X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/1c79356b52d46aa6b508fb032f5ae709b1f2897b..060df5ea7c632b1ac8cc8aac1fb59758165c2084:/osfmk/vm/vm_pageout.c diff --git a/osfmk/vm/vm_pageout.c b/osfmk/vm/vm_pageout.c index cc5e40edb..4098fb8bc 100644 --- a/osfmk/vm/vm_pageout.c +++ b/osfmk/vm/vm_pageout.c @@ -1,23 +1,29 @@ /* - * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2009 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. * - * @APPLE_LICENSE_HEADER_END@ + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * @OSF_COPYRIGHT@ @@ -56,11 +62,10 @@ * * The proverbial page-out daemon. */ -#ifdef MACH_BSD -/* remove after component merge */ -extern int vnode_pager_workaround; -#endif +#include + +#include #include #include #include @@ -69,35 +74,74 @@ extern int vnode_pager_workaround; #include #include #include +#include #include +#include +#include #include #include -#include +#include + +#include #include +#include +#include +#include +#include #include -#include #include +#include + +#include +#include + +#if CONFIG_EMBEDDED +#include +#endif + #include +#include #include #include #include #include -#include -#include +#include /* must be last */ +#include +#include + +/* + * ENCRYPTED SWAP: + */ +#include <../bsd/crypto/aes/aes.h> +extern u_int32_t random(void); /* from */ -extern ipc_port_t memory_manager_default; +#if UPL_DEBUG +#include +#endif -#ifndef VM_PAGE_LAUNDRY_MAX -#define VM_PAGE_LAUNDRY_MAX 10 /* outstanding DMM page cleans */ -#endif /* VM_PAGEOUT_LAUNDRY_MAX */ +#ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */ +#define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100 +#endif + +#ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */ +#ifdef CONFIG_EMBEDDED +#define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024 +#else +#define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096 +#endif +#endif + +#ifndef VM_PAGEOUT_DEADLOCK_RELIEF +#define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */ +#endif -#ifndef VM_PAGEOUT_BURST_MAX -#define VM_PAGEOUT_BURST_MAX 32 /* simultaneous EMM page cleans */ -#endif /* VM_PAGEOUT_BURST_MAX */ +#ifndef VM_PAGEOUT_INACTIVE_RELIEF +#define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */ +#endif -#ifndef VM_PAGEOUT_DISCARD_MAX -#define VM_PAGEOUT_DISCARD_MAX 68 /* simultaneous EMM page cleans */ -#endif /* VM_PAGEOUT_DISCARD_MAX */ +#ifndef VM_PAGE_LAUNDRY_MAX +#define VM_PAGE_LAUNDRY_MAX 16UL /* maximum pageouts on a given pageout queue */ +#endif /* VM_PAGEOUT_LAUNDRY_MAX */ #ifndef VM_PAGEOUT_BURST_WAIT #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds per page */ @@ -107,6 +151,23 @@ extern ipc_port_t memory_manager_default; #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */ #endif /* VM_PAGEOUT_EMPTY_WAIT */ +#ifndef VM_PAGEOUT_DEADLOCK_WAIT +#define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */ +#endif /* VM_PAGEOUT_DEADLOCK_WAIT */ + +#ifndef VM_PAGEOUT_IDLE_WAIT +#define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */ +#endif /* VM_PAGEOUT_IDLE_WAIT */ + +#ifndef VM_PAGE_SPECULATIVE_TARGET +#define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / 20) +#endif /* VM_PAGE_SPECULATIVE_TARGET */ + +#ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT +#define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200) +#endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */ + + /* * To obtain a reasonable LRU approximation, the inactive queue * needs to be large enough to give pages on it a chance to be @@ -129,7 +190,11 @@ extern ipc_port_t memory_manager_default; */ #ifndef VM_PAGE_FREE_TARGET +#ifdef CONFIG_EMBEDDED +#define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100) +#else #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) +#endif #endif /* VM_PAGE_FREE_TARGET */ /* @@ -138,9 +203,17 @@ extern ipc_port_t memory_manager_default; */ #ifndef VM_PAGE_FREE_MIN -#define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) +#ifdef CONFIG_EMBEDDED +#define VM_PAGE_FREE_MIN(free) (10 + (free) / 200) +#else +#define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) +#endif #endif /* VM_PAGE_FREE_MIN */ +#define VM_PAGE_FREE_MIN_LIMIT 1500 +#define VM_PAGE_FREE_TARGET_LIMIT 2000 + + /* * When vm_page_free_count falls below vm_page_free_reserved, * only vm-privileged threads can allocate pages. vm-privilege @@ -150,34 +223,78 @@ extern ipc_port_t memory_manager_default; */ #ifndef VM_PAGE_FREE_RESERVED -#define VM_PAGE_FREE_RESERVED \ - ((8 * VM_PAGE_LAUNDRY_MAX) + NCPUS) +#define VM_PAGE_FREE_RESERVED(n) \ + ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n)) #endif /* VM_PAGE_FREE_RESERVED */ +/* + * When we dequeue pages from the inactive list, they are + * reactivated (ie, put back on the active queue) if referenced. + * However, it is possible to starve the free list if other + * processors are referencing pages faster than we can turn off + * the referenced bit. So we limit the number of reactivations + * we will make per call of vm_pageout_scan(). + */ +#define VM_PAGE_REACTIVATE_LIMIT_MAX 20000 +#ifndef VM_PAGE_REACTIVATE_LIMIT +#ifdef CONFIG_EMBEDDED +#define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2) +#else +#define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX)) +#endif +#endif /* VM_PAGE_REACTIVATE_LIMIT */ +#define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 100 + + +/* + * Exported variable used to broadcast the activation of the pageout scan + * Working Set uses this to throttle its use of pmap removes. In this + * way, code which runs within memory in an uncontested context does + * not keep encountering soft faults. + */ + +unsigned int vm_pageout_scan_event_counter = 0; /* * Forward declarations for internal routines. */ + +static void vm_pageout_garbage_collect(int); +static void vm_pageout_iothread_continue(struct vm_pageout_queue *); +static void vm_pageout_iothread_external(void); +static void vm_pageout_iothread_internal(void); + extern void vm_pageout_continue(void); extern void vm_pageout_scan(void); -extern void vm_pageout_throttle(vm_page_t m); -extern vm_page_t vm_pageout_cluster_page( - vm_object_t object, - vm_object_offset_t offset, - boolean_t precious_clean); + +static thread_t vm_pageout_external_iothread = THREAD_NULL; +static thread_t vm_pageout_internal_iothread = THREAD_NULL; unsigned int vm_pageout_reserved_internal = 0; unsigned int vm_pageout_reserved_really = 0; -unsigned int vm_page_laundry_max = 0; /* # of clusters outstanding */ -unsigned int vm_page_laundry_min = 0; -unsigned int vm_pageout_burst_max = 0; -unsigned int vm_pageout_burst_wait = 0; /* milliseconds per page */ +unsigned int vm_pageout_idle_wait = 0; /* milliseconds */ unsigned int vm_pageout_empty_wait = 0; /* milliseconds */ -unsigned int vm_pageout_burst_min = 0; -unsigned int vm_pageout_pause_count = 0; -unsigned int vm_pageout_pause_max = 0; -unsigned int vm_free_page_pause = 100; /* milliseconds */ +unsigned int vm_pageout_burst_wait = 0; /* milliseconds */ +unsigned int vm_pageout_deadlock_wait = 0; /* milliseconds */ +unsigned int vm_pageout_deadlock_relief = 0; +unsigned int vm_pageout_inactive_relief = 0; +unsigned int vm_pageout_burst_active_throttle = 0; +unsigned int vm_pageout_burst_inactive_throttle = 0; + +/* + * Protection against zero fill flushing live working sets derived + * from existing backing store and files + */ +unsigned int vm_accellerate_zf_pageout_trigger = 400; +unsigned int zf_queue_min_count = 100; +unsigned int vm_zf_queue_count = 0; + +#if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */ +unsigned int vm_zf_count = 0; +#else +uint64_t vm_zf_count __attribute__((aligned(8))) = 0; +#endif /* * These variables record the pageout daemon's actions: @@ -196,78 +313,87 @@ unsigned int vm_pageout_inactive_absent = 0; /* debugging */ unsigned int vm_pageout_inactive_used = 0; /* debugging */ unsigned int vm_pageout_inactive_clean = 0; /* debugging */ unsigned int vm_pageout_inactive_dirty = 0; /* debugging */ +unsigned int vm_pageout_inactive_deactivated = 0; /* debugging */ +unsigned int vm_pageout_inactive_zf = 0; /* debugging */ unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */ -unsigned int vm_pageout_inactive_pinned = 0; /* debugging */ -unsigned int vm_pageout_inactive_limbo = 0; /* debugging */ -unsigned int vm_pageout_setup_limbo = 0; /* debugging */ -unsigned int vm_pageout_setup_unprepped = 0; /* debugging */ +unsigned int vm_pageout_purged_objects = 0; /* debugging */ unsigned int vm_stat_discard = 0; /* debugging */ unsigned int vm_stat_discard_sent = 0; /* debugging */ unsigned int vm_stat_discard_failure = 0; /* debugging */ unsigned int vm_stat_discard_throttle = 0; /* debugging */ -unsigned int vm_pageout_scan_active_emm_throttle = 0; /* debugging */ -unsigned int vm_pageout_scan_active_emm_throttle_success = 0; /* debugging */ -unsigned int vm_pageout_scan_active_emm_throttle_failure = 0; /* debugging */ -unsigned int vm_pageout_scan_inactive_emm_throttle = 0; /* debugging */ -unsigned int vm_pageout_scan_inactive_emm_throttle_success = 0; /* debugging */ -unsigned int vm_pageout_scan_inactive_emm_throttle_failure = 0; /* debugging */ +unsigned int vm_pageout_reactivation_limit_exceeded = 0; /* debugging */ +unsigned int vm_pageout_catch_ups = 0; /* debugging */ +unsigned int vm_pageout_inactive_force_reclaim = 0; /* debugging */ + +unsigned int vm_pageout_scan_active_throttled = 0; +unsigned int vm_pageout_scan_inactive_throttled = 0; +unsigned int vm_pageout_scan_throttle = 0; /* debugging */ +unsigned int vm_pageout_scan_throttle_aborted = 0; /* debugging */ +unsigned int vm_pageout_scan_burst_throttle = 0; /* debugging */ +unsigned int vm_pageout_scan_empty_throttle = 0; /* debugging */ +unsigned int vm_pageout_scan_deadlock_detected = 0; /* debugging */ +unsigned int vm_pageout_scan_active_throttle_success = 0; /* debugging */ +unsigned int vm_pageout_scan_inactive_throttle_success = 0; /* debugging */ + +unsigned int vm_page_speculative_count_drifts = 0; +unsigned int vm_page_speculative_count_drift_max = 0; +/* + * Backing store throttle when BS is exhausted + */ +unsigned int vm_backing_store_low = 0; unsigned int vm_pageout_out_of_line = 0; unsigned int vm_pageout_in_place = 0; + +unsigned int vm_page_steal_pageout_page = 0; + /* - * Routine: vm_pageout_object_allocate - * Purpose: - * Allocate an object for use as out-of-line memory in a - * data_return/data_initialize message. - * The page must be in an unlocked object. - * - * If the page belongs to a trusted pager, cleaning in place - * will be used, which utilizes a special "pageout object" - * containing private alias pages for the real page frames. - * Untrusted pagers use normal out-of-line memory. + * ENCRYPTED SWAP: + * counters and statistics... */ -vm_object_t -vm_pageout_object_allocate( - vm_page_t m, - vm_size_t size, - vm_object_offset_t offset) -{ - vm_object_t object = m->object; - vm_object_t new_object; - - assert(object->pager_ready); +unsigned long vm_page_decrypt_counter = 0; +unsigned long vm_page_decrypt_for_upl_counter = 0; +unsigned long vm_page_encrypt_counter = 0; +unsigned long vm_page_encrypt_abort_counter = 0; +unsigned long vm_page_encrypt_already_encrypted_counter = 0; +boolean_t vm_pages_encrypted = FALSE; /* are there encrypted pages ? */ - if (object->pager_trusted || object->internal) - vm_pageout_throttle(m); +struct vm_pageout_queue vm_pageout_queue_internal; +struct vm_pageout_queue vm_pageout_queue_external; - new_object = vm_object_allocate(size); +unsigned int vm_page_speculative_target = 0; - if (object->pager_trusted) { - assert (offset < object->size); +vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL; - vm_object_lock(new_object); - new_object->pageout = TRUE; - new_object->shadow = object; - new_object->can_persist = FALSE; - new_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; - new_object->shadow_offset = offset; - vm_object_unlock(new_object); +boolean_t (* volatile consider_buffer_cache_collect)(int) = NULL; - /* - * Take a paging reference on the object. This will be dropped - * in vm_pageout_object_terminate() - */ - vm_object_lock(object); - vm_object_paging_begin(object); - vm_object_unlock(object); +#if DEVELOPMENT || DEBUG +unsigned long vm_cs_validated_resets = 0; +#endif - vm_pageout_in_place++; - } else - vm_pageout_out_of_line++; - return(new_object); +/* + * Routine: vm_backing_store_disable + * Purpose: + * Suspend non-privileged threads wishing to extend + * backing store when we are low on backing store + * (Synchronized by caller) + */ +void +vm_backing_store_disable( + boolean_t disable) +{ + if(disable) { + vm_backing_store_low = 1; + } else { + if(vm_backing_store_low) { + vm_backing_store_low = 0; + thread_wakeup((event_t) &vm_backing_store_low); + } + } } + #if MACH_CLUSTER_STATS unsigned long vm_pageout_cluster_dirtied = 0; unsigned long vm_pageout_cluster_cleaned = 0; @@ -277,8 +403,6 @@ unsigned long vm_pageout_cluster_conversions = 0; unsigned long vm_pageout_target_collisions = 0; unsigned long vm_pageout_target_page_dirtied = 0; unsigned long vm_pageout_target_page_freed = 0; -unsigned long vm_pageout_target_page_pinned = 0; -unsigned long vm_pageout_target_page_limbo = 0; #define CLUSTER_STAT(clause) clause #else /* MACH_CLUSTER_STATS */ #define CLUSTER_STAT(clause) @@ -287,8 +411,7 @@ unsigned long vm_pageout_target_page_limbo = 0; /* * Routine: vm_pageout_object_terminate * Purpose: - * Destroy the pageout_object allocated by - * vm_pageout_object_allocate(), and perform all of the + * Destroy the pageout_object, and perform all of the * required cleanup actions. * * In/Out conditions: @@ -331,26 +454,23 @@ vm_pageout_object_terminate( if(m == VM_PAGE_NULL) continue; assert(m->cleaning); + /* used as a trigger on upl_commit etc to recognize the */ + /* pageout daemon's subseqent desire to pageout a cleaning */ + /* page. When the bit is on the upl commit code will */ + /* respect the pageout bit in the target page over the */ + /* caller's page list indication */ + m->dump_cleaning = FALSE; - /* - * Account for the paging reference taken when - * m->cleaning was set on this page. - */ - vm_object_paging_end(shadow_object); assert((m->dirty) || (m->precious) || (m->busy && m->cleaning)); /* * Handle the trusted pager throttle. + * Also decrement the burst throttle (if external). */ vm_page_lock_queues(); if (m->laundry) { - vm_page_laundry_count--; - m->laundry = FALSE; - if (vm_page_laundry_count < vm_page_laundry_min) { - vm_page_laundry_min = 0; - thread_wakeup((event_t) &vm_page_laundry_count); - } + vm_pageout_throttle_up(m); } /* @@ -365,6 +485,7 @@ vm_pageout_object_terminate( assert(m->busy); assert(m->wire_count == 1); m->cleaning = FALSE; + m->encrypted_cleaning = FALSE; m->pageout = FALSE; #if MACH_CLUSTER_STATS if (m->wanted) vm_pageout_target_collisions++; @@ -372,47 +493,23 @@ vm_pageout_object_terminate( /* * Revoke all access to the page. Since the object is * locked, and the page is busy, this prevents the page - * from being dirtied after the pmap_is_modified() call + * from being dirtied after the pmap_disconnect() call * returns. - */ - pmap_page_protect(m->phys_addr, VM_PROT_NONE); - - /* + * * Since the page is left "dirty" but "not modifed", we * can detect whether the page was redirtied during * pageout by checking the modify state. */ - m->dirty = pmap_is_modified(m->phys_addr); + if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) + m->dirty = TRUE; + else + m->dirty = FALSE; if (m->dirty) { CLUSTER_STAT(vm_pageout_target_page_dirtied++;) - vm_page_unwire(m);/* reactivates */ - VM_STAT(reactivations++); + vm_page_unwire(m, TRUE); /* reactivates */ + VM_STAT_INCR(reactivations); PAGE_WAKEUP_DONE(m); - } else if (m->prep_pin_count != 0) { - vm_page_pin_lock(); - if (m->pin_count != 0) { - /* page is pinned; reactivate */ - CLUSTER_STAT( - vm_pageout_target_page_pinned++;) - vm_page_unwire(m);/* reactivates */ - VM_STAT(reactivations++); - PAGE_WAKEUP_DONE(m); - } else { - /* - * page is prepped but not pinned; send - * it into limbo. Note that - * vm_page_free (which will be called - * after releasing the pin lock) knows - * how to handle a page with limbo set. - */ - m->limbo = TRUE; - CLUSTER_STAT( - vm_pageout_target_page_limbo++;) - } - vm_page_pin_unlock(); - if (m->limbo) - vm_page_free(m); } else { CLUSTER_STAT(vm_pageout_target_page_freed++;) vm_page_free(m);/* clears busy, etc. */ @@ -426,8 +523,8 @@ vm_pageout_object_terminate( * If prep_pin_count is nonzero, then someone is using the * page, so make it active. */ - if (!m->active && !m->inactive) { - if (m->reference || m->prep_pin_count != 0) + if (!m->active && !m->inactive && !m->throttled && !m->private) { + if (m->reference) vm_page_activate(m); else vm_page_deactivate(m); @@ -439,26 +536,21 @@ vm_pageout_object_terminate( /* We do not re-set m->dirty ! */ /* The page was busy so no extraneous activity */ - /* could have occured. COPY_INTO is a read into the */ + /* could have occurred. COPY_INTO is a read into the */ /* new pages. CLEAN_IN_PLACE does actually write */ /* out the pages but handling outside of this code */ /* will take care of resetting dirty. We clear the */ /* modify however for the Programmed I/O case. */ - pmap_clear_modify(m->phys_addr); - if(m->absent) { - m->absent = FALSE; - if(shadow_object->absent_count == 1) - vm_object_absent_release(shadow_object); - else - shadow_object->absent_count--; - } + pmap_clear_modify(m->phys_page); + + m->absent = FALSE; m->overwriting = FALSE; } else if (m->overwriting) { /* alternate request page list, write to page_list */ /* case. Occurs when the original page was wired */ /* at the time of the list request */ - assert(m->wire_count != 0); - vm_page_unwire(m);/* reactivates */ + assert(VM_PAGE_WIRED(m)); + vm_page_unwire(m, TRUE); /* reactivates */ m->overwriting = FALSE; } else { /* @@ -471,7 +563,7 @@ vm_pageout_object_terminate( * consulted if m->dirty is false. */ #if MACH_CLUSTER_STATS - m->dirty = pmap_is_modified(m->phys_addr); + m->dirty = pmap_is_modified(m->phys_page); if (m->dirty) vm_pageout_cluster_dirtied++; else vm_pageout_cluster_cleaned++; @@ -481,7 +573,7 @@ vm_pageout_object_terminate( #endif } m->cleaning = FALSE; - + m->encrypted_cleaning = FALSE; /* * Wakeup any thread waiting for the page to be un-cleaning. @@ -492,228 +584,16 @@ vm_pageout_object_terminate( /* * Account for the paging reference taken in vm_paging_object_allocate. */ - vm_object_paging_end(shadow_object); + vm_object_activity_end(shadow_object); vm_object_unlock(shadow_object); assert(object->ref_count == 0); assert(object->paging_in_progress == 0); + assert(object->activity_in_progress == 0); assert(object->resident_page_count == 0); return; } -/* - * Routine: vm_pageout_setup - * Purpose: - * Set up a page for pageout (clean & flush). - * - * Move the page to a new object, as part of which it will be - * sent to its memory manager in a memory_object_data_write or - * memory_object_initialize message. - * - * The "new_object" and "new_offset" arguments - * indicate where the page should be moved. - * - * In/Out conditions: - * The page in question must not be on any pageout queues, - * and must be busy. The object to which it belongs - * must be unlocked, and the caller must hold a paging - * reference to it. The new_object must not be locked. - * - * This routine returns a pointer to a place-holder page, - * inserted at the same offset, to block out-of-order - * requests for the page. The place-holder page must - * be freed after the data_write or initialize message - * has been sent. - * - * The original page is put on a paging queue and marked - * not busy on exit. - */ -vm_page_t -vm_pageout_setup( - register vm_page_t m, - register vm_object_t new_object, - vm_object_offset_t new_offset) -{ - register vm_object_t old_object = m->object; - vm_object_offset_t paging_offset; - vm_object_offset_t offset; - register vm_page_t holding_page; - register vm_page_t new_m; - register vm_page_t new_page; - boolean_t need_to_wire = FALSE; - - - XPR(XPR_VM_PAGEOUT, - "vm_pageout_setup, obj 0x%X off 0x%X page 0x%X new obj 0x%X offset 0x%X\n", - (integer_t)m->object, (integer_t)m->offset, - (integer_t)m, (integer_t)new_object, - (integer_t)new_offset); - assert(m && m->busy && !m->absent && !m->fictitious && !m->error && - !m->restart); - - assert(m->dirty || m->precious); - - /* - * Create a place-holder page where the old one was, to prevent - * attempted pageins of this page while we're unlocked. - * If the pageout daemon put this page in limbo and we're not - * going to clean in place, get another fictitious page to - * exchange for it now. - */ - VM_PAGE_GRAB_FICTITIOUS(holding_page); - - if (m->limbo) - VM_PAGE_GRAB_FICTITIOUS(new_page); - - vm_object_lock(old_object); - - offset = m->offset; - paging_offset = offset + old_object->paging_offset; - - if (old_object->pager_trusted) { - /* - * This pager is trusted, so we can clean this page - * in place. Leave it in the old object, and mark it - * cleaning & pageout. - */ - new_m = holding_page; - holding_page = VM_PAGE_NULL; - - /* - * If the pageout daemon put this page in limbo, exchange the - * identities of the limbo page and the new fictitious page, - * and continue with the new page, unless the prep count has - * gone to zero in the meantime (which means no one is - * interested in the page any more). In that case, just clear - * the limbo bit and free the extra fictitious page. - */ - if (m->limbo) { - if (m->prep_pin_count == 0) { - /* page doesn't have to be in limbo any more */ - m->limbo = FALSE; - vm_page_lock_queues(); - vm_page_free(new_page); - vm_page_unlock_queues(); - vm_pageout_setup_unprepped++; - } else { - vm_page_lock_queues(); - VM_PAGE_QUEUES_REMOVE(m); - vm_page_remove(m); - vm_page_limbo_exchange(m, new_page); - vm_pageout_setup_limbo++; - vm_page_release_limbo(m); - m = new_page; - vm_page_insert(m, old_object, offset); - vm_page_unlock_queues(); - } - } - - /* - * Set up new page to be private shadow of real page. - */ - new_m->phys_addr = m->phys_addr; - new_m->fictitious = FALSE; - new_m->private = TRUE; - new_m->pageout = TRUE; - - /* - * Mark real page as cleaning (indicating that we hold a - * paging reference to be released via m_o_d_r_c) and - * pageout (indicating that the page should be freed - * when the pageout completes). - */ - pmap_clear_modify(m->phys_addr); - vm_page_lock_queues(); - vm_page_wire(new_m); - m->cleaning = TRUE; - m->pageout = TRUE; - - vm_page_wire(m); - assert(m->wire_count == 1); - vm_page_unlock_queues(); - - m->dirty = TRUE; - m->precious = FALSE; - m->page_lock = VM_PROT_NONE; - m->unusual = FALSE; - m->unlock_request = VM_PROT_NONE; - } else { - /* - * Cannot clean in place, so rip the old page out of the - * object, and stick the holding page in. Set new_m to the - * page in the new object. - */ - vm_page_lock_queues(); - VM_PAGE_QUEUES_REMOVE(m); - vm_page_remove(m); - - /* - * If the pageout daemon put this page in limbo, exchange the - * identities of the limbo page and the new fictitious page, - * and continue with the new page, unless the prep count has - * gone to zero in the meantime (which means no one is - * interested in the page any more). In that case, just clear - * the limbo bit and free the extra fictitious page. - */ - if (m->limbo) { - if (m->prep_pin_count == 0) { - /* page doesn't have to be in limbo any more */ - m->limbo = FALSE; - vm_page_free(new_page); - vm_pageout_setup_unprepped++; - } else { - vm_page_limbo_exchange(m, new_page); - vm_pageout_setup_limbo++; - vm_page_release_limbo(m); - m = new_page; - } - } - - vm_page_insert(holding_page, old_object, offset); - vm_page_unlock_queues(); - - m->dirty = TRUE; - m->precious = FALSE; - new_m = m; - new_m->page_lock = VM_PROT_NONE; - new_m->unlock_request = VM_PROT_NONE; - - if (old_object->internal) - need_to_wire = TRUE; - } - /* - * Record that this page has been written out - */ -#if MACH_PAGEMAP - vm_external_state_set(old_object->existence_map, offset); -#endif /* MACH_PAGEMAP */ - - vm_object_unlock(old_object); - - vm_object_lock(new_object); - - /* - * Put the page into the new object. If it is a not wired - * (if it's the real page) it will be activated. - */ - - vm_page_lock_queues(); - vm_page_insert(new_m, new_object, new_offset); - if (need_to_wire) - vm_page_wire(new_m); - else - vm_page_activate(new_m); - PAGE_WAKEUP_DONE(new_m); - vm_page_unlock_queues(); - - vm_object_unlock(new_object); - - /* - * Return the placeholder page to simplify cleanup. - */ - return (holding_page); -} - /* * Routine: vm_pageclean_setup * @@ -721,9 +601,9 @@ vm_pageout_setup( * necessarily flushed from the VM page cache. * This is accomplished by cleaning in place. * - * The page must not be busy, and the object and page - * queues must be locked. - * + * The page must not be busy, and new_object + * must be locked. + * */ void vm_pageclean_setup( @@ -732,24 +612,17 @@ vm_pageclean_setup( vm_object_t new_object, vm_object_offset_t new_offset) { - vm_object_t old_object = m->object; assert(!m->busy); +#if 0 assert(!m->cleaning); +#endif XPR(XPR_VM_PAGEOUT, "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n", - (integer_t)old_object, m->offset, (integer_t)m, - (integer_t)new_m, new_offset); - - pmap_clear_modify(m->phys_addr); - vm_object_paging_begin(old_object); + m->object, m->offset, m, + new_m, new_offset); - /* - * Record that this page has been written out - */ -#if MACH_PAGEMAP - vm_external_state_set(old_object->existence_map, m->offset); -#endif /*MACH_PAGEMAP*/ + pmap_clear_modify(m->phys_page); /* * Mark original page as cleaning in place. @@ -763,64 +636,21 @@ vm_pageclean_setup( * the real page. */ assert(new_m->fictitious); + assert(new_m->phys_page == vm_page_fictitious_addr); new_m->fictitious = FALSE; new_m->private = TRUE; new_m->pageout = TRUE; - new_m->phys_addr = m->phys_addr; + new_m->phys_page = m->phys_page; + + vm_page_lockspin_queues(); vm_page_wire(new_m); + vm_page_unlock_queues(); vm_page_insert(new_m, new_object, new_offset); assert(!new_m->wanted); new_m->busy = FALSE; } -void -vm_pageclean_copy( - vm_page_t m, - vm_page_t new_m, - vm_object_t new_object, - vm_object_offset_t new_offset) -{ - XPR(XPR_VM_PAGEOUT, - "vm_pageclean_copy, page 0x%X new_m 0x%X new_obj 0x%X offset 0x%X\n", - m, new_m, new_object, new_offset, 0); - - assert((!m->busy) && (!m->cleaning)); - - assert(!new_m->private && !new_m->fictitious); - - pmap_clear_modify(m->phys_addr); - - m->busy = TRUE; - vm_object_paging_begin(m->object); - vm_page_unlock_queues(); - vm_object_unlock(m->object); - - /* - * Copy the original page to the new page. - */ - vm_page_copy(m, new_m); - - /* - * Mark the old page as clean. A request to pmap_is_modified - * will get the right answer. - */ - vm_object_lock(m->object); - m->dirty = FALSE; - - vm_object_paging_end(m->object); - - vm_page_lock_queues(); - if (!m->active && !m->inactive) - vm_page_activate(m); - PAGE_WAKEUP_DONE(m); - - vm_page_insert(new_m, new_object, new_offset); - vm_page_activate(new_m); - new_m->busy = FALSE; /* No other thread can be waiting */ -} - - /* * Routine: vm_pageout_initialize_page * Purpose: @@ -843,16 +673,14 @@ void vm_pageout_initialize_page( vm_page_t m) { - vm_map_copy_t copy; - vm_object_t new_object; vm_object_t object; vm_object_offset_t paging_offset; vm_page_t holding_page; - + memory_object_t pager; XPR(XPR_VM_PAGEOUT, "vm_pageout_initialize_page, page 0x%X\n", - (integer_t)m, 0, 0, 0, 0); + m, 0, 0, 0, 0); assert(m->busy); /* @@ -867,33 +695,45 @@ vm_pageout_initialize_page( */ object = m->object; paging_offset = m->offset + object->paging_offset; - vm_object_paging_begin(object); - vm_object_unlock(object); - if (m->absent || m->error || m->restart || - (!m->dirty && !m->precious)) { + + if (m->absent || m->error || m->restart || (!m->dirty && !m->precious)) { VM_PAGE_FREE(m); panic("reservation without pageout?"); /* alan */ + vm_object_unlock(object); + + return; + } + + /* + * If there's no pager, then we can't clean the page. This should + * never happen since this should be a copy object and therefore not + * an external object, so the pager should always be there. + */ + + pager = object->pager; + + if (pager == MEMORY_OBJECT_NULL) { + VM_PAGE_FREE(m); + panic("missing pager for copy object"); return; } /* set the page for future call to vm_fault_list_request */ + vm_object_paging_begin(object); holding_page = NULL; - vm_object_lock(m->object); - vm_page_lock_queues(); - pmap_clear_modify(m->phys_addr); + + pmap_clear_modify(m->phys_page); m->dirty = TRUE; - m->busy = TRUE; - m->list_req_pending = TRUE; - m->cleaning = TRUE; + m->busy = TRUE; + m->list_req_pending = TRUE; + m->cleaning = TRUE; m->pageout = TRUE; + + vm_page_lockspin_queues(); vm_page_wire(m); vm_page_unlock_queues(); - vm_object_unlock(m->object); - vm_pageout_throttle(m); - copy = NULL; - VM_STAT(pageouts++); - /* VM_STAT(pages_pagedout++); */ + vm_object_unlock(object); /* * Write the data to its pager. @@ -903,13 +743,10 @@ vm_pageout_initialize_page( * [The object reference from its allocation is donated * to the eventual recipient.] */ - memory_object_data_initialize(object->pager, - object->pager_request, - paging_offset, - POINTER_T(copy), - PAGE_SIZE); + memory_object_data_initialize(pager, paging_offset, PAGE_SIZE); vm_object_lock(object); + vm_object_paging_end(object); } #if MACH_CLUSTER_STATS @@ -921,484 +758,369 @@ struct { } cluster_stats[MAXCLUSTERPAGES]; #endif /* MACH_CLUSTER_STATS */ -boolean_t allow_clustered_pageouts = FALSE; /* * vm_pageout_cluster: * - * Given a page, page it out, and attempt to clean adjacent pages + * Given a page, queue it to the appropriate I/O thread, + * which will page it out and attempt to clean adjacent pages * in the same operation. * - * The page must be busy, and the object unlocked w/ paging reference - * to prevent deallocation or collapse. The page must not be on any - * pageout queue. + * The page must be busy, and the object and queues locked. We will take a + * paging reference to prevent deallocation or collapse when we + * release the object lock back at the call site. The I/O thread + * is responsible for consuming this reference + * + * The page must not be on any pageout queue. */ + void -vm_pageout_cluster( - vm_page_t m) +vm_pageout_cluster(vm_page_t m) { vm_object_t object = m->object; - vm_object_offset_t offset = m->offset; /* from vm_object start */ - vm_object_offset_t paging_offset = m->offset + object->paging_offset; - vm_object_t new_object; - vm_object_offset_t new_offset; - vm_size_t cluster_size; - vm_object_offset_t cluster_offset; /* from memory_object start */ - vm_object_offset_t cluster_lower_bound; /* from vm_object_start */ - vm_object_offset_t cluster_upper_bound; /* from vm_object_start */ - vm_object_offset_t cluster_start, cluster_end;/* from vm_object start */ - vm_object_offset_t offset_within_cluster; - vm_size_t length_of_data; - vm_page_t friend, holding_page; - vm_map_copy_t copy; - kern_return_t rc; - boolean_t precious_clean = TRUE; - int pages_in_cluster; - - CLUSTER_STAT(int pages_at_higher_offsets = 0;) - CLUSTER_STAT(int pages_at_lower_offsets = 0;) + struct vm_pageout_queue *q; + XPR(XPR_VM_PAGEOUT, "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n", - (integer_t)object, offset, (integer_t)m, 0, 0); + object, m->offset, m, 0, 0); + + VM_PAGE_CHECK(m); - CLUSTER_STAT(vm_pageout_cluster_clusters++;) /* * Only a certain kind of page is appreciated here. */ - assert(m->busy && (m->dirty || m->precious) && (m->wire_count == 0)); + assert(m->busy && (m->dirty || m->precious) && (!VM_PAGE_WIRED(m))); assert(!m->cleaning && !m->pageout && !m->inactive && !m->active); + assert(!m->throttled); - vm_object_lock(object); - cluster_size = object->cluster_size; - - assert(cluster_size >= PAGE_SIZE); - if (cluster_size < PAGE_SIZE) cluster_size = PAGE_SIZE; - assert(object->pager_created && object->pager_initialized); - assert(object->internal || object->pager_ready); + /* + * protect the object from collapse - + * locking in the object's paging_offset. + */ + vm_object_paging_begin(object); - if (m->precious && !m->dirty) - precious_clean = TRUE; + /* + * set the page for future call to vm_fault_list_request + * page should already be marked busy + */ + vm_page_wire(m); + m->list_req_pending = TRUE; + m->cleaning = TRUE; + m->pageout = TRUE; - if (!object->pager_trusted || !allow_clustered_pageouts) - cluster_size = PAGE_SIZE; - vm_object_unlock(object); + if (object->internal == TRUE) + q = &vm_pageout_queue_internal; + else + q = &vm_pageout_queue_external; - cluster_offset = paging_offset & (vm_object_offset_t)(cluster_size - 1); - /* bytes from beginning of cluster */ - /* - * Due to unaligned mappings, we have to be careful - * of negative offsets into the VM object. Clip the cluster - * boundary to the VM object, not the memory object. + /* + * pgo_laundry count is tied to the laundry bit */ - if (offset > cluster_offset) { - cluster_lower_bound = offset - cluster_offset; - /* from vm_object */ - } else { - cluster_lower_bound = 0; + m->laundry = TRUE; + q->pgo_laundry++; + + m->pageout_queue = TRUE; + queue_enter(&q->pgo_pending, m, vm_page_t, pageq); + + if (q->pgo_idle == TRUE) { + q->pgo_idle = FALSE; + thread_wakeup((event_t) &q->pgo_pending); } - cluster_upper_bound = (offset - cluster_offset) + - (vm_object_offset_t)cluster_size; - /* set the page for future call to vm_fault_list_request */ - holding_page = NULL; - vm_object_lock(m->object); - vm_page_lock_queues(); - m->busy = TRUE; - m->list_req_pending = TRUE; - m->cleaning = TRUE; - m->pageout = TRUE; - vm_page_wire(m); - vm_page_unlock_queues(); - vm_object_unlock(m->object); - vm_pageout_throttle(m); + VM_PAGE_CHECK(m); +} - /* - * Search backward for adjacent eligible pages to clean in - * this operation. - */ - cluster_start = offset; - if (offset) { /* avoid wrap-around at zero */ - for (cluster_start = offset - PAGE_SIZE_64; - cluster_start >= cluster_lower_bound; - cluster_start -= PAGE_SIZE_64) { - assert(cluster_size > PAGE_SIZE); +unsigned long vm_pageout_throttle_up_count = 0; - vm_object_lock(object); - vm_page_lock_queues(); +/* + * A page is back from laundry or we are stealing it back from + * the laundering state. See if there are some pages waiting to + * go to laundry and if we can let some of them go now. + * + * Object and page queues must be locked. + */ +void +vm_pageout_throttle_up( + vm_page_t m) +{ + struct vm_pageout_queue *q; - if ((friend = vm_pageout_cluster_page(object, cluster_start, - precious_clean)) == VM_PAGE_NULL) { - vm_page_unlock_queues(); - vm_object_unlock(object); - break; - } - new_offset = (cluster_start + object->paging_offset) - & (cluster_size - 1); - - assert(new_offset < cluster_offset); - m->list_req_pending = TRUE; - m->cleaning = TRUE; -/* do nothing except advance the write request, all we really need to */ -/* do is push the target page and let the code at the other end decide */ -/* what is really the right size */ - if (vm_page_free_count <= vm_page_free_reserved) { - m->busy = TRUE; - m->pageout = TRUE; - vm_page_wire(m); - } + assert(m->object != VM_OBJECT_NULL); + assert(m->object != kernel_object); - vm_page_unlock_queues(); - vm_object_unlock(object); - if(m->dirty || m->object->internal) { - CLUSTER_STAT(pages_at_lower_offsets++;) - } + vm_pageout_throttle_up_count++; - } - cluster_start += PAGE_SIZE_64; - } - assert(cluster_start >= cluster_lower_bound); - assert(cluster_start <= offset); - /* - * Search forward for adjacent eligible pages to clean in - * this operation. - */ - for (cluster_end = offset + PAGE_SIZE_64; - cluster_end < cluster_upper_bound; - cluster_end += PAGE_SIZE_64) { - assert(cluster_size > PAGE_SIZE); + if (m->object->internal == TRUE) + q = &vm_pageout_queue_internal; + else + q = &vm_pageout_queue_external; - vm_object_lock(object); - vm_page_lock_queues(); + if (m->pageout_queue == TRUE) { - if ((friend = vm_pageout_cluster_page(object, cluster_end, - precious_clean)) == VM_PAGE_NULL) { - vm_page_unlock_queues(); - vm_object_unlock(object); - break; - } - new_offset = (cluster_end + object->paging_offset) - & (cluster_size - 1); - - assert(new_offset < cluster_size); - m->list_req_pending = TRUE; - m->cleaning = TRUE; -/* do nothing except advance the write request, all we really need to */ -/* do is push the target page and let the code at the other end decide */ -/* what is really the right size */ - if (vm_page_free_count <= vm_page_free_reserved) { - m->busy = TRUE; - m->pageout = TRUE; - vm_page_wire(m); - } + queue_remove(&q->pgo_pending, m, vm_page_t, pageq); + m->pageout_queue = FALSE; - vm_page_unlock_queues(); - vm_object_unlock(object); - - if(m->dirty || m->object->internal) { - CLUSTER_STAT(pages_at_higher_offsets++;) - } - } - assert(cluster_end <= cluster_upper_bound); - assert(cluster_end >= offset + PAGE_SIZE); + m->pageq.next = NULL; + m->pageq.prev = NULL; - /* - * (offset - cluster_offset) is beginning of cluster_object - * relative to vm_object start. - */ - offset_within_cluster = cluster_start - (offset - cluster_offset); - length_of_data = cluster_end - cluster_start; + vm_object_paging_end(m->object); + } + if (m->laundry == TRUE) { + m->laundry = FALSE; + q->pgo_laundry--; - assert(offset_within_cluster < cluster_size); - assert((offset_within_cluster + length_of_data) <= cluster_size); + if (q->pgo_throttled == TRUE) { + q->pgo_throttled = FALSE; + thread_wakeup((event_t) &q->pgo_laundry); + } + if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { + q->pgo_draining = FALSE; + thread_wakeup((event_t) (&q->pgo_laundry+1)); + } + } +} - rc = KERN_SUCCESS; - assert(rc == KERN_SUCCESS); - pages_in_cluster = length_of_data/PAGE_SIZE; - if(m->dirty || m->object->internal) { - VM_STAT(pageouts++); - } - /* VM_STAT(pages_pagedout += pages_in_cluster); */ +/* + * vm_pageout_scan does the dirty work for the pageout daemon. + * It returns with vm_page_queue_free_lock held and + * vm_page_free_wanted == 0. + */ -#if MACH_CLUSTER_STATS - (cluster_stats[pages_at_lower_offsets].pages_at_lower_offsets)++; - (cluster_stats[pages_at_higher_offsets].pages_at_higher_offsets)++; - (cluster_stats[pages_in_cluster].pages_in_cluster)++; -#endif /* MACH_CLUSTER_STATS */ +#define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT (3 * MAX_UPL_TRANSFER) - /* - * Send the data to the pager. - */ - paging_offset = cluster_start + object->paging_offset; -#ifdef MACH_BSD - if(((rpc_subsystem_t)pager_mux_hash_lookup(object->pager)) == - ((rpc_subsystem_t) &vnode_pager_workaround)) { - rc = vnode_pager_data_return(object->pager, - object->pager_request, - paging_offset, - POINTER_T(copy), - length_of_data, - !precious_clean, - FALSE); - } else { - rc = memory_object_data_return(object->pager, - object->pager_request, - paging_offset, - POINTER_T(copy), - length_of_data, - !precious_clean, - FALSE); - } -#else - rc = memory_object_data_return(object->pager, - object->pager_request, - paging_offset, - POINTER_T(copy), - length_of_data, - !precious_clean, - FALSE); -#endif - vm_object_lock(object); - vm_object_paging_end(object); +#define FCS_IDLE 0 +#define FCS_DELAYED 1 +#define FCS_DEADLOCK_DETECTED 2 - if (holding_page) { - assert(!object->pager_trusted); - VM_PAGE_FREE(holding_page); - vm_object_paging_end(object); - } +struct flow_control { + int state; + mach_timespec_t ts; +}; - vm_object_unlock(object); -} /* - * vm_pageout_return_write_pages - * Recover pages from an aborted write attempt + * VM memory pressure monitoring. + * + * vm_pageout_scan() keeps track of the number of pages it considers and + * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now]. * + * compute_memory_pressure() is called every second from compute_averages() + * and moves "vm_pageout_stat_now" forward, to start accumulating the number + * of recalimed pages in a new vm_pageout_stat[] bucket. + * + * mach_vm_pressure_monitor() collects past statistics about memory pressure. + * The caller provides the number of seconds ("nsecs") worth of statistics + * it wants, up to 30 seconds. + * It computes the number of pages reclaimed in the past "nsecs" seconds and + * also returns the number of pages the system still needs to reclaim at this + * moment in time. */ +#define VM_PAGEOUT_STAT_SIZE 31 +struct vm_pageout_stat { + unsigned int considered; + unsigned int reclaimed; +} vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0,0}, }; +unsigned int vm_pageout_stat_now = 0; +unsigned int vm_memory_pressure = 0; + +#define VM_PAGEOUT_STAT_BEFORE(i) \ + (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1) +#define VM_PAGEOUT_STAT_AFTER(i) \ + (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1) -vm_pageout_return_write_pages( - ipc_port_t control_port, - vm_object_offset_t object_offset, - vm_map_copy_t copy) +/* + * Called from compute_averages(). + */ +void +compute_memory_pressure( + __unused void *arg) { - vm_object_t object; - int offset; - int size; - int shadow_offset; - int copy_offset; - int j; - vm_page_t m; + unsigned int vm_pageout_next; + + vm_memory_pressure = + vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].reclaimed; + + commpage_set_memory_pressure( vm_memory_pressure ); + /* move "now" forward */ + vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now); + vm_pageout_stats[vm_pageout_next].considered = 0; + vm_pageout_stats[vm_pageout_next].reclaimed = 0; + vm_pageout_stat_now = vm_pageout_next; +} - object = copy->cpy_object; - copy_offset = copy->offset; - size = copy->size; +unsigned int +mach_vm_ctl_page_free_wanted(void) +{ + unsigned int page_free_target, page_free_count, page_free_wanted; - if((copy->type != VM_MAP_COPY_OBJECT) || (object->shadow == 0)) { - object = (vm_object_t)control_port->ip_kobject; - shadow_offset = (object_offset - object->paging_offset) - - copy->offset; + page_free_target = vm_page_free_target; + page_free_count = vm_page_free_count; + if (page_free_target > page_free_count) { + page_free_wanted = page_free_target - page_free_count; } else { - /* get the offset from the copy object */ - shadow_offset = object->shadow_offset; - /* find the backing object */ - object = object->shadow; + page_free_wanted = 0; } - vm_object_lock(object); - for(offset = 0, j=0; offset < size; offset+=page_size, j++) { - m = vm_page_lookup(object, - offset + shadow_offset + copy_offset); - if((m == VM_PAGE_NULL) || m->fictitious) { + return page_free_wanted; +} - vm_page_t p; - int i; - vm_object_t copy_object; +kern_return_t +mach_vm_pressure_monitor( + boolean_t wait_for_pressure, + unsigned int nsecs_monitored, + unsigned int *pages_reclaimed_p, + unsigned int *pages_wanted_p) +{ + wait_result_t wr; + unsigned int vm_pageout_then, vm_pageout_now; + unsigned int pages_reclaimed; - /* m might be fictitious if the original page */ - /* was found to be in limbo at the time of */ - /* vm_pageout_setup */ + /* + * We don't take the vm_page_queue_lock here because we don't want + * vm_pressure_monitor() to get in the way of the vm_pageout_scan() + * thread when it's trying to reclaim memory. We don't need fully + * accurate monitoring anyway... + */ - if((m != VM_PAGE_NULL) && m->fictitious) { - m->cleaning = FALSE; - vm_page_remove(m); - /* if object is not pager trusted then */ - /* this fictitious page will be removed */ - /* as the holding page in vm_pageout_cluster */ - if (object->pager_trusted) - vm_page_free(m); - if(vm_page_laundry_count) - vm_page_laundry_count--; - if (vm_page_laundry_count - < vm_page_laundry_min) { - vm_page_laundry_min = 0; - thread_wakeup((event_t) - &vm_page_laundry_count); - } - } - else if ((object->pager_trusted) && - (copy->type == VM_MAP_COPY_OBJECT)) { - vm_object_paging_end(object); + if (wait_for_pressure) { + /* wait until there's memory pressure */ + while (vm_page_free_count >= vm_page_free_target) { + wr = assert_wait((event_t) &vm_page_free_wanted, + THREAD_INTERRUPTIBLE); + if (wr == THREAD_WAITING) { + wr = thread_block(THREAD_CONTINUE_NULL); } - - copy_object = copy->cpy_object; - - if(copy->type == VM_MAP_COPY_OBJECT) { - p = (vm_page_t) queue_first(©_object->memq); - - for(i = 0; - i < copy_object->resident_page_count; - i++) { - if(p->offset == (offset + copy_offset)) - break; - p = (vm_page_t) queue_next(&p->listq); - } - - vm_page_remove(p); - } else { - p = copy->cpy_page_list[j]; - copy->cpy_page_list[j] = 0; - p->gobbled = FALSE; + if (wr == THREAD_INTERRUPTED) { + return KERN_ABORTED; } - - vm_page_insert(p, object, - offset + shadow_offset + copy_offset); - p->busy = TRUE; - p->dirty = TRUE; - p->laundry = FALSE; - if (p->pageout) { - p->pageout = FALSE; /*dont throw away target*/ - vm_page_unwire(p);/* reactivates */ + if (wr == THREAD_AWAKENED) { + /* + * The memory pressure might have already + * been relieved but let's not block again + * and let's report that there was memory + * pressure at some point. + */ + break; } - } else if(m->pageout) { - m->pageout = FALSE; /* dont throw away target pages */ - vm_page_unwire(m);/* reactivates */ } } - vm_object_unlock(object); - vm_map_copy_discard(copy); - vm_object_lock(object); - - for(offset = 0; offset < size; offset+=page_size) { - m = vm_page_lookup(object, - offset + shadow_offset + copy_offset); - m->dirty = TRUE; /* we'll send the pages home later */ - m->busy = FALSE; /* allow system access again */ + /* provide the number of pages the system wants to reclaim */ + if (pages_wanted_p != NULL) { + *pages_wanted_p = mach_vm_ctl_page_free_wanted(); } - vm_object_unlock(object); -} - -/* - * Trusted pager throttle. - * Object must be unlocked, page queues must be unlocked. - */ -void -vm_pageout_throttle( - register vm_page_t m) -{ - vm_page_lock_queues(); - assert(!m->laundry); - m->laundry = TRUE; - while (vm_page_laundry_count >= vm_page_laundry_max) { - /* - * Set the threshold for when vm_page_free() - * should wake us up. - */ - vm_page_laundry_min = vm_page_laundry_max/2; - assert_wait((event_t) &vm_page_laundry_count, THREAD_UNINT); - vm_page_unlock_queues(); - - /* - * Pause to let the default pager catch up. - */ - thread_block((void (*)(void)) 0); - vm_page_lock_queues(); + if (pages_reclaimed_p == NULL) { + return KERN_SUCCESS; } - vm_page_laundry_count++; - vm_page_unlock_queues(); -} - -/* - * The global variable vm_pageout_clean_active_pages controls whether - * active pages are considered valid to be cleaned in place during a - * clustered pageout. Performance measurements are necessary to determine - * the best policy. - */ -int vm_pageout_clean_active_pages = 1; -/* - * vm_pageout_cluster_page: [Internal] - * - * return a vm_page_t to the page at (object,offset) if it is appropriate - * to clean in place. Pages that are non-existent, busy, absent, already - * cleaning, or not dirty are not eligible to be cleaned as an adjacent - * page in a cluster. - * - * The object must be locked on entry, and remains locked throughout - * this call. - */ -vm_page_t -vm_pageout_cluster_page( - vm_object_t object, - vm_object_offset_t offset, - boolean_t precious_clean) -{ - vm_page_t m; + /* provide number of pages reclaimed in the last "nsecs_monitored" */ + do { + vm_pageout_now = vm_pageout_stat_now; + pages_reclaimed = 0; + for (vm_pageout_then = + VM_PAGEOUT_STAT_BEFORE(vm_pageout_now); + vm_pageout_then != vm_pageout_now && + nsecs_monitored-- != 0; + vm_pageout_then = + VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) { + pages_reclaimed += vm_pageout_stats[vm_pageout_then].reclaimed; + } + } while (vm_pageout_now != vm_pageout_stat_now); + *pages_reclaimed_p = pages_reclaimed; - XPR(XPR_VM_PAGEOUT, - "vm_pageout_cluster_page, object 0x%X offset 0x%X\n", - (integer_t)object, offset, 0, 0, 0); + return KERN_SUCCESS; +} - if ((m = vm_page_lookup(object, offset)) == VM_PAGE_NULL) - return(VM_PAGE_NULL); +/* Page States: Used below to maintain the page state + before it's removed from it's Q. This saved state + helps us do the right accounting in certain cases +*/ - if (m->busy || m->absent || m->cleaning || - m->prep_pin_count != 0 || - (m->wire_count != 0) || m->error) - return(VM_PAGE_NULL); +#define PAGE_STATE_SPECULATIVE 1 +#define PAGE_STATE_THROTTLED 2 +#define PAGE_STATE_ZEROFILL 3 +#define PAGE_STATE_INACTIVE 4 + +#define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \ + MACRO_BEGIN \ + /* \ + * If a "reusable" page somehow made it back into \ + * the active queue, it's been re-used and is not \ + * quite re-usable. \ + * If the VM object was "all_reusable", consider it \ + * as "all re-used" instead of converting it to \ + * "partially re-used", which could be expensive. \ + */ \ + if ((m)->reusable || \ + (m)->object->all_reusable) { \ + vm_object_reuse_pages((m)->object, \ + (m)->offset, \ + (m)->offset + PAGE_SIZE_64, \ + FALSE); \ + } \ + MACRO_END - if (vm_pageout_clean_active_pages) { - if (!m->active && !m->inactive) return(VM_PAGE_NULL); - } else { - if (!m->inactive) return(VM_PAGE_NULL); - } +void +vm_pageout_scan(void) +{ + unsigned int loop_count = 0; + unsigned int inactive_burst_count = 0; + unsigned int active_burst_count = 0; + unsigned int reactivated_this_call; + unsigned int reactivate_limit; + vm_page_t local_freeq = NULL; + int local_freed = 0; + int delayed_unlock; + int refmod_state = 0; + int vm_pageout_deadlock_target = 0; + struct vm_pageout_queue *iq; + struct vm_pageout_queue *eq; + struct vm_speculative_age_q *sq; + struct flow_control flow_control = { 0, { 0, 0 } }; + boolean_t inactive_throttled = FALSE; + boolean_t try_failed; + mach_timespec_t ts; + unsigned int msecs = 0; + vm_object_t object; + vm_object_t last_object_tried; +#if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */ + unsigned int zf_ratio; + unsigned int zf_run_count; +#else + uint64_t zf_ratio; + uint64_t zf_run_count; +#endif + uint32_t catch_up_count = 0; + uint32_t inactive_reclaim_run; + boolean_t forced_reclaim; + int page_prev_state = 0; - assert(!m->private); - assert(!m->fictitious); + flow_control.state = FCS_IDLE; + iq = &vm_pageout_queue_internal; + eq = &vm_pageout_queue_external; + sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; - if (!m->dirty) m->dirty = pmap_is_modified(m->phys_addr); - if (precious_clean) { - if (!m->precious || !m->dirty) - return(VM_PAGE_NULL); - } else { - if (!m->dirty) - return(VM_PAGE_NULL); - } - return(m); -} + XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); -/* - * vm_pageout_scan does the dirty work for the pageout daemon. - * It returns with vm_page_queue_free_lock held and - * vm_page_free_wanted == 0. - */ -extern void vm_pageout_scan_continue(void); /* forward; */ + + vm_page_lock_queues(); + delayed_unlock = 1; /* must be nonzero if Qs are locked, 0 if unlocked */ -void -vm_pageout_scan(void) -{ - unsigned int burst_count; - boolean_t now = FALSE; - unsigned int laundry_pages; - boolean_t need_more_inactive_pages; - unsigned int loop_detect; + /* + * Calculate the max number of referenced pages on the inactive + * queue that we will reactivate. + */ + reactivated_this_call = 0; + reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count + + vm_page_inactive_count); + inactive_reclaim_run = 0; - XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); /*???*/ /* * We want to gradually dribble pages from the active queue @@ -1423,144 +1145,170 @@ vm_pageout_scan(void) * When memory is very tight, we can't rely on external pagers to * clean pages. They probably aren't running, because they * aren't vm-privileged. If we kept sending dirty pages to them, - * we could exhaust the free list. However, we can't just ignore - * pages belonging to external objects, because there might be no - * pages belonging to internal objects. Hence, we get the page - * into an internal object and then immediately double-page it, - * sending it to the default pager. - * - * consider_zone_gc should be last, because the other operations - * might return memory to zones. + * we could exhaust the free list. */ - Restart: - - mutex_lock(&vm_page_queue_free_lock); - now = (vm_page_free_count < vm_page_free_min); - mutex_unlock(&vm_page_queue_free_lock); -#if THREAD_SWAPPER - swapout_threads(now); -#endif /* THREAD_SWAPPER */ - stack_collect(); - consider_task_collect(); - consider_thread_collect(); - cleanup_limbo_queue(); - consider_zone_gc(); - consider_machine_collect(); - - loop_detect = vm_page_active_count + vm_page_inactive_count; -#if 0 - if (vm_page_free_count <= vm_page_free_reserved) { - need_more_inactive_pages = TRUE; - } else { - need_more_inactive_pages = FALSE; - } +Restart: + assert(delayed_unlock!=0); + + /* + * A page is "zero-filled" if it was not paged in from somewhere, + * and it belongs to an object at least VM_ZF_OBJECT_SIZE_THRESHOLD big. + * Recalculate the zero-filled page ratio. We use this to apportion + * victimized pages between the normal and zero-filled inactive + * queues according to their relative abundance in memory. Thus if a task + * is flooding memory with zf pages, we begin to hunt them down. + * It would be better to throttle greedy tasks at a higher level, + * but at the moment mach vm cannot do this. + */ + { +#if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */ + uint32_t total = vm_page_active_count + vm_page_inactive_count; + uint32_t normal = total - vm_zf_count; #else - need_more_inactive_pages = FALSE; + uint64_t total = vm_page_active_count + vm_page_inactive_count; + uint64_t normal = total - vm_zf_count; #endif - for (burst_count = 0;;) { - register vm_page_t m; - register vm_object_t object; - unsigned int free_count; + /* zf_ratio is the number of zf pages we victimize per normal page */ + + if (vm_zf_count < vm_accellerate_zf_pageout_trigger) + zf_ratio = 0; + else if ((vm_zf_count <= normal) || (normal == 0)) + zf_ratio = 1; + else + zf_ratio = vm_zf_count / normal; + + zf_run_count = 0; + } + + /* + * Recalculate vm_page_inactivate_target. + */ + vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + + vm_page_inactive_count + + vm_page_speculative_count); + /* + * don't want to wake the pageout_scan thread up everytime we fall below + * the targets... set a low water mark at 0.25% below the target + */ + vm_page_inactive_min = vm_page_inactive_target - (vm_page_inactive_target / 400); + + vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count + + vm_page_inactive_count); + object = NULL; + last_object_tried = NULL; + try_failed = FALSE; + + if ((vm_page_inactive_count + vm_page_speculative_count) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count)) + catch_up_count = vm_page_inactive_count + vm_page_speculative_count; + else + catch_up_count = 0; + + for (;;) { + vm_page_t m; + + DTRACE_VM2(rev, int, 1, (uint64_t *), NULL); + + if (delayed_unlock == 0) { + vm_page_lock_queues(); + delayed_unlock = 1; + } /* - * Recalculate vm_page_inactivate_target. + * Don't sweep through active queue more than the throttle + * which should be kept relatively low */ - - vm_page_lock_queues(); - vm_page_inactive_target = - VM_PAGE_INACTIVE_TARGET(vm_page_active_count + - vm_page_inactive_count); + active_burst_count = MIN(vm_pageout_burst_active_throttle, + vm_page_active_count); /* * Move pages from active to inactive. */ + if ((vm_page_inactive_count + vm_page_speculative_count) >= vm_page_inactive_target) + goto done_moving_active_pages; - while ((vm_page_inactive_count < vm_page_inactive_target || - need_more_inactive_pages) && - !queue_empty(&vm_page_queue_active)) { - register vm_object_t object; + while (!queue_empty(&vm_page_queue_active) && active_burst_count) { + + if (active_burst_count) + active_burst_count--; vm_pageout_active++; + m = (vm_page_t) queue_first(&vm_page_queue_active); + assert(m->active && !m->inactive); + assert(!m->laundry); + assert(m->object != kernel_object); + assert(m->phys_page != vm_page_guard_addr); + + DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); + /* - * If we're getting really low on memory, - * try selecting a page that will go - * directly to the default_pager. - * If there are no such pages, we have to - * page out a page backed by an EMM, - * so that the default_pager can recover - * it eventually. + * Try to lock object; since we've already got the + * page queues lock, we can only 'try' for this one. + * if the 'try' fails, we need to do a mutex_pause + * to allow the owner of the object lock a chance to + * run... otherwise, we're likely to trip over this + * object in the same state as we work our way through + * the queue... clumps of pages associated with the same + * object are fairly typical on the inactive and active queues */ - if (need_more_inactive_pages && - (IP_VALID(memory_manager_default))) { - vm_pageout_scan_active_emm_throttle++; - do { - assert(m->active && !m->inactive); - object = m->object; - - if (vm_object_lock_try(object)) { -#if 0 - if (object->pager_trusted || - object->internal) { - /* found one ! */ - vm_pageout_scan_active_emm_throttle_success++; - goto object_locked_active; - } -#else - vm_pageout_scan_active_emm_throttle_success++; - goto object_locked_active; -#endif - vm_object_unlock(object); - } - m = (vm_page_t) queue_next(&m->pageq); - } while (!queue_end(&vm_page_queue_active, - (queue_entry_t) m)); - if (queue_end(&vm_page_queue_active, - (queue_entry_t) m)) { - vm_pageout_scan_active_emm_throttle_failure++; - m = (vm_page_t) - queue_first(&vm_page_queue_active); + if (m->object != object) { + if (object != NULL) { + vm_object_unlock(object); + object = NULL; + vm_pageout_scan_wants_object = VM_OBJECT_NULL; } - } - - assert(m->active && !m->inactive); + if (!vm_object_lock_try_scan(m->object)) { + /* + * move page to end of active queue and continue + */ + queue_remove(&vm_page_queue_active, m, + vm_page_t, pageq); + queue_enter(&vm_page_queue_active, m, + vm_page_t, pageq); + + try_failed = TRUE; + + m = (vm_page_t) queue_first(&vm_page_queue_active); + /* + * this is the next object we're going to be interested in + * try to make sure it's available after the mutex_yield + * returns control + */ + vm_pageout_scan_wants_object = m->object; - object = m->object; - if (!vm_object_lock_try(object)) { - /* - * Move page to end and continue. - */ + goto done_with_activepage; + } + object = m->object; - queue_remove(&vm_page_queue_active, m, - vm_page_t, pageq); - queue_enter(&vm_page_queue_active, m, - vm_page_t, pageq); - vm_page_unlock_queues(); - mutex_pause(); - vm_page_lock_queues(); - continue; + try_failed = FALSE; } - object_locked_active: /* - * If the page is busy, then we pull it - * off the active queue and leave it alone. + * if the page is BUSY, then we pull it + * off the active queue and leave it alone. + * when BUSY is cleared, it will get stuck + * back on the appropriate queue */ - if (m->busy) { - vm_object_unlock(object); queue_remove(&vm_page_queue_active, m, vm_page_t, pageq); - m->active = FALSE; + m->pageq.next = NULL; + m->pageq.prev = NULL; + if (!m->fictitious) vm_page_active_count--; - continue; + m->active = FALSE; + + goto done_with_activepage; } + /* deal with a rogue "reusable" page */ + VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m); + /* * Deactivate the page while holding the object * locked, so we know the page is still not busy. @@ -1569,191 +1317,605 @@ vm_pageout_scan(void) * absent or fictitious, but vm_page_deactivate * can handle that. */ - vm_page_deactivate(m); - vm_object_unlock(object); - } - /* - * We are done if we have met our target *and* - * nobody is still waiting for a page. - */ +done_with_activepage: + if (delayed_unlock++ > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT || try_failed == TRUE) { - mutex_lock(&vm_page_queue_free_lock); - free_count = vm_page_free_count; - if ((free_count >= vm_page_free_target) && - (vm_page_free_wanted == 0)) { - vm_page_unlock_queues(); - break; + if (object != NULL) { + vm_pageout_scan_wants_object = VM_OBJECT_NULL; + vm_object_unlock(object); + object = NULL; + } + if (local_freeq) { + vm_page_unlock_queues(); + vm_page_free_list(local_freeq, TRUE); + + local_freeq = NULL; + local_freed = 0; + vm_page_lock_queues(); + } else + lck_mtx_yield(&vm_page_queue_lock); + + delayed_unlock = 1; + + /* + * continue the while loop processing + * the active queue... need to hold + * the page queues lock + */ + } } - mutex_unlock(&vm_page_queue_free_lock); + + + + /********************************************************************** + * above this point we're playing with the active queue + * below this point we're playing with the throttling mechanisms + * and the inactive queue + **********************************************************************/ + +done_moving_active_pages: /* - * Sometimes we have to pause: - * 1) No inactive pages - nothing to do. - * 2) Flow control - wait for untrusted pagers to catch up. + * We are done if we have met our target *and* + * nobody is still waiting for a page. */ + if (vm_page_free_count + local_freed >= vm_page_free_target) { + if (object != NULL) { + vm_object_unlock(object); + object = NULL; + } + vm_pageout_scan_wants_object = VM_OBJECT_NULL; - if (queue_empty(&vm_page_queue_inactive) || - ((--loop_detect) == 0) || - (burst_count >= vm_pageout_burst_max)) { - unsigned int pages, msecs; - int wait_result; - - consider_machine_adjust(); + if (local_freeq) { + vm_page_unlock_queues(); + vm_page_free_list(local_freeq, TRUE); + + local_freeq = NULL; + local_freed = 0; + vm_page_lock_queues(); + } /* - * vm_pageout_burst_wait is msecs/page. - * If there is nothing for us to do, we wait - * at least vm_pageout_empty_wait msecs. + * inactive target still not met... keep going + * until we get the queues balanced */ - pages = burst_count; - - if (loop_detect == 0) { - printf("Warning: No physical memory suitable for pageout or reclaim, pageout thread temporarily going to sleep\n"); - msecs = vm_free_page_pause; - } - else { - msecs = burst_count * vm_pageout_burst_wait; - } - - if (queue_empty(&vm_page_queue_inactive) && - (msecs < vm_pageout_empty_wait)) - msecs = vm_pageout_empty_wait; - vm_page_unlock_queues(); - assert_wait_timeout(msecs, THREAD_INTERRUPTIBLE); - counter(c_vm_pageout_scan_block++); /* - * Unfortunately, we don't have call_continuation - * so we can't rely on tail-recursion. + * Recalculate vm_page_inactivate_target. */ - wait_result = thread_block((void (*)(void)) 0); - if (wait_result != THREAD_TIMED_OUT) - thread_cancel_timer(); - vm_pageout_scan_continue(); - goto Restart; - /*NOTREACHED*/ - } + vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + + vm_page_inactive_count + + vm_page_speculative_count); - vm_pageout_inactive++; - m = (vm_page_t) queue_first(&vm_page_queue_inactive); - - if ((vm_page_free_count <= vm_page_free_reserved) && - (IP_VALID(memory_manager_default))) { +#ifndef CONFIG_EMBEDDED /* - * We're really low on memory. Try to select a page that - * would go directly to the default_pager. - * If there are no such pages, we have to page out a - * page backed by an EMM, so that the default_pager - * can recover it eventually. + * XXX: if no active pages can be reclaimed, pageout scan can be stuck trying + * to balance the queues */ - vm_pageout_scan_inactive_emm_throttle++; - do { - assert(!m->active && m->inactive); - object = m->object; + if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) && + !queue_empty(&vm_page_queue_active)) + continue; +#endif - if (vm_object_lock_try(object)) { -#if 0 - if (object->pager_trusted || - object->internal) { - /* found one ! */ - vm_pageout_scan_inactive_emm_throttle_success++; - goto object_locked_inactive; - } -#else - vm_pageout_scan_inactive_emm_throttle_success++; - goto object_locked_inactive; -#endif /* 0 */ - vm_object_unlock(object); - } - m = (vm_page_t) queue_next(&m->pageq); - } while (!queue_end(&vm_page_queue_inactive, - (queue_entry_t) m)); - if (queue_end(&vm_page_queue_inactive, - (queue_entry_t) m)) { - vm_pageout_scan_inactive_emm_throttle_failure++; + lck_mtx_lock(&vm_page_queue_free_lock); + + if ((vm_page_free_count >= vm_page_free_target) && + (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { + + vm_page_unlock_queues(); + + thread_wakeup((event_t) &vm_pageout_garbage_collect); + + assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); + + return; + } + lck_mtx_unlock(&vm_page_queue_free_lock); + } + + /* + * Before anything, we check if we have any ripe volatile + * objects around. If so, try to purge the first object. + * If the purge fails, fall through to reclaim a page instead. + * If the purge succeeds, go back to the top and reevalute + * the new memory situation. + */ + assert (available_for_purge>=0); + if (available_for_purge) + { + if (object != NULL) { + vm_object_unlock(object); + object = NULL; + } + if(TRUE == vm_purgeable_object_purge_one()) { + continue; + } + } + + if (queue_empty(&sq->age_q) && vm_page_speculative_count) { + /* + * try to pull pages from the aging bins + * see vm_page.h for an explanation of how + * this mechanism works + */ + struct vm_speculative_age_q *aq; + mach_timespec_t ts_fully_aged; + boolean_t can_steal = FALSE; + int num_scanned_queues; + + aq = &vm_page_queue_speculative[speculative_steal_index]; + + num_scanned_queues = 0; + while (queue_empty(&aq->age_q) && + num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) { + + speculative_steal_index++; + + if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) + speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; + + aq = &vm_page_queue_speculative[speculative_steal_index]; + } + + if (num_scanned_queues == + VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) { /* - * We should check the "active" queue - * for good candidates to page out. + * XXX We've scanned all the speculative + * queues but still haven't found one + * that is not empty, even though + * vm_page_speculative_count is not 0. */ - need_more_inactive_pages = TRUE; + /* report the anomaly... */ + printf("vm_pageout_scan: " + "all speculative queues empty " + "but count=%d. Re-adjusting.\n", + vm_page_speculative_count); + if (vm_page_speculative_count > + vm_page_speculative_count_drift_max) + vm_page_speculative_count_drift_max = vm_page_speculative_count; + vm_page_speculative_count_drifts++; +#if 6553678 + Debugger("vm_pageout_scan: no speculative pages"); +#endif + /* readjust... */ + vm_page_speculative_count = 0; + /* ... and continue */ + continue; + } + + if (vm_page_speculative_count > vm_page_speculative_target) + can_steal = TRUE; + else { + ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS) / 1000; + ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS) % 1000) + * 1000 * NSEC_PER_USEC; + + ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts); - m = (vm_page_t) - queue_first(&vm_page_queue_inactive); + clock_sec_t sec; + clock_nsec_t nsec; + clock_get_system_nanotime(&sec, &nsec); + ts.tv_sec = (unsigned int) sec; + ts.tv_nsec = nsec; + + if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) + can_steal = TRUE; } + if (can_steal == TRUE) + vm_page_speculate_ageit(aq); } - assert(!m->active && m->inactive); - object = m->object; - /* - * Try to lock object; since we've got the - * page queues lock, we can only try for this one. + * Sometimes we have to pause: + * 1) No inactive pages - nothing to do. + * 2) Flow control - default pageout queue is full + * 3) Loop control - no acceptable pages found on the inactive queue + * within the last vm_pageout_burst_inactive_throttle iterations */ + if (queue_empty(&vm_page_queue_inactive) && queue_empty(&vm_page_queue_zf) && queue_empty(&sq->age_q) && + (VM_PAGE_Q_THROTTLED(iq) || queue_empty(&vm_page_queue_throttled))) { + vm_pageout_scan_empty_throttle++; + msecs = vm_pageout_empty_wait; + goto vm_pageout_scan_delay; + + } else if (inactive_burst_count >= + MIN(vm_pageout_burst_inactive_throttle, + (vm_page_inactive_count + + vm_page_speculative_count))) { + vm_pageout_scan_burst_throttle++; + msecs = vm_pageout_burst_wait; + goto vm_pageout_scan_delay; + + } else if (VM_PAGE_Q_THROTTLED(iq) && IP_VALID(memory_manager_default)) { + clock_sec_t sec; + clock_nsec_t nsec; + + switch (flow_control.state) { + + case FCS_IDLE: +reset_deadlock_timer: + ts.tv_sec = vm_pageout_deadlock_wait / 1000; + ts.tv_nsec = (vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC; + clock_get_system_nanotime(&sec, &nsec); + flow_control.ts.tv_sec = (unsigned int) sec; + flow_control.ts.tv_nsec = nsec; + ADD_MACH_TIMESPEC(&flow_control.ts, &ts); + + flow_control.state = FCS_DELAYED; + msecs = vm_pageout_deadlock_wait; + + break; + + case FCS_DELAYED: + clock_get_system_nanotime(&sec, &nsec); + ts.tv_sec = (unsigned int) sec; + ts.tv_nsec = nsec; + + if (CMP_MACH_TIMESPEC(&ts, &flow_control.ts) >= 0) { + /* + * the pageout thread for the default pager is potentially + * deadlocked since the + * default pager queue has been throttled for more than the + * allowable time... we need to move some clean pages or dirty + * pages belonging to the external pagers if they aren't throttled + * vm_page_free_wanted represents the number of threads currently + * blocked waiting for pages... we'll move one page for each of + * these plus a fixed amount to break the logjam... once we're done + * moving this number of pages, we'll re-enter the FSC_DELAYED state + * with a new timeout target since we have no way of knowing + * whether we've broken the deadlock except through observation + * of the queue associated with the default pager... we need to + * stop moving pages and allow the system to run to see what + * state it settles into. + */ + vm_pageout_deadlock_target = vm_pageout_deadlock_relief + vm_page_free_wanted + vm_page_free_wanted_privileged; + vm_pageout_scan_deadlock_detected++; + flow_control.state = FCS_DEADLOCK_DETECTED; + + thread_wakeup((event_t) &vm_pageout_garbage_collect); + goto consider_inactive; + } + /* + * just resniff instead of trying + * to compute a new delay time... we're going to be + * awakened immediately upon a laundry completion, + * so we won't wait any longer than necessary + */ + msecs = vm_pageout_idle_wait; + break; + + case FCS_DEADLOCK_DETECTED: + if (vm_pageout_deadlock_target) + goto consider_inactive; + goto reset_deadlock_timer; + + } + vm_pageout_scan_throttle++; + iq->pgo_throttled = TRUE; +vm_pageout_scan_delay: + if (object != NULL) { + vm_object_unlock(object); + object = NULL; + } + vm_pageout_scan_wants_object = VM_OBJECT_NULL; + + if (local_freeq) { + vm_page_unlock_queues(); + vm_page_free_list(local_freeq, TRUE); + + local_freeq = NULL; + local_freed = 0; + vm_page_lock_queues(); + + if (flow_control.state == FCS_DELAYED && + !VM_PAGE_Q_THROTTLED(iq)) { + flow_control.state = FCS_IDLE; + vm_pageout_scan_throttle_aborted++; + goto consider_inactive; + } + } +#if CONFIG_EMBEDDED + { + int percent_avail; - if (!vm_object_lock_try(object)) { /* - * Move page to end and continue. + * Decide if we need to send a memory status notification. */ - queue_remove(&vm_page_queue_inactive, m, - vm_page_t, pageq); - queue_enter(&vm_page_queue_inactive, m, - vm_page_t, pageq); + percent_avail = + (vm_page_active_count + vm_page_inactive_count + + vm_page_speculative_count + vm_page_free_count + + (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / + atop_64(max_mem); + if (percent_avail >= (kern_memorystatus_level + 5) || + percent_avail <= (kern_memorystatus_level - 5)) { + kern_memorystatus_level = percent_avail; + thread_wakeup((event_t)&kern_memorystatus_wakeup); + } + } +#endif + assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000*NSEC_PER_USEC); + counter(c_vm_pageout_scan_block++); + vm_page_unlock_queues(); - mutex_pause(); - vm_pageout_inactive_nolock++; - continue; + + assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); + + thread_block(THREAD_CONTINUE_NULL); + + vm_page_lock_queues(); + delayed_unlock = 1; + + iq->pgo_throttled = FALSE; + + if (loop_count >= vm_page_inactive_count) + loop_count = 0; + inactive_burst_count = 0; + + goto Restart; + /*NOTREACHED*/ + } + + + flow_control.state = FCS_IDLE; +consider_inactive: + loop_count++; + inactive_burst_count++; + vm_pageout_inactive++; + + /* Choose a victim. */ + + while (1) { + m = NULL; + + if (IP_VALID(memory_manager_default)) { + assert(vm_page_throttled_count == 0); + assert(queue_empty(&vm_page_queue_throttled)); + } + + /* + * The most eligible pages are ones we paged in speculatively, + * but which have not yet been touched. + */ + if ( !queue_empty(&sq->age_q) ) { + m = (vm_page_t) queue_first(&sq->age_q); + break; + } + /* + * Time for a zero-filled inactive page? + */ + if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) || + queue_empty(&vm_page_queue_inactive)) { + if ( !queue_empty(&vm_page_queue_zf) ) { + m = (vm_page_t) queue_first(&vm_page_queue_zf); + zf_run_count++; + break; + } + } + /* + * It's either a normal inactive page or nothing. + */ + if ( !queue_empty(&vm_page_queue_inactive) ) { + m = (vm_page_t) queue_first(&vm_page_queue_inactive); + zf_run_count = 0; + break; + } + + panic("vm_pageout: no victim"); + } + + assert(!m->active && (m->inactive || m->speculative || m->throttled)); + assert(!m->laundry); + assert(m->object != kernel_object); + assert(m->phys_page != vm_page_guard_addr); + + if (!m->speculative) { + vm_pageout_stats[vm_pageout_stat_now].considered++; } - object_locked_inactive: + DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); + /* - * Paging out pages of objects which pager is being - * created by another thread must be avoided, because - * this thread may claim for memory, thus leading to a - * possible dead lock between it and the pageout thread - * which will wait for pager creation, if such pages are - * finally chosen. The remaining assumption is that there - * will finally be enough available pages in the inactive - * pool to page out in order to satisfy all memory claimed - * by the thread which concurrently creates the pager. + * check to see if we currently are working + * with the same object... if so, we've + * already got the lock */ + if (m->object != object) { + /* + * the object associated with candidate page is + * different from the one we were just working + * with... dump the lock if we still own it + */ + if (object != NULL) { + vm_object_unlock(object); + object = NULL; + vm_pageout_scan_wants_object = VM_OBJECT_NULL; + } + /* + * Try to lock object; since we've alread got the + * page queues lock, we can only 'try' for this one. + * if the 'try' fails, we need to do a mutex_pause + * to allow the owner of the object lock a chance to + * run... otherwise, we're likely to trip over this + * object in the same state as we work our way through + * the queue... clumps of pages associated with the same + * object are fairly typical on the inactive and active queues + */ + if (!vm_object_lock_try_scan(m->object)) { + vm_pageout_inactive_nolock++; + + requeue_page: + /* + * Move page to end and continue. + * Don't re-issue ticket + */ + if (m->zero_fill) { + if (m->speculative) { + panic("vm_pageout_scan(): page %p speculative and zero-fill !?\n", m); + } + assert(!m->speculative); + queue_remove(&vm_page_queue_zf, m, + vm_page_t, pageq); + queue_enter(&vm_page_queue_zf, m, + vm_page_t, pageq); + } else if (m->speculative) { + remque(&m->pageq); + m->speculative = FALSE; + vm_page_speculative_count--; + + /* + * move to the head of the inactive queue + * to get it out of the way... the speculative + * queue is generally too small to depend + * on there being enough pages from other + * objects to make cycling it back on the + * same queue a winning proposition + */ + queue_enter_first(&vm_page_queue_inactive, m, + vm_page_t, pageq); + m->inactive = TRUE; + vm_page_inactive_count++; + token_new_pagecount++; + } else if (m->throttled) { + queue_remove(&vm_page_queue_throttled, m, + vm_page_t, pageq); + m->throttled = FALSE; + vm_page_throttled_count--; + + /* + * not throttled any more, so can stick + * it on the inactive queue. + */ + queue_enter(&vm_page_queue_inactive, m, + vm_page_t, pageq); + m->inactive = TRUE; + vm_page_inactive_count++; + token_new_pagecount++; + } else { + queue_remove(&vm_page_queue_inactive, m, + vm_page_t, pageq); +#if MACH_ASSERT + vm_page_inactive_count--; /* balance for purgeable queue asserts */ +#endif + vm_purgeable_q_advance_all(); + + queue_enter(&vm_page_queue_inactive, m, + vm_page_t, pageq); +#if MACH_ASSERT + vm_page_inactive_count++; /* balance for purgeable queue asserts */ +#endif + token_new_pagecount++; + } + pmap_clear_reference(m->phys_page); + m->reference = FALSE; + + if ( !queue_empty(&sq->age_q) ) + m = (vm_page_t) queue_first(&sq->age_q); + else if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) || + queue_empty(&vm_page_queue_inactive)) { + if ( !queue_empty(&vm_page_queue_zf) ) + m = (vm_page_t) queue_first(&vm_page_queue_zf); + } else if ( !queue_empty(&vm_page_queue_inactive) ) { + m = (vm_page_t) queue_first(&vm_page_queue_inactive); + } + /* + * this is the next object we're going to be interested in + * try to make sure its available after the mutex_yield + * returns control + */ + vm_pageout_scan_wants_object = m->object; + + /* + * force us to dump any collected free pages + * and to pause before moving on + */ + try_failed = TRUE; + + goto done_with_inactivepage; + } + object = m->object; + vm_pageout_scan_wants_object = VM_OBJECT_NULL; + + try_failed = FALSE; + } + /* + * Paging out pages of external objects which + * are currently being created must be avoided. + * The pager may claim for memory, thus leading to a + * possible dead lock between it and the pageout thread, + * if such pages are finally chosen. The remaining assumption + * is that there will finally be enough available pages in the + * inactive pool to page out in order to satisfy all memory + * claimed by the thread which concurrently creates the pager. + */ if (!object->pager_initialized && object->pager_created) { /* * Move page to end and continue, hoping that * there will be enough other inactive pages to * page out so that the thread which currently * initializes the pager will succeed. + * Don't re-grant the ticket, the page should + * pulled from the queue and paged out whenever + * one of its logically adjacent fellows is + * targeted. */ - queue_remove(&vm_page_queue_inactive, m, - vm_page_t, pageq); - queue_enter(&vm_page_queue_inactive, m, - vm_page_t, pageq); - vm_page_unlock_queues(); - vm_object_unlock(object); vm_pageout_inactive_avoid++; - continue; + goto requeue_page; } - /* - * Remove the page from the inactive list. + * Remove the page from its list. */ + if (m->speculative) { + remque(&m->pageq); + page_prev_state = PAGE_STATE_SPECULATIVE; + m->speculative = FALSE; + vm_page_speculative_count--; + } else if (m->throttled) { + queue_remove(&vm_page_queue_throttled, m, vm_page_t, pageq); + page_prev_state = PAGE_STATE_THROTTLED; + m->throttled = FALSE; + vm_page_throttled_count--; + } else { + if (m->zero_fill) { + queue_remove(&vm_page_queue_zf, m, vm_page_t, pageq); + page_prev_state = PAGE_STATE_ZEROFILL; + vm_zf_queue_count--; + } else { + page_prev_state = PAGE_STATE_INACTIVE; + queue_remove(&vm_page_queue_inactive, m, vm_page_t, pageq); + } + m->inactive = FALSE; + if (!m->fictitious) + vm_page_inactive_count--; + vm_purgeable_q_advance_all(); + } + + m->pageq.next = NULL; + m->pageq.prev = NULL; - queue_remove(&vm_page_queue_inactive, m, vm_page_t, pageq); - m->inactive = FALSE; - if (!m->fictitious) - vm_page_inactive_count--; + if ( !m->fictitious && catch_up_count) + catch_up_count--; - if (m->busy || !object->alive) { + /* + * ENCRYPTED SWAP: + * if this page has already been picked up as part of a + * page-out cluster, it will be busy because it is being + * encrypted (see vm_object_upl_request()). But we still + * want to demote it from "clean-in-place" (aka "adjacent") + * to "clean-and-free" (aka "target"), so let's ignore its + * "busy" bit here and proceed to check for "cleaning" a + * little bit below... + */ + if ( !m->encrypted_cleaning && (m->busy || !object->alive)) { /* * Somebody is already playing with this page. * Leave it off the pageout queues. + * */ - - vm_page_unlock_queues(); - vm_object_unlock(object); vm_pageout_inactive_busy++; - continue; + + goto done_with_inactivepage; } /* @@ -1762,11 +1924,44 @@ vm_pageout_scan(void) if (m->absent || m->error) { vm_pageout_inactive_absent++; - reclaim_page: - vm_page_free(m); - vm_page_unlock_queues(); - vm_object_unlock(object); - continue; +reclaim_page: + if (vm_pageout_deadlock_target) { + vm_pageout_scan_inactive_throttle_success++; + vm_pageout_deadlock_target--; + } + + DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL); + + if (object->internal) { + DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL); + } else { + DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL); + } + vm_page_free_prepare_queues(m); + + /* + * remove page from object here since we're already + * behind the object lock... defer the rest of the work + * we'd normally do in vm_page_free_prepare_object + * until 'vm_page_free_list' is called + */ + if (m->tabled) + vm_page_remove(m, TRUE); + + assert(m->pageq.next == NULL && + m->pageq.prev == NULL); + m->pageq.next = (queue_entry_t)local_freeq; + local_freeq = m; + local_freed++; + + inactive_burst_count = 0; + + if(page_prev_state != PAGE_STATE_SPECULATIVE) { + vm_pageout_stats[vm_pageout_stat_now].reclaimed++; + page_prev_state = 0; + } + + goto done_with_inactivepage; } assert(!m->private); @@ -1780,231 +1975,307 @@ vm_pageout_scan(void) */ if (m->cleaning) { -#if MACH_CLUSTER_STATS - vm_pageout_cluster_conversions++; -#endif - if (m->prep_pin_count == 0) { + m->busy = TRUE; + m->pageout = TRUE; + m->dump_cleaning = TRUE; + vm_page_wire(m); + + CLUSTER_STAT(vm_pageout_cluster_conversions++); + + inactive_burst_count = 0; + + goto done_with_inactivepage; + } + + /* + * If the object is empty, the page must be reclaimed even + * if dirty or used. + * If the page belongs to a volatile object, we stick it back + * on. + */ + if (object->copy == VM_OBJECT_NULL) { + if (object->purgable == VM_PURGABLE_EMPTY) { m->busy = TRUE; - m->pageout = TRUE; - vm_page_wire(m); + if (m->pmapped == TRUE) { + /* unmap the page */ + refmod_state = pmap_disconnect(m->phys_page); + if (refmod_state & VM_MEM_MODIFIED) { + m->dirty = TRUE; + } + } + if (m->dirty || m->precious) { + /* we saved the cost of cleaning this page ! */ + vm_page_purged_count++; + } + goto reclaim_page; + } + if (object->purgable == VM_PURGABLE_VOLATILE) { + /* if it's wired, we can't put it on our queue */ + assert(!VM_PAGE_WIRED(m)); + /* just stick it back on! */ + goto reactivate_page; } - vm_object_unlock(object); - vm_page_unlock_queues(); - continue; } /* * If it's being used, reactivate. * (Fictitious pages are either busy or absent.) + * First, update the reference and dirty bits + * to make sure the page is unreferenced. */ - - if (m->reference || pmap_is_referenced(m->phys_addr)) { - vm_pageout_inactive_used++; - reactivate_page: -#if ADVISORY_PAGEOUT - if (m->discard_request) { - m->discard_request = FALSE; - } -#endif /* ADVISORY_PAGEOUT */ - vm_object_unlock(object); - vm_page_activate(m); - VM_STAT(reactivations++); - vm_page_unlock_queues(); - continue; + refmod_state = -1; + + if (m->reference == FALSE && m->pmapped == TRUE) { + refmod_state = pmap_get_refmod(m->phys_page); + + if (refmod_state & VM_MEM_REFERENCED) + m->reference = TRUE; + if (refmod_state & VM_MEM_MODIFIED) + m->dirty = TRUE; } - if (m->prep_pin_count != 0) { - boolean_t pinned = FALSE; + if (m->reference || m->dirty) { + /* deal with a rogue "reusable" page */ + VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m); + } - vm_page_pin_lock(); - if (m->pin_count != 0) { - /* skip and reactivate pinned page */ - pinned = TRUE; - vm_pageout_inactive_pinned++; + if (m->reference && !m->no_cache) { + /* + * The page we pulled off the inactive list has + * been referenced. It is possible for other + * processors to be touching pages faster than we + * can clear the referenced bit and traverse the + * inactive queue, so we limit the number of + * reactivations. + */ + if (++reactivated_this_call >= reactivate_limit) { + vm_pageout_reactivation_limit_exceeded++; + } else if (catch_up_count) { + vm_pageout_catch_ups++; + } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) { + vm_pageout_inactive_force_reclaim++; } else { - /* page is prepped; send it into limbo */ - m->limbo = TRUE; - vm_pageout_inactive_limbo++; + uint32_t isinuse; +reactivate_page: + if ( !object->internal && object->pager != MEMORY_OBJECT_NULL && + vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) { + /* + * no explict mappings of this object exist + * and it's not open via the filesystem + */ + vm_page_deactivate(m); + vm_pageout_inactive_deactivated++; + } else { + /* + * The page was/is being used, so put back on active list. + */ + vm_page_activate(m); + VM_STAT_INCR(reactivations); + } + vm_pageout_inactive_used++; + inactive_burst_count = 0; + + goto done_with_inactivepage; } - vm_page_pin_unlock(); - if (pinned) - goto reactivate_page; + /* + * Make sure we call pmap_get_refmod() if it + * wasn't already called just above, to update + * the dirty bit. + */ + if ((refmod_state == -1) && !m->dirty && m->pmapped) { + refmod_state = pmap_get_refmod(m->phys_page); + if (refmod_state & VM_MEM_MODIFIED) + m->dirty = TRUE; + } + forced_reclaim = TRUE; + } else { + forced_reclaim = FALSE; } -#if ADVISORY_PAGEOUT - if (object->advisory_pageout) { - boolean_t do_throttle; - ipc_port_t port; - vm_object_offset_t discard_offset; + XPR(XPR_VM_PAGEOUT, + "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", + object, m->offset, m, 0,0); - if (m->discard_request) { - vm_stat_discard_failure++; - goto mandatory_pageout; - } + /* + * we've got a candidate page to steal... + * + * m->dirty is up to date courtesy of the + * preceding check for m->reference... if + * we get here, then m->reference had to be + * FALSE (or possibly "reactivate_limit" was + * exceeded), but in either case we called + * pmap_get_refmod() and updated both + * m->reference and m->dirty + * + * if it's dirty or precious we need to + * see if the target queue is throtttled + * it if is, we need to skip over it by moving it back + * to the end of the inactive queue + */ - assert(object->pager_initialized); - m->discard_request = TRUE; - port = object->pager; + inactive_throttled = FALSE; - /* system-wide throttle */ - do_throttle = (vm_page_free_count <= - vm_page_free_reserved); - if (!do_throttle) { - /* throttle on this pager */ - /* XXX lock ordering ? */ - ip_lock(port); - do_throttle= imq_full(&port->ip_messages); - ip_unlock(port); + if (m->dirty || m->precious) { + if (object->internal) { + if (VM_PAGE_Q_THROTTLED(iq)) + inactive_throttled = TRUE; + } else if (VM_PAGE_Q_THROTTLED(eq)) { + inactive_throttled = TRUE; } - if (do_throttle) { - vm_stat_discard_throttle++; -#if 0 - /* ignore this page and skip to next */ - vm_page_unlock_queues(); - vm_object_unlock(object); - continue; -#else - /* force mandatory pageout */ - goto mandatory_pageout; -#endif + } + if (inactive_throttled == TRUE) { +throttle_inactive: + if (!IP_VALID(memory_manager_default) && + object->internal && m->dirty && + (object->purgable == VM_PURGABLE_DENY || + object->purgable == VM_PURGABLE_NONVOLATILE || + object->purgable == VM_PURGABLE_VOLATILE)) { + queue_enter(&vm_page_queue_throttled, m, + vm_page_t, pageq); + m->throttled = TRUE; + vm_page_throttled_count++; + } else { + if (m->zero_fill) { + queue_enter(&vm_page_queue_zf, m, + vm_page_t, pageq); + vm_zf_queue_count++; + } else + queue_enter(&vm_page_queue_inactive, m, + vm_page_t, pageq); + m->inactive = TRUE; + if (!m->fictitious) { + vm_page_inactive_count++; + token_new_pagecount++; + } } - - /* proceed with discard_request */ - vm_page_activate(m); - vm_stat_discard++; - VM_STAT(reactivations++); - discard_offset = m->offset + object->paging_offset; - vm_stat_discard_sent++; - vm_page_unlock_queues(); - vm_object_unlock(object); -/* - memory_object_discard_request(object->pager, - object->pager_request, - discard_offset, - PAGE_SIZE); -*/ - continue; + vm_pageout_scan_inactive_throttled++; + goto done_with_inactivepage; } - mandatory_pageout: -#endif /* ADVISORY_PAGEOUT */ - - XPR(XPR_VM_PAGEOUT, - "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", - (integer_t)object, (integer_t)m->offset, (integer_t)m, 0,0); /* - * Eliminate all mappings. + * we've got a page that we can steal... + * eliminate all mappings and make sure + * we have the up-to-date modified state + * first take the page BUSY, so that no new + * mappings can be made */ - m->busy = TRUE; - pmap_page_protect(m->phys_addr, VM_PROT_NONE); - if (!m->dirty) - m->dirty = pmap_is_modified(m->phys_addr); + + /* + * if we need to do a pmap_disconnect then we + * need to re-evaluate m->dirty since the pmap_disconnect + * provides the true state atomically... the + * page was still mapped up to the pmap_disconnect + * and may have been dirtied at the last microsecond + * + * we also check for the page being referenced 'late' + * if it was, we first need to do a WAKEUP_DONE on it + * since we already set m->busy = TRUE, before + * going off to reactivate it + * + * Note that if 'pmapped' is FALSE then the page is not + * and has not been in any map, so there is no point calling + * pmap_disconnect(). m->dirty and/or m->reference could + * have been set in anticipation of likely usage of the page. + */ + if (m->pmapped == TRUE) { + refmod_state = pmap_disconnect(m->phys_page); + + if (refmod_state & VM_MEM_MODIFIED) + m->dirty = TRUE; + if (refmod_state & VM_MEM_REFERENCED) { + + /* If m->reference is already set, this page must have + * already failed the reactivate_limit test, so don't + * bump the counts twice. + */ + if ( ! m->reference ) { + m->reference = TRUE; + if (forced_reclaim || + ++reactivated_this_call >= reactivate_limit) + vm_pageout_reactivation_limit_exceeded++; + else { + PAGE_WAKEUP_DONE(m); + goto reactivate_page; + } + } + } + } + /* + * reset our count of pages that have been reclaimed + * since the last page was 'stolen' + */ + inactive_reclaim_run = 0; /* * If it's clean and not precious, we can free the page. */ - if (!m->dirty && !m->precious) { + if (m->zero_fill) + vm_pageout_inactive_zf++; vm_pageout_inactive_clean++; + goto reclaim_page; } - vm_page_unlock_queues(); /* - * If there is no memory object for the page, create - * one and hand it to the default pager. + * The page may have been dirtied since the last check + * for a throttled target queue (which may have been skipped + * if the page was clean then). With the dirty page + * disconnected here, we can make one final check. */ + { + boolean_t disconnect_throttled = FALSE; + if (object->internal) { + if (VM_PAGE_Q_THROTTLED(iq)) + disconnect_throttled = TRUE; + } else if (VM_PAGE_Q_THROTTLED(eq)) { + disconnect_throttled = TRUE; + } - if (!object->pager_initialized) - vm_object_collapse(object); - if (!object->pager_initialized) - vm_object_pager_create(object); - if (!object->pager_initialized) { - /* - * Still no pager for the object. - * Reactivate the page. - * - * Should only happen if there is no - * default pager. - */ - vm_page_lock_queues(); - vm_page_activate(m); - vm_page_unlock_queues(); + if (disconnect_throttled == TRUE) { + PAGE_WAKEUP_DONE(m); + goto throttle_inactive; + } + } - /* - * And we are done with it. - */ - PAGE_WAKEUP_DONE(m); - vm_object_unlock(object); + vm_pageout_stats[vm_pageout_stat_now].reclaimed++; - /* - * break here to get back to the preemption - * point in the outer loop so that we don't - * spin forever if there is no default pager. - */ - vm_pageout_dirty_no_pager++; - /* - * Well there's no pager, but we can still reclaim - * free pages out of the inactive list. Go back - * to top of loop and look for suitable pages. - */ - continue; - } - - if (object->pager_initialized && object->pager == IP_NULL) { - /* - * This pager has been destroyed by either - * memory_object_destroy or vm_object_destroy, and - * so there is nowhere for the page to go. - * Just free the page. - */ - VM_PAGE_FREE(m); - vm_object_unlock(object); - continue; - } + vm_pageout_cluster(m); + if (m->zero_fill) + vm_pageout_inactive_zf++; vm_pageout_inactive_dirty++; -/* - if (!object->internal) - burst_count++; -*/ - vm_object_paging_begin(object); - vm_object_unlock(object); - vm_pageout_cluster(m); /* flush it */ - } - consider_machine_adjust(); -} -counter(unsigned int c_vm_pageout_scan_continue = 0;) + inactive_burst_count = 0; -void -vm_pageout_scan_continue(void) -{ - /* - * We just paused to let the pagers catch up. - * If vm_page_laundry_count is still high, - * then we aren't waiting long enough. - * If we have paused some vm_pageout_pause_max times without - * adjusting vm_pageout_burst_wait, it might be too big, - * so we decrease it. - */ +done_with_inactivepage: + if (delayed_unlock++ > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT || try_failed == TRUE) { - vm_page_lock_queues(); - counter(++c_vm_pageout_scan_continue); - if (vm_page_laundry_count > vm_pageout_burst_min) { - vm_pageout_burst_wait++; - vm_pageout_pause_count = 0; - } else if (++vm_pageout_pause_count > vm_pageout_pause_max) { - vm_pageout_burst_wait = (vm_pageout_burst_wait * 3) / 4; - if (vm_pageout_burst_wait < 1) - vm_pageout_burst_wait = 1; - vm_pageout_pause_count = 0; + if (object != NULL) { + vm_pageout_scan_wants_object = VM_OBJECT_NULL; + vm_object_unlock(object); + object = NULL; + } + if (local_freeq) { + vm_page_unlock_queues(); + vm_page_free_list(local_freeq, TRUE); + + local_freeq = NULL; + local_freed = 0; + vm_page_lock_queues(); + } else + lck_mtx_yield(&vm_page_queue_lock); + + delayed_unlock = 1; + } + /* + * back to top of pageout scan loop + */ } - vm_page_unlock_queues(); } -void vm_page_free_reserve(int pages); + int vm_page_free_count_init; void @@ -2020,39 +2291,312 @@ vm_page_free_reserve( vm_page_free_min = vm_page_free_reserved + VM_PAGE_FREE_MIN(free_after_reserve); + if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) + vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT; + vm_page_free_target = vm_page_free_reserved + VM_PAGE_FREE_TARGET(free_after_reserve); + if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) + vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT; + if (vm_page_free_target < vm_page_free_min + 5) vm_page_free_target = vm_page_free_min + 5; + + vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 3); + vm_page_creation_throttle = vm_page_free_target / 2; } /* * vm_pageout is the high level pageout daemon. */ +void +vm_pageout_continue(void) +{ + DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL); + vm_pageout_scan_event_counter++; + vm_pageout_scan(); + /* we hold vm_page_queue_free_lock now */ + assert(vm_page_free_wanted == 0); + assert(vm_page_free_wanted_privileged == 0); + assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); + lck_mtx_unlock(&vm_page_queue_free_lock); + + counter(c_vm_pageout_block++); + thread_block((thread_continue_t)vm_pageout_continue); + /*NOTREACHED*/ +} + + +#ifdef FAKE_DEADLOCK + +#define FAKE_COUNT 5000 + +int internal_count = 0; +int fake_deadlock = 0; + +#endif + +static void +vm_pageout_iothread_continue(struct vm_pageout_queue *q) +{ + vm_page_t m = NULL; + vm_object_t object; + memory_object_t pager; + thread_t self = current_thread(); + + if ((vm_pageout_internal_iothread != THREAD_NULL) + && (self == vm_pageout_external_iothread ) + && (self->options & TH_OPT_VMPRIV)) + self->options &= ~TH_OPT_VMPRIV; + + vm_page_lockspin_queues(); + + while ( !queue_empty(&q->pgo_pending) ) { + + q->pgo_busy = TRUE; + queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq); + VM_PAGE_CHECK(m); + m->pageout_queue = FALSE; + m->pageq.next = NULL; + m->pageq.prev = NULL; + vm_page_unlock_queues(); + +#ifdef FAKE_DEADLOCK + if (q == &vm_pageout_queue_internal) { + vm_offset_t addr; + int pg_count; + + internal_count++; + + if ((internal_count == FAKE_COUNT)) { + + pg_count = vm_page_free_count + vm_page_free_reserved; + + if (kmem_alloc(kernel_map, &addr, PAGE_SIZE * pg_count) == KERN_SUCCESS) { + kmem_free(kernel_map, addr, PAGE_SIZE * pg_count); + } + internal_count = 0; + fake_deadlock++; + } + } +#endif + object = m->object; + + vm_object_lock(object); + + if (!object->pager_initialized) { + + /* + * If there is no memory object for the page, create + * one and hand it to the default pager. + */ + + if (!object->pager_initialized) + vm_object_collapse(object, + (vm_object_offset_t) 0, + TRUE); + if (!object->pager_initialized) + vm_object_pager_create(object); + if (!object->pager_initialized) { + /* + * Still no pager for the object. + * Reactivate the page. + * + * Should only happen if there is no + * default pager. + */ + vm_page_lockspin_queues(); + + vm_pageout_queue_steal(m, TRUE); + vm_pageout_dirty_no_pager++; + vm_page_activate(m); + + vm_page_unlock_queues(); + + /* + * And we are done with it. + */ + PAGE_WAKEUP_DONE(m); + + vm_object_paging_end(object); + vm_object_unlock(object); + + vm_page_lockspin_queues(); + continue; + } + } + pager = object->pager; + if (pager == MEMORY_OBJECT_NULL) { + /* + * This pager has been destroyed by either + * memory_object_destroy or vm_object_destroy, and + * so there is nowhere for the page to go. + */ + if (m->pageout) { + /* + * Just free the page... VM_PAGE_FREE takes + * care of cleaning up all the state... + * including doing the vm_pageout_throttle_up + */ + VM_PAGE_FREE(m); + } else { + vm_page_lockspin_queues(); + + vm_pageout_queue_steal(m, TRUE); + vm_page_activate(m); + + vm_page_unlock_queues(); + + /* + * And we are done with it. + */ + PAGE_WAKEUP_DONE(m); + } + vm_object_paging_end(object); + vm_object_unlock(object); + + vm_page_lockspin_queues(); + continue; + } + VM_PAGE_CHECK(m); + vm_object_unlock(object); + /* + * we expect the paging_in_progress reference to have + * already been taken on the object before it was added + * to the appropriate pageout I/O queue... this will + * keep the object from being terminated and/or the + * paging_offset from changing until the I/O has + * completed... therefore no need to lock the object to + * pull the paging_offset from it. + * + * Send the data to the pager. + * any pageout clustering happens there + */ + memory_object_data_return(pager, + m->offset + object->paging_offset, + PAGE_SIZE, + NULL, + NULL, + FALSE, + FALSE, + 0); + + vm_object_lock(object); + vm_object_paging_end(object); + vm_object_unlock(object); + + vm_page_lockspin_queues(); + } + assert_wait((event_t) q, THREAD_UNINT); + + if (q->pgo_throttled == TRUE && !VM_PAGE_Q_THROTTLED(q)) { + q->pgo_throttled = FALSE; + thread_wakeup((event_t) &q->pgo_laundry); + } + if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { + q->pgo_draining = FALSE; + thread_wakeup((event_t) (&q->pgo_laundry+1)); + } + q->pgo_busy = FALSE; + q->pgo_idle = TRUE; + vm_page_unlock_queues(); + + thread_block_parameter((thread_continue_t)vm_pageout_iothread_continue, (void *) &q->pgo_pending); + /*NOTREACHED*/ +} + + +static void +vm_pageout_iothread_external(void) +{ + thread_t self = current_thread(); + + self->options |= TH_OPT_VMPRIV; + + vm_pageout_iothread_continue(&vm_pageout_queue_external); + /*NOTREACHED*/ +} + + +static void +vm_pageout_iothread_internal(void) +{ + thread_t self = current_thread(); + + self->options |= TH_OPT_VMPRIV; + + vm_pageout_iothread_continue(&vm_pageout_queue_internal); + /*NOTREACHED*/ +} + +kern_return_t +vm_set_buffer_cleanup_callout(boolean_t (*func)(int)) +{ + if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) { + return KERN_SUCCESS; + } else { + return KERN_FAILURE; /* Already set */ + } +} + +static void +vm_pageout_garbage_collect(int collect) +{ + if (collect) { + boolean_t buf_large_zfree = FALSE; + stack_collect(); + + /* + * consider_zone_gc should be last, because the other operations + * might return memory to zones. + */ + consider_machine_collect(); + if (consider_buffer_cache_collect != NULL) { + buf_large_zfree = (*consider_buffer_cache_collect)(0); + } + consider_zone_gc(buf_large_zfree); + + consider_machine_adjust(); + } + + assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT); + + thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1); + /*NOTREACHED*/ +} + + void vm_pageout(void) { thread_t self = current_thread(); + thread_t thread; + kern_return_t result; + spl_t s; /* * Set thread privileges. */ - self->vm_privilege = TRUE; - stack_privilege(self); - thread_swappable(current_act(), FALSE); + s = splsched(); + thread_lock(self); + self->priority = BASEPRI_PREEMPT - 1; + set_sched_pri(self, self->priority); + thread_unlock(self); + + if (!self->reserved_stack) + self->reserved_stack = self->kernel_stack; + + splx(s); /* * Initialize some paging parameters. */ - if (vm_page_laundry_max == 0) - vm_page_laundry_max = VM_PAGE_LAUNDRY_MAX; - - if (vm_pageout_burst_max == 0) - vm_pageout_burst_max = VM_PAGEOUT_BURST_MAX; + if (vm_pageout_idle_wait == 0) + vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT; if (vm_pageout_burst_wait == 0) vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; @@ -2060,7 +2604,31 @@ vm_pageout(void) if (vm_pageout_empty_wait == 0) vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; + if (vm_pageout_deadlock_wait == 0) + vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT; + + if (vm_pageout_deadlock_relief == 0) + vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF; + + if (vm_pageout_inactive_relief == 0) + vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF; + + if (vm_pageout_burst_active_throttle == 0) + vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE; + + if (vm_pageout_burst_inactive_throttle == 0) + vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE; + + /* + * Set kernel task to low backing store privileged + * status + */ + task_lock(kernel_task); + kernel_task->priv_flags |= VM_BACKING_STORE_PRIV; + task_unlock(kernel_task); + vm_page_free_count_init = vm_page_free_count; + /* * even if we've already called vm_page_free_reserve * call it again here to insure that the targets are @@ -2068,46 +2636,267 @@ vm_pageout(void) * calling it with an arg of 0 will not change the reserve * but will re-calculate free_min and free_target */ - if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED) - vm_page_free_reserve(VM_PAGE_FREE_RESERVED - vm_page_free_reserved); - else + if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) { + vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved); + } else vm_page_free_reserve(0); + + queue_init(&vm_pageout_queue_external.pgo_pending); + vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; + vm_pageout_queue_external.pgo_laundry = 0; + vm_pageout_queue_external.pgo_idle = FALSE; + vm_pageout_queue_external.pgo_busy = FALSE; + vm_pageout_queue_external.pgo_throttled = FALSE; + vm_pageout_queue_external.pgo_draining = FALSE; + + queue_init(&vm_pageout_queue_internal.pgo_pending); + vm_pageout_queue_internal.pgo_maxlaundry = 0; + vm_pageout_queue_internal.pgo_laundry = 0; + vm_pageout_queue_internal.pgo_idle = FALSE; + vm_pageout_queue_internal.pgo_busy = FALSE; + vm_pageout_queue_internal.pgo_throttled = FALSE; + vm_pageout_queue_internal.pgo_draining = FALSE; + + + /* internal pageout thread started when default pager registered first time */ + /* external pageout and garbage collection threads started here */ + + result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL, + BASEPRI_PREEMPT - 1, + &vm_pageout_external_iothread); + if (result != KERN_SUCCESS) + panic("vm_pageout_iothread_external: create failed"); + + thread_deallocate(vm_pageout_external_iothread); + + result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL, + MINPRI_KERNEL, + &thread); + if (result != KERN_SUCCESS) + panic("vm_pageout_garbage_collect: create failed"); + + thread_deallocate(thread); + + vm_object_reaper_init(); + + + vm_pageout_continue(); + /* - * vm_pageout_scan will set vm_page_inactive_target. + * Unreached code! * - * The pageout daemon is never done, so loop forever. - * We should call vm_pageout_scan at least once each - * time we are woken, even if vm_page_free_wanted is - * zero, to check vm_page_free_target and - * vm_page_inactive_target. + * The vm_pageout_continue() call above never returns, so the code below is never + * executed. We take advantage of this to declare several DTrace VM related probe + * points that our kernel doesn't have an analog for. These are probe points that + * exist in Solaris and are in the DTrace documentation, so people may have written + * scripts that use them. Declaring the probe points here means their scripts will + * compile and execute which we want for portability of the scripts, but since this + * section of code is never reached, the probe points will simply never fire. Yes, + * this is basically a hack. The problem is the DTrace probe points were chosen with + * Solaris specific VM events in mind, not portability to different VM implementations. */ - for (;;) { - vm_pageout_scan(); - /* we hold vm_page_queue_free_lock now */ - assert(vm_page_free_wanted == 0); - assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); - mutex_unlock(&vm_page_queue_free_lock); - counter(c_vm_pageout_block++); - thread_block((void (*)(void)) 0); - } + + DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL); + DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL); + DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL); + DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL); + DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL); + DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL); + DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL); /*NOTREACHED*/ } +kern_return_t +vm_pageout_internal_start(void) +{ + kern_return_t result; + + vm_pageout_queue_internal.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; + result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, NULL, BASEPRI_PREEMPT - 1, &vm_pageout_internal_iothread); + if (result == KERN_SUCCESS) + thread_deallocate(vm_pageout_internal_iothread); + return result; +} + + +/* + * when marshalling pages into a UPL and subsequently committing + * or aborting them, it is necessary to hold + * the vm_page_queue_lock (a hot global lock) for certain operations + * on the page... however, the majority of the work can be done + * while merely holding the object lock... in fact there are certain + * collections of pages that don't require any work brokered by the + * vm_page_queue_lock... to mitigate the time spent behind the global + * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT + * while doing all of the work that doesn't require the vm_page_queue_lock... + * then call dw_do_work to acquire the vm_page_queue_lock and do the + * necessary work for each page... we will grab the busy bit on the page + * if it's not already held so that dw_do_work can drop the object lock + * if it can't immediately take the vm_page_queue_lock in order to compete + * for the locks in the same order that vm_pageout_scan takes them. + * the operation names are modeled after the names of the routines that + * need to be called in order to make the changes very obvious in the + * original loop + */ + +#define DELAYED_WORK_LIMIT 32 + +#define DW_vm_page_unwire 0x01 +#define DW_vm_page_wire 0x02 +#define DW_vm_page_free 0x04 +#define DW_vm_page_activate 0x08 +#define DW_vm_page_deactivate_internal 0x10 +#define DW_vm_page_speculate 0x20 +#define DW_vm_page_lru 0x40 +#define DW_vm_pageout_throttle_up 0x80 +#define DW_PAGE_WAKEUP 0x100 +#define DW_clear_busy 0x200 +#define DW_clear_reference 0x400 +#define DW_set_reference 0x800 + +struct dw { + vm_page_t dw_m; + int dw_mask; +}; + + +static void dw_do_work(vm_object_t object, struct dw *dwp, int dw_count); + + + +static upl_t +upl_create(int type, int flags, upl_size_t size) +{ + upl_t upl; + int page_field_size = 0; + int upl_flags = 0; + int upl_size = sizeof(struct upl); + + size = round_page_32(size); + + if (type & UPL_CREATE_LITE) { + page_field_size = (atop(size) + 7) >> 3; + page_field_size = (page_field_size + 3) & 0xFFFFFFFC; + + upl_flags |= UPL_LITE; + } + if (type & UPL_CREATE_INTERNAL) { + upl_size += (int) sizeof(struct upl_page_info) * atop(size); + + upl_flags |= UPL_INTERNAL; + } + upl = (upl_t)kalloc(upl_size + page_field_size); + + if (page_field_size) + bzero((char *)upl + upl_size, page_field_size); + + upl->flags = upl_flags | flags; + upl->src_object = NULL; + upl->kaddr = (vm_offset_t)0; + upl->size = 0; + upl->map_object = NULL; + upl->ref_count = 1; + upl->highest_page = 0; + upl_lock_init(upl); + upl->vector_upl = NULL; +#if UPL_DEBUG + upl->ubc_alias1 = 0; + upl->ubc_alias2 = 0; + + upl->upl_creator = current_thread(); + upl->upl_state = 0; + upl->upl_commit_index = 0; + bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records)); + + (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES); +#endif /* UPL_DEBUG */ + + return(upl); +} + +static void +upl_destroy(upl_t upl) +{ + int page_field_size; /* bit field in word size buf */ + int size; + +#if UPL_DEBUG + { + vm_object_t object; + + if (upl->flags & UPL_SHADOWED) { + object = upl->map_object->shadow; + } else { + object = upl->map_object; + } + vm_object_lock(object); + queue_remove(&object->uplq, upl, upl_t, uplq); + vm_object_unlock(object); + } +#endif /* UPL_DEBUG */ + /* + * drop a reference on the map_object whether or + * not a pageout object is inserted + */ + if (upl->flags & UPL_SHADOWED) + vm_object_deallocate(upl->map_object); + + if (upl->flags & UPL_DEVICE_MEMORY) + size = PAGE_SIZE; + else + size = upl->size; + page_field_size = 0; + + if (upl->flags & UPL_LITE) { + page_field_size = ((size/PAGE_SIZE) + 7) >> 3; + page_field_size = (page_field_size + 3) & 0xFFFFFFFC; + } + upl_lock_destroy(upl); + upl->vector_upl = (vector_upl_t) 0xfeedbeef; + if (upl->flags & UPL_INTERNAL) { + kfree(upl, + sizeof(struct upl) + + (sizeof(struct upl_page_info) * (size/PAGE_SIZE)) + + page_field_size); + } else { + kfree(upl, sizeof(struct upl) + page_field_size); + } +} + +void uc_upl_dealloc(upl_t upl); +__private_extern__ void +uc_upl_dealloc(upl_t upl) +{ + if (--upl->ref_count == 0) + upl_destroy(upl); +} void -upl_dealloc( - upl_t upl) +upl_deallocate(upl_t upl) { - upl->ref_count -= 1; - if(upl->ref_count == 0) { + if (--upl->ref_count == 0) { + if(vector_upl_is_valid(upl)) + vector_upl_deallocate(upl); upl_destroy(upl); } } +#if DEVELOPMENT || DEBUG +/*/* + * Statistics about UPL enforcement of copy-on-write obligations. + */ +unsigned long upl_cow = 0; +unsigned long upl_cow_again = 0; +unsigned long upl_cow_pages = 0; +unsigned long upl_cow_again_pages = 0; + +unsigned long iopl_cow = 0; +unsigned long iopl_cow_pages = 0; +#endif /* - * Routine: vm_fault_list_request + * Routine: vm_object_upl_request * Purpose: * Cause the population of a portion of a vm_object. * Depending on the nature of the request, the pages @@ -2149,1187 +2938,4456 @@ upl_dealloc( * the vm_objects (cache objects), they support. * */ -kern_return_t -vm_fault_list_request( + +__private_extern__ kern_return_t +vm_object_upl_request( vm_object_t object, vm_object_offset_t offset, - vm_size_t size, + upl_size_t size, upl_t *upl_ptr, - upl_page_info_t **user_page_list_ptr, - int page_list_count, + upl_page_info_array_t user_page_list, + unsigned int *page_list_count, int cntrl_flags) { - vm_page_t dst_page; - vm_object_offset_t dst_offset = offset; - upl_page_info_t *user_page_list; - vm_size_t xfer_size = size; - boolean_t do_m_lock = FALSE; + vm_page_t dst_page = VM_PAGE_NULL; + vm_object_offset_t dst_offset; + upl_size_t xfer_size; boolean_t dirty; + boolean_t hw_dirty; upl_t upl = NULL; - int entry; + unsigned int entry; +#if MACH_CLUSTER_STATS boolean_t encountered_lrp = FALSE; - +#endif vm_page_t alias_page = NULL; + int refmod_state = 0; + wpl_array_t lite_list = NULL; + vm_object_t last_copy_object; + struct dw dw_array[DELAYED_WORK_LIMIT]; + struct dw *dwp; + int dw_count; + + if (cntrl_flags & ~UPL_VALID_FLAGS) { + /* + * For forward compatibility's sake, + * reject any unknown flag. + */ + return KERN_INVALID_VALUE; + } + if ( (!object->internal) && (object->paging_offset != 0) ) + panic("vm_object_upl_request: external object with non-zero paging offset\n"); + if (object->phys_contiguous) + panic("vm_object_upl_request: contiguous object specified\n"); - if(cntrl_flags & UPL_SET_INTERNAL) - page_list_count = MAX_UPL_TRANSFER; - if(((user_page_list_ptr || (cntrl_flags & UPL_SET_INTERNAL)) && - !(object->private)) && (page_list_count < (size/page_size))) - return KERN_INVALID_ARGUMENT; - if((!object->internal) && (object->paging_offset != 0)) - panic("vm_fault_list_request: vnode object with non-zero paging offset\n"); + if ((size / PAGE_SIZE) > MAX_UPL_SIZE) + size = MAX_UPL_SIZE * PAGE_SIZE; - if((cntrl_flags & UPL_COPYOUT_FROM) && (upl_ptr == NULL)) { - return KERN_SUCCESS; - } - if(upl_ptr) { - if((cntrl_flags & UPL_SET_INTERNAL) && !(object->private)) { - upl = upl_create(TRUE); - user_page_list = (upl_page_info_t *) - (((vm_offset_t)upl) + sizeof(struct upl)); - if(user_page_list_ptr) - *user_page_list_ptr = user_page_list; - upl->flags |= UPL_INTERNAL; + if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) + *page_list_count = MAX_UPL_SIZE; + + if (cntrl_flags & UPL_SET_INTERNAL) { + if (cntrl_flags & UPL_SET_LITE) { + + upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, 0, size); + + user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); + lite_list = (wpl_array_t) + (((uintptr_t)user_page_list) + + ((size/PAGE_SIZE) * sizeof(upl_page_info_t))); + if (size == 0) { + user_page_list = NULL; + lite_list = NULL; + } } else { - upl = upl_create(FALSE); - if(user_page_list_ptr) - user_page_list = *user_page_list_ptr; - else + upl = upl_create(UPL_CREATE_INTERNAL, 0, size); + + user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); + if (size == 0) { user_page_list = NULL; - if(object->private) { - upl->size = size; - upl->offset = offset; - *upl_ptr = upl; - if(user_page_list) { - user_page_list[0].phys_addr = offset; - user_page_list[0].device = TRUE; - } - upl->flags = UPL_DEVICE_MEMORY; - return KERN_SUCCESS; } - - } - upl->map_object = vm_object_allocate(size); - vm_object_lock(upl->map_object); + } else { + if (cntrl_flags & UPL_SET_LITE) { + + upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE, 0, size); + + lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); + if (size == 0) { + lite_list = NULL; + } + } else { + upl = upl_create(UPL_CREATE_EXTERNAL, 0, size); + } + } + *upl_ptr = upl; + + if (user_page_list) + user_page_list[0].device = FALSE; + + if (cntrl_flags & UPL_SET_LITE) { + upl->map_object = object; + } else { + upl->map_object = vm_object_allocate(size); + /* + * No neeed to lock the new object: nobody else knows + * about it yet, so it's all ours so far. + */ upl->map_object->shadow = object; - upl->size = size; - upl->offset = offset + object->paging_offset; upl->map_object->pageout = TRUE; upl->map_object->can_persist = FALSE; upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; upl->map_object->shadow_offset = offset; - vm_object_unlock(upl->map_object); - *upl_ptr = upl; - } - VM_PAGE_GRAB_FICTITIOUS(alias_page); + upl->map_object->wimg_bits = object->wimg_bits; + + VM_PAGE_GRAB_FICTITIOUS(alias_page); + + upl->flags |= UPL_SHADOWED; + } + /* + * ENCRYPTED SWAP: + * Just mark the UPL as "encrypted" here. + * We'll actually encrypt the pages later, + * in upl_encrypt(), when the caller has + * selected which pages need to go to swap. + */ + if (cntrl_flags & UPL_ENCRYPT) + upl->flags |= UPL_ENCRYPTED; + + if (cntrl_flags & UPL_FOR_PAGEOUT) + upl->flags |= UPL_PAGEOUT; + vm_object_lock(object); -#ifdef UBC_DEBUG - if(upl_ptr) - queue_enter(&object->uplq, upl, upl_t, uplq); -#endif /* UBC_DEBUG */ - vm_object_paging_begin(object); + vm_object_activity_begin(object); + + /* + * we can lock in the paging_offset once paging_in_progress is set + */ + upl->size = size; + upl->offset = offset + object->paging_offset; + +#if UPL_DEBUG + queue_enter(&object->uplq, upl, upl_t, uplq); +#endif /* UPL_DEBUG */ + + if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) { + /* + * Honor copy-on-write obligations + * + * The caller is gathering these pages and + * might modify their contents. We need to + * make sure that the copy object has its own + * private copies of these pages before we let + * the caller modify them. + */ + vm_object_update(object, + offset, + size, + NULL, + NULL, + FALSE, /* should_return */ + MEMORY_OBJECT_COPY_SYNC, + VM_PROT_NO_CHANGE); +#if DEVELOPMENT || DEBUG + upl_cow++; + upl_cow_pages += size >> PAGE_SHIFT; +#endif + } + /* + * remember which copy object we synchronized with + */ + last_copy_object = object->copy; entry = 0; - if(cntrl_flags & UPL_COPYOUT_FROM) { - upl->flags |= UPL_PAGE_SYNC_DONE; - while (xfer_size) { - if(alias_page == NULL) { - vm_object_unlock(object); - VM_PAGE_GRAB_FICTITIOUS(alias_page); - vm_object_lock(object); - } - if(((dst_page = vm_page_lookup(object, - dst_offset)) == VM_PAGE_NULL) || + + xfer_size = size; + dst_offset = offset; + + dwp = &dw_array[0]; + dw_count = 0; + + while (xfer_size) { + + dwp->dw_mask = 0; + + if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) { + vm_object_unlock(object); + VM_PAGE_GRAB_FICTITIOUS(alias_page); + vm_object_lock(object); + } + if (cntrl_flags & UPL_COPYOUT_FROM) { + upl->flags |= UPL_PAGE_SYNC_DONE; + + if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) || dst_page->fictitious || dst_page->absent || dst_page->error || - (dst_page->wire_count != 0 && - !dst_page->pageout) || - ((!(dst_page->dirty || dst_page->precious || - pmap_is_modified(dst_page->phys_addr))) - && (cntrl_flags & UPL_RET_ONLY_DIRTY))) { - if(user_page_list) + (VM_PAGE_WIRED(dst_page) && !dst_page->pageout && !dst_page->list_req_pending)) { + + if (user_page_list) user_page_list[entry].phys_addr = 0; - } else { - - if(dst_page->busy && - (!(dst_page->list_req_pending && - dst_page->pageout))) { - if(cntrl_flags & UPL_NOBLOCK) { - if(user_page_list) - user_page_list[entry] - .phys_addr = 0; - entry++; - dst_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - continue; - } - /*someone else is playing with the */ - /* page. We will have to wait. */ - PAGE_ASSERT_WAIT( - dst_page, THREAD_UNINT); - vm_object_unlock(object); - thread_block((void(*)(void))0); - vm_object_lock(object); - continue; + + goto try_next_page; + } + /* + * grab this up front... + * a high percentange of the time we're going to + * need the hardware modification state a bit later + * anyway... so we can eliminate an extra call into + * the pmap layer by grabbing it here and recording it + */ + if (dst_page->pmapped) + refmod_state = pmap_get_refmod(dst_page->phys_page); + else + refmod_state = 0; + + if ( (refmod_state & VM_MEM_REFERENCED) && dst_page->inactive ) { + /* + * page is on inactive list and referenced... + * reactivate it now... this gets it out of the + * way of vm_pageout_scan which would have to + * reactivate it upon tripping over it + */ + dwp->dw_mask |= DW_vm_page_activate; + } + if (cntrl_flags & UPL_RET_ONLY_DIRTY) { + /* + * we're only asking for DIRTY pages to be returned + */ + if (dst_page->list_req_pending || !(cntrl_flags & UPL_FOR_PAGEOUT)) { + /* + * if we were the page stolen by vm_pageout_scan to be + * cleaned (as opposed to a buddy being clustered in + * or this request is not being driven by a PAGEOUT cluster + * then we only need to check for the page being dirty or + * precious to decide whether to return it + */ + if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED)) + goto check_busy; + goto dont_return; } - /* Someone else already cleaning the page? */ - if((dst_page->cleaning || dst_page->absent || - dst_page->prep_pin_count != 0 || - dst_page->wire_count != 0) && - !dst_page->list_req_pending) { - if(user_page_list) - user_page_list[entry].phys_addr = 0; - entry++; - dst_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - continue; + /* + * this is a request for a PAGEOUT cluster and this page + * is merely along for the ride as a 'buddy'... not only + * does it have to be dirty to be returned, but it also + * can't have been referenced recently... note that we've + * already filtered above based on whether this page is + * currently on the inactive queue or it meets the page + * ticket (generation count) check + */ + if ( (cntrl_flags & UPL_CLEAN_IN_PLACE || !(refmod_state & VM_MEM_REFERENCED)) && + ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) { + goto check_busy; } - /* eliminate all mappings from the */ - /* original object and its prodigy */ - - vm_page_lock_queues(); - pmap_page_protect(dst_page->phys_addr, - VM_PROT_NONE); - - /* pageout statistics gathering. count */ - /* all the pages we will page out that */ - /* were not counted in the initial */ - /* vm_pageout_scan work */ - if(dst_page->list_req_pending) - encountered_lrp = TRUE; - if((dst_page->dirty || - (dst_page->object->internal && - dst_page->precious)) && - (dst_page->list_req_pending - == FALSE)) { - if(encountered_lrp) { - CLUSTER_STAT - (pages_at_higher_offsets++;) - } else { - CLUSTER_STAT - (pages_at_lower_offsets++;) - } +dont_return: + /* + * if we reach here, we're not to return + * the page... go on to the next one + */ + if (user_page_list) + user_page_list[entry].phys_addr = 0; + + goto try_next_page; + } +check_busy: + if (dst_page->busy && (!(dst_page->list_req_pending && (dst_page->pageout || dst_page->cleaning)))) { + if (cntrl_flags & UPL_NOBLOCK) { + if (user_page_list) + user_page_list[entry].phys_addr = 0; + + goto try_next_page; } + /* + * someone else is playing with the + * page. We will have to wait. + */ + PAGE_SLEEP(object, dst_page, THREAD_UNINT); - /* Turn off busy indication on pending */ - /* pageout. Note: we can only get here */ - /* in the request pending case. */ - dst_page->list_req_pending = FALSE; - dst_page->busy = FALSE; - dst_page->cleaning = FALSE; - - dirty = pmap_is_modified(dst_page->phys_addr); - dirty = dirty ? TRUE : dst_page->dirty; - - /* use pageclean setup, it is more convenient */ - /* even for the pageout cases here */ - vm_pageclean_setup(dst_page, alias_page, - upl->map_object, size - xfer_size); - - if(!dirty) { - dst_page->dirty = FALSE; - dst_page->precious = TRUE; + continue; + } + /* + * Someone else already cleaning the page? + */ + if ((dst_page->cleaning || dst_page->absent || VM_PAGE_WIRED(dst_page)) && !dst_page->list_req_pending) { + if (user_page_list) + user_page_list[entry].phys_addr = 0; + + goto try_next_page; + } + /* + * ENCRYPTED SWAP: + * The caller is gathering this page and might + * access its contents later on. Decrypt the + * page before adding it to the UPL, so that + * the caller never sees encrypted data. + */ + if (! (cntrl_flags & UPL_ENCRYPT) && dst_page->encrypted) { + int was_busy; + + /* + * save the current state of busy + * mark page as busy while decrypt + * is in progress since it will drop + * the object lock... + */ + was_busy = dst_page->busy; + dst_page->busy = TRUE; + + vm_page_decrypt(dst_page, 0); + vm_page_decrypt_for_upl_counter++; + /* + * restore to original busy state + */ + dst_page->busy = was_busy; + } + if (dst_page->pageout_queue == TRUE) { + + vm_page_lockspin_queues(); + +#if CONFIG_EMBEDDED + if (dst_page->laundry) +#else + if (dst_page->pageout_queue == TRUE) +#endif + { + /* + * we've buddied up a page for a clustered pageout + * that has already been moved to the pageout + * queue by pageout_scan... we need to remove + * it from the queue and drop the laundry count + * on that queue + */ + vm_pageout_throttle_up(dst_page); } + vm_page_unlock_queues(); + } +#if MACH_CLUSTER_STATS + /* + * pageout statistics gathering. count + * all the pages we will page out that + * were not counted in the initial + * vm_pageout_scan work + */ + if (dst_page->list_req_pending) + encountered_lrp = TRUE; + if ((dst_page->dirty || (dst_page->object->internal && dst_page->precious)) && !dst_page->list_req_pending) { + if (encountered_lrp) + CLUSTER_STAT(pages_at_higher_offsets++;) + else + CLUSTER_STAT(pages_at_lower_offsets++;) + } +#endif + /* + * Turn off busy indication on pending + * pageout. Note: we can only get here + * in the request pending case. + */ + dst_page->list_req_pending = FALSE; + dst_page->busy = FALSE; + + hw_dirty = refmod_state & VM_MEM_MODIFIED; + dirty = hw_dirty ? TRUE : dst_page->dirty; - if(dst_page->pageout) - dst_page->busy = TRUE; + if (dst_page->phys_page > upl->highest_page) + upl->highest_page = dst_page->phys_page; + + if (cntrl_flags & UPL_SET_LITE) { + unsigned int pg_num; + + pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); + assert(pg_num == (dst_offset-offset)/PAGE_SIZE); + lite_list[pg_num>>5] |= 1 << (pg_num & 31); + + if (hw_dirty) + pmap_clear_modify(dst_page->phys_page); + + /* + * Mark original page as cleaning + * in place. + */ + dst_page->cleaning = TRUE; + dst_page->precious = FALSE; + } else { + /* + * use pageclean setup, it is more + * convenient even for the pageout + * cases here + */ + vm_object_lock(upl->map_object); + vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); + vm_object_unlock(upl->map_object); alias_page->absent = FALSE; alias_page = NULL; - if(!(cntrl_flags & UPL_CLEAN_IN_PLACE)) { - /* deny access to the target page */ - /* while it is being worked on */ - if((!dst_page->pageout) && - (dst_page->wire_count == 0)) { - dst_page->busy = TRUE; - dst_page->pageout = TRUE; - vm_page_wire(dst_page); - } - } - if(user_page_list) { - user_page_list[entry].phys_addr - = dst_page->phys_addr; - user_page_list[entry].dirty = - dst_page->dirty; - user_page_list[entry].pageout = - dst_page->pageout; - user_page_list[entry].absent = - dst_page->absent; - user_page_list[entry].precious = - dst_page->precious; - } + } +#if MACH_PAGEMAP + /* + * Record that this page has been + * written out + */ + vm_external_state_set(object->existence_map, dst_page->offset); +#endif /*MACH_PAGEMAP*/ + dst_page->dirty = dirty; + + if (!dirty) + dst_page->precious = TRUE; + + if (dst_page->pageout) + dst_page->busy = TRUE; + + if ( (cntrl_flags & UPL_ENCRYPT) ) { + /* + * ENCRYPTED SWAP: + * We want to deny access to the target page + * because its contents are about to be + * encrypted and the user would be very + * confused to see encrypted data instead + * of their data. + * We also set "encrypted_cleaning" to allow + * vm_pageout_scan() to demote that page + * from "adjacent/clean-in-place" to + * "target/clean-and-free" if it bumps into + * this page during its scanning while we're + * still processing this cluster. + */ + dst_page->busy = TRUE; + dst_page->encrypted_cleaning = TRUE; + } + if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) { + /* + * deny access to the target page + * while it is being worked on + */ + if ((!dst_page->pageout) && ( !VM_PAGE_WIRED(dst_page))) { + dst_page->busy = TRUE; + dst_page->pageout = TRUE; - vm_page_unlock_queues(); + dwp->dw_mask |= DW_vm_page_wire; + } } - entry++; - dst_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - } - } else { - while (xfer_size) { - if(alias_page == NULL) { - vm_object_unlock(object); - VM_PAGE_GRAB_FICTITIOUS(alias_page); - vm_object_lock(object); + } else { + if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) { + /* + * Honor copy-on-write obligations + * + * The copy object has changed since we + * last synchronized for copy-on-write. + * Another copy object might have been + * inserted while we released the object's + * lock. Since someone could have seen the + * original contents of the remaining pages + * through that new object, we have to + * synchronize with it again for the remaining + * pages only. The previous pages are "busy" + * so they can not be seen through the new + * mapping. The new mapping will see our + * upcoming changes for those previous pages, + * but that's OK since they couldn't see what + * was there before. It's just a race anyway + * and there's no guarantee of consistency or + * atomicity. We just don't want new mappings + * to see both the *before* and *after* pages. + */ + if (object->copy != VM_OBJECT_NULL) { + vm_object_update( + object, + dst_offset,/* current offset */ + xfer_size, /* remaining size */ + NULL, + NULL, + FALSE, /* should_return */ + MEMORY_OBJECT_COPY_SYNC, + VM_PROT_NO_CHANGE); + +#if DEVELOPMENT || DEBUG + upl_cow_again++; + upl_cow_again_pages += xfer_size >> PAGE_SHIFT; +#endif + } + /* + * remember the copy object we synced with + */ + last_copy_object = object->copy; } dst_page = vm_page_lookup(object, dst_offset); - if(dst_page != VM_PAGE_NULL) { - if((dst_page->cleaning) && - !(dst_page->list_req_pending)) { - /*someone else is writing to the */ - /* page. We will have to wait. */ - PAGE_ASSERT_WAIT(dst_page, THREAD_UNINT); - vm_object_unlock(object); - thread_block((void(*)(void))0); - vm_object_lock(object); - continue; - } - if ((dst_page->fictitious && - dst_page->list_req_pending)) { - /* dump the fictitious page */ - dst_page->list_req_pending = FALSE; - dst_page->clustered = FALSE; - vm_page_lock_queues(); - vm_page_free(dst_page); - vm_page_unlock_queues(); - } else if ((dst_page->absent && - dst_page->list_req_pending)) { - /* the default_pager case */ - dst_page->list_req_pending = FALSE; - dst_page->busy = FALSE; - dst_page->clustered = FALSE; - } + + if (dst_page != VM_PAGE_NULL) { + + if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) { + + if ( !(dst_page->absent && dst_page->list_req_pending) ) { + /* + * skip over pages already present in the cache + */ + if (user_page_list) + user_page_list[entry].phys_addr = 0; + + goto try_next_page; + } + } + if ( !(dst_page->list_req_pending) ) { + + if (dst_page->cleaning) { + /* + * someone else is writing to the page... wait... + */ + PAGE_SLEEP(object, dst_page, THREAD_UNINT); + + continue; + } + } else { + if (dst_page->fictitious && + dst_page->phys_page == vm_page_fictitious_addr) { + assert( !dst_page->speculative); + /* + * dump the fictitious page + */ + dst_page->list_req_pending = FALSE; + + VM_PAGE_FREE(dst_page); + + dst_page = NULL; + + } else if (dst_page->absent) { + /* + * the default_pager case + */ + dst_page->list_req_pending = FALSE; + dst_page->busy = FALSE; + + } else if (dst_page->pageout || dst_page->cleaning) { + /* + * page was earmarked by vm_pageout_scan + * to be cleaned and stolen... we're going + * to take it back since we are not attempting + * to read that page and we don't want to stall + * waiting for it to be cleaned for 2 reasons... + * 1 - no use paging it out and back in + * 2 - if we stall, we may casue a deadlock in + * the FS trying to acquire the its locks + * on the VNOP_PAGEOUT path presuming that + * those locks are already held on the read + * path before trying to create this UPL + * + * so undo all of the state that vm_pageout_scan + * hung on this page + */ + dst_page->busy = FALSE; + + vm_pageout_queue_steal(dst_page, FALSE); + } + } } - if((dst_page = vm_page_lookup( - object, dst_offset)) == VM_PAGE_NULL) { - /* need to allocate a page */ - dst_page = vm_page_alloc(object, dst_offset); + if (dst_page == VM_PAGE_NULL) { + if (object->private) { + /* + * This is a nasty wrinkle for users + * of upl who encounter device or + * private memory however, it is + * unavoidable, only a fault can + * resolve the actual backing + * physical page by asking the + * backing device. + */ + if (user_page_list) + user_page_list[entry].phys_addr = 0; + + goto try_next_page; + } + /* + * need to allocate a page + */ + dst_page = vm_page_grab(); + if (dst_page == VM_PAGE_NULL) { - vm_object_unlock(object); - VM_PAGE_WAIT(); - vm_object_lock(object); - continue; + if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) { + /* + * we don't want to stall waiting for pages to come onto the free list + * while we're already holding absent pages in this UPL + * the caller will deal with the empty slots + */ + if (user_page_list) + user_page_list[entry].phys_addr = 0; + + goto try_next_page; + } + /* + * no pages available... wait + * then try again for the same + * offset... + */ + vm_object_unlock(object); + VM_PAGE_WAIT(); + vm_object_lock(object); + + continue; } + vm_page_insert(dst_page, object, dst_offset); + + dst_page->absent = TRUE; dst_page->busy = FALSE; -#if 0 - if(cntrl_flags & UPL_NO_SYNC) { - dst_page->page_lock = 0; - dst_page->unlock_request = 0; + + if (cntrl_flags & UPL_RET_ONLY_ABSENT) { + /* + * if UPL_RET_ONLY_ABSENT was specified, + * than we're definitely setting up a + * upl for a clustered read/pagein + * operation... mark the pages as clustered + * so upl_commit_range can put them on the + * speculative list + */ + dst_page->clustered = TRUE; } -#endif - dst_page->absent = TRUE; - object->absent_count++; } -#if 1 - if(cntrl_flags & UPL_NO_SYNC) { - dst_page->page_lock = 0; - dst_page->unlock_request = 0; + if (dst_page->fictitious) { + panic("need corner case for fictitious page"); + } + if (dst_page->busy) { + /* + * someone else is playing with the + * page. We will have to wait. + */ + PAGE_SLEEP(object, dst_page, THREAD_UNINT); + + continue; + } + /* + * ENCRYPTED SWAP: + */ + if (cntrl_flags & UPL_ENCRYPT) { + /* + * The page is going to be encrypted when we + * get it from the pager, so mark it so. + */ + dst_page->encrypted = TRUE; + } else { + /* + * Otherwise, the page will not contain + * encrypted data. + */ + dst_page->encrypted = FALSE; } -#endif /* 1 */ dst_page->overwriting = TRUE; - if(dst_page->fictitious) { - panic("need corner case for fictitious page"); + + if (dst_page->pmapped) { + if ( !(cntrl_flags & UPL_FILE_IO)) + /* + * eliminate all mappings from the + * original object and its prodigy + */ + refmod_state = pmap_disconnect(dst_page->phys_page); + else + refmod_state = pmap_get_refmod(dst_page->phys_page); + } else + refmod_state = 0; + + hw_dirty = refmod_state & VM_MEM_MODIFIED; + dirty = hw_dirty ? TRUE : dst_page->dirty; + + if (cntrl_flags & UPL_SET_LITE) { + unsigned int pg_num; + + pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); + assert(pg_num == (dst_offset-offset)/PAGE_SIZE); + lite_list[pg_num>>5] |= 1 << (pg_num & 31); + + if (hw_dirty) + pmap_clear_modify(dst_page->phys_page); + + /* + * Mark original page as cleaning + * in place. + */ + dst_page->cleaning = TRUE; + dst_page->precious = FALSE; + } else { + /* + * use pageclean setup, it is more + * convenient even for the pageout + * cases here + */ + vm_object_lock(upl->map_object); + vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); + vm_object_unlock(upl->map_object); + + alias_page->absent = FALSE; + alias_page = NULL; + } + + if (cntrl_flags & UPL_CLEAN_IN_PLACE) { + /* + * clean in place for read implies + * that a write will be done on all + * the pages that are dirty before + * a upl commit is done. The caller + * is obligated to preserve the + * contents of all pages marked dirty + */ + upl->flags |= UPL_CLEAR_DIRTY; + } + dst_page->dirty = dirty; + + if (!dirty) + dst_page->precious = TRUE; + + if ( !VM_PAGE_WIRED(dst_page)) { + /* + * deny access to the target page while + * it is being worked on + */ + dst_page->busy = TRUE; + } else + dwp->dw_mask |= DW_vm_page_wire; + + /* + * We might be about to satisfy a fault which has been + * requested. So no need for the "restart" bit. + */ + dst_page->restart = FALSE; + if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) { + /* + * expect the page to be used + */ + dwp->dw_mask |= DW_set_reference; + } + dst_page->precious = (cntrl_flags & UPL_PRECIOUS) ? TRUE : FALSE; + } + if (dst_page->busy) + upl->flags |= UPL_HAS_BUSY; + + if (dst_page->phys_page > upl->highest_page) + upl->highest_page = dst_page->phys_page; + if (user_page_list) { + user_page_list[entry].phys_addr = dst_page->phys_page; + user_page_list[entry].pageout = dst_page->pageout; + user_page_list[entry].absent = dst_page->absent; + user_page_list[entry].dirty = dst_page->dirty; + user_page_list[entry].precious = dst_page->precious; + user_page_list[entry].device = FALSE; + if (dst_page->clustered == TRUE) + user_page_list[entry].speculative = dst_page->speculative; + else + user_page_list[entry].speculative = FALSE; + user_page_list[entry].cs_validated = dst_page->cs_validated; + user_page_list[entry].cs_tainted = dst_page->cs_tainted; + } + /* + * if UPL_RET_ONLY_ABSENT is set, then + * we are working with a fresh page and we've + * just set the clustered flag on it to + * indicate that it was drug in as part of a + * speculative cluster... so leave it alone + */ + if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) { + /* + * someone is explicitly grabbing this page... + * update clustered and speculative state + * + */ + VM_PAGE_CONSUME_CLUSTERED(dst_page); + } +try_next_page: + if (dwp->dw_mask) { + if (dwp->dw_mask & DW_vm_page_activate) + VM_STAT_INCR(reactivations); + + if (dst_page->busy == FALSE) { + /* + * dw_do_work may need to drop the object lock + * if it does, we need the pages it's looking at to + * be held stable via the busy bit. + */ + dst_page->busy = TRUE; + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); } - if(dst_page->page_lock) { - do_m_lock = TRUE; + dwp->dw_m = dst_page; + dwp++; + dw_count++; + + if (dw_count >= DELAYED_WORK_LIMIT) { + dw_do_work(object, &dw_array[0], dw_count); + + dwp = &dw_array[0]; + dw_count = 0; } - if(upl_ptr) { + } + entry++; + dst_offset += PAGE_SIZE_64; + xfer_size -= PAGE_SIZE; + } + if (dw_count) + dw_do_work(object, &dw_array[0], dw_count); + + if (alias_page != NULL) { + VM_PAGE_FREE(alias_page); + } + + if (page_list_count != NULL) { + if (upl->flags & UPL_INTERNAL) + *page_list_count = 0; + else if (*page_list_count > entry) + *page_list_count = entry; + } +#if UPL_DEBUG + upl->upl_state = 1; +#endif + vm_object_unlock(object); + + return KERN_SUCCESS; +} + +/* JMM - Backward compatability for now */ +kern_return_t +vm_fault_list_request( /* forward */ + memory_object_control_t control, + vm_object_offset_t offset, + upl_size_t size, + upl_t *upl_ptr, + upl_page_info_t **user_page_list_ptr, + unsigned int page_list_count, + int cntrl_flags); +kern_return_t +vm_fault_list_request( + memory_object_control_t control, + vm_object_offset_t offset, + upl_size_t size, + upl_t *upl_ptr, + upl_page_info_t **user_page_list_ptr, + unsigned int page_list_count, + int cntrl_flags) +{ + unsigned int local_list_count; + upl_page_info_t *user_page_list; + kern_return_t kr; + + if((cntrl_flags & UPL_VECTOR)==UPL_VECTOR) + return KERN_INVALID_ARGUMENT; + + if (user_page_list_ptr != NULL) { + local_list_count = page_list_count; + user_page_list = *user_page_list_ptr; + } else { + local_list_count = 0; + user_page_list = NULL; + } + kr = memory_object_upl_request(control, + offset, + size, + upl_ptr, + user_page_list, + &local_list_count, + cntrl_flags); + + if(kr != KERN_SUCCESS) + return kr; + + if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) { + *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr); + } + + return KERN_SUCCESS; +} + + + +/* + * Routine: vm_object_super_upl_request + * Purpose: + * Cause the population of a portion of a vm_object + * in much the same way as memory_object_upl_request. + * Depending on the nature of the request, the pages + * returned may be contain valid data or be uninitialized. + * However, the region may be expanded up to the super + * cluster size provided. + */ + +__private_extern__ kern_return_t +vm_object_super_upl_request( + vm_object_t object, + vm_object_offset_t offset, + upl_size_t size, + upl_size_t super_cluster, + upl_t *upl, + upl_page_info_t *user_page_list, + unsigned int *page_list_count, + int cntrl_flags) +{ + if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR)) + return KERN_FAILURE; + + assert(object->paging_in_progress); + offset = offset - object->paging_offset; + + if (super_cluster > size) { + + vm_object_offset_t base_offset; + upl_size_t super_size; + vm_object_size_t super_size_64; + + base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1)); + super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster; + super_size_64 = ((base_offset + super_size) > object->size) ? (object->size - base_offset) : super_size; + super_size = (upl_size_t) super_size_64; + assert(super_size == super_size_64); + + if (offset > (base_offset + super_size)) { + panic("vm_object_super_upl_request: Missed target pageout" + " %#llx,%#llx, %#x, %#x, %#x, %#llx\n", + offset, base_offset, super_size, super_cluster, + size, object->paging_offset); + } + /* + * apparently there is a case where the vm requests a + * page to be written out who's offset is beyond the + * object size + */ + if ((offset + size) > (base_offset + super_size)) { + super_size_64 = (offset + size) - base_offset; + super_size = (upl_size_t) super_size_64; + assert(super_size == super_size_64); + } + + offset = base_offset; + size = super_size; + } + return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags); +} + + +kern_return_t +vm_map_create_upl( + vm_map_t map, + vm_map_address_t offset, + upl_size_t *upl_size, + upl_t *upl, + upl_page_info_array_t page_list, + unsigned int *count, + int *flags) +{ + vm_map_entry_t entry; + int caller_flags; + int force_data_sync; + int sync_cow_data; + vm_object_t local_object; + vm_map_offset_t local_offset; + vm_map_offset_t local_start; + kern_return_t ret; + + caller_flags = *flags; + + if (caller_flags & ~UPL_VALID_FLAGS) { + /* + * For forward compatibility's sake, + * reject any unknown flag. + */ + return KERN_INVALID_VALUE; + } + force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC); + sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM); + + if (upl == NULL) + return KERN_INVALID_ARGUMENT; + +REDISCOVER_ENTRY: + vm_map_lock_read(map); + + if (vm_map_lookup_entry(map, offset, &entry)) { + + if ((entry->vme_end - offset) < *upl_size) { + *upl_size = (upl_size_t) (entry->vme_end - offset); + assert(*upl_size == entry->vme_end - offset); + } + + if (caller_flags & UPL_QUERY_OBJECT_TYPE) { + *flags = 0; + + if ( !entry->is_sub_map && entry->object.vm_object != VM_OBJECT_NULL) { + if (entry->object.vm_object->private) + *flags = UPL_DEV_MEMORY; + + if (entry->object.vm_object->phys_contiguous) + *flags |= UPL_PHYS_CONTIG; + } + vm_map_unlock_read(map); + + return KERN_SUCCESS; + } + if (entry->object.vm_object == VM_OBJECT_NULL || !entry->object.vm_object->phys_contiguous) { + if ((*upl_size/PAGE_SIZE) > MAX_UPL_SIZE) + *upl_size = MAX_UPL_SIZE * PAGE_SIZE; + } + /* + * Create an object if necessary. + */ + if (entry->object.vm_object == VM_OBJECT_NULL) { + + if (vm_map_lock_read_to_write(map)) + goto REDISCOVER_ENTRY; + + entry->object.vm_object = vm_object_allocate((vm_size_t)(entry->vme_end - entry->vme_start)); + entry->offset = 0; + + vm_map_lock_write_to_read(map); + } + if (!(caller_flags & UPL_COPYOUT_FROM)) { + if (!(entry->protection & VM_PROT_WRITE)) { + vm_map_unlock_read(map); + return KERN_PROTECTION_FAILURE; + } + if (entry->needs_copy) { + /* + * Honor copy-on-write for COPY_SYMMETRIC + * strategy. + */ + vm_map_t local_map; + vm_object_t object; + vm_object_offset_t new_offset; + vm_prot_t prot; + boolean_t wired; + vm_map_version_t version; + vm_map_t real_map; + + local_map = map; + + if (vm_map_lookup_locked(&local_map, + offset, VM_PROT_WRITE, + OBJECT_LOCK_EXCLUSIVE, + &version, &object, + &new_offset, &prot, &wired, + NULL, + &real_map) != KERN_SUCCESS) { + vm_map_unlock_read(local_map); + return KERN_FAILURE; + } + if (real_map != map) + vm_map_unlock(real_map); + vm_map_unlock_read(local_map); + + vm_object_unlock(object); + + goto REDISCOVER_ENTRY; + } + } + if (entry->is_sub_map) { + vm_map_t submap; + + submap = entry->object.sub_map; + local_start = entry->vme_start; + local_offset = entry->offset; + + vm_map_reference(submap); + vm_map_unlock_read(map); + + ret = vm_map_create_upl(submap, + local_offset + (offset - local_start), + upl_size, upl, page_list, count, flags); + vm_map_deallocate(submap); + + return ret; + } + if (sync_cow_data) { + if (entry->object.vm_object->shadow || entry->object.vm_object->copy) { + local_object = entry->object.vm_object; + local_start = entry->vme_start; + local_offset = entry->offset; + + vm_object_reference(local_object); + vm_map_unlock_read(map); + + if (local_object->shadow && local_object->copy) { + vm_object_lock_request( + local_object->shadow, + (vm_object_offset_t) + ((offset - local_start) + + local_offset) + + local_object->shadow_offset, + *upl_size, FALSE, + MEMORY_OBJECT_DATA_SYNC, + VM_PROT_NO_CHANGE); + } + sync_cow_data = FALSE; + vm_object_deallocate(local_object); + + goto REDISCOVER_ENTRY; + } + } + if (force_data_sync) { + local_object = entry->object.vm_object; + local_start = entry->vme_start; + local_offset = entry->offset; + + vm_object_reference(local_object); + vm_map_unlock_read(map); + + vm_object_lock_request( + local_object, + (vm_object_offset_t) + ((offset - local_start) + local_offset), + (vm_object_size_t)*upl_size, FALSE, + MEMORY_OBJECT_DATA_SYNC, + VM_PROT_NO_CHANGE); + + force_data_sync = FALSE; + vm_object_deallocate(local_object); + + goto REDISCOVER_ENTRY; + } + if (entry->object.vm_object->private) + *flags = UPL_DEV_MEMORY; + else + *flags = 0; + + if (entry->object.vm_object->phys_contiguous) + *flags |= UPL_PHYS_CONTIG; + + local_object = entry->object.vm_object; + local_offset = entry->offset; + local_start = entry->vme_start; + + vm_object_reference(local_object); + vm_map_unlock_read(map); + + ret = vm_object_iopl_request(local_object, + (vm_object_offset_t) ((offset - local_start) + local_offset), + *upl_size, + upl, + page_list, + count, + caller_flags); + vm_object_deallocate(local_object); + + return(ret); + } + vm_map_unlock_read(map); + + return(KERN_FAILURE); +} + +/* + * Internal routine to enter a UPL into a VM map. + * + * JMM - This should just be doable through the standard + * vm_map_enter() API. + */ +kern_return_t +vm_map_enter_upl( + vm_map_t map, + upl_t upl, + vm_map_offset_t *dst_addr) +{ + vm_map_size_t size; + vm_object_offset_t offset; + vm_map_offset_t addr; + vm_page_t m; + kern_return_t kr; + int isVectorUPL = 0, curr_upl=0; + upl_t vector_upl = NULL; + vm_offset_t vector_upl_dst_addr = 0; + vm_map_t vector_upl_submap = NULL; + upl_offset_t subupl_offset = 0; + upl_size_t subupl_size = 0; + + if (upl == UPL_NULL) + return KERN_INVALID_ARGUMENT; + + if((isVectorUPL = vector_upl_is_valid(upl))) { + int mapped=0,valid_upls=0; + vector_upl = upl; + + upl_lock(vector_upl); + for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { + upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); + if(upl == NULL) + continue; + valid_upls++; + if (UPL_PAGE_LIST_MAPPED & upl->flags) + mapped++; + } + + if(mapped) { + if(mapped != valid_upls) + panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls); + else { + upl_unlock(vector_upl); + return KERN_FAILURE; + } + } + + kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE, VM_FLAGS_ANYWHERE, &vector_upl_submap); + if( kr != KERN_SUCCESS ) + panic("Vector UPL submap allocation failed\n"); + map = vector_upl_submap; + vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr); + curr_upl=0; + } + else + upl_lock(upl); + +process_upl_to_enter: + if(isVectorUPL){ + if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { + *dst_addr = vector_upl_dst_addr; + upl_unlock(vector_upl); + return KERN_SUCCESS; + } + upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); + if(upl == NULL) + goto process_upl_to_enter; + vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size); + *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset); + } else { + /* + * check to see if already mapped + */ + if (UPL_PAGE_LIST_MAPPED & upl->flags) { + upl_unlock(upl); + return KERN_FAILURE; + } + } + if ((!(upl->flags & UPL_SHADOWED)) && + ((upl->flags & UPL_HAS_BUSY) || + !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) { + + vm_object_t object; + vm_page_t alias_page; + vm_object_offset_t new_offset; + unsigned int pg_num; + wpl_array_t lite_list; + + if (upl->flags & UPL_INTERNAL) { + lite_list = (wpl_array_t) + ((((uintptr_t)upl) + sizeof(struct upl)) + + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); + } else { + lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl)); + } + object = upl->map_object; + upl->map_object = vm_object_allocate(upl->size); + + vm_object_lock(upl->map_object); + + upl->map_object->shadow = object; + upl->map_object->pageout = TRUE; + upl->map_object->can_persist = FALSE; + upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; + upl->map_object->shadow_offset = upl->offset - object->paging_offset; + upl->map_object->wimg_bits = object->wimg_bits; + offset = upl->map_object->shadow_offset; + new_offset = 0; + size = upl->size; + + upl->flags |= UPL_SHADOWED; + + while (size) { + pg_num = (unsigned int) (new_offset / PAGE_SIZE); + assert(pg_num == new_offset / PAGE_SIZE); + + if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { + + VM_PAGE_GRAB_FICTITIOUS(alias_page); + + vm_object_lock(object); + + m = vm_page_lookup(object, offset); + if (m == VM_PAGE_NULL) { + panic("vm_upl_map: page missing\n"); + } + + /* + * Convert the fictitious page to a private + * shadow of the real page. + */ + assert(alias_page->fictitious); + alias_page->fictitious = FALSE; + alias_page->private = TRUE; + alias_page->pageout = TRUE; + /* + * since m is a page in the upl it must + * already be wired or BUSY, so it's + * safe to assign the underlying physical + * page to the alias + */ + alias_page->phys_page = m->phys_page; + + vm_object_unlock(object); + + vm_page_lockspin_queues(); + vm_page_wire(alias_page); + vm_page_unlock_queues(); + + /* + * ENCRYPTED SWAP: + * The virtual page ("m") has to be wired in some way + * here or its physical page ("m->phys_page") could + * be recycled at any time. + * Assuming this is enforced by the caller, we can't + * get an encrypted page here. Since the encryption + * key depends on the VM page's "pager" object and + * the "paging_offset", we couldn't handle 2 pageable + * VM pages (with different pagers and paging_offsets) + * sharing the same physical page: we could end up + * encrypting with one key (via one VM page) and + * decrypting with another key (via the alias VM page). + */ + ASSERT_PAGE_DECRYPTED(m); + + vm_page_insert(alias_page, upl->map_object, new_offset); + + assert(!alias_page->wanted); + alias_page->busy = FALSE; + alias_page->absent = FALSE; + } + size -= PAGE_SIZE; + offset += PAGE_SIZE_64; + new_offset += PAGE_SIZE_64; + } + vm_object_unlock(upl->map_object); + } + if (upl->flags & UPL_SHADOWED) + offset = 0; + else + offset = upl->offset - upl->map_object->paging_offset; + size = upl->size; + + vm_object_reference(upl->map_object); + + if(!isVectorUPL) { + *dst_addr = 0; + /* + * NEED A UPL_MAP ALIAS + */ + kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, + VM_FLAGS_ANYWHERE, upl->map_object, offset, FALSE, + VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); + + if (kr != KERN_SUCCESS) { + upl_unlock(upl); + return(kr); + } + } + else { + kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, + VM_FLAGS_FIXED, upl->map_object, offset, FALSE, + VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); + if(kr) + panic("vm_map_enter failed for a Vector UPL\n"); + } + vm_object_lock(upl->map_object); + + for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) { + m = vm_page_lookup(upl->map_object, offset); + + if (m) { + unsigned int cache_attr; + cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; + + m->pmapped = TRUE; + + /* CODE SIGNING ENFORCEMENT: page has been wpmapped, + * but only in kernel space. If this was on a user map, + * we'd have to set the wpmapped bit. */ + /* m->wpmapped = TRUE; */ + assert(map==kernel_map); + + PMAP_ENTER(map->pmap, addr, m, VM_PROT_ALL, cache_attr, TRUE); + } + offset += PAGE_SIZE_64; + } + vm_object_unlock(upl->map_object); + + /* + * hold a reference for the mapping + */ + upl->ref_count++; + upl->flags |= UPL_PAGE_LIST_MAPPED; + upl->kaddr = (vm_offset_t) *dst_addr; + assert(upl->kaddr == *dst_addr); + + if(isVectorUPL) + goto process_upl_to_enter; + + upl_unlock(upl); + + return KERN_SUCCESS; +} + +/* + * Internal routine to remove a UPL mapping from a VM map. + * + * XXX - This should just be doable through a standard + * vm_map_remove() operation. Otherwise, implicit clean-up + * of the target map won't be able to correctly remove + * these (and release the reference on the UPL). Having + * to do this means we can't map these into user-space + * maps yet. + */ +kern_return_t +vm_map_remove_upl( + vm_map_t map, + upl_t upl) +{ + vm_address_t addr; + upl_size_t size; + int isVectorUPL = 0, curr_upl = 0; + upl_t vector_upl = NULL; + + if (upl == UPL_NULL) + return KERN_INVALID_ARGUMENT; + + if((isVectorUPL = vector_upl_is_valid(upl))) { + int unmapped=0, valid_upls=0; + vector_upl = upl; + upl_lock(vector_upl); + for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { + upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); + if(upl == NULL) + continue; + valid_upls++; + if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) + unmapped++; + } + + if(unmapped) { + if(unmapped != valid_upls) + panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls); + else { + upl_unlock(vector_upl); + return KERN_FAILURE; + } + } + curr_upl=0; + } + else + upl_lock(upl); + +process_upl_to_remove: + if(isVectorUPL) { + if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { + vm_map_t v_upl_submap; + vm_offset_t v_upl_submap_dst_addr; + vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr); + + vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS); + vm_map_deallocate(v_upl_submap); + upl_unlock(vector_upl); + return KERN_SUCCESS; + } + + upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); + if(upl == NULL) + goto process_upl_to_remove; + } + + if (upl->flags & UPL_PAGE_LIST_MAPPED) { + addr = upl->kaddr; + size = upl->size; + + assert(upl->ref_count > 1); + upl->ref_count--; /* removing mapping ref */ + + upl->flags &= ~UPL_PAGE_LIST_MAPPED; + upl->kaddr = (vm_offset_t) 0; + + if(!isVectorUPL) { + upl_unlock(upl); + + vm_map_remove(map, + vm_map_trunc_page(addr), + vm_map_round_page(addr + size), + VM_MAP_NO_FLAGS); + + return KERN_SUCCESS; + } + else { + /* + * If it's a Vectored UPL, we'll be removing the entire + * submap anyways, so no need to remove individual UPL + * element mappings from within the submap + */ + goto process_upl_to_remove; + } + } + upl_unlock(upl); + + return KERN_FAILURE; +} + +static void +dw_do_work( + vm_object_t object, + struct dw *dwp, + int dw_count) +{ + int j; + boolean_t held_as_spin = TRUE; + + /* + * pageout_scan takes the vm_page_lock_queues first + * then tries for the object lock... to avoid what + * is effectively a lock inversion, we'll go to the + * trouble of taking them in that same order... otherwise + * if this object contains the majority of the pages resident + * in the UBC (or a small set of large objects actively being + * worked on contain the majority of the pages), we could + * cause the pageout_scan thread to 'starve' in its attempt + * to find pages to move to the free queue, since it has to + * successfully acquire the object lock of any candidate page + * before it can steal/clean it. + */ + if (!vm_page_trylockspin_queues()) { + vm_object_unlock(object); + + vm_page_lockspin_queues(); + + for (j = 0; ; j++) { + if (!vm_object_lock_avoid(object) && + _vm_object_lock_try(object)) + break; + vm_page_unlock_queues(); + mutex_pause(j); + vm_page_lockspin_queues(); + } + } + for (j = 0; j < dw_count; j++, dwp++) { + + if (dwp->dw_mask & DW_vm_pageout_throttle_up) + vm_pageout_throttle_up(dwp->dw_m); + + if (dwp->dw_mask & DW_vm_page_wire) + vm_page_wire(dwp->dw_m); + else if (dwp->dw_mask & DW_vm_page_unwire) { + boolean_t queueit; + + queueit = (dwp->dw_mask & DW_vm_page_free) ? FALSE : TRUE; + + vm_page_unwire(dwp->dw_m, queueit); + } + if (dwp->dw_mask & DW_vm_page_free) { + if (held_as_spin == TRUE) { + vm_page_lockconvert_queues(); + held_as_spin = FALSE; + } + vm_page_free(dwp->dw_m); + } else { + if (dwp->dw_mask & DW_vm_page_deactivate_internal) + vm_page_deactivate_internal(dwp->dw_m, FALSE); + else if (dwp->dw_mask & DW_vm_page_activate) + vm_page_activate(dwp->dw_m); + else if (dwp->dw_mask & DW_vm_page_speculate) + vm_page_speculate(dwp->dw_m, TRUE); + else if (dwp->dw_mask & DW_vm_page_lru) + vm_page_lru(dwp->dw_m); + + if (dwp->dw_mask & DW_set_reference) + dwp->dw_m->reference = TRUE; + else if (dwp->dw_mask & DW_clear_reference) + dwp->dw_m->reference = FALSE; + + if (dwp->dw_mask & DW_clear_busy) + dwp->dw_m->busy = FALSE; + + if (dwp->dw_mask & DW_PAGE_WAKEUP) + PAGE_WAKEUP(dwp->dw_m); + } + } + vm_page_unlock_queues(); +} + + + +kern_return_t +upl_commit_range( + upl_t upl, + upl_offset_t offset, + upl_size_t size, + int flags, + upl_page_info_t *page_list, + mach_msg_type_number_t count, + boolean_t *empty) +{ + upl_size_t xfer_size, subupl_size = size; + vm_object_t shadow_object; + vm_object_t object; + vm_object_offset_t target_offset; + upl_offset_t subupl_offset = offset; + int entry; + wpl_array_t lite_list; + int occupied; + int clear_refmod = 0; + int pgpgout_count = 0; + struct dw dw_array[DELAYED_WORK_LIMIT]; + struct dw *dwp; + int dw_count, isVectorUPL = 0; + upl_t vector_upl = NULL; + + *empty = FALSE; + + if (upl == UPL_NULL) + return KERN_INVALID_ARGUMENT; + + if (count == 0) + page_list = NULL; + + if((isVectorUPL = vector_upl_is_valid(upl))) { + vector_upl = upl; + upl_lock(vector_upl); + } + else + upl_lock(upl); + +process_upl_to_commit: + + if(isVectorUPL) { + size = subupl_size; + offset = subupl_offset; + if(size == 0) { + upl_unlock(vector_upl); + return KERN_SUCCESS; + } + upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); + if(upl == NULL) { + upl_unlock(vector_upl); + return KERN_FAILURE; + } + page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl); + subupl_size -= size; + subupl_offset += size; + } + +#if UPL_DEBUG + if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { + (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); + + upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; + upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); + + upl->upl_commit_index++; + } +#endif + if (upl->flags & UPL_DEVICE_MEMORY) + xfer_size = 0; + else if ((offset + size) <= upl->size) + xfer_size = size; + else { + if(!isVectorUPL) + upl_unlock(upl); + else { + upl_unlock(vector_upl); + } + return KERN_FAILURE; + } + if (upl->flags & UPL_CLEAR_DIRTY) + flags |= UPL_COMMIT_CLEAR_DIRTY; + + if (upl->flags & UPL_INTERNAL) + lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl)) + + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); + else + lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); + + object = upl->map_object; + + if (upl->flags & UPL_SHADOWED) { + vm_object_lock(object); + shadow_object = object->shadow; + } else { + shadow_object = object; + } + entry = offset/PAGE_SIZE; + target_offset = (vm_object_offset_t)offset; + + if (upl->flags & UPL_KERNEL_OBJECT) + vm_object_lock_shared(shadow_object); + else + vm_object_lock(shadow_object); + + if (upl->flags & UPL_ACCESS_BLOCKED) { + assert(shadow_object->blocked_access); + shadow_object->blocked_access = FALSE; + vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); + } + + if (shadow_object->code_signed) { + /* + * CODE SIGNING: + * If the object is code-signed, do not let this UPL tell + * us if the pages are valid or not. Let the pages be + * validated by VM the normal way (when they get mapped or + * copied). + */ + flags &= ~UPL_COMMIT_CS_VALIDATED; + } + if (! page_list) { + /* + * No page list to get the code-signing info from !? + */ + flags &= ~UPL_COMMIT_CS_VALIDATED; + } + + dwp = &dw_array[0]; + dw_count = 0; + + while (xfer_size) { + vm_page_t t, m; + + dwp->dw_mask = 0; + clear_refmod = 0; + + m = VM_PAGE_NULL; + + if (upl->flags & UPL_LITE) { + unsigned int pg_num; + + pg_num = (unsigned int) (target_offset/PAGE_SIZE); + assert(pg_num == target_offset/PAGE_SIZE); + + if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { + lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); + + if (!(upl->flags & UPL_KERNEL_OBJECT)) + m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset)); + } + } + if (upl->flags & UPL_SHADOWED) { + if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { + + t->pageout = FALSE; + + VM_PAGE_FREE(t); + + if (m == VM_PAGE_NULL) + m = vm_page_lookup(shadow_object, target_offset + object->shadow_offset); + } + } + if ((upl->flags & UPL_KERNEL_OBJECT) || m == VM_PAGE_NULL) + goto commit_next_page; + + if (flags & UPL_COMMIT_CS_VALIDATED) { + /* + * CODE SIGNING: + * Set the code signing bits according to + * what the UPL says they should be. + */ + m->cs_validated = page_list[entry].cs_validated; + m->cs_tainted = page_list[entry].cs_tainted; + } + if (upl->flags & UPL_IO_WIRE) { + + if (page_list) + page_list[entry].phys_addr = 0; + + if (flags & UPL_COMMIT_SET_DIRTY) + m->dirty = TRUE; + else if (flags & UPL_COMMIT_CLEAR_DIRTY) { + m->dirty = FALSE; + + if (! (flags & UPL_COMMIT_CS_VALIDATED) && + m->cs_validated && !m->cs_tainted) { + /* + * CODE SIGNING: + * This page is no longer dirty + * but could have been modified, + * so it will need to be + * re-validated. + */ + m->cs_validated = FALSE; +#if DEVELOPMENT || DEBUG + vm_cs_validated_resets++; +#endif + pmap_disconnect(m->phys_page); + } + clear_refmod |= VM_MEM_MODIFIED; + } + if (flags & UPL_COMMIT_INACTIVATE) { + dwp->dw_mask |= DW_vm_page_deactivate_internal; + clear_refmod |= VM_MEM_REFERENCED; + } + if (upl->flags & UPL_ACCESS_BLOCKED) { + /* + * We blocked access to the pages in this UPL. + * Clear the "busy" bit and wake up any waiter + * for this page. + */ + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + } + if (m->absent) { + if (flags & UPL_COMMIT_FREE_ABSENT) + dwp->dw_mask |= DW_vm_page_free; + else { + m->absent = FALSE; + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + } + } else + dwp->dw_mask |= DW_vm_page_unwire; + + goto commit_next_page; + } + /* + * make sure to clear the hardware + * modify or reference bits before + * releasing the BUSY bit on this page + * otherwise we risk losing a legitimate + * change of state + */ + if (flags & UPL_COMMIT_CLEAR_DIRTY) { + m->dirty = FALSE; + + if (! (flags & UPL_COMMIT_CS_VALIDATED) && + m->cs_validated && !m->cs_tainted) { + /* + * CODE SIGNING: + * This page is no longer dirty + * but could have been modified, + * so it will need to be + * re-validated. + */ + m->cs_validated = FALSE; +#if DEVELOPMENT || DEBUG + vm_cs_validated_resets++; +#endif + pmap_disconnect(m->phys_page); + } + clear_refmod |= VM_MEM_MODIFIED; + } + if (page_list) { + upl_page_info_t *p; + + p = &(page_list[entry]); + + if (p->phys_addr && p->pageout && !m->pageout) { + m->busy = TRUE; + m->pageout = TRUE; + + dwp->dw_mask |= DW_vm_page_wire; + + } else if (p->phys_addr && + !p->pageout && m->pageout && + !m->dump_cleaning) { + m->pageout = FALSE; + m->absent = FALSE; + m->overwriting = FALSE; + + dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP); + } + page_list[entry].phys_addr = 0; + } + m->dump_cleaning = FALSE; + + if (m->laundry) + dwp->dw_mask |= DW_vm_pageout_throttle_up; + + if (m->pageout) { + m->cleaning = FALSE; + m->encrypted_cleaning = FALSE; + m->pageout = FALSE; +#if MACH_CLUSTER_STATS + if (m->wanted) vm_pageout_target_collisions++; +#endif + m->dirty = FALSE; + + if (! (flags & UPL_COMMIT_CS_VALIDATED) && + m->cs_validated && !m->cs_tainted) { + /* + * CODE SIGNING: + * This page is no longer dirty + * but could have been modified, + * so it will need to be + * re-validated. + */ + m->cs_validated = FALSE; +#if DEVELOPMENT || DEBUG + vm_cs_validated_resets++; +#endif + pmap_disconnect(m->phys_page); + } + + if ((flags & UPL_COMMIT_SET_DIRTY) || + (m->pmapped && (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED))) + m->dirty = TRUE; + + if (m->dirty) { + /* + * page was re-dirtied after we started + * the pageout... reactivate it since + * we don't know whether the on-disk + * copy matches what is now in memory + */ + dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP); + + if (upl->flags & UPL_PAGEOUT) { + CLUSTER_STAT(vm_pageout_target_page_dirtied++;) + VM_STAT_INCR(reactivations); + DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); + } + } else { + /* + * page has been successfully cleaned + * go ahead and free it for other use + */ + + if (m->object->internal) { + DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL); + } else { + DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL); + } + dwp->dw_mask |= DW_vm_page_free; + + if (upl->flags & UPL_PAGEOUT) { + CLUSTER_STAT(vm_pageout_target_page_freed++;) + + if (page_list[entry].dirty) { + VM_STAT_INCR(pageouts); + DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL); + pgpgout_count++; + } + } + } + goto commit_next_page; + } +#if MACH_CLUSTER_STATS + if (m->wpmapped) + m->dirty = pmap_is_modified(m->phys_page); + + if (m->dirty) vm_pageout_cluster_dirtied++; + else vm_pageout_cluster_cleaned++; + if (m->wanted) vm_pageout_cluster_collisions++; +#endif + m->dirty = FALSE; + + if (! (flags & UPL_COMMIT_CS_VALIDATED) && + m->cs_validated && !m->cs_tainted) { + /* + * CODE SIGNING: + * This page is no longer dirty + * but could have been modified, + * so it will need to be + * re-validated. + */ + m->cs_validated = FALSE; +#if DEVELOPMENT || DEBUG + vm_cs_validated_resets++; +#endif + pmap_disconnect(m->phys_page); + } + + if ((m->busy) && (m->cleaning)) { + /* + * the request_page_list case + */ + m->absent = FALSE; + m->overwriting = FALSE; + + dwp->dw_mask |= DW_clear_busy; + + } else if (m->overwriting) { + /* + * alternate request page list, write to + * page_list case. Occurs when the original + * page was wired at the time of the list + * request + */ + assert(VM_PAGE_WIRED(m)); + m->overwriting = FALSE; + + dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */ + } + m->cleaning = FALSE; + m->encrypted_cleaning = FALSE; + + /* + * It is a part of the semantic of COPYOUT_FROM + * UPLs that a commit implies cache sync + * between the vm page and the backing store + * this can be used to strip the precious bit + * as well as clean + */ + if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) + m->precious = FALSE; + + if (flags & UPL_COMMIT_SET_DIRTY) + m->dirty = TRUE; + + if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && !m->speculative) { + dwp->dw_mask |= DW_vm_page_deactivate_internal; + clear_refmod |= VM_MEM_REFERENCED; + + } else if (!m->active && !m->inactive && !m->speculative) { + + if (m->clustered || (flags & UPL_COMMIT_SPECULATE)) + dwp->dw_mask |= DW_vm_page_speculate; + else if (m->reference) + dwp->dw_mask |= DW_vm_page_activate; + else { + dwp->dw_mask |= DW_vm_page_deactivate_internal; + clear_refmod |= VM_MEM_REFERENCED; + } + } + if (upl->flags & UPL_ACCESS_BLOCKED) { + /* + * We blocked access to the pages in this URL. + * Clear the "busy" bit on this page before we + * wake up any waiter. + */ + dwp->dw_mask |= DW_clear_busy; + } + /* + * Wakeup any thread waiting for the page to be un-cleaning. + */ + dwp->dw_mask |= DW_PAGE_WAKEUP; + +commit_next_page: + if (clear_refmod) + pmap_clear_refmod(m->phys_page, clear_refmod); + + target_offset += PAGE_SIZE_64; + xfer_size -= PAGE_SIZE; + entry++; + + if (dwp->dw_mask) { + if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { + if (m->busy == FALSE) { + /* + * dw_do_work may need to drop the object lock + * if it does, we need the pages it's looking at to + * be held stable via the busy bit. + */ + m->busy = TRUE; + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + } + dwp->dw_m = m; + dwp++; + dw_count++; + + if (dw_count >= DELAYED_WORK_LIMIT) { + dw_do_work(shadow_object, &dw_array[0], dw_count); + + dwp = &dw_array[0]; + dw_count = 0; + } + } else { + if (dwp->dw_mask & DW_clear_busy) + m->busy = FALSE; + + if (dwp->dw_mask & DW_PAGE_WAKEUP) + PAGE_WAKEUP(m); + } + } + } + if (dw_count) + dw_do_work(shadow_object, &dw_array[0], dw_count); + + occupied = 1; + + if (upl->flags & UPL_DEVICE_MEMORY) { + occupied = 0; + } else if (upl->flags & UPL_LITE) { + int pg_num; + int i; + + pg_num = upl->size/PAGE_SIZE; + pg_num = (pg_num + 31) >> 5; + occupied = 0; + + for (i = 0; i < pg_num; i++) { + if (lite_list[i] != 0) { + occupied = 1; + break; + } + } + } else { + if (queue_empty(&upl->map_object->memq)) + occupied = 0; + } + if (occupied == 0) { + /* + * If this UPL element belongs to a Vector UPL and is + * empty, then this is the right function to deallocate + * it. So go ahead set the *empty variable. The flag + * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view + * should be considered relevant for the Vector UPL and not + * the internal UPLs. + */ + if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) + *empty = TRUE; + + if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { + /* + * this is not a paging object + * so we need to drop the paging reference + * that was taken when we created the UPL + * against this object + */ + vm_object_activity_end(shadow_object); + } else { + /* + * we dontated the paging reference to + * the map object... vm_pageout_object_terminate + * will drop this reference + */ + } + } + vm_object_unlock(shadow_object); + if (object != shadow_object) + vm_object_unlock(object); + + if(!isVectorUPL) + upl_unlock(upl); + else { + /* + * If we completed our operations on an UPL that is + * part of a Vectored UPL and if empty is TRUE, then + * we should go ahead and deallocate this UPL element. + * Then we check if this was the last of the UPL elements + * within that Vectored UPL. If so, set empty to TRUE + * so that in ubc_upl_commit_range or ubc_upl_commit, we + * can go ahead and deallocate the Vector UPL too. + */ + if(*empty==TRUE) { + *empty = vector_upl_set_subupl(vector_upl, upl, 0); + upl_deallocate(upl); + } + goto process_upl_to_commit; + } + + if (pgpgout_count) { + DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL); + } + + return KERN_SUCCESS; +} + +kern_return_t +upl_abort_range( + upl_t upl, + upl_offset_t offset, + upl_size_t size, + int error, + boolean_t *empty) +{ + upl_size_t xfer_size, subupl_size = size; + vm_object_t shadow_object; + vm_object_t object; + vm_object_offset_t target_offset; + upl_offset_t subupl_offset = offset; + int entry; + wpl_array_t lite_list; + int occupied; + struct dw dw_array[DELAYED_WORK_LIMIT]; + struct dw *dwp; + int dw_count, isVectorUPL = 0; + upl_t vector_upl = NULL; + + *empty = FALSE; + + if (upl == UPL_NULL) + return KERN_INVALID_ARGUMENT; + + if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) ) + return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty); + + if((isVectorUPL = vector_upl_is_valid(upl))) { + vector_upl = upl; + upl_lock(vector_upl); + } + else + upl_lock(upl); + +process_upl_to_abort: + if(isVectorUPL) { + size = subupl_size; + offset = subupl_offset; + if(size == 0) { + upl_unlock(vector_upl); + return KERN_SUCCESS; + } + upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); + if(upl == NULL) { + upl_unlock(vector_upl); + return KERN_FAILURE; + } + subupl_size -= size; + subupl_offset += size; + } + + *empty = FALSE; + +#if UPL_DEBUG + if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { + (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); + + upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; + upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); + upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1; + + upl->upl_commit_index++; + } +#endif + if (upl->flags & UPL_DEVICE_MEMORY) + xfer_size = 0; + else if ((offset + size) <= upl->size) + xfer_size = size; + else { + if(!isVectorUPL) + upl_unlock(upl); + else { + upl_unlock(vector_upl); + } + + return KERN_FAILURE; + } + if (upl->flags & UPL_INTERNAL) { + lite_list = (wpl_array_t) + ((((uintptr_t)upl) + sizeof(struct upl)) + + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); + } else { + lite_list = (wpl_array_t) + (((uintptr_t)upl) + sizeof(struct upl)); + } + object = upl->map_object; + + if (upl->flags & UPL_SHADOWED) { + vm_object_lock(object); + shadow_object = object->shadow; + } else + shadow_object = object; + + entry = offset/PAGE_SIZE; + target_offset = (vm_object_offset_t)offset; + + if (upl->flags & UPL_KERNEL_OBJECT) + vm_object_lock_shared(shadow_object); + else + vm_object_lock(shadow_object); + + if (upl->flags & UPL_ACCESS_BLOCKED) { + assert(shadow_object->blocked_access); + shadow_object->blocked_access = FALSE; + vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); + } + + dwp = &dw_array[0]; + dw_count = 0; + + if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) + panic("upl_abort_range: kernel_object being DUMPED"); + + while (xfer_size) { + vm_page_t t, m; + + dwp->dw_mask = 0; + + m = VM_PAGE_NULL; + + if (upl->flags & UPL_LITE) { + unsigned int pg_num; + + pg_num = (unsigned int) (target_offset/PAGE_SIZE); + assert(pg_num == target_offset/PAGE_SIZE); + + + if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { + lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); + + if ( !(upl->flags & UPL_KERNEL_OBJECT)) + m = vm_page_lookup(shadow_object, target_offset + + (upl->offset - shadow_object->paging_offset)); + } + } + if (upl->flags & UPL_SHADOWED) { + if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { + t->pageout = FALSE; + + VM_PAGE_FREE(t); + + if (m == VM_PAGE_NULL) + m = vm_page_lookup(shadow_object, target_offset + object->shadow_offset); + } + } + if ((upl->flags & UPL_KERNEL_OBJECT)) + goto abort_next_page; + + if (m != VM_PAGE_NULL) { + + if (m->absent) { + boolean_t must_free = TRUE; + + m->clustered = FALSE; + /* + * COPYOUT = FALSE case + * check for error conditions which must + * be passed back to the pages customer + */ + if (error & UPL_ABORT_RESTART) { + m->restart = TRUE; + m->absent = FALSE; + m->unusual = TRUE; + must_free = FALSE; + } else if (error & UPL_ABORT_UNAVAILABLE) { + m->restart = FALSE; + m->unusual = TRUE; + must_free = FALSE; + } else if (error & UPL_ABORT_ERROR) { + m->restart = FALSE; + m->absent = FALSE; + m->error = TRUE; + m->unusual = TRUE; + must_free = FALSE; + } + + /* + * ENCRYPTED SWAP: + * If the page was already encrypted, + * we don't really need to decrypt it + * now. It will get decrypted later, + * on demand, as soon as someone needs + * to access its contents. + */ + + m->cleaning = FALSE; + m->encrypted_cleaning = FALSE; + m->overwriting = FALSE; + + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + + if (must_free == TRUE) + dwp->dw_mask |= DW_vm_page_free; + else + dwp->dw_mask |= DW_vm_page_activate; + } else { + /* + * Handle the trusted pager throttle. + */ + if (m->laundry) + dwp->dw_mask |= DW_vm_pageout_throttle_up; + + if (m->pageout) { + assert(m->busy); + assert(m->wire_count == 1); + m->pageout = FALSE; + + dwp->dw_mask |= DW_vm_page_unwire; + } + m->dump_cleaning = FALSE; + m->cleaning = FALSE; + m->encrypted_cleaning = FALSE; + m->overwriting = FALSE; +#if MACH_PAGEMAP + vm_external_state_clr(m->object->existence_map, m->offset); +#endif /* MACH_PAGEMAP */ + if (error & UPL_ABORT_DUMP_PAGES) { + pmap_disconnect(m->phys_page); + + dwp->dw_mask |= DW_vm_page_free; + } else { + if (error & UPL_ABORT_REFERENCE) { + /* + * we've been told to explictly + * reference this page... for + * file I/O, this is done by + * implementing an LRU on the inactive q + */ + dwp->dw_mask |= DW_vm_page_lru; + } + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + } + } + } +abort_next_page: + target_offset += PAGE_SIZE_64; + xfer_size -= PAGE_SIZE; + entry++; + + if (dwp->dw_mask) { + if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { + if (m->busy == FALSE) { + /* + * dw_do_work may need to drop the object lock + * if it does, we need the pages it's looking at to + * be held stable via the busy bit. + */ + m->busy = TRUE; + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + } + dwp->dw_m = m; + dwp++; + dw_count++; + + if (dw_count >= DELAYED_WORK_LIMIT) { + dw_do_work(shadow_object, &dw_array[0], dw_count); + + dwp = &dw_array[0]; + dw_count = 0; + } + } else { + if (dwp->dw_mask & DW_clear_busy) + m->busy = FALSE; + + if (dwp->dw_mask & DW_PAGE_WAKEUP) + PAGE_WAKEUP(m); + } + } + } + if (dw_count) + dw_do_work(shadow_object, &dw_array[0], dw_count); + + occupied = 1; + + if (upl->flags & UPL_DEVICE_MEMORY) { + occupied = 0; + } else if (upl->flags & UPL_LITE) { + int pg_num; + int i; + + pg_num = upl->size/PAGE_SIZE; + pg_num = (pg_num + 31) >> 5; + occupied = 0; + + for (i = 0; i < pg_num; i++) { + if (lite_list[i] != 0) { + occupied = 1; + break; + } + } + } else { + if (queue_empty(&upl->map_object->memq)) + occupied = 0; + } + if (occupied == 0) { + /* + * If this UPL element belongs to a Vector UPL and is + * empty, then this is the right function to deallocate + * it. So go ahead set the *empty variable. The flag + * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view + * should be considered relevant for the Vector UPL and + * not the internal UPLs. + */ + if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) + *empty = TRUE; + + if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { + /* + * this is not a paging object + * so we need to drop the paging reference + * that was taken when we created the UPL + * against this object + */ + vm_object_activity_end(shadow_object); + } else { + /* + * we dontated the paging reference to + * the map object... vm_pageout_object_terminate + * will drop this reference + */ + } + } + vm_object_unlock(shadow_object); + if (object != shadow_object) + vm_object_unlock(object); + + if(!isVectorUPL) + upl_unlock(upl); + else { + /* + * If we completed our operations on an UPL that is + * part of a Vectored UPL and if empty is TRUE, then + * we should go ahead and deallocate this UPL element. + * Then we check if this was the last of the UPL elements + * within that Vectored UPL. If so, set empty to TRUE + * so that in ubc_upl_abort_range or ubc_upl_abort, we + * can go ahead and deallocate the Vector UPL too. + */ + if(*empty == TRUE) { + *empty = vector_upl_set_subupl(vector_upl, upl,0); + upl_deallocate(upl); + } + goto process_upl_to_abort; + } + + return KERN_SUCCESS; +} + + +kern_return_t +upl_abort( + upl_t upl, + int error) +{ + boolean_t empty; + + return upl_abort_range(upl, 0, upl->size, error, &empty); +} + + +/* an option on commit should be wire */ +kern_return_t +upl_commit( + upl_t upl, + upl_page_info_t *page_list, + mach_msg_type_number_t count) +{ + boolean_t empty; + + return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty); +} + + +unsigned int vm_object_iopl_request_sleep_for_cleaning = 0; + +kern_return_t +vm_object_iopl_request( + vm_object_t object, + vm_object_offset_t offset, + upl_size_t size, + upl_t *upl_ptr, + upl_page_info_array_t user_page_list, + unsigned int *page_list_count, + int cntrl_flags) +{ + vm_page_t dst_page; + vm_object_offset_t dst_offset; + upl_size_t xfer_size; + upl_t upl = NULL; + unsigned int entry; + wpl_array_t lite_list = NULL; + int no_zero_fill = FALSE; + u_int32_t psize; + kern_return_t ret; + vm_prot_t prot; + struct vm_object_fault_info fault_info; + struct dw dw_array[DELAYED_WORK_LIMIT]; + struct dw *dwp; + int dw_count; + int dw_index; + + if (cntrl_flags & ~UPL_VALID_FLAGS) { + /* + * For forward compatibility's sake, + * reject any unknown flag. + */ + return KERN_INVALID_VALUE; + } + if (vm_lopage_needed == FALSE) + cntrl_flags &= ~UPL_NEED_32BIT_ADDR; + + if (cntrl_flags & UPL_NEED_32BIT_ADDR) { + if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) + return KERN_INVALID_VALUE; + + if (object->phys_contiguous) { + if ((offset + object->shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) + return KERN_INVALID_ADDRESS; + + if (((offset + object->shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) + return KERN_INVALID_ADDRESS; + } + } + + if (cntrl_flags & UPL_ENCRYPT) { + /* + * ENCRYPTED SWAP: + * The paging path doesn't use this interface, + * so we don't support the UPL_ENCRYPT flag + * here. We won't encrypt the pages. + */ + assert(! (cntrl_flags & UPL_ENCRYPT)); + } + if (cntrl_flags & UPL_NOZEROFILL) + no_zero_fill = TRUE; + + if (cntrl_flags & UPL_COPYOUT_FROM) + prot = VM_PROT_READ; + else + prot = VM_PROT_READ | VM_PROT_WRITE; + + if (((size/PAGE_SIZE) > MAX_UPL_SIZE) && !object->phys_contiguous) + size = MAX_UPL_SIZE * PAGE_SIZE; + + if (cntrl_flags & UPL_SET_INTERNAL) { + if (page_list_count != NULL) + *page_list_count = MAX_UPL_SIZE; + } + if (((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) && + ((page_list_count != NULL) && (*page_list_count != 0) && *page_list_count < (size/page_size))) + return KERN_INVALID_ARGUMENT; + + if ((!object->internal) && (object->paging_offset != 0)) + panic("vm_object_iopl_request: external object with non-zero paging offset\n"); + + + if (object->phys_contiguous) + psize = PAGE_SIZE; + else + psize = size; + + if (cntrl_flags & UPL_SET_INTERNAL) { + upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, UPL_IO_WIRE, psize); + + user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); + lite_list = (wpl_array_t) (((uintptr_t)user_page_list) + + ((psize / PAGE_SIZE) * sizeof(upl_page_info_t))); + if (size == 0) { + user_page_list = NULL; + lite_list = NULL; + } + } else { + upl = upl_create(UPL_CREATE_LITE, UPL_IO_WIRE, psize); + + lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); + if (size == 0) { + lite_list = NULL; + } + } + if (user_page_list) + user_page_list[0].device = FALSE; + *upl_ptr = upl; + + upl->map_object = object; + upl->size = size; + + if (object == kernel_object && + !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) { + upl->flags |= UPL_KERNEL_OBJECT; +#if UPL_DEBUG + vm_object_lock(object); +#else + vm_object_lock_shared(object); +#endif + } else { + vm_object_lock(object); + vm_object_activity_begin(object); + } + /* + * paging in progress also protects the paging_offset + */ + upl->offset = offset + object->paging_offset; + + if (cntrl_flags & UPL_BLOCK_ACCESS) { + /* + * The user requested that access to the pages in this URL + * be blocked until the UPL is commited or aborted. + */ + upl->flags |= UPL_ACCESS_BLOCKED; + } + + if (object->phys_contiguous) { +#if UPL_DEBUG + queue_enter(&object->uplq, upl, upl_t, uplq); +#endif /* UPL_DEBUG */ + + if (upl->flags & UPL_ACCESS_BLOCKED) { + assert(!object->blocked_access); + object->blocked_access = TRUE; + } + + vm_object_unlock(object); + + /* + * don't need any shadow mappings for this one + * since it is already I/O memory + */ + upl->flags |= UPL_DEVICE_MEMORY; + + upl->highest_page = (ppnum_t) ((offset + object->shadow_offset + size - 1)>>PAGE_SHIFT); + + if (user_page_list) { + user_page_list[0].phys_addr = (ppnum_t) ((offset + object->shadow_offset)>>PAGE_SHIFT); + user_page_list[0].device = TRUE; + } + if (page_list_count != NULL) { + if (upl->flags & UPL_INTERNAL) + *page_list_count = 0; + else + *page_list_count = 1; + } + return KERN_SUCCESS; + } + if (object != kernel_object) { + /* + * Protect user space from future COW operations + */ + object->true_share = TRUE; + + if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) + object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; + } + +#if UPL_DEBUG + queue_enter(&object->uplq, upl, upl_t, uplq); +#endif /* UPL_DEBUG */ + + if (!(cntrl_flags & UPL_COPYOUT_FROM) && + object->copy != VM_OBJECT_NULL) { + /* + * Honor copy-on-write obligations + * + * The caller is gathering these pages and + * might modify their contents. We need to + * make sure that the copy object has its own + * private copies of these pages before we let + * the caller modify them. + * + * NOTE: someone else could map the original object + * after we've done this copy-on-write here, and they + * could then see an inconsistent picture of the memory + * while it's being modified via the UPL. To prevent this, + * we would have to block access to these pages until the + * UPL is released. We could use the UPL_BLOCK_ACCESS + * code path for that... + */ + vm_object_update(object, + offset, + size, + NULL, + NULL, + FALSE, /* should_return */ + MEMORY_OBJECT_COPY_SYNC, + VM_PROT_NO_CHANGE); +#if DEVELOPMENT || DEBUG + iopl_cow++; + iopl_cow_pages += size >> PAGE_SHIFT; +#endif + } + + + entry = 0; + + xfer_size = size; + dst_offset = offset; + + fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; + fault_info.user_tag = 0; + fault_info.lo_offset = offset; + fault_info.hi_offset = offset + xfer_size; + fault_info.no_cache = FALSE; + fault_info.stealth = FALSE; + fault_info.mark_zf_absent = TRUE; + + dwp = &dw_array[0]; + dw_count = 0; + + while (xfer_size) { + vm_fault_return_t result; + unsigned int pg_num; + + dwp->dw_mask = 0; + + dst_page = vm_page_lookup(object, dst_offset); + + /* + * ENCRYPTED SWAP: + * If the page is encrypted, we need to decrypt it, + * so force a soft page fault. + */ + if (dst_page == VM_PAGE_NULL || + dst_page->busy || + dst_page->encrypted || + dst_page->error || + dst_page->restart || + dst_page->absent || + dst_page->fictitious) { + + if (object == kernel_object) + panic("vm_object_iopl_request: missing/bad page in kernel object\n"); + + do { + vm_page_t top_page; + kern_return_t error_code; + int interruptible; + + if (cntrl_flags & UPL_SET_INTERRUPTIBLE) + interruptible = THREAD_ABORTSAFE; + else + interruptible = THREAD_UNINT; + + fault_info.interruptible = interruptible; + fault_info.cluster_size = xfer_size; + + vm_object_paging_begin(object); + + result = vm_fault_page(object, dst_offset, + prot | VM_PROT_WRITE, FALSE, + &prot, &dst_page, &top_page, + (int *)0, + &error_code, no_zero_fill, + FALSE, &fault_info); + + switch (result) { + + case VM_FAULT_SUCCESS: + + if ( !dst_page->absent) { + PAGE_WAKEUP_DONE(dst_page); + } else { + /* + * we only get back an absent page if we + * requested that it not be zero-filled + * because we are about to fill it via I/O + * + * absent pages should be left BUSY + * to prevent them from being faulted + * into an address space before we've + * had a chance to complete the I/O on + * them since they may contain info that + * shouldn't be seen by the faulting task + */ + } + /* + * Release paging references and + * top-level placeholder page, if any. + */ + if (top_page != VM_PAGE_NULL) { + vm_object_t local_object; + + local_object = top_page->object; + + if (top_page->object != dst_page->object) { + vm_object_lock(local_object); + VM_PAGE_FREE(top_page); + vm_object_paging_end(local_object); + vm_object_unlock(local_object); + } else { + VM_PAGE_FREE(top_page); + vm_object_paging_end(local_object); + } + } + vm_object_paging_end(object); + break; + + case VM_FAULT_RETRY: + vm_object_lock(object); + break; + + case VM_FAULT_FICTITIOUS_SHORTAGE: + vm_page_more_fictitious(); + + vm_object_lock(object); + break; + + case VM_FAULT_MEMORY_SHORTAGE: + if (vm_page_wait(interruptible)) { + vm_object_lock(object); + break; + } + /* fall thru */ + + case VM_FAULT_INTERRUPTED: + error_code = MACH_SEND_INTERRUPTED; + case VM_FAULT_MEMORY_ERROR: + memory_error: + ret = (error_code ? error_code: KERN_MEMORY_ERROR); + + vm_object_lock(object); + goto return_err; + + case VM_FAULT_SUCCESS_NO_VM_PAGE: + /* success but no page: fail */ + vm_object_paging_end(object); + vm_object_unlock(object); + goto memory_error; + + default: + panic("vm_object_iopl_request: unexpected error" + " 0x%x from vm_fault_page()\n", result); + } + } while (result != VM_FAULT_SUCCESS); + + } + + if (upl->flags & UPL_KERNEL_OBJECT) + goto record_phys_addr; + + if (dst_page->cleaning) { + /* + * Someone else is cleaning this page in place.as + * In theory, we should be able to proceed and use this + * page but they'll probably end up clearing the "busy" + * bit on it in upl_commit_range() but they didn't set + * it, so they would clear our "busy" bit and open + * us to race conditions. + * We'd better wait for the cleaning to complete and + * then try again. + */ + vm_object_iopl_request_sleep_for_cleaning++; + PAGE_SLEEP(object, dst_page, THREAD_UNINT); + continue; + } + if ( (cntrl_flags & UPL_NEED_32BIT_ADDR) && + dst_page->phys_page >= (max_valid_dma_address >> PAGE_SHIFT) ) { + vm_page_t low_page; + int refmod; + + /* + * support devices that can't DMA above 32 bits + * by substituting pages from a pool of low address + * memory for any pages we find above the 4G mark + * can't substitute if the page is already wired because + * we don't know whether that physical address has been + * handed out to some other 64 bit capable DMA device to use + */ + if (VM_PAGE_WIRED(dst_page)) { + ret = KERN_PROTECTION_FAILURE; + goto return_err; + } + low_page = vm_page_grablo(); + + if (low_page == VM_PAGE_NULL) { + ret = KERN_RESOURCE_SHORTAGE; + goto return_err; + } + /* + * from here until the vm_page_replace completes + * we musn't drop the object lock... we don't + * want anyone refaulting this page in and using + * it after we disconnect it... we want the fault + * to find the new page being substituted. + */ + if (dst_page->pmapped) + refmod = pmap_disconnect(dst_page->phys_page); + else + refmod = 0; + + if ( !dst_page->absent) + vm_page_copy(dst_page, low_page); + + low_page->reference = dst_page->reference; + low_page->dirty = dst_page->dirty; + low_page->absent = dst_page->absent; + + if (refmod & VM_MEM_REFERENCED) + low_page->reference = TRUE; + if (refmod & VM_MEM_MODIFIED) + low_page->dirty = TRUE; + + vm_page_replace(low_page, object, dst_offset); + + dst_page = low_page; + /* + * vm_page_grablo returned the page marked + * BUSY... we don't need a PAGE_WAKEUP_DONE + * here, because we've never dropped the object lock + */ + if ( !dst_page->absent) + dst_page->busy = FALSE; + } + if ( !dst_page->busy) + dwp->dw_mask |= DW_vm_page_wire; + + if (cntrl_flags & UPL_BLOCK_ACCESS) { + /* + * Mark the page "busy" to block any future page fault + * on this page. We'll also remove the mapping + * of all these pages before leaving this routine. + */ + assert(!dst_page->fictitious); + dst_page->busy = TRUE; + } + /* + * expect the page to be used + * page queues lock must be held to set 'reference' + */ + dwp->dw_mask |= DW_set_reference; + + if (!(cntrl_flags & UPL_COPYOUT_FROM)) + dst_page->dirty = TRUE; +record_phys_addr: + if (dst_page->busy) + upl->flags |= UPL_HAS_BUSY; + + pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); + assert(pg_num == (dst_offset-offset)/PAGE_SIZE); + lite_list[pg_num>>5] |= 1 << (pg_num & 31); + + if (dst_page->phys_page > upl->highest_page) + upl->highest_page = dst_page->phys_page; + + if (user_page_list) { + user_page_list[entry].phys_addr = dst_page->phys_page; + user_page_list[entry].pageout = dst_page->pageout; + user_page_list[entry].absent = dst_page->absent; + user_page_list[entry].dirty = dst_page->dirty; + user_page_list[entry].precious = dst_page->precious; + user_page_list[entry].device = FALSE; + if (dst_page->clustered == TRUE) + user_page_list[entry].speculative = dst_page->speculative; + else + user_page_list[entry].speculative = FALSE; + user_page_list[entry].cs_validated = dst_page->cs_validated; + user_page_list[entry].cs_tainted = dst_page->cs_tainted; + } + if (object != kernel_object) { + /* + * someone is explicitly grabbing this page... + * update clustered and speculative state + * + */ + VM_PAGE_CONSUME_CLUSTERED(dst_page); + } + entry++; + dst_offset += PAGE_SIZE_64; + xfer_size -= PAGE_SIZE; + + if (dwp->dw_mask) { + if (dst_page->busy == FALSE) { + /* + * dw_do_work may need to drop the object lock + * if it does, we need the pages it's looking at to + * be held stable via the busy bit. + */ + dst_page->busy = TRUE; + dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); + } + dwp->dw_m = dst_page; + dwp++; + dw_count++; + + if (dw_count >= DELAYED_WORK_LIMIT) { + dw_do_work(object, &dw_array[0], dw_count); + + dwp = &dw_array[0]; + dw_count = 0; + } + } + } + if (dw_count) + dw_do_work(object, &dw_array[0], dw_count); + + if (page_list_count != NULL) { + if (upl->flags & UPL_INTERNAL) + *page_list_count = 0; + else if (*page_list_count > entry) + *page_list_count = entry; + } + vm_object_unlock(object); + + if (cntrl_flags & UPL_BLOCK_ACCESS) { + /* + * We've marked all the pages "busy" so that future + * page faults will block. + * Now remove the mapping for these pages, so that they + * can't be accessed without causing a page fault. + */ + vm_object_pmap_protect(object, offset, (vm_object_size_t)size, + PMAP_NULL, 0, VM_PROT_NONE); + assert(!object->blocked_access); + object->blocked_access = TRUE; + } + return KERN_SUCCESS; + +return_err: + dw_index = 0; + + for (; offset < dst_offset; offset += PAGE_SIZE) { + boolean_t need_unwire; + + dst_page = vm_page_lookup(object, offset); + + if (dst_page == VM_PAGE_NULL) + panic("vm_object_iopl_request: Wired page missing. \n"); + + /* + * if we've already processed this page in an earlier + * dw_do_work, we need to undo the wiring... we will + * leave the dirty and reference bits on if they + * were set, since we don't have a good way of knowing + * what the previous state was and we won't get here + * under any normal circumstances... we will always + * clear BUSY and wakeup any waiters via vm_page_free + * or PAGE_WAKEUP_DONE + */ + need_unwire = TRUE; + + if (dw_count) { + if (dw_array[dw_index].dw_m == dst_page) { + /* + * still in the deferred work list + * which means we haven't yet called + * vm_page_wire on this page + */ + need_unwire = FALSE; + + dw_index++; + dw_count--; + } + } + vm_page_lock_queues(); + + if (dst_page->absent) { + vm_page_free(dst_page); + + need_unwire = FALSE; + } else { + if (need_unwire == TRUE) + vm_page_unwire(dst_page, TRUE); + + PAGE_WAKEUP_DONE(dst_page); + } + vm_page_unlock_queues(); + + if (need_unwire == TRUE) + VM_STAT_INCR(reactivations); + } +#if UPL_DEBUG + upl->upl_state = 2; +#endif + if (! (upl->flags & UPL_KERNEL_OBJECT)) { + vm_object_activity_end(object); + } + vm_object_unlock(object); + upl_destroy(upl); + + return ret; +} + +kern_return_t +upl_transpose( + upl_t upl1, + upl_t upl2) +{ + kern_return_t retval; + boolean_t upls_locked; + vm_object_t object1, object2; + + if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR)==UPL_VECTOR) || ((upl2->flags & UPL_VECTOR)==UPL_VECTOR)) { + return KERN_INVALID_ARGUMENT; + } + + upls_locked = FALSE; + + /* + * Since we need to lock both UPLs at the same time, + * avoid deadlocks by always taking locks in the same order. + */ + if (upl1 < upl2) { + upl_lock(upl1); + upl_lock(upl2); + } else { + upl_lock(upl2); + upl_lock(upl1); + } + upls_locked = TRUE; /* the UPLs will need to be unlocked */ + + object1 = upl1->map_object; + object2 = upl2->map_object; + + if (upl1->offset != 0 || upl2->offset != 0 || + upl1->size != upl2->size) { + /* + * We deal only with full objects, not subsets. + * That's because we exchange the entire backing store info + * for the objects: pager, resident pages, etc... We can't do + * only part of it. + */ + retval = KERN_INVALID_VALUE; + goto done; + } + + /* + * Tranpose the VM objects' backing store. + */ + retval = vm_object_transpose(object1, object2, + (vm_object_size_t) upl1->size); + + if (retval == KERN_SUCCESS) { + /* + * Make each UPL point to the correct VM object, i.e. the + * object holding the pages that the UPL refers to... + */ +#if UPL_DEBUG + queue_remove(&object1->uplq, upl1, upl_t, uplq); + queue_remove(&object2->uplq, upl2, upl_t, uplq); +#endif + upl1->map_object = object2; + upl2->map_object = object1; +#if UPL_DEBUG + queue_enter(&object1->uplq, upl2, upl_t, uplq); + queue_enter(&object2->uplq, upl1, upl_t, uplq); +#endif + } + +done: + /* + * Cleanup. + */ + if (upls_locked) { + upl_unlock(upl1); + upl_unlock(upl2); + upls_locked = FALSE; + } + + return retval; +} + +/* + * ENCRYPTED SWAP: + * + * Rationale: the user might have some encrypted data on disk (via + * FileVault or any other mechanism). That data is then decrypted in + * memory, which is safe as long as the machine is secure. But that + * decrypted data in memory could be paged out to disk by the default + * pager. The data would then be stored on disk in clear (not encrypted) + * and it could be accessed by anyone who gets physical access to the + * disk (if the laptop or the disk gets stolen for example). This weakens + * the security offered by FileVault. + * + * Solution: the default pager will optionally request that all the + * pages it gathers for pageout be encrypted, via the UPL interfaces, + * before it sends this UPL to disk via the vnode_pageout() path. + * + * Notes: + * + * To avoid disrupting the VM LRU algorithms, we want to keep the + * clean-in-place mechanisms, which allow us to send some extra pages to + * swap (clustering) without actually removing them from the user's + * address space. We don't want the user to unknowingly access encrypted + * data, so we have to actually remove the encrypted pages from the page + * table. When the user accesses the data, the hardware will fail to + * locate the virtual page in its page table and will trigger a page + * fault. We can then decrypt the page and enter it in the page table + * again. Whenever we allow the user to access the contents of a page, + * we have to make sure it's not encrypted. + * + * + */ +/* + * ENCRYPTED SWAP: + * Reserve of virtual addresses in the kernel address space. + * We need to map the physical pages in the kernel, so that we + * can call the encryption/decryption routines with a kernel + * virtual address. We keep this pool of pre-allocated kernel + * virtual addresses so that we don't have to scan the kernel's + * virtaul address space each time we need to encrypt or decrypt + * a physical page. + * It would be nice to be able to encrypt and decrypt in physical + * mode but that might not always be more efficient... + */ +decl_simple_lock_data(,vm_paging_lock) +#define VM_PAGING_NUM_PAGES 64 +vm_map_offset_t vm_paging_base_address = 0; +boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, }; +int vm_paging_max_index = 0; +int vm_paging_page_waiter = 0; +int vm_paging_page_waiter_total = 0; +unsigned long vm_paging_no_kernel_page = 0; +unsigned long vm_paging_objects_mapped = 0; +unsigned long vm_paging_pages_mapped = 0; +unsigned long vm_paging_objects_mapped_slow = 0; +unsigned long vm_paging_pages_mapped_slow = 0; + +void +vm_paging_map_init(void) +{ + kern_return_t kr; + vm_map_offset_t page_map_offset; + vm_map_entry_t map_entry; + + assert(vm_paging_base_address == 0); + + /* + * Initialize our pool of pre-allocated kernel + * virtual addresses. + */ + page_map_offset = 0; + kr = vm_map_find_space(kernel_map, + &page_map_offset, + VM_PAGING_NUM_PAGES * PAGE_SIZE, + 0, + 0, + &map_entry); + if (kr != KERN_SUCCESS) { + panic("vm_paging_map_init: kernel_map full\n"); + } + map_entry->object.vm_object = kernel_object; + map_entry->offset = page_map_offset; + vm_object_reference(kernel_object); + vm_map_unlock(kernel_map); + + assert(vm_paging_base_address == 0); + vm_paging_base_address = page_map_offset; +} + +/* + * ENCRYPTED SWAP: + * vm_paging_map_object: + * Maps part of a VM object's pages in the kernel + * virtual address space, using the pre-allocated + * kernel virtual addresses, if possible. + * Context: + * The VM object is locked. This lock will get + * dropped and re-acquired though, so the caller + * must make sure the VM object is kept alive + * (by holding a VM map that has a reference + * on it, for example, or taking an extra reference). + * The page should also be kept busy to prevent + * it from being reclaimed. + */ +kern_return_t +vm_paging_map_object( + vm_map_offset_t *address, + vm_page_t page, + vm_object_t object, + vm_object_offset_t offset, + vm_map_size_t *size, + vm_prot_t protection, + boolean_t can_unlock_object) +{ + kern_return_t kr; + vm_map_offset_t page_map_offset; + vm_map_size_t map_size; + vm_object_offset_t object_offset; + int i; + + + if (page != VM_PAGE_NULL && *size == PAGE_SIZE) { + assert(page->busy); + /* + * Use one of the pre-allocated kernel virtual addresses + * and just enter the VM page in the kernel address space + * at that virtual address. + */ + simple_lock(&vm_paging_lock); + + /* + * Try and find an available kernel virtual address + * from our pre-allocated pool. + */ + page_map_offset = 0; + for (;;) { + for (i = 0; i < VM_PAGING_NUM_PAGES; i++) { + if (vm_paging_page_inuse[i] == FALSE) { + page_map_offset = + vm_paging_base_address + + (i * PAGE_SIZE); + break; + } + } + if (page_map_offset != 0) { + /* found a space to map our page ! */ + break; + } + + if (can_unlock_object) { + /* + * If we can afford to unlock the VM object, + * let's take the slow path now... + */ + break; + } + /* + * We can't afford to unlock the VM object, so + * let's wait for a space to become available... + */ + vm_paging_page_waiter_total++; + vm_paging_page_waiter++; + thread_sleep_fast_usimple_lock(&vm_paging_page_waiter, + &vm_paging_lock, + THREAD_UNINT); + vm_paging_page_waiter--; + /* ... and try again */ + } + + if (page_map_offset != 0) { + /* + * We found a kernel virtual address; + * map the physical page to that virtual address. + */ + if (i > vm_paging_max_index) { + vm_paging_max_index = i; + } + vm_paging_page_inuse[i] = TRUE; + simple_unlock(&vm_paging_lock); + + if (page->pmapped == FALSE) { + pmap_sync_page_data_phys(page->phys_page); + } + page->pmapped = TRUE; + + /* + * Keep the VM object locked over the PMAP_ENTER + * and the actual use of the page by the kernel, + * or this pmap mapping might get undone by a + * vm_object_pmap_protect() call... + */ + PMAP_ENTER(kernel_pmap, + page_map_offset, + page, + protection, + ((int) page->object->wimg_bits & + VM_WIMG_MASK), + TRUE); + vm_paging_objects_mapped++; + vm_paging_pages_mapped++; + *address = page_map_offset; + + /* all done and mapped, ready to use ! */ + return KERN_SUCCESS; + } + + /* + * We ran out of pre-allocated kernel virtual + * addresses. Just map the page in the kernel + * the slow and regular way. + */ + vm_paging_no_kernel_page++; + simple_unlock(&vm_paging_lock); + } + + if (! can_unlock_object) { + return KERN_NOT_SUPPORTED; + } + + object_offset = vm_object_trunc_page(offset); + map_size = vm_map_round_page(*size); + + /* + * Try and map the required range of the object + * in the kernel_map + */ + + vm_object_reference_locked(object); /* for the map entry */ + vm_object_unlock(object); + + kr = vm_map_enter(kernel_map, + address, + map_size, + 0, + VM_FLAGS_ANYWHERE, + object, + object_offset, + FALSE, + protection, + VM_PROT_ALL, + VM_INHERIT_NONE); + if (kr != KERN_SUCCESS) { + *address = 0; + *size = 0; + vm_object_deallocate(object); /* for the map entry */ + vm_object_lock(object); + return kr; + } - /* eliminate all mappings from the */ - /* original object and its prodigy */ - - if(dst_page->busy) { - /*someone else is playing with the */ - /* page. We will have to wait. */ - PAGE_ASSERT_WAIT( - dst_page, THREAD_UNINT); - vm_object_unlock(object); - thread_block((void(*)(void))0); - vm_object_lock(object); - continue; - } - - vm_page_lock_queues(); - pmap_page_protect(dst_page->phys_addr, - VM_PROT_NONE); - dirty = pmap_is_modified(dst_page->phys_addr); - dirty = dirty ? TRUE : dst_page->dirty; - - vm_pageclean_setup(dst_page, alias_page, - upl->map_object, size - xfer_size); - - if(cntrl_flags & UPL_CLEAN_IN_PLACE) { - /* clean in place for read implies */ - /* that a write will be done on all */ - /* the pages that are dirty before */ - /* a upl commit is done. The caller */ - /* is obligated to preserve the */ - /* contents of all pages marked */ - /* dirty. */ - upl->flags |= UPL_CLEAR_DIRTY; - } + *size = map_size; - if(!dirty) { - dst_page->dirty = FALSE; - dst_page->precious = TRUE; - } - - if (dst_page->wire_count == 0) { - /* deny access to the target page while */ - /* it is being worked on */ - dst_page->busy = TRUE; - } else { - vm_page_wire(dst_page); - } - /* expect the page to be used */ - dst_page->reference = TRUE; - dst_page->precious = - (cntrl_flags & UPL_PRECIOUS) - ? TRUE : FALSE; - alias_page->absent = FALSE; - alias_page = NULL; - if(user_page_list) { - user_page_list[entry].phys_addr - = dst_page->phys_addr; - user_page_list[entry].dirty = - dst_page->dirty; - user_page_list[entry].pageout = - dst_page->pageout; - user_page_list[entry].absent = - dst_page->absent; - user_page_list[entry].precious = - dst_page->precious; - } - vm_page_unlock_queues(); - } - entry++; - dst_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; + /* + * Enter the mapped pages in the page table now. + */ + vm_object_lock(object); + /* + * VM object must be kept locked from before PMAP_ENTER() + * until after the kernel is done accessing the page(s). + * Otherwise, the pmap mappings in the kernel could be + * undone by a call to vm_object_pmap_protect(). + */ + + for (page_map_offset = 0; + map_size != 0; + map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) { + unsigned int cache_attr; + + page = vm_page_lookup(object, offset + page_map_offset); + if (page == VM_PAGE_NULL) { + printf("vm_paging_map_object: no page !?"); + vm_object_unlock(object); + kr = vm_map_remove(kernel_map, *address, *size, + VM_MAP_NO_FLAGS); + assert(kr == KERN_SUCCESS); + *address = 0; + *size = 0; + vm_object_lock(object); + return KERN_MEMORY_ERROR; } + if (page->pmapped == FALSE) { + pmap_sync_page_data_phys(page->phys_page); + } + page->pmapped = TRUE; + cache_attr = ((unsigned int) object->wimg_bits) & VM_WIMG_MASK; + + //assert(pmap_verify_free(page->phys_page)); + PMAP_ENTER(kernel_pmap, + *address + page_map_offset, + page, + protection, + cache_attr, + TRUE); } - if(alias_page != NULL) { - vm_page_lock_queues(); - vm_page_free(alias_page); - vm_page_unlock_queues(); - } - if(do_m_lock) { - vm_prot_t access_required; - /* call back all associated pages from other users of the pager */ - /* all future updates will be on data which is based on the */ - /* changes we are going to make here. Note: it is assumed that */ - /* we already hold copies of the data so we will not be seeing */ - /* an avalanche of incoming data from the pager */ - access_required = (cntrl_flags & UPL_COPYOUT_FROM) - ? VM_PROT_READ : VM_PROT_WRITE; - while (TRUE) { - kern_return_t rc; - thread_t thread; - - if(!object->pager_ready) { - thread = current_thread(); - vm_object_assert_wait(object, - VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); - vm_object_unlock(object); - thread_block((void (*)(void))0); - if (thread->wait_result != THREAD_AWAKENED) { - return(KERN_FAILURE); - } - vm_object_lock(object); - continue; + + vm_paging_objects_mapped_slow++; + vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64); + + return KERN_SUCCESS; +} + +/* + * ENCRYPTED SWAP: + * vm_paging_unmap_object: + * Unmaps part of a VM object's pages from the kernel + * virtual address space. + * Context: + * The VM object is locked. This lock will get + * dropped and re-acquired though. + */ +void +vm_paging_unmap_object( + vm_object_t object, + vm_map_offset_t start, + vm_map_offset_t end) +{ + kern_return_t kr; + int i; + + if ((vm_paging_base_address == 0) || + (start < vm_paging_base_address) || + (end > (vm_paging_base_address + + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) { + /* + * We didn't use our pre-allocated pool of + * kernel virtual address. Deallocate the + * virtual memory. + */ + if (object != VM_OBJECT_NULL) { + vm_object_unlock(object); + } + kr = vm_map_remove(kernel_map, start, end, VM_MAP_NO_FLAGS); + if (object != VM_OBJECT_NULL) { + vm_object_lock(object); } + assert(kr == KERN_SUCCESS); + } else { + /* + * We used a kernel virtual address from our + * pre-allocated pool. Put it back in the pool + * for next time. + */ + assert(end - start == PAGE_SIZE); + i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT); + assert(i >= 0 && i < VM_PAGING_NUM_PAGES); - vm_object_unlock(object); + /* undo the pmap mapping */ + pmap_remove(kernel_pmap, start, end); - if (rc = memory_object_data_unlock( - object->pager, - object->pager_request, - dst_offset + object->paging_offset, - size, - access_required)) { - if (rc == MACH_SEND_INTERRUPTED) - continue; - else - return KERN_FAILURE; + simple_lock(&vm_paging_lock); + vm_paging_page_inuse[i] = FALSE; + if (vm_paging_page_waiter) { + thread_wakeup(&vm_paging_page_waiter); } - break; - - } - /* lets wait on the last page requested */ - /* NOTE: we will have to update lock completed routine to signal */ - if(dst_page != VM_PAGE_NULL && - (access_required & dst_page->page_lock) != access_required) { - PAGE_ASSERT_WAIT(dst_page, THREAD_UNINT); - thread_block((void (*)(void))0); - vm_object_lock(object); - } + simple_unlock(&vm_paging_lock); } - vm_object_unlock(object); - return KERN_SUCCESS; } +#if CRYPTO +/* + * Encryption data. + * "iv" is the "initial vector". Ideally, we want to + * have a different one for each page we encrypt, so that + * crackers can't find encryption patterns too easily. + */ +#define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */ +boolean_t swap_crypt_ctx_initialized = FALSE; +aes_32t swap_crypt_key[8]; /* big enough for a 256 key */ +aes_ctx swap_crypt_ctx; +const unsigned char swap_crypt_null_iv[AES_BLOCK_SIZE] = {0xa, }; + +#if DEBUG +boolean_t swap_crypt_ctx_tested = FALSE; +unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096))); +unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096))); +unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096))); +#endif /* DEBUG */ -kern_return_t -upl_system_list_request( - vm_object_t object, - vm_object_offset_t offset, - vm_size_t size, - vm_size_t super_cluster, - upl_t *upl, - upl_page_info_t **user_page_list_ptr, - int page_list_count, - int cntrl_flags) +/* + * Initialize the encryption context: key and key size. + */ +void swap_crypt_ctx_initialize(void); /* forward */ +void +swap_crypt_ctx_initialize(void) { - if(object->paging_offset > offset) - return KERN_FAILURE; - offset = offset - object->paging_offset; + unsigned int i; -/* turns off super cluster exercised by the default_pager */ -/* -super_cluster = size; -*/ - if ((super_cluster > size) && - (vm_page_free_count > vm_page_free_reserved)) { + /* + * No need for locking to protect swap_crypt_ctx_initialized + * because the first use of encryption will come from the + * pageout thread (we won't pagein before there's been a pageout) + * and there's only one pageout thread. + */ + if (swap_crypt_ctx_initialized == FALSE) { + for (i = 0; + i < (sizeof (swap_crypt_key) / + sizeof (swap_crypt_key[0])); + i++) { + swap_crypt_key[i] = random(); + } + aes_encrypt_key((const unsigned char *) swap_crypt_key, + SWAP_CRYPT_AES_KEY_SIZE, + &swap_crypt_ctx.encrypt); + aes_decrypt_key((const unsigned char *) swap_crypt_key, + SWAP_CRYPT_AES_KEY_SIZE, + &swap_crypt_ctx.decrypt); + swap_crypt_ctx_initialized = TRUE; + } - vm_object_offset_t base_offset; - vm_size_t super_size; - - base_offset = (offset & - ~((vm_object_offset_t) super_cluster - 1)); - super_size = (offset+size) > (base_offset + super_cluster) ? - super_cluster<<1 : super_cluster; - super_size = ((base_offset + super_size) > object->size) ? - (object->size - base_offset) : super_size; - if(offset > (base_offset + super_size)) - panic("upl_system_list_request: Missed target pageout 0x%x,0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", offset, base_offset, super_size, super_cluster, size, object->paging_offset); - /* apparently there is a case where the vm requests a */ - /* page to be written out who's offset is beyond the */ - /* object size */ - if((offset + size) > (base_offset + super_size)) - super_size = (offset + size) - base_offset; +#if DEBUG + /* + * Validate the encryption algorithms. + */ + if (swap_crypt_ctx_tested == FALSE) { + /* initialize */ + for (i = 0; i < 4096; i++) { + swap_crypt_test_page_ref[i] = (char) i; + } + /* encrypt */ + aes_encrypt_cbc(swap_crypt_test_page_ref, + swap_crypt_null_iv, + PAGE_SIZE / AES_BLOCK_SIZE, + swap_crypt_test_page_encrypt, + &swap_crypt_ctx.encrypt); + /* decrypt */ + aes_decrypt_cbc(swap_crypt_test_page_encrypt, + swap_crypt_null_iv, + PAGE_SIZE / AES_BLOCK_SIZE, + swap_crypt_test_page_decrypt, + &swap_crypt_ctx.decrypt); + /* compare result with original */ + for (i = 0; i < 4096; i ++) { + if (swap_crypt_test_page_decrypt[i] != + swap_crypt_test_page_ref[i]) { + panic("encryption test failed"); + } + } - offset = base_offset; - size = super_size; + /* encrypt again */ + aes_encrypt_cbc(swap_crypt_test_page_decrypt, + swap_crypt_null_iv, + PAGE_SIZE / AES_BLOCK_SIZE, + swap_crypt_test_page_decrypt, + &swap_crypt_ctx.encrypt); + /* decrypt in place */ + aes_decrypt_cbc(swap_crypt_test_page_decrypt, + swap_crypt_null_iv, + PAGE_SIZE / AES_BLOCK_SIZE, + swap_crypt_test_page_decrypt, + &swap_crypt_ctx.decrypt); + for (i = 0; i < 4096; i ++) { + if (swap_crypt_test_page_decrypt[i] != + swap_crypt_test_page_ref[i]) { + panic("in place encryption test failed"); + } + } + + swap_crypt_ctx_tested = TRUE; } - vm_fault_list_request(object, offset, size, upl, user_page_list_ptr, - page_list_count, cntrl_flags); +#endif /* DEBUG */ } - -kern_return_t -uc_upl_map( - vm_map_t map, - upl_t upl, - vm_offset_t *dst_addr) +/* + * ENCRYPTED SWAP: + * vm_page_encrypt: + * Encrypt the given page, for secure paging. + * The page might already be mapped at kernel virtual + * address "kernel_mapping_offset". Otherwise, we need + * to map it. + * + * Context: + * The page's object is locked, but this lock will be released + * and re-acquired. + * The page is busy and not accessible by users (not entered in any pmap). + */ +void +vm_page_encrypt( + vm_page_t page, + vm_map_offset_t kernel_mapping_offset) { - vm_size_t size; - vm_object_offset_t offset; - vm_offset_t addr; - vm_page_t m; kern_return_t kr; + vm_map_size_t kernel_mapping_size; + vm_offset_t kernel_vaddr; + union { + unsigned char aes_iv[AES_BLOCK_SIZE]; + struct { + memory_object_t pager_object; + vm_object_offset_t paging_offset; + } vm; + } encrypt_iv; + + if (! vm_pages_encrypted) { + vm_pages_encrypted = TRUE; + } - /* check to see if already mapped */ - if(UPL_PAGE_LIST_MAPPED & upl->flags) - return KERN_FAILURE; - - offset = 0; /* Always map the entire object */ - size = upl->size; + assert(page->busy); + assert(page->dirty || page->precious); - vm_object_lock(upl->map_object); - upl->map_object->ref_count++; - vm_object_res_reference(upl->map_object); - vm_object_unlock(upl->map_object); + if (page->encrypted) { + /* + * Already encrypted: no need to do it again. + */ + vm_page_encrypt_already_encrypted_counter++; + return; + } + ASSERT_PAGE_DECRYPTED(page); + + /* + * Take a paging-in-progress reference to keep the object + * alive even if we have to unlock it (in vm_paging_map_object() + * for example)... + */ + vm_object_paging_begin(page->object); - *dst_addr = 0; + if (kernel_mapping_offset == 0) { + /* + * The page hasn't already been mapped in kernel space + * by the caller. Map it now, so that we can access + * its contents and encrypt them. + */ + kernel_mapping_size = PAGE_SIZE; + kr = vm_paging_map_object(&kernel_mapping_offset, + page, + page->object, + page->offset, + &kernel_mapping_size, + VM_PROT_READ | VM_PROT_WRITE, + FALSE); + if (kr != KERN_SUCCESS) { + panic("vm_page_encrypt: " + "could not map page in kernel: 0x%x\n", + kr); + } + } else { + kernel_mapping_size = 0; + } + kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); + if (swap_crypt_ctx_initialized == FALSE) { + swap_crypt_ctx_initialize(); + } + assert(swap_crypt_ctx_initialized); - /* NEED A UPL_MAP ALIAS */ - kr = vm_map_enter(map, dst_addr, size, (vm_offset_t) 0, TRUE, - upl->map_object, offset, FALSE, - VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); + /* + * Prepare an "initial vector" for the encryption. + * We use the "pager" and the "paging_offset" for that + * page to obfuscate the encrypted data a bit more and + * prevent crackers from finding patterns that they could + * use to break the key. + */ + bzero(&encrypt_iv.aes_iv[0], sizeof (encrypt_iv.aes_iv)); + encrypt_iv.vm.pager_object = page->object->pager; + encrypt_iv.vm.paging_offset = + page->object->paging_offset + page->offset; + + /* encrypt the "initial vector" */ + aes_encrypt_cbc((const unsigned char *) &encrypt_iv.aes_iv[0], + swap_crypt_null_iv, + 1, + &encrypt_iv.aes_iv[0], + &swap_crypt_ctx.encrypt); + + /* + * Encrypt the page. + */ + aes_encrypt_cbc((const unsigned char *) kernel_vaddr, + &encrypt_iv.aes_iv[0], + PAGE_SIZE / AES_BLOCK_SIZE, + (unsigned char *) kernel_vaddr, + &swap_crypt_ctx.encrypt); - if (kr != KERN_SUCCESS) - return(kr); + vm_page_encrypt_counter++; - for(addr=*dst_addr; size > 0; size-=PAGE_SIZE,addr+=PAGE_SIZE) { - m = vm_page_lookup(upl->map_object, offset); - if(m) { - PMAP_ENTER(map->pmap, addr, m, VM_PROT_ALL, TRUE); - } - offset+=PAGE_SIZE_64; + /* + * Unmap the page from the kernel's address space, + * if we had to map it ourselves. Otherwise, let + * the caller undo the mapping if needed. + */ + if (kernel_mapping_size != 0) { + vm_paging_unmap_object(page->object, + kernel_mapping_offset, + kernel_mapping_offset + kernel_mapping_size); } - upl->flags |= UPL_PAGE_LIST_MAPPED; - upl->kaddr = *dst_addr; - return KERN_SUCCESS; + /* + * Clear the "reference" and "modified" bits. + * This should clean up any impact the encryption had + * on them. + * The page was kept busy and disconnected from all pmaps, + * so it can't have been referenced or modified from user + * space. + * The software bits will be reset later after the I/O + * has completed (in upl_commit_range()). + */ + pmap_clear_refmod(page->phys_page, VM_MEM_REFERENCED | VM_MEM_MODIFIED); + + page->encrypted = TRUE; + + vm_object_paging_end(page->object); } - -kern_return_t -uc_upl_un_map( - vm_map_t map, - upl_t upl) +/* + * ENCRYPTED SWAP: + * vm_page_decrypt: + * Decrypt the given page. + * The page might already be mapped at kernel virtual + * address "kernel_mapping_offset". Otherwise, we need + * to map it. + * + * Context: + * The page's VM object is locked but will be unlocked and relocked. + * The page is busy and not accessible by users (not entered in any pmap). + */ +void +vm_page_decrypt( + vm_page_t page, + vm_map_offset_t kernel_mapping_offset) { - vm_size_t size; + kern_return_t kr; + vm_map_size_t kernel_mapping_size; + vm_offset_t kernel_vaddr; + union { + unsigned char aes_iv[AES_BLOCK_SIZE]; + struct { + memory_object_t pager_object; + vm_object_offset_t paging_offset; + } vm; + } decrypt_iv; + + assert(page->busy); + assert(page->encrypted); - if(upl->flags & UPL_PAGE_LIST_MAPPED) { - size = upl->size; - vm_deallocate(map, upl->kaddr, size); - upl->flags &= ~UPL_PAGE_LIST_MAPPED; - upl->kaddr = (vm_offset_t) 0; - return KERN_SUCCESS; + /* + * Take a paging-in-progress reference to keep the object + * alive even if we have to unlock it (in vm_paging_map_object() + * for example)... + */ + vm_object_paging_begin(page->object); + + if (kernel_mapping_offset == 0) { + /* + * The page hasn't already been mapped in kernel space + * by the caller. Map it now, so that we can access + * its contents and decrypt them. + */ + kernel_mapping_size = PAGE_SIZE; + kr = vm_paging_map_object(&kernel_mapping_offset, + page, + page->object, + page->offset, + &kernel_mapping_size, + VM_PROT_READ | VM_PROT_WRITE, + FALSE); + if (kr != KERN_SUCCESS) { + panic("vm_page_decrypt: " + "could not map page in kernel: 0x%x\n", + kr); + } } else { - return KERN_FAILURE; + kernel_mapping_size = 0; } -} + kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); -kern_return_t -uc_upl_commit_range( - upl_t upl, - vm_offset_t offset, - vm_size_t size, - int flags, - upl_page_info_t *page_list) -{ - vm_size_t xfer_size = size; - vm_object_t shadow_object = upl->map_object->shadow; - vm_object_t object = upl->map_object; - vm_object_offset_t target_offset; - vm_object_offset_t page_offset; - int entry; + assert(swap_crypt_ctx_initialized); - if(upl->flags & UPL_DEVICE_MEMORY) { - xfer_size = 0; - } else if ((offset + size) > upl->size) { - return KERN_FAILURE; + /* + * Prepare an "initial vector" for the decryption. + * It has to be the same as the "initial vector" we + * used to encrypt that page. + */ + bzero(&decrypt_iv.aes_iv[0], sizeof (decrypt_iv.aes_iv)); + decrypt_iv.vm.pager_object = page->object->pager; + decrypt_iv.vm.paging_offset = + page->object->paging_offset + page->offset; + + /* encrypt the "initial vector" */ + aes_encrypt_cbc((const unsigned char *) &decrypt_iv.aes_iv[0], + swap_crypt_null_iv, + 1, + &decrypt_iv.aes_iv[0], + &swap_crypt_ctx.encrypt); + + /* + * Decrypt the page. + */ + aes_decrypt_cbc((const unsigned char *) kernel_vaddr, + &decrypt_iv.aes_iv[0], + PAGE_SIZE / AES_BLOCK_SIZE, + (unsigned char *) kernel_vaddr, + &swap_crypt_ctx.decrypt); + vm_page_decrypt_counter++; + + /* + * Unmap the page from the kernel's address space, + * if we had to map it ourselves. Otherwise, let + * the caller undo the mapping if needed. + */ + if (kernel_mapping_size != 0) { + vm_paging_unmap_object(page->object, + kernel_vaddr, + kernel_vaddr + PAGE_SIZE); } - vm_object_lock(shadow_object); + /* + * After decryption, the page is actually clean. + * It was encrypted as part of paging, which "cleans" + * the "dirty" pages. + * Noone could access it after it was encrypted + * and the decryption doesn't count. + */ + page->dirty = FALSE; + assert (page->cs_validated == FALSE); + pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); + page->encrypted = FALSE; - entry = offset/PAGE_SIZE; - target_offset = (vm_object_offset_t)offset; - while(xfer_size) { - vm_page_t t,m; - upl_page_info_t *p; - - if((t = vm_page_lookup(object, target_offset)) != NULL) { - - t->pageout = FALSE; - page_offset = t->offset; - VM_PAGE_FREE(t); - t = VM_PAGE_NULL; - m = vm_page_lookup(shadow_object, - page_offset + object->shadow_offset); - if(m != VM_PAGE_NULL) { - vm_object_paging_end(shadow_object); - vm_page_lock_queues(); - if ((upl->flags & UPL_CLEAR_DIRTY) || - (flags & UPL_COMMIT_CLEAR_DIRTY)) { - pmap_clear_modify(m->phys_addr); - m->dirty = FALSE; - } - if(page_list) { - p = &(page_list[entry]); - if(p->phys_addr && p->pageout && !m->pageout) { - m->busy = TRUE; - m->pageout = TRUE; - vm_page_wire(m); - } else if (page_list[entry].phys_addr && - !p->pageout && m->pageout) { - m->pageout = FALSE; - m->absent = FALSE; - m->overwriting = FALSE; - vm_page_unwire(m); - PAGE_WAKEUP_DONE(m); - } - page_list[entry].phys_addr = 0; - } - if(m->laundry) { - vm_page_laundry_count--; - m->laundry = FALSE; - if (vm_page_laundry_count < vm_page_laundry_min) { - vm_page_laundry_min = 0; - thread_wakeup((event_t) - &vm_page_laundry_count); - } - } - if(m->pageout) { - m->cleaning = FALSE; - m->pageout = FALSE; -#if MACH_CLUSTER_STATS - if (m->wanted) vm_pageout_target_collisions++; -#endif - pmap_page_protect(m->phys_addr, VM_PROT_NONE); - m->dirty = pmap_is_modified(m->phys_addr); - if(m->dirty) { - CLUSTER_STAT( - vm_pageout_target_page_dirtied++;) - vm_page_unwire(m);/* reactivates */ - VM_STAT(reactivations++); - PAGE_WAKEUP_DONE(m); - } else if (m->prep_pin_count != 0) { - vm_page_pin_lock(); - if (m->pin_count != 0) { - /* page is pinned; reactivate */ - CLUSTER_STAT( - vm_pageout_target_page_pinned++;) - vm_page_unwire(m);/* reactivates */ - VM_STAT(reactivations++); - PAGE_WAKEUP_DONE(m); - } else { - /* - * page is prepped but not pinned; - * send it into limbo. Note that - * vm_page_free (which will be - * called after releasing the pin - * lock) knows how to handle a page - * with limbo set. - */ - m->limbo = TRUE; - CLUSTER_STAT( - vm_pageout_target_page_limbo++;) - } - vm_page_pin_unlock(); - if (m->limbo) - vm_page_free(m); - } else { - CLUSTER_STAT( - vm_pageout_target_page_freed++;) - vm_page_free(m);/* clears busy, etc. */ - } - vm_page_unlock_queues(); - target_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - entry++; - continue; - } - if (flags & UPL_COMMIT_INACTIVATE) { - vm_page_deactivate(m); - m->reference = FALSE; - pmap_clear_reference(m->phys_addr); - } else if (!m->active && !m->inactive) { - if (m->reference || m->prep_pin_count != 0) - vm_page_activate(m); - else - vm_page_deactivate(m); - } -#if MACH_CLUSTER_STATS - m->dirty = pmap_is_modified(m->phys_addr); + /* + * We've just modified the page's contents via the data cache and part + * of the new contents might still be in the cache and not yet in RAM. + * Since the page is now available and might get gathered in a UPL to + * be part of a DMA transfer from a driver that expects the memory to + * be coherent at this point, we have to flush the data cache. + */ + pmap_sync_page_attributes_phys(page->phys_page); + /* + * Since the page is not mapped yet, some code might assume that it + * doesn't need to invalidate the instruction cache when writing to + * that page. That code relies on "pmapped" being FALSE, so that the + * caches get synchronized when the page is first mapped. + */ + assert(pmap_verify_free(page->phys_page)); + page->pmapped = FALSE; + page->wpmapped = FALSE; - if (m->dirty) vm_pageout_cluster_dirtied++; - else vm_pageout_cluster_cleaned++; - if (m->wanted) vm_pageout_cluster_collisions++; -#else - m->dirty = 0; -#endif + vm_object_paging_end(page->object); +} - if((m->busy) && (m->cleaning)) { - /* the request_page_list case */ - if(m->absent) { - m->absent = FALSE; - if(shadow_object->absent_count == 1) - vm_object_absent_release(shadow_object); - else - shadow_object->absent_count--; - } - m->overwriting = FALSE; - m->busy = FALSE; - m->dirty = FALSE; - } - else if (m->overwriting) { - /* alternate request page list, write to - /* page_list case. Occurs when the original - /* page was wired at the time of the list - /* request */ - assert(m->wire_count != 0); - vm_page_unwire(m);/* reactivates */ - m->overwriting = FALSE; - } - m->cleaning = FALSE; - /* It is a part of the semantic of COPYOUT_FROM */ - /* UPLs that a commit implies cache sync */ - /* between the vm page and the backing store */ - /* this can be used to strip the precious bit */ - /* as well as clean */ - if (upl->flags & UPL_PAGE_SYNC_DONE) - m->precious = FALSE; - - if (flags & UPL_COMMIT_SET_DIRTY) { - m->dirty = TRUE; - } - /* - * Wakeup any thread waiting for the page to be un-cleaning. - */ - PAGE_WAKEUP(m); - vm_page_unlock_queues(); +#if DEVELOPMENT || DEBUG +unsigned long upl_encrypt_upls = 0; +unsigned long upl_encrypt_pages = 0; +#endif - } - } - target_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - entry++; +/* + * ENCRYPTED SWAP: + * + * upl_encrypt: + * Encrypts all the pages in the UPL, within the specified range. + * + */ +void +upl_encrypt( + upl_t upl, + upl_offset_t crypt_offset, + upl_size_t crypt_size) +{ + upl_size_t upl_size, subupl_size=crypt_size; + upl_offset_t offset_in_upl, subupl_offset=crypt_offset; + vm_object_t upl_object; + vm_object_offset_t upl_offset; + vm_page_t page; + vm_object_t shadow_object; + vm_object_offset_t shadow_offset; + vm_object_offset_t paging_offset; + vm_object_offset_t base_offset; + int isVectorUPL = 0; + upl_t vector_upl = NULL; + + if((isVectorUPL = vector_upl_is_valid(upl))) + vector_upl = upl; + +process_upl_to_encrypt: + if(isVectorUPL) { + crypt_size = subupl_size; + crypt_offset = subupl_offset; + upl = vector_upl_subupl_byoffset(vector_upl, &crypt_offset, &crypt_size); + if(upl == NULL) + panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n"); + subupl_size -= crypt_size; + subupl_offset += crypt_size; } - vm_object_unlock(shadow_object); - if(flags & UPL_COMMIT_FREE_ON_EMPTY) { - if((upl->flags & UPL_DEVICE_MEMORY) - || (queue_empty(&upl->map_object->memq))) { - upl_dealloc(upl); - } - } - return KERN_SUCCESS; -} +#if DEVELOPMENT || DEBUG + upl_encrypt_upls++; + upl_encrypt_pages += crypt_size / PAGE_SIZE; +#endif + upl_object = upl->map_object; + upl_offset = upl->offset; + upl_size = upl->size; -uc_upl_abort_range( - upl_t upl, - vm_offset_t offset, - vm_size_t size, - int error) -{ - vm_size_t xfer_size = size; - vm_object_t shadow_object = upl->map_object->shadow; - vm_object_t object = upl->map_object; - vm_object_offset_t target_offset; - vm_object_offset_t page_offset; - int entry; + vm_object_lock(upl_object); - if(upl->flags & UPL_DEVICE_MEMORY) { - xfer_size = 0; - } else if ((offset + size) > upl->size) { - return KERN_FAILURE; + /* + * Find the VM object that contains the actual pages. + */ + if (upl_object->pageout) { + shadow_object = upl_object->shadow; + /* + * The offset in the shadow object is actually also + * accounted for in upl->offset. It possibly shouldn't be + * this way, but for now don't account for it twice. + */ + shadow_offset = 0; + assert(upl_object->paging_offset == 0); /* XXX ? */ + vm_object_lock(shadow_object); + } else { + shadow_object = upl_object; + shadow_offset = 0; } + paging_offset = shadow_object->paging_offset; + vm_object_paging_begin(shadow_object); - vm_object_lock(shadow_object); + if (shadow_object != upl_object) + vm_object_unlock(upl_object); - entry = offset/PAGE_SIZE; - target_offset = (vm_object_offset_t)offset; - while(xfer_size) { - vm_page_t t,m; - upl_page_info_t *p; - - if((t = vm_page_lookup(object, target_offset)) != NULL) { - - t->pageout = FALSE; - page_offset = t->offset; - VM_PAGE_FREE(t); - t = VM_PAGE_NULL; - m = vm_page_lookup(shadow_object, - page_offset + object->shadow_offset); - if(m != VM_PAGE_NULL) { - vm_object_paging_end(m->object); - vm_page_lock_queues(); - if(m->absent) { - /* COPYOUT = FALSE case */ - /* check for error conditions which must */ - /* be passed back to the pages customer */ - if(error & UPL_ABORT_RESTART) { - m->restart = TRUE; - m->absent = FALSE; - vm_object_absent_release(m->object); - m->page_error = KERN_MEMORY_ERROR; - m->error = TRUE; - } else if(error & UPL_ABORT_UNAVAILABLE) { - m->restart = FALSE; - m->unusual = TRUE; - m->clustered = FALSE; - } else if(error & UPL_ABORT_ERROR) { - m->restart = FALSE; - m->absent = FALSE; - vm_object_absent_release(m->object); - m->page_error = KERN_MEMORY_ERROR; - m->error = TRUE; - } else if(error & UPL_ABORT_DUMP_PAGES) { - m->clustered = TRUE; - } else { - m->clustered = TRUE; - } - - m->cleaning = FALSE; - m->overwriting = FALSE; - PAGE_WAKEUP_DONE(m); - if(m->clustered) { - vm_page_free(m); - } else { - vm_page_activate(m); - } + base_offset = shadow_offset; + base_offset += upl_offset; + base_offset += crypt_offset; + base_offset -= paging_offset; - vm_page_unlock_queues(); - target_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - entry++; - continue; - } - /* - * Handle the trusted pager throttle. - */ - if (m->laundry) { - vm_page_laundry_count--; - m->laundry = FALSE; - if (vm_page_laundry_count - < vm_page_laundry_min) { - vm_page_laundry_min = 0; - thread_wakeup((event_t) - &vm_page_laundry_count); - } - } - if(m->pageout) { - assert(m->busy); - assert(m->wire_count == 1); - m->pageout = FALSE; - vm_page_unwire(m); - } - m->cleaning = FALSE; - m->busy = FALSE; - m->overwriting = FALSE; -#if MACH_PAGEMAP - vm_external_state_clr( - m->object->existence_map, m->offset); -#endif /* MACH_PAGEMAP */ - if(error & UPL_ABORT_DUMP_PAGES) { - vm_page_free(m); - pmap_page_protect(m->phys_addr, VM_PROT_NONE); - } else { - PAGE_WAKEUP(m); - } - vm_page_unlock_queues(); + assert(crypt_offset + crypt_size <= upl_size); + + for (offset_in_upl = 0; + offset_in_upl < crypt_size; + offset_in_upl += PAGE_SIZE) { + page = vm_page_lookup(shadow_object, + base_offset + offset_in_upl); + if (page == VM_PAGE_NULL) { + panic("upl_encrypt: " + "no page for (obj=%p,off=%lld+%d)!\n", + shadow_object, + base_offset, + offset_in_upl); + } + /* + * Disconnect the page from all pmaps, so that nobody can + * access it while it's encrypted. After that point, all + * accesses to this page will cause a page fault and block + * while the page is busy being encrypted. After the + * encryption completes, any access will cause a + * page fault and the page gets decrypted at that time. + */ + pmap_disconnect(page->phys_page); + vm_page_encrypt(page, 0); + + if (vm_object_lock_avoid(shadow_object)) { + /* + * Give vm_pageout_scan() a chance to convert more + * pages from "clean-in-place" to "clean-and-free", + * if it's interested in the same pages we selected + * in this cluster. + */ + vm_object_unlock(shadow_object); + mutex_pause(2); + vm_object_lock(shadow_object); } - } - target_offset += PAGE_SIZE_64; - xfer_size -= PAGE_SIZE; - entry++; } + + vm_object_paging_end(shadow_object); vm_object_unlock(shadow_object); - if(error & UPL_ABORT_FREE_ON_EMPTY) { - if((upl->flags & UPL_DEVICE_MEMORY) - || (queue_empty(&upl->map_object->memq))) { - upl_dealloc(upl); - } + + if(isVectorUPL && subupl_size) + goto process_upl_to_encrypt; +} + +#else /* CRYPTO */ +void +upl_encrypt( + __unused upl_t upl, + __unused upl_offset_t crypt_offset, + __unused upl_size_t crypt_size) +{ +} + +void +vm_page_encrypt( + __unused vm_page_t page, + __unused vm_map_offset_t kernel_mapping_offset) +{ +} + +void +vm_page_decrypt( + __unused vm_page_t page, + __unused vm_map_offset_t kernel_mapping_offset) +{ +} + +#endif /* CRYPTO */ + +void +vm_pageout_queue_steal(vm_page_t page, boolean_t queues_locked) +{ + boolean_t pageout; + + pageout = page->pageout; + + page->list_req_pending = FALSE; + page->cleaning = FALSE; + page->pageout = FALSE; + + if (!queues_locked) { + vm_page_lockspin_queues(); + } + + /* + * need to drop the laundry count... + * we may also need to remove it + * from the I/O paging queue... + * vm_pageout_throttle_up handles both cases + * + * the laundry and pageout_queue flags are cleared... + */ + vm_pageout_throttle_up(page); + + if (pageout == TRUE) { + /* + * toss the wire count we picked up + * when we intially set this page up + * to be cleaned... + */ + vm_page_unwire(page, TRUE); + } + vm_page_steal_pageout_page++; + + if (!queues_locked) { + vm_page_unlock_queues(); } - return KERN_SUCCESS; } -kern_return_t -uc_upl_abort( - upl_t upl, - int error) +upl_t +vector_upl_create(vm_offset_t upl_offset) { - vm_object_t object = NULL; - vm_object_t shadow_object = NULL; - vm_object_offset_t offset; - vm_object_offset_t shadow_offset; - vm_object_offset_t target_offset; - int i; - vm_page_t t,m; + int vector_upl_size = sizeof(struct _vector_upl); + int i=0; + upl_t upl; + vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size); + + upl = upl_create(0,UPL_VECTOR,0); + upl->vector_upl = vector_upl; + upl->offset = upl_offset; + vector_upl->size = 0; + vector_upl->offset = upl_offset; + vector_upl->invalid_upls=0; + vector_upl->num_upls=0; + vector_upl->pagelist = NULL; + + for(i=0; i < MAX_VECTOR_UPL_ELEMENTS ; i++) { + vector_upl->upl_iostates[i].size = 0; + vector_upl->upl_iostates[i].offset = 0; + + } + return upl; +} - if(upl->flags & UPL_DEVICE_MEMORY) { - upl_dealloc(upl); - return KERN_SUCCESS; +void +vector_upl_deallocate(upl_t upl) +{ + if(upl) { + vector_upl_t vector_upl = upl->vector_upl; + if(vector_upl) { + if(vector_upl->invalid_upls != vector_upl->num_upls) + panic("Deallocating non-empty Vectored UPL\n"); + kfree(vector_upl->pagelist,(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE))); + vector_upl->invalid_upls=0; + vector_upl->num_upls = 0; + vector_upl->pagelist = NULL; + vector_upl->size = 0; + vector_upl->offset = 0; + kfree(vector_upl, sizeof(struct _vector_upl)); + vector_upl = (vector_upl_t)0xdeadbeef; + } + else + panic("vector_upl_deallocate was passed a non-vectored upl\n"); } - object = upl->map_object; + else + panic("vector_upl_deallocate was passed a NULL upl\n"); +} - if(object == NULL) { - panic("upl_abort: upl object is not backed by an object"); - return KERN_INVALID_ARGUMENT; +boolean_t +vector_upl_is_valid(upl_t upl) +{ + if(upl && ((upl->flags & UPL_VECTOR)==UPL_VECTOR)) { + vector_upl_t vector_upl = upl->vector_upl; + if(vector_upl == NULL || vector_upl == (vector_upl_t)0xdeadbeef || vector_upl == (vector_upl_t)0xfeedbeef) + return FALSE; + else + return TRUE; } + return FALSE; +} - shadow_object = upl->map_object->shadow; - shadow_offset = upl->map_object->shadow_offset; - offset = 0; - vm_object_lock(shadow_object); - for(i = 0; i<(upl->size); i+=PAGE_SIZE, offset += PAGE_SIZE_64) { - if((t = vm_page_lookup(object,offset)) != NULL) { - target_offset = t->offset + shadow_offset; - if((m = vm_page_lookup(shadow_object, target_offset)) != NULL) { - vm_object_paging_end(m->object); - vm_page_lock_queues(); - if(m->absent) { - /* COPYOUT = FALSE case */ - /* check for error conditions which must */ - /* be passed back to the pages customer */ - if(error & UPL_ABORT_RESTART) { - m->restart = TRUE; - m->absent = FALSE; - vm_object_absent_release(m->object); - m->page_error = KERN_MEMORY_ERROR; - m->error = TRUE; - } else if(error & UPL_ABORT_UNAVAILABLE) { - m->restart = FALSE; - m->unusual = TRUE; - m->clustered = FALSE; - } else if(error & UPL_ABORT_ERROR) { - m->restart = FALSE; - m->absent = FALSE; - vm_object_absent_release(m->object); - m->page_error = KERN_MEMORY_ERROR; - m->error = TRUE; - } else if(error & UPL_ABORT_DUMP_PAGES) { - m->clustered = TRUE; - } else { - m->clustered = TRUE; +boolean_t +vector_upl_set_subupl(upl_t upl,upl_t subupl, uint32_t io_size) +{ + if(vector_upl_is_valid(upl)) { + vector_upl_t vector_upl = upl->vector_upl; + + if(vector_upl) { + if(subupl) { + if(io_size) { + if(io_size < PAGE_SIZE) + io_size = PAGE_SIZE; + subupl->vector_upl = (void*)vector_upl; + vector_upl->upl_elems[vector_upl->num_upls++] = subupl; + vector_upl->size += io_size; + upl->size += io_size; } - - m->cleaning = FALSE; - m->overwriting = FALSE; - PAGE_WAKEUP_DONE(m); - if(m->clustered) { - vm_page_free(m); - } else { - vm_page_activate(m); + else { + uint32_t i=0,invalid_upls=0; + for(i = 0; i < vector_upl->num_upls; i++) { + if(vector_upl->upl_elems[i] == subupl) + break; + } + if(i == vector_upl->num_upls) + panic("Trying to remove sub-upl when none exists"); + + vector_upl->upl_elems[i] = NULL; + invalid_upls = hw_atomic_add(&(vector_upl)->invalid_upls, 1); + if(invalid_upls == vector_upl->num_upls) + return TRUE; + else + return FALSE; } - vm_page_unlock_queues(); - continue; - } - /* - * Handle the trusted pager throttle. - */ - if (m->laundry) { - vm_page_laundry_count--; - m->laundry = FALSE; - if (vm_page_laundry_count - < vm_page_laundry_min) { - vm_page_laundry_min = 0; - thread_wakeup((event_t) - &vm_page_laundry_count); - } - } - if(m->pageout) { - assert(m->busy); - assert(m->wire_count == 1); - m->pageout = FALSE; - vm_page_unwire(m); - } - m->cleaning = FALSE; - m->busy = FALSE; - m->overwriting = FALSE; -#if MACH_PAGEMAP - vm_external_state_clr( - m->object->existence_map, m->offset); -#endif /* MACH_PAGEMAP */ - if(error & UPL_ABORT_DUMP_PAGES) { - vm_page_free(m); - pmap_page_protect(m->phys_addr, VM_PROT_NONE); - } else { - PAGE_WAKEUP(m); } - vm_page_unlock_queues(); + else + panic("vector_upl_set_subupl was passed a NULL upl element\n"); } - } + else + panic("vector_upl_set_subupl was passed a non-vectored upl\n"); } - vm_object_unlock(shadow_object); - /* Remove all the pages from the map object so */ - /* vm_pageout_object_terminate will work properly. */ - while (!queue_empty(&upl->map_object->memq)) { - vm_page_t p; + else + panic("vector_upl_set_subupl was passed a NULL upl\n"); - p = (vm_page_t) queue_first(&upl->map_object->memq); + return FALSE; +} - assert(p->private); - assert(p->pageout); - p->pageout = FALSE; - assert(!p->cleaning); +void +vector_upl_set_pagelist(upl_t upl) +{ + if(vector_upl_is_valid(upl)) { + uint32_t i=0; + vector_upl_t vector_upl = upl->vector_upl; - VM_PAGE_FREE(p); + if(vector_upl) { + vm_offset_t pagelist_size=0, cur_upl_pagelist_size=0; + + vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)); + + for(i=0; i < vector_upl->num_upls; i++) { + cur_upl_pagelist_size = sizeof(struct upl_page_info) * vector_upl->upl_elems[i]->size/PAGE_SIZE; + bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size); + pagelist_size += cur_upl_pagelist_size; + if(vector_upl->upl_elems[i]->highest_page > upl->highest_page) + upl->highest_page = vector_upl->upl_elems[i]->highest_page; + } + assert( pagelist_size == (sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)) ); + } + else + panic("vector_upl_set_pagelist was passed a non-vectored upl\n"); } - upl_dealloc(upl); - return KERN_SUCCESS; + else + panic("vector_upl_set_pagelist was passed a NULL upl\n"); + } -/* an option on commit should be wire */ -kern_return_t -uc_upl_commit( - upl_t upl, - upl_page_info_t *page_list) +upl_t +vector_upl_subupl_byindex(upl_t upl, uint32_t index) { - if (upl->flags & UPL_DEVICE_MEMORY) - page_list = NULL; - if ((upl->flags & UPL_CLEAR_DIRTY) || - (upl->flags & UPL_PAGE_SYNC_DONE)) { - vm_object_t shadow_object = upl->map_object->shadow; - vm_object_t object = upl->map_object; - vm_object_offset_t target_offset; - vm_size_t xfer_end; - - vm_page_t t,m; - - vm_object_lock(shadow_object); + if(vector_upl_is_valid(upl)) { + vector_upl_t vector_upl = upl->vector_upl; + if(vector_upl) { + if(index < vector_upl->num_upls) + return vector_upl->upl_elems[index]; + } + else + panic("vector_upl_subupl_byindex was passed a non-vectored upl\n"); + } + return NULL; +} - target_offset = object->shadow_offset; - xfer_end = upl->size + object->shadow_offset; - - while(target_offset < xfer_end) { - if ((t = vm_page_lookup(object, - target_offset - object->shadow_offset)) - != NULL) { - m = vm_page_lookup( - shadow_object, target_offset); - if(m != VM_PAGE_NULL) { - if (upl->flags & UPL_CLEAR_DIRTY) { - pmap_clear_modify(m->phys_addr); - m->dirty = FALSE; +upl_t +vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size) +{ + if(vector_upl_is_valid(upl)) { + uint32_t i=0; + vector_upl_t vector_upl = upl->vector_upl; + + if(vector_upl) { + upl_t subupl = NULL; + vector_upl_iostates_t subupl_state; + + for(i=0; i < vector_upl->num_upls; i++) { + subupl = vector_upl->upl_elems[i]; + subupl_state = vector_upl->upl_iostates[i]; + if( *upl_offset <= (subupl_state.offset + subupl_state.size - 1)) { + /* We could have been passed an offset/size pair that belongs + * to an UPL element that has already been committed/aborted. + * If so, return NULL. + */ + if(subupl == NULL) + return NULL; + if((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) { + *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset; + if(*upl_size > subupl_state.size) + *upl_size = subupl_state.size; } - /* It is a part of the semantic of */ - /* COPYOUT_FROM UPLs that a commit */ - /* implies cache sync between the */ - /* vm page and the backing store */ - /* this can be used to strip the */ - /* precious bit as well as clean */ - if (upl->flags & UPL_PAGE_SYNC_DONE) - m->precious = FALSE; - } + if(*upl_offset >= subupl_state.offset) + *upl_offset -= subupl_state.offset; + else if(i) + panic("Vector UPL offset miscalculation\n"); + return subupl; + } } - target_offset += PAGE_SIZE_64; } - vm_object_unlock(shadow_object); + else + panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n"); } - if (page_list) { - vm_object_t shadow_object = upl->map_object->shadow; - vm_object_t object = upl->map_object; - vm_object_offset_t target_offset; - vm_size_t xfer_end; - int entry; - - vm_page_t t, m; - upl_page_info_t *p; + return NULL; +} - vm_object_lock(shadow_object); +void +vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr) +{ + *v_upl_submap = NULL; - entry = 0; - target_offset = object->shadow_offset; - xfer_end = upl->size + object->shadow_offset; + if(vector_upl_is_valid(upl)) { + vector_upl_t vector_upl = upl->vector_upl; + if(vector_upl) { + *v_upl_submap = vector_upl->submap; + *submap_dst_addr = vector_upl->submap_dst_addr; + } + else + panic("vector_upl_get_submap was passed a non-vectored UPL\n"); + } + else + panic("vector_upl_get_submap was passed a null UPL\n"); +} - while(target_offset < xfer_end) { +void +vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr) +{ + if(vector_upl_is_valid(upl)) { + vector_upl_t vector_upl = upl->vector_upl; + if(vector_upl) { + vector_upl->submap = submap; + vector_upl->submap_dst_addr = submap_dst_addr; + } + else + panic("vector_upl_get_submap was passed a non-vectored UPL\n"); + } + else + panic("vector_upl_get_submap was passed a NULL UPL\n"); +} - if ((t = vm_page_lookup(object, - target_offset - object->shadow_offset)) - == NULL) { - target_offset += PAGE_SIZE_64; - entry++; - continue; +void +vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size) +{ + if(vector_upl_is_valid(upl)) { + uint32_t i = 0; + vector_upl_t vector_upl = upl->vector_upl; + + if(vector_upl) { + for(i = 0; i < vector_upl->num_upls; i++) { + if(vector_upl->upl_elems[i] == subupl) + break; } + + if(i == vector_upl->num_upls) + panic("setting sub-upl iostate when none exists"); - m = vm_page_lookup(shadow_object, target_offset); - if(m != VM_PAGE_NULL) { - p = &(page_list[entry]); - if(page_list[entry].phys_addr && - p->pageout && !m->pageout) { - vm_page_lock_queues(); - m->busy = TRUE; - m->pageout = TRUE; - vm_page_wire(m); - vm_page_unlock_queues(); - } else if (page_list[entry].phys_addr && - !p->pageout && m->pageout) { - vm_page_lock_queues(); - m->pageout = FALSE; - m->absent = FALSE; - m->overwriting = FALSE; - vm_page_unwire(m); - PAGE_WAKEUP_DONE(m); - vm_page_unlock_queues(); - } - page_list[entry].phys_addr = 0; - } - target_offset += PAGE_SIZE_64; - entry++; + vector_upl->upl_iostates[i].offset = offset; + if(size < PAGE_SIZE) + size = PAGE_SIZE; + vector_upl->upl_iostates[i].size = size; } - - vm_object_unlock(shadow_object); + else + panic("vector_upl_set_iostate was passed a non-vectored UPL\n"); } - upl_dealloc(upl); - return KERN_SUCCESS; + else + panic("vector_upl_set_iostate was passed a NULL UPL\n"); } -upl_t -upl_create( - boolean_t internal) +void +vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size) { - upl_t upl; + if(vector_upl_is_valid(upl)) { + uint32_t i = 0; + vector_upl_t vector_upl = upl->vector_upl; + + if(vector_upl) { + for(i = 0; i < vector_upl->num_upls; i++) { + if(vector_upl->upl_elems[i] == subupl) + break; + } + + if(i == vector_upl->num_upls) + panic("getting sub-upl iostate when none exists"); - if(internal) { - upl = (upl_t)kalloc(sizeof(struct upl) - + (sizeof(struct upl_page_info)*MAX_UPL_TRANSFER)); - } else { - upl = (upl_t)kalloc(sizeof(struct upl)); + *offset = vector_upl->upl_iostates[i].offset; + *size = vector_upl->upl_iostates[i].size; + } + else + panic("vector_upl_get_iostate was passed a non-vectored UPL\n"); } - upl->flags = 0; - upl->src_object = NULL; - upl->kaddr = (vm_offset_t)0; - upl->size = 0; - upl->map_object = NULL; - upl->ref_count = 1; - upl_lock_init(upl); -#ifdef UBC_DEBUG - upl->ubc_alias1 = 0; - upl->ubc_alias2 = 0; -#endif /* UBC_DEBUG */ - return(upl); + else + panic("vector_upl_get_iostate was passed a NULL UPL\n"); } void -upl_destroy( - upl_t upl) +vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size) { - -#ifdef UBC_DEBUG - { - upl_t upl_ele; - vm_object_lock(upl->map_object->shadow); - queue_iterate(&upl->map_object->shadow->uplq, - upl_ele, upl_t, uplq) { - if(upl_ele == upl) { - queue_remove(&upl->map_object->shadow->uplq, - upl_ele, upl_t, uplq); - break; + if(vector_upl_is_valid(upl)) { + vector_upl_t vector_upl = upl->vector_upl; + if(vector_upl) { + if(index < vector_upl->num_upls) { + *offset = vector_upl->upl_iostates[index].offset; + *size = vector_upl->upl_iostates[index].size; } + else + *offset = *size = 0; } - vm_object_unlock(upl->map_object->shadow); - } -#endif /* UBC_DEBUG */ - if(!(upl->flags & UPL_DEVICE_MEMORY)) - vm_object_deallocate(upl->map_object); - if(upl->flags & UPL_INTERNAL) { - kfree((vm_offset_t)upl, - sizeof(struct upl) + - (sizeof(struct upl_page_info) * MAX_UPL_TRANSFER)); - } else { - kfree((vm_offset_t)upl, sizeof(struct upl)); + else + panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n"); } + else + panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n"); } -vm_size_t -upl_get_internal_pagelist_offset() +upl_page_info_t * +upl_get_internal_vectorupl_pagelist(upl_t upl) { - return sizeof(struct upl); + return ((vector_upl_t)(upl->vector_upl))->pagelist; } -void -upl_set_dirty( - upl_t upl) +void * +upl_get_internal_vectorupl(upl_t upl) +{ + return upl->vector_upl; +} + +vm_size_t +upl_get_internal_pagelist_offset(void) { - upl->flags |= UPL_CLEAR_DIRTY; + return sizeof(struct upl); } void upl_clear_dirty( - upl_t upl) + upl_t upl, + boolean_t value) { - upl->flags &= ~UPL_CLEAR_DIRTY; + if (value) { + upl->flags |= UPL_CLEAR_DIRTY; + } else { + upl->flags &= ~UPL_CLEAR_DIRTY; + } } #ifdef MACH_BSD -boolean_t upl_page_present(upl_page_info_t *upl, int index); -boolean_t upl_dirty_page(upl_page_info_t *upl, int index); -boolean_t upl_valid_page(upl_page_info_t *upl, int index); -vm_offset_t upl_phys_page(upl_page_info_t *upl, int index); +boolean_t upl_device_page(upl_page_info_t *upl) +{ + return(UPL_DEVICE_PAGE(upl)); +} boolean_t upl_page_present(upl_page_info_t *upl, int index) { return(UPL_PAGE_PRESENT(upl, index)); } +boolean_t upl_speculative_page(upl_page_info_t *upl, int index) +{ + return(UPL_SPECULATIVE_PAGE(upl, index)); +} boolean_t upl_dirty_page(upl_page_info_t *upl, int index) { return(UPL_DIRTY_PAGE(upl, index)); @@ -3338,12 +7396,14 @@ boolean_t upl_valid_page(upl_page_info_t *upl, int index) { return(UPL_VALID_PAGE(upl, index)); } -vm_offset_t upl_phys_page(upl_page_info_t *upl, int index) +ppnum_t upl_phys_page(upl_page_info_t *upl, int index) { - return((vm_offset_t)UPL_PHYS_PAGE(upl, index)); + return(UPL_PHYS_PAGE(upl, index)); } -void vm_countdirtypages(void) + +void +vm_countdirtypages(void) { vm_page_t m; int dpages; @@ -3364,12 +7424,44 @@ void vm_countdirtypages(void) if(m->pageout) pgopages++; if(m->precious) precpages++; + assert(m->object != kernel_object); m = (vm_page_t) queue_next(&m->pageq); if (m ==(vm_page_t )0) break; } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m)); vm_page_unlock_queues(); + vm_page_lock_queues(); + m = (vm_page_t) queue_first(&vm_page_queue_throttled); + do { + if (m ==(vm_page_t )0) break; + + dpages++; + assert(m->dirty); + assert(!m->pageout); + assert(m->object != kernel_object); + m = (vm_page_t) queue_next(&m->pageq); + if (m ==(vm_page_t )0) break; + + } while (!queue_end(&vm_page_queue_throttled,(queue_entry_t) m)); + vm_page_unlock_queues(); + + vm_page_lock_queues(); + m = (vm_page_t) queue_first(&vm_page_queue_zf); + do { + if (m ==(vm_page_t )0) break; + + if(m->dirty) dpages++; + if(m->pageout) pgopages++; + if(m->precious) precpages++; + + assert(m->object != kernel_object); + m = (vm_page_t) queue_next(&m->pageq); + if (m ==(vm_page_t )0) break; + + } while (!queue_end(&vm_page_queue_zf,(queue_entry_t) m)); + vm_page_unlock_queues(); + printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages); dpages=0; @@ -3385,6 +7477,7 @@ void vm_countdirtypages(void) if(m->pageout) pgopages++; if(m->precious) precpages++; + assert(m->object != kernel_object); m = (vm_page_t) queue_next(&m->pageq); if(m == (vm_page_t )0) break; @@ -3396,14 +7489,26 @@ void vm_countdirtypages(void) } #endif /* MACH_BSD */ -#ifdef UBC_DEBUG -kern_return_t upl_ubc_alias_set(upl_t upl, unsigned int alias1, unsigned int alias2) +ppnum_t upl_get_highest_page( + upl_t upl) +{ + return upl->highest_page; +} + +upl_size_t upl_get_size( + upl_t upl) +{ + return upl->size; +} + +#if UPL_DEBUG +kern_return_t upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2) { upl->ubc_alias1 = alias1; upl->ubc_alias2 = alias2; return KERN_SUCCESS; } -int upl_ubc_alias_get(upl_t upl, unsigned int * al, unsigned int * al2) +int upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2) { if(al) *al = upl->ubc_alias1; @@ -3411,7 +7516,7 @@ int upl_ubc_alias_get(upl_t upl, unsigned int * al, unsigned int * al2) *al2 = upl->ubc_alias2; return KERN_SUCCESS; } -#endif /* UBC_DEBUG */ +#endif /* UPL_DEBUG */ @@ -3421,15 +7526,11 @@ int upl_ubc_alias_get(upl_t upl, unsigned int * al, unsigned int * al2) #include #define printf kdbprintf -extern int db_indent; void db_pageout(void); void db_vm(void) { - extern int vm_page_gobble_count; - extern int vm_page_limbo_count, vm_page_limbo_real_count; - extern int vm_page_pin_count; iprintf("VM Statistics:\n"); db_indent += 2; @@ -3440,9 +7541,6 @@ db_vm(void) vm_page_free_count); printf(" wire %5d gobbl %5d\n", vm_page_wire_count, vm_page_gobble_count); - iprintf("laund %5d limbo %5d lim_r %5d pin %5d\n", - vm_page_laundry_count, vm_page_limbo_count, - vm_page_limbo_real_count, vm_page_pin_count); db_indent -= 2; iprintf("target:\n"); db_indent += 2; @@ -3451,34 +7549,18 @@ db_vm(void) vm_page_free_target); printf(" resrv %5d\n", vm_page_free_reserved); db_indent -= 2; - - iprintf("burst:\n"); - db_indent += 2; - iprintf("max %5d min %5d wait %5d empty %5d\n", - vm_pageout_burst_max, vm_pageout_burst_min, - vm_pageout_burst_wait, vm_pageout_empty_wait); - db_indent -= 2; iprintf("pause:\n"); - db_indent += 2; - iprintf("count %5d max %5d\n", - vm_pageout_pause_count, vm_pageout_pause_max); -#if MACH_COUNTERS - iprintf("scan_continue called %8d\n", c_vm_pageout_scan_continue); -#endif /* MACH_COUNTERS */ - db_indent -= 2; db_pageout(); db_indent -= 2; } -void -db_pageout(void) -{ - extern int c_limbo_page_free; - extern int c_limbo_convert; #if MACH_COUNTERS - extern int c_laundry_pages_freed; +extern int c_laundry_pages_freed; #endif /* MACH_COUNTERS */ +void +db_pageout(void) +{ iprintf("Pageout Statistics:\n"); db_indent += 2; iprintf("active %5d inactv %5d\n", @@ -3489,11 +7571,6 @@ db_pageout(void) iprintf("used %5d clean %5d dirty %5d\n", vm_pageout_inactive_used, vm_pageout_inactive_clean, vm_pageout_inactive_dirty); - iprintf("pinned %5d limbo %5d setup_limbo %5d setup_unprep %5d\n", - vm_pageout_inactive_pinned, vm_pageout_inactive_limbo, - vm_pageout_setup_limbo, vm_pageout_setup_unprepped); - iprintf("limbo_page_free %5d limbo_convert %5d\n", - c_limbo_page_free, c_limbo_convert); #if MACH_COUNTERS iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed); #endif /* MACH_COUNTERS */ @@ -3511,27 +7588,9 @@ db_pageout(void) iprintf("collisions %5d page_dirtied %5d page_freed %5d\n", vm_pageout_target_collisions, vm_pageout_target_page_dirtied, vm_pageout_target_page_freed); - iprintf("page_pinned %5d page_limbo %5d\n", - vm_pageout_target_page_pinned, vm_pageout_target_page_limbo); db_indent -= 2; #endif /* MACH_CLUSTER_STATS */ db_indent -= 2; } -#if MACH_CLUSTER_STATS -unsigned long vm_pageout_cluster_dirtied = 0; -unsigned long vm_pageout_cluster_cleaned = 0; -unsigned long vm_pageout_cluster_collisions = 0; -unsigned long vm_pageout_cluster_clusters = 0; -unsigned long vm_pageout_cluster_conversions = 0; -unsigned long vm_pageout_target_collisions = 0; -unsigned long vm_pageout_target_page_dirtied = 0; -unsigned long vm_pageout_target_page_freed = 0; -unsigned long vm_pageout_target_page_pinned = 0; -unsigned long vm_pageout_target_page_limbo = 0; -#define CLUSTER_STAT(clause) clause -#else /* MACH_CLUSTER_STATS */ -#define CLUSTER_STAT(clause) -#endif /* MACH_CLUSTER_STATS */ - #endif /* MACH_KDB */