X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/143cc14e17b26a90f1f4060725df7ea635161581..c3c9b80d004dbbfdf763edeb97968c6997e3b45b:/bsd/vfs/vfs_cluster.c diff --git a/bsd/vfs/vfs_cluster.c b/bsd/vfs/vfs_cluster.c index df2e73751..5de58feb9 100644 --- a/bsd/vfs/vfs_cluster.c +++ b/bsd/vfs/vfs_cluster.c @@ -1,24 +1,29 @@ - /* - * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2020 Apple Inc. All rights reserved. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. * - * @APPLE_LICENSE_HEADER_START@ - * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. - * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. - * - * @APPLE_LICENSE_HEADER_END@ + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /* @@ -57,3182 +62,7446 @@ */ #include -#include -#include -#include -#include +#include +#include +#include +#include #include -#include +#include +#include +#include #include +#include +#include #include +#include + +#include +#include -#include +#include +#include +#include +#include +#include +#include + +#include +#include #include +#include #include +#include -#define CL_READ 0x01 -#define CL_ASYNC 0x02 -#define CL_COMMIT 0x04 -#define CL_PAGEOUT 0x10 -#define CL_AGE 0x20 -#define CL_DUMP 0x40 -#define CL_NOZERO 0x80 -#define CL_PAGEIN 0x100 -#define CL_DEV_MEMORY 0x200 - -static void cluster_zero(upl_t upl, vm_offset_t upl_offset, - int size, struct buf *bp); -static int cluster_read_x(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_write_x(struct vnode *vp, struct uio *uio, - off_t oldEOF, off_t newEOF, off_t headOff, - off_t tailOff, int devblocksize, int flags); -static int cluster_nocopy_read(struct vnode *vp, struct uio *uio, - off_t filesize, int devblocksize, int flags); -static int cluster_nocopy_write(struct vnode *vp, struct uio *uio, - off_t newEOF, int devblocksize, int flags); -static int cluster_phys_read(struct vnode *vp, struct uio *uio, - off_t filesize); -static int cluster_phys_write(struct vnode *vp, struct uio *uio, off_t newEOF); -static int cluster_push_x(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last, int can_delay); -static int cluster_try_push(struct vnode *vp, off_t newEOF, int can_delay, int push_all); +#include +#include -/* - * throttle the number of async writes that - * can be outstanding on a single vnode - * before we issue a synchronous write - */ -#define ASYNC_THROTTLE 9 +#include + +#if 0 +#undef KERNEL_DEBUG +#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT +#endif + + +#define CL_READ 0x01 +#define CL_WRITE 0x02 +#define CL_ASYNC 0x04 +#define CL_COMMIT 0x08 +#define CL_PAGEOUT 0x10 +#define CL_AGE 0x20 +#define CL_NOZERO 0x40 +#define CL_PAGEIN 0x80 +#define CL_DEV_MEMORY 0x100 +#define CL_PRESERVE 0x200 +#define CL_THROTTLE 0x400 +#define CL_KEEPCACHED 0x800 +#define CL_DIRECT_IO 0x1000 +#define CL_PASSIVE 0x2000 +#define CL_IOSTREAMING 0x4000 +#define CL_CLOSE 0x8000 +#define CL_ENCRYPTED 0x10000 +#define CL_RAW_ENCRYPTED 0x20000 +#define CL_NOCACHE 0x40000 -static int -cluster_iodone(bp) - struct buf *bp; -{ - int b_flags; - int error; - int total_size; - int total_resid; - int upl_offset; - int zero_offset; - upl_t upl; - struct buf *cbp; - struct buf *cbp_head; - struct buf *cbp_next; - struct buf *real_bp; - struct vnode *vp; - int commit_size; - int pg_offset; - - - cbp_head = (struct buf *)(bp->b_trans_head); +#define MAX_VECTOR_UPL_ELEMENTS 8 +#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) + +#define CLUSTER_IO_WAITING ((buf_t)1) - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, - (int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); +extern upl_t vector_upl_create(vm_offset_t); +extern boolean_t vector_upl_is_valid(upl_t); +extern boolean_t vector_upl_set_subupl(upl_t, upl_t, u_int32_t); +extern void vector_upl_set_pagelist(upl_t); +extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); - for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { - /* - * all I/O requests that are part of this transaction - * have to complete before we can process it - */ - if ( !(cbp->b_flags & B_DONE)) { +struct clios { + lck_mtx_t io_mtxp; + u_int io_completed; /* amount of io that has currently completed */ + u_int io_issued; /* amount of io that was successfully issued */ + int io_error; /* error code of first error encountered */ + int io_wanted; /* someone is sleeping waiting for a change in state */ +}; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)cbp_head, (int)cbp, cbp->b_bcount, cbp->b_flags, 0); +struct cl_direct_read_lock { + LIST_ENTRY(cl_direct_read_lock) chain; + int32_t ref_count; + vnode_t vp; + lck_rw_t rw_lock; +}; - return 0; - } - } - error = 0; - total_size = 0; - total_resid = 0; +#define CL_DIRECT_READ_LOCK_BUCKETS 61 - cbp = cbp_head; - upl_offset = cbp->b_uploffset; - upl = cbp->b_pagelist; - b_flags = cbp->b_flags; - real_bp = cbp->b_real_bp; - vp = cbp->b_vp; - zero_offset= cbp->b_validend; +static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock) +cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS]; - while (cbp) { - if (cbp->b_vectorcount > 1) - _FREE(cbp->b_vectorlist, M_SEGMENT); +static LCK_GRP_DECLARE(cl_mtx_grp, "cluster I/O"); +static LCK_MTX_DECLARE(cl_transaction_mtxp, &cl_mtx_grp); +static LCK_SPIN_DECLARE(cl_direct_read_spin_lock, &cl_mtx_grp); - if ((cbp->b_flags & B_ERROR) && error == 0) - error = cbp->b_error; +static ZONE_DECLARE(cl_rd_zone, "cluster_read", + sizeof(struct cl_readahead), ZC_ZFREE_CLEARMEM | ZC_NOENCRYPT); - total_resid += cbp->b_resid; - total_size += cbp->b_bcount; +static ZONE_DECLARE(cl_wr_zone, "cluster_write", + sizeof(struct cl_writebehind), ZC_ZFREE_CLEARMEM | ZC_NOENCRYPT); - cbp_next = cbp->b_trans_next; +#define IO_UNKNOWN 0 +#define IO_DIRECT 1 +#define IO_CONTIG 2 +#define IO_COPY 3 - free_io_buf(cbp); +#define PUSH_DELAY 0x01 +#define PUSH_ALL 0x02 +#define PUSH_SYNC 0x04 - cbp = cbp_next; - } - if ((vp->v_flag & VTHROTTLED) && (vp->v_numoutput <= (ASYNC_THROTTLE / 3))) { - vp->v_flag &= ~VTHROTTLED; - wakeup((caddr_t)&vp->v_numoutput); - } - if (zero_offset) - cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); - if ((b_flags & B_NEED_IODONE) && real_bp) { - if (error) { - real_bp->b_flags |= B_ERROR; - real_bp->b_error = error; - } - real_bp->b_resid = total_resid; +static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); +static void cluster_wait_IO(buf_t cbp_head, int async); +static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); - biodone(real_bp); - } - if (error == 0 && total_resid) - error = EIO; +static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); - if (b_flags & B_COMMIT_UPL) { - pg_offset = upl_offset & PAGE_MASK; - commit_size = (((pg_offset + total_size) + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE; +static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, + int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); +static int cluster_iodone(buf_t bp, void *callback_arg); +static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); +static int cluster_is_throttled(vnode_t vp); - if (error || (b_flags & B_NOCACHE)) { - int upl_abort_code; +static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); - if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */ - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if (b_flags & B_PGIN) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; - else - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; +static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); - ubc_upl_abort_range(upl, upl_offset - pg_offset, commit_size, - upl_abort_code); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)upl, upl_offset - pg_offset, commit_size, - 0x80000000|upl_abort_code, 0); +static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); +static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); - } else { - int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY; +static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, + int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); +static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); +static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int (*)(buf_t, void *), void *callback_arg, int flags) __attribute__((noinline)); + +static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, + off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); +static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, + int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); +static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, + int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag) __attribute__((noinline)); + +static void cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, boolean_t *first_pass, + off_t write_off, int write_cnt, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); + +static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); - if ( !(b_flags & B_PAGEOUT)) - upl_commit_flags |= UPL_COMMIT_CLEAR_DIRTY; - if (b_flags & B_AGE) - upl_commit_flags |= UPL_COMMIT_INACTIVATE; +static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); +static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, + int (*callback)(buf_t, void *), void *callback_arg, int bflag); - ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, - upl_commit_flags); +static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_ioitiated); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)upl, upl_offset - pg_offset, commit_size, - upl_commit_flags, 0); - } - } else - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, - (int)upl, upl_offset, 0, error, 0); +static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), + void *callback_arg, int *err, boolean_t vm_initiated); - return (error); -} +static int sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); +static int sparse_cluster_push(struct cl_writebehind *, void **cmapp, vnode_t vp, off_t EOF, int push_flag, + int io_flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); +static int sparse_cluster_add(struct cl_writebehind *, void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, + int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); +static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); +static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); +static kern_return_t vfs_drt_control(void **cmapp, int op_type); +static kern_return_t vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag); -static void -cluster_zero(upl, upl_offset, size, bp) - upl_t upl; - vm_offset_t upl_offset; - int size; - struct buf *bp; -{ - vm_offset_t io_addr = 0; - int must_unmap = 0; - kern_return_t kret; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE, - upl_offset, size, (int)bp, 0, 0); +/* + * For throttled IO to check whether + * a block is cached by the boot cache + * and thus it can avoid delaying the IO. + * + * bootcache_contains_block is initially + * NULL. The BootCache will set it while + * the cache is active and clear it when + * the cache is jettisoned. + * + * Returns 0 if the block is not + * contained in the cache, 1 if it is + * contained. + * + * The function pointer remains valid + * after the cache has been evicted even + * if bootcache_contains_block has been + * cleared. + * + * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs + */ +int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; + - if (bp == NULL || bp->b_data == NULL) { - kret = ubc_upl_map(upl, &io_addr); - - if (kret != KERN_SUCCESS) - panic("cluster_zero: ubc_upl_map() failed with (%d)", kret); - if (io_addr == 0) - panic("cluster_zero: ubc_upl_map() mapped 0"); +/* + * limit the internal I/O size so that we + * can represent it in a 32 bit int + */ +#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) +#define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES +#define MAX_VECTS 16 +/* + * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider + * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k), + * we have not historically allowed the write to bypass the UBC. + */ +#define MIN_DIRECT_WRITE_SIZE (16384) - must_unmap = 1; - } else - io_addr = (vm_offset_t)bp->b_data; - bzero((caddr_t)(io_addr + upl_offset), size); - - if (must_unmap) { - kret = ubc_upl_unmap(upl); +#define WRITE_THROTTLE 6 +#define WRITE_THROTTLE_SSD 2 +#define WRITE_BEHIND 1 +#define WRITE_BEHIND_SSD 1 - if (kret != KERN_SUCCESS) - panic("cluster_zero: kernel_upl_unmap failed"); - } -} +#if !defined(XNU_TARGET_OS_OSX) +#define PREFETCH 1 +#define PREFETCH_SSD 1 +uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */ +uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */ +#else /* XNU_TARGET_OS_OSX */ +#define PREFETCH 3 +#define PREFETCH_SSD 2 +uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ +uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ +#endif /* ! XNU_TARGET_OS_OSX */ -static int -cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, real_bp) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int non_rounded_size; - int devblocksize; - int flags; - struct buf *real_bp; -{ - struct buf *cbp; - struct iovec *iovp; - u_int size; - int io_flags; - int error = 0; - int retval = 0; - struct buf *cbp_head = 0; - struct buf *cbp_tail = 0; - upl_page_info_t *pl; - int buf_count = 0; - int pg_count; - int pg_offset; - u_int max_iosize; - u_int max_vectors; - int priv; - int zero_offset = 0; - if (flags & CL_READ) { - io_flags = (B_VECTORLIST | B_READ); +#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) +#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) +#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd) ? PREFETCH_SSD : PREFETCH))) - vfs_io_attributes(vp, B_READ, &max_iosize, &max_vectors); - } else { - io_flags = (B_VECTORLIST | B_WRITEINPROG); +int speculative_reads_disabled = 0; - vfs_io_attributes(vp, B_WRITE, &max_iosize, &max_vectors); - } - pl = ubc_upl_pageinfo(upl); +/* + * throttle the number of async writes that + * can be outstanding on a single vnode + * before we issue a synchronous write + */ +#define THROTTLE_MAXCNT 0 - if (flags & CL_ASYNC) - io_flags |= (B_CALL | B_ASYNC); - if (flags & CL_AGE) - io_flags |= B_AGE; - if (flags & CL_DUMP) - io_flags |= B_NOCACHE; - if (flags & CL_PAGEIN) - io_flags |= B_PGIN; +uint32_t throttle_max_iosize = (128 * 1024); - if (devblocksize) - size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1); - else - size = non_rounded_size; +#define THROTTLE_MAX_IOSIZE (throttle_max_iosize) +SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, - (int)f_offset, size, upl_offset, flags, 0); - if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { - /* - * then we are going to end up - * with a page that we can't complete (the file size wasn't a multiple - * of PAGE_SIZE and we're trying to read to the end of the file - * so we'll go ahead and zero out the portion of the page we can't - * read in from the file - */ - zero_offset = upl_offset + non_rounded_size; +void +cluster_init(void) +{ + for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i) { + LIST_INIT(&cl_direct_read_locks[i]); } - while (size) { - size_t io_size; - int vsize; - int i; - int pl_index; - int pg_resid; - int num_contig; - daddr_t lblkno; - daddr_t blkno; - - if (size > max_iosize) - io_size = max_iosize; - else - io_size = size; - - if (error = VOP_CMAP(vp, f_offset, io_size, &blkno, &io_size, NULL)) { - if (error == EOPNOTSUPP) - panic("VOP_CMAP Unimplemented"); - break; - } +} - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, - (int)f_offset, (int)blkno, io_size, zero_offset, 0); - if ( (!(flags & CL_READ) && (long)blkno == -1) || io_size == 0) { - if (flags & CL_PAGEOUT) { - error = EINVAL; - break; - }; - - /* Try paging out the page individually before - giving up entirely and dumping it (it could - be mapped in a "hole" and require allocation - before the I/O: - */ - ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE_64, UPL_ABORT_FREE_ON_EMPTY); - if (ubc_pushdirty_range(vp, f_offset, PAGE_SIZE_64) == 0) { - error = EINVAL; - break; - }; - - upl_offset += PAGE_SIZE_64; - f_offset += PAGE_SIZE_64; - size -= PAGE_SIZE_64; - continue; - } - lblkno = (daddr_t)(f_offset / PAGE_SIZE_64); +uint32_t +cluster_max_io_size(mount_t mp, int type) +{ + uint32_t max_io_size; + uint32_t segcnt; + uint32_t maxcnt; + + switch (type) { + case CL_READ: + segcnt = mp->mnt_segreadcnt; + maxcnt = mp->mnt_maxreadcnt; + break; + case CL_WRITE: + segcnt = mp->mnt_segwritecnt; + maxcnt = mp->mnt_maxwritecnt; + break; + default: + segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); + maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); + break; + } + if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { /* - * we have now figured out how much I/O we can do - this is in 'io_size' - * pl_index represents the first page in the 'upl' that the I/O will occur for - * pg_offset is the starting point in the first page for the I/O - * pg_count is the number of full and partial pages that 'io_size' encompasses + * don't allow a size beyond the max UPL size we can create */ - pl_index = upl_offset / PAGE_SIZE; - pg_offset = upl_offset & PAGE_MASK; - pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; + segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; + } + max_io_size = min((segcnt * PAGE_SIZE), maxcnt); - if (flags & CL_DEV_MEMORY) { - /* - * currently, can't deal with reading 'holes' in file - */ - if ((long)blkno == -1) { - error = EINVAL; - break; - } - /* - * treat physical requests as one 'giant' page - */ - pg_count = 1; - } - if ((flags & CL_READ) && (long)blkno == -1) { - int bytes_to_zero; + if (max_io_size < MAX_UPL_TRANSFER_BYTES) { + /* + * don't allow a size smaller than the old fixed limit + */ + max_io_size = MAX_UPL_TRANSFER_BYTES; + } else { + /* + * make sure the size specified is a multiple of PAGE_SIZE + */ + max_io_size &= ~PAGE_MASK; + } + return max_io_size; +} - /* - * if we're reading and blkno == -1, then we've got a - * 'hole' in the file that we need to deal with by zeroing - * out the affected area in the upl - */ - if (zero_offset && io_size == size) { - /* - * if this upl contains the EOF and it is not a multiple of PAGE_SIZE - * than 'zero_offset' will be non-zero - * if the 'hole' returned by VOP_CMAP extends all the way to the eof - * (indicated by the io_size finishing off the I/O request for this UPL) - * than we're not going to issue an I/O for the - * last page in this upl... we need to zero both the hole and the tail - * of the page beyond the EOF, since the delayed zero-fill won't kick in - */ - bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; - zero_offset = 0; - } else - bytes_to_zero = io_size; - cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); - - if (cbp_head) - /* - * if there is a current I/O chain pending - * then the first page of the group we just zero'd - * will be handled by the I/O completion if the zero - * fill started in the middle of the page - */ - pg_count = (io_size - pg_offset) / PAGE_SIZE; - else { - /* - * no pending I/O to pick up that first page - * so, we have to make sure it gets committed - * here. - * set the pg_offset to 0 so that the upl_commit_range - * starts with this page - */ - pg_count = (io_size + pg_offset) / PAGE_SIZE; - pg_offset = 0; - } - if (io_size == size && ((upl_offset + io_size) & PAGE_MASK)) - /* - * if we're done with the request for this UPL - * then we have to make sure to commit the last page - * even if we only partially zero-filled it - */ - pg_count++; - if (pg_count) { - if (pg_offset) - pg_resid = PAGE_SIZE - pg_offset; - else - pg_resid = 0; +#define CLW_ALLOCATE 0x01 +#define CLW_RETURNLOCKED 0x02 +#define CLW_IONOCACHE 0x04 +#define CLW_IOPASSIVE 0x08 - if (flags & CL_COMMIT) - ubc_upl_commit_range(upl, - (upl_offset + pg_resid) & ~PAGE_MASK, - pg_count * PAGE_SIZE, - UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); - } - upl_offset += io_size; - f_offset += io_size; - size -= io_size; +/* + * if the read ahead context doesn't yet exist, + * allocate and initialize it... + * the vnode lock serializes multiple callers + * during the actual assignment... first one + * to grab the lock wins... the other callers + * will release the now unnecessary storage + * + * once the context is present, try to grab (but don't block on) + * the lock associated with it... if someone + * else currently owns it, than the read + * will run without read-ahead. this allows + * multiple readers to run in parallel and + * since there's only 1 read ahead context, + * there's no real loss in only allowing 1 + * reader to have read-ahead enabled. + */ +static struct cl_readahead * +cluster_get_rap(vnode_t vp) +{ + struct ubc_info *ubc; + struct cl_readahead *rap; - if (cbp_head && pg_count) - goto start_io; - continue; + ubc = vp->v_ubcinfo; - } else if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { - real_bp->b_blkno = blkno; - } + if ((rap = ubc->cl_rahead) == NULL) { + rap = zalloc_flags(cl_rd_zone, Z_WAITOK | Z_ZERO); + rap->cl_lastr = -1; + lck_mtx_init(&rap->cl_lockr, &cl_mtx_grp, LCK_ATTR_NULL); - if (pg_count > 1) { - if (pg_count > max_vectors) { - io_size -= (pg_count - max_vectors) * PAGE_SIZE; + vnode_lock(vp); - if (io_size < 0) { - io_size = PAGE_SIZE - pg_offset; - pg_count = 1; - } else - pg_count = max_vectors; - } - /* - * we need to allocate space for the vector list - */ - if (pg_count > 1) { - iovp = (struct iovec *)_MALLOC(sizeof(struct iovec) * pg_count, - M_SEGMENT, M_NOWAIT); - - if (iovp == (struct iovec *) 0) { - /* - * if the allocation fails, then throttle down to a single page - */ - io_size = PAGE_SIZE - pg_offset; - pg_count = 1; - } - } + if (ubc->cl_rahead == NULL) { + ubc->cl_rahead = rap; + } else { + lck_mtx_destroy(&rap->cl_lockr, &cl_mtx_grp); + zfree(cl_rd_zone, rap); + rap = ubc->cl_rahead; } + vnode_unlock(vp); + } + if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) { + return rap; + } - /* Throttle the speculative IO */ - if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) - priv = 0; - else - priv = 1; - - cbp = alloc_io_buf(vp, priv); - - if (pg_count == 1) - /* - * we use the io vector that's reserved in the buffer header - * this insures we can always issue an I/O even in a low memory - * condition that prevents the _MALLOC from succeeding... this - * is necessary to prevent deadlocks with the pager - */ - iovp = (struct iovec *)(&cbp->b_vects[0]); - - cbp->b_vectorlist = (void *)iovp; - cbp->b_vectorcount = pg_count; - - if (flags & CL_DEV_MEMORY) { + return (struct cl_readahead *)NULL; +} - iovp->iov_len = io_size; - iovp->iov_base = (caddr_t)upl_phys_page(pl, 0); - if (iovp->iov_base == (caddr_t) 0) { - free_io_buf(cbp); - error = EINVAL; - } else - iovp->iov_base += upl_offset; - } else { +/* + * if the write behind context doesn't yet exist, + * and CLW_ALLOCATE is specified, allocate and initialize it... + * the vnode lock serializes multiple callers + * during the actual assignment... first one + * to grab the lock wins... the other callers + * will release the now unnecessary storage + * + * if CLW_RETURNLOCKED is set, grab (blocking if necessary) + * the lock associated with the write behind context before + * returning + */ - for (i = 0, vsize = io_size; i < pg_count; i++, iovp++) { - int psize; +static struct cl_writebehind * +cluster_get_wbp(vnode_t vp, int flags) +{ + struct ubc_info *ubc; + struct cl_writebehind *wbp; - psize = PAGE_SIZE - pg_offset; + ubc = vp->v_ubcinfo; - if (psize > vsize) - psize = vsize; + if ((wbp = ubc->cl_wbehind) == NULL) { + if (!(flags & CLW_ALLOCATE)) { + return (struct cl_writebehind *)NULL; + } - iovp->iov_len = psize; - iovp->iov_base = (caddr_t)upl_phys_page(pl, pl_index + i); + wbp = zalloc_flags(cl_wr_zone, Z_WAITOK | Z_ZERO); - if (iovp->iov_base == (caddr_t) 0) { - if (pg_count > 1) - _FREE(cbp->b_vectorlist, M_SEGMENT); - free_io_buf(cbp); + lck_mtx_init(&wbp->cl_lockw, &cl_mtx_grp, LCK_ATTR_NULL); - error = EINVAL; - break; - } - iovp->iov_base += pg_offset; - pg_offset = 0; + vnode_lock(vp); - if (flags & CL_PAGEOUT) { - int s; - struct buf *bp; - - s = splbio(); - if (bp = incore(vp, lblkno + i)) { - if (!ISSET(bp->b_flags, B_BUSY)) { - bremfree(bp); - SET(bp->b_flags, (B_BUSY | B_INVAL)); - splx(s); - brelse(bp); - } else - panic("BUSY bp found in cluster_io"); - } - splx(s); - } - vsize -= psize; - } + if (ubc->cl_wbehind == NULL) { + ubc->cl_wbehind = wbp; + } else { + lck_mtx_destroy(&wbp->cl_lockw, &cl_mtx_grp); + zfree(cl_wr_zone, wbp); + wbp = ubc->cl_wbehind; } - if (error) - break; - - if (flags & CL_ASYNC) - cbp->b_iodone = (void *)cluster_iodone; - cbp->b_flags |= io_flags; + vnode_unlock(vp); + } + if (flags & CLW_RETURNLOCKED) { + lck_mtx_lock(&wbp->cl_lockw); + } - cbp->b_lblkno = lblkno; - cbp->b_blkno = blkno; - cbp->b_bcount = io_size; - cbp->b_pagelist = upl; - cbp->b_uploffset = upl_offset; - cbp->b_trans_next = (struct buf *)0; + return wbp; +} - if (flags & CL_READ) - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, - cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0); - else - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, - cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0); - if (cbp_head) { - cbp_tail->b_trans_next = cbp; - cbp_tail = cbp; - } else { - cbp_head = cbp; - cbp_tail = cbp; - } - (struct buf *)(cbp->b_trans_head) = cbp_head; - buf_count++; +static void +cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) +{ + struct cl_writebehind *wbp; - upl_offset += io_size; - f_offset += io_size; - size -= io_size; + if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { + if (wbp->cl_number) { + lck_mtx_lock(&wbp->cl_lockw); - if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || buf_count > 8)) || size == 0) { - /* - * if we have no more I/O to issue or - * the current I/O we've prepared fully - * completes the last page in this request - * and it's either an ASYNC request or - * we've already accumulated more than 8 I/O's into - * this transaction and it's not an I/O directed to - * special DEVICE memory - * then go ahead and issue the I/O - */ -start_io: - if (flags & CL_COMMIT) - cbp_head->b_flags |= B_COMMIT_UPL; - if (flags & CL_PAGEOUT) - cbp_head->b_flags |= B_PAGEOUT; - if (flags & CL_PAGEIN) - cbp_head->b_flags |= B_PGIN; - - if (real_bp) { - cbp_head->b_flags |= B_NEED_IODONE; - cbp_head->b_real_bp = real_bp; - } else - cbp_head->b_real_bp = (struct buf *)NULL; - - if (size == 0) { - /* - * we're about to issue the last I/O for this upl - * if this was a read to the eof and the eof doesn't - * finish on a page boundary, than we need to zero-fill - * the rest of the page.... - */ - cbp_head->b_validend = zero_offset; - } else - cbp_head->b_validend = 0; - - for (cbp = cbp_head; cbp;) { - struct buf * cbp_next; - - if (io_flags & B_WRITEINPROG) - cbp->b_vp->v_numoutput++; - - cbp_next = cbp->b_trans_next; - - (void) VOP_STRATEGY(cbp); - cbp = cbp_next; - } - if ( !(flags & CL_ASYNC)) { - for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) - biowait(cbp); - - if (error = cluster_iodone(cbp_head)) { - if ((flags & CL_PAGEOUT) && (error == ENXIO)) - retval = 0; /* drop the error */ - else - retval = error; - error = 0; - } - } - cbp_head = (struct buf *)0; - cbp_tail = (struct buf *)0; + cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL, FALSE); - buf_count = 0; + lck_mtx_unlock(&wbp->cl_lockw); } } - if (error) { - int abort_size; - - for (cbp = cbp_head; cbp;) { - struct buf * cbp_next; - - if (cbp->b_vectorcount > 1) - _FREE(cbp->b_vectorlist, M_SEGMENT); - upl_offset -= cbp->b_bcount; - size += cbp->b_bcount; - - cbp_next = cbp->b_trans_next; - free_io_buf(cbp); - cbp = cbp_next; - } - pg_offset = upl_offset & PAGE_MASK; - abort_size = ((size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE; +} - if (flags & CL_COMMIT) { - int upl_abort_code; - if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */ - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; - else if (flags & CL_PAGEIN) - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; - else - upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; +static int +cluster_io_present_in_BC(vnode_t vp, off_t f_offset) +{ + daddr64_t blkno; + size_t io_size; + int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; - ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size, - upl_abort_code); + if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) { + if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL)) { + return 0; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, - (int)upl, upl_offset - pg_offset, abort_size, error, 0); + if (io_size == 0) { + return 0; } - if (real_bp) { - real_bp->b_flags |= B_ERROR; - real_bp->b_error = error; - biodone(real_bp); + if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) { + return 1; } - if (retval == 0) - retval = error; } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, - (int)f_offset, size, upl_offset, retval, 0); - - return (retval); + return 0; } static int -cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize) - struct vnode *vp; - off_t f_offset; - u_int size; - off_t filesize; - int devblocksize; +cluster_is_throttled(vnode_t vp) { - int pages_to_fetch; - int skipped_pages; - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, - (int)f_offset, size, (int)filesize, 0, 0); + return throttle_io_will_be_throttled(-1, vp->v_mount); +} - if (f_offset >= filesize) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, - (int)f_offset, 0, 0, 0, 0); - return(0); - } - if (size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - size = MAX_UPL_TRANSFER * PAGE_SIZE; - else - size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1); - if ((off_t)size > (filesize - f_offset)) - size = filesize - f_offset; - - pages_to_fetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; +static void +cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) +{ + lck_mtx_lock(&iostate->io_mtxp); - for (skipped_pages = 0; skipped_pages < pages_to_fetch; skipped_pages++) { - if (ubc_page_op(vp, f_offset, 0, 0, 0) != KERN_SUCCESS) - break; - f_offset += PAGE_SIZE; - size -= PAGE_SIZE; - } - if (skipped_pages < pages_to_fetch) - advisory_read(vp, filesize, f_offset, size, devblocksize); + while ((iostate->io_issued - iostate->io_completed) > target) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, + iostate->io_issued, iostate->io_completed, target, 0, 0); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, - (int)f_offset + (pages_to_fetch * PAGE_SIZE), skipped_pages, 0, 1, 0); + iostate->io_wanted = 1; + msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); - return (pages_to_fetch); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, + iostate->io_issued, iostate->io_completed, target, 0, 0); + } + lck_mtx_unlock(&iostate->io_mtxp); } - - static void -cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize) - struct vnode *vp; - daddr_t b_lblkno; - daddr_t e_lblkno; - off_t filesize; - int devblocksize; -{ - daddr_t r_lblkno; - off_t f_offset; - int size_of_prefetch; - int max_pages; +cluster_handle_associated_upl(struct clios *iostate, upl_t upl, + upl_offset_t upl_offset, upl_size_t size) +{ + if (!size) { + return; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, - b_lblkno, e_lblkno, vp->v_lastr, 0, 0); + upl_t associated_upl = upl_associated_upl(upl); - if (b_lblkno == vp->v_lastr && b_lblkno == e_lblkno) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 0, 0); + if (!associated_upl) { return; } - if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) && - (b_lblkno != (vp->v_maxra + 1) || vp->v_ralen == 0))) { - vp->v_ralen = 0; - vp->v_maxra = 0; +#if 0 + printf("1: %d %d\n", upl_offset, upl_offset + size); +#endif - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 1, 0); + /* + * The associated UPL is page aligned to file offsets whereas the + * UPL it's attached to has different alignment requirements. The + * upl_offset that we have refers to @upl. The code that follows + * has to deal with the first and last pages in this transaction + * which might straddle pages in the associated UPL. To keep + * track of these pages, we use the mark bits: if the mark bit is + * set, we know another transaction has completed its part of that + * page and so we can unlock that page here. + * + * The following illustrates what we have to deal with: + * + * MEM u <------------ 1 PAGE ------------> e + * +-------------+----------------------+----------------- + * | |######################|################# + * +-------------+----------------------+----------------- + * FILE | <--- a ---> o <------------ 1 PAGE ------------> + * + * So here we show a write to offset @o. The data that is to be + * written is in a buffer that is not page aligned; it has offset + * @a in the page. The upl that carries the data starts in memory + * at @u. The associated upl starts in the file at offset @o. A + * transaction will always end on a page boundary (like @e above) + * except for the very last transaction in the group. We cannot + * unlock the page at @o in the associated upl until both the + * transaction ending at @e and the following transaction (that + * starts at @e) has completed. + */ - return; - } - max_pages = MAX_UPL_TRANSFER; + /* + * We record whether or not the two UPLs are aligned as the mark + * bit in the first page of @upl. + */ + upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); + bool is_unaligned = upl_page_get_mark(pl, 0); - vp->v_ralen = vp->v_ralen ? min(max_pages, vp->v_ralen << 1) : 1; + if (is_unaligned) { + upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl); - if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen) - vp->v_ralen = min(max_pages, (e_lblkno + 1) - b_lblkno); + upl_offset_t upl_end = upl_offset + size; + assert(upl_end >= PAGE_SIZE); - if (e_lblkno < vp->v_maxra) { - if ((vp->v_maxra - e_lblkno) > max(max_pages / 16, 4)) { + upl_size_t assoc_upl_size = upl_get_size(associated_upl); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0); - return; + /* + * In the very first transaction in the group, upl_offset will + * not be page aligned, but after that it will be and in that + * case we want the preceding page in the associated UPL hence + * the minus one. + */ + assert(upl_offset); + if (upl_offset) { + upl_offset = trunc_page_32(upl_offset - 1); } - } - r_lblkno = max(e_lblkno, vp->v_maxra) + 1; - f_offset = (off_t)r_lblkno * PAGE_SIZE_64; - if (f_offset < filesize) { - size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize); + lck_mtx_lock_spin(&iostate->io_mtxp); - if (size_of_prefetch) - vp->v_maxra = (r_lblkno + size_of_prefetch) - 1; - } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, - vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0); -} + // Look at the first page... + if (upl_offset + && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) { + /* + * The first page isn't marked so let another transaction + * completion handle it. + */ + upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true); + upl_offset += PAGE_SIZE; + } -int -cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int size; - off_t filesize; - int devblocksize; - int flags; -{ - int io_size; - int pg_size; - off_t max_size; - int local_flags = CL_PAGEOUT; + // And now the last page... - if ((flags & UPL_IOSYNC) == 0) - local_flags |= CL_ASYNC; - if ((flags & UPL_NOCOMMIT) == 0) - local_flags |= CL_COMMIT; + /* + * This needs to be > rather than >= because if it's equal, it + * means there's another transaction that is sharing the last + * page. + */ + if (upl_end > assoc_upl_size) { + upl_end = assoc_upl_size; + } else { + upl_end = trunc_page_32(upl_end); + const int last_pg = (upl_end >> PAGE_SHIFT) - 1; + if (!upl_page_get_mark(assoc_pl, last_pg)) { + /* + * The last page isn't marked so mark the page and let another + * transaction completion handle it. + */ + upl_page_set_mark(assoc_pl, last_pg, true); + upl_end -= PAGE_SIZE; + } + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, - (int)f_offset, size, (int)filesize, local_flags, 0); + lck_mtx_unlock(&iostate->io_mtxp); - /* - * If they didn't specify any I/O, then we are done... - * we can't issue an abort because we don't know how - * big the upl really is - */ - if (size <= 0) - return (EINVAL); +#if 0 + printf("2: %d %d\n", upl_offset, upl_end); +#endif + + if (upl_end <= upl_offset) { + return; + } - if (vp->v_mount->mnt_flag & MNT_RDONLY) { - if (local_flags & CL_COMMIT) - ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); - return (EROFS); + size = upl_end - upl_offset; + } else { + assert(!(upl_offset & PAGE_MASK)); + assert(!(size & PAGE_MASK)); } + + boolean_t empty; + /* - * can't page-in from a negative offset - * or if we're starting beyond the EOF - * or if the file offset isn't page aligned - * or the size requested isn't a multiple of PAGE_SIZE + * We can unlock these pages now and as this is for a + * direct/uncached write, we want to dump the pages too. */ - if (f_offset < 0 || f_offset >= filesize || - (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { - if (local_flags & CL_COMMIT) - ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); - return (EINVAL); + kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size, + UPL_ABORT_DUMP_PAGES, &empty); + + assert(!kr); + + if (!kr && empty) { + upl_set_associated_upl(upl, NULL); + upl_deallocate(associated_upl); } - max_size = filesize - f_offset; +} - if (size < max_size) - io_size = size; - else - io_size = max_size; +static int +cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) +{ + int upl_abort_code = 0; + int page_in = 0; + int page_out = 0; - pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) { + /* + * direct write of any flavor, or a direct read that wasn't aligned + */ + ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); + } else { + if (io_flags & B_PAGEIO) { + if (io_flags & B_READ) { + page_in = 1; + } else { + page_out = 1; + } + } + if (io_flags & B_CACHE) { + /* + * leave pages in the cache unchanged on error + */ + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; + } else if (((io_flags & B_READ) == 0) && ((error != ENXIO) || vnode_isswap(vp))) { + /* + * transient error on pageout/write path... leave pages unchanged + */ + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; + } else if (page_in) { + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; + } else { + upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + } - if (size > pg_size) { - if (local_flags & CL_COMMIT) - ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size, - UPL_ABORT_FREE_ON_EMPTY); + ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); } - while (vp->v_numoutput >= ASYNC_THROTTLE) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_pageout", 0); - } - - return (cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize, - local_flags, (struct buf *)0)); + return upl_abort_code; } -int -cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags) - struct vnode *vp; - upl_t upl; - vm_offset_t upl_offset; - off_t f_offset; - int size; - off_t filesize; - int devblocksize; - int flags; + +static int +cluster_iodone(buf_t bp, void *callback_arg) { - u_int io_size; - int rounded_size; - off_t max_size; - int retval; - int local_flags = 0; + int b_flags; + int error; + int total_size; + int total_resid; + int upl_offset; + int zero_offset; + int pg_offset = 0; + int commit_size = 0; + int upl_flags = 0; + int transaction_size = 0; + upl_t upl; + buf_t cbp; + buf_t cbp_head; + buf_t cbp_next; + buf_t real_bp; + vnode_t vp; + struct clios *iostate; + boolean_t transaction_complete = FALSE; + + __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head)); - if (upl == NULL || size < 0) - panic("cluster_pagein: NULL upl passed in"); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, + cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); - if ((flags & UPL_IOSYNC) == 0) - local_flags |= CL_ASYNC; - if ((flags & UPL_NOCOMMIT) == 0) - local_flags |= CL_COMMIT; + if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { + lck_mtx_lock_spin(&cl_transaction_mtxp); + bp->b_flags |= B_TDONE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, - (int)f_offset, size, (int)filesize, local_flags, 0); + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { + /* + * all I/O requests that are part of this transaction + * have to complete before we can process it + */ + if (!(cbp->b_flags & B_TDONE)) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); - /* - * can't page-in from a negative offset - * or if we're starting beyond the EOF - * or if the file offset isn't page aligned - * or the size requested isn't a multiple of PAGE_SIZE - */ - if (f_offset < 0 || f_offset >= filesize || - (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { - if (local_flags & CL_COMMIT) - ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); - return (EINVAL); - } - max_size = filesize - f_offset; + lck_mtx_unlock(&cl_transaction_mtxp); - if (size < max_size) - io_size = size; - else - io_size = max_size; + return 0; + } - rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + if (cbp->b_trans_next == CLUSTER_IO_WAITING) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); - if (size > rounded_size && (local_flags & CL_COMMIT)) - ubc_upl_abort_range(upl, upl_offset + rounded_size, - size - (upl_offset + rounded_size), UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); - - retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize, - local_flags | CL_READ | CL_PAGEIN, (struct buf *)0); + lck_mtx_unlock(&cl_transaction_mtxp); + wakeup(cbp); - if (retval == 0) { - int b_lblkno; - int e_lblkno; + return 0; + } - b_lblkno = (int)(f_offset / PAGE_SIZE_64); - e_lblkno = (int) - ((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64); + if (cbp->b_flags & B_EOT) { + transaction_complete = TRUE; + } + } + lck_mtx_unlock(&cl_transaction_mtxp); - if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF) && rounded_size == PAGE_SIZE) { - /* - * we haven't read the last page in of the file yet - * so let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); + if (transaction_complete == FALSE) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + cbp_head, 0, 0, 0, 0); + return 0; } - vp->v_lastr = e_lblkno; } - return (retval); -} + error = 0; + total_size = 0; + total_resid = 0; -int -cluster_bp(bp) - struct buf *bp; -{ - off_t f_offset; - int flags; + cbp = cbp_head; + vp = cbp->b_vp; + upl_offset = cbp->b_uploffset; + upl = cbp->b_upl; + b_flags = cbp->b_flags; + real_bp = cbp->b_real_bp; + zero_offset = cbp->b_validend; + iostate = (struct clios *)cbp->b_iostate; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, - (int)bp, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); + if (real_bp) { + real_bp->b_dev = cbp->b_dev; + } - if (bp->b_pagelist == (upl_t) 0) - panic("cluster_bp: can't handle NULL upl yet\n"); - if (bp->b_flags & B_READ) - flags = CL_ASYNC | CL_READ; - else - flags = CL_ASYNC; + while (cbp) { + if ((cbp->b_flags & B_ERROR) && error == 0) { + error = cbp->b_error; + } - f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); + total_resid += cbp->b_resid; + total_size += cbp->b_bcount; - return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, 0, flags, bp)); -} + cbp_next = cbp->b_trans_next; -int -cluster_write(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t oldEOF; - off_t newEOF; - off_t headOff; - off_t tailOff; - int devblocksize; - int flags; -{ - int prev_resid; - int clip_size; - off_t max_io_size; - struct iovec *iov; - vm_offset_t upl_offset; - int upl_size; - int pages_in_pl; - upl_page_info_t *pl; - int upl_flags; - upl_t upl; - int retval = 0; - - - if ((!uio) || (uio->uio_segflg != UIO_USERSPACE) || (!(vp->v_flag & VNOCACHE_DATA))) - { - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - return(retval); - } - - while (uio->uio_resid && uio->uio_offset < newEOF && retval == 0) - { - /* we know we have a resid, so this is safe */ - iov = uio->uio_iov; - while (iov->iov_len == 0) { - uio->uio_iov++; - uio->uio_iovcnt--; - iov = uio->uio_iov; - } - - /* - * We check every vector target and if it is physically - * contiguous space, we skip the sanity checks. - */ - - upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK; - upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK; - pages_in_pl = 0; - upl_flags = UPL_QUERY_OBJECT_TYPE; - if ((vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS) - { - /* - * the user app must have passed in an invalid address - */ - return (EFAULT); - } - - if (upl_flags & UPL_PHYS_CONTIG) - { - /* - * since the interface to the IOKit below us uses physical block #'s and - * block counts to specify the I/O, we can't handle anything that isn't - * devblocksize aligned - */ - if ((uio->uio_offset & (devblocksize - 1)) || (uio->uio_resid & (devblocksize - 1))) - return(EINVAL); - - if (flags & IO_HEADZEROFILL) - { - flags &= ~IO_HEADZEROFILL; - - if (retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, devblocksize, IO_HEADZEROFILL)) - return(retval); - } - - retval = cluster_phys_write(vp, uio, newEOF); - - if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL)) - { - retval = cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL); - return(retval); - } - } - else if ((uio->uio_resid < 4 * PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) - { - /* - * We set a threshhold of 4 pages to decide if the nocopy - * write loop is worth the trouble... - * we also come here if we're trying to zero the head and/or tail - * of a partially written page, and the user source is not a physically contiguous region - */ - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - return(retval); - } - else if (uio->uio_offset & PAGE_MASK_64) - { - /* Bring the file offset write up to a pagesize boundary */ - clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64)); - if (uio->uio_resid < clip_size) - clip_size = uio->uio_resid; - /* - * Fake the resid going into the cluster_write_x call - * and restore it on the way out. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else if ((int)iov->iov_base & PAGE_MASK_64) - { - clip_size = iov->iov_len; - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* - * If we come in here, we know the offset into - * the file is on a pagesize boundary - */ - - max_io_size = newEOF - uio->uio_offset; - clip_size = uio->uio_resid; - if (iov->iov_len < clip_size) - clip_size = iov->iov_len; - if (max_io_size < clip_size) - clip_size = max_io_size; - - if (clip_size < PAGE_SIZE) - { - /* - * Take care of tail end of write in this vector - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* round clip_size down to a multiple of pagesize */ - clip_size = clip_size & ~(PAGE_MASK); - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags); - if ((retval == 0) && uio->uio_resid) - retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } /* end else */ - } /* end while */ - return(retval); -} + if (cbp_next == NULL) { + /* + * compute the overall size of the transaction + * in case we created one that has 'holes' in it + * 'total_size' represents the amount of I/O we + * did, not the span of the transaction w/r to the UPL + */ + transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; + } -static int -cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t newEOF; - int devblocksize; - int flags; -{ - upl_t upl; - upl_page_info_t *pl; - off_t upl_f_offset; - vm_offset_t upl_offset; - off_t max_io_size; - int io_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; - int upl_flags; - kern_return_t kret; - struct iovec *iov; - int i; - int force_data_sync; - int error = 0; + if (cbp != cbp_head) { + free_io_buf(cbp); + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, - (int)uio->uio_offset, (int)uio->uio_resid, - (int)newEOF, devblocksize, 0); + cbp = cbp_next; + } - /* - * When we enter this routine, we know - * -- the offset into the file is on a pagesize boundary - * -- the resid is a page multiple - * -- the resid will not exceed iov_len - */ - cluster_try_push(vp, newEOF, 0, 1); + if (ISSET(b_flags, B_COMMIT_UPL)) { + cluster_handle_associated_upl(iostate, + cbp_head->b_upl, + upl_offset, + transaction_size); + } - iov = uio->uio_iov; + if (error == 0 && total_resid) { + error = EIO; + } - while (uio->uio_resid && uio->uio_offset < newEOF && error == 0) { - io_size = uio->uio_resid; + if (error == 0) { + int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); - if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - io_size = MAX_UPL_TRANSFER * PAGE_SIZE; + if (cliodone_func != NULL) { + cbp_head->b_bcount = transaction_size; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; - upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; + error = (*cliodone_func)(cbp_head, callback_arg); + } + } + if (zero_offset) { + cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, - (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0); + free_io_buf(cbp_head); - for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) - { - pages_in_pl = 0; - upl_size = upl_needed_size; - upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | - UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + if (iostate) { + int need_wakeup = 0; - kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, - &upl, - NULL, - &pages_in_pl, - &upl_flags, - force_data_sync); + /* + * someone has issued multiple I/Os asynchrounsly + * and is waiting for them to complete (streaming) + */ + lck_mtx_lock_spin(&iostate->io_mtxp); - if (kret != KERN_SUCCESS) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, - 0, 0, 0, kret, 0); + if (error && iostate->io_error == 0) { + iostate->io_error = error; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, kret, 1, 0); + iostate->io_completed += total_size; - /* cluster_nocopy_write: failed to get pagelist */ - /* do not return kret here */ - return(0); + if (iostate->io_wanted) { + /* + * someone is waiting for the state of + * this io stream to change + */ + iostate->io_wanted = 0; + need_wakeup = 1; } + lck_mtx_unlock(&iostate->io_mtxp); - pl = UPL_GET_INTERNAL_PAGE_LIST(upl); - pages_in_pl = upl_size / PAGE_SIZE; - - for(i=0; i < pages_in_pl; i++) - { - if (!upl_valid_page(pl, i)) - break; + if (need_wakeup) { + wakeup((caddr_t)&iostate->io_wanted); } + } - if (i == pages_in_pl) - break; + if (b_flags & B_COMMIT_UPL) { + pg_offset = upl_offset & PAGE_MASK; + commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - } - - if (force_data_sync >= 3) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, - i, pages_in_pl, upl_size, kret, 0); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, kret, 2, 0); - return(0); - } - - /* - * Consider the possibility that upl_size wasn't satisfied. - */ - if (upl_size != upl_needed_size) - io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, - (int)upl_offset, upl_size, (int)iov->iov_base, io_size, 0); - - if (io_size == 0) - { - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, 0, 3, 0); - - return(0); - } - - /* - * Now look for pages already in the cache - * and throw them away. - */ - - upl_f_offset = uio->uio_offset; /* this is page aligned in the file */ - max_io_size = io_size; - - while (max_io_size) { - - /* - * Flag UPL_POP_DUMP says if the page is found - * in the page cache it must be thrown away. - */ - ubc_page_op(vp, - upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY | UPL_POP_DUMP, - 0, 0); - max_io_size -= PAGE_SIZE; - upl_f_offset += PAGE_SIZE; - } - - /* - * issue a synchronous write to cluster_io - */ - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, - (int)upl_offset, (int)uio->uio_offset, io_size, 0, 0); - - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, devblocksize, 0, (struct buf *)0); - - if (error == 0) { - /* - * The cluster_io write completed successfully, - * update the uio structure. - */ - iov->iov_base += io_size; - iov->iov_len -= io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; - } - /* - * always 'commit' the I/O via the abort primitive whether the I/O - * succeeded cleanly or not... this is necessary to insure that - * we preserve the state of the DIRTY flag on the pages used to - * provide the data for the I/O... the state of this flag SHOULD - * NOT be changed by a write - */ - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, - (int)upl_offset, (int)uio->uio_offset, (int)uio->uio_resid, error, 0); + if (error) { + upl_set_iodone_error(upl, error); - } /* end while */ + upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); + } else { + upl_flags = UPL_COMMIT_FREE_ON_EMPTY; + if ((b_flags & B_PHYS) && (b_flags & B_READ)) { + upl_flags |= UPL_COMMIT_SET_DIRTY; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, error, 4, 0); + if (b_flags & B_AGE) { + upl_flags |= UPL_COMMIT_INACTIVATE; + } + + ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); + } + } + if (real_bp) { + if (error) { + real_bp->b_flags |= B_ERROR; + real_bp->b_error = error; + } + real_bp->b_resid = total_resid; - return (error); + buf_biodone(real_bp); + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, + upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); + + return error; } -static int -cluster_phys_write(vp, uio, newEOF) - struct vnode *vp; - struct uio *uio; - off_t newEOF; + +uint32_t +cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) { - upl_t upl; - vm_offset_t upl_offset; - int io_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; - int upl_flags; - kern_return_t kret; - struct iovec *iov; - int error = 0; + if (cluster_is_throttled(vp)) { + *limit = THROTTLE_MAX_IOSIZE; + return 1; + } + return 0; +} - /* - * When we enter this routine, we know - * -- the resid will not exceed iov_len - * -- the vector target address is physcially contiguous - */ - cluster_try_push(vp, newEOF, 0, 1); - iov = uio->uio_iov; - io_size = iov->iov_len; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; - upl_needed_size = upl_offset + io_size; +void +cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) +{ + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, + upl_offset, size, bp, 0, 0); - pages_in_pl = 0; - upl_size = upl_needed_size; - upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | - UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + if (bp == NULL || bp->b_datap == 0) { + upl_page_info_t *pl; + addr64_t zero_addr; - kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); + pl = ubc_upl_pageinfo(upl); - if (kret != KERN_SUCCESS) - { - /* cluster_phys_write: failed to get pagelist */ - /* note: return kret here */ - return(EINVAL); - } + if (upl_device_page(pl) == TRUE) { + zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset; - /* - * Consider the possibility that upl_size wasn't satisfied. - * This is a failure in the physical memory case. - */ - if (upl_size < upl_needed_size) - { - kernel_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - return(EINVAL); - } + bzero_phys_nc(zero_addr, size); + } else { + while (size) { + int page_offset; + int page_index; + int zero_cnt; - /* - * issue a synchronous write to cluster_io - */ + page_index = upl_offset / PAGE_SIZE; + page_offset = upl_offset & PAGE_MASK; - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, 0, CL_DEV_MEMORY, (struct buf *)0); + zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset; + zero_cnt = min(PAGE_SIZE - page_offset, size); - if (error == 0) { - /* - * The cluster_io write completed successfully, - * update the uio structure and commit. - */ + bzero_phys(zero_addr, zero_cnt); - ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_FREE_ON_EMPTY); - - iov->iov_base += io_size; - iov->iov_len -= io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; + size -= zero_cnt; + upl_offset += zero_cnt; + } + } + } else { + bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); } - else - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - return (error); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, + upl_offset, size, 0, 0, 0); } -static int -cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t oldEOF; - off_t newEOF; - off_t headOff; - off_t tailOff; - int devblocksize; - int flags; -{ - upl_page_info_t *pl; - upl_t upl; - vm_offset_t upl_offset; - int upl_size; - off_t upl_f_offset; - int pages_in_upl; - int start_offset; - int xfer_resid; - int io_size; - int io_flags; - vm_offset_t io_address; - int io_offset; - int bytes_to_zero; - int bytes_to_move; - kern_return_t kret; - int retval = 0; - int uio_resid; - long long total_size; - long long zero_cnt; - off_t zero_off; - long long zero_cnt1; - off_t zero_off1; - daddr_t start_blkno; - daddr_t last_blkno; - - if (uio) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)oldEOF, (int)newEOF, 0); - - uio_resid = uio->uio_resid; - } else { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, - 0, 0, (int)oldEOF, (int)newEOF, 0); - - uio_resid = 0; - } - zero_cnt = 0; - zero_cnt1 = 0; - if (flags & IO_HEADZEROFILL) { - /* - * some filesystems (HFS is one) don't support unallocated holes within a file... - * so we zero fill the intervening space between the old EOF and the offset - * where the next chunk of real data begins.... ftruncate will also use this - * routine to zero fill to the new EOF when growing a file... in this case, the - * uio structure will not be provided - */ - if (uio) { - if (headOff < uio->uio_offset) { - zero_cnt = uio->uio_offset - headOff; - zero_off = headOff; - } - } else if (headOff < newEOF) { - zero_cnt = newEOF - headOff; - zero_off = headOff; - } - } - if (flags & IO_TAILZEROFILL) { - if (uio) { - zero_off1 = uio->uio_offset + uio->uio_resid; - - if (zero_off1 < tailOff) - zero_cnt1 = tailOff - zero_off1; - } - } - if (zero_cnt == 0 && uio == (struct uio *) 0) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, - retval, 0, 0, 0, 0); - return (0); - } - - while ((total_size = (uio_resid + zero_cnt + zero_cnt1)) && retval == 0) { - /* - * for this iteration of the loop, figure out where our starting point is - */ - if (zero_cnt) { - start_offset = (int)(zero_off & PAGE_MASK_64); - upl_f_offset = zero_off - start_offset; - } else if (uio_resid) { - start_offset = (int)(uio->uio_offset & PAGE_MASK_64); - upl_f_offset = uio->uio_offset - start_offset; - } else { - start_offset = (int)(zero_off1 & PAGE_MASK_64); - upl_f_offset = zero_off1 - start_offset; - } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, - (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); +static void +cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) +{ + cbp_head->b_validend = zero_offset; + cbp_tail->b_flags |= B_EOT; +} - if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - total_size = MAX_UPL_TRANSFER * PAGE_SIZE; +static void +cluster_wait_IO(buf_t cbp_head, int async) +{ + buf_t cbp; + if (async) { /* - * compute the size of the upl needed to encompass - * the requested write... limit each call to cluster_io - * to the maximum UPL size... cluster_io will clip if - * this exceeds the maximum io_size for the device, - * make sure to account for - * a starting offset that's not page aligned + * Async callback completion will not normally generate a + * wakeup upon I/O completion. To get woken up, we set + * b_trans_next (which is safe for us to modify) on the last + * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows + * to wake us up when all buffers as part of this transaction + * are completed. This is done under the umbrella of + * cl_transaction_mtxp which is also taken in cluster_iodone. */ - upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + bool done = true; + buf_t last = NULL; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; + lck_mtx_lock_spin(&cl_transaction_mtxp); - pages_in_upl = upl_size / PAGE_SIZE; - io_size = upl_size - start_offset; - - if ((long long)io_size > total_size) - io_size = total_size; - - start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64); - last_blkno = start_blkno + pages_in_upl; - - kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_FLAGS_NONE); - if (kret != KERN_SUCCESS) - panic("cluster_write: failed to get pagelist"); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_NONE, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); - - if (start_offset && !upl_valid_page(pl, 0)) { - int read_size; + for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) { + if (!ISSET(cbp->b_flags, B_TDONE)) { + done = false; + } + } - /* - * we're starting in the middle of the first page of the upl - * and the page isn't currently valid, so we're going to have - * to read it in first... this is a synchronous operation - */ - read_size = PAGE_SIZE; + if (!done) { + last->b_trans_next = CLUSTER_IO_WAITING; - if ((upl_f_offset + read_size) > newEOF) - read_size = newEOF - upl_f_offset; + DTRACE_IO1(wait__start, buf_t, last); + do { + msleep(last, &cl_transaction_mtxp, PSPIN | (PRIBIO + 1), "cluster_wait_IO", NULL); - retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, devblocksize, - CL_READ, (struct buf *)0); - if (retval) { /* - * we had an error during the read which causes us to abort - * the current cluster_write request... before we do, we need - * to release the rest of the pages in the upl without modifying - * there state and mark the failed page in error + * We should only have been woken up if all the + * buffers are completed, but just in case... */ - ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + done = true; + for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) { + if (!ISSET(cbp->b_flags, B_TDONE)) { + done = false; + break; + } + } + } while (!done); + DTRACE_IO1(wait__done, buf_t, last); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, - (int)upl, 0, 0, retval, 0); - break; - } + last->b_trans_next = NULL; } - if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { - /* - * the last offset we're writing to in this upl does not end on a page - * boundary... if it's not beyond the old EOF, then we'll also need to - * pre-read this page in if it isn't already valid - */ - upl_offset = upl_size - PAGE_SIZE; - if ((upl_f_offset + start_offset + io_size) < oldEOF && - !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { - int read_size; + lck_mtx_unlock(&cl_transaction_mtxp); + } else { // !async + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { + buf_biowait(cbp); + } + } +} - read_size = PAGE_SIZE; +static void +cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) +{ + buf_t cbp; + int error; + boolean_t isswapout = FALSE; - if ((upl_f_offset + upl_offset + read_size) > newEOF) - read_size = newEOF - (upl_f_offset + upl_offset); + /* + * cluster_complete_transaction will + * only be called if we've issued a complete chain in synchronous mode + * or, we've already done a cluster_wait_IO on an incomplete chain + */ + if (needwait) { + for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { + buf_biowait(cbp); + } + } + /* + * we've already waited on all of the I/Os in this transaction, + * so mark all of the buf_t's in this transaction as B_TDONE + * so that cluster_iodone sees the transaction as completed + */ + for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { + cbp->b_flags |= B_TDONE; + } + cbp = *cbp_head; - retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, devblocksize, - CL_READ, (struct buf *)0); - if (retval) { - /* - * we had an error during the read which causes us to abort - * the current cluster_write request... before we do, we - * need to release the rest of the pages in the upl without - * modifying there state and mark the failed page in error - */ - ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) { + isswapout = TRUE; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, - (int)upl, 0, 0, retval, 0); - break; - } - } + error = cluster_iodone(cbp, callback_arg); + + if (!(flags & CL_ASYNC) && error && *retval == 0) { + if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) { + *retval = error; + } else if (isswapout == TRUE) { + *retval = error; } - if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS) - panic("cluster_write: ubc_upl_map failed\n"); - xfer_resid = io_size; - io_offset = start_offset; + } + *cbp_head = (buf_t)NULL; +} - while (zero_cnt && xfer_resid) { - if (zero_cnt < (long long)xfer_resid) - bytes_to_zero = zero_cnt; - else - bytes_to_zero = xfer_resid; +static int +cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, + int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) +{ + buf_t cbp; + u_int size; + u_int io_size; + int io_flags; + int bmap_flags; + int error = 0; + int retval = 0; + buf_t cbp_head = NULL; + buf_t cbp_tail = NULL; + int trans_count = 0; + int max_trans_count; + u_int pg_count; + int pg_offset; + u_int max_iosize; + u_int max_vectors; + int priv; + int zero_offset = 0; + int async_throttle = 0; + mount_t mp; + vm_offset_t upl_end_offset; + boolean_t need_EOT = FALSE; + + /* + * we currently don't support buffers larger than a page + */ + if (real_bp && non_rounded_size > PAGE_SIZE) { + panic("%s(): Called with real buffer of size %d bytes which " + "is greater than the maximum allowed size of " + "%d bytes (the system PAGE_SIZE).\n", + __FUNCTION__, non_rounded_size, PAGE_SIZE); + } + + mp = vp->v_mount; + + /* + * we don't want to do any funny rounding of the size for IO requests + * coming through the DIRECT or CONTIGUOUS paths... those pages don't + * belong to us... we can't extend (nor do we need to) the I/O to fill + * out a page + */ + if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { + /* + * round the requested size up so that this I/O ends on a + * page boundary in case this is a 'write'... if the filesystem + * has blocks allocated to back the page beyond the EOF, we want to + * make sure to write out the zero's that are sitting beyond the EOF + * so that in case the filesystem doesn't explicitly zero this area + * if a hole is created via a lseek/write beyond the current EOF, + * it will return zeros when it's read back from the disk. If the + * physical allocation doesn't extend for the whole page, we'll + * only write/read from the disk up to the end of this allocation + * via the extent info returned from the VNOP_BLOCKMAP call. + */ + pg_offset = upl_offset & PAGE_MASK; + + size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; + } else { + /* + * anyone advertising a blocksize of 1 byte probably + * can't deal with us rounding up the request size + * AFP is one such filesystem/device + */ + size = non_rounded_size; + } + upl_end_offset = upl_offset + size; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); + + /* + * Set the maximum transaction size to the maximum desired number of + * buffers. + */ + max_trans_count = 8; + if (flags & CL_DEV_MEMORY) { + max_trans_count = 16; + } + + if (flags & CL_READ) { + io_flags = B_READ; + bmap_flags = VNODE_READ; + + max_iosize = mp->mnt_maxreadcnt; + max_vectors = mp->mnt_segreadcnt; + } else { + io_flags = B_WRITE; + bmap_flags = VNODE_WRITE; + + max_iosize = mp->mnt_maxwritecnt; + max_vectors = mp->mnt_segwritecnt; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); + + /* + * make sure the maximum iosize is a + * multiple of the page size + */ + max_iosize &= ~PAGE_MASK; - if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); + /* + * Ensure the maximum iosize is sensible. + */ + if (!max_iosize) { + max_iosize = PAGE_SIZE; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, bytes_to_zero, - (int)io_offset, xfer_resid, 0); + if (flags & CL_THROTTLE) { + if (!(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { + if (max_iosize > THROTTLE_MAX_IOSIZE) { + max_iosize = THROTTLE_MAX_IOSIZE; + } + async_throttle = THROTTLE_MAXCNT; + } else { + if ((flags & CL_DEV_MEMORY)) { + async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); } else { - int zero_pg_index; + u_int max_cluster; + u_int max_cluster_size; + u_int scale; - bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); - zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); + if (vp->v_mount->mnt_minsaturationbytecount) { + max_cluster_size = vp->v_mount->mnt_minsaturationbytecount; - if ( !upl_valid_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); + scale = 1; + } else { + max_cluster_size = MAX_CLUSTER_SIZE(vp); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, bytes_to_zero, - (int)io_offset, xfer_resid, 0); + if (disk_conditioner_mount_is_ssd(vp->v_mount)) { + scale = WRITE_THROTTLE_SSD; + } else { + scale = WRITE_THROTTLE; + } + } + if (max_iosize > max_cluster_size) { + max_cluster = max_cluster_size; + } else { + max_cluster = max_iosize; + } - } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && - !upl_dirty_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); + if (size < max_cluster) { + max_cluster = size; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, bytes_to_zero, - (int)io_offset, xfer_resid, 0); + if (flags & CL_CLOSE) { + scale += MAX_CLUSTERS; } + + async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); } - xfer_resid -= bytes_to_zero; - zero_cnt -= bytes_to_zero; - zero_off += bytes_to_zero; - io_offset += bytes_to_zero; } - if (xfer_resid && uio_resid) { - bytes_to_move = min(uio_resid, xfer_resid); + } + if (flags & CL_AGE) { + io_flags |= B_AGE; + } + if (flags & (CL_PAGEIN | CL_PAGEOUT)) { + io_flags |= B_PAGEIO; + } + if (flags & (CL_IOSTREAMING)) { + io_flags |= B_IOSTREAMING; + } + if (flags & CL_COMMIT) { + io_flags |= B_COMMIT_UPL; + } + if (flags & CL_DIRECT_IO) { + io_flags |= B_PHYS; + } + if (flags & (CL_PRESERVE | CL_KEEPCACHED)) { + io_flags |= B_CACHE; + } + if (flags & CL_PASSIVE) { + io_flags |= B_PASSIVE; + } + if (flags & CL_ENCRYPTED) { + io_flags |= B_ENCRYPTED_IO; + } + + if (vp->v_flag & VSYSTEM) { + io_flags |= B_META; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 42)) | DBG_FUNC_NONE, - (int)uio->uio_offset, bytes_to_move, uio_resid, xfer_resid, 0); + if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { + /* + * then we are going to end up + * with a page that we can't complete (the file size wasn't a multiple + * of PAGE_SIZE and we're trying to read to the end of the file + * so we'll go ahead and zero out the portion of the page we can't + * read in from the file + */ + zero_offset = (int)(upl_offset + non_rounded_size); + } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) { + assert(ISSET(flags, CL_COMMIT)); - retval = uiomove((caddr_t)(io_address + io_offset), bytes_to_move, uio); + // For a direct/uncached write, we need to lock pages... + upl_t cached_upl; - if (retval) { - if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS) - panic("cluster_write: kernel_upl_unmap failed\n"); + /* + * Create a UPL to lock the pages in the cache whilst the + * write is in progress. + */ + ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl, + NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE); - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + /* + * Attach this UPL to the other UPL so that we can find it + * later. + */ + upl_set_associated_upl(upl, cached_upl); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, - (int)upl, 0, 0, retval, 0); - } else { - uio_resid -= bytes_to_move; - xfer_resid -= bytes_to_move; - io_offset += bytes_to_move; - } + if (upl_offset & PAGE_MASK) { + /* + * The two UPLs are not aligned, so mark the first page in + * @upl so that cluster_handle_associated_upl can handle + * it accordingly. + */ + upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); + upl_page_set_mark(pl, 0, true); } - while (xfer_resid && zero_cnt1 && retval == 0) { - - if (zero_cnt1 < (long long)xfer_resid) - bytes_to_zero = zero_cnt1; - else - bytes_to_zero = xfer_resid; + } - if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); + while (size) { + daddr64_t blkno; + daddr64_t lblkno; + u_int io_size_wanted; + size_t io_size_tmp; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, - bytes_to_zero, (int)io_offset, xfer_resid, 0); - } else { - int zero_pg_index; - - bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off1 & PAGE_MASK_64)); - zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64); + if (size > max_iosize) { + io_size = max_iosize; + } else { + io_size = size; + } - if ( !upl_valid_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); + io_size_wanted = io_size; + io_size_tmp = (size_t)io_size; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, - bytes_to_zero, (int)io_offset, xfer_resid, 0); + if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) { + break; + } - } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY && - !upl_dirty_page(pl, zero_pg_index)) { - bzero((caddr_t)(io_address + io_offset), bytes_to_zero); + if (io_size_tmp > io_size_wanted) { + io_size = io_size_wanted; + } else { + io_size = (u_int)io_size_tmp; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_offset, - bytes_to_zero, (int)io_offset, xfer_resid, 0); - } - } - xfer_resid -= bytes_to_zero; - zero_cnt1 -= bytes_to_zero; - zero_off1 += bytes_to_zero; - io_offset += bytes_to_zero; + if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { + real_bp->b_blkno = blkno; } - if (retval == 0) { - int cl_index; - int can_delay; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, + (int)f_offset, (int)(blkno >> 32), (int)blkno, io_size, 0); - io_size += start_offset; + if (io_size == 0) { + /* + * vnop_blockmap didn't return an error... however, it did + * return an extent size of 0 which means we can't + * make forward progress on this I/O... a hole in the + * file would be returned as a blkno of -1 with a non-zero io_size + * a real extent is returned with a blkno != -1 and a non-zero io_size + */ + error = EINVAL; + break; + } + if (!(flags & CL_READ) && blkno == -1) { + off_t e_offset; + int pageout_flags; - if ((upl_f_offset + io_size) >= newEOF && io_size < upl_size) { - /* - * if we're extending the file with this write - * we'll zero fill the rest of the page so that - * if the file gets extended again in such a way as to leave a - * hole starting at this EOF, we'll have zero's in the correct spot + if (upl_get_internal_vectorupl(upl)) { + panic("Vector UPLs should not take this code-path\n"); + } + /* + * we're writing into a 'hole' + */ + if (flags & CL_PAGEOUT) { + /* + * if we got here via cluster_pageout + * then just error the request and return + * the 'hole' should already have been covered */ - bzero((caddr_t)(io_address + io_size), upl_size - io_size); + error = EINVAL; + break; + } + /* + * we can get here if the cluster code happens to + * pick up a page that was dirtied via mmap vs + * a 'write' and the page targets a 'hole'... + * i.e. the writes to the cluster were sparse + * and the file was being written for the first time + * + * we can also get here if the filesystem supports + * 'holes' that are less than PAGE_SIZE.... because + * we can't know if the range in the page that covers + * the 'hole' has been dirtied via an mmap or not, + * we have to assume the worst and try to push the + * entire page to storage. + * + * Try paging out the page individually before + * giving up entirely and dumping it (the pageout + * path will insure that the zero extent accounting + * has been taken care of before we get back into cluster_io) + * + * go direct to vnode_pageout so that we don't have to + * unbusy the page from the UPL... we used to do this + * so that we could call ubc_msync, but that results + * in a potential deadlock if someone else races us to acquire + * that page and wins and in addition needs one of the pages + * we're continuing to hold in the UPL + */ + pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE, - (int)upl_f_offset + io_size, - upl_size - io_size, 0, 0, 0); + if (!(flags & CL_ASYNC)) { + pageout_flags |= UPL_IOSYNC; + } + if (!(flags & CL_COMMIT)) { + pageout_flags |= UPL_NOCOMMIT; } - if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS) - panic("cluster_write: kernel_upl_unmap failed\n"); - if (flags & IO_SYNC) - /* - * if the IO_SYNC flag is set than we need to - * bypass any clusters and immediately issue - * the I/O - */ - goto issue_io; + if (cbp_head) { + buf_t prev_cbp; + uint32_t bytes_in_last_page; - if (vp->v_clen == 0) - /* - * no clusters currently present + /* + * first we have to wait for the the current outstanding I/Os + * to complete... EOT hasn't been set yet on this transaction + * so the pages won't be released */ - goto start_new_cluster; + cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); - /* - * keep track of the overall dirty page - * range we've developed - * in case we have to fall back to the - * VHASDIRTY method of flushing - */ - if (vp->v_flag & VHASDIRTY) - goto delay_io; + bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK; + for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { + bytes_in_last_page += cbp->b_bcount; + } + bytes_in_last_page &= PAGE_MASK; - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { - /* - * we have an existing cluster... see if this write will extend it nicely - */ - if (start_blkno >= vp->v_clusters[cl_index].start_pg) { - /* - * the current write starts at or after the current cluster - */ - if (last_blkno <= (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) { - /* - * we have a write that fits entirely - * within the existing cluster limits - */ - if (last_blkno > vp->v_clusters[cl_index].last_pg) - /* - * update our idea of where the cluster ends - */ - vp->v_clusters[cl_index].last_pg = last_blkno; - break; - } - if (start_blkno < (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) { - /* - * we have a write that starts in the middle of the current cluster - * but extends beyond the cluster's limit - * we'll clip the current cluster if we actually - * overlap with the new write - * and start a new cluster with the current write - */ - if (vp->v_clusters[cl_index].last_pg > start_blkno) - vp->v_clusters[cl_index].last_pg = start_blkno; - } + while (bytes_in_last_page) { /* - * we also get here for the case where the current write starts - * beyond the limit of the existing cluster + * we've got a transcation that + * includes the page we're about to push out through vnode_pageout... + * find the bp's in the list which intersect this page and either + * remove them entirely from the transaction (there could be multiple bp's), or + * round it's iosize down to the page boundary (there can only be one)... * - * in either case, we'll check the remaining clusters before - * starting a new one - */ - } else { - /* - * the current write starts in front of the current cluster + * find the last bp in the list and act on it */ - if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) { - /* - * we can just merge the old cluster - * with the new request and leave it - * in the cache + for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) { + prev_cbp = cbp; + } + + if (bytes_in_last_page >= cbp->b_bcount) { + /* + * this buf no longer has any I/O associated with it */ - vp->v_clusters[cl_index].start_pg = start_blkno; + bytes_in_last_page -= cbp->b_bcount; + cbp->b_bcount = 0; + + free_io_buf(cbp); - if (last_blkno > vp->v_clusters[cl_index].last_pg) { - /* - * the current write completely - * envelops the existing cluster + if (cbp == cbp_head) { + assert(bytes_in_last_page == 0); + /* + * the buf we just freed was the only buf in + * this transaction... so there's no I/O to do */ - vp->v_clusters[cl_index].last_pg = last_blkno; + cbp_head = NULL; + cbp_tail = NULL; + } else { + /* + * remove the buf we just freed from + * the transaction list + */ + prev_cbp->b_trans_next = NULL; + cbp_tail = prev_cbp; } - break; - } - - /* - * if we were to combine this write with the current cluster - * we would exceed the cluster size limit.... so, - * let's see if there's any overlap of the new I/O with - * the existing cluster... - * - */ - if (last_blkno > vp->v_clusters[cl_index].start_pg) - /* - * the current write extends into the existing cluster - * clip the current cluster by moving the start position - * to where the current write ends + } else { + /* + * this is the last bp that has I/O + * intersecting the page of interest + * only some of the I/O is in the intersection + * so clip the size but keep it in the transaction list */ - vp->v_clusters[cl_index].start_pg = last_blkno; + cbp->b_bcount -= bytes_in_last_page; + cbp_tail = cbp; + bytes_in_last_page = 0; + } + } + if (cbp_head) { /* - * if we get here, there was no way to merge - * the new I/O with this cluster and - * keep it under our maximum cluster length - * we'll check the remaining clusters before starting a new one + * there was more to the current transaction + * than just the page we are pushing out via vnode_pageout... + * mark it as finished and complete it... we've already + * waited for the I/Os to complete above in the call to cluster_wait_IO */ + cluster_EOT(cbp_head, cbp_tail, 0); + + cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); + + trans_count = 0; } } - if (cl_index < vp->v_clen) - /* - * we found an existing cluster that we - * could merger this I/O into - */ - goto delay_io; + if (vnode_pageout(vp, upl, (upl_offset_t)trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { + error = EINVAL; + } + e_offset = round_page_64(f_offset + 1); + io_size = (u_int)(e_offset - f_offset); - if (vp->v_clen < MAX_CLUSTERS && !(vp->v_flag & VNOCACHE_DATA)) - /* - * we didn't find an existing cluster to - * merge into, but there's room to start - * a new one - */ - goto start_new_cluster; + f_offset += io_size; + upl_offset += io_size; + if (size >= io_size) { + size -= io_size; + } else { + size = 0; + } /* - * no exisitng cluster to merge with and no - * room to start a new one... we'll try - * pushing the existing ones... if none of - * them are able to be pushed, we'll have - * to fall back on the VHASDIRTY mechanism - * cluster_try_push will set v_clen to the - * number of remaining clusters if it is - * unable to push all of them + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) */ - if (vp->v_flag & VNOCACHE_DATA) - can_delay = 0; - else - can_delay = 1; + non_rounded_size -= io_size; - if (cluster_try_push(vp, newEOF, 0, 0) == 0) { - vp->v_flag |= VHASDIRTY; - goto delay_io; + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; } -start_new_cluster: - if (vp->v_clen == 0) { - vp->v_ciosiz = devblocksize; - vp->v_cstart = start_blkno; - vp->v_lastw = last_blkno; - } - vp->v_clusters[vp->v_clen].start_pg = start_blkno; - vp->v_clusters[vp->v_clen].last_pg = last_blkno; - vp->v_clen++; -delay_io: + if (error) { + if (size == 0) { + flags &= ~CL_COMMIT; + } + break; + } + continue; + } + lblkno = (daddr64_t)(f_offset / 0x1000); + /* + * we have now figured out how much I/O we can do - this is in 'io_size' + * pg_offset is the starting point in the first page for the I/O + * pg_count is the number of full and partial pages that 'io_size' encompasses + */ + pg_offset = upl_offset & PAGE_MASK; + + if (flags & CL_DEV_MEMORY) { /* - * make sure we keep v_cstart and v_lastw up to - * date in case we have to fall back on the - * V_HASDIRTY mechanism (or we've already entered it) + * treat physical requests as one 'giant' page */ - if (start_blkno < vp->v_cstart) - vp->v_cstart = start_blkno; - if (last_blkno > vp->v_lastw) - vp->v_lastw = last_blkno; + pg_count = 1; + } else { + pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; + } + + if ((flags & CL_READ) && blkno == -1) { + vm_offset_t commit_offset; + int bytes_to_zero; + int complete_transaction_now = 0; - ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); - continue; -issue_io: /* - * in order to maintain some semblance of coherency with mapped writes - * we need to write the cluster back out as a multiple of the PAGESIZE - * unless the cluster encompasses the last page of the file... in this - * case we'll round out to the nearest device block boundary + * if we're reading and blkno == -1, then we've got a + * 'hole' in the file that we need to deal with by zeroing + * out the affected area in the upl */ - io_size = upl_size; + if (io_size >= (u_int)non_rounded_size) { + /* + * if this upl contains the EOF and it is not a multiple of PAGE_SIZE + * than 'zero_offset' will be non-zero + * if the 'hole' returned by vnop_blockmap extends all the way to the eof + * (indicated by the io_size finishing off the I/O request for this UPL) + * than we're not going to issue an I/O for the + * last page in this upl... we need to zero both the hole and the tail + * of the page beyond the EOF, since the delayed zero-fill won't kick in + */ + bytes_to_zero = non_rounded_size; + if (!(flags & CL_NOZERO)) { + bytes_to_zero = (int)((((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset); + } - if ((upl_f_offset + io_size) > newEOF) { - io_size = newEOF - upl_f_offset; - io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1); + zero_offset = 0; + } else { + bytes_to_zero = io_size; } - if (flags & IO_SYNC) - io_flags = CL_COMMIT | CL_AGE; - else - io_flags = CL_COMMIT | CL_AGE | CL_ASYNC; + pg_count = 0; - if (vp->v_flag & VNOCACHE_DATA) - io_flags |= CL_DUMP; + cluster_zero(upl, (upl_offset_t)upl_offset, bytes_to_zero, real_bp); - while (vp->v_numoutput >= ASYNC_THROTTLE) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_write", 0); - } - retval = cluster_io(vp, upl, 0, upl_f_offset, io_size, devblocksize, - io_flags, (struct buf *)0); - } - } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, - retval, 0, 0, 0, 0); + if (cbp_head) { + int pg_resid; - return (retval); -} + /* + * if there is a current I/O chain pending + * then the first page of the group we just zero'd + * will be handled by the I/O completion if the zero + * fill started in the middle of the page + */ + commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; -int -cluster_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; -{ - int prev_resid; - int clip_size; - off_t max_io_size; - struct iovec *iov; - vm_offset_t upl_offset; - int upl_size; - int pages_in_pl; - upl_page_info_t *pl; - int upl_flags; - upl_t upl; - int retval = 0; + pg_resid = (int)(commit_offset - upl_offset); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0); + if (bytes_to_zero >= pg_resid) { + /* + * the last page of the current I/O + * has been completed... + * compute the number of fully zero'd + * pages that are beyond it + * plus the last page if its partial + * and we have no more I/O to issue... + * otherwise a partial page is left + * to begin the next I/O + */ + if ((int)io_size >= non_rounded_size) { + pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; + } else { + pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; + } - /* - * We set a threshhold of 4 pages to decide if the nocopy - * read loop is worth the trouble... - */ + complete_transaction_now = 1; + } + } else { + /* + * no pending I/O to deal with + * so, commit all of the fully zero'd pages + * plus the last page if its partial + * and we have no more I/O to issue... + * otherwise a partial page is left + * to begin the next I/O + */ + if ((int)io_size >= non_rounded_size) { + pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; + } else { + pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; + } - if (!((vp->v_flag & VNOCACHE_DATA) && (uio->uio_segflg == UIO_USERSPACE))) - { - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); - return(retval); - } - - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) - { - /* we know we have a resid, so this is safe */ - iov = uio->uio_iov; - while (iov->iov_len == 0) { - uio->uio_iov++; - uio->uio_iovcnt--; - iov = uio->uio_iov; - } - - /* - * We check every vector target and if it is physically - * contiguous space, we skip the sanity checks. - */ - - upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK; - upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK; - pages_in_pl = 0; - upl_flags = UPL_QUERY_OBJECT_TYPE; - if((vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS) - { - /* - * the user app must have passed in an invalid address - */ - return (EFAULT); - } - - if (upl_flags & UPL_PHYS_CONTIG) - { - retval = cluster_phys_read(vp, uio, filesize); - } - else if (uio->uio_resid < 4 * PAGE_SIZE) - { - /* - * We set a threshhold of 4 pages to decide if the nocopy - * read loop is worth the trouble... - */ - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); - return(retval); - } - else if (uio->uio_offset & PAGE_MASK_64) - { - /* Bring the file offset read up to a pagesize boundary */ - clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64)); - if (uio->uio_resid < clip_size) - clip_size = uio->uio_resid; - /* - * Fake the resid going into the cluster_read_x call - * and restore it on the way out. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else if ((int)iov->iov_base & PAGE_MASK_64) - { - clip_size = iov->iov_len; - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* - * If we come in here, we know the offset into - * the file is on a pagesize boundary - */ - - max_io_size = filesize - uio->uio_offset; - clip_size = uio->uio_resid; - if (iov->iov_len < clip_size) - clip_size = iov->iov_len; - if (max_io_size < clip_size) - clip_size = (int)max_io_size; - - if (clip_size < PAGE_SIZE) - { - /* - * Take care of the tail end of the read in this vector. - */ - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - else - { - /* round clip_size down to a multiple of pagesize */ - clip_size = clip_size & ~(PAGE_MASK); - prev_resid = uio->uio_resid; - uio->uio_resid = clip_size; - retval = cluster_nocopy_read(vp, uio, filesize, devblocksize, flags); - if ((retval==0) && uio->uio_resid) - retval = cluster_read_x(vp, uio, filesize, devblocksize, flags); - uio->uio_resid = prev_resid - (clip_size - uio->uio_resid); - } - } /* end else */ - } /* end while */ - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0); - - return(retval); -} + commit_offset = upl_offset & ~PAGE_MASK; + } -static int -cluster_read_x(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; -{ - upl_page_info_t *pl; - upl_t upl; - vm_offset_t upl_offset; - int upl_size; - off_t upl_f_offset; - int start_offset; - int start_pg; - int last_pg; - int uio_last; - int pages_in_upl; - off_t max_size; + // Associated UPL is currently only used in the direct write path + assert(!upl_associated_upl(upl)); + + if ((flags & CL_COMMIT) && pg_count) { + ubc_upl_commit_range(upl, (upl_offset_t)commit_offset, + pg_count * PAGE_SIZE, + UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); + } + upl_offset += io_size; + f_offset += io_size; + size -= io_size; + + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; + + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } + if (cbp_head && (complete_transaction_now || size == 0)) { + cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); + + cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); + + cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); + + trans_count = 0; + } + continue; + } + if (pg_count > max_vectors) { + if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { + io_size = PAGE_SIZE - pg_offset; + pg_count = 1; + } else { + io_size -= (pg_count - max_vectors) * PAGE_SIZE; + pg_count = max_vectors; + } + } + /* + * If the transaction is going to reach the maximum number of + * desired elements, truncate the i/o to the nearest page so + * that the actual i/o is initiated after this buffer is + * created and added to the i/o chain. + * + * I/O directed to physically contiguous memory + * doesn't have a requirement to make sure we 'fill' a page + */ + if (!(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && + ((upl_offset + io_size) & PAGE_MASK)) { + vm_offset_t aligned_ofs; + + aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; + /* + * If the io_size does not actually finish off even a + * single page we have to keep adding buffers to the + * transaction despite having reached the desired limit. + * + * Eventually we get here with the page being finished + * off (and exceeded) and then we truncate the size of + * this i/o request so that it is page aligned so that + * we can finally issue the i/o on the transaction. + */ + if (aligned_ofs > upl_offset) { + io_size = (u_int)(aligned_ofs - upl_offset); + pg_count--; + } + } + + if (!(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) { + /* + * if we're not targeting a virtual device i.e. a disk image + * it's safe to dip into the reserve pool since real devices + * can complete this I/O request without requiring additional + * bufs from the alloc_io_buf pool + */ + priv = 1; + } else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT) && !cbp_head) { + /* + * Throttle the speculative IO + * + * We can only throttle this if it is the first iobuf + * for the transaction. alloc_io_buf implements + * additional restrictions for diskimages anyway. + */ + priv = 0; + } else { + priv = 1; + } + + cbp = alloc_io_buf(vp, priv); + + if (flags & CL_PAGEOUT) { + u_int i; + + /* + * since blocks are in offsets of 0x1000, scale + * iteration to (PAGE_SIZE * pg_count) of blks. + */ + for (i = 0; i < (PAGE_SIZE * pg_count) / 0x1000; i++) { + if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) { + panic("BUSY bp found in cluster_io"); + } + } + } + if (flags & CL_ASYNC) { + if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) { + panic("buf_setcallback failed\n"); + } + } + cbp->b_cliodone = (void *)callback; + cbp->b_flags |= io_flags; + if (flags & CL_NOCACHE) { + cbp->b_attr.ba_flags |= BA_NOCACHE; + } + + cbp->b_lblkno = lblkno; + cbp->b_blkno = blkno; + cbp->b_bcount = io_size; + + if (buf_setupl(cbp, upl, (uint32_t)upl_offset)) { + panic("buf_setupl failed\n"); + } +#if CONFIG_IOSCHED + upl_set_blkno(upl, upl_offset, io_size, blkno); +#endif + cbp->b_trans_next = (buf_t)NULL; + + if ((cbp->b_iostate = (void *)iostate)) { + /* + * caller wants to track the state of this + * io... bump the amount issued against this stream + */ + iostate->io_issued += io_size; + } + + if (flags & CL_READ) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, + (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, + (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); + } + + if (cbp_head) { + cbp_tail->b_trans_next = cbp; + cbp_tail = cbp; + } else { + cbp_head = cbp; + cbp_tail = cbp; + + if ((cbp_head->b_real_bp = real_bp)) { + real_bp = (buf_t)NULL; + } + } + *(buf_t *)(&cbp->b_trans_head) = cbp_head; + + trans_count++; + + upl_offset += io_size; + f_offset += io_size; + size -= io_size; + /* + * keep track of how much of the original request + * that we've actually completed... non_rounded_size + * may go negative due to us rounding the request + * to a page size multiple (i.e. size > non_rounded_size) + */ + non_rounded_size -= io_size; + + if (non_rounded_size <= 0) { + /* + * we've transferred all of the data in the original + * request, but we were unable to complete the tail + * of the last page because the file didn't have + * an allocation to back that portion... this is ok. + */ + size = 0; + } + if (size == 0) { + /* + * we have no more I/O to issue, so go + * finish the final transaction + */ + need_EOT = TRUE; + } else if (((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && + ((flags & CL_ASYNC) || trans_count > max_trans_count)) { + /* + * I/O directed to physically contiguous memory... + * which doesn't have a requirement to make sure we 'fill' a page + * or... + * the current I/O we've prepared fully + * completes the last page in this request + * and ... + * it's either an ASYNC request or + * we've already accumulated more than 8 I/O's into + * this transaction so mark it as complete so that + * it can finish asynchronously or via the cluster_complete_transaction + * below if the request is synchronous + */ + need_EOT = TRUE; + } + if (need_EOT == TRUE) { + cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); + } + + if (flags & CL_THROTTLE) { + (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); + } + + if (!(io_flags & B_READ)) { + vnode_startwrite(vp); + } + + if (flags & CL_RAW_ENCRYPTED) { + /* + * User requested raw encrypted bytes. + * Twiddle the bit in the ba_flags for the buffer + */ + cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; + } + + (void) VNOP_STRATEGY(cbp); + + if (need_EOT == TRUE) { + if (!(flags & CL_ASYNC)) { + cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); + } + + need_EOT = FALSE; + trans_count = 0; + cbp_head = NULL; + } + } + if (error) { + int abort_size; + + io_size = 0; + + if (cbp_head) { + /* + * Wait until all of the outstanding I/O + * for this partial transaction has completed + */ + cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); + + /* + * Rewind the upl offset to the beginning of the + * transaction. + */ + upl_offset = cbp_head->b_uploffset; + } + + if (ISSET(flags, CL_COMMIT)) { + cluster_handle_associated_upl(iostate, upl, + (upl_offset_t)upl_offset, + (upl_size_t)(upl_end_offset - upl_offset)); + } + + // Free all the IO buffers in this transaction + for (cbp = cbp_head; cbp;) { + buf_t cbp_next; + + size += cbp->b_bcount; + io_size += cbp->b_bcount; + + cbp_next = cbp->b_trans_next; + free_io_buf(cbp); + cbp = cbp_next; + } + + if (iostate) { + int need_wakeup = 0; + + /* + * update the error condition for this stream + * since we never really issued the io + * just go ahead and adjust it back + */ + lck_mtx_lock_spin(&iostate->io_mtxp); + + if (iostate->io_error == 0) { + iostate->io_error = error; + } + iostate->io_issued -= io_size; + + if (iostate->io_wanted) { + /* + * someone is waiting for the state of + * this io stream to change + */ + iostate->io_wanted = 0; + need_wakeup = 1; + } + lck_mtx_unlock(&iostate->io_mtxp); + + if (need_wakeup) { + wakeup((caddr_t)&iostate->io_wanted); + } + } + + if (flags & CL_COMMIT) { + int upl_flags; + + pg_offset = upl_offset & PAGE_MASK; + abort_size = (int)((upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK); + + upl_flags = cluster_ioerror(upl, (int)(upl_offset - pg_offset), + abort_size, error, io_flags, vp); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, + upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); + } + if (retval == 0) { + retval = error; + } + } else if (cbp_head) { + panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); + } + + if (real_bp) { + /* + * can get here if we either encountered an error + * or we completely zero-filled the request and + * no I/O was issued + */ + if (error) { + real_bp->b_flags |= B_ERROR; + real_bp->b_error = error; + } + buf_biodone(real_bp); + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); + + return retval; +} + +#define reset_vector_run_state() \ + issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; + +static int +vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, + int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) +{ + vector_upl_set_pagelist(vector_upl); + + if (io_flag & CL_READ) { + if (vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK) == 0)) { + io_flag &= ~CL_PRESERVE; /*don't zero fill*/ + } else { + io_flag |= CL_PRESERVE; /*zero fill*/ + } + } + return cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg); +} + +static int +cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) +{ + int pages_in_prefetch; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, + (int)f_offset, size, (int)filesize, 0, 0); + + if (f_offset >= filesize) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, + (int)f_offset, 0, 0, 0, 0); + return 0; + } + if ((off_t)size > (filesize - f_offset)) { + size = (u_int)(filesize - f_offset); + } + pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; + + advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, + (int)f_offset + size, pages_in_prefetch, 0, 1, 0); + + return pages_in_prefetch; +} + + + +static void +cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, + int bflag) +{ + daddr64_t r_addr; + off_t f_offset; + int size_of_prefetch; + u_int max_prefetch; + + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, + (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); + + if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); + return; + } + if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { + rap->cl_ralen = 0; + rap->cl_maxra = 0; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); + + return; + } + max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), disk_conditioner_mount_is_ssd(vp->v_mount)); + + if (max_prefetch > speculative_prefetch_max) { + max_prefetch = speculative_prefetch_max; + } + + if (max_prefetch <= PAGE_SIZE) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); + return; + } + if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { + if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); + return; + } + } + r_addr = MAX(extent->e_addr, rap->cl_maxra) + 1; + f_offset = (off_t)(r_addr * PAGE_SIZE_64); + + size_of_prefetch = 0; + + ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); + + if (size_of_prefetch) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); + return; + } + if (f_offset < filesize) { + daddr64_t read_size; + + rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; + + read_size = (extent->e_addr + 1) - extent->b_addr; + + if (read_size > rap->cl_ralen) { + if (read_size > max_prefetch / PAGE_SIZE) { + rap->cl_ralen = max_prefetch / PAGE_SIZE; + } else { + rap->cl_ralen = (int)read_size; + } + } + size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); + + if (size_of_prefetch) { + rap->cl_maxra = (r_addr + size_of_prefetch) - 1; + } + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, + rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); +} + + +int +cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags) +{ + return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); +} + + +int +cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + int io_size; + int rounded_size; + off_t max_size; + int local_flags; + + local_flags = CL_PAGEOUT | CL_THROTTLE; + + if ((flags & UPL_IOSYNC) == 0) { + local_flags |= CL_ASYNC; + } + if ((flags & UPL_NOCOMMIT) == 0) { + local_flags |= CL_COMMIT; + } + if ((flags & UPL_KEEPCACHED)) { + local_flags |= CL_KEEPCACHED; + } + if (flags & UPL_PAGING_ENCRYPTED) { + local_flags |= CL_ENCRYPTED; + } + + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, + (int)f_offset, size, (int)filesize, local_flags, 0); + + /* + * If they didn't specify any I/O, then we are done... + * we can't issue an abort because we don't know how + * big the upl really is + */ + if (size <= 0) { + return EINVAL; + } + + if (vp->v_mount->mnt_flag & MNT_RDONLY) { + if (local_flags & CL_COMMIT) { + ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); + } + return EROFS; + } + /* + * can't page-in from a negative offset + * or if we're starting beyond the EOF + * or if the file offset isn't page aligned + * or the size requested isn't a multiple of PAGE_SIZE + */ + if (f_offset < 0 || f_offset >= filesize || + (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { + if (local_flags & CL_COMMIT) { + ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); + } + return EINVAL; + } + max_size = filesize - f_offset; + + if (size < max_size) { + io_size = size; + } else { + io_size = (int)max_size; + } + + rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + if (size > rounded_size) { + if (local_flags & CL_COMMIT) { + ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, + UPL_ABORT_FREE_ON_EMPTY); + } + } + return cluster_io(vp, upl, upl_offset, f_offset, io_size, + local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); +} + + +int +cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags) +{ + return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); +} + + +int +cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, + int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + u_int io_size; + int rounded_size; + off_t max_size; + int retval; + int local_flags = 0; + + if (upl == NULL || size < 0) { + panic("cluster_pagein: NULL upl passed in"); + } + + if ((flags & UPL_IOSYNC) == 0) { + local_flags |= CL_ASYNC; + } + if ((flags & UPL_NOCOMMIT) == 0) { + local_flags |= CL_COMMIT; + } + if (flags & UPL_IOSTREAMING) { + local_flags |= CL_IOSTREAMING; + } + if (flags & UPL_PAGING_ENCRYPTED) { + local_flags |= CL_ENCRYPTED; + } + + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, + (int)f_offset, size, (int)filesize, local_flags, 0); + + /* + * can't page-in from a negative offset + * or if we're starting beyond the EOF + * or if the file offset isn't page aligned + * or the size requested isn't a multiple of PAGE_SIZE + */ + if (f_offset < 0 || f_offset >= filesize || + (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { + if (local_flags & CL_COMMIT) { + ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); + } + return EINVAL; + } + max_size = filesize - f_offset; + + if (size < max_size) { + io_size = size; + } else { + io_size = (int)max_size; + } + + rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + if (size > rounded_size && (local_flags & CL_COMMIT)) { + ubc_upl_abort_range(upl, upl_offset + rounded_size, + size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); + } + + retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, + local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + + return retval; +} + + +int +cluster_bp(buf_t bp) +{ + return cluster_bp_ext(bp, NULL, NULL); +} + + +int +cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) +{ + off_t f_offset; + int flags; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, + bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); + + if (bp->b_flags & B_READ) { + flags = CL_ASYNC | CL_READ; + } else { + flags = CL_ASYNC; + } + if (bp->b_flags & B_PASSIVE) { + flags |= CL_PASSIVE; + } + + f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); + + return cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg); +} + + + +int +cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) +{ + return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); +} + + +int +cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, + int xflags, int (*callback)(buf_t, void *), void *callback_arg) +{ + user_ssize_t cur_resid; + int retval = 0; + int flags; + int zflags; + int bflag; + int write_type = IO_COPY; + u_int32_t write_length; + + flags = xflags; + + if (flags & IO_PASSIVE) { + bflag = CL_PASSIVE; + } else { + bflag = 0; + } + + if (vp->v_flag & VNOCACHE_DATA) { + flags |= IO_NOCACHE; + bflag |= CL_NOCACHE; + } + if (uio == NULL) { + /* + * no user data... + * this call is being made to zero-fill some range in the file + */ + retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); + + return retval; + } + /* + * do a write through the cache if one of the following is true.... + * NOCACHE is not true or NODIRECT is true + * the uio request doesn't target USERSPACE + * otherwise, find out if we want the direct or contig variant for + * the first vector in the uio request + */ + if (((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) { + retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); + } + + if ((flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) { + /* + * must go through the cached variant in this case + */ + write_type = IO_COPY; + } + + while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { + switch (write_type) { + case IO_COPY: + /* + * make sure the uio_resid isn't too big... + * internally, we want to handle all of the I/O in + * chunk sizes that fit in a 32 bit int + */ + if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { + /* + * we're going to have to call cluster_write_copy + * more than once... + * + * only want the last call to cluster_write_copy to + * have the IO_TAILZEROFILL flag set and only the + * first call should have IO_HEADZEROFILL + */ + zflags = flags & ~IO_TAILZEROFILL; + flags &= ~IO_HEADZEROFILL; + + write_length = MAX_IO_REQUEST_SIZE; + } else { + /* + * last call to cluster_write_copy + */ + zflags = flags; + + write_length = (u_int32_t)cur_resid; + } + retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); + break; + + case IO_CONTIG: + zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); + + if (flags & IO_HEADZEROFILL) { + /* + * only do this once per request + */ + flags &= ~IO_HEADZEROFILL; + + retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, + headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); + if (retval) { + break; + } + } + retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); + + if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { + /* + * we're done with the data from the user specified buffer(s) + * and we've been requested to zero fill at the tail + * treat this as an IO_HEADZEROFILL which doesn't require a uio + * by rearranging the args and passing in IO_HEADZEROFILL + */ + retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, + (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); + } + break; + + case IO_DIRECT: + /* + * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL + */ + retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); + break; + + case IO_UNKNOWN: + retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); + break; + } + /* + * in case we end up calling cluster_write_copy (from cluster_write_direct) + * multiple times to service a multi-vector request that is not aligned properly + * we need to update the oldEOF so that we + * don't zero-fill the head of a page if we've successfully written + * data to that area... 'cluster_write_copy' will zero-fill the head of a + * page that is beyond the oldEOF if the write is unaligned... we only + * want that to happen for the very first page of the cluster_write, + * NOT the first page of each vector making up a multi-vector write. + */ + if (uio->uio_offset > oldEOF) { + oldEOF = uio->uio_offset; + } + } + return retval; +} + + +static int +cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, + int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + upl_t upl; + upl_page_info_t *pl; + vm_offset_t upl_offset; + vm_offset_t vector_upl_offset = 0; + u_int32_t io_req_size; + u_int32_t offset_in_file; + u_int32_t offset_in_iovbase; + u_int32_t io_size; + int io_flag = 0; + upl_size_t upl_size, vector_upl_size = 0; + vm_size_t upl_needed_size; + mach_msg_type_number_t pages_in_pl; + upl_control_flags_t upl_flags; + kern_return_t kret; + mach_msg_type_number_t i; + int force_data_sync; + int retval = 0; + int first_IO = 1; + struct clios iostate; + user_addr_t iov_base; + u_int32_t mem_alignment_mask; + u_int32_t devblocksize; + u_int32_t max_io_size; + u_int32_t max_upl_size; + u_int32_t max_vector_size; + u_int32_t bytes_outstanding_limit; + boolean_t io_throttled = FALSE; + + u_int32_t vector_upl_iosize = 0; + int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); + off_t v_upl_uio_offset = 0; + int vector_upl_index = 0; + upl_t vector_upl = NULL; + + + /* + * When we enter this routine, we know + * -- the resid will not exceed iov_len + */ + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, + (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); + + assert(vm_map_page_shift(current_map()) >= PAGE_SHIFT); + + max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); + + io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; + + if (flags & IO_PASSIVE) { + io_flag |= CL_PASSIVE; + } + + if (flags & IO_NOCACHE) { + io_flag |= CL_NOCACHE; + } + + if (flags & IO_SKIP_ENCRYPTION) { + io_flag |= CL_ENCRYPTED; + } + + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); + + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + + if (devblocksize == 1) { + /* + * the AFP client advertises a devblocksize of 1 + * however, its BLOCKMAP routine maps to physical + * blocks that are PAGE_SIZE in size... + * therefore we can't ask for I/Os that aren't page aligned + * or aren't multiples of PAGE_SIZE in size + * by setting devblocksize to PAGE_SIZE, we re-instate + * the old behavior we had before the mem_alignment_mask + * changes went in... + */ + devblocksize = PAGE_SIZE; + } + +next_dwrite: + io_req_size = *write_length; + iov_base = uio_curriovbase(uio); + + offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; + offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; + + if (offset_in_file || offset_in_iovbase) { + /* + * one of the 2 important offsets is misaligned + * so fire an I/O through the cache for this entire vector + */ + goto wait_for_dwrites; + } + if (iov_base & (devblocksize - 1)) { + /* + * the offset in memory must be on a device block boundary + * so that we can guarantee that we can generate an + * I/O that ends on a page boundary in cluster_io + */ + goto wait_for_dwrites; + } + + task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp); + while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { + int throttle_type; + + if ((throttle_type = cluster_is_throttled(vp))) { + /* + * we're in the throttle window, at the very least + * we want to limit the size of the I/O we're about + * to issue + */ + if ((flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { + /* + * we're in the throttle window and at least 1 I/O + * has already been issued by a throttleable thread + * in this window, so return with EAGAIN to indicate + * to the FS issuing the cluster_write call that it + * should now throttle after dropping any locks + */ + throttle_info_update_by_mount(vp->v_mount); + + io_throttled = TRUE; + goto wait_for_dwrites; + } + max_vector_size = THROTTLE_MAX_IOSIZE; + max_io_size = THROTTLE_MAX_IOSIZE; + } else { + max_vector_size = MAX_VECTOR_UPL_SIZE; + max_io_size = max_upl_size; + } + + if (first_IO) { + cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); + first_IO = 0; + } + io_size = io_req_size & ~PAGE_MASK; + iov_base = uio_curriovbase(uio); + + if (io_size > max_io_size) { + io_size = max_io_size; + } + + if (useVectorUPL && (iov_base & PAGE_MASK)) { + /* + * We have an iov_base that's not page-aligned. + * Issue all I/O's that have been collected within + * this Vectored UPL. + */ + if (vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + + /* + * After this point, if we are using the Vector UPL path and the base is + * not page-aligned then the UPL with that base will be the first in the vector UPL. + */ + } + + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); + upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, + (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); + + vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; + for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { + pages_in_pl = 0; + upl_size = (upl_size_t)upl_needed_size; + upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | + UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + + kret = vm_map_get_upl(map, + vm_map_trunc_page(iov_base, vm_map_page_mask(map)), + &upl_size, + &upl, + NULL, + &pages_in_pl, + &upl_flags, + VM_KERN_MEMORY_FILE, + force_data_sync); + + if (kret != KERN_SUCCESS) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, + 0, 0, 0, kret, 0); + /* + * failed to get pagelist + * + * we may have already spun some portion of this request + * off as async requests... we need to wait for the I/O + * to complete before returning + */ + goto wait_for_dwrites; + } + pl = UPL_GET_INTERNAL_PAGE_LIST(upl); + pages_in_pl = upl_size / PAGE_SIZE; + + for (i = 0; i < pages_in_pl; i++) { + if (!upl_valid_page(pl, i)) { + break; + } + } + if (i == pages_in_pl) { + break; + } + + /* + * didn't get all the pages back that we + * needed... release this upl and try again + */ + ubc_upl_abort(upl, 0); + } + if (force_data_sync >= 3) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, + i, pages_in_pl, upl_size, kret, 0); + /* + * for some reason, we couldn't acquire a hold on all + * the pages needed in the user's address space + * + * we may have already spun some portion of this request + * off as async requests... we need to wait for the I/O + * to complete before returning + */ + goto wait_for_dwrites; + } + + /* + * Consider the possibility that upl_size wasn't satisfied. + */ + if (upl_size < upl_needed_size) { + if (upl_size && upl_offset == 0) { + io_size = upl_size; + } else { + io_size = 0; + } + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, + (int)upl_offset, upl_size, (int)iov_base, io_size, 0); + + if (io_size == 0) { + ubc_upl_abort(upl, 0); + /* + * we may have already spun some portion of this request + * off as async requests... we need to wait for the I/O + * to complete before returning + */ + goto wait_for_dwrites; + } + + if (useVectorUPL) { + vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); + if (end_off) { + issueVectorUPL = 1; + } + /* + * After this point, if we are using a vector UPL, then + * either all the UPL elements end on a page boundary OR + * this UPL is the last element because it does not end + * on a page boundary. + */ + } + + /* + * we want push out these writes asynchronously so that we can overlap + * the preparation of the next I/O + * if there are already too many outstanding writes + * wait until some complete before issuing the next + */ + if (vp->v_mount->mnt_minsaturationbytecount) { + bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount; + } else { + bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2); + } + + cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct"); + + if (iostate.io_error) { + /* + * one of the earlier writes we issued ran into a hard error + * don't issue any more writes, cleanup the UPL + * that was just created but not used, then + * go wait for all writes that are part of this stream + * to complete before returning the error to the caller + */ + ubc_upl_abort(upl, 0); + + goto wait_for_dwrites; + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, + (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); + + if (!useVectorUPL) { + retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, + io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + } else { + if (!vector_upl_index) { + vector_upl = vector_upl_create(upl_offset); + v_upl_uio_offset = uio->uio_offset; + vector_upl_offset = upl_offset; + } + + vector_upl_set_subupl(vector_upl, upl, upl_size); + vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); + vector_upl_index++; + vector_upl_iosize += io_size; + vector_upl_size += upl_size; + + if (issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + } + + /* + * update the uio structure to + * reflect the I/O that we just issued + */ + uio_update(uio, (user_size_t)io_size); + + /* + * in case we end up calling through to cluster_write_copy to finish + * the tail of this request, we need to update the oldEOF so that we + * don't zero-fill the head of a page if we've successfully written + * data to that area... 'cluster_write_copy' will zero-fill the head of a + * page that is beyond the oldEOF if the write is unaligned... we only + * want that to happen for the very first page of the cluster_write, + * NOT the first page of each vector making up a multi-vector write. + */ + if (uio->uio_offset > oldEOF) { + oldEOF = uio->uio_offset; + } + + io_req_size -= io_size; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, + (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); + } /* end while */ + + if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { + retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); + + if (retval == 0 && *write_type == IO_DIRECT) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, + (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); + + goto next_dwrite; + } + } + +wait_for_dwrites: + + if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + /* + * make sure all async writes issued as part of this stream + * have completed before we return + */ + cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); + + if (iostate.io_error) { + retval = iostate.io_error; + } + + lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); + + if (io_throttled == TRUE && retval == 0) { + retval = EAGAIN; + } + + if (io_req_size && retval == 0) { + /* + * we couldn't handle the tail of this request in DIRECT mode + * so fire it through the copy path + * + * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set + * so we can just pass 0 in for the headOff and tailOff + */ + if (uio->uio_offset > oldEOF) { + oldEOF = uio->uio_offset; + } + + retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); + + *write_type = IO_UNKNOWN; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, + (int)uio->uio_offset, io_req_size, retval, 4, 0); + + return retval; +} + + +static int +cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, + int (*callback)(buf_t, void *), void *callback_arg, int bflag) +{ + upl_page_info_t *pl; + addr64_t src_paddr = 0; + upl_t upl[MAX_VECTS]; + vm_offset_t upl_offset; + u_int32_t tail_size = 0; + u_int32_t io_size; + u_int32_t xsize; + upl_size_t upl_size; + vm_size_t upl_needed_size; + mach_msg_type_number_t pages_in_pl; + upl_control_flags_t upl_flags; + kern_return_t kret; + struct clios iostate; + int error = 0; + int cur_upl = 0; + int num_upl = 0; + int n; + user_addr_t iov_base; + u_int32_t devblocksize; + u_int32_t mem_alignment_mask; + + /* + * When we enter this routine, we know + * -- the io_req_size will not exceed iov_len + * -- the target address is physically contiguous + */ + cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); + + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); + +next_cwrite: + io_size = *write_length; + + iov_base = uio_curriovbase(uio); + + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); + upl_needed_size = upl_offset + io_size; + + pages_in_pl = 0; + upl_size = (upl_size_t)upl_needed_size; + upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | + UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + + vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; + kret = vm_map_get_upl(map, + vm_map_trunc_page(iov_base, vm_map_page_mask(map)), + &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); + + if (kret != KERN_SUCCESS) { + /* + * failed to get pagelist + */ + error = EINVAL; + goto wait_for_cwrites; + } + num_upl++; + + /* + * Consider the possibility that upl_size wasn't satisfied. + */ + if (upl_size < upl_needed_size) { + /* + * This is a failure in the physical memory case. + */ + error = EINVAL; + goto wait_for_cwrites; + } + pl = ubc_upl_pageinfo(upl[cur_upl]); + + src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; + + while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { + u_int32_t head_size; + + head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); + + if (head_size > io_size) { + head_size = io_size; + } + + error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); + + if (error) { + goto wait_for_cwrites; + } + + upl_offset += head_size; + src_paddr += head_size; + io_size -= head_size; + + iov_base += head_size; + } + if ((u_int32_t)iov_base & mem_alignment_mask) { + /* + * request doesn't set up on a memory boundary + * the underlying DMA engine can handle... + * return an error instead of going through + * the slow copy path since the intent of this + * path is direct I/O from device memory + */ + error = EINVAL; + goto wait_for_cwrites; + } + + tail_size = io_size & (devblocksize - 1); + io_size -= tail_size; + + while (io_size && error == 0) { + if (io_size > MAX_IO_CONTIG_SIZE) { + xsize = MAX_IO_CONTIG_SIZE; + } else { + xsize = io_size; + } + /* + * request asynchronously so that we can overlap + * the preparation of the next I/O... we'll do + * the commit after all the I/O has completed + * since its all issued against the same UPL + * if there are already too many outstanding writes + * wait until some have completed before issuing the next + */ + cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); + + if (iostate.io_error) { + /* + * one of the earlier writes we issued ran into a hard error + * don't issue any more writes... + * go wait for all writes that are part of this stream + * to complete before returning the error to the caller + */ + goto wait_for_cwrites; + } + /* + * issue an asynchronous write to cluster_io + */ + error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, + xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); + + if (error == 0) { + /* + * The cluster_io write completed successfully, + * update the uio structure + */ + uio_update(uio, (user_size_t)xsize); + + upl_offset += xsize; + src_paddr += xsize; + io_size -= xsize; + } + } + if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { + error = cluster_io_type(uio, write_type, write_length, 0); + + if (error == 0 && *write_type == IO_CONTIG) { + cur_upl++; + goto next_cwrite; + } + } else { + *write_type = IO_UNKNOWN; + } + +wait_for_cwrites: + /* + * make sure all async writes that are part of this stream + * have completed before we proceed + */ + cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); + + if (iostate.io_error) { + error = iostate.io_error; + } + + lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); + + if (error == 0 && tail_size) { + error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); + } + + for (n = 0; n < num_upl; n++) { + /* + * just release our hold on each physically contiguous + * region without changing any state + */ + ubc_upl_abort(upl[n], 0); + } + + return error; +} + + +/* + * need to avoid a race between an msync of a range of pages dirtied via mmap + * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's + * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd + * + * we should never force-zero-fill pages that are already valid in the cache... + * the entire page contains valid data (either from disk, zero-filled or dirtied + * via an mmap) so we can only do damage by trying to zero-fill + * + */ +static int +cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) +{ + int zero_pg_index; + boolean_t need_cluster_zero = TRUE; + + if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { + bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); + zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); + + if (upl_valid_page(pl, zero_pg_index)) { + /* + * never force zero valid pages - dirty or clean + * we'll leave these in the UPL for cluster_write_copy to deal with + */ + need_cluster_zero = FALSE; + } + } + if (need_cluster_zero == TRUE) { + cluster_zero(upl, io_offset, bytes_to_zero, NULL); + } + + return bytes_to_zero; +} + + +void +cluster_update_state(vnode_t vp, vm_object_offset_t s_offset, vm_object_offset_t e_offset, boolean_t vm_initiated) +{ + struct cl_extent cl; + boolean_t first_pass = TRUE; + + assert(s_offset < e_offset); + assert((s_offset & PAGE_MASK_64) == 0); + assert((e_offset & PAGE_MASK_64) == 0); + + cl.b_addr = (daddr64_t)(s_offset / PAGE_SIZE_64); + cl.e_addr = (daddr64_t)(e_offset / PAGE_SIZE_64); + + cluster_update_state_internal(vp, &cl, 0, TRUE, &first_pass, s_offset, (int)(e_offset - s_offset), + vp->v_un.vu_ubcinfo->ui_size, NULL, NULL, vm_initiated); +} + + +static void +cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, + boolean_t *first_pass, off_t write_off, int write_cnt, off_t newEOF, + int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) +{ + struct cl_writebehind *wbp; + int cl_index; + int ret_cluster_try_push; + u_int max_cluster_pgcount; + + + max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; + + /* + * take the lock to protect our accesses + * of the writebehind and sparse cluster state + */ + wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); + + if (wbp->cl_scmap) { + if (!(flags & IO_NOCACHE)) { + /* + * we've fallen into the sparse + * cluster method of delaying dirty pages + */ + sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated); + + lck_mtx_unlock(&wbp->cl_lockw); + return; + } + /* + * must have done cached writes that fell into + * the sparse cluster mechanism... we've switched + * to uncached writes on the file, so go ahead + * and push whatever's in the sparse map + * and switch back to normal clustering + */ + wbp->cl_number = 0; + + sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg, vm_initiated); + /* + * no clusters of either type present at this point + * so just go directly to start_new_cluster since + * we know we need to delay this I/O since we've + * already released the pages back into the cache + * to avoid the deadlock with sparse_cluster_push + */ + goto start_new_cluster; + } + if (*first_pass == TRUE) { + if (write_off == wbp->cl_last_write) { + wbp->cl_seq_written += write_cnt; + } else { + wbp->cl_seq_written = write_cnt; + } + + wbp->cl_last_write = write_off + write_cnt; + + *first_pass = FALSE; + } + if (wbp->cl_number == 0) { + /* + * no clusters currently present + */ + goto start_new_cluster; + } + + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + /* + * check each cluster that we currently hold + * try to merge some or all of this write into + * one or more of the existing clusters... if + * any portion of the write remains, start a + * new cluster + */ + if (cl->b_addr >= wbp->cl_clusters[cl_index].b_addr) { + /* + * the current write starts at or after the current cluster + */ + if (cl->e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { + /* + * we have a write that fits entirely + * within the existing cluster limits + */ + if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { + /* + * update our idea of where the cluster ends + */ + wbp->cl_clusters[cl_index].e_addr = cl->e_addr; + } + break; + } + if (cl->b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { + /* + * we have a write that starts in the middle of the current cluster + * but extends beyond the cluster's limit... we know this because + * of the previous checks + * we'll extend the current cluster to the max + * and update the b_addr for the current write to reflect that + * the head of it was absorbed into this cluster... + * note that we'll always have a leftover tail in this case since + * full absorbtion would have occurred in the clause above + */ + wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; + + cl->b_addr = wbp->cl_clusters[cl_index].e_addr; + } + /* + * we come here for the case where the current write starts + * beyond the limit of the existing cluster or we have a leftover + * tail after a partial absorbtion + * + * in either case, we'll check the remaining clusters before + * starting a new one + */ + } else { + /* + * the current write starts in front of the cluster we're currently considering + */ + if ((wbp->cl_clusters[cl_index].e_addr - cl->b_addr) <= max_cluster_pgcount) { + /* + * we can just merge the new request into + * this cluster and leave it in the cache + * since the resulting cluster is still + * less than the maximum allowable size + */ + wbp->cl_clusters[cl_index].b_addr = cl->b_addr; + + if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { + /* + * the current write completely + * envelops the existing cluster and since + * each write is limited to at most max_cluster_pgcount pages + * we can just use the start and last blocknos of the write + * to generate the cluster limits + */ + wbp->cl_clusters[cl_index].e_addr = cl->e_addr; + } + break; + } + /* + * if we were to combine this write with the current cluster + * we would exceed the cluster size limit.... so, + * let's see if there's any overlap of the new I/O with + * the cluster we're currently considering... in fact, we'll + * stretch the cluster out to it's full limit and see if we + * get an intersection with the current write + * + */ + if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { + /* + * the current write extends into the proposed cluster + * clip the length of the current write after first combining it's + * tail with the newly shaped cluster + */ + wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; + + cl->e_addr = wbp->cl_clusters[cl_index].b_addr; + } + /* + * if we get here, there was no way to merge + * any portion of this write with this cluster + * or we could only merge part of it which + * will leave a tail... + * we'll check the remaining clusters before starting a new one + */ + } + } + if (cl_index < wbp->cl_number) { + /* + * we found an existing cluster(s) that we + * could entirely merge this I/O into + */ + goto delay_io; + } + + if (defer_writes == FALSE && + wbp->cl_number == MAX_CLUSTERS && + wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { + uint32_t n; + + if (vp->v_mount->mnt_minsaturationbytecount) { + n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp); + + if (n > MAX_CLUSTERS) { + n = MAX_CLUSTERS; + } + } else { + n = 0; + } + + if (n == 0) { + if (disk_conditioner_mount_is_ssd(vp->v_mount)) { + n = WRITE_BEHIND_SSD; + } else { + n = WRITE_BEHIND; + } + } + while (n--) { + cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL, vm_initiated); + } + } + if (wbp->cl_number < MAX_CLUSTERS) { + /* + * we didn't find an existing cluster to + * merge into, but there's room to start + * a new one + */ + goto start_new_cluster; + } + /* + * no exisitng cluster to merge with and no + * room to start a new one... we'll try + * pushing one of the existing ones... if none of + * them are able to be pushed, we'll switch + * to the sparse cluster mechanism + * cluster_try_push updates cl_number to the + * number of remaining clusters... and + * returns the number of currently unused clusters + */ + ret_cluster_try_push = 0; + + /* + * if writes are not deferred, call cluster push immediately + */ + if (defer_writes == FALSE) { + ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL, vm_initiated); + } + /* + * execute following regardless of writes being deferred or not + */ + if (ret_cluster_try_push == 0) { + /* + * no more room in the normal cluster mechanism + * so let's switch to the more expansive but expensive + * sparse mechanism.... + */ + sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg, vm_initiated); + sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated); + + lck_mtx_unlock(&wbp->cl_lockw); + return; + } +start_new_cluster: + wbp->cl_clusters[wbp->cl_number].b_addr = cl->b_addr; + wbp->cl_clusters[wbp->cl_number].e_addr = cl->e_addr; + + wbp->cl_clusters[wbp->cl_number].io_flags = 0; + + if (flags & IO_NOCACHE) { + wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; + } + + if (flags & IO_PASSIVE) { + wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; + } + + wbp->cl_number++; +delay_io: + lck_mtx_unlock(&wbp->cl_lockw); + return; +} + + +static int +cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, + off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + upl_page_info_t *pl; + upl_t upl; + vm_offset_t upl_offset = 0; + vm_size_t upl_size; + off_t upl_f_offset; + int pages_in_upl; + int start_offset; + int xfer_resid; + int io_size; + int io_offset; + int bytes_to_zero; + int bytes_to_move; + kern_return_t kret; + int retval = 0; + int io_resid; + long long total_size; + long long zero_cnt; + off_t zero_off; + long long zero_cnt1; + off_t zero_off1; + off_t write_off = 0; + int write_cnt = 0; + boolean_t first_pass = FALSE; + struct cl_extent cl; + int bflag; + u_int max_io_size; + + if (uio) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, + (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); + + io_resid = io_req_size; + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, + 0, 0, (int)oldEOF, (int)newEOF, 0); + + io_resid = 0; + } + if (flags & IO_PASSIVE) { + bflag = CL_PASSIVE; + } else { + bflag = 0; + } + if (flags & IO_NOCACHE) { + bflag |= CL_NOCACHE; + } + + if (flags & IO_SKIP_ENCRYPTION) { + bflag |= CL_ENCRYPTED; + } + + zero_cnt = 0; + zero_cnt1 = 0; + zero_off = 0; + zero_off1 = 0; + + max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); + + if (flags & IO_HEADZEROFILL) { + /* + * some filesystems (HFS is one) don't support unallocated holes within a file... + * so we zero fill the intervening space between the old EOF and the offset + * where the next chunk of real data begins.... ftruncate will also use this + * routine to zero fill to the new EOF when growing a file... in this case, the + * uio structure will not be provided + */ + if (uio) { + if (headOff < uio->uio_offset) { + zero_cnt = uio->uio_offset - headOff; + zero_off = headOff; + } + } else if (headOff < newEOF) { + zero_cnt = newEOF - headOff; + zero_off = headOff; + } + } else { + if (uio && uio->uio_offset > oldEOF) { + zero_off = uio->uio_offset & ~PAGE_MASK_64; + + if (zero_off >= oldEOF) { + zero_cnt = uio->uio_offset - zero_off; + + flags |= IO_HEADZEROFILL; + } + } + } + if (flags & IO_TAILZEROFILL) { + if (uio) { + zero_off1 = uio->uio_offset + io_req_size; + + if (zero_off1 < tailOff) { + zero_cnt1 = tailOff - zero_off1; + } + } + } else { + if (uio && newEOF > oldEOF) { + zero_off1 = uio->uio_offset + io_req_size; + + if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { + zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); + + flags |= IO_TAILZEROFILL; + } + } + } + if (zero_cnt == 0 && uio == (struct uio *) 0) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, + retval, 0, 0, 0, 0); + return 0; + } + if (uio) { + write_off = uio->uio_offset; + write_cnt = (int)uio_resid(uio); + /* + * delay updating the sequential write info + * in the control block until we've obtained + * the lock for it + */ + first_pass = TRUE; + } + while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { + /* + * for this iteration of the loop, figure out where our starting point is + */ + if (zero_cnt) { + start_offset = (int)(zero_off & PAGE_MASK_64); + upl_f_offset = zero_off - start_offset; + } else if (io_resid) { + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + upl_f_offset = uio->uio_offset - start_offset; + } else { + start_offset = (int)(zero_off1 & PAGE_MASK_64); + upl_f_offset = zero_off1 - start_offset; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, + (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); + + if (total_size > max_io_size) { + total_size = max_io_size; + } + + cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); + + if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { + /* + * assumption... total_size <= io_resid + * because IO_HEADZEROFILL and IO_TAILZEROFILL not set + */ + if ((start_offset + total_size) > max_io_size) { + total_size = max_io_size - start_offset; + } + xfer_resid = (int)total_size; + + retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); + + if (retval) { + break; + } + + io_resid -= (total_size - xfer_resid); + total_size = xfer_resid; + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + upl_f_offset = uio->uio_offset - start_offset; + + if (total_size == 0) { + if (start_offset) { + /* + * the write did not finish on a page boundary + * which will leave upl_f_offset pointing to the + * beginning of the last page written instead of + * the page beyond it... bump it in this case + * so that the cluster code records the last page + * written as dirty + */ + upl_f_offset += PAGE_SIZE_64; + } + upl_size = 0; + + goto check_cluster; + } + } + /* + * compute the size of the upl needed to encompass + * the requested write... limit each call to cluster_io + * to the maximum UPL size... cluster_io will clip if + * this exceeds the maximum io_size for the device, + * make sure to account for + * a starting offset that's not page aligned + */ + upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + if (upl_size > max_io_size) { + upl_size = max_io_size; + } + + pages_in_upl = (int)(upl_size / PAGE_SIZE); + io_size = (int)(upl_size - start_offset); + + if ((long long)io_size > total_size) { + io_size = (int)total_size; + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); + + + /* + * Gather the pages from the buffer cache. + * The UPL_WILL_MODIFY flag lets the UPL subsystem know + * that we intend to modify these pages. + */ + kret = ubc_create_upl_kernel(vp, + upl_f_offset, + (int)upl_size, + &upl, + &pl, + UPL_SET_LITE | ((uio != NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY), + VM_KERN_MEMORY_FILE); + if (kret != KERN_SUCCESS) { + panic("cluster_write_copy: failed to get pagelist"); + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, + upl, (int)upl_f_offset, start_offset, 0, 0); + + if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { + int read_size; + + /* + * we're starting in the middle of the first page of the upl + * and the page isn't currently valid, so we're going to have + * to read it in first... this is a synchronous operation + */ + read_size = PAGE_SIZE; + + if ((upl_f_offset + read_size) > oldEOF) { + read_size = (int)(oldEOF - upl_f_offset); + } + + retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, + CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + if (retval) { + /* + * we had an error during the read which causes us to abort + * the current cluster_write request... before we do, we need + * to release the rest of the pages in the upl without modifying + * there state and mark the failed page in error + */ + ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + + if (upl_size > PAGE_SIZE) { + ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, + UPL_ABORT_FREE_ON_EMPTY); + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, + upl, 0, 0, retval, 0); + break; + } + } + if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { + /* + * the last offset we're writing to in this upl does not end on a page + * boundary... if it's not beyond the old EOF, then we'll also need to + * pre-read this page in if it isn't already valid + */ + upl_offset = upl_size - PAGE_SIZE; + + if ((upl_f_offset + start_offset + io_size) < oldEOF && + !upl_valid_page(pl, (int)(upl_offset / PAGE_SIZE))) { + int read_size; + + read_size = PAGE_SIZE; + + if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) { + read_size = (int)(oldEOF - (upl_f_offset + upl_offset)); + } + + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, + CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + if (retval) { + /* + * we had an error during the read which causes us to abort + * the current cluster_write request... before we do, we + * need to release the rest of the pages in the upl without + * modifying there state and mark the failed page in error + */ + ubc_upl_abort_range(upl, (upl_offset_t)upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + + if (upl_size > PAGE_SIZE) { + ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, UPL_ABORT_FREE_ON_EMPTY); + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, + upl, 0, 0, retval, 0); + break; + } + } + } + xfer_resid = io_size; + io_offset = start_offset; + + while (zero_cnt && xfer_resid) { + if (zero_cnt < (long long)xfer_resid) { + bytes_to_zero = (int)zero_cnt; + } else { + bytes_to_zero = xfer_resid; + } + + bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); + + xfer_resid -= bytes_to_zero; + zero_cnt -= bytes_to_zero; + zero_off += bytes_to_zero; + io_offset += bytes_to_zero; + } + if (xfer_resid && io_resid) { + u_int32_t io_requested; + + bytes_to_move = min(io_resid, xfer_resid); + io_requested = bytes_to_move; + + retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); + + if (retval) { + ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, UPL_ABORT_FREE_ON_EMPTY); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, + upl, 0, 0, retval, 0); + } else { + io_resid -= bytes_to_move; + xfer_resid -= bytes_to_move; + io_offset += bytes_to_move; + } + } + while (xfer_resid && zero_cnt1 && retval == 0) { + if (zero_cnt1 < (long long)xfer_resid) { + bytes_to_zero = (int)zero_cnt1; + } else { + bytes_to_zero = xfer_resid; + } + + bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); + + xfer_resid -= bytes_to_zero; + zero_cnt1 -= bytes_to_zero; + zero_off1 += bytes_to_zero; + io_offset += bytes_to_zero; + } + if (retval == 0) { + int do_zeroing = 1; + + io_size += start_offset; + + /* Force more restrictive zeroing behavior only on APFS */ + if ((vnode_tag(vp) == VT_APFS) && (newEOF < oldEOF)) { + do_zeroing = 0; + } + + if (do_zeroing && (upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { + /* + * if we're extending the file with this write + * we'll zero fill the rest of the page so that + * if the file gets extended again in such a way as to leave a + * hole starting at this EOF, we'll have zero's in the correct spot + */ + cluster_zero(upl, io_size, (int)(upl_size - io_size), NULL); + } + /* + * release the upl now if we hold one since... + * 1) pages in it may be present in the sparse cluster map + * and may span 2 separate buckets there... if they do and + * we happen to have to flush a bucket to make room and it intersects + * this upl, a deadlock may result on page BUSY + * 2) we're delaying the I/O... from this point forward we're just updating + * the cluster state... no need to hold the pages, so commit them + * 3) IO_SYNC is set... + * because we had to ask for a UPL that provides currenty non-present pages, the + * UPL has been automatically set to clear the dirty flags (both software and hardware) + * upon committing it... this is not the behavior we want since it's possible for + * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. + * we'll pick these pages back up later with the correct behavior specified. + * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush + * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages + * we hold since the flushing context is holding the cluster lock. + */ + ubc_upl_commit_range(upl, 0, (upl_size_t)upl_size, + UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); +check_cluster: + /* + * calculate the last logical block number + * that this delayed I/O encompassed + */ + cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); + + if (flags & IO_SYNC) { + /* + * if the IO_SYNC flag is set than we need to bypass + * any clustering and immediately issue the I/O + * + * we don't hold the lock at this point + * + * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set + * so that we correctly deal with a change in state of the hardware modify bit... + * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force + * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also + * responsible for generating the correct sized I/O(s) + */ + retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg, FALSE); + } else { + boolean_t defer_writes = FALSE; + + if (vfs_flags(vp->v_mount) & MNT_DEFWRITE) { + defer_writes = TRUE; + } + + cluster_update_state_internal(vp, &cl, flags, defer_writes, &first_pass, + write_off, write_cnt, newEOF, callback, callback_arg, FALSE); + } + } + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); + + return retval; +} + + + +int +cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) +{ + return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); +} + + +int +cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) +{ + int retval = 0; + int flags; + user_ssize_t cur_resid; + u_int32_t io_size; + u_int32_t read_length = 0; + int read_type = IO_COPY; + + flags = xflags; + + if (vp->v_flag & VNOCACHE_DATA) { + flags |= IO_NOCACHE; + } + if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) { + flags |= IO_RAOFF; + } + + if (flags & IO_SKIP_ENCRYPTION) { + flags |= IO_ENCRYPTED; + } + + /* + * do a read through the cache if one of the following is true.... + * NOCACHE is not true + * the uio request doesn't target USERSPACE + * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. + * Reading encrypted data from a CP filesystem should never result in the data touching + * the UBC. + * + * otherwise, find out if we want the direct or contig variant for + * the first vector in the uio request + */ + if (((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED)) { + retval = cluster_io_type(uio, &read_type, &read_length, 0); + } + + while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { + switch (read_type) { + case IO_COPY: + /* + * make sure the uio_resid isn't too big... + * internally, we want to handle all of the I/O in + * chunk sizes that fit in a 32 bit int + */ + if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { + io_size = MAX_IO_REQUEST_SIZE; + } else { + io_size = (u_int32_t)cur_resid; + } + + retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); + break; + + case IO_DIRECT: + retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); + break; + + case IO_CONTIG: + retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); + break; + + case IO_UNKNOWN: + retval = cluster_io_type(uio, &read_type, &read_length, 0); + break; + } + } + return retval; +} + + + +static void +cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) +{ + int range; + int abort_flags = UPL_ABORT_FREE_ON_EMPTY; + + if ((range = last_pg - start_pg)) { + if (take_reference) { + abort_flags |= UPL_ABORT_REFERENCE; + } + + ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); + } +} + + +static int +cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + upl_page_info_t *pl; + upl_t upl; + vm_offset_t upl_offset; + u_int32_t upl_size; + off_t upl_f_offset; + int start_offset; + int start_pg; + int last_pg; + int uio_last = 0; + int pages_in_upl; + off_t max_size; + off_t last_ioread_offset; + off_t last_request_offset; + kern_return_t kret; + int error = 0; + int retval = 0; + u_int32_t size_of_prefetch; + u_int32_t xsize; + u_int32_t io_size; + u_int32_t max_rd_size; + u_int32_t max_io_size; + u_int32_t max_prefetch; + u_int rd_ahead_enabled = 1; + u_int prefetch_enabled = 1; + struct cl_readahead * rap; + struct clios iostate; + struct cl_extent extent; + int bflag; + int take_reference = 1; + int policy = IOPOL_DEFAULT; + boolean_t iolock_inited = FALSE; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, + (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); + + if (flags & IO_ENCRYPTED) { + panic("encrypted blocks will hit UBC!"); + } + + policy = throttle_get_io_policy(NULL); + + if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) { + take_reference = 0; + } + + if (flags & IO_PASSIVE) { + bflag = CL_PASSIVE; + } else { + bflag = 0; + } + + if (flags & IO_NOCACHE) { + bflag |= CL_NOCACHE; + } + + if (flags & IO_SKIP_ENCRYPTION) { + bflag |= CL_ENCRYPTED; + } + + max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); + max_prefetch = MAX_PREFETCH(vp, max_io_size, disk_conditioner_mount_is_ssd(vp->v_mount)); + max_rd_size = max_prefetch; + + last_request_offset = uio->uio_offset + io_req_size; + + if (last_request_offset > filesize) { + last_request_offset = filesize; + } + + if ((flags & (IO_RAOFF | IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { + rd_ahead_enabled = 0; + rap = NULL; + } else { + if (cluster_is_throttled(vp)) { + /* + * we're in the throttle window, at the very least + * we want to limit the size of the I/O we're about + * to issue + */ + rd_ahead_enabled = 0; + prefetch_enabled = 0; + + max_rd_size = THROTTLE_MAX_IOSIZE; + } + if ((rap = cluster_get_rap(vp)) == NULL) { + rd_ahead_enabled = 0; + } else { + extent.b_addr = uio->uio_offset / PAGE_SIZE_64; + extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; + } + } + if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { + /* + * determine if we already have a read-ahead in the pipe courtesy of the + * last read systemcall that was issued... + * if so, pick up it's extent to determine where we should start + * with respect to any read-ahead that might be necessary to + * garner all the data needed to complete this read systemcall + */ + last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; + + if (last_ioread_offset < uio->uio_offset) { + last_ioread_offset = (off_t)0; + } else if (last_ioread_offset > last_request_offset) { + last_ioread_offset = last_request_offset; + } + } else { + last_ioread_offset = (off_t)0; + } + + while (io_req_size && uio->uio_offset < filesize && retval == 0) { + max_size = filesize - uio->uio_offset; + bool leftover_upl_aborted = false; + + if ((off_t)(io_req_size) < max_size) { + io_size = io_req_size; + } else { + io_size = (u_int32_t)max_size; + } + + if (!(flags & IO_NOCACHE)) { + while (io_size) { + u_int32_t io_resid; + u_int32_t io_requested; + + /* + * if we keep finding the pages we need already in the cache, then + * don't bother to call cluster_read_prefetch since it costs CPU cycles + * to determine that we have all the pages we need... once we miss in + * the cache and have issued an I/O, than we'll assume that we're likely + * to continue to miss in the cache and it's to our advantage to try and prefetch + */ + if (last_request_offset && last_ioread_offset && (size_of_prefetch = (u_int32_t)(last_request_offset - last_ioread_offset))) { + if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { + /* + * we've already issued I/O for this request and + * there's still work to do and + * our prefetch stream is running dry, so issue a + * pre-fetch I/O... the I/O latency will overlap + * with the copying of the data + */ + if (size_of_prefetch > max_rd_size) { + size_of_prefetch = max_rd_size; + } + + size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); + + last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); + + if (last_ioread_offset > last_request_offset) { + last_ioread_offset = last_request_offset; + } + } + } + /* + * limit the size of the copy we're about to do so that + * we can notice that our I/O pipe is running dry and + * get the next I/O issued before it does go dry + */ + if (last_ioread_offset && io_size > (max_io_size / 4)) { + io_resid = (max_io_size / 4); + } else { + io_resid = io_size; + } + + io_requested = io_resid; + + retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); + + xsize = io_requested - io_resid; + + io_size -= xsize; + io_req_size -= xsize; + + if (retval || io_resid) { + /* + * if we run into a real error or + * a page that is not in the cache + * we need to leave streaming mode + */ + break; + } + + if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { + /* + * we're already finished the I/O for this read request + * let's see if we should do a read-ahead + */ + cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); + } + } + if (retval) { + break; + } + if (io_size == 0) { + if (rap != NULL) { + if (extent.e_addr < rap->cl_lastr) { + rap->cl_maxra = 0; + } + rap->cl_lastr = extent.e_addr; + } + break; + } + /* + * recompute max_size since cluster_copy_ubc_data_internal + * may have advanced uio->uio_offset + */ + max_size = filesize - uio->uio_offset; + } + + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + if ((flags & IO_RETURN_ON_THROTTLE)) { + if (cluster_is_throttled(vp) == THROTTLE_NOW) { + if (!cluster_io_present_in_BC(vp, uio->uio_offset)) { + /* + * we're in the throttle window and at least 1 I/O + * has already been issued by a throttleable thread + * in this window, so return with EAGAIN to indicate + * to the FS issuing the cluster_read call that it + * should now throttle after dropping any locks + */ + throttle_info_update_by_mount(vp->v_mount); + + retval = EAGAIN; + break; + } + } + } + + /* + * compute the size of the upl needed to encompass + * the requested read... limit each call to cluster_io + * to the maximum UPL size... cluster_io will clip if + * this exceeds the maximum io_size for the device, + * make sure to account for + * a starting offset that's not page aligned + */ + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + upl_f_offset = uio->uio_offset - (off_t)start_offset; + + if (io_size > max_rd_size) { + io_size = max_rd_size; + } + + upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + if (flags & IO_NOCACHE) { + if (upl_size > max_io_size) { + upl_size = max_io_size; + } + } else { + if (upl_size > max_io_size / 4) { + upl_size = max_io_size / 4; + upl_size &= ~PAGE_MASK; + + if (upl_size == 0) { + upl_size = PAGE_SIZE; + } + } + } + pages_in_upl = upl_size / PAGE_SIZE; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, + upl, (int)upl_f_offset, upl_size, start_offset, 0); + + kret = ubc_create_upl_kernel(vp, + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_FILE_IO | UPL_SET_LITE, + VM_KERN_MEMORY_FILE); + if (kret != KERN_SUCCESS) { + panic("cluster_read_copy: failed to get pagelist"); + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, + upl, (int)upl_f_offset, upl_size, start_offset, 0); + + /* + * scan from the beginning of the upl looking for the first + * non-valid page.... this will become the first page in + * the request we're going to make to 'cluster_io'... if all + * of the pages are valid, we won't call through to 'cluster_io' + */ + for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { + if (!upl_valid_page(pl, start_pg)) { + break; + } + } + + /* + * scan from the starting invalid page looking for a valid + * page before the end of the upl is reached, if we + * find one, then it will be the last page of the request to + * 'cluster_io' + */ + for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { + if (upl_valid_page(pl, last_pg)) { + break; + } + } + + if (start_pg < last_pg) { + /* + * we found a range of 'invalid' pages that must be filled + * if the last page in this range is the last page of the file + * we may have to clip the size of it to keep from reading past + * the end of the last physical block associated with the file + */ + if (iolock_inited == FALSE) { + lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); + + iolock_inited = TRUE; + } + upl_offset = start_pg * PAGE_SIZE; + io_size = (last_pg - start_pg) * PAGE_SIZE; + + if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { + io_size = (u_int32_t)(filesize - (upl_f_offset + upl_offset)); + } + + /* + * Find out if this needs verification, we'll have to manage the UPL + * diffrently if so. Note that this call only lets us know if + * verification is enabled on this mount point, the actual verification + * is performed in the File system. + */ + size_t verify_block_size = 0; + if ((VNOP_VERIFY(vp, start_offset, NULL, 0, &verify_block_size, VNODE_VERIFY_DEFAULT, NULL) == 0) /* && verify_block_size */) { + for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { + if (!upl_valid_page(pl, uio_last)) { + break; + } + } + if (uio_last < pages_in_upl) { + /* + * there were some invalid pages beyond the valid pages + * that we didn't issue an I/O for, just release them + * unchanged now, so that any prefetch/readahed can + * include them + */ + ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, + (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); + leftover_upl_aborted = true; + } + } + + /* + * issue an asynchronous read to cluster_io + */ + + error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, + io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); + + if (rap) { + if (extent.e_addr < rap->cl_maxra) { + /* + * we've just issued a read for a block that should have been + * in the cache courtesy of the read-ahead engine... something + * has gone wrong with the pipeline, so reset the read-ahead + * logic which will cause us to restart from scratch + */ + rap->cl_maxra = 0; + } + } + } + if (error == 0) { + /* + * if the read completed successfully, or there was no I/O request + * issued, than copy the data into user land via 'cluster_upl_copy_data' + * we'll first add on any 'valid' + * pages that were present in the upl when we acquired it. + */ + u_int val_size; + + if (!leftover_upl_aborted) { + for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { + if (!upl_valid_page(pl, uio_last)) { + break; + } + } + if (uio_last < pages_in_upl) { + /* + * there were some invalid pages beyond the valid pages + * that we didn't issue an I/O for, just release them + * unchanged now, so that any prefetch/readahed can + * include them + */ + ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, + (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); + } + } + + /* + * compute size to transfer this round, if io_req_size is + * still non-zero after this attempt, we'll loop around and + * set up for another I/O. + */ + val_size = (uio_last * PAGE_SIZE) - start_offset; + + if (val_size > max_size) { + val_size = (u_int)max_size; + } + + if (val_size > io_req_size) { + val_size = io_req_size; + } + + if ((uio->uio_offset + val_size) > last_ioread_offset) { + last_ioread_offset = uio->uio_offset + val_size; + } + + if ((size_of_prefetch = (u_int32_t)(last_request_offset - last_ioread_offset)) && prefetch_enabled) { + if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { + /* + * if there's still I/O left to do for this request, and... + * we're not in hard throttle mode, and... + * we're close to using up the previous prefetch, then issue a + * new pre-fetch I/O... the I/O latency will overlap + * with the copying of the data + */ + if (size_of_prefetch > max_rd_size) { + size_of_prefetch = max_rd_size; + } + + size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); + + last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); + + if (last_ioread_offset > last_request_offset) { + last_ioread_offset = last_request_offset; + } + } + } else if ((uio->uio_offset + val_size) == last_request_offset) { + /* + * this transfer will finish this request, so... + * let's try to read ahead if we're in + * a sequential access pattern and we haven't + * explicitly disabled it + */ + if (rd_ahead_enabled) { + cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); + } + + if (rap != NULL) { + if (extent.e_addr < rap->cl_lastr) { + rap->cl_maxra = 0; + } + rap->cl_lastr = extent.e_addr; + } + } + if (iolock_inited == TRUE) { + cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); + } + + if (iostate.io_error) { + error = iostate.io_error; + } else { + u_int32_t io_requested; + + io_requested = val_size; + + retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); + + io_req_size -= (val_size - io_requested); + } + } else { + if (iolock_inited == TRUE) { + cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); + } + } + if (start_pg < last_pg) { + /* + * compute the range of pages that we actually issued an I/O for + * and either commit them as valid if the I/O succeeded + * or abort them if the I/O failed or we're not supposed to + * keep them in the cache + */ + io_size = (last_pg - start_pg) * PAGE_SIZE; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); + + if (error || (flags & IO_NOCACHE)) { + ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, + UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); + } else { + int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; + + if (take_reference) { + commit_flags |= UPL_COMMIT_INACTIVATE; + } else { + commit_flags |= UPL_COMMIT_SPECULATE; + } + + ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); + } + if ((last_pg - start_pg) < pages_in_upl) { + /* + * the set of pages that we issued an I/O for did not encompass + * the entire upl... so just release these without modifying + * their state + */ + if (error) { + if (leftover_upl_aborted) { + ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, (uio_last - start_pg) * PAGE_SIZE, + UPL_ABORT_FREE_ON_EMPTY); + } else { + ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + } + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, + upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); + + /* + * handle any valid pages at the beginning of + * the upl... release these appropriately + */ + cluster_read_upl_release(upl, 0, start_pg, take_reference); + + /* + * handle any valid pages immediately after the + * pages we issued I/O for... ... release these appropriately + */ + cluster_read_upl_release(upl, last_pg, uio_last, take_reference); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); + } + } + if (retval == 0) { + retval = error; + } + + if (io_req_size) { + if (cluster_is_throttled(vp)) { + /* + * we're in the throttle window, at the very least + * we want to limit the size of the I/O we're about + * to issue + */ + rd_ahead_enabled = 0; + prefetch_enabled = 0; + max_rd_size = THROTTLE_MAX_IOSIZE; + } else { + if (max_rd_size == THROTTLE_MAX_IOSIZE) { + /* + * coming out of throttled state + */ + if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { + if (rap != NULL) { + rd_ahead_enabled = 1; + } + prefetch_enabled = 1; + } + max_rd_size = max_prefetch; + last_ioread_offset = 0; + } + } + } + } + if (iolock_inited == TRUE) { + /* + * cluster_io returned an error after it + * had already issued some I/O. we need + * to wait for that I/O to complete before + * we can destroy the iostate mutex... + * 'retval' already contains the early error + * so no need to pick it up from iostate.io_error + */ + cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); + + lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); + } + if (rap != NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, + (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); + + lck_mtx_unlock(&rap->cl_lockr); + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, + (int)uio->uio_offset, io_req_size, 0, retval, 0); + } + + return retval; +} + +/* + * We don't want another read/write lock for every vnode in the system + * so we keep a hash of them here. There should never be very many of + * these around at any point in time. + */ +cl_direct_read_lock_t * +cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type) +{ + struct cl_direct_read_locks *head + = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp) + % CL_DIRECT_READ_LOCK_BUCKETS]; + + struct cl_direct_read_lock *lck, *new_lck = NULL; + + for (;;) { + lck_spin_lock(&cl_direct_read_spin_lock); + + LIST_FOREACH(lck, head, chain) { + if (lck->vp == vp) { + ++lck->ref_count; + lck_spin_unlock(&cl_direct_read_spin_lock); + if (new_lck) { + // Someone beat us to it, ditch the allocation + lck_rw_destroy(&new_lck->rw_lock, &cl_mtx_grp); + kheap_free(KHEAP_DEFAULT, new_lck, sizeof(cl_direct_read_lock_t)); + } + lck_rw_lock(&lck->rw_lock, type); + return lck; + } + } + + if (new_lck) { + // Use the lock we allocated + LIST_INSERT_HEAD(head, new_lck, chain); + lck_spin_unlock(&cl_direct_read_spin_lock); + lck_rw_lock(&new_lck->rw_lock, type); + return new_lck; + } + + lck_spin_unlock(&cl_direct_read_spin_lock); + + // Allocate a new lock + new_lck = kheap_alloc(KHEAP_DEFAULT, sizeof(cl_direct_read_lock_t), + Z_WAITOK); + lck_rw_init(&new_lck->rw_lock, &cl_mtx_grp, LCK_ATTR_NULL); + new_lck->vp = vp; + new_lck->ref_count = 1; + + // Got to go round again + } +} + +void +cluster_unlock_direct_read(cl_direct_read_lock_t *lck) +{ + lck_rw_done(&lck->rw_lock); + + lck_spin_lock(&cl_direct_read_spin_lock); + if (lck->ref_count == 1) { + LIST_REMOVE(lck, chain); + lck_spin_unlock(&cl_direct_read_spin_lock); + lck_rw_destroy(&lck->rw_lock, &cl_mtx_grp); + kheap_free(KHEAP_DEFAULT, lck, sizeof(cl_direct_read_lock_t)); + } else { + --lck->ref_count; + lck_spin_unlock(&cl_direct_read_spin_lock); + } +} + +static int +cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + upl_t upl; + upl_page_info_t *pl; + off_t max_io_size; + vm_offset_t upl_offset, vector_upl_offset = 0; + upl_size_t upl_size, vector_upl_size = 0; + vm_size_t upl_needed_size; + unsigned int pages_in_pl; + upl_control_flags_t upl_flags; + kern_return_t kret; + unsigned int i; + int force_data_sync; + int retval = 0; + int no_zero_fill = 0; + int io_flag = 0; + int misaligned = 0; + struct clios iostate; + user_addr_t iov_base; + u_int32_t io_req_size; + u_int32_t offset_in_file; + u_int32_t offset_in_iovbase; + u_int32_t io_size; + u_int32_t io_min; + u_int32_t xsize; + u_int32_t devblocksize; + u_int32_t mem_alignment_mask; + u_int32_t max_upl_size; + u_int32_t max_rd_size; + u_int32_t max_rd_ahead; + u_int32_t max_vector_size; + boolean_t io_throttled = FALSE; + + u_int32_t vector_upl_iosize = 0; + int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); + off_t v_upl_uio_offset = 0; + int vector_upl_index = 0; + upl_t vector_upl = NULL; + cl_direct_read_lock_t *lock = NULL; + + user_addr_t orig_iov_base = 0; + user_addr_t last_iov_base = 0; + user_addr_t next_iov_base = 0; + + assert(vm_map_page_shift(current_map()) >= PAGE_SHIFT); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, + (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); + + max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); + + max_rd_size = max_upl_size; + max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); + + io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; + + if (flags & IO_PASSIVE) { + io_flag |= CL_PASSIVE; + } + + if (flags & IO_ENCRYPTED) { + io_flag |= CL_RAW_ENCRYPTED; + } + + if (flags & IO_NOCACHE) { + io_flag |= CL_NOCACHE; + } + + if (flags & IO_SKIP_ENCRYPTION) { + io_flag |= CL_ENCRYPTED; + } + + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); + + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, + (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); + + if (devblocksize == 1) { + /* + * the AFP client advertises a devblocksize of 1 + * however, its BLOCKMAP routine maps to physical + * blocks that are PAGE_SIZE in size... + * therefore we can't ask for I/Os that aren't page aligned + * or aren't multiples of PAGE_SIZE in size + * by setting devblocksize to PAGE_SIZE, we re-instate + * the old behavior we had before the mem_alignment_mask + * changes went in... + */ + devblocksize = PAGE_SIZE; + } + + orig_iov_base = uio_curriovbase(uio); + last_iov_base = orig_iov_base; + +next_dread: + io_req_size = *read_length; + iov_base = uio_curriovbase(uio); + + offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); + offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; + + if (vm_map_page_mask(current_map()) < PAGE_MASK) { + /* + * XXX TODO4K + * Direct I/O might not work as expected from a 16k kernel space + * to a 4k user space because each 4k chunk might point to + * a different 16k physical page... + * Let's go the "misaligned" way. + */ + if (!misaligned) { + DEBUG4K_VFS("forcing misaligned\n"); + } + misaligned = 1; + } + + if (offset_in_file || offset_in_iovbase) { + /* + * one of the 2 important offsets is misaligned + * so fire an I/O through the cache for this entire vector + */ + misaligned = 1; + } + if (iov_base & (devblocksize - 1)) { + /* + * the offset in memory must be on a device block boundary + * so that we can guarantee that we can generate an + * I/O that ends on a page boundary in cluster_io + */ + misaligned = 1; + } + + max_io_size = filesize - uio->uio_offset; + + /* + * The user must request IO in aligned chunks. If the + * offset into the file is bad, or the userland pointer + * is non-aligned, then we cannot service the encrypted IO request. + */ + if (flags & IO_ENCRYPTED) { + if (misaligned || (io_req_size & (devblocksize - 1))) { + retval = EINVAL; + } + + max_io_size = roundup(max_io_size, devblocksize); + } + + if ((off_t)io_req_size > max_io_size) { + io_req_size = (u_int32_t)max_io_size; + } + + /* + * When we get to this point, we know... + * -- the offset into the file is on a devblocksize boundary + */ + + while (io_req_size && retval == 0) { + u_int32_t io_start; + + if (cluster_is_throttled(vp)) { + /* + * we're in the throttle window, at the very least + * we want to limit the size of the I/O we're about + * to issue + */ + max_rd_size = THROTTLE_MAX_IOSIZE; + max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; + max_vector_size = THROTTLE_MAX_IOSIZE; + } else { + max_rd_size = max_upl_size; + max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); + max_vector_size = MAX_VECTOR_UPL_SIZE; + } + io_start = io_size = io_req_size; + + /* + * First look for pages already in the cache + * and move them to user space. But only do this + * check if we are not retrieving encrypted data directly + * from the filesystem; those blocks should never + * be in the UBC. + * + * cluster_copy_ubc_data returns the resid + * in io_size + */ + if ((flags & IO_ENCRYPTED) == 0) { + retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); + } + /* + * calculate the number of bytes actually copied + * starting size - residual + */ + xsize = io_start - io_size; + + io_req_size -= xsize; + + if (useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { + /* + * We found something in the cache or we have an iov_base that's not + * page-aligned. + * + * Issue all I/O's that have been collected within this Vectored UPL. + */ + if (vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + + if (xsize) { + useVectorUPL = 0; + } + + /* + * After this point, if we are using the Vector UPL path and the base is + * not page-aligned then the UPL with that base will be the first in the vector UPL. + */ + } + + /* + * check to see if we are finished with this request. + * + * If we satisfied this IO already, then io_req_size will be 0. + * Otherwise, see if the IO was mis-aligned and needs to go through + * the UBC to deal with the 'tail'. + * + */ + if (io_req_size == 0 || (misaligned)) { + /* + * see if there's another uio vector to + * process that's of type IO_DIRECT + * + * break out of while loop to get there + */ + break; + } + /* + * assume the request ends on a device block boundary + */ + io_min = devblocksize; + + /* + * we can handle I/O's in multiples of the device block size + * however, if io_size isn't a multiple of devblocksize we + * want to clip it back to the nearest page boundary since + * we are going to have to go through cluster_read_copy to + * deal with the 'overhang'... by clipping it to a PAGE_SIZE + * multiple, we avoid asking the drive for the same physical + * blocks twice.. once for the partial page at the end of the + * request and a 2nd time for the page we read into the cache + * (which overlaps the end of the direct read) in order to + * get at the overhang bytes + */ + if (io_size & (devblocksize - 1)) { + assert(!(flags & IO_ENCRYPTED)); + /* + * Clip the request to the previous page size boundary + * since request does NOT end on a device block boundary + */ + io_size &= ~PAGE_MASK; + io_min = PAGE_SIZE; + } + if (retval || io_size < io_min) { + /* + * either an error or we only have the tail left to + * complete via the copy path... + * we may have already spun some portion of this request + * off as async requests... we need to wait for the I/O + * to complete before returning + */ + goto wait_for_dreads; + } + + /* + * Don't re-check the UBC data if we are looking for uncached IO + * or asking for encrypted blocks. + */ + if ((flags & IO_ENCRYPTED) == 0) { + if ((xsize = io_size) > max_rd_size) { + xsize = max_rd_size; + } + + io_size = 0; + + if (!lock) { + /* + * We hold a lock here between the time we check the + * cache and the time we issue I/O. This saves us + * from having to lock the pages in the cache. Not + * all clients will care about this lock but some + * clients may want to guarantee stability between + * here and when the I/O is issued in which case they + * will take the lock exclusively. + */ + lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED); + } + + ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); + + if (io_size == 0) { + /* + * a page must have just come into the cache + * since the first page in this range is no + * longer absent, go back and re-evaluate + */ + continue; + } + } + if ((flags & IO_RETURN_ON_THROTTLE)) { + if (cluster_is_throttled(vp) == THROTTLE_NOW) { + if (!cluster_io_present_in_BC(vp, uio->uio_offset)) { + /* + * we're in the throttle window and at least 1 I/O + * has already been issued by a throttleable thread + * in this window, so return with EAGAIN to indicate + * to the FS issuing the cluster_read call that it + * should now throttle after dropping any locks + */ + throttle_info_update_by_mount(vp->v_mount); + + io_throttled = TRUE; + goto wait_for_dreads; + } + } + } + if (io_size > max_rd_size) { + io_size = max_rd_size; + } + + iov_base = uio_curriovbase(uio); + + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); + upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, + (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); + + if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) { + no_zero_fill = 1; + } else { + no_zero_fill = 0; + } + + vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; + for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { + pages_in_pl = 0; + upl_size = (upl_size_t)upl_needed_size; + upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + if (no_zero_fill) { + upl_flags |= UPL_NOZEROFILL; + } + if (force_data_sync) { + upl_flags |= UPL_FORCE_DATA_SYNC; + } + + kret = vm_map_create_upl(map, + (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), + &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE); + + if (kret != KERN_SUCCESS) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, + (int)upl_offset, upl_size, io_size, kret, 0); + /* + * failed to get pagelist + * + * we may have already spun some portion of this request + * off as async requests... we need to wait for the I/O + * to complete before returning + */ + goto wait_for_dreads; + } + pages_in_pl = upl_size / PAGE_SIZE; + pl = UPL_GET_INTERNAL_PAGE_LIST(upl); + + for (i = 0; i < pages_in_pl; i++) { + if (!upl_page_present(pl, i)) { + break; + } + } + if (i == pages_in_pl) { + break; + } + + ubc_upl_abort(upl, 0); + } + if (force_data_sync >= 3) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, + (int)upl_offset, upl_size, io_size, kret, 0); + + goto wait_for_dreads; + } + /* + * Consider the possibility that upl_size wasn't satisfied. + */ + if (upl_size < upl_needed_size) { + if (upl_size && upl_offset == 0) { + io_size = upl_size; + } else { + io_size = 0; + } + } + if (io_size == 0) { + ubc_upl_abort(upl, 0); + goto wait_for_dreads; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, + (int)upl_offset, upl_size, io_size, kret, 0); + + if (useVectorUPL) { + vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); + if (end_off) { + issueVectorUPL = 1; + } + /* + * After this point, if we are using a vector UPL, then + * either all the UPL elements end on a page boundary OR + * this UPL is the last element because it does not end + * on a page boundary. + */ + } + + /* + * request asynchronously so that we can overlap + * the preparation of the next I/O + * if there are already too many outstanding reads + * wait until some have completed before issuing the next read + */ + cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); + + if (iostate.io_error) { + /* + * one of the earlier reads we issued ran into a hard error + * don't issue any more reads, cleanup the UPL + * that was just created but not used, then + * go wait for any other reads to complete before + * returning the error to the caller + */ + ubc_upl_abort(upl, 0); + + goto wait_for_dreads; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, + upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); + + if (!useVectorUPL) { + if (no_zero_fill) { + io_flag &= ~CL_PRESERVE; + } else { + io_flag |= CL_PRESERVE; + } + + retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + } else { + if (!vector_upl_index) { + vector_upl = vector_upl_create(upl_offset); + v_upl_uio_offset = uio->uio_offset; + vector_upl_offset = upl_offset; + } + + vector_upl_set_subupl(vector_upl, upl, upl_size); + vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); + vector_upl_index++; + vector_upl_size += upl_size; + vector_upl_iosize += io_size; + + if (issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + } + last_iov_base = iov_base + io_size; + + if (lock) { + // We don't need to wait for the I/O to complete + cluster_unlock_direct_read(lock); + lock = NULL; + } + + /* + * update the uio structure + */ + if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { + uio_update(uio, (user_size_t)max_io_size); + } else { + uio_update(uio, (user_size_t)io_size); + } + + io_req_size -= io_size; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, + upl, (int)uio->uio_offset, io_req_size, retval, 0); + } /* end while */ + + if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { + retval = cluster_io_type(uio, read_type, read_length, 0); + + if (retval == 0 && *read_type == IO_DIRECT) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, + (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); + + goto next_dread; + } + } + +wait_for_dreads: + + if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { + retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); + reset_vector_run_state(); + } + + // We don't need to wait for the I/O to complete + if (lock) { + cluster_unlock_direct_read(lock); + } + + /* + * make sure all async reads that are part of this stream + * have completed before we return + */ + cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); + + if (iostate.io_error) { + retval = iostate.io_error; + } + + lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); + + if (io_throttled == TRUE && retval == 0) { + retval = EAGAIN; + } + + vm_map_offset_t current_page_size, current_page_mask; + current_page_size = vm_map_page_size(current_map()); + current_page_mask = vm_map_page_mask(current_map()); + for (next_iov_base = orig_iov_base; + next_iov_base < last_iov_base; + next_iov_base += current_page_size) { + /* + * This is specifically done for pmap accounting purposes. + * vm_pre_fault() will call vm_fault() to enter the page into + * the pmap if there isn't _a_ physical page for that VA already. + */ + vm_pre_fault(vm_map_trunc_page(next_iov_base, current_page_mask), VM_PROT_READ); + } + + if (io_req_size && retval == 0) { + /* + * we couldn't handle the tail of this request in DIRECT mode + * so fire it through the copy path + */ + if (flags & IO_ENCRYPTED) { + /* + * We cannot fall back to the copy path for encrypted I/O. If this + * happens, there is something wrong with the user buffer passed + * down. + */ + retval = EFAULT; + } else { + retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); + } + + *read_type = IO_UNKNOWN; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, + (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); + + return retval; +} + + +static int +cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, + int (*callback)(buf_t, void *), void *callback_arg, int flags) +{ + upl_page_info_t *pl; + upl_t upl[MAX_VECTS]; + vm_offset_t upl_offset; + addr64_t dst_paddr = 0; + user_addr_t iov_base; + off_t max_size; + upl_size_t upl_size; + vm_size_t upl_needed_size; + mach_msg_type_number_t pages_in_pl; + upl_control_flags_t upl_flags; + kern_return_t kret; + struct clios iostate; + int error = 0; + int cur_upl = 0; + int num_upl = 0; + int n; + u_int32_t xsize; + u_int32_t io_size; + u_int32_t devblocksize; + u_int32_t mem_alignment_mask; + u_int32_t tail_size = 0; + int bflag; + + if (flags & IO_PASSIVE) { + bflag = CL_PASSIVE; + } else { + bflag = 0; + } + + if (flags & IO_NOCACHE) { + bflag |= CL_NOCACHE; + } + + /* + * When we enter this routine, we know + * -- the read_length will not exceed the current iov_len + * -- the target address is physically contiguous for read_length + */ + cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC); + + devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; + mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; + + iostate.io_completed = 0; + iostate.io_issued = 0; + iostate.io_error = 0; + iostate.io_wanted = 0; + + lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); + +next_cread: + io_size = *read_length; + + max_size = filesize - uio->uio_offset; + + if (io_size > max_size) { + io_size = (u_int32_t)max_size; + } + + iov_base = uio_curriovbase(uio); + + upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); + upl_needed_size = upl_offset + io_size; + + pages_in_pl = 0; + upl_size = (upl_size_t)upl_needed_size; + upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; + + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, + (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); + + vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; + kret = vm_map_get_upl(map, + vm_map_trunc_page(iov_base, vm_map_page_mask(map)), + &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, + (int)upl_offset, upl_size, io_size, kret, 0); + + if (kret != KERN_SUCCESS) { + /* + * failed to get pagelist + */ + error = EINVAL; + goto wait_for_creads; + } + num_upl++; + + if (upl_size < upl_needed_size) { + /* + * The upl_size wasn't satisfied. + */ + error = EINVAL; + goto wait_for_creads; + } + pl = ubc_upl_pageinfo(upl[cur_upl]); + + dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; + + while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { + u_int32_t head_size; + + head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); + + if (head_size > io_size) { + head_size = io_size; + } + + error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); + + if (error) { + goto wait_for_creads; + } + + upl_offset += head_size; + dst_paddr += head_size; + io_size -= head_size; + + iov_base += head_size; + } + if ((u_int32_t)iov_base & mem_alignment_mask) { + /* + * request doesn't set up on a memory boundary + * the underlying DMA engine can handle... + * return an error instead of going through + * the slow copy path since the intent of this + * path is direct I/O to device memory + */ + error = EINVAL; + goto wait_for_creads; + } + + tail_size = io_size & (devblocksize - 1); + + io_size -= tail_size; + + while (io_size && error == 0) { + if (io_size > MAX_IO_CONTIG_SIZE) { + xsize = MAX_IO_CONTIG_SIZE; + } else { + xsize = io_size; + } + /* + * request asynchronously so that we can overlap + * the preparation of the next I/O... we'll do + * the commit after all the I/O has completed + * since its all issued against the same UPL + * if there are already too many outstanding reads + * wait until some have completed before issuing the next + */ + cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); + + if (iostate.io_error) { + /* + * one of the earlier reads we issued ran into a hard error + * don't issue any more reads... + * go wait for any other reads to complete before + * returning the error to the caller + */ + goto wait_for_creads; + } + error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, + CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, + (buf_t)NULL, &iostate, callback, callback_arg); + /* + * The cluster_io read was issued successfully, + * update the uio structure + */ + if (error == 0) { + uio_update(uio, (user_size_t)xsize); + + dst_paddr += xsize; + upl_offset += xsize; + io_size -= xsize; + } + } + if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { + error = cluster_io_type(uio, read_type, read_length, 0); + + if (error == 0 && *read_type == IO_CONTIG) { + cur_upl++; + goto next_cread; + } + } else { + *read_type = IO_UNKNOWN; + } + +wait_for_creads: + /* + * make sure all async reads that are part of this stream + * have completed before we proceed + */ + cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); + + if (iostate.io_error) { + error = iostate.io_error; + } + + lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); + + if (error == 0 && tail_size) { + error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); + } + + for (n = 0; n < num_upl; n++) { + /* + * just release our hold on each physically contiguous + * region without changing any state + */ + ubc_upl_abort(upl[n], 0); + } + + return error; +} + + +static int +cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) +{ + user_size_t iov_len; + user_addr_t iov_base = 0; + upl_t upl; + upl_size_t upl_size; + upl_control_flags_t upl_flags; + int retval = 0; + + /* + * skip over any emtpy vectors + */ + uio_update(uio, (user_size_t)0); + + iov_len = uio_curriovlen(uio); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); + + if (iov_len) { + iov_base = uio_curriovbase(uio); + /* + * make sure the size of the vector isn't too big... + * internally, we want to handle all of the I/O in + * chunk sizes that fit in a 32 bit int + */ + if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) { + upl_size = MAX_IO_REQUEST_SIZE; + } else { + upl_size = (u_int32_t)iov_len; + } + + upl_flags = UPL_QUERY_OBJECT_TYPE; + + vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; + if ((vm_map_get_upl(map, + vm_map_trunc_page(iov_base, vm_map_page_mask(map)), + &upl_size, &upl, NULL, NULL, &upl_flags, VM_KERN_MEMORY_FILE, 0)) != KERN_SUCCESS) { + /* + * the user app must have passed in an invalid address + */ + retval = EFAULT; + } + if (upl_size == 0) { + retval = EFAULT; + } + + *io_length = upl_size; + + if (upl_flags & UPL_PHYS_CONTIG) { + *io_type = IO_CONTIG; + } else if (iov_len >= min_length) { + *io_type = IO_DIRECT; + } else { + *io_type = IO_COPY; + } + } else { + /* + * nothing left to do for this uio + */ + *io_length = 0; + *io_type = IO_UNKNOWN; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); + + if (*io_type == IO_DIRECT && + vm_map_page_shift(current_map()) < PAGE_SHIFT) { + /* no direct I/O for sub-page-size address spaces */ + DEBUG4K_VFS("io_type IO_DIRECT -> IO_COPY\n"); + *io_type = IO_COPY; + } + + return retval; +} + + +/* + * generate advisory I/O's in the largest chunks possible + * the completed pages will be released into the VM cache + */ +int +advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) +{ + return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); +} + +int +advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) +{ + upl_page_info_t *pl; + upl_t upl; + vm_offset_t upl_offset; + int upl_size; + off_t upl_f_offset; + int start_offset; + int start_pg; + int last_pg; + int pages_in_upl; + off_t max_size; + int io_size; + kern_return_t kret; + int retval = 0; + int issued_io; + int skip_range; + uint32_t max_io_size; + + + if (!UBCINFOEXISTS(vp)) { + return EINVAL; + } + + if (f_offset < 0 || resid < 0) { + return EINVAL; + } + + max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); + + if (disk_conditioner_mount_is_ssd(vp->v_mount)) { + if (max_io_size > speculative_prefetch_max_iosize) { + max_io_size = speculative_prefetch_max_iosize; + } + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, + (int)f_offset, resid, (int)filesize, 0, 0); + + while (resid && f_offset < filesize && retval == 0) { + /* + * compute the size of the upl needed to encompass + * the requested read... limit each call to cluster_io + * to the maximum UPL size... cluster_io will clip if + * this exceeds the maximum io_size for the device, + * make sure to account for + * a starting offset that's not page aligned + */ + start_offset = (int)(f_offset & PAGE_MASK_64); + upl_f_offset = f_offset - (off_t)start_offset; + max_size = filesize - f_offset; + + if (resid < max_size) { + io_size = resid; + } else { + io_size = (int)max_size; + } + + upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + if ((uint32_t)upl_size > max_io_size) { + upl_size = max_io_size; + } + + skip_range = 0; + /* + * return the number of contiguously present pages in the cache + * starting at upl_f_offset within the file + */ + ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); + + if (skip_range) { + /* + * skip over pages already present in the cache + */ + io_size = skip_range - start_offset; + + f_offset += io_size; + resid -= io_size; + + if (skip_range == upl_size) { + continue; + } + /* + * have to issue some real I/O + * at this point, we know it's starting on a page boundary + * because we've skipped over at least the first page in the request + */ + start_offset = 0; + upl_f_offset += skip_range; + upl_size -= skip_range; + } + pages_in_upl = upl_size / PAGE_SIZE; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, + upl, (int)upl_f_offset, upl_size, start_offset, 0); + + kret = ubc_create_upl_kernel(vp, + upl_f_offset, + upl_size, + &upl, + &pl, + UPL_RET_ONLY_ABSENT | UPL_SET_LITE, + VM_KERN_MEMORY_FILE); + if (kret != KERN_SUCCESS) { + return retval; + } + issued_io = 0; + + /* + * before we start marching forward, we must make sure we end on + * a present page, otherwise we will be working with a freed + * upl + */ + for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { + if (upl_page_present(pl, last_pg)) { + break; + } + } + pages_in_upl = last_pg + 1; + + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, + upl, (int)upl_f_offset, upl_size, start_offset, 0); + + + for (last_pg = 0; last_pg < pages_in_upl;) { + /* + * scan from the beginning of the upl looking for the first + * page that is present.... this will become the first page in + * the request we're going to make to 'cluster_io'... if all + * of the pages are absent, we won't call through to 'cluster_io' + */ + for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { + if (upl_page_present(pl, start_pg)) { + break; + } + } + + /* + * scan from the starting present page looking for an absent + * page before the end of the upl is reached, if we + * find one, then it will terminate the range of pages being + * presented to 'cluster_io' + */ + for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { + if (!upl_page_present(pl, last_pg)) { + break; + } + } + + if (last_pg > start_pg) { + /* + * we found a range of pages that must be filled + * if the last page in this range is the last page of the file + * we may have to clip the size of it to keep from reading past + * the end of the last physical block associated with the file + */ + upl_offset = start_pg * PAGE_SIZE; + io_size = (last_pg - start_pg) * PAGE_SIZE; + + if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { + io_size = (int)(filesize - (upl_f_offset + upl_offset)); + } + + /* + * issue an asynchronous read to cluster_io + */ + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, + CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + + issued_io = 1; + } + } + if (issued_io == 0) { + ubc_upl_abort(upl, 0); + } + + io_size = upl_size - start_offset; + + if (io_size > resid) { + io_size = resid; + } + f_offset += io_size; + resid -= io_size; + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, + (int)f_offset, resid, retval, 0, 0); + + return retval; +} + + +int +cluster_push(vnode_t vp, int flags) +{ + return cluster_push_ext(vp, flags, NULL, NULL); +} + + +int +cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + return cluster_push_err(vp, flags, callback, callback_arg, NULL); +} + +/* write errors via err, but return the number of clusters written */ +int +cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err) +{ + int retval; + int my_sparse_wait = 0; + struct cl_writebehind *wbp; + int local_err = 0; + + if (err) { + *err = 0; + } + + if (!UBCINFOEXISTS(vp)) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0); + return 0; + } + /* return if deferred write is set */ + if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { + return 0; + } + if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0); + return 0; + } + if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { + lck_mtx_unlock(&wbp->cl_lockw); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0); + return 0; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, + wbp->cl_scmap, wbp->cl_number, flags, 0, 0); + + /* + * if we have an fsync in progress, we don't want to allow any additional + * sync/fsync/close(s) to occur until it finishes. + * note that its possible for writes to continue to occur to this file + * while we're waiting and also once the fsync starts to clean if we're + * in the sparse map case + */ + while (wbp->cl_sparse_wait) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); + + msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); + } + if (flags & IO_SYNC) { + my_sparse_wait = 1; + wbp->cl_sparse_wait = 1; + + /* + * this is an fsync (or equivalent)... we must wait for any existing async + * cleaning operations to complete before we evaulate the current state + * and finish cleaning... this insures that all writes issued before this + * fsync actually get cleaned to the disk before this fsync returns + */ + while (wbp->cl_sparse_pushes) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); + + msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); + } + } + if (wbp->cl_scmap) { + void *scmap; + + if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { + scmap = wbp->cl_scmap; + wbp->cl_scmap = NULL; + + wbp->cl_sparse_pushes++; + + lck_mtx_unlock(&wbp->cl_lockw); + + retval = sparse_cluster_push(wbp, &scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE); + + lck_mtx_lock(&wbp->cl_lockw); + + wbp->cl_sparse_pushes--; + + if (retval) { + if (wbp->cl_scmap != NULL) { + panic("cluster_push_err: Expected NULL cl_scmap\n"); + } + + wbp->cl_scmap = scmap; + } + + if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) { + wakeup((caddr_t)&wbp->cl_sparse_pushes); + } + } else { + retval = sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE); + } + + local_err = retval; + + if (err) { + *err = retval; + } + retval = 1; + } else { + retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, &local_err, FALSE); + if (err) { + *err = local_err; + } + } + lck_mtx_unlock(&wbp->cl_lockw); + + if (flags & IO_SYNC) { + (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); + } + + if (my_sparse_wait) { + /* + * I'm the owner of the serialization token + * clear it and wakeup anyone that is waiting + * for me to finish + */ + lck_mtx_lock(&wbp->cl_lockw); + + wbp->cl_sparse_wait = 0; + wakeup((caddr_t)&wbp->cl_sparse_wait); + + lck_mtx_unlock(&wbp->cl_lockw); + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, + wbp->cl_scmap, wbp->cl_number, retval, local_err, 0); + + return retval; +} + + +__private_extern__ void +cluster_release(struct ubc_info *ubc) +{ + struct cl_writebehind *wbp; + struct cl_readahead *rap; + + if ((wbp = ubc->cl_wbehind)) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); + + if (wbp->cl_scmap) { + vfs_drt_control(&(wbp->cl_scmap), 0); + } + lck_mtx_destroy(&wbp->cl_lockw, &cl_mtx_grp); + zfree(cl_wr_zone, wbp); + ubc->cl_wbehind = NULL; + } else { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); + } + + if ((rap = ubc->cl_rahead)) { + lck_mtx_destroy(&rap->cl_lockr, &cl_mtx_grp); + zfree(cl_rd_zone, rap); + ubc->cl_rahead = NULL; + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); +} + + +static int +cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err, boolean_t vm_initiated) +{ + int cl_index; + int cl_index1; + int min_index; + int cl_len; + int cl_pushed = 0; + struct cl_wextent l_clusters[MAX_CLUSTERS]; + u_int max_cluster_pgcount; + int error = 0; + + max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; + /* + * the write behind context exists and has + * already been locked... + */ + if (wbp->cl_number == 0) { + /* + * no clusters to push + * return number of empty slots + */ + return MAX_CLUSTERS; + } + + /* + * make a local 'sorted' copy of the clusters + * and clear wbp->cl_number so that new clusters can + * be developed + */ + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { + if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) { + continue; + } + if (min_index == -1) { + min_index = cl_index1; + } else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) { + min_index = cl_index1; + } + } + if (min_index == -1) { + break; + } + + l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; + l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; + l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; + + wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; + } + wbp->cl_number = 0; + + cl_len = cl_index; + + /* skip switching to the sparse cluster mechanism if on diskimage */ + if (((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS) && + !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)) { + int i; + + /* + * determine if we appear to be writing the file sequentially + * if not, by returning without having pushed any clusters + * we will cause this vnode to be pushed into the sparse cluster mechanism + * used for managing more random I/O patterns + * + * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... + * that's why we're in try_push with PUSH_DELAY... + * + * check to make sure that all the clusters except the last one are 'full'... and that each cluster + * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above + * so we can just make a simple pass through, up to, but not including the last one... + * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they + * are sequential + * + * we let the last one be partial as long as it was adjacent to the previous one... + * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out + * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... + */ + for (i = 0; i < MAX_CLUSTERS - 1; i++) { + if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) { + goto dont_try; + } + if (l_clusters[i].e_addr != l_clusters[i + 1].b_addr) { + goto dont_try; + } + } + } + if (vm_initiated == TRUE) { + lck_mtx_unlock(&wbp->cl_lockw); + } + + for (cl_index = 0; cl_index < cl_len; cl_index++) { + int flags; + struct cl_extent cl; + int retval; + + flags = io_flags & (IO_PASSIVE | IO_CLOSE); + + /* + * try to push each cluster in turn... + */ + if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) { + flags |= IO_NOCACHE; + } + + if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) { + flags |= IO_PASSIVE; + } + + if (push_flag & PUSH_SYNC) { + flags |= IO_SYNC; + } + + cl.b_addr = l_clusters[cl_index].b_addr; + cl.e_addr = l_clusters[cl_index].e_addr; + + retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg, vm_initiated); + + if (retval == 0) { + cl_pushed++; + + l_clusters[cl_index].b_addr = 0; + l_clusters[cl_index].e_addr = 0; + } else if (error == 0) { + error = retval; + } + + if (!(push_flag & PUSH_ALL)) { + break; + } + } + if (vm_initiated == TRUE) { + lck_mtx_lock(&wbp->cl_lockw); + } + + if (err) { + *err = error; + } + +dont_try: + if (cl_len > cl_pushed) { + /* + * we didn't push all of the clusters, so + * lets try to merge them back in to the vnode + */ + if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { + /* + * we picked up some new clusters while we were trying to + * push the old ones... this can happen because I've dropped + * the vnode lock... the sum of the + * leftovers plus the new cluster count exceeds our ability + * to represent them, so switch to the sparse cluster mechanism + * + * collect the active public clusters... + */ + sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); + + for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { + if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { + continue; + } + wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; + wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; + wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; + + cl_index1++; + } + /* + * update the cluster count + */ + wbp->cl_number = cl_index1; + + /* + * and collect the original clusters that were moved into the + * local storage for sorting purposes + */ + sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); + } else { + /* + * we've got room to merge the leftovers back in + * just append them starting at the next 'hole' + * represented by wbp->cl_number + */ + for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { + if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { + continue; + } + + wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; + wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; + wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; + + cl_index1++; + } + /* + * update the cluster count + */ + wbp->cl_number = cl_index1; + } + } + return MAX_CLUSTERS - wbp->cl_number; +} + + + +static int +cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, + int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) +{ + upl_page_info_t *pl; + upl_t upl; + vm_offset_t upl_offset; + int upl_size; + off_t upl_f_offset; + int pages_in_upl; + int start_pg; + int last_pg; int io_size; - vm_offset_t io_address; + int io_flags; + int upl_flags; + int bflag; + int size; + int error = 0; + int retval; kern_return_t kret; - int segflg; - int error = 0; - int retval = 0; - int b_lblkno; - int e_lblkno; - b_lblkno = (int)(uio->uio_offset / PAGE_SIZE_64); + if (flags & IO_PASSIVE) { + bflag = CL_PASSIVE; + } else { + bflag = 0; + } + + if (flags & IO_SKIP_ENCRYPTION) { + bflag |= CL_ENCRYPTED; + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, + (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); + + if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); + + return 0; + } + upl_size = pages_in_upl * PAGE_SIZE; + upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); + + if (upl_f_offset + upl_size >= EOF) { + if (upl_f_offset >= EOF) { + /* + * must have truncated the file and missed + * clearing a dangling cluster (i.e. it's completely + * beyond the new EOF + */ + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); + + return 0; + } + size = (int)(EOF - upl_f_offset); + + upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; + pages_in_upl = upl_size / PAGE_SIZE; + } else { + size = upl_size; + } + + + if (vm_initiated) { + vnode_pageout(vp, NULL, (upl_offset_t)0, upl_f_offset, (upl_size_t)upl_size, + UPL_MSYNC | UPL_VNODE_PAGER | UPL_KEEPCACHED, &error); + + return error; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); + + /* + * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior + * + * - only pages that are currently dirty are returned... these are the ones we need to clean + * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set + * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page + * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if + * someone dirties this page while the I/O is in progress, we don't lose track of the new state + * + * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) + */ + + if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) { + upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; + } else { + upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; + } + + kret = ubc_create_upl_kernel(vp, + upl_f_offset, + upl_size, + &upl, + &pl, + upl_flags, + VM_KERN_MEMORY_FILE); + if (kret != KERN_SUCCESS) { + panic("cluster_push: failed to get pagelist"); + } + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); + + /* + * since we only asked for the dirty pages back + * it's possible that we may only get a few or even none, so... + * before we start marching forward, we must make sure we know + * where the last present page is in the UPL, otherwise we could + * end up working with a freed upl due to the FREE_ON_EMPTY semantics + * employed by commit_range and abort_range. + */ + for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { + if (upl_page_present(pl, last_pg)) { + break; + } + } + pages_in_upl = last_pg + 1; - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) { + if (pages_in_upl == 0) { + ubc_upl_abort(upl, 0); + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); + return 0; + } + + for (last_pg = 0; last_pg < pages_in_upl;) { /* - * compute the size of the upl needed to encompass - * the requested read... limit each call to cluster_io - * to the maximum UPL size... cluster_io will clip if - * this exceeds the maximum io_size for the device, - * make sure to account for - * a starting offset that's not page aligned + * find the next dirty page in the UPL + * this will become the first page in the + * next I/O to generate */ - start_offset = (int)(uio->uio_offset & PAGE_MASK_64); - upl_f_offset = uio->uio_offset - (off_t)start_offset; - max_size = filesize - uio->uio_offset; + for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { + if (upl_dirty_page(pl, start_pg)) { + break; + } + if (upl_page_present(pl, start_pg)) { + /* + * RET_ONLY_DIRTY will return non-dirty 'precious' pages + * just release these unchanged since we're not going + * to steal them or change their state + */ + ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); + } + } + if (start_pg >= pages_in_upl) { + /* + * done... no more dirty pages to push + */ + break; + } + if (start_pg > last_pg) { + /* + * skipped over some non-dirty pages + */ + size -= ((start_pg - last_pg) * PAGE_SIZE); + } + + /* + * find a range of dirty pages to write + */ + for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { + if (!upl_dirty_page(pl, last_pg)) { + break; + } + } + upl_offset = start_pg * PAGE_SIZE; + + io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); + + io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; + + if (!(flags & IO_SYNC)) { + io_flags |= CL_ASYNC; + } + + if (flags & IO_CLOSE) { + io_flags |= CL_CLOSE; + } + + if (flags & IO_NOCACHE) { + io_flags |= CL_NOCACHE; + } + + retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, + io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + + if (error == 0 && retval) { + error = retval; + } + + size -= io_size; + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, error, 0, 0); - if ((off_t)((unsigned int)uio->uio_resid) < max_size) - io_size = uio->uio_resid; - else - io_size = max_size; + return error; +} + + +/* + * sparse_cluster_switch is called with the write behind lock held + */ +static int +sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) +{ + int cl_index; + int error; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, 0, 0); + + for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { + int flags; + struct cl_extent cl; + + for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { + if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { + if (flags & UPL_POP_DIRTY) { + cl.e_addr = cl.b_addr + 1; + + error = sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg, vm_initiated); + + if (error) { + break; + } + } + } + } + } + wbp->cl_number -= cl_index; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, error, 0); + + return error; +} + + +/* + * sparse_cluster_push must be called with the write-behind lock held if the scmap is + * still associated with the write-behind context... however, if the scmap has been disassociated + * from the write-behind context (the cluster_push case), the wb lock is not held + */ +static int +sparse_cluster_push(struct cl_writebehind *wbp, void **scmap, vnode_t vp, off_t EOF, int push_flag, + int io_flags, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) +{ + struct cl_extent cl; + off_t offset; + u_int length; + void *l_scmap; + int error = 0; + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0); - if (uio->uio_segflg == UIO_USERSPACE && !(vp->v_flag & VNOCACHE_DATA)) { - segflg = uio->uio_segflg; + if (push_flag & PUSH_ALL) { + vfs_drt_control(scmap, 1); + } + + l_scmap = *scmap; - uio->uio_segflg = UIO_PHYS_USERSPACE; + for (;;) { + int retval; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, - (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0); + if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) { + break; + } - while (io_size && retval == 0) { - int xsize; - vm_offset_t paddr; + if (vm_initiated == TRUE) { + lck_mtx_unlock(&wbp->cl_lockw); + } - if (ubc_page_op(vp, - upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY, - &paddr, 0) != KERN_SUCCESS) - break; + cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); + cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); - xsize = PAGE_SIZE - start_offset; - - if (xsize > io_size) - xsize = io_size; + retval = cluster_push_now(vp, &cl, EOF, io_flags, callback, callback_arg, vm_initiated); + if (error == 0 && retval) { + error = retval; + } - retval = uiomove((caddr_t)(paddr + start_offset), xsize, uio); + if (vm_initiated == TRUE) { + lck_mtx_lock(&wbp->cl_lockw); - ubc_page_op(vp, upl_f_offset, - UPL_POP_CLR | UPL_POP_BUSY, 0, 0); + if (*scmap != l_scmap) { + break; + } + } - io_size -= xsize; - start_offset = (int) - (uio->uio_offset & PAGE_MASK_64); - upl_f_offset = uio->uio_offset - start_offset; + if (error) { + if (vfs_drt_mark_pages(scmap, offset, length, NULL) != KERN_SUCCESS) { + panic("Failed to restore dirty state on failure\n"); } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0); - uio->uio_segflg = segflg; - - if (retval) - break; + break; + } + + if (!(push_flag & PUSH_ALL)) { + break; + } + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); + + return error; +} + + +/* + * sparse_cluster_add is called with the write behind lock held + */ +static int +sparse_cluster_add(struct cl_writebehind *wbp, void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, + int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) +{ + u_int new_dirty; + u_int length; + off_t offset; + int error; + int push_flag = 0; /* Is this a valid value? */ + + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); + + offset = (off_t)(cl->b_addr * PAGE_SIZE_64); + length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; + + while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { + /* + * no room left in the map + * only a partial update was done + * push out some pages and try again + */ + + if (vfs_get_scmap_push_behavior_internal(scmap, &push_flag)) { + push_flag = 0; + } + + error = sparse_cluster_push(wbp, scmap, vp, EOF, push_flag, 0, callback, callback_arg, vm_initiated); + + if (error) { + break; + } + + offset += (new_dirty * PAGE_SIZE_64); + length -= (new_dirty * PAGE_SIZE); + } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); - if (io_size == 0) { - /* - * we're already finished with this read request - * let's see if we should do a read-ahead - */ - e_lblkno = (int) - ((uio->uio_offset - 1) / PAGE_SIZE_64); + return error; +} - if (!(vp->v_flag & VRAOFF)) - /* - * let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); - vp->v_lastr = e_lblkno; - break; - } - max_size = filesize - uio->uio_offset; - } - upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; - pages_in_upl = upl_size / PAGE_SIZE; +static int +cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) +{ + upl_page_info_t *pl; + upl_t upl; + addr64_t ubc_paddr; + kern_return_t kret; + int error = 0; + int did_read = 0; + int abort_flags; + int upl_flags; + int bflag; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + if (flags & IO_PASSIVE) { + bflag = CL_PASSIVE; + } else { + bflag = 0; + } - kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_FLAGS_NONE); - if (kret != KERN_SUCCESS) - panic("cluster_read: failed to get pagelist"); + if (flags & IO_NOCACHE) { + bflag |= CL_NOCACHE; + } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); + upl_flags = UPL_SET_LITE; + if (!(flags & CL_READ)) { /* - * scan from the beginning of the upl looking for the first - * non-valid page.... this will become the first page in - * the request we're going to make to 'cluster_io'... if all - * of the pages are valid, we won't call through to 'cluster_io' + * "write" operation: let the UPL subsystem know + * that we intend to modify the buffer cache pages + * we're gathering. */ - for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { - if (!upl_valid_page(pl, start_pg)) - break; - } - + upl_flags |= UPL_WILL_MODIFY; + } else { /* - * scan from the starting invalid page looking for a valid - * page before the end of the upl is reached, if we - * find one, then it will be the last page of the request to - * 'cluster_io' + * indicate that there is no need to pull the + * mapping for this page... we're only going + * to read from it, not modify it. */ - for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { - if (upl_valid_page(pl, last_pg)) - break; - } - - if (start_pg < last_pg) { - /* - * we found a range of 'invalid' pages that must be filled - * if the last page in this range is the last page of the file - * we may have to clip the size of it to keep from reading past - * the end of the last physical block associated with the file - */ - upl_offset = start_pg * PAGE_SIZE; - io_size = (last_pg - start_pg) * PAGE_SIZE; - - if ((upl_f_offset + upl_offset + io_size) > filesize) - io_size = filesize - (upl_f_offset + upl_offset); + upl_flags |= UPL_FILE_IO; + } + kret = ubc_create_upl_kernel(vp, + uio->uio_offset & ~PAGE_MASK_64, + PAGE_SIZE, + &upl, + &pl, + upl_flags, + VM_KERN_MEMORY_FILE); + + if (kret != KERN_SUCCESS) { + return EINVAL; + } - /* - * issue a synchronous read to cluster_io - */ + if (!upl_valid_page(pl, 0)) { + /* + * issue a synchronous read to cluster_io + */ + error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, + CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + if (error) { + ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, - io_size, devblocksize, CL_READ, (struct buf *)0); + return error; } - if (error == 0) { - /* - * if the read completed successfully, or there was no I/O request - * issued, than map the upl into kernel address space and - * move the data into user land.... we'll first add on any 'valid' - * pages that were present in the upl when we acquired it. - */ - u_int val_size; - u_int size_of_prefetch; - - for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { - if (!upl_valid_page(pl, uio_last)) - break; - } - /* - * compute size to transfer this round, if uio->uio_resid is - * still non-zero after this uiomove, we'll loop around and - * set up for another I/O. - */ - val_size = (uio_last * PAGE_SIZE) - start_offset; - - if (max_size < val_size) - val_size = max_size; - - if (uio->uio_resid < val_size) - val_size = uio->uio_resid; + did_read = 1; + } + ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); - e_lblkno = (int)((uio->uio_offset + ((off_t)val_size - 1)) / PAGE_SIZE_64); +/* + * NOTE: There is no prototype for the following in BSD. It, and the definitions + * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in + * osfmk/ppc/mappings.h. They are not included here because there appears to be no + * way to do so without exporting them to kexts as well. + */ + if (flags & CL_READ) { +// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ + copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ + } else { +// copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ + copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ + } + if (!(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { + /* + * issue a synchronous write to cluster_io + */ + error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, + bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); + } + if (error == 0) { + uio_update(uio, (user_size_t)xsize); + } - if (size_of_prefetch = (uio->uio_resid - val_size)) { - /* - * if there's still I/O left to do for this request, then issue a - * pre-fetch I/O... the I/O wait time will overlap - * with the copying of the data - */ - cluster_rd_prefetch(vp, uio->uio_offset + val_size, size_of_prefetch, filesize, devblocksize); - } else { - if (!(vp->v_flag & VRAOFF) && !(vp->v_flag & VNOCACHE_DATA)) - /* - * let's try to read ahead if we're in - * a sequential access pattern - */ - cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize); - vp->v_lastr = e_lblkno; - } - if (uio->uio_segflg == UIO_USERSPACE) { - int offset; + if (did_read) { + abort_flags = UPL_ABORT_FREE_ON_EMPTY; + } else { + abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; + } - segflg = uio->uio_segflg; + ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); - uio->uio_segflg = UIO_PHYS_USERSPACE; + return error; +} +int +cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) +{ + int pg_offset; + int pg_index; + int csize; + int segflg; + int retval = 0; + int xsize; + upl_page_info_t *pl; + int dirty_count; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, - (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0); + xsize = *io_resid; - offset = start_offset; + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, + (int)uio->uio_offset, upl_offset, xsize, 0, 0); - while (val_size && retval == 0) { - int csize; - int i; - caddr_t paddr; + segflg = uio->uio_segflg; - i = offset / PAGE_SIZE; - csize = min(PAGE_SIZE - start_offset, val_size); + switch (segflg) { + case UIO_USERSPACE32: + case UIO_USERISPACE32: + uio->uio_segflg = UIO_PHYS_USERSPACE32; + break; - paddr = (caddr_t)upl_phys_page(pl, i) + start_offset; + case UIO_USERSPACE: + case UIO_USERISPACE: + uio->uio_segflg = UIO_PHYS_USERSPACE; + break; - retval = uiomove(paddr, csize, uio); + case UIO_USERSPACE64: + case UIO_USERISPACE64: + uio->uio_segflg = UIO_PHYS_USERSPACE64; + break; - val_size -= csize; - offset += csize; - start_offset = offset & PAGE_MASK; - } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, - (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0); + case UIO_SYSSPACE: + uio->uio_segflg = UIO_PHYS_SYSSPACE; + break; + } + pl = ubc_upl_pageinfo(upl); - uio->uio_segflg = segflg; - } - else - { - if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS) - panic("cluster_read: ubc_upl_map() failed\n"); + pg_index = upl_offset / PAGE_SIZE; + pg_offset = upl_offset & PAGE_MASK; + csize = min(PAGE_SIZE - pg_offset, xsize); - retval = uiomove((caddr_t)(io_address + start_offset), val_size, uio); + dirty_count = 0; + while (xsize && retval == 0) { + addr64_t paddr; - if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS) - panic("cluster_read: ubc_upl_unmap() failed\n"); - } + paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset; + if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE)) { + dirty_count++; } - if (start_pg < last_pg) { - /* - * compute the range of pages that we actually issued an I/O for - * and either commit them as valid if the I/O succeeded - * or abort them if the I/O failed - */ - io_size = (last_pg - start_pg) * PAGE_SIZE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, - (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); + retval = uiomove64(paddr, csize, uio); - if (error || (vp->v_flag & VNOCACHE_DATA)) - ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, - UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - else - ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, - UPL_COMMIT_CLEAR_DIRTY - | UPL_COMMIT_FREE_ON_EMPTY - | UPL_COMMIT_INACTIVATE); + pg_index += 1; + pg_offset = 0; + xsize -= csize; + csize = min(PAGE_SIZE, xsize); + } + *io_resid = xsize; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, - (int)upl, start_pg * PAGE_SIZE, io_size, error, 0); - } - if ((last_pg - start_pg) < pages_in_upl) { - int cur_pg; - int commit_flags; + uio->uio_segflg = segflg; - /* - * the set of pages that we issued an I/O for did not encompass - * the entire upl... so just release these without modifying - * there state - */ - if (error) - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - else { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, - (int)upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); + task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl)); + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, + (int)uio->uio_offset, xsize, retval, segflg, 0); - if (start_pg) { - /* - * we found some already valid pages at the beginning of - * the upl commit these back to the inactive list with - * reference cleared - */ - for (cur_pg = 0; cur_pg < start_pg; cur_pg++) { - commit_flags = UPL_COMMIT_FREE_ON_EMPTY - | UPL_COMMIT_INACTIVATE; - - if (upl_dirty_page(pl, cur_pg)) - commit_flags |= UPL_COMMIT_SET_DIRTY; - - if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA)) - ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, - UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - else - ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, - PAGE_SIZE, commit_flags); - } - } - if (last_pg < uio_last) { - /* - * we found some already valid pages immediately after the - * pages we issued I/O for, commit these back to the - * inactive list with reference cleared - */ - for (cur_pg = last_pg; cur_pg < uio_last; cur_pg++) { - commit_flags = UPL_COMMIT_FREE_ON_EMPTY - | UPL_COMMIT_INACTIVATE; - - if (upl_dirty_page(pl, cur_pg)) - commit_flags |= UPL_COMMIT_SET_DIRTY; - - if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA)) - ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE, - UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); - else - ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, - PAGE_SIZE, commit_flags); - } - } - if (uio_last < pages_in_upl) { - /* - * there were some invalid pages beyond the valid pages - * that we didn't issue an I/O for, just release them - * unchanged - */ - ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, - (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); - } + return retval; +} - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, - (int)upl, -1, -1, 0, 0); - } - } - if (retval == 0) - retval = error; - } - return (retval); +int +cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) +{ + return cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1); } + static int -cluster_nocopy_read(vp, uio, filesize, devblocksize, flags) - struct vnode *vp; - struct uio *uio; - off_t filesize; - int devblocksize; - int flags; +cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) { - upl_t upl; - upl_page_info_t *pl; - off_t upl_f_offset; - vm_offset_t upl_offset; - off_t start_upl_f_offset; - off_t max_io_size; - int io_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; - vm_offset_t paddr; - int upl_flags; - kern_return_t kret; - int segflg; - struct iovec *iov; - int i; - int force_data_sync; - int error = 0; - int retval = 0; + int segflg; + int io_size; + int xsize; + int start_offset; + int retval = 0; + memory_object_control_t control; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, - (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0); + io_size = *io_resid; - /* - * When we enter this routine, we know - * -- the offset into the file is on a pagesize boundary - * -- the resid is a page multiple - * -- the resid will not exceed iov_len - */ + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, + (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); - iov = uio->uio_iov; - while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) { - - max_io_size = filesize - uio->uio_offset; - - if (max_io_size < (off_t)((unsigned int)uio->uio_resid)) - io_size = max_io_size; - else - io_size = uio->uio_resid; - - /* - * We don't come into this routine unless - * UIO_USERSPACE is set. - */ - segflg = uio->uio_segflg; - - uio->uio_segflg = UIO_PHYS_USERSPACE; - - /* - * First look for pages already in the cache - * and move them to user space. - */ - while (io_size && (retval == 0)) { - upl_f_offset = uio->uio_offset; - - /* - * If this call fails, it means the page is not - * in the page cache. - */ - if (ubc_page_op(vp, upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) != KERN_SUCCESS) - break; - - retval = uiomove((caddr_t)(paddr), PAGE_SIZE, uio); - - ubc_page_op(vp, upl_f_offset, - UPL_POP_CLR | UPL_POP_BUSY, 0, 0); - - io_size -= PAGE_SIZE; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 71)) | DBG_FUNC_NONE, - (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0); - } - - uio->uio_segflg = segflg; - - if (retval) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, 2, retval, 0); - return(retval); - } - - /* If we are already finished with this read, then return */ - if (io_size == 0) - { - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, 3, io_size, 0); - return(0); - } - - max_io_size = io_size; - if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - max_io_size = MAX_UPL_TRANSFER * PAGE_SIZE; - - start_upl_f_offset = uio->uio_offset; /* this is page aligned in the file */ - upl_f_offset = start_upl_f_offset; - io_size = 0; - - while(io_size < max_io_size) - { - - if(ubc_page_op(vp, upl_f_offset, - UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) == KERN_SUCCESS) - { - ubc_page_op(vp, upl_f_offset, - UPL_POP_CLR | UPL_POP_BUSY, 0, 0); - break; - } + control = ubc_getobject(vp, UBC_FLAGS_NONE); - /* - * Build up the io request parameters. - */ + if (control == MEMORY_OBJECT_CONTROL_NULL) { + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, + (int)uio->uio_offset, io_size, retval, 3, 0); - io_size += PAGE_SIZE; - upl_f_offset += PAGE_SIZE; - } + return 0; + } + segflg = uio->uio_segflg; - if (io_size == 0) - return(retval); + switch (segflg) { + case UIO_USERSPACE32: + case UIO_USERISPACE32: + uio->uio_segflg = UIO_PHYS_USERSPACE32; + break; - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; - upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; + case UIO_USERSPACE64: + case UIO_USERISPACE64: + uio->uio_segflg = UIO_PHYS_USERSPACE64; + break; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, - (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0); + case UIO_USERSPACE: + case UIO_USERISPACE: + uio->uio_segflg = UIO_PHYS_USERSPACE; + break; - for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) - { - pages_in_pl = 0; - upl_size = upl_needed_size; - upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; + case UIO_SYSSPACE: + uio->uio_segflg = UIO_PHYS_SYSSPACE; + break; + } - kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, force_data_sync); + if ((io_size = *io_resid)) { + start_offset = (int)(uio->uio_offset & PAGE_MASK_64); + xsize = (int)uio_resid(uio); - if (kret != KERN_SUCCESS) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, - (int)upl_offset, upl_size, io_size, kret, 0); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, 4, retval, 0); + retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, + start_offset, io_size, mark_dirty, take_reference); + xsize -= uio_resid(uio); + io_size -= xsize; + } + uio->uio_segflg = segflg; + *io_resid = io_size; - /* cluster_nocopy_read: failed to get pagelist */ - /* do not return kret here */ - return(retval); - } + KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, + (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); - pages_in_pl = upl_size / PAGE_SIZE; - pl = UPL_GET_INTERNAL_PAGE_LIST(upl); + return retval; +} - for(i=0; i < pages_in_pl; i++) - { - if (!upl_valid_page(pl, i)) - break; - } - if (i == pages_in_pl) - break; - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - } - - if (force_data_sync >= 3) - { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, - (int)upl_offset, upl_size, io_size, kret, 0); - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, uio->uio_resid, 5, retval, 0); - return(retval); - } - /* - * Consider the possibility that upl_size wasn't satisfied. - */ - if (upl_size != upl_needed_size) - io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK; - - if (io_size == 0) - { - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - return(retval); - } - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, - (int)upl_offset, upl_size, io_size, kret, 0); - - /* - * issue a synchronous read to cluster_io - */ - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, - (int)upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0); - - error = cluster_io(vp, upl, upl_offset, start_upl_f_offset, - io_size, devblocksize, CL_READ| CL_NOZERO, (struct buf *)0); - - if (error == 0) { - /* - * The cluster_io read completed successfully, - * update the uio structure and commit. - */ - - ubc_upl_commit_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_COMMIT_SET_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); - - iov->iov_base += io_size; - iov->iov_len -= io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; - } - else { - ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, - UPL_ABORT_FREE_ON_EMPTY); - } - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, - (int)upl, (int)uio->uio_offset, (int)uio->uio_resid, error, 0); - - if (retval == 0) - retval = error; +int +is_file_clean(vnode_t vp, off_t filesize) +{ + off_t f_offset; + int flags; + int total_dirty = 0; + + for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { + if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { + if (flags & UPL_POP_DIRTY) { + total_dirty++; + } + } + } + if (total_dirty) { + return EINVAL; + } - } /* end while */ + return 0; +} - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, - (int)uio->uio_offset, (int)uio->uio_resid, 6, retval, 0); - return (retval); -} +/* + * Dirty region tracking/clustering mechanism. + * + * This code (vfs_drt_*) provides a mechanism for tracking and clustering + * dirty regions within a larger space (file). It is primarily intended to + * support clustering in large files with many dirty areas. + * + * The implementation assumes that the dirty regions are pages. + * + * To represent dirty pages within the file, we store bit vectors in a + * variable-size circular hash. + */ +/* + * Bitvector size. This determines the number of pages we group in a + * single hashtable entry. Each hashtable entry is aligned to this + * size within the file. + */ +#define DRT_BITVECTOR_PAGES ((1024 * 256) / PAGE_SIZE) -static int -cluster_phys_read(vp, uio, filesize) - struct vnode *vp; - struct uio *uio; - off_t filesize; -{ - upl_t upl; - vm_offset_t upl_offset; - off_t max_size; - int io_size; - int upl_size; - int upl_needed_size; - int pages_in_pl; - int upl_flags; - kern_return_t kret; - struct iovec *iov; - int error; +/* + * File offset handling. + * + * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; + * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) + */ +#define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) +#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) - /* - * When we enter this routine, we know - * -- the resid will not exceed iov_len - * -- the target address is physically contiguous - */ +/* + * Hashtable address field handling. + * + * The low-order bits of the hashtable address are used to conserve + * space. + * + * DRT_HASH_COUNT_MASK must be large enough to store the range + * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value + * to indicate that the bucket is actually unoccupied. + */ +#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) +#define DRT_HASH_SET_ADDRESS(scm, i, a) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = \ + ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ + } while (0) +#define DRT_HASH_COUNT_MASK 0x1ff +#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) +#define DRT_HASH_SET_COUNT(scm, i, c) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = \ + ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ + } while (0) +#define DRT_HASH_CLEAR(scm, i) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = 0; \ + } while (0) +#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) +#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) +#define DRT_HASH_COPY(oscm, oi, scm, i) \ + do { \ + (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ + DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ + } while(0); + + +#if !defined(XNU_TARGET_OS_OSX) +/* + * Hash table moduli. + * + * Since the hashtable entry's size is dependent on the size of + * the bitvector, and since the hashtable size is constrained to + * both being prime and fitting within the desired allocation + * size, these values need to be manually determined. + * + * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. + * + * The small hashtable allocation is 4096 bytes, so the modulus is 251. + * The large hashtable allocation is 32768 bytes, so the modulus is 2039. + * The xlarge hashtable allocation is 131072 bytes, so the modulus is 8179. + */ - iov = uio->uio_iov; +#define DRT_HASH_SMALL_MODULUS 251 +#define DRT_HASH_LARGE_MODULUS 2039 +#define DRT_HASH_XLARGE_MODULUS 8179 - max_size = filesize - uio->uio_offset; +/* + * Physical memory required before the large hash modulus is permitted. + * + * On small memory systems, the large hash modulus can lead to phsyical + * memory starvation, so we avoid using it there. + */ +#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ +#define DRT_HASH_XLARGE_MEMORY_REQUIRED (8 * 1024LL * 1024LL * 1024LL) /* 8GiB */ - if (max_size < (off_t)((unsigned int)iov->iov_len)) - io_size = max_size; - else - io_size = iov->iov_len; +#define DRT_SMALL_ALLOCATION 4096 /* 80 bytes spare */ +#define DRT_LARGE_ALLOCATION 32768 /* 144 bytes spare */ +#define DRT_XLARGE_ALLOCATION 131072 /* 208 bytes spare */ - upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64; - upl_needed_size = upl_offset + io_size; +#else /* XNU_TARGET_OS_OSX */ +/* + * Hash table moduli. + * + * Since the hashtable entry's size is dependent on the size of + * the bitvector, and since the hashtable size is constrained to + * both being prime and fitting within the desired allocation + * size, these values need to be manually determined. + * + * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. + * + * The small hashtable allocation is 16384 bytes, so the modulus is 1019. + * The large hashtable allocation is 131072 bytes, so the modulus is 8179. + * The xlarge hashtable allocation is 524288 bytes, so the modulus is 32749. + */ - pages_in_pl = 0; - upl_size = upl_needed_size; - upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL; +#define DRT_HASH_SMALL_MODULUS 1019 +#define DRT_HASH_LARGE_MODULUS 8179 +#define DRT_HASH_XLARGE_MODULUS 32749 - kret = vm_map_get_upl(current_map(), - (vm_offset_t)iov->iov_base & ~PAGE_MASK, - &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0); +/* + * Physical memory required before the large hash modulus is permitted. + * + * On small memory systems, the large hash modulus can lead to phsyical + * memory starvation, so we avoid using it there. + */ +#define DRT_HASH_LARGE_MEMORY_REQUIRED (4 * 1024LL * 1024LL * 1024LL) /* 4GiB */ +#define DRT_HASH_XLARGE_MEMORY_REQUIRED (32 * 1024LL * 1024LL * 1024LL) /* 32GiB */ - if (kret != KERN_SUCCESS) - { - /* cluster_phys_read: failed to get pagelist */ - return(EINVAL); - } +#define DRT_SMALL_ALLOCATION 16384 /* 80 bytes spare */ +#define DRT_LARGE_ALLOCATION 131072 /* 208 bytes spare */ +#define DRT_XLARGE_ALLOCATION 524288 /* 304 bytes spare */ - /* - * Consider the possibility that upl_size wasn't satisfied. - */ - if (upl_size < upl_needed_size) - { - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - return(EINVAL); - } +#endif /* ! XNU_TARGET_OS_OSX */ - /* - * issue a synchronous read to cluster_io - */ +/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ - error = cluster_io(vp, upl, upl_offset, uio->uio_offset, - io_size, 0, CL_READ| CL_NOZERO | CL_DEV_MEMORY, (struct buf *)0); - - if (error == 0) - { - /* - * The cluster_io read completed successfully, - * update the uio structure and commit. - */ - - ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_FREE_ON_EMPTY); - - iov->iov_base += io_size; - iov->iov_len -= io_size; - uio->uio_resid -= io_size; - uio->uio_offset += io_size; - } - else - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); - - return (error); -} +/* + * Hashtable entry. + */ +struct vfs_drt_hashentry { + u_int64_t dhe_control; +/* + * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; + * DRT_BITVECTOR_PAGES is defined as ((1024 * 256) / PAGE_SIZE) + * Since PAGE_SIZE is only known at boot time, + * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) + * -declare dhe_bitvector array for largest possible length + */ +#define MAX_DRT_BITVECTOR_PAGES (1024 * 256)/( 4 * 1024) + u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES / 32]; +}; /* - * generate advisory I/O's in the largest chunks possible - * the completed pages will be released into the VM cache + * Hashtable bitvector handling. + * + * Bitvector fields are 32 bits long. */ -int -advisory_read(vp, filesize, f_offset, resid, devblocksize) - struct vnode *vp; - off_t filesize; - off_t f_offset; - int resid; - int devblocksize; -{ - upl_page_info_t *pl; - upl_t upl; - vm_offset_t upl_offset; - int upl_size; - off_t upl_f_offset; - int start_offset; - int start_pg; - int last_pg; - int pages_in_upl; - off_t max_size; - int io_size; - kern_return_t kret; - int retval = 0; - int issued_io; - if (!UBCINFOEXISTS(vp)) - return(EINVAL); +#define DRT_HASH_SET_BIT(scm, i, bit) \ + (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, - (int)f_offset, resid, (int)filesize, devblocksize, 0); +#define DRT_HASH_CLEAR_BIT(scm, i, bit) \ + (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) - while (resid && f_offset < filesize && retval == 0) { - /* - * compute the size of the upl needed to encompass - * the requested read... limit each call to cluster_io - * to the maximum UPL size... cluster_io will clip if - * this exceeds the maximum io_size for the device, - * make sure to account for - * a starting offset that's not page aligned - */ - start_offset = (int)(f_offset & PAGE_MASK_64); - upl_f_offset = f_offset - (off_t)start_offset; - max_size = filesize - f_offset; +#define DRT_HASH_TEST_BIT(scm, i, bit) \ + ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) + +#define DRT_BITVECTOR_CLEAR(scm, i) \ + bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) + +#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ + bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ + &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ + (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) + +/* + * Dirty Region Tracking structure. + * + * The hashtable is allocated entirely inside the DRT structure. + * + * The hash is a simple circular prime modulus arrangement, the structure + * is resized from small to large if it overflows. + */ - if (resid < max_size) - io_size = resid; - else - io_size = max_size; +struct vfs_drt_clustermap { + u_int32_t scm_magic; /* sanity/detection */ +#define DRT_SCM_MAGIC 0x12020003 + u_int32_t scm_modulus; /* current ring size */ + u_int32_t scm_buckets; /* number of occupied buckets */ + u_int32_t scm_lastclean; /* last entry we cleaned */ + u_int32_t scm_iskips; /* number of slot skips */ - upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; - if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE)) - upl_size = MAX_UPL_TRANSFER * PAGE_SIZE; - pages_in_upl = upl_size / PAGE_SIZE; + struct vfs_drt_hashentry scm_hashtable[0]; +}; - kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_RET_ONLY_ABSENT); - if (kret != KERN_SUCCESS) - return(retval); - issued_io = 0; - /* - * before we start marching forward, we must make sure we end on - * a present page, otherwise we will be working with a freed - * upl - */ - for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { - if (upl_page_present(pl, last_pg)) - break; - } - pages_in_upl = last_pg + 1; +#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) +#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) +/* + * Debugging codes and arguments. + */ +#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ +#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ +#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ +#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ +#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, + * dirty */ + /* 0, setcount */ + /* 1 (clean, no map) */ + /* 2 (map alloc fail) */ + /* 3, resid (partial) */ +#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) +#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, + * lastclean, iskips */ + + +static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); +static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); +static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, + u_int64_t offset, int *indexp); +static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, + u_int64_t offset, + int *indexp, + int recursed); +static kern_return_t vfs_drt_do_mark_pages( + void **cmapp, + u_int64_t offset, + u_int length, + u_int *setcountp, + int dirty); +static void vfs_drt_trace( + struct vfs_drt_clustermap *cmap, + int code, + int arg1, + int arg2, + int arg3, + int arg4); - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE, - (int)upl, (int)upl_f_offset, upl_size, start_offset, 0); +/* + * Allocate and initialise a sparse cluster map. + * + * Will allocate a new map, resize or compact an existing map. + * + * XXX we should probably have at least one intermediate map size, + * as the 1:16 ratio seems a bit drastic. + */ +static kern_return_t +vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) +{ + struct vfs_drt_clustermap *cmap = NULL, *ocmap = NULL; + kern_return_t kret = KERN_SUCCESS; + u_int64_t offset = 0; + u_int32_t i = 0; + int modulus_size = 0, map_size = 0, active_buckets = 0, index = 0, copycount = 0; + + ocmap = NULL; + if (cmapp != NULL) { + ocmap = *cmapp; + } - for (last_pg = 0; last_pg < pages_in_upl; ) { - /* - * scan from the beginning of the upl looking for the first - * page that is present.... this will become the first page in - * the request we're going to make to 'cluster_io'... if all - * of the pages are absent, we won't call through to 'cluster_io' + /* + * Decide on the size of the new map. + */ + if (ocmap == NULL) { + modulus_size = DRT_HASH_SMALL_MODULUS; + map_size = DRT_SMALL_ALLOCATION; + } else { + /* count the number of active buckets in the old map */ + active_buckets = 0; + for (i = 0; i < ocmap->scm_modulus; i++) { + if (!DRT_HASH_VACANT(ocmap, i) && + (DRT_HASH_GET_COUNT(ocmap, i) != 0)) { + active_buckets++; + } + } + /* + * If we're currently using the small allocation, check to + * see whether we should grow to the large one. + */ + if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { + /* + * If the ring is nearly full and we are allowed to + * use the large modulus, upgrade. */ - for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { - if (upl_page_present(pl, start_pg)) - break; + if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && + (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { + modulus_size = DRT_HASH_LARGE_MODULUS; + map_size = DRT_LARGE_ALLOCATION; + } else { + modulus_size = DRT_HASH_SMALL_MODULUS; + map_size = DRT_SMALL_ALLOCATION; + } + } else if (ocmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { + if ((active_buckets > (DRT_HASH_LARGE_MODULUS - 5)) && + (max_mem >= DRT_HASH_XLARGE_MEMORY_REQUIRED)) { + modulus_size = DRT_HASH_XLARGE_MODULUS; + map_size = DRT_XLARGE_ALLOCATION; + } else { + /* + * If the ring is completely full and we can't + * expand, there's nothing useful for us to do. + * Behave as though we had compacted into the new + * array and return. + */ + return KERN_SUCCESS; } + } else { + /* already using the xlarge modulus */ + modulus_size = DRT_HASH_XLARGE_MODULUS; + map_size = DRT_XLARGE_ALLOCATION; /* - * scan from the starting present page looking for an absent - * page before the end of the upl is reached, if we - * find one, then it will terminate the range of pages being - * presented to 'cluster_io' + * If the ring is completely full, there's + * nothing useful for us to do. Behave as + * though we had compacted into the new + * array and return. */ - for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { - if (!upl_page_present(pl, last_pg)) - break; + if (active_buckets >= DRT_HASH_XLARGE_MODULUS) { + return KERN_SUCCESS; } + } + } - if (last_pg > start_pg) { - /* - * we found a range of pages that must be filled - * if the last page in this range is the last page of the file - * we may have to clip the size of it to keep from reading past - * the end of the last physical block associated with the file - */ - upl_offset = start_pg * PAGE_SIZE; - io_size = (last_pg - start_pg) * PAGE_SIZE; - - if ((upl_f_offset + upl_offset + io_size) > filesize) - io_size = filesize - (upl_f_offset + upl_offset); + /* + * Allocate and initialise the new map. + */ - /* - * issue an asynchronous read to cluster_io - */ - retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, devblocksize, - CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0); + kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, map_size, VM_KERN_MEMORY_FILE); + if (kret != KERN_SUCCESS) { + return kret; + } + cmap->scm_magic = DRT_SCM_MAGIC; + cmap->scm_modulus = modulus_size; + cmap->scm_buckets = 0; + cmap->scm_lastclean = 0; + cmap->scm_iskips = 0; + for (i = 0; i < cmap->scm_modulus; i++) { + DRT_HASH_CLEAR(cmap, i); + DRT_HASH_VACATE(cmap, i); + DRT_BITVECTOR_CLEAR(cmap, i); + } - issued_io = 1; + /* + * If there's an old map, re-hash entries from it into the new map. + */ + copycount = 0; + if (ocmap != NULL) { + for (i = 0; i < ocmap->scm_modulus; i++) { + /* skip empty buckets */ + if (DRT_HASH_VACANT(ocmap, i) || + (DRT_HASH_GET_COUNT(ocmap, i) == 0)) { + continue; } + /* get new index */ + offset = DRT_HASH_GET_ADDRESS(ocmap, i); + kret = vfs_drt_get_index(&cmap, offset, &index, 1); + if (kret != KERN_SUCCESS) { + /* XXX need to bail out gracefully here */ + panic("vfs_drt: new cluster map mysteriously too small"); + index = 0; + } + /* copy */ + DRT_HASH_COPY(ocmap, i, cmap, index); + copycount++; } - if (issued_io == 0) - ubc_upl_abort(upl, 0); - - io_size = upl_size - start_offset; - - if (io_size > resid) - io_size = resid; - f_offset += io_size; - resid -= io_size; } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, - (int)f_offset, resid, retval, 0, 0); + /* log what we've done */ + vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); - return(retval); + /* + * It's important to ensure that *cmapp always points to + * a valid map, so we must overwrite it before freeing + * the old map. + */ + *cmapp = cmap; + if (ocmap != NULL) { + /* emit stats into trace buffer */ + vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, + ocmap->scm_modulus, + ocmap->scm_buckets, + ocmap->scm_lastclean, + ocmap->scm_iskips); + + vfs_drt_free_map(ocmap); + } + return KERN_SUCCESS; } -int -cluster_push(vp) - struct vnode *vp; +/* + * Free a sparse cluster map. + */ +static kern_return_t +vfs_drt_free_map(struct vfs_drt_clustermap *cmap) { - int retval; - - if (!UBCINFOEXISTS(vp) || vp->v_clen == 0) { - vp->v_flag &= ~VHASDIRTY; - return(0); + vm_size_t map_size = 0; + + if (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { + map_size = DRT_SMALL_ALLOCATION; + } else if (cmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { + map_size = DRT_LARGE_ALLOCATION; + } else if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { + map_size = DRT_XLARGE_ALLOCATION; + } else { + panic("vfs_drt_free_map: Invalid modulus %d\n", cmap->scm_modulus); } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, - vp->v_flag & VHASDIRTY, vp->v_clen, 0, 0, 0); - - if (vp->v_flag & VHASDIRTY) { - daddr_t start_pg; - daddr_t last_pg; - daddr_t end_pg; - - start_pg = vp->v_cstart; - end_pg = vp->v_lastw; + kmem_free(kernel_map, (vm_offset_t)cmap, map_size); + return KERN_SUCCESS; +} - vp->v_flag &= ~VHASDIRTY; - vp->v_clen = 0; - while (start_pg < end_pg) { - last_pg = start_pg + MAX_UPL_TRANSFER; +/* + * Find the hashtable slot currently occupied by an entry for the supplied offset. + */ +static kern_return_t +vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) +{ + int index; + u_int32_t i; - if (last_pg > end_pg) - last_pg = end_pg; + offset = DRT_ALIGN_ADDRESS(offset); + index = DRT_HASH(cmap, offset); - cluster_push_x(vp, ubc_getsize(vp), start_pg, last_pg, 0); + /* traverse the hashtable */ + for (i = 0; i < cmap->scm_modulus; i++) { + /* + * If the slot is vacant, we can stop. + */ + if (DRT_HASH_VACANT(cmap, index)) { + break; + } - start_pg = last_pg; + /* + * If the address matches our offset, we have success. + */ + if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { + *indexp = index; + return KERN_SUCCESS; } - return (1); + + /* + * Move to the next slot, try again. + */ + index = DRT_HASH_NEXT(cmap, index); } - retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1); + /* + * It's not there. + */ + return KERN_FAILURE; +} - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, - vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0); +/* + * Find the hashtable slot for the supplied offset. If we haven't allocated + * one yet, allocate one and populate the address field. Note that it will + * not have a nonzero page count and thus will still technically be free, so + * in the case where we are called to clean pages, the slot will remain free. + */ +static kern_return_t +vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) +{ + struct vfs_drt_clustermap *cmap; + kern_return_t kret; + u_int32_t index; + u_int32_t i; - return (retval); -} + cmap = *cmapp; + /* look for an existing entry */ + kret = vfs_drt_search_index(cmap, offset, indexp); + if (kret == KERN_SUCCESS) { + return kret; + } -static int -cluster_try_push(vp, EOF, can_delay, push_all) - struct vnode *vp; - off_t EOF; - int can_delay; - int push_all; -{ - int cl_index; - int cl_index1; - int min_index; - int cl_len; - int cl_total; - int cl_pushed; - struct v_cluster l_clusters[MAX_CLUSTERS]; + /* need to allocate an entry */ + offset = DRT_ALIGN_ADDRESS(offset); + index = DRT_HASH(cmap, offset); + + /* scan from the index forwards looking for a vacant slot */ + for (i = 0; i < cmap->scm_modulus; i++) { + /* slot vacant? */ + if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap, index) == 0) { + cmap->scm_buckets++; + if (index < cmap->scm_lastclean) { + cmap->scm_lastclean = index; + } + DRT_HASH_SET_ADDRESS(cmap, index, offset); + DRT_HASH_SET_COUNT(cmap, index, 0); + DRT_BITVECTOR_CLEAR(cmap, index); + *indexp = index; + vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); + return KERN_SUCCESS; + } + cmap->scm_iskips += i; + index = DRT_HASH_NEXT(cmap, index); + } /* - * make a local 'sorted' copy of the clusters - * and clear vp->v_clen so that new clusters can - * be developed + * We haven't found a vacant slot, so the map is full. If we're not + * already recursed, try reallocating/compacting it. */ - for (cl_index = 0; cl_index < vp->v_clen; cl_index++) { - for (min_index = -1, cl_index1 = 0; cl_index1 < vp->v_clen; cl_index1++) { - if (vp->v_clusters[cl_index1].start_pg == vp->v_clusters[cl_index1].last_pg) - continue; - if (min_index == -1) - min_index = cl_index1; - else if (vp->v_clusters[cl_index1].start_pg < vp->v_clusters[min_index].start_pg) - min_index = cl_index1; - } - if (min_index == -1) - break; - l_clusters[cl_index].start_pg = vp->v_clusters[min_index].start_pg; - l_clusters[cl_index].last_pg = vp->v_clusters[min_index].last_pg; - - vp->v_clusters[min_index].start_pg = vp->v_clusters[min_index].last_pg; + if (recursed) { + return KERN_FAILURE; } - cl_len = cl_index; - vp->v_clen = 0; + kret = vfs_drt_alloc_map(cmapp); + if (kret == KERN_SUCCESS) { + /* now try to insert again */ + kret = vfs_drt_get_index(cmapp, offset, indexp, 1); + } + return kret; +} - for (cl_pushed = 0, cl_index = 0; cl_index < cl_len; cl_index++) { - /* - * try to push each cluster in turn... cluster_push_x may not - * push the cluster if can_delay is TRUE and the cluster doesn't - * meet the critera for an immediate push - */ - if (cluster_push_x(vp, EOF, l_clusters[cl_index].start_pg, l_clusters[cl_index].last_pg, can_delay)) { - l_clusters[cl_index].start_pg = 0; - l_clusters[cl_index].last_pg = 0; +/* + * Implementation of set dirty/clean. + * + * In the 'clean' case, not finding a map is OK. + */ +static kern_return_t +vfs_drt_do_mark_pages( + void **private, + u_int64_t offset, + u_int length, + u_int *setcountp, + int dirty) +{ + struct vfs_drt_clustermap *cmap, **cmapp; + kern_return_t kret; + int i, index, pgoff, pgcount, setcount, ecount; + + cmapp = (struct vfs_drt_clustermap **)private; + cmap = *cmapp; - cl_pushed++; + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); - if (push_all == 0) - break; + if (setcountp != NULL) { + *setcountp = 0; + } + + /* allocate a cluster map if we don't already have one */ + if (cmap == NULL) { + /* no cluster map, nothing to clean */ + if (!dirty) { + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); + return KERN_SUCCESS; + } + kret = vfs_drt_alloc_map(cmapp); + if (kret != KERN_SUCCESS) { + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); + return kret; } } - if (cl_len > cl_pushed) { - /* - * we didn't push all of the clusters, so - * lets try to merge them back in to the vnode - */ - if ((MAX_CLUSTERS - vp->v_clen) < (cl_len - cl_pushed)) { - /* - * we picked up some new clusters while we were trying to - * push the old ones (I don't think this can happen because - * I'm holding the lock, but just in case)... the sum of the - * leftovers plus the new cluster count exceeds our ability - * to represent them, so fall back to the VHASDIRTY mechanism - */ - for (cl_index = 0; cl_index < cl_len; cl_index++) { - if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg) - continue; + setcount = 0; - if (l_clusters[cl_index].start_pg < vp->v_cstart) - vp->v_cstart = l_clusters[cl_index].start_pg; - if (l_clusters[cl_index].last_pg > vp->v_lastw) - vp->v_lastw = l_clusters[cl_index].last_pg; + /* + * Iterate over the length of the region. + */ + while (length > 0) { + /* + * Get the hashtable index for this offset. + * + * XXX this will add blank entries if we are clearing a range + * that hasn't been dirtied. + */ + kret = vfs_drt_get_index(cmapp, offset, &index, 0); + cmap = *cmapp; /* may have changed! */ + /* this may be a partial-success return */ + if (kret != KERN_SUCCESS) { + if (setcountp != NULL) { + *setcountp = setcount; } - vp->v_flag |= VHASDIRTY; - } else { - /* - * we've got room to merge the leftovers back in - * just append them starting at the next 'hole' - * represented by vp->v_clen - */ - for (cl_index = 0, cl_index1 = vp->v_clen; cl_index < cl_len; cl_index++) { - if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg) - continue; + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); + + return kret; + } - vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg; - vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg; + /* + * Work out how many pages we're modifying in this + * hashtable entry. + */ + pgoff = (int)((offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE); + pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); - if (cl_index1 == 0) { - vp->v_cstart = l_clusters[cl_index].start_pg; - vp->v_lastw = l_clusters[cl_index].last_pg; - } else { - if (l_clusters[cl_index].start_pg < vp->v_cstart) - vp->v_cstart = l_clusters[cl_index].start_pg; - if (l_clusters[cl_index].last_pg > vp->v_lastw) - vp->v_lastw = l_clusters[cl_index].last_pg; + /* + * Iterate over pages, dirty/clearing as we go. + */ + ecount = DRT_HASH_GET_COUNT(cmap, index); + for (i = 0; i < pgcount; i++) { + if (dirty) { + if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { + if (ecount >= DRT_BITVECTOR_PAGES) { + panic("ecount >= DRT_BITVECTOR_PAGES, cmap = %p, index = %d, bit = %d", cmap, index, pgoff + i); + } + DRT_HASH_SET_BIT(cmap, index, pgoff + i); + ecount++; + setcount++; + } + } else { + if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { + if (ecount <= 0) { + panic("ecount <= 0, cmap = %p, index = %d, bit = %d", cmap, index, pgoff + i); + } + assert(ecount > 0); + DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); + ecount--; + setcount++; } - cl_index1++; } - /* - * update the cluster count - */ - vp->v_clen = cl_index1; } + DRT_HASH_SET_COUNT(cmap, index, ecount); + + offset += pgcount * PAGE_SIZE; + length -= pgcount * PAGE_SIZE; + } + if (setcountp != NULL) { + *setcountp = setcount; } - return(MAX_CLUSTERS - vp->v_clen); -} + vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); + return KERN_SUCCESS; +} -static int -cluster_push_x(vp, EOF, first, last, can_delay) - struct vnode *vp; - off_t EOF; - daddr_t first; - daddr_t last; - int can_delay; +/* + * Mark a set of pages as dirty/clean. + * + * This is a public interface. + * + * cmapp + * Pointer to storage suitable for holding a pointer. Note that + * this must either be NULL or a value set by this function. + * + * size + * Current file size in bytes. + * + * offset + * Offset of the first page to be marked as dirty, in bytes. Must be + * page-aligned. + * + * length + * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. + * + * setcountp + * Number of pages newly marked dirty by this call (optional). + * + * Returns KERN_SUCCESS if all the pages were successfully marked. + */ +static kern_return_t +vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) { - upl_page_info_t *pl; - upl_t upl; - vm_offset_t upl_offset; - int upl_size; - off_t upl_f_offset; - int pages_in_upl; - int start_pg; - int last_pg; - int io_size; - int io_flags; - int size; - kern_return_t kret; - - - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, - vp->v_clen, first, last, EOF, 0); + /* XXX size unused, drop from interface */ + return vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1); +} - if ((pages_in_upl = last - first) == 0) { - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); +#if 0 +static kern_return_t +vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) +{ + return vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); +} +#endif - return (1); +/* + * Get a cluster of dirty pages. + * + * This is a public interface. + * + * cmapp + * Pointer to storage managed by drt_mark_pages. Note that this must + * be NULL or a value set by drt_mark_pages. + * + * offsetp + * Returns the byte offset into the file of the first page in the cluster. + * + * lengthp + * Returns the length in bytes of the cluster of dirty pages. + * + * Returns success if a cluster was found. If KERN_FAILURE is returned, there + * are no dirty pages meeting the minmum size criteria. Private storage will + * be released if there are no more dirty pages left in the map + * + */ +static kern_return_t +vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) +{ + struct vfs_drt_clustermap *cmap; + u_int64_t offset; + u_int length; + u_int32_t j; + int index, i, fs, ls; + + /* sanity */ + if ((cmapp == NULL) || (*cmapp == NULL)) { + return KERN_FAILURE; } - upl_size = pages_in_upl * PAGE_SIZE; - upl_f_offset = ((off_t)first) * PAGE_SIZE_64; + cmap = *cmapp; - if (upl_f_offset + upl_size >= EOF) { + /* walk the hashtable */ + for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { + index = DRT_HASH(cmap, offset); - if (upl_f_offset >= EOF) { - /* - * must have truncated the file and missed - * clearing a dangling cluster (i.e. it's completely - * beyond the new EOF - */ - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); + if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) { + continue; + } - return(1); + /* scan the bitfield for a string of bits */ + fs = -1; + + for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { + if (DRT_HASH_TEST_BIT(cmap, index, i)) { + fs = i; + break; + } + } + if (fs == -1) { + /* didn't find any bits set */ + panic("vfs_drt: entry summary count > 0 but no bits set in map, cmap = %p, index = %d, count = %lld", + cmap, index, DRT_HASH_GET_COUNT(cmap, index)); + } + for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { + if (!DRT_HASH_TEST_BIT(cmap, index, i)) { + break; + } } - size = EOF - upl_f_offset; - upl_size = (size + (PAGE_SIZE - 1) ) & ~(PAGE_SIZE - 1); - pages_in_upl = upl_size / PAGE_SIZE; - } else { - if (can_delay && (pages_in_upl < (MAX_UPL_TRANSFER - (MAX_UPL_TRANSFER / 2)))) - return(0); - size = upl_size; + /* compute offset and length, mark pages clean */ + offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); + length = ls * PAGE_SIZE; + vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); + cmap->scm_lastclean = index; + + /* return successful */ + *offsetp = (off_t)offset; + *lengthp = length; + + vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); + return KERN_SUCCESS; } - kret = ubc_create_upl(vp, - upl_f_offset, - upl_size, - &upl, - &pl, - UPL_RET_ONLY_DIRTY); - if (kret != KERN_SUCCESS) - panic("cluster_push: failed to get pagelist"); + /* + * We didn't find anything... hashtable is empty + * emit stats into trace buffer and + * then free it + */ + vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, + cmap->scm_modulus, + cmap->scm_buckets, + cmap->scm_lastclean, + cmap->scm_iskips); - if (can_delay) { - int num_of_dirty; - - for (num_of_dirty = 0, start_pg = 0; start_pg < pages_in_upl; start_pg++) { - if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg)) - num_of_dirty++; - } - if (num_of_dirty < pages_in_upl / 2) { - ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); + vfs_drt_free_map(cmap); + *cmapp = NULL; - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 0, 2, num_of_dirty, (pages_in_upl / 2), 0); + return KERN_FAILURE; +} - return(0); - } + +static kern_return_t +vfs_drt_control(void **cmapp, int op_type) +{ + struct vfs_drt_clustermap *cmap; + + /* sanity */ + if ((cmapp == NULL) || (*cmapp == NULL)) { + return KERN_FAILURE; } - last_pg = 0; + cmap = *cmapp; + + switch (op_type) { + case 0: + /* emit stats into trace buffer */ + vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, + cmap->scm_modulus, + cmap->scm_buckets, + cmap->scm_lastclean, + cmap->scm_iskips); + + vfs_drt_free_map(cmap); + *cmapp = NULL; + break; - while (size) { + case 1: + cmap->scm_lastclean = 0; + break; + } + return KERN_SUCCESS; +} - for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { - if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg)) - break; - } - if (start_pg > last_pg) { - io_size = (start_pg - last_pg) * PAGE_SIZE; - ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, io_size, - UPL_ABORT_FREE_ON_EMPTY); - if (io_size < size) - size -= io_size; - else - break; - } - for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { - if (!upl_valid_page(pl, last_pg) || !upl_dirty_page(pl, last_pg)) - break; - } - upl_offset = start_pg * PAGE_SIZE; +/* + * Emit a summary of the state of the clustermap into the trace buffer + * along with some caller-provided data. + */ +#if KDEBUG +static void +vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) +{ + KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); +} +#else +static void +vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, + __unused int arg1, __unused int arg2, __unused int arg3, + __unused int arg4) +{ +} +#endif - io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); +#if 0 +/* + * Perform basic sanity check on the hash entry summary count + * vs. the actual bits set in the entry. + */ +static void +vfs_drt_sanity(struct vfs_drt_clustermap *cmap) +{ + int index, i; + int bits_on; - if (vp->v_flag & VNOCACHE_DATA) - io_flags = CL_COMMIT | CL_AGE | CL_ASYNC | CL_DUMP; - else - io_flags = CL_COMMIT | CL_AGE | CL_ASYNC; + for (index = 0; index < cmap->scm_modulus; index++) { + if (DRT_HASH_VACANT(cmap, index)) { + continue; + } - while (vp->v_numoutput >= ASYNC_THROTTLE) { - vp->v_flag |= VTHROTTLED; - tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_push", 0); + for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { + if (DRT_HASH_TEST_BIT(cmap, index, i)) { + bits_on++; + } + } + if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) { + panic("bits_on = %d, index = %d\n", bits_on, index); } - cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, vp->v_ciosiz, io_flags, (struct buf *)0); + } +} +#endif - size -= io_size; +/* + * Internal interface only. + */ +static kern_return_t +vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag) +{ + struct vfs_drt_clustermap *cmap; + + /* sanity */ + if ((cmapp == NULL) || (*cmapp == NULL) || (push_flag == NULL)) { + return KERN_FAILURE; } - KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); + cmap = *cmapp; - return(1); + if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { + /* + * If we have a full xlarge sparse cluster, + * we push it out all at once so the cluster + * map can be available to absorb more I/Os. + * This is done on large memory configs so + * the small I/Os don't interfere with the + * pro workloads. + */ + *push_flag = PUSH_ALL; + } + return KERN_SUCCESS; }