * Zero fill fault. Page gets * inserted into the original object. */ - if (cur_object->shadow_severed) { - - if (object != cur_object) - vm_object_unlock(cur_object); + if (cur_object->shadow_severed || + VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) || + cur_object == compressor_object || + cur_object == kernel_object || + cur_object == vm_submap_object) { + if (object != cur_object) { + vm_object_unlock(cur_object); + } vm_object_unlock(object); vm_map_unlock_read(map); - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); + } kr = KERN_MEMORY_ERROR; goto done; } - if (VM_PAGE_ZFILL_THROTTLED()) { - /* - * drop all of our locks... - * wait until the free queue is - * pumped back up and then - * redrive the fault - */ - if (object != cur_object) - vm_object_unlock(cur_object); - vm_object_unlock(object); - vm_map_unlock_read(map); - if (real_map != map) - vm_map_unlock(real_map); - - if (vm_page_wait((change_wiring) ? - THREAD_UNINT : - THREAD_ABORTSAFE)) - goto RetryFault; - - kr = KERN_ABORTED; - goto done; - } - if (vm_backing_store_low) { - /* - * we are protecting the system from - * backing store exhaustion... - * must take the slow path if we're - * not privileged - */ - if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) - break; - } - if (cur_object != object) { + if (cur_object != object) { vm_object_unlock(cur_object); cur_object = object; } if (object_lock_type == OBJECT_LOCK_SHARED) { - - object_lock_type = OBJECT_LOCK_EXCLUSIVE; + object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(object) == FALSE) { - /* + /* * couldn't upgrade so do a full retry on the fault * since we dropped the object lock which * could allow another thread to insert * a page at this offset */ - vm_map_unlock_read(map); - if (real_map != map) - vm_map_unlock(real_map); + vm_map_unlock_read(map); + if (real_map != map) { + vm_map_unlock(real_map); + } goto RetryFault; } } m = vm_page_alloc(object, offset); + m_object = NULL; if (m == VM_PAGE_NULL) { - /* + /* * no free page currently available... * must take the slow path */ break; } + m_object = object; /* * Now zero fill page... - * the page is probably going to + * the page is probably going to * be written soon, so don't bother * to clear the modified bit * @@ -2843,23 +4509,25 @@ FastPmapEnter: type_of_fault = vm_fault_zero_page(m, map->no_zero_fill); goto FastPmapEnter; - } + } /* * On to the next level in the shadow chain */ - cur_offset += cur_object->shadow_offset; + cur_offset += cur_object->vo_shadow_offset; new_object = cur_object->shadow; /* * take the new_object's lock with the indicated state */ - if (cur_object_lock_type == OBJECT_LOCK_SHARED) - vm_object_lock_shared(new_object); - else - vm_object_lock(new_object); + if (cur_object_lock_type == OBJECT_LOCK_SHARED) { + vm_object_lock_shared(new_object); + } else { + vm_object_lock(new_object); + } - if (cur_object != object) + if (cur_object != object) { vm_object_unlock(cur_object); + } cur_object = new_object; @@ -2870,33 +4538,57 @@ FastPmapEnter: * Cleanup from fast fault failure. Drop any object * lock other than original and drop map lock. */ - if (object != cur_object) + if (object != cur_object) { vm_object_unlock(cur_object); + } /* * must own the object lock exclusively at this point */ if (object_lock_type == OBJECT_LOCK_SHARED) { - object_lock_type = OBJECT_LOCK_EXCLUSIVE; + object_lock_type = OBJECT_LOCK_EXCLUSIVE; if (vm_object_lock_upgrade(object) == FALSE) { - /* + /* * couldn't upgrade, so explictly * take the lock exclusively * no need to retry the fault at this * point since "vm_fault_page" will * completely re-evaluate the state */ - vm_object_lock(object); + vm_object_lock(object); } } handle_copy_delay: vm_map_unlock_read(map); - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); + } + + if (__improbable(object == compressor_object || + object == kernel_object || + object == vm_submap_object)) { + /* + * These objects are explicitly managed and populated by the + * kernel. The virtual ranges backed by these objects should + * either have wired pages or "holes" that are not supposed to + * be accessed at all until they get explicitly populated. + * We should never have to resolve a fault on a mapping backed + * by one of these VM objects and providing a zero-filled page + * would be wrong here, so let's fail the fault and let the + * caller crash or recover. + */ + vm_object_unlock(object); + kr = KERN_MEMORY_ERROR; + goto done; + } + + assert(object != compressor_object); + assert(object != kernel_object); + assert(object != vm_submap_object); - /* + /* * Make a reference to this object to * prevent its disposal while we are messing with * it. Once we have the reference, the map is free @@ -2906,16 +4598,18 @@ handle_copy_delay: vm_object_reference_locked(object); vm_object_paging_begin(object); - XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); + XPR(XPR_VM_FAULT, "vm_fault -> vm_fault_page\n", 0, 0, 0, 0, 0); error_code = 0; + result_page = VM_PAGE_NULL; kr = vm_fault_page(object, offset, fault_type, - (change_wiring && !wired), - &prot, &result_page, &top_page, - &type_of_fault, - &error_code, map->no_zero_fill, - FALSE, &fault_info); + (change_wiring && !wired), + FALSE, /* page not looked up */ + &prot, &result_page, &top_page, + &type_of_fault, + &error_code, map->no_zero_fill, + FALSE, &fault_info); /* * if kr != VM_FAULT_SUCCESS, then the paging reference @@ -2925,15 +4619,15 @@ handle_copy_delay: * if kr == VM_FAULT_SUCCESS, then the paging reference * is still held along with the ref_count on the original object * - * if m != NULL, then the object it belongs to - * is returned locked with a paging reference + * the object is returned locked with a paging reference * - * if top_page != NULL, then it's BUSY and the + * if top_page != NULL, then it's BUSY and the * object it belongs to has a paging reference * but is returned unlocked */ - if (kr != VM_FAULT_SUCCESS) { - /* + if (kr != VM_FAULT_SUCCESS && + kr != VM_FAULT_SUCCESS_NO_VM_PAGE) { + /* * we didn't succeed, lose the object reference immediately. */ vm_object_deallocate(object); @@ -2943,64 +4637,98 @@ handle_copy_delay: */ switch (kr) { case VM_FAULT_MEMORY_SHORTAGE: - if (vm_page_wait((change_wiring) ? - THREAD_UNINT : - THREAD_ABORTSAFE)) + if (vm_page_wait((change_wiring) ? + THREAD_UNINT : + THREAD_ABORTSAFE)) { goto RetryFault; - /* - * fall thru - */ + } + /* + * fall thru + */ case VM_FAULT_INTERRUPTED: kr = KERN_ABORTED; goto done; case VM_FAULT_RETRY: goto RetryFault; case VM_FAULT_MEMORY_ERROR: - if (error_code) + if (error_code) { kr = error_code; - else + } else { kr = KERN_MEMORY_ERROR; + } goto done; + default: + panic("vm_fault: unexpected error 0x%x from " + "vm_fault_page()\n", kr); } } m = result_page; + m_object = NULL; if (m != VM_PAGE_NULL) { + m_object = VM_PAGE_OBJECT(m); assert((change_wiring && !wired) ? - (top_page == VM_PAGE_NULL) : - ((top_page == VM_PAGE_NULL) == (m->object == object))); + (top_page == VM_PAGE_NULL) : + ((top_page == VM_PAGE_NULL) == (m_object == object))); } /* * What to do with the resulting page from vm_fault_page * if it doesn't get entered into the physical map: */ -#define RELEASE_PAGE(m) \ - MACRO_BEGIN \ - PAGE_WAKEUP_DONE(m); \ - vm_page_lockspin_queues(); \ - if (!m->active && !m->inactive && !m->throttled)\ - vm_page_activate(m); \ - vm_page_unlock_queues(); \ +#define RELEASE_PAGE(m) \ + MACRO_BEGIN \ + PAGE_WAKEUP_DONE(m); \ + if ( !VM_PAGE_PAGEABLE(m)) { \ + vm_page_lockspin_queues(); \ + if ( !VM_PAGE_PAGEABLE(m)) \ + vm_page_activate(m); \ + vm_page_unlock_queues(); \ + } \ MACRO_END + + object_locks_dropped = FALSE; /* * We must verify that the maps have not changed - * since our last lookup. + * since our last lookup. vm_map_verify() needs the + * map lock (shared) but we are holding object locks. + * So we do a try_lock() first and, if that fails, we + * drop the object locks and go in for the map lock again. */ - if (m != VM_PAGE_NULL) { - old_copy_object = m->object->copy; - vm_object_unlock(m->object); - } else - old_copy_object = VM_OBJECT_NULL; + if (!vm_map_try_lock_read(original_map)) { + if (m != VM_PAGE_NULL) { + old_copy_object = m_object->copy; + vm_object_unlock(m_object); + } else { + old_copy_object = VM_OBJECT_NULL; + vm_object_unlock(object); + } + + object_locks_dropped = TRUE; + + vm_map_lock_read(original_map); + } - /* - * no object locks are held at this point - */ if ((map != original_map) || !vm_map_verify(map, &version)) { - vm_object_t retry_object; - vm_object_offset_t retry_offset; - vm_prot_t retry_prot; + if (object_locks_dropped == FALSE) { + if (m != VM_PAGE_NULL) { + old_copy_object = m_object->copy; + vm_object_unlock(m_object); + } else { + old_copy_object = VM_OBJECT_NULL; + vm_object_unlock(object); + } + + object_locks_dropped = TRUE; + } + + /* + * no object locks are held at this point + */ + vm_object_t retry_object; + vm_object_offset_t retry_offset; + vm_prot_t retry_prot; /* * To avoid trying to write_lock the map while another @@ -3012,41 +4740,42 @@ handle_copy_delay: * take another fault. */ map = original_map; - vm_map_lock_read(map); kr = vm_map_lookup_locked(&map, vaddr, - fault_type & ~VM_PROT_WRITE, - OBJECT_LOCK_EXCLUSIVE, &version, - &retry_object, &retry_offset, &retry_prot, - &wired, - &fault_info, - &real_map); + fault_type & ~VM_PROT_WRITE, + OBJECT_LOCK_EXCLUSIVE, &version, + &retry_object, &retry_offset, &retry_prot, + &wired, + &fault_info, + &real_map); pmap = real_map->pmap; if (kr != KERN_SUCCESS) { vm_map_unlock_read(map); if (m != VM_PAGE_NULL) { - /* + assert(VM_PAGE_OBJECT(m) == m_object); + + /* * retake the lock so that * we can drop the paging reference * in vm_fault_cleanup and do the * PAGE_WAKEUP_DONE in RELEASE_PAGE */ - vm_object_lock(m->object); + vm_object_lock(m_object); RELEASE_PAGE(m); - vm_fault_cleanup(m->object, top_page); + vm_fault_cleanup(m_object, top_page); } else { - /* + /* * retake the lock so that * we can drop the paging reference * in vm_fault_cleanup */ - vm_object_lock(object); + vm_object_lock(object); - vm_fault_cleanup(object, top_page); + vm_fault_cleanup(object, top_page); } vm_object_deallocate(object); @@ -3055,32 +4784,34 @@ handle_copy_delay: vm_object_unlock(retry_object); if ((retry_object != object) || (retry_offset != offset)) { - vm_map_unlock_read(map); - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); + } if (m != VM_PAGE_NULL) { - /* + assert(VM_PAGE_OBJECT(m) == m_object); + + /* * retake the lock so that * we can drop the paging reference * in vm_fault_cleanup and do the * PAGE_WAKEUP_DONE in RELEASE_PAGE */ - vm_object_lock(m->object); + vm_object_lock(m_object); RELEASE_PAGE(m); - vm_fault_cleanup(m->object, top_page); + vm_fault_cleanup(m_object, top_page); } else { - /* + /* * retake the lock so that * we can drop the paging reference * in vm_fault_cleanup */ - vm_object_lock(object); + vm_object_lock(object); - vm_fault_cleanup(object, top_page); + vm_fault_cleanup(object, top_page); } vm_object_deallocate(object); @@ -3090,37 +4821,52 @@ handle_copy_delay: * Check whether the protection has changed or the object * has been copied while we left the map unlocked. */ - prot &= retry_prot; + if (pmap_has_prot_policy(retry_prot)) { + /* If the pmap layer cares, pass the full set. */ + prot = retry_prot; + } else { + prot &= retry_prot; + } } - if (m != VM_PAGE_NULL) { - vm_object_lock(m->object); - if (m->object->copy != old_copy_object) { - /* - * The copy object changed while the top-level object - * was unlocked, so take away write permission. - */ - prot &= ~VM_PROT_WRITE; + if (object_locks_dropped == TRUE) { + if (m != VM_PAGE_NULL) { + vm_object_lock(m_object); + + if (m_object->copy != old_copy_object) { + /* + * The copy object changed while the top-level object + * was unlocked, so take away write permission. + */ + assert(!pmap_has_prot_policy(prot)); + prot &= ~VM_PROT_WRITE; + } + } else { + vm_object_lock(object); } - } else - vm_object_lock(object); + + object_locks_dropped = FALSE; + } /* * If we want to wire down this page, but no longer have * adequate permissions, we must start all over. */ if (wired && (fault_type != (prot | VM_PROT_WRITE))) { - - vm_map_verify_done(map, &version); - if (real_map != map) + vm_map_unlock_read(map); + if (real_map != map) { vm_map_unlock(real_map); + } if (m != VM_PAGE_NULL) { + assert(VM_PAGE_OBJECT(m) == m_object); + RELEASE_PAGE(m); - vm_fault_cleanup(m->object, top_page); - } else - vm_fault_cleanup(object, top_page); + vm_fault_cleanup(m_object, top_page); + } else { + vm_fault_cleanup(object, top_page); + } vm_object_deallocate(object); @@ -3136,68 +4882,80 @@ handle_copy_delay: */ if (caller_pmap) { kr = vm_fault_enter(m, - caller_pmap, - caller_pmap_addr, - prot, - wired, - change_wiring, - fault_info.no_cache, - &type_of_fault); + caller_pmap, + caller_pmap_addr, + prot, + caller_prot, + wired, + change_wiring, + wire_tag, + &fault_info, + NULL, + &type_of_fault); } else { kr = vm_fault_enter(m, - pmap, - vaddr, - prot, - wired, - change_wiring, - fault_info.no_cache, - &type_of_fault); + pmap, + vaddr, + prot, + caller_prot, + wired, + change_wiring, + wire_tag, + &fault_info, + NULL, + &type_of_fault); + } + assert(VM_PAGE_OBJECT(m) == m_object); + +#if DEVELOPMENT || DEBUG + { + int event_code = 0; + + if (m_object->internal) { + event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); + } else if (m_object->object_is_shared_cache) { + event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); + } else { + event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); + } + + KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0); + + DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); } +#endif if (kr != KERN_SUCCESS) { /* abort this page fault */ - vm_map_verify_done(map, &version); - if (real_map != map) + vm_map_unlock_read(map); + if (real_map != map) { vm_map_unlock(real_map); + } PAGE_WAKEUP_DONE(m); - vm_fault_cleanup(m->object, top_page); + vm_fault_cleanup(m_object, top_page); vm_object_deallocate(object); goto done; } + if (physpage_p != NULL) { + /* for vm_map_wire_and_extract() */ + *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); + if (prot & VM_PROT_WRITE) { + vm_object_lock_assert_exclusive(m_object); + m->vmp_dirty = TRUE; + } + } } else { + vm_map_entry_t entry; + vm_map_offset_t laddr; + vm_map_offset_t ldelta, hdelta; - vm_map_entry_t entry; - vm_map_offset_t laddr; - vm_map_offset_t ldelta, hdelta; - - /* + /* * do a pmap block mapping from the physical address - * in the object + * in the object */ -#ifdef ppc - /* While we do not worry about execution protection in */ - /* general, certian pages may have instruction execution */ - /* disallowed. We will check here, and if not allowed */ - /* to execute, we return with a protection failure. */ - - if ((fault_type & VM_PROT_EXECUTE) && - (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) { - - vm_map_verify_done(map, &version); - - if (real_map != map) - vm_map_unlock(real_map); - - vm_fault_cleanup(object, top_page); - vm_object_deallocate(object); - - kr = KERN_PROTECTION_FAILURE; - goto done; - } -#endif /* ppc */ - - if (real_map != map) + if (real_map != map) { vm_map_unlock(real_map); + } if (original_map != map) { vm_map_unlock_read(map); @@ -3211,87 +4969,176 @@ handle_copy_delay: ldelta = 0xFFFFF000; while (vm_map_lookup_entry(map, laddr, &entry)) { - if (ldelta > (laddr - entry->vme_start)) + if (ldelta > (laddr - entry->vme_start)) { ldelta = laddr - entry->vme_start; - if (hdelta > (entry->vme_end - laddr)) + } + if (hdelta > (entry->vme_end - laddr)) { hdelta = entry->vme_end - laddr; + } if (entry->is_sub_map) { - - laddr = (laddr - entry->vme_start) - + entry->offset; - vm_map_lock_read(entry->object.sub_map); + laddr = ((laddr - entry->vme_start) + + VME_OFFSET(entry)); + vm_map_lock_read(VME_SUBMAP(entry)); - if (map != real_map) + if (map != real_map) { vm_map_unlock_read(map); + } if (entry->use_pmap) { vm_map_unlock_read(real_map); - real_map = entry->object.sub_map; + real_map = VME_SUBMAP(entry); } - map = entry->object.sub_map; - + map = VME_SUBMAP(entry); } else { break; } } - if (vm_map_lookup_entry(map, laddr, &entry) && - (entry->object.vm_object != NULL) && - (entry->object.vm_object == object)) { + if (vm_map_lookup_entry(map, laddr, &entry) && + (VME_OBJECT(entry) != NULL) && + (VME_OBJECT(entry) == object)) { + int superpage; + + if (!object->pager_created && + object->phys_contiguous && + VME_OFFSET(entry) == 0 && + (entry->vme_end - entry->vme_start == object->vo_size) && + VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) { + superpage = VM_MEM_SUPERPAGE; + } else { + superpage = 0; + } + + if (superpage && physpage_p) { + /* for vm_map_wire_and_extract() */ + *physpage_p = (ppnum_t) + ((((vm_map_offset_t) + object->vo_shadow_offset) + + VME_OFFSET(entry) + + (laddr - entry->vme_start)) + >> PAGE_SHIFT); + } if (caller_pmap) { /* * Set up a block mapped area */ - pmap_map_block(caller_pmap, - (addr64_t)(caller_pmap_addr - ldelta), - (((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) + - entry->offset + (laddr - entry->vme_start) - ldelta) >> 12, - ((ldelta + hdelta) >> 12), prot, - (VM_WIMG_MASK & (int)object->wimg_bits), 0); - } else { + assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); + kr = pmap_map_block(caller_pmap, + (addr64_t)(caller_pmap_addr - ldelta), + (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) + + VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), + (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, + (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); + + if (kr != KERN_SUCCESS) { + goto cleanup; + } + } else { /* * Set up a block mapped area */ - pmap_map_block(real_map->pmap, - (addr64_t)(vaddr - ldelta), - (((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) + - entry->offset + (laddr - entry->vme_start) - ldelta) >> 12, - ((ldelta + hdelta) >> 12), prot, - (VM_WIMG_MASK & (int)object->wimg_bits), 0); + assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); + kr = pmap_map_block(real_map->pmap, + (addr64_t)(vaddr - ldelta), + (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) + + VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), + (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, + (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); + + if (kr != KERN_SUCCESS) { + goto cleanup; + } } } } + /* + * Success + */ + kr = KERN_SUCCESS; + + /* + * TODO: could most of the done cases just use cleanup? + */ +cleanup: /* * Unlock everything, and return */ - vm_map_verify_done(map, &version); - if (real_map != map) + vm_map_unlock_read(map); + if (real_map != map) { vm_map_unlock(real_map); + } if (m != VM_PAGE_NULL) { + assert(VM_PAGE_OBJECT(m) == m_object); + + if (!m_object->internal && (fault_type & VM_PROT_WRITE)) { + vm_object_paging_begin(m_object); + + assert(written_on_object == VM_OBJECT_NULL); + written_on_object = m_object; + written_on_pager = m_object->pager; + written_on_offset = m_object->paging_offset + m->vmp_offset; + } PAGE_WAKEUP_DONE(m); - vm_fault_cleanup(m->object, top_page); - } else - vm_fault_cleanup(object, top_page); + vm_fault_cleanup(m_object, top_page); + } else { + vm_fault_cleanup(object, top_page); + } vm_object_deallocate(object); -#undef RELEASE_PAGE +#undef RELEASE_PAGE - kr = KERN_SUCCESS; done: thread_interrupt_level(interruptible_state); - KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, - (int)((uint64_t)vaddr >> 32), - (int)vaddr, - kr, - type_of_fault, - 0); + /* + * Only I/O throttle on faults which cause a pagein/swapin. + */ + if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) { + throttle_lowpri_io(1); + } else { + if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) { + if ((throttle_delay = vm_page_throttled(TRUE))) { + if (vm_debug_events) { + if (type_of_fault == DBG_COMPRESSOR_FAULT) { + VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); + } else if (type_of_fault == DBG_COW_FAULT) { + VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); + } else { + VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); + } + } + delay(throttle_delay); + } + } + } + + if (written_on_object) { + vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64); + + vm_object_lock(written_on_object); + vm_object_paging_end(written_on_object); + vm_object_unlock(written_on_object); + + written_on_object = VM_OBJECT_NULL; + } + + if (rtfault) { + vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault); + } + + KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, + (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, + ((uint64_t)trace_vaddr >> 32), + trace_vaddr, + kr, + type_of_fault, + 0); - return (kr); + return kr; } /* @@ -3301,21 +5148,23 @@ done: */ kern_return_t vm_fault_wire( - vm_map_t map, - vm_map_entry_t entry, - pmap_t pmap, - vm_map_offset_t pmap_addr) + vm_map_t map, + vm_map_entry_t entry, + vm_prot_t prot, + vm_tag_t wire_tag, + pmap_t pmap, + vm_map_offset_t pmap_addr, + ppnum_t *physpage_p) { - - register vm_map_offset_t va; - register vm_map_offset_t end_addr = entry->vme_end; - register kern_return_t rc; + vm_map_offset_t va; + vm_map_offset_t end_addr = entry->vme_end; + kern_return_t rc; assert(entry->in_transition); - if ((entry->object.vm_object != NULL) && - !entry->is_sub_map && - entry->object.vm_object->phys_contiguous) { + if ((VME_OBJECT(entry) != NULL) && + !entry->is_sub_map && + VME_OBJECT(entry)->phys_contiguous) { return KERN_SUCCESS; } @@ -3325,8 +5174,8 @@ vm_fault_wire( * page tables and such can be locked down as well. */ - pmap_pageable(pmap, pmap_addr, - pmap_addr + (end_addr - entry->vme_start), FALSE); + pmap_pageable(pmap, pmap_addr, + pmap_addr + (end_addr - entry->vme_start), FALSE); /* * We simulate a fault to get the page and enter it @@ -3334,24 +5183,28 @@ vm_fault_wire( */ for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { - if ((rc = vm_fault_wire_fast( - map, va, entry, pmap, - pmap_addr + (va - entry->vme_start) - )) != KERN_SUCCESS) { - rc = vm_fault(map, va, VM_PROT_NONE, TRUE, - (pmap == kernel_pmap) ? - THREAD_UNINT : THREAD_ABORTSAFE, - pmap, pmap_addr + (va - entry->vme_start)); + rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap, + pmap_addr + (va - entry->vme_start), + physpage_p); + if (rc != KERN_SUCCESS) { + rc = vm_fault_internal(map, va, prot, TRUE, wire_tag, + ((pmap == kernel_pmap) + ? THREAD_UNINT + : THREAD_ABORTSAFE), + pmap, + (pmap_addr + + (va - entry->vme_start)), + physpage_p); DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); } if (rc != KERN_SUCCESS) { - struct vm_map_entry tmp_entry = *entry; + struct vm_map_entry tmp_entry = *entry; /* unwire wired pages */ tmp_entry.vme_end = va; - vm_fault_unwire(map, - &tmp_entry, FALSE, pmap, pmap_addr); + vm_fault_unwire(map, + &tmp_entry, FALSE, pmap, pmap_addr); return rc; } @@ -3366,19 +5219,19 @@ vm_fault_wire( */ void vm_fault_unwire( - vm_map_t map, - vm_map_entry_t entry, - boolean_t deallocate, - pmap_t pmap, - vm_map_offset_t pmap_addr) + vm_map_t map, + vm_map_entry_t entry, + boolean_t deallocate, + pmap_t pmap, + vm_map_offset_t pmap_addr) { - register vm_map_offset_t va; - register vm_map_offset_t end_addr = entry->vme_end; - vm_object_t object; - struct vm_object_fault_info fault_info; + vm_map_offset_t va; + vm_map_offset_t end_addr = entry->vme_end; + vm_object_t object; + struct vm_object_fault_info fault_info = {}; + unsigned int unwired_pages; - object = (entry->is_sub_map) - ? VM_OBJECT_NULL : entry->object.vm_object; + object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry); /* * If it's marked phys_contiguous, then vm_fault_wire() didn't actually @@ -3386,15 +5239,23 @@ vm_fault_unwire( * anything to undo here. */ - if (object != VM_OBJECT_NULL && object->phys_contiguous) + if (object != VM_OBJECT_NULL && object->phys_contiguous) { return; + } fault_info.interruptible = THREAD_UNINT; fault_info.behavior = entry->behavior; - fault_info.user_tag = entry->alias; - fault_info.lo_offset = entry->offset; - fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset; + fault_info.user_tag = VME_ALIAS(entry); + if (entry->iokit_acct || + (!entry->is_sub_map && !entry->use_pmap)) { + fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; + } + fault_info.lo_offset = VME_OFFSET(entry); + fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); fault_info.no_cache = entry->no_cache; + fault_info.stealth = TRUE; + + unwired_pages = 0; /* * Since the pages are wired down, we must be able to @@ -3402,22 +5263,26 @@ vm_fault_unwire( */ for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { - - if (pmap) { - pmap_change_wiring(pmap, - pmap_addr + (va - entry->vme_start), FALSE); - } if (object == VM_OBJECT_NULL) { - (void) vm_fault(map, va, VM_PROT_NONE, - TRUE, THREAD_UNINT, pmap, pmap_addr); + if (pmap) { + pmap_change_wiring(pmap, + pmap_addr + (va - entry->vme_start), FALSE); + } + (void) vm_fault(map, va, VM_PROT_NONE, + TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, pmap, pmap_addr); } else { - vm_prot_t prot; - vm_page_t result_page; - vm_page_t top_page; - vm_object_t result_object; + vm_prot_t prot; + vm_page_t result_page; + vm_page_t top_page; + vm_object_t result_object; vm_fault_return_t result; - fault_info.cluster_size = end_addr - va; + /* cap cluster size at maximum UPL size */ + upl_size_t cluster_size; + if (os_sub_overflow(end_addr, va, &cluster_size)) { + cluster_size = 0 - (upl_size_t)PAGE_SIZE; + } + fault_info.cluster_size = cluster_size; do { prot = VM_PROT_NONE; @@ -3425,15 +5290,18 @@ vm_fault_unwire( vm_object_lock(object); vm_object_paging_begin(object); XPR(XPR_VM_FAULT, - "vm_fault_unwire -> vm_fault_page\n", - 0,0,0,0,0); - result = vm_fault_page( + "vm_fault_unwire -> vm_fault_page\n", + 0, 0, 0, 0, 0); + result_page = VM_PAGE_NULL; + result = vm_fault_page( object, - entry->offset + (va - entry->vme_start), + (VME_OFFSET(entry) + + (va - entry->vme_start)), VM_PROT_NONE, TRUE, + FALSE, /* page not looked up */ &prot, &result_page, &top_page, (int *)0, - NULL, map->no_zero_fill, + NULL, map->no_zero_fill, FALSE, &fault_info); } while (result == VM_FAULT_RETRY); @@ -3443,27 +5311,58 @@ vm_fault_unwire( * move on to the next one in case the remaining pages are mapped from * different objects. During a forced unmount, the object is terminated * so the alive flag will be false if this happens. A forced unmount will - * will occur when an external disk is unplugged before the user does an + * will occur when an external disk is unplugged before the user does an * eject, so we don't want to panic in that situation. */ - if (result == VM_FAULT_MEMORY_ERROR && !object->alive) + if (result == VM_FAULT_MEMORY_ERROR && !object->alive) { + continue; + } + + if (result == VM_FAULT_MEMORY_ERROR && + object == kernel_object) { + /* + * This must have been allocated with + * KMA_KOBJECT and KMA_VAONLY and there's + * no physical page at this offset. + * We're done (no page to free). + */ + assert(deallocate); continue; + } - if (result != VM_FAULT_SUCCESS) + if (result != VM_FAULT_SUCCESS) { panic("vm_fault_unwire: failure"); + } - result_object = result_page->object; + result_object = VM_PAGE_OBJECT(result_page); if (deallocate) { - assert(result_page->phys_page != - vm_page_fictitious_addr); - pmap_disconnect(result_page->phys_page); + assert(VM_PAGE_GET_PHYS_PAGE(result_page) != + vm_page_fictitious_addr); + pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(result_page)); + if (VM_PAGE_WIRED(result_page)) { + unwired_pages++; + } VM_PAGE_FREE(result_page); } else { - vm_page_lockspin_queues(); - vm_page_unwire(result_page); - vm_page_unlock_queues(); + if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(result_page) != vm_page_guard_addr)) { + pmap_change_wiring(pmap, + pmap_addr + (va - entry->vme_start), FALSE); + } + + + if (VM_PAGE_WIRED(result_page)) { + vm_page_lockspin_queues(); + vm_page_unwire(result_page, TRUE); + vm_page_unlock_queues(); + unwired_pages++; + } + if (entry->zero_wired_pages) { + pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(result_page)); + entry->zero_wired_pages = FALSE; + } + PAGE_WAKEUP_DONE(result_page); } vm_fault_cleanup(result_object, top_page); @@ -3476,9 +5375,12 @@ vm_fault_unwire( * such may be unwired themselves. */ - pmap_pageable(pmap, pmap_addr, - pmap_addr + (end_addr - entry->vme_start), TRUE); + pmap_pageable(pmap, pmap_addr, + pmap_addr + (end_addr - entry->vme_start), TRUE); + if (kernel_object == object) { + vm_tag_update_size(fault_info.user_tag, -ptoa_64(unwired_pages)); + } } /* @@ -3501,76 +5403,83 @@ vm_fault_unwire( * other than the common case will return KERN_FAILURE, and the caller * is expected to call vm_fault(). */ -kern_return_t +static kern_return_t vm_fault_wire_fast( - __unused vm_map_t map, - vm_map_offset_t va, - vm_map_entry_t entry, - pmap_t pmap, - vm_map_offset_t pmap_addr) + __unused vm_map_t map, + vm_map_offset_t va, + __unused vm_prot_t caller_prot, + vm_tag_t wire_tag, + vm_map_entry_t entry, + pmap_t pmap, + vm_map_offset_t pmap_addr, + ppnum_t *physpage_p) { - vm_object_t object; - vm_object_offset_t offset; - register vm_page_t m; - vm_prot_t prot; - thread_t thread = current_thread(); - int type_of_fault; - kern_return_t kr; + vm_object_t object; + vm_object_offset_t offset; + vm_page_t m; + vm_prot_t prot; + thread_t thread = current_thread(); + int type_of_fault; + kern_return_t kr; + struct vm_object_fault_info fault_info = {}; VM_STAT_INCR(faults); - if (thread != THREAD_NULL && thread->task != TASK_NULL) - thread->task->faults++; + if (thread != THREAD_NULL && thread->task != TASK_NULL) { + thread->task->faults++; + } /* * Recovery actions */ -#undef RELEASE_PAGE -#define RELEASE_PAGE(m) { \ - PAGE_WAKEUP_DONE(m); \ - vm_page_lockspin_queues(); \ - vm_page_unwire(m); \ - vm_page_unlock_queues(); \ +#undef RELEASE_PAGE +#define RELEASE_PAGE(m) { \ + PAGE_WAKEUP_DONE(m); \ + vm_page_lockspin_queues(); \ + vm_page_unwire(m, TRUE); \ + vm_page_unlock_queues(); \ } -#undef UNLOCK_THINGS -#define UNLOCK_THINGS { \ - vm_object_paging_end(object); \ - vm_object_unlock(object); \ +#undef UNLOCK_THINGS +#define UNLOCK_THINGS { \ + vm_object_paging_end(object); \ + vm_object_unlock(object); \ } -#undef UNLOCK_AND_DEALLOCATE -#define UNLOCK_AND_DEALLOCATE { \ - UNLOCK_THINGS; \ - vm_object_deallocate(object); \ +#undef UNLOCK_AND_DEALLOCATE +#define UNLOCK_AND_DEALLOCATE { \ + UNLOCK_THINGS; \ + vm_object_deallocate(object); \ } /* * Give up and have caller do things the hard way. */ -#define GIVE_UP { \ - UNLOCK_AND_DEALLOCATE; \ - return(KERN_FAILURE); \ +#define GIVE_UP { \ + UNLOCK_AND_DEALLOCATE; \ + return(KERN_FAILURE); \ } /* * If this entry is not directly to a vm_object, bail out. */ - if (entry->is_sub_map) - return(KERN_FAILURE); + if (entry->is_sub_map) { + assert(physpage_p == NULL); + return KERN_FAILURE; + } /* * Find the backing store object and offset into it. */ - object = entry->object.vm_object; - offset = (va - entry->vme_start) + entry->offset; + object = VME_OBJECT(entry); + offset = (va - entry->vme_start) + VME_OFFSET(entry); prot = entry->protection; - /* + /* * Make a reference to this object to prevent its * disposal while we are messing with it. */ @@ -3596,19 +5505,14 @@ vm_fault_wire_fast( /* * Look for page in top-level object. If it's not there or * there's something going on, give up. - * ENCRYPTED SWAP: use the slow fault path, since we'll need to - * decrypt the page before wiring it down. */ m = vm_page_lookup(object, offset); - if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) || - (m->unusual && ( m->error || m->restart || m->absent))) { - + if ((m == VM_PAGE_NULL) || (m->vmp_busy) || + (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) { GIVE_UP; } - ASSERT_PAGE_DECRYPTED(m); - - if (m->fictitious && - m->phys_page == vm_page_guard_addr) { + if (m->vmp_fictitious && + VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { /* * Guard pages are fictitious pages and are never * entered into a pmap, so let's say it's been wired... @@ -3619,19 +5523,19 @@ vm_fault_wire_fast( /* * Wire the page down now. All bail outs beyond this - * point must unwire the page. + * point must unwire the page. */ vm_page_lockspin_queues(); - vm_page_wire(m); + vm_page_wire(m, wire_tag, TRUE); vm_page_unlock_queues(); /* * Mark page busy for other threads. */ - assert(!m->busy); - m->busy = TRUE; - assert(!m->absent); + assert(!m->vmp_busy); + m->vmp_busy = TRUE; + assert(!m->vmp_absent); /* * Give up if the page is being written and there's a copy object @@ -3641,29 +5545,56 @@ vm_fault_wire_fast( GIVE_UP; } + fault_info.user_tag = VME_ALIAS(entry); + fault_info.pmap_options = 0; + if (entry->iokit_acct || + (!entry->is_sub_map && !entry->use_pmap)) { + fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; + } + /* * Put this page into the physical map. */ type_of_fault = DBG_CACHE_HIT_FAULT; kr = vm_fault_enter(m, - pmap, - pmap_addr, - prot, - TRUE, - FALSE, - FALSE, - &type_of_fault); + pmap, + pmap_addr, + prot, + prot, + TRUE, /* wired */ + FALSE, /* change_wiring */ + wire_tag, + &fault_info, + NULL, + &type_of_fault); + if (kr != KERN_SUCCESS) { + RELEASE_PAGE(m); + GIVE_UP; + } done: /* * Unlock everything, and return */ + if (physpage_p) { + /* for vm_map_wire_and_extract() */ + if (kr == KERN_SUCCESS) { + assert(object == VM_PAGE_OBJECT(m)); + *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); + if (prot & VM_PROT_WRITE) { + vm_object_lock_assert_exclusive(object); + m->vmp_dirty = TRUE; + } + } else { + *physpage_p = 0; + } + } + PAGE_WAKEUP_DONE(m); UNLOCK_AND_DEALLOCATE; return kr; - } /* @@ -3672,35 +5603,38 @@ done: * Release a page used by vm_fault_copy. */ -void +static void vm_fault_copy_cleanup( - vm_page_t page, - vm_page_t top_page) + vm_page_t page, + vm_page_t top_page) { - vm_object_t object = page->object; + vm_object_t object = VM_PAGE_OBJECT(page); vm_object_lock(object); PAGE_WAKEUP_DONE(page); - vm_page_lockspin_queues(); - if (!page->active && !page->inactive && !page->throttled) - vm_page_activate(page); - vm_page_unlock_queues(); + if (!VM_PAGE_PAGEABLE(page)) { + vm_page_lockspin_queues(); + if (!VM_PAGE_PAGEABLE(page)) { + vm_page_activate(page); + } + vm_page_unlock_queues(); + } vm_fault_cleanup(object, top_page); } -void +static void vm_fault_copy_dst_cleanup( - vm_page_t page) + vm_page_t page) { - vm_object_t object; + vm_object_t object; if (page != VM_PAGE_NULL) { - object = page->object; + object = VM_PAGE_OBJECT(page); vm_object_lock(object); vm_page_lockspin_queues(); - vm_page_unwire(page); + vm_page_unwire(page, TRUE); vm_page_unlock_queues(); - vm_object_paging_end(object); + vm_object_paging_end(object); vm_object_unlock(object); } } @@ -3734,59 +5668,59 @@ vm_fault_copy_dst_cleanup( */ kern_return_t vm_fault_copy( - vm_object_t src_object, - vm_object_offset_t src_offset, - vm_map_size_t *copy_size, /* INOUT */ - vm_object_t dst_object, - vm_object_offset_t dst_offset, - vm_map_t dst_map, - vm_map_version_t *dst_version, - int interruptible) + vm_object_t src_object, + vm_object_offset_t src_offset, + vm_map_size_t *copy_size, /* INOUT */ + vm_object_t dst_object, + vm_object_offset_t dst_offset, + vm_map_t dst_map, + vm_map_version_t *dst_version, + int interruptible) { - vm_page_t result_page; - - vm_page_t src_page; - vm_page_t src_top_page; - vm_prot_t src_prot; + vm_page_t result_page; + + vm_page_t src_page; + vm_page_t src_top_page; + vm_prot_t src_prot; - vm_page_t dst_page; - vm_page_t dst_top_page; - vm_prot_t dst_prot; + vm_page_t dst_page; + vm_page_t dst_top_page; + vm_prot_t dst_prot; - vm_map_size_t amount_left; - vm_object_t old_copy_object; - kern_return_t error = 0; + vm_map_size_t amount_left; + vm_object_t old_copy_object; + vm_object_t result_page_object = NULL; + kern_return_t error = 0; + vm_fault_return_t result; - vm_map_size_t part_size; - struct vm_object_fault_info fault_info_src; - struct vm_object_fault_info fault_info_dst; + vm_map_size_t part_size; + struct vm_object_fault_info fault_info_src = {}; + struct vm_object_fault_info fault_info_dst = {}; /* * In order not to confuse the clustered pageins, align * the different offsets on a page boundary. */ -#define RETURN(x) \ - MACRO_BEGIN \ - *copy_size -= amount_left; \ - MACRO_RETURN(x); \ +#define RETURN(x) \ + MACRO_BEGIN \ + *copy_size -= amount_left; \ + MACRO_RETURN(x); \ MACRO_END amount_left = *copy_size; fault_info_src.interruptible = interruptible; fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; - fault_info_src.user_tag = 0; fault_info_src.lo_offset = vm_object_trunc_page(src_offset); fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; - fault_info_src.no_cache = FALSE; + fault_info_src.stealth = TRUE; fault_info_dst.interruptible = interruptible; fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; - fault_info_dst.user_tag = 0; fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; - fault_info_dst.no_cache = FALSE; + fault_info_dst.stealth = TRUE; do { /* while (amount_left > 0) */ /* @@ -3796,44 +5730,63 @@ vm_fault_copy( * COW semantics if any. */ - RetryDestinationFault: ; +RetryDestinationFault:; - dst_prot = VM_PROT_WRITE|VM_PROT_READ; + dst_prot = VM_PROT_WRITE | VM_PROT_READ; vm_object_lock(dst_object); vm_object_paging_begin(dst_object); - fault_info_dst.cluster_size = amount_left; - - XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); - switch (vm_fault_page(dst_object, - vm_object_trunc_page(dst_offset), - VM_PROT_WRITE|VM_PROT_READ, - FALSE, - &dst_prot, &dst_page, &dst_top_page, - (int *)0, - &error, - dst_map->no_zero_fill, - FALSE, &fault_info_dst)) { + /* cap cluster size at maximum UPL size */ + upl_size_t cluster_size; + if (os_convert_overflow(amount_left, &cluster_size)) { + cluster_size = 0 - (upl_size_t)PAGE_SIZE; + } + fault_info_dst.cluster_size = cluster_size; + + XPR(XPR_VM_FAULT, "vm_fault_copy -> vm_fault_page\n", 0, 0, 0, 0, 0); + dst_page = VM_PAGE_NULL; + result = vm_fault_page(dst_object, + vm_object_trunc_page(dst_offset), + VM_PROT_WRITE | VM_PROT_READ, + FALSE, + FALSE, /* page not looked up */ + &dst_prot, &dst_page, &dst_top_page, + (int *)0, + &error, + dst_map->no_zero_fill, + FALSE, &fault_info_dst); + switch (result) { case VM_FAULT_SUCCESS: break; case VM_FAULT_RETRY: goto RetryDestinationFault; case VM_FAULT_MEMORY_SHORTAGE: - if (vm_page_wait(interruptible)) + if (vm_page_wait(interruptible)) { goto RetryDestinationFault; - /* fall thru */ + } + /* fall thru */ case VM_FAULT_INTERRUPTED: RETURN(MACH_SEND_INTERRUPTED); + case VM_FAULT_SUCCESS_NO_VM_PAGE: + /* success but no VM page: fail the copy */ + vm_object_paging_end(dst_object); + vm_object_unlock(dst_object); + /*FALLTHROUGH*/ case VM_FAULT_MEMORY_ERROR: - if (error) - return (error); - else - return(KERN_MEMORY_ERROR); + if (error) { + return error; + } else { + return KERN_MEMORY_ERROR; + } + default: + panic("vm_fault_copy: unexpected error 0x%x from " + "vm_fault_page()\n", result); } - assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); + assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); - old_copy_object = dst_page->object->copy; + assert(dst_object == VM_PAGE_OBJECT(dst_page)); + old_copy_object = dst_object->copy; /* * There exists the possiblity that the source and @@ -3842,16 +5795,16 @@ vm_fault_copy( * same, the call to vm_fault_page() for the * destination page will deadlock. To prevent this we * wire the page so we can drop busy without having - * the page daemon steal the page. We clean up the + * the page daemon steal the page. We clean up the * top page but keep the paging reference on the object * holding the dest page so it doesn't go away. */ vm_page_lockspin_queues(); - vm_page_wire(dst_page); + vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE); vm_page_unlock_queues(); PAGE_WAKEUP_DONE(dst_page); - vm_object_unlock(dst_page->object); + vm_object_unlock(dst_object); if (dst_top_page != VM_PAGE_NULL) { vm_object_lock(dst_object); @@ -3860,7 +5813,7 @@ vm_fault_copy( vm_object_unlock(dst_object); } - RetrySourceFault: ; +RetrySourceFault:; if (src_object == VM_OBJECT_NULL) { /* @@ -3872,7 +5825,7 @@ vm_fault_copy( } else { vm_object_lock(src_object); src_page = vm_page_lookup(src_object, - vm_object_trunc_page(src_offset)); + vm_object_trunc_page(src_offset)); if (src_page == dst_page) { src_prot = dst_prot; result_page = VM_PAGE_NULL; @@ -3880,65 +5833,89 @@ vm_fault_copy( src_prot = VM_PROT_READ; vm_object_paging_begin(src_object); - fault_info_src.cluster_size = amount_left; + /* cap cluster size at maximum UPL size */ + if (os_convert_overflow(amount_left, &cluster_size)) { + cluster_size = 0 - (upl_size_t)PAGE_SIZE; + } + fault_info_src.cluster_size = cluster_size; XPR(XPR_VM_FAULT, - "vm_fault_copy(2) -> vm_fault_page\n", - 0,0,0,0,0); - switch (vm_fault_page( - src_object, - vm_object_trunc_page(src_offset), - VM_PROT_READ, FALSE, - &src_prot, - &result_page, &src_top_page, - (int *)0, &error, FALSE, - FALSE, &fault_info_src)) { - + "vm_fault_copy(2) -> vm_fault_page\n", + 0, 0, 0, 0, 0); + result_page = VM_PAGE_NULL; + result = vm_fault_page( + src_object, + vm_object_trunc_page(src_offset), + VM_PROT_READ, FALSE, + FALSE, /* page not looked up */ + &src_prot, + &result_page, &src_top_page, + (int *)0, &error, FALSE, + FALSE, &fault_info_src); + + switch (result) { case VM_FAULT_SUCCESS: break; case VM_FAULT_RETRY: goto RetrySourceFault; case VM_FAULT_MEMORY_SHORTAGE: - if (vm_page_wait(interruptible)) + if (vm_page_wait(interruptible)) { goto RetrySourceFault; - /* fall thru */ + } + /* fall thru */ case VM_FAULT_INTERRUPTED: vm_fault_copy_dst_cleanup(dst_page); RETURN(MACH_SEND_INTERRUPTED); + case VM_FAULT_SUCCESS_NO_VM_PAGE: + /* success but no VM page: fail */ + vm_object_paging_end(src_object); + vm_object_unlock(src_object); + /*FALLTHROUGH*/ case VM_FAULT_MEMORY_ERROR: vm_fault_copy_dst_cleanup(dst_page); - if (error) - return (error); - else - return(KERN_MEMORY_ERROR); + if (error) { + return error; + } else { + return KERN_MEMORY_ERROR; + } + default: + panic("vm_fault_copy(2): unexpected " + "error 0x%x from " + "vm_fault_page()\n", result); } - + result_page_object = VM_PAGE_OBJECT(result_page); assert((src_top_page == VM_PAGE_NULL) == - (result_page->object == src_object)); + (result_page_object == src_object)); } - assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); - vm_object_unlock(result_page->object); + assert((src_prot & VM_PROT_READ) != VM_PROT_NONE); + vm_object_unlock(result_page_object); } + vm_map_lock_read(dst_map); + if (!vm_map_verify(dst_map, dst_version)) { - if (result_page != VM_PAGE_NULL && src_page != dst_page) + vm_map_unlock_read(dst_map); + if (result_page != VM_PAGE_NULL && src_page != dst_page) { vm_fault_copy_cleanup(result_page, src_top_page); + } vm_fault_copy_dst_cleanup(dst_page); break; } + assert(dst_object == VM_PAGE_OBJECT(dst_page)); - vm_object_lock(dst_page->object); + vm_object_lock(dst_object); - if (dst_page->object->copy != old_copy_object) { - vm_object_unlock(dst_page->object); - vm_map_verify_done(dst_map, dst_version); - if (result_page != VM_PAGE_NULL && src_page != dst_page) + if (dst_object->copy != old_copy_object) { + vm_object_unlock(dst_object); + vm_map_unlock_read(dst_map); + if (result_page != VM_PAGE_NULL && src_page != dst_page) { vm_fault_copy_cleanup(result_page, src_top_page); + } vm_fault_copy_dst_cleanup(dst_page); break; } - vm_object_unlock(dst_page->object); + vm_object_unlock(dst_object); /* * Copy the page, and note that it is dirty @@ -3946,11 +5923,10 @@ vm_fault_copy( */ if (!page_aligned(src_offset) || - !page_aligned(dst_offset) || - !page_aligned(amount_left)) { - - vm_object_offset_t src_po, - dst_po; + !page_aligned(dst_offset) || + !page_aligned(amount_left)) { + vm_object_offset_t src_po, + dst_po; src_po = src_offset - vm_object_trunc_page(src_offset); dst_po = dst_offset - vm_object_trunc_page(dst_offset); @@ -3960,47 +5936,58 @@ vm_fault_copy( } else { part_size = PAGE_SIZE - src_po; } - if (part_size > (amount_left)){ + if (part_size > (amount_left)) { part_size = amount_left; } if (result_page == VM_PAGE_NULL) { + assert((vm_offset_t) dst_po == dst_po); + assert((vm_size_t) part_size == part_size); vm_page_part_zero_fill(dst_page, - dst_po, part_size); + (vm_offset_t) dst_po, + (vm_size_t) part_size); } else { - vm_page_part_copy(result_page, src_po, - dst_page, dst_po, part_size); - if(!dst_page->dirty){ + assert((vm_offset_t) src_po == src_po); + assert((vm_offset_t) dst_po == dst_po); + assert((vm_size_t) part_size == part_size); + vm_page_part_copy(result_page, + (vm_offset_t) src_po, + dst_page, + (vm_offset_t) dst_po, + (vm_size_t)part_size); + if (!dst_page->vmp_dirty) { vm_object_lock(dst_object); - dst_page->dirty = TRUE; - vm_object_unlock(dst_page->object); + SET_PAGE_DIRTY(dst_page, TRUE); + vm_object_unlock(dst_object); } - } } else { part_size = PAGE_SIZE; - if (result_page == VM_PAGE_NULL) + if (result_page == VM_PAGE_NULL) { vm_page_zero_fill(dst_page); - else{ + } else { + vm_object_lock(result_page_object); vm_page_copy(result_page, dst_page); - if(!dst_page->dirty){ + vm_object_unlock(result_page_object); + + if (!dst_page->vmp_dirty) { vm_object_lock(dst_object); - dst_page->dirty = TRUE; - vm_object_unlock(dst_page->object); + SET_PAGE_DIRTY(dst_page, TRUE); + vm_object_unlock(dst_object); } } - } /* * Unlock everything, and return */ - vm_map_verify_done(dst_map, dst_version); + vm_map_unlock_read(dst_map); - if (result_page != VM_PAGE_NULL && src_page != dst_page) + if (result_page != VM_PAGE_NULL && src_page != dst_page) { vm_fault_copy_cleanup(result_page, src_top_page); + } vm_fault_copy_dst_cleanup(dst_page); amount_left -= part_size; @@ -4009,12 +5996,12 @@ vm_fault_copy( } while (amount_left > 0); RETURN(KERN_SUCCESS); -#undef RETURN +#undef RETURN - /*NOTREACHED*/ + /*NOTREACHED*/ } -#if VM_FAULT_CLASSIFY +#if VM_FAULT_CLASSIFY /* * Temporary statistics gathering support. */ @@ -4022,42 +6009,41 @@ vm_fault_copy( /* * Statistics arrays: */ -#define VM_FAULT_TYPES_MAX 5 -#define VM_FAULT_LEVEL_MAX 8 +#define VM_FAULT_TYPES_MAX 5 +#define VM_FAULT_LEVEL_MAX 8 -int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; +int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; -#define VM_FAULT_TYPE_ZERO_FILL 0 -#define VM_FAULT_TYPE_MAP_IN 1 -#define VM_FAULT_TYPE_PAGER 2 -#define VM_FAULT_TYPE_COPY 3 -#define VM_FAULT_TYPE_OTHER 4 +#define VM_FAULT_TYPE_ZERO_FILL 0 +#define VM_FAULT_TYPE_MAP_IN 1 +#define VM_FAULT_TYPE_PAGER 2 +#define VM_FAULT_TYPE_COPY 3 +#define VM_FAULT_TYPE_OTHER 4 void -vm_fault_classify(vm_object_t object, - vm_object_offset_t offset, - vm_prot_t fault_type) +vm_fault_classify(vm_object_t object, + vm_object_offset_t offset, + vm_prot_t fault_type) { - int type, level = 0; - vm_page_t m; + int type, level = 0; + vm_page_t m; while (TRUE) { m = vm_page_lookup(object, offset); - if (m != VM_PAGE_NULL) { - if (m->busy || m->error || m->restart || m->absent) { + if (m != VM_PAGE_NULL) { + if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) { type = VM_FAULT_TYPE_OTHER; break; } if (((fault_type & VM_PROT_WRITE) == 0) || ((level == 0) && object->copy == VM_OBJECT_NULL)) { type = VM_FAULT_TYPE_MAP_IN; - break; + break; } type = VM_FAULT_TYPE_COPY; break; - } - else { + } else { if (object->pager_created) { type = VM_FAULT_TYPE_PAGER; break; @@ -4065,17 +6051,18 @@ vm_fault_classify(vm_object_t object, if (object->shadow == VM_OBJECT_NULL) { type = VM_FAULT_TYPE_ZERO_FILL; break; - } + } - offset += object->shadow_offset; + offset += object->vo_shadow_offset; object = object->shadow; level++; continue; } } - if (level > VM_FAULT_LEVEL_MAX) + if (level > VM_FAULT_LEVEL_MAX) { level = VM_FAULT_LEVEL_MAX; + } vm_fault_stats[type][level] += 1; @@ -4097,43 +6084,288 @@ vm_fault_classify_init(void) return; } -#endif /* VM_FAULT_CLASSIFY */ +#endif /* VM_FAULT_CLASSIFY */ + +vm_offset_t +kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr) +{ + vm_map_entry_t entry; + vm_object_t object; + vm_offset_t object_offset; + vm_page_t m; + int compressor_external_state, compressed_count_delta; + int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP); + int my_fault_type = VM_PROT_READ; + kern_return_t kr; + + if (not_in_kdp) { + panic("kdp_lightweight_fault called from outside of debugger context"); + } + + assert(map != VM_MAP_NULL); + + assert((cur_target_addr & PAGE_MASK) == 0); + if ((cur_target_addr & PAGE_MASK) != 0) { + return 0; + } + + if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) { + return 0; + } + + if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) { + return 0; + } + + if (entry->is_sub_map) { + return 0; + } + + object = VME_OBJECT(entry); + if (object == VM_OBJECT_NULL) { + return 0; + } + + object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry); + + while (TRUE) { + if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) { + return 0; + } + + if (object->pager_created && (object->paging_in_progress || + object->activity_in_progress)) { + return 0; + } + + m = kdp_vm_page_lookup(object, object_offset); + + if (m != VM_PAGE_NULL) { + if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { + return 0; + } + + if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || m->vmp_error || m->vmp_cleaning || + m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) { + return 0; + } + + assert(!m->vmp_private); + if (m->vmp_private) { + return 0; + } + + assert(!m->vmp_fictitious); + if (m->vmp_fictitious) { + return 0; + } + + assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); + if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { + return 0; + } + + return ptoa(VM_PAGE_GET_PHYS_PAGE(m)); + } + + compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; + + if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) { + if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) { + kr = vm_compressor_pager_get(object->pager, (object_offset + object->paging_offset), + kdp_compressor_decompressed_page_ppnum, &my_fault_type, + compressor_flags, &compressed_count_delta); + if (kr == KERN_SUCCESS) { + return kdp_compressor_decompressed_page_paddr; + } else { + return 0; + } + } + } + + if (object->shadow == VM_OBJECT_NULL) { + return 0; + } + + object_offset += object->vo_shadow_offset; + object = object->shadow; + } +} + +/* + * vm_page_validate_cs_fast(): + * Performs a few quick checks to determine if the page's code signature + * really needs to be fully validated. It could: + * 1. have been modified (i.e. automatically tainted), + * 2. have already been validated, + * 3. have already been found to be tainted, + * 4. no longer have a backing store. + * Returns FALSE if the page needs to be fully validated. + */ +static boolean_t +vm_page_validate_cs_fast( + vm_page_t page) +{ + vm_object_t object; + + object = VM_PAGE_OBJECT(page); + vm_object_lock_assert_held(object); + + if (page->vmp_wpmapped && !page->vmp_cs_tainted) { + /* + * This page was mapped for "write" access sometime in the + * past and could still be modifiable in the future. + * Consider it tainted. + * [ If the page was already found to be "tainted", no + * need to re-validate. ] + */ + vm_object_lock_assert_exclusive(object); + page->vmp_cs_validated = TRUE; + page->vmp_cs_tainted = TRUE; + if (cs_debug) { + printf("CODESIGNING: %s: " + "page %p obj %p off 0x%llx " + "was modified\n", + __FUNCTION__, + page, object, page->vmp_offset); + } + vm_cs_validated_dirtied++; + } + + if (page->vmp_cs_validated || page->vmp_cs_tainted) { + return TRUE; + } + vm_object_lock_assert_exclusive(object); + +#if CHECK_CS_VALIDATION_BITMAP + kern_return_t kr; + + kr = vnode_pager_cs_check_validation_bitmap( + object->pager, + page->vmp_offset + object->paging_offset, + CS_BITMAP_CHECK); + if (kr == KERN_SUCCESS) { + page->vmp_cs_validated = TRUE; + page->vmp_cs_tainted = FALSE; + vm_cs_bitmap_validated++; + return TRUE; + } +#endif /* CHECK_CS_VALIDATION_BITMAP */ + + if (!object->alive || object->terminating || object->pager == NULL) { + /* + * The object is terminating and we don't have its pager + * so we can't validate the data... + */ + return TRUE; + } + + /* we need to really validate this page */ + vm_object_lock_assert_exclusive(object); + return FALSE; +} + +void +vm_page_validate_cs_mapped_slow( + vm_page_t page, + const void *kaddr) +{ + vm_object_t object; + memory_object_offset_t mo_offset; + memory_object_t pager; + struct vnode *vnode; + boolean_t validated; + unsigned tainted; + + assert(page->vmp_busy); + object = VM_PAGE_OBJECT(page); + vm_object_lock_assert_exclusive(object); + + vm_cs_validates++; + + /* + * Since we get here to validate a page that was brought in by + * the pager, we know that this pager is all setup and ready + * by now. + */ + assert(object->code_signed); + assert(!object->internal); + assert(object->pager != NULL); + assert(object->pager_ready); + + pager = object->pager; + assert(object->paging_in_progress); + vnode = vnode_pager_lookup_vnode(pager); + mo_offset = page->vmp_offset + object->paging_offset; + + /* verify the SHA1 hash for this page */ + tainted = 0; + validated = cs_validate_range(vnode, + pager, + mo_offset, + (const void *)((const char *)kaddr), + PAGE_SIZE_64, + &tainted); + + if (tainted & CS_VALIDATE_TAINTED) { + page->vmp_cs_tainted = TRUE; + } + if (tainted & CS_VALIDATE_NX) { + page->vmp_cs_nx = TRUE; + } + if (validated) { + page->vmp_cs_validated = TRUE; + } +#if CHECK_CS_VALIDATION_BITMAP + if (page->vmp_cs_validated && !page->vmp_cs_tainted) { + vnode_pager_cs_check_validation_bitmap(object->pager, + mo_offset, + CS_BITMAP_SET); + } +#endif /* CHECK_CS_VALIDATION_BITMAP */ +} -extern int cs_validation; +void +vm_page_validate_cs_mapped( + vm_page_t page, + const void *kaddr) +{ + if (!vm_page_validate_cs_fast(page)) { + vm_page_validate_cs_mapped_slow(page, kaddr); + } +} void vm_page_validate_cs( - vm_page_t page) + vm_page_t page) { - vm_object_t object; - vm_object_offset_t offset; - vm_map_offset_t koffset; - vm_map_size_t ksize; - vm_offset_t kaddr; - kern_return_t kr; - memory_object_t pager; - void *blobs; - boolean_t validated, tainted; - boolean_t busy_page; - - vm_object_lock_assert_exclusive(page->object); - assert(!page->cs_validated); - - if (!cs_validation) { + vm_object_t object; + vm_object_offset_t offset; + vm_map_offset_t koffset; + vm_map_size_t ksize; + vm_offset_t kaddr; + kern_return_t kr; + boolean_t busy_page; + boolean_t need_unmap; + + object = VM_PAGE_OBJECT(page); + vm_object_lock_assert_held(object); + + if (vm_page_validate_cs_fast(page)) { return; } + vm_object_lock_assert_exclusive(object); - object = page->object; assert(object->code_signed); - offset = page->offset; + offset = page->vmp_offset; - busy_page = page->busy; + busy_page = page->vmp_busy; if (!busy_page) { /* keep page busy while we map (and unlock) the VM object */ - page->busy = TRUE; + page->vmp_busy = TRUE; } - + /* * Take a paging reference on the VM object * to protect it from collapse or bypass, @@ -4142,19 +6374,75 @@ vm_page_validate_cs( vm_object_paging_begin(object); /* map the page in the kernel address space */ - koffset = 0; ksize = PAGE_SIZE_64; - kr = vm_paging_map_object(&koffset, - page, - object, - offset, - &ksize, - FALSE); /* can't unlock object ! */ + koffset = 0; + need_unmap = FALSE; + kr = vm_paging_map_object(page, + object, + offset, + VM_PROT_READ, + FALSE, /* can't unlock object ! */ + &ksize, + &koffset, + &need_unmap); if (kr != KERN_SUCCESS) { - panic("vm_page_validate_cs: could not map page: 0x%x\n", kr); + panic("%s: could not map page: 0x%x\n", __FUNCTION__, kr); } kaddr = CAST_DOWN(vm_offset_t, koffset); + /* validate the mapped page */ + vm_page_validate_cs_mapped_slow(page, (const void *) kaddr); + + assert(page->vmp_busy); + assert(object == VM_PAGE_OBJECT(page)); + vm_object_lock_assert_exclusive(object); + + if (!busy_page) { + PAGE_WAKEUP_DONE(page); + } + if (need_unmap) { + /* unmap the map from the kernel address space */ + vm_paging_unmap_object(object, koffset, koffset + ksize); + koffset = 0; + ksize = 0; + kaddr = 0; + } + vm_object_paging_end(object); +} + +void +vm_page_validate_cs_mapped_chunk( + vm_page_t page, + const void *kaddr, + vm_offset_t chunk_offset, + vm_size_t chunk_size, + boolean_t *validated_p, + unsigned *tainted_p) +{ + vm_object_t object; + vm_object_offset_t offset, offset_in_page; + memory_object_t pager; + struct vnode *vnode; + boolean_t validated; + unsigned tainted; + + *validated_p = FALSE; + *tainted_p = 0; + + assert(page->vmp_busy); + object = VM_PAGE_OBJECT(page); + vm_object_lock_assert_exclusive(object); + + assert(object->code_signed); + offset = page->vmp_offset; + + if (!object->alive || object->terminating || object->pager == NULL) { + /* + * The object is terminating and we don't have its pager + * so we can't validate the data... + */ + return; + } /* * Since we get here to validate a page that was brought in by * the pager, we know that this pager is all setup and ready @@ -4164,47 +6452,132 @@ vm_page_validate_cs( assert(object->pager != NULL); assert(object->pager_ready); - if (!object->alive || object->terminating || object->pager == NULL) { - /* - * The object is terminating and we don't have its pager - * so we can't validate the data... - */ - goto out; + pager = object->pager; + assert(object->paging_in_progress); + vnode = vnode_pager_lookup_vnode(pager); + + /* verify the signature for this chunk */ + offset_in_page = chunk_offset; + assert(offset_in_page < PAGE_SIZE); + + tainted = 0; + validated = cs_validate_range(vnode, + pager, + (object->paging_offset + + offset + + offset_in_page), + (const void *)((const char *)kaddr + + offset_in_page), + chunk_size, + &tainted); + if (validated) { + *validated_p = TRUE; } + if (tainted) { + *tainted_p = tainted; + } +} - pager = object->pager; - assert(pager != NULL); +static void +vm_rtfrecord_lock(void) +{ + lck_spin_lock(&vm_rtfr_slock); +} - kr = vnode_pager_get_object_cs_blobs(pager, &blobs); - if (kr != KERN_SUCCESS) { - blobs = NULL; - } +static void +vm_rtfrecord_unlock(void) +{ + lck_spin_unlock(&vm_rtfr_slock); +} - /* verify the SHA1 hash for this page */ - validated = cs_validate_page(blobs, - offset + object->paging_offset, - (const void *)kaddr, - &tainted); +unsigned int +vmrtfaultinfo_bufsz(void) +{ + return vmrtf_num_records * sizeof(vm_rtfault_record_t); +} - assert(page->busy); - assert(object == page->object); - vm_object_lock_assert_exclusive(object); +#include - page->cs_validated = validated; - if (validated) { - page->cs_tainted = tainted; +static void +vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault) +{ + uint64_t fend = mach_continuous_time(); + + uint64_t cfpc = 0; + uint64_t ctid = cthread->thread_id; + uint64_t cupid = get_current_unique_pid(); + + uintptr_t bpc = 0; + uint32_t bfrs = 0; + bool u64 = false; + + /* Capture a single-frame backtrace; this extracts just the program + * counter at the point of the fault into "bpc", and should perform no + * further user stack traversals, thus avoiding copyin()s and further + * faults. + */ + int btr = backtrace_thread_user(cthread, &bpc, 1U, &bfrs, &u64); + + if ((btr == 0) && (bfrs > 0)) { + cfpc = bpc; } -out: - if (!busy_page) { - PAGE_WAKEUP_DONE(page); + assert((fstart != 0) && fend >= fstart); + vm_rtfrecord_lock(); + assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi); + + vmrtfrs.vmrtf_total++; + vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++]; + + cvmr->rtfabstime = fstart; + cvmr->rtfduration = fend - fstart; + cvmr->rtfaddr = fault_vaddr; + cvmr->rtfpc = cfpc; + cvmr->rtftype = type_of_fault; + cvmr->rtfupid = cupid; + cvmr->rtftid = ctid; + + if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) { + vmrtfrs.vmrtfr_curi = 0; } - if (koffset != 0) { - /* unmap the map from the kernel address space */ - vm_paging_unmap_object(object, koffset, koffset + ksize); - koffset = 0; - ksize = 0; - kaddr = 0; + + vm_rtfrecord_unlock(); +} + +int +vmrtf_extract(uint64_t cupid, __unused boolean_t isroot, int vrecordsz, void *vrecords, int *vmrtfrv) +{ + vm_rtfault_record_t *cvmrd = vrecords; + size_t residue = vrecordsz; + int numextracted = 0; + boolean_t early_exit = FALSE; + + vm_rtfrecord_lock(); + + for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) { + if (residue < sizeof(vm_rtfault_record_t)) { + early_exit = TRUE; + break; + } + + if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) { +#if DEVELOPMENT || DEBUG + if (isroot == FALSE) { + continue; + } +#else + continue; +#endif /* DEVDEBUG */ + } + + *cvmrd = vmrtfrs.vm_rtf_records[vmfi]; + cvmrd++; + residue -= sizeof(vm_rtfault_record_t); + numextracted++; } - vm_object_paging_end(object); + + vm_rtfrecord_unlock(); + + *vmrtfrv = numextracted; + return early_exit; }