X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/1c79356b52d46aa6b508fb032f5ae709b1f2897b..db6096698656d32db7df630594bd9617ee54f828:/osfmk/kern/zalloc.c?ds=inline diff --git a/osfmk/kern/zalloc.c b/osfmk/kern/zalloc.c index 12ed64e03..dc9ea000c 100644 --- a/osfmk/kern/zalloc.c +++ b/osfmk/kern/zalloc.c @@ -1,23 +1,29 @@ /* - * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2011 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. * - * @APPLE_LICENSE_HEADER_END@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ @@ -57,136 +63,255 @@ * data blocks for which quick allocation/deallocation is possible. */ #include -#include -#include -#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +#include #include +#include #include #include -#include +#include #include #include +#include #include -#include +#include + +#include +#include #include -#include +#include +#include -#if MACH_ASSERT -/* Detect use of zone elt after freeing it by two methods: - * (1) Range-check the free-list "next" ptr for sanity. - * (2) Store the ptr in two different words, and compare them against - * each other when re-using the zone elt, to detect modifications; - */ +#include -#if defined(__alpha) +#include +#include +#include -#define is_kernel_data_addr(a) \ - (!(a) || IS_SYS_VA(a) && !((a) & (sizeof(long)-1))) +/* + * Zone Corruption Debugging + * + * We perform three methods to detect use of a zone element after it's been freed. These + * checks are enabled for every N'th element (counted per-zone) by specifying + * "zp-factor=N" as a boot-arg. To turn this feature off, set "zp-factor=0" or "-no-zp". + * + * (1) Range-check the free-list "next" pointer for sanity. + * (2) Store the pointer in two different words, one at the beginning of the freed element + * and one at the end, and compare them against each other when re-using the element, + * to detect modifications. + * (3) Poison the freed memory by overwriting it with 0xdeadbeef, and check it when the + * memory is being reused to make sure it is still poisoned. + * + * As a result, each element (that is large enough to hold this data inside) must be marked + * as either "ZP_POISONED" or "ZP_NOT_POISONED" in the first integer within the would-be + * poisoned segment after the first free-list pointer. + * + * Performance slowdown is inversely proportional to the frequency with which you check + * (as would be expected), with a 4-5% hit around N=1, down to ~0.3% at N=16 and just + * "noise" at N=32 and higher. You can expect to find a 100% reproducible + * bug in an average of N tries, with a standard deviation of about N, but you will probably + * want to set "zp-factor=1" or "-zp" if you are attempting to reproduce a known bug. + * + * + * Zone corruption logging + * + * You can also track where corruptions come from by using the boot-arguments: + * "zlog= -zc". Search for "Zone corruption logging" later in this + * document for more implementation and usage information. + */ -#else /* !defined(__alpha) */ +#define ZP_POISON 0xdeadbeef +#define ZP_POISONED 0xfeedface +#define ZP_NOT_POISONED 0xbaddecaf -#define is_kernel_data_addr(a) \ - (!(a) || (a) >= VM_MIN_KERNEL_ADDRESS && !((a) & 0x3)) +#if CONFIG_EMBEDDED + #define ZP_DEFAULT_SAMPLING_FACTOR 0 +#else /* CONFIG_EMBEDDED */ + #define ZP_DEFAULT_SAMPLING_FACTOR 16 +#endif /* CONFIG_EMBEDDED */ -#endif /* defined(__alpha) */ +uint32_t free_check_sample_factor = 0; /* set by zp-factor=N boot arg */ +boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */ -/* Should we set all words of the zone element to an illegal address - * when it is freed, to help catch usage after freeing? The down-side - * is that this obscures the identity of the freed element. +/* + * Zone checking helper macro. */ -boolean_t zfree_clear = FALSE; +#define is_kernel_data_addr(a) (!(a) || ((a) >= vm_min_kernel_address && !((a) & 0x3))) -#define ADD_TO_ZONE(zone, element) \ -MACRO_BEGIN \ - if (zfree_clear) \ - { int i; \ - for (i=1; \ - i < zone->elem_size/sizeof(vm_offset_t) - 1; \ - i++) \ - ((vm_offset_t *)(element))[i] = 0xdeadbeef; \ - } \ - ((vm_offset_t *)(element))[0] = (zone)->free_elements; \ - (zone)->free_elements = (vm_offset_t) (element); \ - (zone)->count--; \ -MACRO_END +/* + * Frees the specified element, which is within the specified zone. If this + * element should be poisoned and its free list checker should be set, both are + * done here. These checks will only be enabled if the element size is at least + * large enough to hold two vm_offset_t's and one uint32_t (to enable both types + * of checks). + */ +static inline void +free_to_zone(zone_t zone, void *elem) { + /* get the index of the first uint32_t beyond the 'next' pointer */ + unsigned int i = sizeof(vm_offset_t) / sizeof(uint32_t); + + /* should we run checks on this piece of memory? */ + if (free_check_sample_factor != 0 && + zone->free_check_count++ % free_check_sample_factor == 0 && + zone->elem_size >= (2 * sizeof(vm_offset_t) + sizeof(uint32_t))) { + zone->free_check_count = 1; + ((uint32_t *) elem)[i] = ZP_POISONED; + for (i++; i < zone->elem_size / sizeof(uint32_t); i++) { + ((uint32_t *) elem)[i] = ZP_POISON; + } + ((vm_offset_t *) elem)[((zone->elem_size)/sizeof(vm_offset_t))-1] = zone->free_elements; + } else { + ((uint32_t *) elem)[i] = ZP_NOT_POISONED; + } + + /* maintain free list and decrement number of active objects in zone */ + ((vm_offset_t *) elem)[0] = zone->free_elements; + zone->free_elements = (vm_offset_t) elem; + zone->count--; +} -#define REMOVE_FROM_ZONE(zone, ret, type) \ -MACRO_BEGIN \ - (ret) = (type) (zone)->free_elements; \ - if ((ret) != (type) 0) { \ - if (!is_kernel_data_addr(((vm_offset_t *)(ret))[0])) { \ - panic("A freed zone element has been modified.\n"); \ - } \ - (zone)->count++; \ - (zone)->free_elements = *((vm_offset_t *)(ret)); \ - } \ -MACRO_END -#else /* MACH_ASSERT */ +/* + * Allocates an element from the specifed zone, storing its address in the + * return arg. This function will look for corruptions revealed through zone + * poisoning and free list checks. + */ +static inline void +alloc_from_zone(zone_t zone, void **ret) { + void *elem = (void *) zone->free_elements; + if (elem != NULL) { + /* get the index of the first uint32_t beyond the 'next' pointer */ + unsigned int i = sizeof(vm_offset_t) / sizeof(uint32_t); + + /* first int in data section must be ZP_POISONED or ZP_NOT_POISONED */ + if (((uint32_t *) elem)[i] == ZP_POISONED && + zone->elem_size >= (2 * sizeof(vm_offset_t) + sizeof(uint32_t))) { + /* check the free list pointers */ + if (!is_kernel_data_addr(((vm_offset_t *) elem)[0]) || + ((vm_offset_t *) elem)[0] != + ((vm_offset_t *) elem)[(zone->elem_size/sizeof(vm_offset_t))-1]) { + panic("a freed zone element has been modified in zone: %s", + zone->zone_name); + } + + /* check for poisoning in free space */ + for (i++; + i < zone->elem_size / sizeof(uint32_t) - + sizeof(vm_offset_t) / sizeof(uint32_t); + i++) { + if (((uint32_t *) elem)[i] != ZP_POISON) { + panic("a freed zone element has been modified in zone: %s", + zone->zone_name); + } + } + } else if (((uint32_t *) elem)[i] != ZP_NOT_POISONED) { + panic("a freed zone element has been modified in zone: %s", + zone->zone_name); + } + + zone->count++; + zone->sum_count++; + zone->free_elements = ((vm_offset_t *) elem)[0]; + } + *ret = elem; +} -#define ADD_TO_ZONE(zone, element) \ -MACRO_BEGIN \ - *((vm_offset_t *)(element)) = (zone)->free_elements; \ - (zone)->free_elements = (vm_offset_t) (element); \ - (zone)->count--; \ -MACRO_END -#define REMOVE_FROM_ZONE(zone, ret, type) \ -MACRO_BEGIN \ - (ret) = (type) (zone)->free_elements; \ - if ((ret) != (type) 0) { \ - (zone)->count++; \ - (zone)->free_elements = *((vm_offset_t *)(ret)); \ - } \ -MACRO_END +/* + * Fake zones for things that want to report via zprint but are not actually zones. + */ +struct fake_zone_info { + const char* name; + void (*init)(int); + void (*query)(int *, + vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *, + uint64_t *, int *, int *, int *); +}; -#endif /* MACH_ASSERT */ +static const struct fake_zone_info fake_zones[] = { + { + .name = "kernel_stacks", + .init = stack_fake_zone_init, + .query = stack_fake_zone_info, + }, + { + .name = "page_tables", + .init = pt_fake_zone_init, + .query = pt_fake_zone_info, + }, + { + .name = "kalloc.large", + .init = kalloc_fake_zone_init, + .query = kalloc_fake_zone_info, + }, +}; +static const unsigned int num_fake_zones = + sizeof (fake_zones) / sizeof (fake_zones[0]); -#if ZONE_DEBUG -#define zone_debug_enabled(z) z->active_zones.next -#endif /* ZONE_DEBUG */ +/* + * Zone info options + */ +boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */ +#define ZINFO_SLOTS 200 /* for now */ +#define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1) /* - * Support for garbage collection of unused zone pages: + * Support for garbage collection of unused zone pages + * + * The kernel virtually allocates the "zone map" submap of the kernel + * map. When an individual zone needs more storage, memory is allocated + * out of the zone map, and the two-level "zone_page_table" is + * on-demand expanded so that it has entries for those pages. + * zone_page_init()/zone_page_alloc() initialize "alloc_count" + * to the number of zone elements that occupy the zone page (which may + * be a minimum of 1, including if a zone element spans multiple + * pages). + * + * Asynchronously, the zone_gc() logic attempts to walk zone free + * lists to see if all the elements on a zone page are free. If + * "collect_count" (which it increments during the scan) matches + * "alloc_count", the zone page is a candidate for collection and the + * physical page is returned to the VM system. During this process, the + * first word of the zone page is re-used to maintain a linked list of + * to-be-collected zone pages. */ +typedef uint32_t zone_page_index_t; +#define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU) struct zone_page_table_entry { - struct zone_page_table_entry *next; - short in_free_list; - short alloc_count; + volatile uint16_t alloc_count; + volatile uint16_t collect_count; }; -extern struct zone_page_table_entry * zone_page_table; - -#define lock_zone_page_table() simple_lock(&zone_page_table_lock) -#define unlock_zone_page_table() simple_unlock(&zone_page_table_lock) - -#define zone_page(addr) \ - (&(zone_page_table[(atop(((vm_offset_t)addr) - zone_map_min_address))])) +#define ZONE_PAGE_USED 0 +#define ZONE_PAGE_UNUSED 0xffff /* Forwards */ void zone_page_init( - vm_offset_t addr, - vm_size_t size, - int value); - -void zone_page_alloc( vm_offset_t addr, vm_size_t size); -void zone_add_free_page_list( - struct zone_page_table_entry **free_list, - vm_offset_t addr, - vm_size_t size); -void zone_page_dealloc( +void zone_page_alloc( vm_offset_t addr, vm_size_t size); -void zone_page_in_use( +void zone_page_free_element( + zone_page_index_t *free_page_head, + zone_page_index_t *free_page_tail, vm_offset_t addr, vm_size_t size); -void zone_page_free( +void zone_page_collect( vm_offset_t addr, vm_size_t size); @@ -198,71 +323,82 @@ void zone_page_keep( vm_offset_t addr, vm_size_t size); -#if ZONE_DEBUG && MACH_KDB -int zone_count( - zone_t z, - int tail); -#endif /* ZONE_DEBUG && MACH_KDB */ +void zalloc_async( + thread_call_param_t p0, + thread_call_param_t p1); + +void zone_display_zprint( void ); vm_map_t zone_map = VM_MAP_NULL; zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */ +zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */ + /* * The VM system gives us an initial chunk of memory. * It has to be big enough to allocate the zone_zone + * all the way through the pmap zone. */ vm_offset_t zdata; vm_size_t zdata_size; -#define lock_zone(zone) \ -MACRO_BEGIN \ - simple_lock(&zone->lock); \ -MACRO_END +#define zone_wakeup(zone) thread_wakeup((event_t)(zone)) +#define zone_sleep(zone) \ + (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT); -#define unlock_zone(zone) \ -MACRO_BEGIN \ - simple_unlock(&zone->lock); \ -MACRO_END #define lock_zone_init(zone) \ MACRO_BEGIN \ - simple_lock_init(&zone->lock, ETAP_MISC_ZONE); \ + char _name[32]; \ + (void) snprintf(_name, sizeof (_name), "zone.%s", (zone)->zone_name); \ + lck_grp_attr_setdefault(&(zone)->lock_grp_attr); \ + lck_grp_init(&(zone)->lock_grp, _name, &(zone)->lock_grp_attr); \ + lck_attr_setdefault(&(zone)->lock_attr); \ + lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \ + &(zone)->lock_grp, &(zone)->lock_attr); \ MACRO_END -#define lock_try_zone(zone) simple_lock_try(&zone->lock) - -kern_return_t zget_space( - vm_offset_t size, - vm_offset_t *result); - -decl_simple_lock_data(,zget_space_lock) -vm_offset_t zalloc_next_space; -vm_offset_t zalloc_end_of_space; -vm_size_t zalloc_wasted_space; +#define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock) /* * Garbage collection map information */ -decl_simple_lock_data(, zone_page_table_lock) -struct zone_page_table_entry * zone_page_table; +#define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32) +struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE]; +vm_size_t zone_page_table_used_size; vm_offset_t zone_map_min_address; vm_offset_t zone_map_max_address; -integer_t zone_pages; +unsigned int zone_pages; +unsigned int zone_page_table_second_level_size; /* power of 2 */ +unsigned int zone_page_table_second_level_shift_amount; + +#define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount) +#define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1)) + +void zone_page_table_expand(zone_page_index_t pindex); +struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex); /* * Exclude more than one concurrent garbage collection */ -decl_mutex_data(, zone_gc_lock) +decl_lck_mtx_data(, zone_gc_lock) -#define from_zone_map(addr) \ - ((vm_offset_t)(addr) >= zone_map_min_address && \ - (vm_offset_t)(addr) < zone_map_max_address) - -#define ZONE_PAGE_USED 0 -#define ZONE_PAGE_UNUSED -1 +lck_attr_t zone_lck_attr; +lck_grp_t zone_lck_grp; +lck_grp_attr_t zone_lck_grp_attr; +lck_mtx_ext_t zone_lck_ext; +#if !ZONE_ALIAS_ADDR +#define from_zone_map(addr, size) \ + ((vm_offset_t)(addr) >= zone_map_min_address && \ + ((vm_offset_t)(addr) + size -1) < zone_map_max_address) +#else +#define from_zone_map(addr, size) \ + ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \ + ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address) +#endif /* * Protects first_zone, last_zone, num_zones, @@ -271,1083 +407,2881 @@ decl_mutex_data(, zone_gc_lock) decl_simple_lock_data(, all_zones_lock) zone_t first_zone; zone_t *last_zone; -int num_zones; +unsigned int num_zones; + +boolean_t zone_gc_allowed = TRUE; +boolean_t zone_gc_forced = FALSE; +boolean_t panic_include_zprint = FALSE; +boolean_t zone_gc_allowed_by_time_throttle = TRUE; /* - * zinit initializes a new zone. The zone data structures themselves - * are stored in a zone, which is initially a static structure that - * is initialized by zone_init. + * Zone leak debugging code + * + * When enabled, this code keeps a log to track allocations to a particular zone that have not + * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated + * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is + * off by default. + * + * Enable the logging via the boot-args. Add the parameter "zlog=" to boot-args where + * is the name of the zone you wish to log. + * + * This code only tracks one zone, so you need to identify which one is leaking first. + * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone + * garbage collector. Note that the zone name printed in the panic message is not necessarily the one + * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This + * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The + * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs. + * See the help in the kgmacros for usage info. + * + * + * Zone corruption logging + * + * Logging can also be used to help identify the source of a zone corruption. First, identify the zone + * that is being corrupted, then add "-zc zlog=" to the boot-args. When -zc is used in conjunction + * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the + * corruption is detected, examining the log will show you the stack traces of the callers who last allocated + * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been + * corrupted to examine its history. This should lead to the source of the corruption. */ -zone_t -zinit( - vm_size_t size, /* the size of an element */ - vm_size_t max, /* maximum memory to use */ - vm_size_t alloc, /* allocation size */ - char *name) /* a name for the zone */ -{ - zone_t z; - if (zone_zone == ZONE_NULL) { - if (zget_space(sizeof(struct zone), (vm_offset_t *)&z) - != KERN_SUCCESS) - return(ZONE_NULL); - } else - z = (zone_t) zalloc(zone_zone); - if (z == ZONE_NULL) - return(ZONE_NULL); +static int log_records; /* size of the log, expressed in number of records */ - /* - * Round off all the parameters appropriately. - */ - if (size < sizeof(z->free_elements)) - size = sizeof(z->free_elements); - size = ((size-1) + sizeof(z->free_elements)) - - ((size-1) % sizeof(z->free_elements)); - if (alloc == 0) - alloc = PAGE_SIZE; - alloc = round_page(alloc); - max = round_page(max); - /* - * We look for an allocation size with least fragmentation - * in the range of 1 - 5 pages. This size will be used unless - * the user suggestion is larger AND has less fragmentation - */ - { vm_size_t best, waste; unsigned int i; - best = PAGE_SIZE; - waste = best % size; - for (i = 2; i <= 5; i++){ vm_size_t tsize, twaste; - tsize = i * PAGE_SIZE; - twaste = tsize % size; - if (twaste < waste) - best = tsize, waste = twaste; - } - if (alloc <= best || (alloc % size >= waste)) - alloc = best; - } - if (max && (max < alloc)) - max = alloc; +#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */ - z->free_elements = 0; - z->cur_size = 0; - z->max_size = max; - z->elem_size = size; - z->alloc_size = alloc; - z->zone_name = name; - z->count = 0; - z->doing_alloc = FALSE; - z->exhaustible = FALSE; - z->collectable = TRUE; - z->allows_foreign = FALSE; - z->expandable = TRUE; - z->waiting = FALSE; +static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */ -#if ZONE_DEBUG - z->active_zones.next = z->active_zones.prev = 0; - zone_debug_enable(z); -#endif /* ZONE_DEBUG */ - lock_zone_init(z); +/* + * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to + * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note + * that the larger the size of the log, the slower the system will run due to linear searching in the log, + * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000 + * records since going much larger than this tends to make the system unresponsive and unbootable on small + * memory configurations. The default value is 4000 records. + */ - /* - * Add the zone to the all-zones list. - */ +#if defined(__LP64__) +#define ZRECORDS_MAX 128000 /* Max records allowed in the log */ +#else +#define ZRECORDS_MAX 8000 /* Max records allowed in the log */ +#endif +#define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */ - z->next_zone = ZONE_NULL; - simple_lock(&all_zones_lock); - *last_zone = z; - last_zone = &z->next_zone; - num_zones++; - simple_unlock(&all_zones_lock); +/* + * Each record in the log contains a pointer to the zone element it refers to, a "time" number that allows + * the records to be ordered chronologically, and a small array to hold the pc's from the stack trace. A + * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, + * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. + * If the log fills, old records are replaced as if it were a circular buffer. + */ - return(z); -} +struct zrecord { + void *z_element; /* the element that was zalloc'ed of zfree'ed */ + uint32_t z_opcode:1, /* whether it was a zalloc or zfree */ + z_time:31; /* time index when operation was done */ + void *z_pc[MAX_ZTRACE_DEPTH]; /* stack trace of caller */ +}; /* - * Cram the given memory into the specified zone. + * Opcodes for the z_opcode field: */ -void -zcram( - register zone_t zone, - vm_offset_t newmem, - vm_size_t size) -{ - register vm_size_t elem_size; - /* Basic sanity checks */ - assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); - assert(!zone->collectable || zone->allows_foreign - || (from_zone_map(newmem) && from_zone_map(newmem+size-1))); +#define ZOP_ALLOC 1 +#define ZOP_FREE 0 - elem_size = zone->elem_size; +/* + * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest + */ - lock_zone(zone); - while (size >= elem_size) { - ADD_TO_ZONE(zone, newmem); - if (from_zone_map(newmem)) - zone_page_alloc(newmem, elem_size); - zone->count++; /* compensate for ADD_TO_ZONE */ - size -= elem_size; - newmem += elem_size; - zone->cur_size += elem_size; - } - unlock_zone(zone); -} +static struct zrecord *zrecords; /* the log itself, dynamically allocated when logging is enabled */ +static int zcurrent = 0; /* index of the next slot in the log to use */ +static int zrecorded = 0; /* number of allocations recorded in the log */ +static unsigned int ztime = 0; /* a timestamp of sorts */ +static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */ /* - * Contiguous space allocator for non-paged zones. Allocates "size" amount - * of memory from zone_map. + * Decide if we want to log this zone by doing a string compare between a zone name and the name + * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not + * possible to include spaces in strings passed in via the boot-args, a period in the logname will + * match a space in the zone name. */ -kern_return_t -zget_space( - vm_offset_t size, - vm_offset_t *result) +static int +log_this_zone(const char *zonename, const char *logname) { - vm_offset_t new_space = 0; - vm_size_t space_to_add; - - simple_lock(&zget_space_lock); - while ((zalloc_next_space + size) > zalloc_end_of_space) { - /* - * Add at least one page to allocation area. - */ + int len; + const char *zc = zonename; + const char *lc = logname; - space_to_add = round_page(size); - - if (new_space == 0) { - kern_return_t retval; - /* - * Memory cannot be wired down while holding - * any locks that the pageout daemon might - * need to free up pages. [Making the zget_space - * lock a complex lock does not help in this - * regard.] - * - * Unlock and allocate memory. Because several - * threads might try to do this at once, don't - * use the memory before checking for available - * space again. - */ - - simple_unlock(&zget_space_lock); + /* + * Compare the strings. We bound the compare by MAX_ZONE_NAME. + */ - retval = kernel_memory_allocate(zone_map, &new_space, - space_to_add, 0, KMA_KOBJECT|KMA_NOPAGEWAIT); - if (retval != KERN_SUCCESS) - return(retval); - zone_page_init(new_space, space_to_add, - ZONE_PAGE_USED); - simple_lock(&zget_space_lock); - continue; - } + for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { - /* - * Memory was allocated in a previous iteration. - * - * Check whether the new region is contiguous - * with the old one. + * If the current characters don't match, check for a space in + * in the zone name and a corresponding period in the log name. + * If that's not there, then the strings don't match. */ - if (new_space != zalloc_end_of_space) { - /* - * Throw away the remainder of the - * old space, and start a new one. - */ - zalloc_wasted_space += - zalloc_end_of_space - zalloc_next_space; - zalloc_next_space = new_space; - } + if (*zc != *lc && !(*zc == ' ' && *lc == '.')) + break; - zalloc_end_of_space = new_space + space_to_add; + /* + * The strings are equal so far. If we're at the end, then it's a match. + */ - new_space = 0; + if (*zc == '\0') + return TRUE; } - *result = zalloc_next_space; - zalloc_next_space += size; - simple_unlock(&zget_space_lock); - if (new_space != 0) - kmem_free(zone_map, new_space, space_to_add); - - return(KERN_SUCCESS); + return FALSE; } /* - * Steal memory for the zone package. Called from - * vm_page_bootstrap(). + * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and + * the buffer for the records has been allocated. */ -void -zone_steal_memory(void) -{ - zdata_size = round_page(128*sizeof(struct zone)); - zdata = pmap_steal_memory(zdata_size); -} +#define DO_LOGGING(z) (zrecords && (z) == zone_of_interest) -/* - * Fill a zone with enough memory to contain at least nelem elements. - * Memory is obtained with kmem_alloc_wired from the kernel_map. - * Return the number of elements actually put into the zone, which may - * be more than the caller asked for since the memory allocation is - * rounded up to a full page. - */ -int -zfill( - zone_t zone, - int nelem) -{ - kern_return_t kr; - vm_size_t size; - vm_offset_t memory; - int nalloc; +extern boolean_t zlog_ready; - assert(nelem > 0); - if (nelem <= 0) - return 0; - size = nelem * zone->elem_size; - size = round_page(size); - kr = kmem_alloc_wired(kernel_map, &memory, size); - if (kr != KERN_SUCCESS) - return 0; +#if CONFIG_ZLEAKS +#pragma mark - +#pragma mark Zone Leak Detection - zone_change(zone, Z_FOREIGN, TRUE); - zcram(zone, memory, size); - nalloc = size / zone->elem_size; - assert(nalloc >= nelem); +/* + * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding + * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a + * backtrace. Every free, we examine the table and determine if the allocation was being tracked, + * and stop tracking it if it was being tracked. + * + * We track the allocations in the zallocations hash table, which stores the address that was returned from + * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which + * stores the backtrace associated with that allocation. This provides uniquing for the relatively large + * backtraces - we don't store them more than once. + * + * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up + * a large amount of virtual space. + */ +#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ +#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ +#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ +#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ +uint32_t zleak_state = 0; /* State of collection, as above */ - return nalloc; -} +boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ +vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ +vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ +unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ /* - * Initialize the "zone of zones" which uses fixed memory allocated - * earlier in memory initialization. zone_bootstrap is called - * before zone_init. - */ -void -zone_bootstrap(void) -{ - vm_size_t zone_zone_size; - vm_offset_t zone_zone_space; + * Counters for allocation statistics. + */ - simple_lock_init(&all_zones_lock, ETAP_MISC_ZONE_ALL); +/* Times two active records want to occupy the same spot */ +unsigned int z_alloc_collisions = 0; +unsigned int z_trace_collisions = 0; - first_zone = ZONE_NULL; - last_zone = &first_zone; - num_zones = 0; +/* Times a new record lands on a spot previously occupied by a freed allocation */ +unsigned int z_alloc_overwrites = 0; +unsigned int z_trace_overwrites = 0; - simple_lock_init(&zget_space_lock, ETAP_MISC_ZONE_GET); - zalloc_next_space = zdata; - zalloc_end_of_space = zdata + zdata_size; - zalloc_wasted_space = 0; +/* Times a new alloc or trace is put into the hash table */ +unsigned int z_alloc_recorded = 0; +unsigned int z_trace_recorded = 0; + +/* Times zleak_log returned false due to not being able to acquire the lock */ +unsigned int z_total_conflicts = 0; + + +#pragma mark struct zallocation +/* + * Structure for keeping track of an allocation + * An allocation bucket is in use if its element is not NULL + */ +struct zallocation { + uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ + vm_size_t za_size; /* how much memory did this allocation take up? */ + uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ + /* TODO: #if this out */ + uint32_t za_hit_count; /* for determining effectiveness of hash function */ +}; + +/* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */ +uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM; +uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM; + +vm_size_t zleak_max_zonemap_size; + +/* Hashmaps of allocations and their corresponding traces */ +static struct zallocation* zallocations; +static struct ztrace* ztraces; + +/* not static so that panic can see this, see kern/debug.c */ +struct ztrace* top_ztrace; + +/* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */ +static lck_spin_t zleak_lock; +static lck_attr_t zleak_lock_attr; +static lck_grp_t zleak_lock_grp; +static lck_grp_attr_t zleak_lock_grp_attr; + +/* + * Initializes the zone leak monitor. Called from zone_init() + */ +static void +zleak_init(vm_size_t max_zonemap_size) +{ + char scratch_buf[16]; + boolean_t zleak_enable_flag = FALSE; + + zleak_max_zonemap_size = max_zonemap_size; + zleak_global_tracking_threshold = max_zonemap_size / 2; + zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; + +#if CONFIG_EMBEDDED + if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) { + zleak_enable_flag = TRUE; + printf("zone leak detection enabled\n"); + } else { + zleak_enable_flag = FALSE; + printf("zone leak detection disabled\n"); + } +#else /* CONFIG_EMBEDDED */ + /* -zleakoff (flag to disable zone leak monitor) */ + if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) { + zleak_enable_flag = FALSE; + printf("zone leak detection disabled\n"); + } else { + zleak_enable_flag = TRUE; + printf("zone leak detection enabled\n"); + } +#endif /* CONFIG_EMBEDDED */ + + /* zfactor=XXXX (override how often to sample the zone allocator) */ + if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { + printf("Zone leak factor override:%u\n", zleak_sample_factor); + } + + /* zleak-allocs=XXXX (override number of buckets in zallocations) */ + if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) { + printf("Zone leak alloc buckets override:%u\n", zleak_alloc_buckets); + /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ + if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) { + printf("Override isn't a power of two, bad things might happen!"); + } + } + + /* zleak-traces=XXXX (override number of buckets in ztraces) */ + if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) { + printf("Zone leak trace buckets override:%u\n", zleak_trace_buckets); + /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ + if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) { + printf("Override isn't a power of two, bad things might happen!"); + } + } + + /* allocate the zleak_lock */ + lck_grp_attr_setdefault(&zleak_lock_grp_attr); + lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr); + lck_attr_setdefault(&zleak_lock_attr); + lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr); + + if (zleak_enable_flag) { + zleak_state = ZLEAK_STATE_ENABLED; + } +} + +#if CONFIG_ZLEAKS + +/* + * Support for kern.zleak.active sysctl - a simplified + * version of the zleak_state variable. + */ +int +get_zleak_state(void) +{ + if (zleak_state & ZLEAK_STATE_FAILED) + return (-1); + if (zleak_state & ZLEAK_STATE_ACTIVE) + return (1); + return (0); +} + +#endif + + +kern_return_t +zleak_activate(void) +{ + kern_return_t retval; + vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation); + vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace); + void *allocations_ptr = NULL; + void *traces_ptr = NULL; + + /* Only one thread attempts to activate at a time */ + if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { + return KERN_SUCCESS; + } + + /* Indicate that we're doing the setup */ + lck_spin_lock(&zleak_lock); + if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { + lck_spin_unlock(&zleak_lock); + return KERN_SUCCESS; + } + + zleak_state |= ZLEAK_STATE_ACTIVATING; + lck_spin_unlock(&zleak_lock); + + /* Allocate and zero tables */ + retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size); + if (retval != KERN_SUCCESS) { + goto fail; + } + + retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size); + if (retval != KERN_SUCCESS) { + goto fail; + } + + bzero(allocations_ptr, z_alloc_size); + bzero(traces_ptr, z_trace_size); + + /* Everything's set. Install tables, mark active. */ + zallocations = allocations_ptr; + ztraces = traces_ptr; + + /* + * Initialize the top_ztrace to the first entry in ztraces, + * so we don't have to check for null in zleak_log + */ + top_ztrace = &ztraces[0]; + + /* + * Note that we do need a barrier between installing + * the tables and setting the active flag, because the zfree() + * path accesses the table without a lock if we're active. + */ + lck_spin_lock(&zleak_lock); + zleak_state |= ZLEAK_STATE_ACTIVE; + zleak_state &= ~ZLEAK_STATE_ACTIVATING; + lck_spin_unlock(&zleak_lock); + + return 0; + +fail: + /* + * If we fail to allocate memory, don't further tax + * the system by trying again. + */ + lck_spin_lock(&zleak_lock); + zleak_state |= ZLEAK_STATE_FAILED; + zleak_state &= ~ZLEAK_STATE_ACTIVATING; + lck_spin_unlock(&zleak_lock); + + if (allocations_ptr != NULL) { + kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size); + } + + if (traces_ptr != NULL) { + kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size); + } + + return retval; +} + +/* + * TODO: What about allocations that never get deallocated, + * especially ones with unique backtraces? Should we wait to record + * until after boot has completed? + * (How many persistent zallocs are there?) + */ + +/* + * This function records the allocation in the allocations table, + * and stores the associated backtrace in the traces table + * (or just increments the refcount if the trace is already recorded) + * If the allocation slot is in use, the old allocation is replaced with the new allocation, and + * the associated trace's refcount is decremented. + * If the trace slot is in use, it returns. + * The refcount is incremented by the amount of memory the allocation consumes. + * The return value indicates whether to try again next time. + */ +static boolean_t +zleak_log(uintptr_t* bt, + uintptr_t addr, + uint32_t depth, + vm_size_t allocation_size) +{ + /* Quit if there's someone else modifying the hash tables */ + if (!lck_spin_try_lock(&zleak_lock)) { + z_total_conflicts++; + return FALSE; + } + + struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; + + uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets); + struct ztrace* trace = &ztraces[trace_index]; + + allocation->za_hit_count++; + trace->zt_hit_count++; + + /* + * If the allocation bucket we want to be in is occupied, and if the occupier + * has the same trace as us, just bail. + */ + if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) { + z_alloc_collisions++; + + lck_spin_unlock(&zleak_lock); + return TRUE; + } + + /* STEP 1: Store the backtrace in the traces array. */ + /* A size of zero indicates that the trace bucket is free. */ + + if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) { + /* + * Different unique trace with same hash! + * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated + * and get out of the way for later chances + */ + trace->zt_collisions++; + z_trace_collisions++; + + lck_spin_unlock(&zleak_lock); + return TRUE; + } else if (trace->zt_size > 0) { + /* Same trace, already added, so increment refcount */ + trace->zt_size += allocation_size; + } else { + /* Found an unused trace bucket, record the trace here! */ + if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */ + z_trace_overwrites++; + + z_trace_recorded++; + trace->zt_size = allocation_size; + memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) ); + + trace->zt_depth = depth; + trace->zt_collisions = 0; + } + + /* STEP 2: Store the allocation record in the allocations array. */ + + if (allocation->za_element != (uintptr_t) 0) { + /* + * Straight up replace any allocation record that was there. We don't want to do the work + * to preserve the allocation entries that were there, because we only record a subset of the + * allocations anyways. + */ + + z_alloc_collisions++; + + struct ztrace* associated_trace = &ztraces[allocation->za_trace_index]; + /* Knock off old allocation's size, not the new allocation */ + associated_trace->zt_size -= allocation->za_size; + } else if (allocation->za_trace_index != 0) { + /* Slot previously used but not currently in use */ + z_alloc_overwrites++; + } + + allocation->za_element = addr; + allocation->za_trace_index = trace_index; + allocation->za_size = allocation_size; + + z_alloc_recorded++; + + if (top_ztrace->zt_size < trace->zt_size) + top_ztrace = trace; + + lck_spin_unlock(&zleak_lock); + return TRUE; +} + +/* + * Free the allocation record and release the stacktrace. + * This should be as fast as possible because it will be called for every free. + */ +static void +zleak_free(uintptr_t addr, + vm_size_t allocation_size) +{ + if (addr == (uintptr_t) 0) + return; + + struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; + + /* Double-checked locking: check to find out if we're interested, lock, check to make + * sure it hasn't changed, then modify it, and release the lock. + */ + + if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { + /* if the allocation was the one, grab the lock, check again, then delete it */ + lck_spin_lock(&zleak_lock); + + if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { + struct ztrace *trace; + + /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */ + if (allocation->za_size != allocation_size) { + panic("Freeing as size %lu memory that was allocated with size %lu\n", + (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); + } + + trace = &ztraces[allocation->za_trace_index]; + + /* size of 0 indicates trace bucket is unused */ + if (trace->zt_size > 0) { + trace->zt_size -= allocation_size; + } + + /* A NULL element means the allocation bucket is unused */ + allocation->za_element = 0; + } + lck_spin_unlock(&zleak_lock); + } +} + +#endif /* CONFIG_ZLEAKS */ + +/* These functions outside of CONFIG_ZLEAKS because they are also used in + * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix. + */ + +/* + * This function captures a backtrace from the current stack and + * returns the number of frames captured, limited by max_frames. + * It's fast because it does no checking to make sure there isn't bad data. + * Since it's only called from threads that we're going to keep executing, + * if there's bad data we were going to die eventually. + * If this function is inlined, it doesn't record the frame of the function it's inside. + * (because there's no stack frame!) + */ + +uint32_t +fastbacktrace(uintptr_t* bt, uint32_t max_frames) +{ + uintptr_t* frameptr = NULL, *frameptr_next = NULL; + uintptr_t retaddr = 0; + uint32_t frame_index = 0, frames = 0; + uintptr_t kstackb, kstackt; + thread_t cthread = current_thread(); + + if (__improbable(cthread == NULL)) + return 0; + + kstackb = cthread->kernel_stack; + kstackt = kstackb + kernel_stack_size; + /* Load stack frame pointer (EBP on x86) into frameptr */ + frameptr = __builtin_frame_address(0); + + while (frameptr != NULL && frame_index < max_frames ) { + /* Next frame pointer is pointed to by the previous one */ + frameptr_next = (uintptr_t*) *frameptr; + + /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */ + /* That also means the return address is worthless, so don't record it */ + if (frameptr_next == NULL) + break; + /* Verify thread stack bounds */ + if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb)) + break; + /* Pull return address from one spot above the frame pointer */ + retaddr = *(frameptr + 1); + + /* Store it in the backtrace array */ + bt[frame_index++] = retaddr; + + frameptr = frameptr_next; + } + + /* Save the number of frames captured for return value */ + frames = frame_index; + + /* Fill in the rest of the backtrace with zeros */ + while (frame_index < max_frames) + bt[frame_index++] = 0; + + return frames; +} + +/* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */ +uintptr_t +hash_mix(uintptr_t x) +{ +#ifndef __LP64__ + x += ~(x << 15); + x ^= (x >> 10); + x += (x << 3 ); + x ^= (x >> 6 ); + x += ~(x << 11); + x ^= (x >> 16); +#else + x += ~(x << 32); + x ^= (x >> 22); + x += ~(x << 13); + x ^= (x >> 8 ); + x += (x << 3 ); + x ^= (x >> 15); + x += ~(x << 27); + x ^= (x >> 31); +#endif + return x; +} + +uint32_t +hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) +{ + + uintptr_t hash = 0; + uintptr_t mask = max_size - 1; + + while (depth) { + hash += bt[--depth]; + } + + hash = hash_mix(hash) & mask; + + assert(hash < max_size); + + return (uint32_t) hash; +} + +/* + * TODO: Determine how well distributed this is + * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask + */ +uint32_t +hashaddr(uintptr_t pt, uint32_t max_size) +{ + uintptr_t hash = 0; + uintptr_t mask = max_size - 1; + + hash = hash_mix(pt) & mask; + + assert(hash < max_size); + + return (uint32_t) hash; +} + +/* End of all leak-detection code */ +#pragma mark - + +/* + * zinit initializes a new zone. The zone data structures themselves + * are stored in a zone, which is initially a static structure that + * is initialized by zone_init. + */ +zone_t +zinit( + vm_size_t size, /* the size of an element */ + vm_size_t max, /* maximum memory to use */ + vm_size_t alloc, /* allocation size */ + const char *name) /* a name for the zone */ +{ + zone_t z; + + if (zone_zone == ZONE_NULL) { + + z = (struct zone *)zdata; + zdata += sizeof(*z); + zdata_size -= sizeof(*z); + } else + z = (zone_t) zalloc(zone_zone); + + if (z == ZONE_NULL) + return(ZONE_NULL); + + /* + * Round off all the parameters appropriately. + */ + if (size < sizeof(z->free_elements)) + size = sizeof(z->free_elements); + size = ((size-1) + sizeof(z->free_elements)) - + ((size-1) % sizeof(z->free_elements)); + if (alloc == 0) + alloc = PAGE_SIZE; + alloc = round_page(alloc); + max = round_page(max); + /* + * we look for an allocation size with less than 1% waste + * up to 5 pages in size... + * otherwise, we look for an allocation size with least fragmentation + * in the range of 1 - 5 pages + * This size will be used unless + * the user suggestion is larger AND has less fragmentation + */ +#if ZONE_ALIAS_ADDR + if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10)) + alloc = PAGE_SIZE; + else +#endif +#if defined(__LP64__) + if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8)) +#endif + { + vm_size_t best, waste; unsigned int i; + best = PAGE_SIZE; + waste = best % size; + + for (i = 1; i <= 5; i++) { + vm_size_t tsize, twaste; + + tsize = i * PAGE_SIZE; + + if ((tsize % size) < (tsize / 100)) { + alloc = tsize; + goto use_this_allocation; + } + twaste = tsize % size; + if (twaste < waste) + best = tsize, waste = twaste; + } + if (alloc <= best || (alloc % size >= waste)) + alloc = best; + } +use_this_allocation: + if (max && (max < alloc)) + max = alloc; + + z->free_elements = 0; + z->cur_size = 0; + z->max_size = max; + z->elem_size = size; + z->alloc_size = alloc; + z->zone_name = name; + z->count = 0; + z->sum_count = 0LL; + z->doing_alloc = FALSE; + z->doing_gc = FALSE; + z->exhaustible = FALSE; + z->collectable = TRUE; + z->allows_foreign = FALSE; + z->expandable = TRUE; + z->waiting = FALSE; + z->async_pending = FALSE; + z->caller_acct = TRUE; + z->noencrypt = FALSE; + z->no_callout = FALSE; + z->async_prio_refill = FALSE; + z->gzalloc_exempt = FALSE; + z->alignment_required = FALSE; + z->prio_refill_watermark = 0; + z->zone_replenish_thread = NULL; +#if CONFIG_ZLEAKS + z->num_allocs = 0; + z->num_frees = 0; + z->zleak_capture = 0; + z->zleak_on = FALSE; +#endif /* CONFIG_ZLEAKS */ + +#if ZONE_DEBUG + z->active_zones.next = z->active_zones.prev = NULL; + zone_debug_enable(z); +#endif /* ZONE_DEBUG */ + lock_zone_init(z); + + /* + * Add the zone to the all-zones list. + * If we are tracking zone info per task, and we have + * already used all the available stat slots, then keep + * using the overflow zone slot. + */ + z->next_zone = ZONE_NULL; + thread_call_setup(&z->call_async_alloc, zalloc_async, z); + simple_lock(&all_zones_lock); + *last_zone = z; + last_zone = &z->next_zone; + z->index = num_zones; + if (zinfo_per_task) { + if (num_zones > ZONES_MAX) + z->index = ZONES_MAX; + } + num_zones++; + simple_unlock(&all_zones_lock); + + /* + * Check if we should be logging this zone. If so, remember the zone pointer. + */ + if (log_this_zone(z->zone_name, zone_name_to_log)) { + zone_of_interest = z; + } + + /* + * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are + * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. zlog_ready is set to + * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one + * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again + * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized + * right now. + */ + if (zone_of_interest != NULL && zrecords == NULL && zlog_ready) { + if (kmem_alloc(kernel_map, (vm_offset_t *)&zrecords, log_records * sizeof(struct zrecord)) == KERN_SUCCESS) { + + /* + * We got the memory for the log. Zero it out since the code needs this to identify unused records. + * At this point, everything is set up and we're ready to start logging this zone. + */ + + bzero((void *)zrecords, log_records * sizeof(struct zrecord)); + printf("zone: logging started for zone %s (%p)\n", zone_of_interest->zone_name, zone_of_interest); + + } else { + printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); + zone_of_interest = NULL; + } + } +#if CONFIG_GZALLOC + gzalloc_zone_init(z); +#endif + return(z); +} +unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated; + +static void zone_replenish_thread(zone_t); + +/* High priority VM privileged thread used to asynchronously refill a designated + * zone, such as the reserved VM map entry zone. + */ +static void zone_replenish_thread(zone_t z) { + vm_size_t free_size; + current_thread()->options |= TH_OPT_VMPRIV; + + for (;;) { + lock_zone(z); + assert(z->prio_refill_watermark != 0); + while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) { + assert(z->doing_alloc == FALSE); + assert(z->async_prio_refill == TRUE); + + unlock_zone(z); + int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; + vm_offset_t space, alloc_size; + kern_return_t kr; + + if (vm_pool_low()) + alloc_size = round_page(z->elem_size); + else + alloc_size = z->alloc_size; + + if (z->noencrypt) + zflags |= KMA_NOENCRYPT; + + kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags); + + if (kr == KERN_SUCCESS) { +#if ZONE_ALIAS_ADDR + if (alloc_size == PAGE_SIZE) + space = zone_alias_addr(space); +#endif + zcram(z, space, alloc_size); + } else if (kr == KERN_RESOURCE_SHORTAGE) { + VM_PAGE_WAIT(); + } else if (kr == KERN_NO_SPACE) { + kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags); + if (kr == KERN_SUCCESS) { +#if ZONE_ALIAS_ADDR + if (alloc_size == PAGE_SIZE) + space = zone_alias_addr(space); +#endif + zcram(z, space, alloc_size); + } else { + assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC); + thread_block(THREAD_CONTINUE_NULL); + } + } + + lock_zone(z); + zone_replenish_loops++; + } + + unlock_zone(z); + assert_wait(&z->zone_replenish_thread, THREAD_UNINT); + thread_block(THREAD_CONTINUE_NULL); + zone_replenish_wakeups++; + } +} + +void +zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) { + z->prio_refill_watermark = low_water_mark; + + z->async_prio_refill = TRUE; + OSMemoryBarrier(); + kern_return_t tres = kernel_thread_start_priority((thread_continue_t)zone_replenish_thread, z, MAXPRI_KERNEL, &z->zone_replenish_thread); + + if (tres != KERN_SUCCESS) { + panic("zone_prio_refill_configure, thread create: 0x%x", tres); + } + + thread_deallocate(z->zone_replenish_thread); +} + +/* + * Cram the given memory into the specified zone. + */ +void +zcram( + zone_t zone, + vm_offset_t newmem, + vm_size_t size) +{ + vm_size_t elem_size; + boolean_t from_zm = FALSE; + + /* Basic sanity checks */ + assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); + assert(!zone->collectable || zone->allows_foreign + || (from_zone_map(newmem, size))); + + elem_size = zone->elem_size; + + if (from_zone_map(newmem, size)) + from_zm = TRUE; + + if (from_zm) + zone_page_init(newmem, size); + + lock_zone(zone); + while (size >= elem_size) { + free_to_zone(zone, (void *) newmem); + if (from_zm) + zone_page_alloc(newmem, elem_size); + zone->count++; /* compensate for free_to_zone */ + size -= elem_size; + newmem += elem_size; + zone->cur_size += elem_size; + } + unlock_zone(zone); +} + + +/* + * Steal memory for the zone package. Called from + * vm_page_bootstrap(). + */ +void +zone_steal_memory(void) +{ +#if CONFIG_GZALLOC + gzalloc_configure(); +#endif + /* Request enough early memory to get to the pmap zone */ + zdata_size = 12 * sizeof(struct zone); + zdata = (vm_offset_t)pmap_steal_memory(round_page(zdata_size)); +} + + +/* + * Fill a zone with enough memory to contain at least nelem elements. + * Memory is obtained with kmem_alloc_kobject from the kernel_map. + * Return the number of elements actually put into the zone, which may + * be more than the caller asked for since the memory allocation is + * rounded up to a full page. + */ +int +zfill( + zone_t zone, + int nelem) +{ + kern_return_t kr; + vm_size_t size; + vm_offset_t memory; + int nalloc; + + assert(nelem > 0); + if (nelem <= 0) + return 0; + size = nelem * zone->elem_size; + size = round_page(size); + kr = kmem_alloc_kobject(kernel_map, &memory, size); + if (kr != KERN_SUCCESS) + return 0; + + zone_change(zone, Z_FOREIGN, TRUE); + zcram(zone, memory, size); + nalloc = (int)(size / zone->elem_size); + assert(nalloc >= nelem); + + return nalloc; +} + +/* + * Initialize the "zone of zones" which uses fixed memory allocated + * earlier in memory initialization. zone_bootstrap is called + * before zone_init. + */ +void +zone_bootstrap(void) +{ + char temp_buf[16]; + + if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) { + zinfo_per_task = TRUE; + } + + /* do we want corruption-style debugging with zlog? */ + if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) { + corruption_debug_flag = TRUE; + } + + /* Set up zone poisoning */ + + free_check_sample_factor = ZP_DEFAULT_SAMPLING_FACTOR; + + /* support for old zone poisoning boot-args */ + if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { + free_check_sample_factor = 1; + } + if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { + free_check_sample_factor = 0; + } + + /* zp-factor=XXXX (override how often to poison freed zone elements) */ + if (PE_parse_boot_argn("zp-factor", &free_check_sample_factor, sizeof(free_check_sample_factor))) { + printf("Zone poisoning factor override:%u\n", free_check_sample_factor); + } + + /* + * Check for and set up zone leak detection if requested via boot-args. We recognized two + * boot-args: + * + * zlog= + * zrecs= + * + * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to + * control the size of the log. If zrecs is not specified, a default value is used. + */ + + if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { + if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { + + /* + * Don't allow more than ZRECORDS_MAX records even if the user asked for more. + * This prevents accidentally hogging too much kernel memory and making the system + * unusable. + */ + + log_records = MIN(ZRECORDS_MAX, log_records); + + } else { + log_records = ZRECORDS_DEFAULT; + } + } + + simple_lock_init(&all_zones_lock, 0); + + first_zone = ZONE_NULL; + last_zone = &first_zone; + num_zones = 0; /* assertion: nobody else called zinit before us */ assert(zone_zone == ZONE_NULL); zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone), sizeof(struct zone), "zones"); zone_change(zone_zone, Z_COLLECT, FALSE); - zone_zone_size = zalloc_end_of_space - zalloc_next_space; - zget_space(zone_zone_size, &zone_zone_space); - zcram(zone_zone, zone_zone_space, zone_zone_size); + zone_change(zone_zone, Z_CALLERACCT, FALSE); + zone_change(zone_zone, Z_NOENCRYPT, TRUE); + + zcram(zone_zone, zdata, zdata_size); + + /* initialize fake zones and zone info if tracking by task */ + if (zinfo_per_task) { + vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS; + unsigned int i; + + for (i = 0; i < num_fake_zones; i++) + fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i); + zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX, + zisize, "per task zinfo"); + zone_change(zinfo_zone, Z_CALLERACCT, FALSE); + } +} + +void +zinfo_task_init(task_t task) +{ + if (zinfo_per_task) { + task->tkm_zinfo = zalloc(zinfo_zone); + memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS); + } else { + task->tkm_zinfo = NULL; + } +} + +void +zinfo_task_free(task_t task) +{ + assert(task != kernel_task); + if (task->tkm_zinfo != NULL) { + zfree(zinfo_zone, task->tkm_zinfo); + task->tkm_zinfo = NULL; + } +} + +void +zone_init( + vm_size_t max_zonemap_size) +{ + kern_return_t retval; + vm_offset_t zone_min; + vm_offset_t zone_max; + + retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, + FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT, + &zone_map); + + if (retval != KERN_SUCCESS) + panic("zone_init: kmem_suballoc failed"); + zone_max = zone_min + round_page(max_zonemap_size); +#if CONFIG_GZALLOC + gzalloc_init(max_zonemap_size); +#endif + /* + * Setup garbage collection information: + */ + zone_map_min_address = zone_min; + zone_map_max_address = zone_max; + + zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); + zone_page_table_used_size = sizeof(zone_page_table); + + zone_page_table_second_level_size = 1; + zone_page_table_second_level_shift_amount = 0; + + /* + * Find the power of 2 for the second level that allows + * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE + * slots. + */ + while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) { + zone_page_table_second_level_size <<= 1; + zone_page_table_second_level_shift_amount++; + } + + lck_grp_attr_setdefault(&zone_lck_grp_attr); + lck_grp_init(&zone_lck_grp, "zones", &zone_lck_grp_attr); + lck_attr_setdefault(&zone_lck_attr); + lck_mtx_init_ext(&zone_gc_lock, &zone_lck_ext, &zone_lck_grp, &zone_lck_attr); + +#if CONFIG_ZLEAKS + /* + * Initialize the zone leak monitor + */ + zleak_init(max_zonemap_size); +#endif /* CONFIG_ZLEAKS */ +} + +void +zone_page_table_expand(zone_page_index_t pindex) +{ + unsigned int first_index; + struct zone_page_table_entry * volatile * first_level_ptr; + + assert(pindex < zone_pages); + + first_index = zone_page_table_first_level_slot(pindex); + first_level_ptr = &zone_page_table[first_index]; + + if (*first_level_ptr == NULL) { + /* + * We were able to verify the old first-level slot + * had NULL, so attempt to populate it. + */ + + vm_offset_t second_level_array = 0; + vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry)); + zone_page_index_t i; + struct zone_page_table_entry *entry_array; + + if (kmem_alloc_kobject(zone_map, &second_level_array, + second_level_size) != KERN_SUCCESS) { + panic("zone_page_table_expand"); + } + + /* + * zone_gc() may scan the "zone_page_table" directly, + * so make sure any slots have a valid unused state. + */ + entry_array = (struct zone_page_table_entry *)second_level_array; + for (i=0; i < zone_page_table_second_level_size; i++) { + entry_array[i].alloc_count = ZONE_PAGE_UNUSED; + entry_array[i].collect_count = 0; + } + + if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) { + /* Old slot was NULL, replaced with expanded level */ + OSAddAtomicLong(second_level_size, &zone_page_table_used_size); + } else { + /* Old slot was not NULL, someone else expanded first */ + kmem_free(zone_map, second_level_array, second_level_size); + } + } else { + /* Old slot was not NULL, already been expanded */ + } +} + +struct zone_page_table_entry * +zone_page_table_lookup(zone_page_index_t pindex) +{ + unsigned int first_index = zone_page_table_first_level_slot(pindex); + struct zone_page_table_entry *second_level = zone_page_table[first_index]; + + if (second_level) { + return &second_level[zone_page_table_second_level_slot(pindex)]; + } + + return NULL; +} + +extern volatile SInt32 kfree_nop_count; + +#pragma mark - +#pragma mark zalloc_canblock + +/* + * zalloc returns an element from the specified zone. + */ +void * +zalloc_canblock( + register zone_t zone, + boolean_t canblock) +{ + vm_offset_t addr = 0; + kern_return_t retval; + uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ + int numsaved = 0; + int i; + boolean_t zone_replenish_wakeup = FALSE; + boolean_t did_gzalloc; + + did_gzalloc = FALSE; +#if CONFIG_ZLEAKS + uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ +#endif /* CONFIG_ZLEAKS */ + + assert(zone != ZONE_NULL); + +#if CONFIG_GZALLOC + addr = gzalloc_alloc(zone, canblock); + did_gzalloc = (addr != 0); +#endif + + lock_zone(zone); + + /* + * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. + */ + + if (DO_LOGGING(zone)) + numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH); + +#if CONFIG_ZLEAKS + /* + * Zone leak detection: capture a backtrace every zleak_sample_factor + * allocations in this zone. + */ + if (zone->zleak_on && (zone->zleak_capture++ % zleak_sample_factor == 0)) { + zone->zleak_capture = 1; + + /* Avoid backtracing twice if zone logging is on */ + if (numsaved == 0 ) + zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); + else + zleak_tracedepth = numsaved; + } +#endif /* CONFIG_ZLEAKS */ + + if (__probable(addr == 0)) + alloc_from_zone(zone, (void **) &addr); + + if (zone->async_prio_refill && + ((zone->cur_size - (zone->count * zone->elem_size)) < + (zone->prio_refill_watermark * zone->elem_size))) { + zone_replenish_wakeup = TRUE; + zone_replenish_wakeups_initiated++; + } + + while ((addr == 0) && canblock) { + /* + * If nothing was there, try to get more + */ + if (zone->doing_alloc) { + /* + * Someone is allocating memory for this zone. + * Wait for it to show up, then try again. + */ + zone->waiting = TRUE; + zone_sleep(zone); + } else if (zone->doing_gc) { + /* zone_gc() is running. Since we need an element + * from the free list that is currently being + * collected, set the waiting bit and try to + * interrupt the GC process, and try again + * when we obtain the lock. + */ + zone->waiting = TRUE; + zone_sleep(zone); + } else { + vm_offset_t space; + vm_size_t alloc_size; + int retry = 0; + + if ((zone->cur_size + zone->elem_size) > + zone->max_size) { + if (zone->exhaustible) + break; + if (zone->expandable) { + /* + * We're willing to overflow certain + * zones, but not without complaining. + * + * This is best used in conjunction + * with the collectable flag. What we + * want is an assurance we can get the + * memory back, assuming there's no + * leak. + */ + zone->max_size += (zone->max_size >> 1); + } else { + unlock_zone(zone); + + panic_include_zprint = TRUE; +#if CONFIG_ZLEAKS + if (zleak_state & ZLEAK_STATE_ACTIVE) + panic_include_ztrace = TRUE; +#endif /* CONFIG_ZLEAKS */ + panic("zalloc: zone \"%s\" empty.", zone->zone_name); + } + } + zone->doing_alloc = TRUE; + unlock_zone(zone); + + for (;;) { + int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; + + if (vm_pool_low() || retry >= 1) + alloc_size = + round_page(zone->elem_size); + else + alloc_size = zone->alloc_size; + + if (zone->noencrypt) + zflags |= KMA_NOENCRYPT; + + retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags); + if (retval == KERN_SUCCESS) { +#if ZONE_ALIAS_ADDR + if (alloc_size == PAGE_SIZE) + space = zone_alias_addr(space); +#endif + +#if CONFIG_ZLEAKS + if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) { + if (zone_map->size >= zleak_global_tracking_threshold) { + kern_return_t kr; + + kr = zleak_activate(); + if (kr != KERN_SUCCESS) { + printf("Failed to activate live zone leak debugging (%d).\n", kr); + } + } + } + + if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) { + if (zone->cur_size > zleak_per_zone_tracking_threshold) { + zone->zleak_on = TRUE; + } + } +#endif /* CONFIG_ZLEAKS */ + + zcram(zone, space, alloc_size); + + break; + } else if (retval != KERN_RESOURCE_SHORTAGE) { + retry++; + + if (retry == 2) { + zone_gc(TRUE); + printf("zalloc did gc\n"); + zone_display_zprint(); + } + if (retry == 3) { + panic_include_zprint = TRUE; +#if CONFIG_ZLEAKS + if ((zleak_state & ZLEAK_STATE_ACTIVE)) { + panic_include_ztrace = TRUE; + } +#endif /* CONFIG_ZLEAKS */ + /* TODO: Change this to something more descriptive, perhaps + * 'zone_map exhausted' only if we get retval 3 (KERN_NO_SPACE). + */ + panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count); + } + } else { + break; + } + } + lock_zone(zone); + zone->doing_alloc = FALSE; + if (zone->waiting) { + zone->waiting = FALSE; + zone_wakeup(zone); + } + alloc_from_zone(zone, (void **) &addr); + if (addr == 0 && + retval == KERN_RESOURCE_SHORTAGE) { + unlock_zone(zone); + + VM_PAGE_WAIT(); + lock_zone(zone); + } + } + if (addr == 0) + alloc_from_zone(zone, (void **) &addr); + } + +#if CONFIG_ZLEAKS + /* Zone leak detection: + * If we're sampling this allocation, add it to the zleaks hash table. + */ + if (addr && zleak_tracedepth > 0) { + /* Sampling can fail if another sample is happening at the same time in a different zone. */ + if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { + /* If it failed, roll back the counter so we sample the next allocation instead. */ + zone->zleak_capture = zleak_sample_factor; + } + } +#endif /* CONFIG_ZLEAKS */ + + + /* + * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is + * suspected, so this code rarely executes. We need to do this code while still holding the zone lock + * since it protects the various log related data structures. + */ + + if (DO_LOGGING(zone) && addr) { + + /* + * Look for a place to record this new allocation. We implement two different logging strategies + * depending on whether we're looking for the source of a zone leak or a zone corruption. When looking + * for a leak, we want to log as many allocations as possible in order to clearly identify the leaker + * among all the records. So we look for an unused slot in the log and fill that in before overwriting + * an old entry. When looking for a corruption however, it's better to have a chronological log of all + * the allocations and frees done in the zone so that the history of operations for a specific zone + * element can be inspected. So in this case, we treat the log as a circular buffer and overwrite the + * oldest entry whenever a new one needs to be added. + * + * The corruption_debug_flag flag tells us what style of logging to do. It's set if we're supposed to be + * doing corruption style logging (indicated via -zc in the boot-args). + */ + + if (!corruption_debug_flag && zrecords[zcurrent].z_element && zrecorded < log_records) { + + /* + * If we get here, we're doing leak style logging and there's still some unused entries in + * the log (since zrecorded is smaller than the size of the log). Look for an unused slot + * starting at zcurrent and wrap-around if we reach the end of the buffer. If the buffer + * is already full, we just fall through and overwrite the element indexed by zcurrent. + */ + + for (i = zcurrent; i < log_records; i++) { + if (zrecords[i].z_element == NULL) { + zcurrent = i; + goto empty_slot; + } + } + + for (i = 0; i < zcurrent; i++) { + if (zrecords[i].z_element == NULL) { + zcurrent = i; + goto empty_slot; + } + } + } + + /* + * Save a record of this allocation + */ + +empty_slot: + if (zrecords[zcurrent].z_element == NULL) + zrecorded++; + + zrecords[zcurrent].z_element = (void *)addr; + zrecords[zcurrent].z_time = ztime++; + zrecords[zcurrent].z_opcode = ZOP_ALLOC; + + for (i = 0; i < numsaved; i++) + zrecords[zcurrent].z_pc[i] = (void*) zbt[i]; + + for (; i < MAX_ZTRACE_DEPTH; i++) + zrecords[zcurrent].z_pc[i] = 0; + + zcurrent++; + + if (zcurrent >= log_records) + zcurrent = 0; + } + + if ((addr == 0) && !canblock && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) { + zone->async_pending = TRUE; + unlock_zone(zone); + thread_call_enter(&zone->call_async_alloc); + lock_zone(zone); + alloc_from_zone(zone, (void **) &addr); + } + +#if ZONE_DEBUG + if (!did_gzalloc && addr && zone_debug_enabled(zone)) { + enqueue_tail(&zone->active_zones, (queue_entry_t)addr); + addr += ZONE_DEBUG_OFFSET; + } +#endif + +#if CONFIG_ZLEAKS + if (addr != 0) { + zone->num_allocs++; + } +#endif /* CONFIG_ZLEAKS */ + + unlock_zone(zone); + + if (zone_replenish_wakeup) + thread_wakeup(&zone->zone_replenish_thread); + + TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr); + + if (addr) { + thread_t thr = current_thread(); + task_t task; + zinfo_usage_t zinfo; + vm_size_t sz = zone->elem_size; + + if (zone->caller_acct) + ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz); + else + ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz); + + if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) + OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc); + } + return((void *)addr); +} + + +void * +zalloc( + register zone_t zone) +{ + return( zalloc_canblock(zone, TRUE) ); +} + +void * +zalloc_noblock( + register zone_t zone) +{ + return( zalloc_canblock(zone, FALSE) ); +} + +void +zalloc_async( + thread_call_param_t p0, + __unused thread_call_param_t p1) +{ + void *elt; + + elt = zalloc_canblock((zone_t)p0, TRUE); + zfree((zone_t)p0, elt); + lock_zone(((zone_t)p0)); + ((zone_t)p0)->async_pending = FALSE; + unlock_zone(((zone_t)p0)); +} + +/* + * zget returns an element from the specified zone + * and immediately returns nothing if there is nothing there. + * + * This form should be used when you can not block (like when + * processing an interrupt). + * + * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its + * friend vm_page_more_fictitious can block, so it doesn't seem like + * this is used for interrupts any more.... + */ +void * +zget( + register zone_t zone) +{ + vm_offset_t addr; + +#if CONFIG_ZLEAKS + uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */ + uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ +#endif /* CONFIG_ZLEAKS */ + + assert( zone != ZONE_NULL ); + + if (!lock_try_zone(zone)) + return NULL; + +#if CONFIG_ZLEAKS + /* + * Zone leak detection: capture a backtrace + */ + if (zone->zleak_on && (zone->zleak_capture++ % zleak_sample_factor == 0)) { + zone->zleak_capture = 1; + zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); + } +#endif /* CONFIG_ZLEAKS */ + + alloc_from_zone(zone, (void **) &addr); +#if ZONE_DEBUG + if (addr && zone_debug_enabled(zone)) { + enqueue_tail(&zone->active_zones, (queue_entry_t)addr); + addr += ZONE_DEBUG_OFFSET; + } +#endif /* ZONE_DEBUG */ + +#if CONFIG_ZLEAKS + /* + * Zone leak detection: record the allocation + */ + if (zone->zleak_on && zleak_tracedepth > 0 && addr) { + /* Sampling can fail if another sample is happening at the same time in a different zone. */ + if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { + /* If it failed, roll back the counter so we sample the next allocation instead. */ + zone->zleak_capture = zleak_sample_factor; + } + } + + if (addr != 0) { + zone->num_allocs++; + } +#endif /* CONFIG_ZLEAKS */ + + unlock_zone(zone); + + return((void *) addr); +} + +/* Keep this FALSE by default. Large memory machine run orders of magnitude + slower in debug mode when true. Use debugger to enable if needed */ +/* static */ boolean_t zone_check = FALSE; + +static zone_t zone_last_bogus_zone = ZONE_NULL; +static vm_offset_t zone_last_bogus_elem = 0; + +void +zfree( + register zone_t zone, + void *addr) +{ + vm_offset_t elem = (vm_offset_t) addr; + void *zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */ + int numsaved = 0; + boolean_t gzfreed = FALSE; + + assert(zone != ZONE_NULL); + + /* + * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. + */ + + if (DO_LOGGING(zone)) + numsaved = OSBacktrace(&zbt[0], MAX_ZTRACE_DEPTH); + +#if MACH_ASSERT + /* Basic sanity checks */ + if (zone == ZONE_NULL || elem == (vm_offset_t)0) + panic("zfree: NULL"); + /* zone_gc assumes zones are never freed */ + if (zone == zone_zone) + panic("zfree: freeing to zone_zone breaks zone_gc!"); +#endif + +#if CONFIG_GZALLOC + gzfreed = gzalloc_free(zone, addr); +#endif + + TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr); + + if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign && + !from_zone_map(elem, zone->elem_size))) { +#if MACH_ASSERT + panic("zfree: non-allocated memory in collectable zone!"); +#endif + zone_last_bogus_zone = zone; + zone_last_bogus_elem = elem; + return; + } + + lock_zone(zone); + + /* + * See if we're doing logging on this zone. There are two styles of logging used depending on + * whether we're trying to catch a leak or corruption. See comments above in zalloc for details. + */ + + if (DO_LOGGING(zone)) { + int i; + + if (corruption_debug_flag) { + + /* + * We're logging to catch a corruption. Add a record of this zfree operation + * to log. + */ + + if (zrecords[zcurrent].z_element == NULL) + zrecorded++; + + zrecords[zcurrent].z_element = (void *)addr; + zrecords[zcurrent].z_time = ztime++; + zrecords[zcurrent].z_opcode = ZOP_FREE; + + for (i = 0; i < numsaved; i++) + zrecords[zcurrent].z_pc[i] = zbt[i]; + + for (; i < MAX_ZTRACE_DEPTH; i++) + zrecords[zcurrent].z_pc[i] = 0; + + zcurrent++; + + if (zcurrent >= log_records) + zcurrent = 0; + + } else { + + /* + * We're logging to catch a leak. Remove any record we might have for this + * element since it's being freed. Note that we may not find it if the buffer + * overflowed and that's OK. Since the log is of a limited size, old records + * get overwritten if there are more zallocs than zfrees. + */ + + for (i = 0; i < log_records; i++) { + if (zrecords[i].z_element == addr) { + zrecords[i].z_element = NULL; + zcurrent = i; + zrecorded--; + break; + } + } + } + } + + +#if ZONE_DEBUG + if (!gzfreed && zone_debug_enabled(zone)) { + queue_t tmp_elem; + + elem -= ZONE_DEBUG_OFFSET; + if (zone_check) { + /* check the zone's consistency */ + + for (tmp_elem = queue_first(&zone->active_zones); + !queue_end(tmp_elem, &zone->active_zones); + tmp_elem = queue_next(tmp_elem)) + if (elem == (vm_offset_t)tmp_elem) + break; + if (elem != (vm_offset_t)tmp_elem) + panic("zfree()ing element from wrong zone"); + } + remqueue((queue_t) elem); + } +#endif /* ZONE_DEBUG */ + if (zone_check) { + vm_offset_t this; + + /* check the zone's consistency */ + + for (this = zone->free_elements; + this != 0; + this = * (vm_offset_t *) this) + if (!pmap_kernel_va(this) || this == elem) + panic("zfree"); + } + + if (__probable(!gzfreed)) + free_to_zone(zone, (void *) elem); + +#if MACH_ASSERT + if (zone->count < 0) + panic("zfree: count < 0!"); +#endif + + +#if CONFIG_ZLEAKS + zone->num_frees++; + + /* + * Zone leak detection: un-track the allocation + */ + if (zone->zleak_on) { + zleak_free(elem, zone->elem_size); + } +#endif /* CONFIG_ZLEAKS */ + + /* + * If elements have one or more pages, and memory is low, + * request to run the garbage collection in the zone the next + * time the pageout thread runs. + */ + if (zone->elem_size >= PAGE_SIZE && + vm_pool_low()){ + zone_gc_forced = TRUE; + } + unlock_zone(zone); + + { + thread_t thr = current_thread(); + task_t task; + zinfo_usage_t zinfo; + vm_size_t sz = zone->elem_size; + + if (zone->caller_acct) + ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz); + else + ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz); + + if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) + OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free); + } +} + + +/* Change a zone's flags. + * This routine must be called immediately after zinit. + */ +void +zone_change( + zone_t zone, + unsigned int item, + boolean_t value) +{ + assert( zone != ZONE_NULL ); + assert( value == TRUE || value == FALSE ); + + switch(item){ + case Z_NOENCRYPT: + zone->noencrypt = value; + break; + case Z_EXHAUST: + zone->exhaustible = value; + break; + case Z_COLLECT: + zone->collectable = value; + break; + case Z_EXPAND: + zone->expandable = value; + break; + case Z_FOREIGN: + zone->allows_foreign = value; + break; + case Z_CALLERACCT: + zone->caller_acct = value; + break; + case Z_NOCALLOUT: + zone->no_callout = value; + break; + case Z_GZALLOC_EXEMPT: + zone->gzalloc_exempt = value; +#if CONFIG_GZALLOC + gzalloc_reconfigure(zone); +#endif + break; + case Z_ALIGNMENT_REQUIRED: + zone->alignment_required = value; +#if ZONE_DEBUG + zone_debug_disable(zone); +#endif +#if CONFIG_GZALLOC + gzalloc_reconfigure(zone); +#endif + break; + default: + panic("Zone_change: Wrong Item Type!"); + /* break; */ + } +} + +/* + * Return the expected number of free elements in the zone. + * This calculation will be incorrect if items are zfree'd that + * were never zalloc'd/zget'd. The correct way to stuff memory + * into a zone is by zcram. + */ + +integer_t +zone_free_count(zone_t zone) +{ + integer_t free_count; + + lock_zone(zone); + free_count = (integer_t)(zone->cur_size/zone->elem_size - zone->count); + unlock_zone(zone); + + assert(free_count >= 0); + + return(free_count); +} + +/* + * Zone garbage collection subroutines + */ + +boolean_t +zone_page_collectable( + vm_offset_t addr, + vm_size_t size) +{ + struct zone_page_table_entry *zp; + zone_page_index_t i, j; + +#if ZONE_ALIAS_ADDR + addr = zone_virtual_addr(addr); +#endif +#if MACH_ASSERT + if (!from_zone_map(addr, size)) + panic("zone_page_collectable"); +#endif + + i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); + j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); + + for (; i <= j; i++) { + zp = zone_page_table_lookup(i); + if (zp->collect_count == zp->alloc_count) + return (TRUE); + } + + return (FALSE); +} + +void +zone_page_keep( + vm_offset_t addr, + vm_size_t size) +{ + struct zone_page_table_entry *zp; + zone_page_index_t i, j; + +#if ZONE_ALIAS_ADDR + addr = zone_virtual_addr(addr); +#endif +#if MACH_ASSERT + if (!from_zone_map(addr, size)) + panic("zone_page_keep"); +#endif + + i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); + j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); + + for (; i <= j; i++) { + zp = zone_page_table_lookup(i); + zp->collect_count = 0; + } } void -zone_init( - vm_size_t max_zonemap_size) +zone_page_collect( + vm_offset_t addr, + vm_size_t size) { - kern_return_t retval; - vm_offset_t zone_min; - vm_offset_t zone_max; - vm_size_t zone_table_size; + struct zone_page_table_entry *zp; + zone_page_index_t i, j; - retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, - FALSE, TRUE, &zone_map); - if (retval != KERN_SUCCESS) - panic("zone_init: kmem_suballoc failed"); - zone_max = zone_min + round_page(max_zonemap_size); - /* - * Setup garbage collection information: - */ - zone_table_size = atop(zone_max - zone_min) * - sizeof(struct zone_page_table_entry); - if (kmem_alloc_wired(zone_map, (vm_offset_t *) &zone_page_table, - zone_table_size) != KERN_SUCCESS) - panic("zone_init"); - zone_min = (vm_offset_t)zone_page_table + round_page(zone_table_size); - zone_pages = atop(zone_max - zone_min); - zone_map_min_address = zone_min; - zone_map_max_address = zone_max; - simple_lock_init(&zone_page_table_lock, ETAP_MISC_ZONE_PTABLE); - mutex_init(&zone_gc_lock, ETAP_NO_TRACE); - zone_page_init(zone_min, zone_max - zone_min, ZONE_PAGE_UNUSED); +#if ZONE_ALIAS_ADDR + addr = zone_virtual_addr(addr); +#endif +#if MACH_ASSERT + if (!from_zone_map(addr, size)) + panic("zone_page_collect"); +#endif + + i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); + j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); + + for (; i <= j; i++) { + zp = zone_page_table_lookup(i); + ++zp->collect_count; + } +} + +void +zone_page_init( + vm_offset_t addr, + vm_size_t size) +{ + struct zone_page_table_entry *zp; + zone_page_index_t i, j; + +#if ZONE_ALIAS_ADDR + addr = zone_virtual_addr(addr); +#endif +#if MACH_ASSERT + if (!from_zone_map(addr, size)) + panic("zone_page_init"); +#endif + + i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); + j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); + + for (; i <= j; i++) { + /* make sure entry exists before marking unused */ + zone_page_table_expand(i); + + zp = zone_page_table_lookup(i); + assert(zp); + zp->alloc_count = ZONE_PAGE_UNUSED; + zp->collect_count = 0; + } +} + +void +zone_page_alloc( + vm_offset_t addr, + vm_size_t size) +{ + struct zone_page_table_entry *zp; + zone_page_index_t i, j; + +#if ZONE_ALIAS_ADDR + addr = zone_virtual_addr(addr); +#endif +#if MACH_ASSERT + if (!from_zone_map(addr, size)) + panic("zone_page_alloc"); +#endif + + i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); + j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); + + for (; i <= j; i++) { + zp = zone_page_table_lookup(i); + assert(zp); + + /* + * Set alloc_count to ZONE_PAGE_USED if + * it was previously set to ZONE_PAGE_UNUSED. + */ + if (zp->alloc_count == ZONE_PAGE_UNUSED) + zp->alloc_count = ZONE_PAGE_USED; + + ++zp->alloc_count; + } +} + +void +zone_page_free_element( + zone_page_index_t *free_page_head, + zone_page_index_t *free_page_tail, + vm_offset_t addr, + vm_size_t size) +{ + struct zone_page_table_entry *zp; + zone_page_index_t i, j; + +#if ZONE_ALIAS_ADDR + addr = zone_virtual_addr(addr); +#endif +#if MACH_ASSERT + if (!from_zone_map(addr, size)) + panic("zone_page_free_element"); +#endif + + i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); + j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); + + for (; i <= j; i++) { + zp = zone_page_table_lookup(i); + + if (zp->collect_count > 0) + --zp->collect_count; + if (--zp->alloc_count == 0) { + vm_address_t free_page_address; + vm_address_t prev_free_page_address; + + zp->alloc_count = ZONE_PAGE_UNUSED; + zp->collect_count = 0; + + + /* + * This element was the last one on this page, re-use the page's + * storage for a page freelist + */ + free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i); + *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID; + + if (*free_page_head == ZONE_PAGE_INDEX_INVALID) { + *free_page_head = i; + *free_page_tail = i; + } else { + prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail)); + *(zone_page_index_t *)prev_free_page_address = i; + *free_page_tail = i; + } + } + } } +/* This is used for walking through a zone's free element list. + */ +struct zone_free_element { + struct zone_free_element * next; +}; + /* - * zalloc returns an element from the specified zone. + * Add a linked list of pages starting at base back into the zone + * free list. Tail points to the last element on the list. */ -vm_offset_t -zalloc_canblock( - register zone_t zone, - boolean_t canblock) +#define ADD_LIST_TO_ZONE(zone, base, tail) \ +MACRO_BEGIN \ + (tail)->next = (void *)((zone)->free_elements); \ + if ((zone)->elem_size >= (2 * sizeof(vm_offset_t) + sizeof(uint32_t))) { \ + ((vm_offset_t *)(tail))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \ + (zone)->free_elements; \ + } \ + (zone)->free_elements = (unsigned long)(base); \ +MACRO_END + +/* + * Add an element to the chain pointed to by prev. + */ +#define ADD_ELEMENT(zone, prev, elem) \ +MACRO_BEGIN \ + (prev)->next = (elem); \ + if ((zone)->elem_size >= (2 * sizeof(vm_offset_t) + sizeof(uint32_t))) { \ + ((vm_offset_t *)(prev))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \ + (vm_offset_t)(elem); \ + } \ +MACRO_END + +struct { + uint32_t pgs_freed; + + uint32_t elems_collected, + elems_freed, + elems_kept; +} zgc_stats; + +/* Zone garbage collection + * + * zone_gc will walk through all the free elements in all the + * zones that are marked collectable looking for reclaimable + * pages. zone_gc is called by consider_zone_gc when the system + * begins to run out of memory. + */ +void +zone_gc(boolean_t all_zones) { - vm_offset_t addr; - kern_return_t retval; + unsigned int max_zones; + zone_t z; + unsigned int i; + zone_page_index_t zone_free_page_head; + zone_page_index_t zone_free_page_tail; + thread_t mythread = current_thread(); - assert(zone != ZONE_NULL); - check_simple_locks(); + lck_mtx_lock(&zone_gc_lock); - lock_zone(zone); + simple_lock(&all_zones_lock); + max_zones = num_zones; + z = first_zone; + simple_unlock(&all_zones_lock); + + + /* + * it's ok to allow eager kernel preemption while + * while holding a zone lock since it's taken + * as a spin lock (which prevents preemption) + */ + thread_set_eager_preempt(mythread); + +#if MACH_ASSERT + for (i = 0; i < zone_pages; i++) { + struct zone_page_table_entry *zp; + + zp = zone_page_table_lookup(i); + assert(!zp || (zp->collect_count == 0)); + } +#endif /* MACH_ASSERT */ + + for (i = 0; i < max_zones; i++, z = z->next_zone) { + unsigned int n, m; + vm_size_t elt_size, size_freed; + struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail; + int kmem_frees = 0; + + assert(z != ZONE_NULL); + + if (!z->collectable) + continue; + + if (all_zones == FALSE && z->elem_size < PAGE_SIZE) + continue; + + lock_zone(z); + + elt_size = z->elem_size; - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - while (addr == 0) { /* - * If nothing was there, try to get more + * Do a quick feasibility check before we scan the zone: + * skip unless there is likelihood of getting pages back + * (i.e we need a whole allocation block's worth of free + * elements before we can garbage collect) and + * the zone has more than 10 percent of it's elements free + * or the element size is a multiple of the PAGE_SIZE */ - if (zone->doing_alloc) { - if (!canblock) { - unlock_zone(zone); - return(0); - } + if ((elt_size & PAGE_MASK) && + (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) || + ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) { + unlock_zone(z); + continue; + } + + z->doing_gc = TRUE; + + /* + * Snatch all of the free elements away from the zone. + */ + + scan = (void *)z->free_elements; + z->free_elements = 0; + + unlock_zone(z); + + /* + * Pass 1: + * + * Determine which elements we can attempt to collect + * and count them up in the page table. Foreign elements + * are returned to the zone. + */ + + prev = (void *)&scan; + elt = scan; + n = 0; tail = keep = NULL; + + zone_free_page_head = ZONE_PAGE_INDEX_INVALID; + zone_free_page_tail = ZONE_PAGE_INDEX_INVALID; + + + while (elt != NULL) { + if (from_zone_map(elt, elt_size)) { + zone_page_collect((vm_offset_t)elt, elt_size); + + prev = elt; + elt = elt->next; + + ++zgc_stats.elems_collected; + } + else { + if (keep == NULL) + keep = tail = elt; + else { + ADD_ELEMENT(z, tail, elt); + tail = elt; + } + + ADD_ELEMENT(z, prev, elt->next); + elt = elt->next; + ADD_ELEMENT(z, tail, NULL); + } + /* - * Someone is allocating memory for this zone. - * Wait for it to show up, then try again. + * Dribble back the elements we are keeping. */ - assert_wait((event_t)zone, THREAD_INTERRUPTIBLE); - zone->waiting = TRUE; - unlock_zone(zone); - thread_block((void (*)(void)) 0); - lock_zone(zone); - } - else { - if ((zone->cur_size + zone->elem_size) > - zone->max_size) { - if (zone->exhaustible) - break; - if (zone->expandable) { - /* - * We're willing to overflow certain - * zones, but not without complaining. - * - * This is best used in conjunction - * with the collectable flag. What we - * want is an assurance we can get the - * memory back, assuming there's no - * leak. - */ - zone->max_size += (zone->max_size >> 1); - } else { - unlock_zone(zone); - if (!canblock) { - return(0); + if (++n >= 50) { + if (z->waiting == TRUE) { + /* z->waiting checked without lock held, rechecked below after locking */ + lock_zone(z); + + if (keep != NULL) { + ADD_LIST_TO_ZONE(z, keep, tail); + tail = keep = NULL; + } else { + m =0; + base_elt = elt; + base_prev = prev; + while ((elt != NULL) && (++m < 50)) { + prev = elt; + elt = elt->next; + } + if (m !=0 ) { + ADD_LIST_TO_ZONE(z, base_elt, prev); + ADD_ELEMENT(z, base_prev, elt); + prev = base_prev; + } } - - panic("zalloc: zone \"%s\" empty.", zone->zone_name); + + if (z->waiting) { + z->waiting = FALSE; + zone_wakeup(z); + } + + unlock_zone(z); } + n =0; } - zone->doing_alloc = TRUE; - unlock_zone(zone); + } - if (zone->collectable) { - vm_offset_t space; - vm_size_t alloc_size; + /* + * Return any remaining elements. + */ - if (vm_pool_low()) - alloc_size = - round_page(zone->elem_size); - else - alloc_size = zone->alloc_size; + if (keep != NULL) { + lock_zone(z); - retval = kernel_memory_allocate(zone_map, - &space, alloc_size, 0, - KMA_KOBJECT|KMA_NOPAGEWAIT); - if (retval == KERN_SUCCESS) { - zone_page_init(space, alloc_size, - ZONE_PAGE_USED); - zcram(zone, space, alloc_size); - } else if (retval != KERN_RESOURCE_SHORTAGE) { - /* would like to cause a zone_gc() */ + ADD_LIST_TO_ZONE(z, keep, tail); - if (!canblock) { - return(0); - } + if (z->waiting) { + z->waiting = FALSE; + zone_wakeup(z); + } - panic("zalloc"); - } - lock_zone(zone); - zone->doing_alloc = FALSE; - if (zone->waiting) { - zone->waiting = FALSE; - thread_wakeup((event_t)zone); - } - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - if (addr == 0 && - retval == KERN_RESOURCE_SHORTAGE) { - unlock_zone(zone); - - if (!canblock) { - return(0); - } + unlock_zone(z); + } - VM_PAGE_WAIT(); - lock_zone(zone); - } - } else { - vm_offset_t space; - retval = zget_space(zone->elem_size, &space); + /* + * Pass 2: + * + * Determine which pages we can reclaim and + * free those elements. + */ - lock_zone(zone); - zone->doing_alloc = FALSE; - if (zone->waiting) { - zone->waiting = FALSE; - thread_wakeup((event_t)zone); - } - if (retval == KERN_SUCCESS) { - zone->count++; - zone->cur_size += zone->elem_size; -#if ZONE_DEBUG - if (zone_debug_enabled(zone)) { - enqueue_tail(&zone->active_zones, (queue_entry_t)space); - } -#endif - unlock_zone(zone); - zone_page_alloc(space, zone->elem_size); -#if ZONE_DEBUG - if (zone_debug_enabled(zone)) - space += sizeof(queue_chain_t); -#endif - return(space); - } - if (retval == KERN_RESOURCE_SHORTAGE) { - unlock_zone(zone); - - if (!canblock) { - return(0); - } + size_freed = 0; + elt = scan; + n = 0; tail = keep = NULL; + + while (elt != NULL) { + if (zone_page_collectable((vm_offset_t)elt, elt_size)) { + struct zone_free_element *next_elt = elt->next; + + size_freed += elt_size; + + /* + * If this is the last allocation on the page(s), + * we may use their storage to maintain the linked + * list of free-able pages. So store elt->next because + * "elt" may be scribbled over. + */ + zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size); - VM_PAGE_WAIT(); - lock_zone(zone); - } else { - if (!canblock) { - return(0); - } + elt = next_elt; - panic("zalloc"); - } + ++zgc_stats.elems_freed; } - } - if (addr == 0) - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - } - -#if ZONE_DEBUG - if (addr && zone_debug_enabled(zone)) { - enqueue_tail(&zone->active_zones, (queue_entry_t)addr); - addr += sizeof(queue_chain_t); - } -#endif + else { + zone_page_keep((vm_offset_t)elt, elt_size); + + if (keep == NULL) + keep = tail = elt; + else { + ADD_ELEMENT(z, tail, elt); + tail = elt; + } - unlock_zone(zone); - return(addr); -} + elt = elt->next; + ADD_ELEMENT(z, tail, NULL); + ++zgc_stats.elems_kept; + } -vm_offset_t -zalloc( - register zone_t zone) -{ - return( zalloc_canblock(zone, TRUE) ); -} + /* + * Dribble back the elements we are keeping, + * and update the zone size info. + */ -vm_offset_t -zalloc_noblock( - register zone_t zone) -{ - return( zalloc_canblock(zone, FALSE) ); -} + if (++n >= 50) { + lock_zone(z); + z->cur_size -= size_freed; + size_freed = 0; -/* - * zget returns an element from the specified zone - * and immediately returns nothing if there is nothing there. - * - * This form should be used when you can not block (like when - * processing an interrupt). - */ -vm_offset_t -zget( - register zone_t zone) -{ - register vm_offset_t addr; + if (keep != NULL) { + ADD_LIST_TO_ZONE(z, keep, tail); + } - assert( zone != ZONE_NULL ); + if (z->waiting) { + z->waiting = FALSE; + zone_wakeup(z); + } - if (!lock_try_zone(zone)) - return ((vm_offset_t)0); + unlock_zone(z); - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); -#if ZONE_DEBUG - if (addr && zone_debug_enabled(zone)) { - enqueue_tail(&zone->active_zones, (queue_entry_t)addr); - addr += sizeof(queue_chain_t); - } -#endif /* ZONE_DEBUG */ - unlock_zone(zone); + n = 0; tail = keep = NULL; + } + } - return(addr); -} + /* + * Return any remaining elements, and update + * the zone size info. + */ -/* Keep this FALSE by default. Large memory machine run orders of magnitude - slower in debug mode when true. Use debugger to enable if needed */ -boolean_t zone_check = FALSE; + lock_zone(z); -void -zfree( - register zone_t zone, - vm_offset_t elem) -{ + if (size_freed > 0 || keep != NULL) { -#if MACH_ASSERT - /* Basic sanity checks */ - if (zone == ZONE_NULL || elem == (vm_offset_t)0) - panic("zfree: NULL"); - /* zone_gc assumes zones are never freed */ - if (zone == zone_zone) - panic("zfree: freeing to zone_zone breaks zone_gc!"); - if (zone->collectable && !zone->allows_foreign && - (!from_zone_map(elem) || !from_zone_map(elem+zone->elem_size-1))) - panic("zfree: non-allocated memory in collectable zone!"); -#endif + z->cur_size -= size_freed; - lock_zone(zone); -#if ZONE_DEBUG - if (zone_debug_enabled(zone)) { - queue_t tmp_elem; + if (keep != NULL) { + ADD_LIST_TO_ZONE(z, keep, tail); + } - elem -= sizeof(queue_chain_t); - if (zone_check) { - /* check the zone's consistency */ + } - for (tmp_elem = queue_first(&zone->active_zones); - !queue_end(tmp_elem, &zone->active_zones); - tmp_elem = queue_next(tmp_elem)) - if (elem == (vm_offset_t)tmp_elem) - break; - if (elem != (vm_offset_t)tmp_elem) - panic("zfree()ing element from wrong zone"); + z->doing_gc = FALSE; + if (z->waiting) { + z->waiting = FALSE; + zone_wakeup(z); } - remqueue(&zone->active_zones, (queue_t) elem); - } -#endif /* ZONE_DEBUG */ - if (zone_check) { - vm_offset_t this; + unlock_zone(z); - /* check the zone's consistency */ - for (this = zone->free_elements; - this != 0; - this = * (vm_offset_t *) this) - if (!pmap_kernel_va(this) || this == elem) - panic("zfree"); - } - /* - * If elements have one or more pages, and memory is low, - * put it directly back into circulation rather than - * back into a zone, where a non-vm_privileged task can grab it. - * This lessens the impact of a privileged task cycling reserved - * memory into a publicly accessible zone. - */ - if (zone->elem_size >= PAGE_SIZE && - vm_pool_low()){ - assert( !(zone->elem_size & (zone->alloc_size-1)) ); - zone->count--; - zone->cur_size -= zone->elem_size; - zone_page_init(elem, zone->elem_size, ZONE_PAGE_UNUSED); - unlock_zone(zone); - kmem_free(zone_map, elem, zone->elem_size); - return; - } - ADD_TO_ZONE(zone, elem); - unlock_zone(zone); -} + if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID) + continue; + /* + * we don't want to allow eager kernel preemption while holding the + * various locks taken in the kmem_free path of execution + */ + thread_clear_eager_preempt(mythread); -/* Change a zone's flags. - * This routine must be called immediately after zinit. - */ -void -zone_change( - zone_t zone, - unsigned int item, - boolean_t value) -{ - assert( zone != ZONE_NULL ); - assert( value == TRUE || value == FALSE ); + /* + * Reclaim the pages we are freeing. + */ + while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { + zone_page_index_t zind = zone_free_page_head; + vm_address_t free_page_address; + int page_count; - switch(item){ - case Z_EXHAUST: - zone->exhaustible = value; - break; - case Z_COLLECT: - zone->collectable = value; - break; - case Z_EXPAND: - zone->expandable = value; - break; - case Z_FOREIGN: - zone->allows_foreign = value; - break; -#if MACH_ASSERT - default: - panic("Zone_change: Wrong Item Type!"); - /* break; */ -#endif - } - lock_zone_init(zone); -} + /* + * Use the first word of the page about to be freed to find the next free page + */ + free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind); + zone_free_page_head = *(zone_page_index_t *)free_page_address; -/* - * Return the expected number of free elements in the zone. - * This calculation will be incorrect if items are zfree'd that - * were never zalloc'd/zget'd. The correct way to stuff memory - * into a zone is by zcram. - */ + page_count = 1; -integer_t -zone_free_count(zone_t zone) -{ - integer_t free_count; + while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { + zone_page_index_t next_zind = zone_free_page_head; + vm_address_t next_free_page_address; - lock_zone(zone); - free_count = zone->cur_size/zone->elem_size - zone->count; - unlock_zone(zone); + next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind); - assert(free_count >= 0); + if (next_free_page_address == (free_page_address - PAGE_SIZE)) { + free_page_address = next_free_page_address; + } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count))) + break; - return(free_count); -} + zone_free_page_head = *(zone_page_index_t *)next_free_page_address; + page_count++; + } + kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE); -/* - * zprealloc preallocates wired memory, exanding the specified - * zone to the specified size - */ -void -zprealloc( - zone_t zone, - vm_size_t size) -{ - vm_offset_t addr; + zgc_stats.pgs_freed += page_count; - if (size != 0) { - if (kmem_alloc_wired(zone_map, &addr, size) != KERN_SUCCESS) - panic("zprealloc"); - zone_page_init(addr, size, ZONE_PAGE_USED); - zcram(zone, addr, size); + if (++kmem_frees == 32) { + thread_yield_internal(1); + kmem_frees = 0; + } + } + thread_set_eager_preempt(mythread); } + thread_clear_eager_preempt(mythread); + + lck_mtx_unlock(&zone_gc_lock); + } +extern vm_offset_t kmapoff_kaddr; +extern unsigned int kmapoff_pgcnt; + /* - * Zone garbage collection subroutines - * - * These routines have in common the modification of entries in the - * zone_page_table. The latter contains one entry for every page - * in the zone_map. - * - * For each page table entry in the given range: - * - * zone_page_collectable - test if one (in_free_list == alloc_count) - * zone_page_keep - reset in_free_list - * zone_page_in_use - decrements in_free_list - * zone_page_free - increments in_free_list - * zone_page_init - initializes in_free_list and alloc_count - * zone_page_alloc - increments alloc_count - * zone_page_dealloc - decrements alloc_count - * zone_add_free_page_list - adds the page to the free list - * - * Two counts are maintained for each page, the in_free_list count and - * alloc_count. The alloc_count is how many zone elements have been - * allocated from a page. (Note that the page could contain elements - * that span page boundaries. The count includes these elements so - * one element may be counted in two pages.) In_free_list is a count - * of how many zone elements are currently free. If in_free_list is - * equal to alloc_count then the page is eligible for garbage - * collection. + * consider_zone_gc: * - * Alloc_count and in_free_list are initialized to the correct values - * for a particular zone when a page is zcram'ed into a zone. Subsequent - * gets and frees of zone elements will call zone_page_in_use and - * zone_page_free which modify the in_free_list count. When the zones - * garbage collector runs it will walk through a zones free element list, - * remove the elements that reside on collectable pages, and use - * zone_add_free_page_list to create a list of pages to be collected. + * Called by the pageout daemon when the system needs more free pages. */ -boolean_t -zone_page_collectable( - vm_offset_t addr, - vm_size_t size) + +void +consider_zone_gc(boolean_t force) { - natural_t i, j; + boolean_t all_zones = FALSE; -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_collectable"); -#endif + if (kmapoff_kaddr != 0) { + /* + * One-time reclaim of kernel_map resources we allocated in + * early boot. + */ + (void) vm_deallocate(kernel_map, + kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); + kmapoff_kaddr = 0; + } - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - if (zone_page_table[i].in_free_list == - zone_page_table[i].alloc_count) { - unlock_zone_page_table(); - return (TRUE); + if (zone_gc_allowed && + (zone_gc_allowed_by_time_throttle || + zone_gc_forced || + force)) { + if (zone_gc_allowed_by_time_throttle == TRUE) { + zone_gc_allowed_by_time_throttle = FALSE; + all_zones = TRUE; } + zone_gc_forced = FALSE; + + zone_gc(all_zones); } - unlock_zone_page_table(); - return (FALSE); } +/* + * By default, don't attempt zone GC more frequently + * than once / 1 minutes. + */ void -zone_page_keep( - vm_offset_t addr, - vm_size_t size) +compute_zone_gc_throttle(void *arg __unused) { - natural_t i, j; + zone_gc_allowed_by_time_throttle = TRUE; +} -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_keep"); -#endif - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - zone_page_table[i].in_free_list = 0; - } - unlock_zone_page_table(); -} +#if CONFIG_TASK_ZONE_INFO -void -zone_page_in_use( - vm_offset_t addr, - vm_size_t size) +kern_return_t +task_zone_info( + task_t task, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp, + task_zone_info_array_t *infop, + mach_msg_type_number_t *infoCntp) { - natural_t i, j; + mach_zone_name_t *names; + vm_offset_t names_addr; + vm_size_t names_size; + task_zone_info_t *info; + vm_offset_t info_addr; + vm_size_t info_size; + unsigned int max_zones, i; + zone_t z; + mach_zone_name_t *zn; + task_zone_info_t *zi; + kern_return_t kr; -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_in_use"); -#endif + vm_size_t used; + vm_map_copy_t copy; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - if (zone_page_table[i].in_free_list > 0) - zone_page_table[i].in_free_list--; - } - unlock_zone_page_table(); -} -void -zone_page_free( - vm_offset_t addr, - vm_size_t size) -{ - natural_t i, j; + if (task == TASK_NULL) + return KERN_INVALID_TASK; -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_free"); -#endif + /* + * We assume that zones aren't freed once allocated. + * We won't pick up any zones that are allocated later. + */ - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - assert(zone_page_table[i].in_free_list >= 0); - zone_page_table[i].in_free_list++; + simple_lock(&all_zones_lock); + max_zones = (unsigned int)(num_zones + num_fake_zones); + z = first_zone; + simple_unlock(&all_zones_lock); + + names_size = round_page(max_zones * sizeof *names); + kr = kmem_alloc_pageable(ipc_kernel_map, + &names_addr, names_size); + if (kr != KERN_SUCCESS) + return kr; + names = (mach_zone_name_t *) names_addr; + + info_size = round_page(max_zones * sizeof *info); + kr = kmem_alloc_pageable(ipc_kernel_map, + &info_addr, info_size); + if (kr != KERN_SUCCESS) { + kmem_free(ipc_kernel_map, + names_addr, names_size); + return kr; } - unlock_zone_page_table(); -} -void -zone_page_init( - vm_offset_t addr, - vm_size_t size, - int value) -{ - natural_t i, j; + info = (task_zone_info_t *) info_addr; -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_init"); -#endif + zn = &names[0]; + zi = &info[0]; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - zone_page_table[i].alloc_count = value; - zone_page_table[i].in_free_list = 0; - } - unlock_zone_page_table(); -} + for (i = 0; i < max_zones - num_fake_zones; i++) { + struct zone zcopy; -void -zone_page_alloc( - vm_offset_t addr, - vm_size_t size) -{ - natural_t i, j; + assert(z != ZONE_NULL); + + lock_zone(z); + zcopy = *z; + unlock_zone(z); -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_alloc"); -#endif + simple_lock(&all_zones_lock); + z = z->next_zone; + simple_unlock(&all_zones_lock); - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - /* Set alloc_count to (ZONE_PAGE_USED + 1) if - * it was previously set to ZONE_PAGE_UNUSED. - */ - if (zone_page_table[i].alloc_count == ZONE_PAGE_UNUSED) { - zone_page_table[i].alloc_count = 1; + /* assuming here the name data is static */ + (void) strncpy(zn->mzn_name, zcopy.zone_name, + sizeof zn->mzn_name); + zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; + + zi->tzi_count = (uint64_t)zcopy.count; + zi->tzi_cur_size = (uint64_t)zcopy.cur_size; + zi->tzi_max_size = (uint64_t)zcopy.max_size; + zi->tzi_elem_size = (uint64_t)zcopy.elem_size; + zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size; + zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size; + zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible; + zi->tzi_collectable = (uint64_t)zcopy.collectable; + zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct; + if (task->tkm_zinfo != NULL) { + zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc; + zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free; } else { - zone_page_table[i].alloc_count++; + zi->tzi_task_alloc = 0; + zi->tzi_task_free = 0; } + zn++; + zi++; } - unlock_zone_page_table(); -} -void -zone_page_dealloc( - vm_offset_t addr, - vm_size_t size) -{ - natural_t i, j; + /* + * loop through the fake zones and fill them using the specialized + * functions + */ + for (i = 0; i < num_fake_zones; i++) { + int count, collectable, exhaustible, caller_acct, index; + vm_size_t cur_size, max_size, elem_size, alloc_size; + uint64_t sum_size; + + strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); + zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; + fake_zones[i].query(&count, &cur_size, + &max_size, &elem_size, + &alloc_size, &sum_size, + &collectable, &exhaustible, &caller_acct); + zi->tzi_count = (uint64_t)count; + zi->tzi_cur_size = (uint64_t)cur_size; + zi->tzi_max_size = (uint64_t)max_size; + zi->tzi_elem_size = (uint64_t)elem_size; + zi->tzi_alloc_size = (uint64_t)alloc_size; + zi->tzi_sum_size = sum_size; + zi->tzi_collectable = (uint64_t)collectable; + zi->tzi_exhaustible = (uint64_t)exhaustible; + zi->tzi_caller_acct = (uint64_t)caller_acct; + if (task->tkm_zinfo != NULL) { + index = ZINFO_SLOTS - num_fake_zones + i; + zi->tzi_task_alloc = task->tkm_zinfo[index].alloc; + zi->tzi_task_free = task->tkm_zinfo[index].free; + } else { + zi->tzi_task_alloc = 0; + zi->tzi_task_free = 0; + } + zn++; + zi++; + } -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_page_dealloc"); -#endif + used = max_zones * sizeof *names; + if (used != names_size) + bzero((char *) (names_addr + used), names_size - used); - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - zone_page_table[i].alloc_count--; - } - unlock_zone_page_table(); -} + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, + (vm_map_size_t)names_size, TRUE, ©); + assert(kr == KERN_SUCCESS); -void -zone_add_free_page_list( - struct zone_page_table_entry **free_list, - vm_offset_t addr, - vm_size_t size) -{ - natural_t i, j; + *namesp = (mach_zone_name_t *) copy; + *namesCntp = max_zones; -#if MACH_ASSERT - if (!from_zone_map(addr) || !from_zone_map(addr+size-1)) - panic("zone_add_free_page_list"); -#endif + used = max_zones * sizeof *info; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - if (zone_page_table[i].alloc_count == 0) { - zone_page_table[i].next = *free_list; - *free_list = &zone_page_table[i]; - zone_page_table[i].alloc_count = ZONE_PAGE_UNUSED; - zone_page_table[i].in_free_list = 0; - } - } - unlock_zone_page_table(); + if (used != info_size) + bzero((char *) (info_addr + used), info_size - used); + + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, + (vm_map_size_t)info_size, TRUE, ©); + assert(kr == KERN_SUCCESS); + + *infop = (task_zone_info_t *) copy; + *infoCntp = max_zones; + + return KERN_SUCCESS; } +#else /* CONFIG_TASK_ZONE_INFO */ -/* This is used for walking through a zone's free element list. - */ -struct zone_free_entry { - struct zone_free_entry * next; -}; +kern_return_t +task_zone_info( + __unused task_t task, + __unused mach_zone_name_array_t *namesp, + __unused mach_msg_type_number_t *namesCntp, + __unused task_zone_info_array_t *infop, + __unused mach_msg_type_number_t *infoCntp) +{ + return KERN_FAILURE; +} -int reclaim_page_count = 0; +#endif /* CONFIG_TASK_ZONE_INFO */ -/* Zone garbage collection - * - * zone_gc will walk through all the free elements in all the - * zones that are marked collectable looking for reclaimable - * pages. zone_gc is called by consider_zone_gc when the system - * begins to run out of memory. - */ -void -zone_gc(void) +kern_return_t +mach_zone_info( + host_priv_t host, + mach_zone_name_array_t *namesp, + mach_msg_type_number_t *namesCntp, + mach_zone_info_array_t *infop, + mach_msg_type_number_t *infoCntp) { - unsigned int max_zones; - zone_t z; - unsigned int i; - struct zone_page_table_entry *freep; - struct zone_page_table_entry *zone_free_page_list; + mach_zone_name_t *names; + vm_offset_t names_addr; + vm_size_t names_size; + mach_zone_info_t *info; + vm_offset_t info_addr; + vm_size_t info_size; + unsigned int max_zones, i; + zone_t z; + mach_zone_name_t *zn; + mach_zone_info_t *zi; + kern_return_t kr; + + vm_size_t used; + vm_map_copy_t copy; - mutex_lock(&zone_gc_lock); + + if (host == HOST_NULL) + return KERN_INVALID_HOST; +#if CONFIG_DEBUGGER_FOR_ZONE_INFO + if (!PE_i_can_has_debugger(NULL)) + return KERN_INVALID_HOST; +#endif /* - * Note that this scheme of locking only to walk the zone list - * assumes that zones are never freed (checked by zfree) - */ + * We assume that zones aren't freed once allocated. + * We won't pick up any zones that are allocated later. + */ + simple_lock(&all_zones_lock); - max_zones = num_zones; + max_zones = (unsigned int)(num_zones + num_fake_zones); z = first_zone; simple_unlock(&all_zones_lock); -#if MACH_ASSERT - lock_zone_page_table(); - for (i = 0; i < zone_pages; i++) - assert(zone_page_table[i].in_free_list == 0); - unlock_zone_page_table(); -#endif /* MACH_ASSERT */ + names_size = round_page(max_zones * sizeof *names); + kr = kmem_alloc_pageable(ipc_kernel_map, + &names_addr, names_size); + if (kr != KERN_SUCCESS) + return kr; + names = (mach_zone_name_t *) names_addr; + + info_size = round_page(max_zones * sizeof *info); + kr = kmem_alloc_pageable(ipc_kernel_map, + &info_addr, info_size); + if (kr != KERN_SUCCESS) { + kmem_free(ipc_kernel_map, + names_addr, names_size); + return kr; + } - zone_free_page_list = (struct zone_page_table_entry *) 0; + info = (mach_zone_info_t *) info_addr; - for (i = 0; i < max_zones; i++, z = z->next_zone) { - struct zone_free_entry * prev; - struct zone_free_entry * elt; - struct zone_free_entry * end; + zn = &names[0]; + zi = &info[0]; - assert(z != ZONE_NULL); + for (i = 0; i < max_zones - num_fake_zones; i++) { + struct zone zcopy; - if (!z->collectable) - continue; + assert(z != ZONE_NULL); lock_zone(z); + zcopy = *z; + unlock_zone(z); - /* - * Do a quick feasability check before we scan the zone: - * skip unless there is likelihood of getting 1+ pages back. - */ - if ((z->cur_size - z->count * z->elem_size) <= (2*PAGE_SIZE)){ - unlock_zone(z); - continue; - } - - /* Count the free elements in each page. This loop - * requires that all in_free_list entries are zero. - * - * Exit the loop early if we need to hurry up and drop - * the lock to allow preemption - but we must fully process - * all elements we looked at so far. - */ - elt = (struct zone_free_entry *)(z->free_elements); - while (!ast_urgency() && (elt != (struct zone_free_entry *)0)) { - if (from_zone_map(elt)) - zone_page_free((vm_offset_t)elt, z->elem_size); - elt = elt->next; - } - end = elt; - - /* Now determine which elements should be removed - * from the free list and, after all the elements - * on a page have been removed, add the element's - * page to a list of pages to be freed. - */ - prev = elt = (struct zone_free_entry *)(z->free_elements); - while (elt != end) { - if (!from_zone_map(elt)) { - prev = elt; - elt = elt->next; - continue; - } - if (zone_page_collectable((vm_offset_t)elt, - z->elem_size)) { - z->cur_size -= z->elem_size; - zone_page_in_use((vm_offset_t)elt, - z->elem_size); - zone_page_dealloc((vm_offset_t)elt, - z->elem_size); - zone_add_free_page_list(&zone_free_page_list, - (vm_offset_t)elt, - z->elem_size); - if (elt == prev) { - elt = elt->next; - z->free_elements =(vm_offset_t)elt; - prev = elt; - } else { - prev->next = elt->next; - elt = elt->next; - } - } else { - /* This element is not eligible for collection - * so clear in_free_list in preparation for a - * subsequent garbage collection pass. - */ - zone_page_keep((vm_offset_t)elt, z->elem_size); - prev = elt; - elt = elt->next; - } - } /* end while(elt != end) */ + simple_lock(&all_zones_lock); + z = z->next_zone; + simple_unlock(&all_zones_lock); - unlock_zone(z); + /* assuming here the name data is static */ + (void) strncpy(zn->mzn_name, zcopy.zone_name, + sizeof zn->mzn_name); + zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; + + zi->mzi_count = (uint64_t)zcopy.count; + zi->mzi_cur_size = (uint64_t)zcopy.cur_size; + zi->mzi_max_size = (uint64_t)zcopy.max_size; + zi->mzi_elem_size = (uint64_t)zcopy.elem_size; + zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; + zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; + zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; + zi->mzi_collectable = (uint64_t)zcopy.collectable; + zn++; + zi++; } - for (freep = zone_free_page_list; freep != 0; freep = freep->next) { - vm_offset_t free_addr; + /* + * loop through the fake zones and fill them using the specialized + * functions + */ + for (i = 0; i < num_fake_zones; i++) { + int count, collectable, exhaustible, caller_acct; + vm_size_t cur_size, max_size, elem_size, alloc_size; + uint64_t sum_size; + + strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); + zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; + fake_zones[i].query(&count, &cur_size, + &max_size, &elem_size, + &alloc_size, &sum_size, + &collectable, &exhaustible, &caller_acct); + zi->mzi_count = (uint64_t)count; + zi->mzi_cur_size = (uint64_t)cur_size; + zi->mzi_max_size = (uint64_t)max_size; + zi->mzi_elem_size = (uint64_t)elem_size; + zi->mzi_alloc_size = (uint64_t)alloc_size; + zi->mzi_sum_size = sum_size; + zi->mzi_collectable = (uint64_t)collectable; + zi->mzi_exhaustible = (uint64_t)exhaustible; - free_addr = zone_map_min_address + - PAGE_SIZE * (freep - zone_page_table); - kmem_free(zone_map, free_addr, PAGE_SIZE); - reclaim_page_count++; + zn++; + zi++; } - mutex_unlock(&zone_gc_lock); -} -boolean_t zone_gc_allowed = TRUE; /* XXX */ -unsigned zone_gc_last_tick = 0; -unsigned zone_gc_max_rate = 0; /* in ticks */ + used = max_zones * sizeof *names; + if (used != names_size) + bzero((char *) (names_addr + used), names_size - used); -/* - * consider_zone_gc: - * - * Called by the pageout daemon when the system needs more free pages. - */ + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, + (vm_map_size_t)names_size, TRUE, ©); + assert(kr == KERN_SUCCESS); -void -consider_zone_gc(void) -{ - /* - * By default, don't attempt zone GC more frequently - * than once a second (which is one scheduler tick). - */ + *namesp = (mach_zone_name_t *) copy; + *namesCntp = max_zones; - if (zone_gc_max_rate == 0) - zone_gc_max_rate = 2; /* sched_tick is a 1 second resolution 2 here insures at least 1 second interval */ + used = max_zones * sizeof *info; - if (zone_gc_allowed && - (sched_tick > (zone_gc_last_tick + zone_gc_max_rate))) { - zone_gc_last_tick = sched_tick; - zone_gc(); - } -} + if (used != info_size) + bzero((char *) (info_addr + used), info_size - used); -#include -#include -#include -#include -#include -#include + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, + (vm_map_size_t)info_size, TRUE, ©); + assert(kr == KERN_SUCCESS); -#include + *infop = (mach_zone_info_t *) copy; + *infoCntp = max_zones; + return KERN_SUCCESS; +} + +/* + * host_zone_info - LEGACY user interface for Mach zone information + * Should use mach_zone_info() instead! + */ kern_return_t host_zone_info( - host_t host, + host_priv_t host, zone_name_array_t *namesp, mach_msg_type_number_t *namesCntp, zone_info_array_t *infop, @@ -1365,8 +3299,24 @@ host_zone_info( zone_info_t *zi; kern_return_t kr; + vm_size_t used; + vm_map_copy_t copy; + + if (host == HOST_NULL) return KERN_INVALID_HOST; +#if CONFIG_DEBUGGER_FOR_ZONE_INFO + if (!PE_i_can_has_debugger(NULL)) + return KERN_INVALID_HOST; +#endif + +#if defined(__LP64__) + if (!thread_is_64bit(current_thread())) + return KERN_NOT_SUPPORTED; +#else + if (thread_is_64bit(current_thread())) + return KERN_NOT_SUPPORTED; +#endif /* * We assume that zones aren't freed once allocated. @@ -1374,48 +3324,32 @@ host_zone_info( */ simple_lock(&all_zones_lock); -#ifdef ppc - max_zones = num_zones + 4; -#else - max_zones = num_zones + 2; -#endif + max_zones = (unsigned int)(num_zones + num_fake_zones); z = first_zone; simple_unlock(&all_zones_lock); - if (max_zones <= *namesCntp) { - /* use in-line memory */ - - names = *namesp; - } else { - names_size = round_page(max_zones * sizeof *names); - kr = kmem_alloc_pageable(ipc_kernel_map, - &names_addr, names_size); - if (kr != KERN_SUCCESS) - return kr; - names = (zone_name_t *) names_addr; + names_size = round_page(max_zones * sizeof *names); + kr = kmem_alloc_pageable(ipc_kernel_map, + &names_addr, names_size); + if (kr != KERN_SUCCESS) + return kr; + names = (zone_name_t *) names_addr; + + info_size = round_page(max_zones * sizeof *info); + kr = kmem_alloc_pageable(ipc_kernel_map, + &info_addr, info_size); + if (kr != KERN_SUCCESS) { + kmem_free(ipc_kernel_map, + names_addr, names_size); + return kr; } - if (max_zones <= *infoCntp) { - /* use in-line memory */ - - info = *infop; - } else { - info_size = round_page(max_zones * sizeof *info); - kr = kmem_alloc_pageable(ipc_kernel_map, - &info_addr, info_size); - if (kr != KERN_SUCCESS) { - if (names != *namesp) - kmem_free(ipc_kernel_map, - names_addr, names_size); - return kr; - } + info = (zone_info_t *) info_addr; - info = (zone_info_t *) info_addr; - } zn = &names[0]; zi = &info[0]; - for (i = 0; i < num_zones; i++) { + for (i = 0; i < max_zones - num_fake_zones; i++) { struct zone zcopy; assert(z != ZONE_NULL); @@ -1431,6 +3365,7 @@ host_zone_info( /* assuming here the name data is static */ (void) strncpy(zn->zn_name, zcopy.zone_name, sizeof zn->zn_name); + zn->zn_name[sizeof zn->zn_name - 1] = '\0'; zi->zi_count = zcopy.count; zi->zi_cur_size = zcopy.cur_size; @@ -1443,339 +3378,103 @@ host_zone_info( zn++; zi++; } - strcpy(zn->zn_name, "kernel_stacks"); - stack_fake_zone_info(&zi->zi_count, &zi->zi_cur_size, &zi->zi_max_size, &zi->zi_elem_size, - &zi->zi_alloc_size, &zi->zi_collectable, &zi->zi_exhaustible); - zn++; - zi++; -#ifdef ppc - strcpy(zn->zn_name, "save_areas"); - save_fake_zone_info(&zi->zi_count, &zi->zi_cur_size, &zi->zi_max_size, &zi->zi_elem_size, - &zi->zi_alloc_size, &zi->zi_collectable, &zi->zi_exhaustible); - zn++; - zi++; - - strcpy(zn->zn_name, "pmap_mappings"); - mapping_fake_zone_info(&zi->zi_count, &zi->zi_cur_size, &zi->zi_max_size, &zi->zi_elem_size, - &zi->zi_alloc_size, &zi->zi_collectable, &zi->zi_exhaustible); - zn++; - zi++; -#endif - strcpy(zn->zn_name, "kalloc.large"); - kalloc_fake_zone_info(&zi->zi_count, &zi->zi_cur_size, &zi->zi_max_size, &zi->zi_elem_size, - &zi->zi_alloc_size, &zi->zi_collectable, &zi->zi_exhaustible); - if (names != *namesp) { - vm_size_t used; - vm_map_copy_t copy; - - used = max_zones * sizeof *names; + /* + * loop through the fake zones and fill them using the specialized + * functions + */ + for (i = 0; i < num_fake_zones; i++) { + int caller_acct; + uint64_t sum_space; + strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name); + zn->zn_name[sizeof zn->zn_name - 1] = '\0'; + fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size, + &zi->zi_max_size, &zi->zi_elem_size, + &zi->zi_alloc_size, &sum_space, + &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct); + zn++; + zi++; + } - if (used != names_size) - bzero((char *) (names_addr + used), names_size - used); + used = max_zones * sizeof *names; + if (used != names_size) + bzero((char *) (names_addr + used), names_size - used); - kr = vm_map_copyin(ipc_kernel_map, names_addr, names_size, - TRUE, ©); - assert(kr == KERN_SUCCESS); + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, + (vm_map_size_t)names_size, TRUE, ©); + assert(kr == KERN_SUCCESS); - *namesp = (zone_name_t *) copy; - } + *namesp = (zone_name_t *) copy; *namesCntp = max_zones; - if (info != *infop) { - vm_size_t used; - vm_map_copy_t copy; - - used = max_zones * sizeof *info; + used = max_zones * sizeof *info; + if (used != info_size) + bzero((char *) (info_addr + used), info_size - used); - if (used != info_size) - bzero((char *) (info_addr + used), info_size - used); + kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, + (vm_map_size_t)info_size, TRUE, ©); + assert(kr == KERN_SUCCESS); - kr = vm_map_copyin(ipc_kernel_map, info_addr, info_size, - TRUE, ©); - assert(kr == KERN_SUCCESS); - - *infop = (zone_info_t *) copy; - } + *infop = (zone_info_t *) copy; *infoCntp = max_zones; return KERN_SUCCESS; } -#if MACH_KDB -#include -#include -#include - -const char *zone_labels = -"ENTRY COUNT TOT_SZ MAX_SZ ELT_SZ ALLOC_SZ NAME"; - -/* Forwards */ -void db_print_zone( - zone_t addr); - -#if ZONE_DEBUG -void db_zone_check_active( - zone_t zone); -void db_zone_print_active( - zone_t zone); -#endif /* ZONE_DEBUG */ -void db_zone_print_free( - zone_t zone); -void -db_print_zone( - zone_t addr) -{ - struct zone zcopy; - - zcopy = *addr; - - db_printf("%8x %8x %8x %8x %6x %8x %s ", - addr, zcopy.count, zcopy.cur_size, - zcopy.max_size, zcopy.elem_size, - zcopy.alloc_size, zcopy.zone_name); - if (zcopy.exhaustible) - db_printf("H"); - if (zcopy.collectable) - db_printf("C"); - if (zcopy.expandable) - db_printf("X"); - db_printf("\n"); -} - -/*ARGSUSED*/ -void -db_show_one_zone( - db_expr_t addr, - int have_addr, - db_expr_t count, - char * modif) -{ - struct zone *z = (zone_t)addr; - - if (z == ZONE_NULL || !have_addr){ - db_error("No Zone\n"); - /*NOTREACHED*/ - } - - db_printf("%s\n", zone_labels); - db_print_zone(z); -} - -/*ARGSUSED*/ -void -db_show_all_zones( - db_expr_t addr, - int have_addr, - db_expr_t count, - char * modif) +kern_return_t +mach_zone_force_gc( + host_t host) { - zone_t z; - unsigned total = 0; - /* - * Don't risk hanging by unconditionally locking, - * risk of incoherent data is small (zones aren't freed). - */ - have_addr = simple_lock_try(&all_zones_lock); - count = num_zones; - z = first_zone; - if (have_addr) { - simple_unlock(&all_zones_lock); - } + if (host == HOST_NULL) + return KERN_INVALID_HOST; - db_printf("%s\n", zone_labels); - for ( ; count > 0; count--) { - if (!z) { - db_error("Mangled Zone List\n"); - /*NOTREACHED*/ - } - db_print_zone(z); - total += z->cur_size, + consider_zone_gc(TRUE); - have_addr = simple_lock_try(&all_zones_lock); - z = z->next_zone; - if (have_addr) { - simple_unlock(&all_zones_lock); - } - } - db_printf("\nTotal %8x", total); - db_printf("\n\nzone_gc() has reclaimed %d pages\n", - reclaim_page_count); + return (KERN_SUCCESS); } -#if ZONE_DEBUG -void -db_zone_check_active( - zone_t zone) -{ - int count = 0; - queue_t tmp_elem; +extern unsigned int stack_total; +extern unsigned long long stack_allocs; - if (!zone_debug_enabled(zone) || !zone_check) - return; - tmp_elem = queue_first(&zone->active_zones); - while (count < zone->count) { - count++; - if (tmp_elem == 0) { - printf("unexpected zero element, zone=0x%x, count=%d\n", - zone, count); - assert(FALSE); - break; - } - if (queue_end(tmp_elem, &zone->active_zones)) { - printf("unexpected queue_end, zone=0x%x, count=%d\n", - zone, count); - assert(FALSE); - break; - } - tmp_elem = queue_next(tmp_elem); - } - if (!queue_end(tmp_elem, &zone->active_zones)) { - printf("not at queue_end, zone=0x%x, tmp_elem=0x%x\n", - zone, tmp_elem); - assert(FALSE); - } -} +#if defined(__i386__) || defined (__x86_64__) +extern unsigned int inuse_ptepages_count; +extern long long alloc_ptepages_count; +#endif -void -db_zone_print_active( - zone_t zone) +void zone_display_zprint() { - int count = 0; - queue_t tmp_elem; + unsigned int i; + zone_t the_zone; + + if(first_zone!=NULL) { + the_zone = first_zone; + for (i = 0; i < num_zones; i++) { + if(the_zone->cur_size > (1024*1024)) { + printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size); + } - if (!zone_debug_enabled(zone)) { - printf("zone 0x%x debug not enabled\n", zone); - return; - } - if (!zone_check) { - printf("zone_check FALSE\n"); - return; - } + if(the_zone->next_zone == NULL) { + break; + } - printf("zone 0x%x, active elements %d\n", zone, zone->count); - printf("active list:\n"); - tmp_elem = queue_first(&zone->active_zones); - while (count < zone->count) { - printf(" 0x%x", tmp_elem); - count++; - if ((count % 6) == 0) - printf("\n"); - if (tmp_elem == 0) { - printf("\nunexpected zero element, count=%d\n", count); - break; - } - if (queue_end(tmp_elem, &zone->active_zones)) { - printf("\nunexpected queue_end, count=%d\n", count); - break; + the_zone = the_zone->next_zone; } - tmp_elem = queue_next(tmp_elem); } - if (!queue_end(tmp_elem, &zone->active_zones)) - printf("\nnot at queue_end, tmp_elem=0x%x\n", tmp_elem); - else - printf("\n"); -} -#endif /* ZONE_DEBUG */ -void -db_zone_print_free( - zone_t zone) -{ - int count = 0; - int freecount; - vm_offset_t elem; - - freecount = zone_free_count(zone); - printf("zone 0x%x, free elements %d\n", zone, freecount); - printf("free list:\n"); - elem = zone->free_elements; - while (count < freecount) { - printf(" 0x%x", elem); - count++; - if ((count % 6) == 0) - printf("\n"); - if (elem == 0) { - printf("\nunexpected zero element, count=%d\n", count); - break; - } - elem = *((vm_offset_t *)elem); - } - if (elem != 0) - printf("\nnot at end of free list, elem=0x%x\n", elem); - else - printf("\n"); -} + printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total)); -#endif /* MACH_KDB */ +#if defined(__i386__) || defined (__x86_64__) + printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count)); +#endif + printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total); +} #if ZONE_DEBUG /* should we care about locks here ? */ -#if MACH_KDB -vm_offset_t -next_element( - zone_t z, - vm_offset_t elt) -{ - if (!zone_debug_enabled(z)) - return(0); - elt -= sizeof(queue_chain_t); - elt = (vm_offset_t) queue_next((queue_t) elt); - if ((queue_t) elt == &z->active_zones) - return(0); - elt += sizeof(queue_chain_t); - return(elt); -} - -vm_offset_t -first_element( - zone_t z) -{ - vm_offset_t elt; - - if (!zone_debug_enabled(z)) - return(0); - if (queue_empty(&z->active_zones)) - return(0); - elt = (vm_offset_t) queue_first(&z->active_zones); - elt += sizeof(queue_chain_t); - return(elt); -} - -/* - * Second arg controls how many zone elements are printed: - * 0 => none - * n, n < 0 => all - * n, n > 0 => last n on active list - */ -int -zone_count( - zone_t z, - int tail) -{ - vm_offset_t elt; - int count = 0; - boolean_t print = (tail != 0); - - if (tail < 0) - tail = z->count; - if (z->count < tail) - tail = 0; - tail = z->count - tail; - for (elt = first_element(z); elt; elt = next_element(z, elt)) { - if (print && tail <= count) - db_printf("%8x\n", elt); - count++; - } - assert(count == z->count); - return(count); -} -#endif /* MACH_KDB */ - #define zone_in_use(z) ( z->count || z->free_elements ) void @@ -1783,10 +3482,10 @@ zone_debug_enable( zone_t z) { if (zone_debug_enabled(z) || zone_in_use(z) || - z->alloc_size < (z->elem_size + sizeof(queue_chain_t))) + z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET)) return; queue_init(&z->active_zones); - z->elem_size += sizeof(queue_chain_t); + z->elem_size += ZONE_DEBUG_OFFSET; } void @@ -1795,7 +3494,9 @@ zone_debug_disable( { if (!zone_debug_enabled(z) || zone_in_use(z)) return; - z->elem_size -= sizeof(queue_chain_t); - z->active_zones.next = z->active_zones.prev = 0; + z->elem_size -= ZONE_DEBUG_OFFSET; + z->active_zones.next = z->active_zones.prev = NULL; } + + #endif /* ZONE_DEBUG */