X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/1c79356b52d46aa6b508fb032f5ae709b1f2897b..4d15aeb193b2c68f1d38666c317f8d3734f5f083:/osfmk/i386/mp_desc.c diff --git a/osfmk/i386/mp_desc.c b/osfmk/i386/mp_desc.c index dcab9ae43..a886ae736 100644 --- a/osfmk/i386/mp_desc.c +++ b/osfmk/i386/mp_desc.c @@ -1,23 +1,29 @@ /* - * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. * - * @APPLE_LICENSE_HEADER_END@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ @@ -51,51 +57,137 @@ /* */ -#include - -#if NCPUS > 1 - #include +#include #include +#include #include +#include +#include #include +#include +#include #include -#include #include +#include +#include +#if defined(__i386__) || defined(__x86_64__) +#include +#endif /* i386 */ +#if CONFIG_MCA +#include +#endif #include -#include - -/* - * The i386 needs an interrupt stack to keep the PCB stack from being - * overrun by interrupts. All interrupt stacks MUST lie at lower addresses - * than any thread`s kernel stack. - */ +#define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE) +#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE) + +// Declare macros that will declare the externs +#define TRAP(n, name) extern void *name ; +#define TRAP_ERR(n, name) extern void *name ; +#define TRAP_SPC(n, name) extern void *name ; +#define TRAP_IST1(n, name) extern void *name ; +#define TRAP_IST2(n, name) extern void *name ; +#define INTERRUPT(n) extern void *_intr_ ## n ; +#define USER_TRAP(n, name) extern void *name ; +#define USER_TRAP_SPC(n, name) extern void *name ; + +// Include the table to declare the externs +#include "../x86_64/idt_table.h" + +// Undef the macros, then redefine them so we can declare the table +#undef TRAP +#undef TRAP_ERR +#undef TRAP_SPC +#undef TRAP_IST1 +#undef TRAP_IST2 +#undef INTERRUPT +#undef USER_TRAP +#undef USER_TRAP_SPC + +#define TRAP(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 0, \ + K_INTR_GATE, \ + 0 \ + }, + +#define TRAP_ERR TRAP +#define TRAP_SPC TRAP + +#define TRAP_IST1(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 1, \ + K_INTR_GATE, \ + 0 \ + }, + +#define TRAP_IST2(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 2, \ + K_INTR_GATE, \ + 0 \ + }, + +#define INTERRUPT(n) \ + [n] = { \ + (uintptr_t)&_intr_ ## n,\ + KERNEL64_CS, \ + 0, \ + K_INTR_GATE, \ + 0 \ + }, + +#define USER_TRAP(n, name) \ + [n] = { \ + (uintptr_t)&name, \ + KERNEL64_CS, \ + 0, \ + U_INTR_GATE, \ + 0 \ + }, + +#define USER_TRAP_SPC USER_TRAP + +// Declare the table using the macros we just set up +struct fake_descriptor64 master_idt64[IDTSZ] + __attribute__ ((section("__HIB,__desc"))) + __attribute__ ((aligned(PAGE_SIZE))) = { +#include "../x86_64/idt_table.h" +}; /* - * Addresses of bottom and top of interrupt stacks. + * First cpu`s interrupt stack. */ -vm_offset_t interrupt_stack[NCPUS]; -vm_offset_t int_stack_top[NCPUS]; +extern uint32_t low_intstack[]; /* bottom */ +extern uint32_t low_eintstack[]; /* top */ /* - * Barrier address. + * Per-cpu data area pointers. + * The master cpu (cpu 0) has its data area statically allocated; + * others are allocated dynamically and this array is updated at runtime. */ -vm_offset_t int_stack_high; +static cpu_data_t cpu_data_master = { + .cpu_this = &cpu_data_master, + .cpu_nanotime = &pal_rtc_nanotime_info, + .cpu_int_stack_top = (vm_offset_t) low_eintstack, +}; +cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master }; -/* - * First cpu`s interrupt stack. - */ -extern char intstack[]; /* bottom */ -extern char eintstack[]; /* top */ +decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */ +unsigned int real_ncpus = 1; +unsigned int max_ncpus = MAX_CPUS; -/* - * We allocate interrupt stacks from physical memory. - */ -extern -vm_offset_t avail_start; +extern void hi64_sysenter(void); +extern void hi64_syscall(void); /* * Multiprocessor i386/i486 systems use a separate copy of the @@ -107,208 +199,682 @@ vm_offset_t avail_start; */ /* - * Allocated descriptor tables. + * Allocate and initialize the per-processor descriptor tables. */ -struct mp_desc_table *mp_desc_table[NCPUS] = { 0 }; /* - * Pointer to TSS for access in load_context. + * This is the expanded, 64-bit variant of the kernel LDT descriptor. + * When switching to 64-bit mode this replaces KERNEL_LDT entry + * and the following empty slot. This enables the LDT to be referenced + * in the uber-space remapping window on the kernel. */ -struct i386_tss *mp_ktss[NCPUS] = { 0 }; +struct fake_descriptor64 kernel_ldt_desc64 = { + 0, + LDTSZ_MIN*sizeof(struct fake_descriptor)-1, + 0, + ACC_P|ACC_PL_K|ACC_LDT, + 0 +}; -#if MACH_KDB /* - * Pointer to TSS for debugger use. + * This is the expanded, 64-bit variant of the kernel TSS descriptor. + * It is follows pattern of the KERNEL_LDT. */ -struct i386_tss *mp_dbtss[NCPUS] = { 0 }; -#endif /* MACH_KDB */ +struct fake_descriptor64 kernel_tss_desc64 = { + 0, + sizeof(struct x86_64_tss)-1, + 0, + ACC_P|ACC_PL_K|ACC_TSS, + 0 +}; /* - * Pointer to GDT to reset the KTSS busy bit. + * Convert a descriptor from fake to real format. + * + * Fake descriptor format: + * bytes 0..3 base 31..0 + * bytes 4..5 limit 15..0 + * byte 6 access byte 2 | limit 19..16 + * byte 7 access byte 1 + * + * Real descriptor format: + * bytes 0..1 limit 15..0 + * bytes 2..3 base 15..0 + * byte 4 base 23..16 + * byte 5 access byte 1 + * byte 6 access byte 2 | limit 19..16 + * byte 7 base 31..24 + * + * Fake gate format: + * bytes 0..3 offset + * bytes 4..5 selector + * byte 6 word count << 4 (to match fake descriptor) + * byte 7 access byte 1 + * + * Real gate format: + * bytes 0..1 offset 15..0 + * bytes 2..3 selector + * byte 4 word count + * byte 5 access byte 1 + * bytes 6..7 offset 31..16 */ -struct fake_descriptor *mp_gdt[NCPUS] = { 0 }; -struct fake_descriptor *mp_idt[NCPUS] = { 0 }; +void +fix_desc(void *d, int num_desc) { + //early_kprintf("fix_desc(%x, %x)\n", d, num_desc); + uint8_t *desc = (uint8_t*) d; + + do { + if ((desc[7] & 0x14) == 0x04) { /* gate */ + uint32_t offset; + uint16_t selector; + uint8_t wordcount; + uint8_t acc; + + offset = *((uint32_t*)(desc)); + selector = *((uint32_t*)(desc+4)); + wordcount = desc[6] >> 4; + acc = desc[7]; + + *((uint16_t*)desc) = offset & 0xFFFF; + *((uint16_t*)(desc+2)) = selector; + desc[4] = wordcount; + desc[5] = acc; + *((uint16_t*)(desc+6)) = offset >> 16; + + } else { /* descriptor */ + uint32_t base; + uint16_t limit; + uint8_t acc1, acc2; + + base = *((uint32_t*)(desc)); + limit = *((uint16_t*)(desc+4)); + acc2 = desc[6]; + acc1 = desc[7]; + + *((uint16_t*)(desc)) = limit; + *((uint16_t*)(desc+2)) = base & 0xFFFF; + desc[4] = (base >> 16) & 0xFF; + desc[5] = acc1; + desc[6] = acc2; + desc[7] = base >> 24; + } + desc += 8; + } while (--num_desc); +} -/* - * Allocate and initialize the per-processor descriptor tables. - */ +void +fix_desc64(void *descp, int count) +{ + struct fake_descriptor64 *fakep; + union { + struct real_gate64 gate; + struct real_descriptor64 desc; + } real; + int i; + + fakep = (struct fake_descriptor64 *) descp; + + for (i = 0; i < count; i++, fakep++) { + /* + * Construct the real decriptor locally. + */ + + bzero((void *) &real, sizeof(real)); + + switch (fakep->access & ACC_TYPE) { + case 0: + break; + case ACC_CALL_GATE: + case ACC_INTR_GATE: + case ACC_TRAP_GATE: + real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); + real.gate.selector16 = fakep->lim_or_seg & 0xFFFF; + real.gate.IST = fakep->size_or_IST & 0x7; + real.gate.access8 = fakep->access; + real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF); + real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32); + break; + default: /* Otherwise */ + real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF; + real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); + real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF); + real.desc.access8 = fakep->access; + real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF; + real.desc.granularity4 = fakep->size_or_IST; + real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF); + real.desc.base_top32 = (uint32_t)(fakep->offset64>>32); + } + + /* + * Now copy back over the fake structure. + */ + bcopy((void *) &real, (void *) fakep, sizeof(real)); + } +} -struct fake_descriptor ldt_desc_pattern = { - (unsigned int) 0, - LDTSZ * sizeof(struct fake_descriptor) - 1, - 0, - ACC_P|ACC_PL_K|ACC_LDT -}; -struct fake_descriptor tss_desc_pattern = { - (unsigned int) 0, - sizeof(struct i386_tss), - 0, - ACC_P|ACC_PL_K|ACC_TSS -}; +static void +cpu_gdt_alias(vm_map_offset_t gdt, vm_map_offset_t alias) +{ + pt_entry_t *pte = NULL; -struct fake_descriptor cpudata_desc_pattern = { - (unsigned int) 0, - sizeof(cpu_data_t)-1, - SZ_32, - ACC_P|ACC_PL_K|ACC_DATA_W -}; + /* Require page alignment */ + assert(page_aligned(gdt)); + assert(page_aligned(alias)); + + pte = pmap_pte(kernel_pmap, alias); + pmap_store_pte(pte, kvtophys(gdt) | INTEL_PTE_REF + | INTEL_PTE_MOD + | INTEL_PTE_WIRED + | INTEL_PTE_VALID + | INTEL_PTE_WRITE + | INTEL_PTE_NX); + + /* TLB flush unneccessry because target processor isn't running yet */ +} -struct mp_desc_table * -mp_desc_init( - int mycpu) + +void +cpu_desc_init64(cpu_data_t *cdp) { - register struct mp_desc_table *mpt; - - if (mycpu == master_cpu) { - /* - * Master CPU uses the tables built at boot time. - * Just set the TSS and GDT pointers. - */ - mp_ktss[mycpu] = &ktss; -#if MACH_KDB - mp_dbtss[mycpu] = &dbtss; -#endif /* MACH_KDB */ - mp_gdt[mycpu] = gdt; - mp_idt[mycpu] = idt; - return 0; - } - else { - mpt = mp_desc_table[mycpu]; - mp_ktss[mycpu] = &mpt->ktss; - mp_gdt[mycpu] = mpt->gdt; - mp_idt[mycpu] = mpt->idt; - - /* - * Copy the tables - */ - bcopy((char *)idt, - (char *)mpt->idt, - sizeof(idt)); - bcopy((char *)gdt, - (char *)mpt->gdt, - sizeof(gdt)); - bcopy((char *)ldt, - (char *)mpt->ldt, - sizeof(ldt)); - bzero((char *)&mpt->ktss, - sizeof(struct i386_tss)); - bzero((char *)&cpu_data[mycpu], - sizeof(cpu_data_t)); -#if MACH_KDB - mp_dbtss[mycpu] = &mpt->dbtss; - bcopy((char *)&dbtss, - (char *)&mpt->dbtss, - sizeof(struct i386_tss)); -#endif /* MACH_KDB */ - - /* - * Fix up the entries in the GDT to point to - * this LDT and this TSS. - */ - mpt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern; - mpt->gdt[sel_idx(KERNEL_LDT)].offset = - LINEAR_KERNEL_ADDRESS + (unsigned int) mpt->ldt; - fix_desc(&mpt->gdt[sel_idx(KERNEL_LDT)], 1); - - mpt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern; - mpt->gdt[sel_idx(KERNEL_TSS)].offset = - LINEAR_KERNEL_ADDRESS + (unsigned int) &mpt->ktss; - fix_desc(&mpt->gdt[sel_idx(KERNEL_TSS)], 1); - - mpt->gdt[sel_idx(CPU_DATA)] = cpudata_desc_pattern; - mpt->gdt[sel_idx(CPU_DATA)].offset = - LINEAR_KERNEL_ADDRESS + (unsigned int) &cpu_data[mycpu]; - fix_desc(&mpt->gdt[sel_idx(CPU_DATA)], 1); - -#if MACH_KDB - mpt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern; - mpt->gdt[sel_idx(DEBUG_TSS)].offset = - LINEAR_KERNEL_ADDRESS + (unsigned int) &mpt->dbtss; - fix_desc(&mpt->gdt[sel_idx(DEBUG_TSS)], 1); - - mpt->dbtss.esp0 = (int)(db_task_stack_store + - (INTSTACK_SIZE * (mycpu + 1)) - sizeof (natural_t)); - mpt->dbtss.esp = mpt->dbtss.esp0; - mpt->dbtss.eip = (int)&db_task_start; -#endif /* MACH_KDB */ - - mpt->ktss.ss0 = KERNEL_DS; - mpt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */ - - return mpt; + cpu_desc_index_t *cdi = &cdp->cpu_desc_index; + + if (cdp == &cpu_data_master) { + /* + * Master CPU uses the tables built at boot time. + * Just set the index pointers to the low memory space. + */ + cdi->cdi_ktss = (void *)&master_ktss64; + cdi->cdi_sstk = (vm_offset_t) &master_sstk.top; + cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS; + cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; + cdi->cdi_ldt = (struct fake_descriptor *) master_ldt; + + /* Replace the expanded LDTs and TSS slots in the GDT */ + kernel_ldt_desc64.offset64 = (uintptr_t) &master_ldt; + *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] = + kernel_ldt_desc64; + *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] = + kernel_ldt_desc64; + kernel_tss_desc64.offset64 = (uintptr_t) &master_ktss64; + *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] = + kernel_tss_desc64; + + /* Fix up the expanded descriptors for 64-bit. */ + fix_desc64((void *) &master_idt64, IDTSZ); + fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1); + fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1); + fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1); + + /* + * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS + * Note: this will be dynamically re-allocated in VM later. + */ + master_ktss64.ist2 = (uintptr_t) low_eintstack; + master_ktss64.ist1 = (uintptr_t) low_eintstack + - sizeof(x86_64_intr_stack_frame_t); + + } else if (cdi->cdi_ktss == NULL) { /* Skipping re-init on wake */ + cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep; + + /* + * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel + * heap (cpu_desc_table). + * LDT descriptors are mapped into a separate area. + * GDT descriptors are addressed by alias to avoid sgdt leaks to user-space. + */ + cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; + cdi->cdi_gdt.ptr = (void *)CPU_GDT_ALIAS(cdp->cpu_number); + cdi->cdi_ktss = (void *)&cdt->ktss; + cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top; + cdi->cdi_ldt = cdp->cpu_ldtp; + + /* Make the virtual alias address for the GDT */ + cpu_gdt_alias((vm_map_offset_t) &cdt->gdt, + (vm_map_offset_t) cdi->cdi_gdt.ptr); + + /* + * Copy the tables + */ + bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt)); + bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt)); + bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss)); + + /* + * Fix up the entries in the GDT to point to + * this LDT and this TSS. + */ + kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt; + *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] = + kernel_ldt_desc64; + fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); + + kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt; + *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] = + kernel_ldt_desc64; + fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1); + + kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktss; + *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] = + kernel_tss_desc64; + fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); + + /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */ + bzero((void *) cdt->fstk, sizeof(cdt->fstk)); + cdt->ktss.ist2 = (unsigned long)cdt->fstk + sizeof(cdt->fstk); + cdt->ktss.ist1 = cdt->ktss.ist2 + - sizeof(x86_64_intr_stack_frame_t); } + + /* Require that the top of the sysenter stack is 16-byte aligned */ + if ((cdi->cdi_sstk % 16) != 0) + panic("cpu_desc_init64() sysenter stack not 16-byte aligned"); } + +void +cpu_desc_load64(cpu_data_t *cdp) +{ + cpu_desc_index_t *cdi = &cdp->cpu_desc_index; + + /* Stuff the kernel per-cpu data area address into the MSRs */ + wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); + wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); + + /* + * Ensure the TSS segment's busy bit is clear. This is required + * for the case of reloading descriptors at wake to avoid + * their complete re-initialization. + */ + gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; + + /* Load the GDT, LDT, IDT and TSS */ + cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1; + cdi->cdi_idt.size = 0x1000 + cdp->cpu_number; + lgdt((uintptr_t *) &cdi->cdi_gdt); + lidt((uintptr_t *) &cdi->cdi_idt); + lldt(KERNEL_LDT); + set_tr(KERNEL_TSS); + +#if GPROF // Hack to enable mcount to work on K64 + __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS))); +#endif +} + + /* - * Called after all CPUs have been found, but before the VM system - * is running. The machine array must show which CPUs exist. + * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit. */ -void -interrupt_stack_alloc(void) +static void +fast_syscall_init64(__unused cpu_data_t *cdp) { - register int i; - int cpu_count; - vm_offset_t stack_start; - struct mp_desc_table *mpt; + wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); + wrmsr64(MSR_IA32_SYSENTER_EIP, (uintptr_t) hi64_sysenter); + wrmsr64(MSR_IA32_SYSENTER_ESP, current_sstk()); + /* Enable syscall/sysret */ + wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE); /* - * Count the number of CPUs. + * MSRs for 64-bit syscall/sysret + * Note USER_CS because sysret uses this + 16 when returning to + * 64-bit code. */ - cpu_count = 0; - for (i = 0; i < NCPUS; i++) - if (machine_slot[i].is_cpu) - cpu_count++; + wrmsr64(MSR_IA32_LSTAR, (uintptr_t) hi64_syscall); + wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | + (((uint64_t)KERNEL64_CS) << 32)); + /* + * Emulate eflags cleared by sysenter but note that + * we also clear the trace trap to avoid the complications + * of single-stepping into a syscall. The nested task bit + * is also cleared to avoid a spurious "task switch" + * should we choose to return via an IRET. + */ + wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT); + +} + + +cpu_data_t * +cpu_data_alloc(boolean_t is_boot_cpu) +{ + int ret; + cpu_data_t *cdp; + + if (is_boot_cpu) { + assert(real_ncpus == 1); + cdp = cpu_datap(0); + if (cdp->cpu_processor == NULL) { + simple_lock_init(&ncpus_lock, 0); + cdp->cpu_processor = cpu_processor_alloc(TRUE); +#if NCOPY_WINDOWS > 0 + cdp->cpu_pmap = pmap_cpu_alloc(TRUE); +#endif + } + return cdp; + } /* - * Allocate an interrupt stack for each CPU except for - * the master CPU (which uses the bootstrap stack) + * Allocate per-cpu data: */ - stack_start = phystokv(avail_start); - avail_start = round_page(avail_start + INTSTACK_SIZE*(cpu_count-1)); - bzero((char *)stack_start, INTSTACK_SIZE*(cpu_count-1)); + ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + printf("cpu_data_alloc() failed, ret=%d\n", ret); + goto abort; + } + bzero((void*) cdp, sizeof(cpu_data_t)); + cdp->cpu_this = cdp; /* - * Set up pointers to the top of the interrupt stack. + * Allocate interrupt stack: */ - for (i = 0; i < NCPUS; i++) { - if (i == master_cpu) { - interrupt_stack[i] = (vm_offset_t) intstack; - int_stack_top[i] = (vm_offset_t) eintstack; - } - else if (machine_slot[i].is_cpu) { - interrupt_stack[i] = stack_start; - int_stack_top[i] = stack_start + INTSTACK_SIZE; - - stack_start += INTSTACK_SIZE; - } + ret = kmem_alloc(kernel_map, + (vm_offset_t *) &cdp->cpu_int_stack_top, + INTSTACK_SIZE, VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + printf("cpu_data_alloc() int stack failed, ret=%d\n", ret); + goto abort; } + bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE); + cdp->cpu_int_stack_top += INTSTACK_SIZE; /* - * Allocate descriptor tables for each CPU except for - * the master CPU (which already has them initialized) + * Allocate descriptor table: */ + ret = kmem_alloc(kernel_map, + (vm_offset_t *) &cdp->cpu_desc_tablep, + sizeof(cpu_desc_table64_t), + VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret); + goto abort; + } - mpt = (struct mp_desc_table *) phystokv(avail_start); - avail_start = round_page((vm_offset_t)avail_start + - sizeof(struct mp_desc_table)*(cpu_count-1)); - for (i = 0; i < NCPUS; i++) - if (i != master_cpu) - mp_desc_table[i] = mpt++; + /* + * Allocate LDT + */ + ret = kmem_alloc(kernel_map, + (vm_offset_t *) &cdp->cpu_ldtp, + sizeof(struct real_descriptor) * LDTSZ, + VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + printf("cpu_data_alloc() ldt failed, ret=%d\n", ret); + goto abort; + } + +#if CONFIG_MCA + /* Machine-check shadow register allocation. */ + mca_cpu_alloc(cdp); +#endif + + simple_lock(&ncpus_lock); + cpu_data_ptr[real_ncpus] = cdp; + cdp->cpu_number = real_ncpus; + real_ncpus++; + simple_unlock(&ncpus_lock); /* - * Set up the barrier address. All thread stacks MUST - * be above this address. + * Before this cpu has been assigned a real thread context, + * we give it a fake, unique, non-zero thread id which the locking + * primitives use as their lock value. + * Note that this does not apply to the boot processor, cpu 0, which + * transitions to a thread context well before other processors are + * started. + */ + cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number; + + cdp->cpu_nanotime = &pal_rtc_nanotime_info; + + kprintf("cpu_data_alloc(%d) %p desc_table: %p " + "ldt: %p " + "int_stack: 0x%lx-0x%lx\n", + cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp, + (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top)); + + return cdp; + +abort: + if (cdp) { + if (cdp->cpu_desc_tablep) + kfree((void *) cdp->cpu_desc_tablep, + sizeof(cpu_desc_table64_t)); + if (cdp->cpu_int_stack_top) + kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE), + INTSTACK_SIZE); + kfree((void *) cdp, sizeof(*cdp)); + } + return NULL; +} + +boolean_t +valid_user_data_selector(uint16_t selector) +{ + sel_t sel = selector_to_sel(selector); + + if (selector == 0) + return (TRUE); + + if (sel.ti == SEL_LDT) + return (TRUE); + else if (sel.index < GDTSZ) { + if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) + return (TRUE); + } + + return (FALSE); +} + +boolean_t +valid_user_code_selector(uint16_t selector) +{ + sel_t sel = selector_to_sel(selector); + + if (selector == 0) + return (FALSE); + + if (sel.ti == SEL_LDT) { + if (sel.rpl == USER_PRIV) + return (TRUE); + } + else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { + if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) + return (TRUE); + /* Explicitly validate the system code selectors + * even if not instantaneously privileged, + * since they are dynamically re-privileged + * at context switch */ + if ((selector == USER_CS) || (selector == USER64_CS)) + return (TRUE); + } + + return (FALSE); +} + +boolean_t +valid_user_stack_selector(uint16_t selector) +{ + sel_t sel = selector_to_sel(selector); + + if (selector == 0) + return (FALSE); + + if (sel.ti == SEL_LDT) { + if (sel.rpl == USER_PRIV) + return (TRUE); + } + else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { + if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) + return (TRUE); + } + + return (FALSE); +} + +boolean_t +valid_user_segment_selectors(uint16_t cs, + uint16_t ss, + uint16_t ds, + uint16_t es, + uint16_t fs, + uint16_t gs) +{ + return valid_user_code_selector(cs) && + valid_user_stack_selector(ss) && + valid_user_data_selector(ds) && + valid_user_data_selector(es) && + valid_user_data_selector(fs) && + valid_user_data_selector(gs); +} + +#if NCOPY_WINDOWS > 0 + +static vm_offset_t user_window_base = 0; + +void +cpu_userwindow_init(int cpu) +{ + cpu_data_t *cdp = cpu_data_ptr[cpu]; + vm_offset_t user_window; + vm_offset_t vaddr; + int num_cpus; + + num_cpus = ml_get_max_cpus(); + + if (cpu >= num_cpus) + panic("cpu_userwindow_init: cpu > num_cpus"); + + if (user_window_base == 0) { + + if (vm_allocate(kernel_map, &vaddr, + (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE, + VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) + panic("cpu_userwindow_init: " + "couldn't allocate user map window"); + + /* + * window must start on a page table boundary + * in the virtual address space + */ + user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1); + + /* + * get rid of any allocation leading up to our + * starting boundary + */ + vm_deallocate(kernel_map, vaddr, user_window_base - vaddr); + + /* + * get rid of tail that we don't need + */ + user_window = user_window_base + + (NBPDE * NCOPY_WINDOWS * num_cpus); + + vm_deallocate(kernel_map, user_window, + (vaddr + + ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) - + user_window); + } + + user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE); + + cdp->cpu_copywindow_base = user_window; /* - * intstack is at higher addess than stack_start for AT mps - * so int_stack_high must point at eintstack. - * XXX - * But what happens if a kernel stack gets allocated below - * 1 Meg ? Probably never happens, there is only 640 K available - * There. + * Abuse this pdp entry, the pdp now actually points to + * an array of copy windows addresses. */ - int_stack_high = (vm_offset_t) eintstack; + cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window); + +} + +void +cpu_physwindow_init(int cpu) +{ + cpu_data_t *cdp = cpu_data_ptr[cpu]; + vm_offset_t phys_window = cdp->cpu_physwindow_base; + + if (phys_window == 0) { + if (vm_allocate(kernel_map, &phys_window, + PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) + != KERN_SUCCESS) + panic("cpu_physwindow_init: " + "couldn't allocate phys map window"); + + /* + * make sure the page that encompasses the + * pte pointer we're interested in actually + * exists in the page table + */ + pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE); + + cdp->cpu_physwindow_base = phys_window; + cdp->cpu_physwindow_ptep = vtopte(phys_window); + } +} +#endif /* NCOPY_WINDOWS > 0 */ + +/* + * Load the segment descriptor tables for the current processor. + */ +void +cpu_mode_init(cpu_data_t *cdp) +{ + fast_syscall_init64(cdp); } -#endif /* NCPUS > 1 */ +/* + * Allocate a new interrupt stack for the boot processor from the + * heap rather than continue to use the statically allocated space. + * Also switch to a dynamically allocated cpu data area. + */ +void +cpu_data_realloc(void) +{ + int ret; + vm_offset_t istk; + vm_offset_t fstk; + cpu_data_t *cdp; + boolean_t istate; + + ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + panic("cpu_data_realloc() stack alloc, ret=%d\n", ret); + } + bzero((void*) istk, INTSTACK_SIZE); + istk += INTSTACK_SIZE; + + ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret); + } + + /* Copy old contents into new area and make fix-ups */ + assert(cpu_number() == 0); + bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t)); + cdp->cpu_this = cdp; + cdp->cpu_int_stack_top = istk; + timer_call_queue_init(&cdp->rtclock_timer.queue); + + /* Allocate the separate fault stack */ + ret = kmem_alloc(kernel_map, &fstk, PAGE_SIZE, VM_KERN_MEMORY_CPU); + if (ret != KERN_SUCCESS) { + panic("cpu_data_realloc() fault stack alloc, ret=%d\n", ret); + } + bzero((void*) fstk, PAGE_SIZE); + fstk += PAGE_SIZE; + + /* + * With interrupts disabled commmit the new areas. + */ + istate = ml_set_interrupts_enabled(FALSE); + cpu_data_ptr[0] = cdp; + master_ktss64.ist2 = (uintptr_t) fstk; + master_ktss64.ist1 = (uintptr_t) fstk + - sizeof(x86_64_intr_stack_frame_t); + wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); + wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); + (void) ml_set_interrupts_enabled(istate); + + kprintf("Reallocated master cpu data: %p," + " interrupt stack: %p, fault stack: %p\n", + (void *) cdp, (void *) istk, (void *) fstk); +}