X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/0b4e3aa066abc0728aacb4bbeb86f53f9737156e..b226f5e54a60dc81db17b1260381d7dbfea3cdf1:/bsd/netinet/ip_dummynet.c diff --git a/bsd/netinet/ip_dummynet.c b/bsd/netinet/ip_dummynet.c index 61cc6f414..c9f566822 100644 --- a/bsd/netinet/ip_dummynet.c +++ b/bsd/netinet/ip_dummynet.c @@ -1,70 +1,103 @@ /* - * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. + * Copyright (c) 2000-2017 Apple Inc. All rights reserved. * - * @APPLE_LICENSE_HEADER_START@ - * - * The contents of this file constitute Original Code as defined in and - * are subject to the Apple Public Source License Version 1.1 (the - * "License"). You may not use this file except in compliance with the - * License. Please obtain a copy of the License at - * http://www.apple.com/publicsource and read it before using this file. - * - * This Original Code and all software distributed under the License are - * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the - * License for the specific language governing rights and limitations - * under the License. - * - * @APPLE_LICENSE_HEADER_END@ + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* - * Copyright (c) 1998 Luigi Rizzo + * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa + * Portions Copyright (c) 2000 Akamba Corp. + * All rights reserved * - * Redistribution and use in source forms, with and without modification, - * are permitted provided that this entire comment appears intact. + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. * - * Redistribution in binary form may occur without any restrictions. - * Obviously, it would be nice if you gave credit where credit is due - * but requiring it would be too onerous. - * - * This software is provided ``AS IS'' without any warranties of any kind. + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. * + * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $ */ +#define DUMMYNET_DEBUG + /* * This module implements IP dummynet, a bandwidth limiter/delay emulator * used in conjunction with the ipfw package. + * Description of the data structures used is in ip_dummynet.h + * Here you mainly find the following blocks of code: + * + variable declarations; + * + heap management functions; + * + scheduler and dummynet functions; + * + configuration and initialization. * - * Changes: + * NOTA BENE: critical sections are protected by the "dummynet lock". * - * 980821: changed conventions in the queueing logic - * packets passed from dummynet to ip_in/out are prepended with - * a vestigial mbuf type MT_DUMMYNET which contains a pointer - * to the matching rule. - * ip_input/output will extract the parameters, free the vestigial mbuf, - * and do the processing. - * - * 980519: fixed behaviour when deleting rules. - * 980518: added splimp()/splx() to protect against races + * Most important Changes: + * + * 010124: Fixed WF2Q behaviour + * 010122: Fixed spl protection. + * 000601: WF2Q support + * 000106: large rewrite, use heaps to handle very many pipes. * 980513: initial release + * + * include files marked with XXX are probably not needed */ -/* include files marked with XXX are probably not needed */ - #include #include #include #include #include /* XXX */ #include +#include #include #include #include #include #include #include +#include +#if DUMMYNET +#include +#endif /* DUMMYNET */ +#include +#include #include #include #include @@ -73,586 +106,2497 @@ #include #include -#if BRIDGE -#include /* for struct arpcom */ -#include -#endif +#include /* for ip6_input, ip6_output prototypes */ +#include + +static struct ip_fw default_rule; + +/* + * We keep a private variable for the simulation time, but we could + * probably use an existing one ("softticks" in sys/kern/kern_timer.c) + */ +static dn_key curr_time = 0 ; /* current simulation time */ + +/* this is for the timer that fires to call dummynet() - we only enable the timer when + there are packets to process, otherwise it's disabled */ +static int timer_enabled = 0; + +static int dn_hash_size = 64 ; /* default hash size */ + +/* statistics on number of queue searches and search steps */ +static int searches, search_steps ; +static int pipe_expire = 1 ; /* expire queue if empty */ +static int dn_max_ratio = 16 ; /* max queues/buckets ratio */ + +static int red_lookup_depth = 256; /* RED - default lookup table depth */ +static int red_avg_pkt_size = 512; /* RED - default medium packet size */ +static int red_max_pkt_size = 1500; /* RED - default max packet size */ + +static int serialize = 0; + +/* + * Three heaps contain queues and pipes that the scheduler handles: + * + * ready_heap contains all dn_flow_queue related to fixed-rate pipes. + * + * wfq_ready_heap contains the pipes associated with WF2Q flows + * + * extract_heap contains pipes associated with delay lines. + * + */ +static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ; + +static int heap_init(struct dn_heap *h, int size) ; +static int heap_insert (struct dn_heap *h, dn_key key1, void *p); +static void heap_extract(struct dn_heap *h, void *obj); + + +static void transmit_event(struct dn_pipe *pipe, struct mbuf **head, + struct mbuf **tail); +static void ready_event(struct dn_flow_queue *q, struct mbuf **head, + struct mbuf **tail); +static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head, + struct mbuf **tail); + +/* + * Packets are retrieved from queues in Dummynet in chains instead of + * packet-by-packet. The entire list of packets is first dequeued and + * sent out by the following function. + */ +static void dummynet_send(struct mbuf *m); -static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */ +#define HASHSIZE 16 +#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f) +static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */ +static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */ -static int dn_debug = 0 ; /* verbose */ -static int dn_calls = 0 ; /* number of calls */ -static int dn_idle = 1; #ifdef SYSCTL_NODE -SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet"); -SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dn_debug, 0, ""); -SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, calls, CTLFLAG_RD, &dn_calls, 0, ""); -SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, idle, CTLFLAG_RD, &dn_idle, 0, ""); +SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, + CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, + CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size"); +SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time, + CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, + CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, + CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, + CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, + CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, + CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, + CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0, + "Max ratio between dynamic queues and buckets"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, + CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, + CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, + CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size"); #endif +#ifdef DUMMYNET_DEBUG +int dummynet_debug = 0; +#ifdef SYSCTL_NODE +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug, + 0, "control debugging printfs"); +#endif +#define DPRINTF(X) if (dummynet_debug) printf X +#else +#define DPRINTF(X) +#endif + +/* dummynet lock */ +static lck_grp_t *dn_mutex_grp; +static lck_grp_attr_t *dn_mutex_grp_attr; +static lck_attr_t *dn_mutex_attr; +decl_lck_mtx_data(static, dn_mutex_data); +static lck_mtx_t *dn_mutex = &dn_mutex_data; + +static int config_pipe(struct dn_pipe *p); static int ip_dn_ctl(struct sockopt *sopt); -static void rt_unref(struct rtentry *); static void dummynet(void *); -static void dn_restart(void); -static void dn_move(struct dn_pipe *pipe, int immediate); static void dummynet_flush(void); +void dummynet_drain(void); +static ip_dn_io_t dummynet_io; -/* - * the following is needed when deleting a pipe, because rules can - * hold references to the pipe. - */ -extern LIST_HEAD (ip_fw_head, ip_fw_chain) ip_fw_chain; +static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp); +static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp); +static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp); +static char* dn_copy_set_64(struct dn_flow_set *set, char *bp); +static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p ); + +static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp); +static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp); +static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp); +static char* dn_copy_set_32(struct dn_flow_set *set, char *bp); +static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p ); + +struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt; + +uint32_t my_random(void) +{ + uint32_t val; + read_frandom(&val, sizeof(val)); + val &= 0x7FFFFFFF; + + return (val); +} /* - * invoked to reschedule the periodic task if necessary. - * Should only be called when dn_idle = 1 ; + * Heap management functions. + * + * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. + * Some macros help finding parent/children so we can optimize them. + * + * heap_init() is called to expand the heap when needed. + * Increment size in blocks of 16 entries. + * XXX failure to allocate a new element is a pretty bad failure + * as we basically stall a whole queue forever!! + * Returns 1 on error, 0 on success */ -static void -dn_restart() +#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) +#define HEAP_LEFT(x) ( 2*(x) + 1 ) +#define HEAP_IS_LEFT(x) ( (x) & 1 ) +#define HEAP_RIGHT(x) ( 2*(x) + 2 ) +#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } +#define HEAP_INCREMENT 15 + + +int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p ) { - struct dn_pipe *pipe; + struct dn_pipe_32 user_pipe_32; + int error=0; - if (!dn_idle) - return; - - for (pipe = all_pipes ; pipe ; pipe = pipe->next ) { - /* if there any pipe that needs work, restart */ - if (pipe->r.head || pipe->p.head || pipe->numbytes < 0 ) { - dn_idle = 0; - timeout(dummynet, NULL, 1); - return ; + error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32)); + if ( !error ){ + p->pipe_nr = user_pipe_32.pipe_nr; + p->bandwidth = user_pipe_32.bandwidth; + p->delay = user_pipe_32.delay; + p->V = user_pipe_32.V; + p->sum = user_pipe_32.sum; + p->numbytes = user_pipe_32.numbytes; + p->sched_time = user_pipe_32.sched_time; + bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ); + p->ready = user_pipe_32.ready; + + p->fs.fs_nr = user_pipe_32.fs.fs_nr; + p->fs.flags_fs = user_pipe_32.fs.flags_fs; + p->fs.parent_nr = user_pipe_32.fs.parent_nr; + p->fs.weight = user_pipe_32.fs.weight; + p->fs.qsize = user_pipe_32.fs.qsize; + p->fs.plr = user_pipe_32.fs.plr; + p->fs.flow_mask = user_pipe_32.fs.flow_mask; + p->fs.rq_size = user_pipe_32.fs.rq_size; + p->fs.rq_elements = user_pipe_32.fs.rq_elements; + p->fs.last_expired = user_pipe_32.fs.last_expired; + p->fs.backlogged = user_pipe_32.fs.backlogged; + p->fs.w_q = user_pipe_32.fs.w_q; + p->fs.max_th = user_pipe_32.fs.max_th; + p->fs.min_th = user_pipe_32.fs.min_th; + p->fs.max_p = user_pipe_32.fs.max_p; + p->fs.c_1 = user_pipe_32.fs.c_1; + p->fs.c_2 = user_pipe_32.fs.c_2; + p->fs.c_3 = user_pipe_32.fs.c_3; + p->fs.c_4 = user_pipe_32.fs.c_4; + p->fs.lookup_depth = user_pipe_32.fs.lookup_depth; + p->fs.lookup_step = user_pipe_32.fs.lookup_step; + p->fs.lookup_weight = user_pipe_32.fs.lookup_weight; + p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size; + p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size; } - } + return error; +} + + +int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p ) +{ + struct dn_pipe_64 user_pipe_64; + int error=0; + + error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64)); + if ( !error ){ + p->pipe_nr = user_pipe_64.pipe_nr; + p->bandwidth = user_pipe_64.bandwidth; + p->delay = user_pipe_64.delay; + p->V = user_pipe_64.V; + p->sum = user_pipe_64.sum; + p->numbytes = user_pipe_64.numbytes; + p->sched_time = user_pipe_64.sched_time; + bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ); + p->ready = user_pipe_64.ready; + + p->fs.fs_nr = user_pipe_64.fs.fs_nr; + p->fs.flags_fs = user_pipe_64.fs.flags_fs; + p->fs.parent_nr = user_pipe_64.fs.parent_nr; + p->fs.weight = user_pipe_64.fs.weight; + p->fs.qsize = user_pipe_64.fs.qsize; + p->fs.plr = user_pipe_64.fs.plr; + p->fs.flow_mask = user_pipe_64.fs.flow_mask; + p->fs.rq_size = user_pipe_64.fs.rq_size; + p->fs.rq_elements = user_pipe_64.fs.rq_elements; + p->fs.last_expired = user_pipe_64.fs.last_expired; + p->fs.backlogged = user_pipe_64.fs.backlogged; + p->fs.w_q = user_pipe_64.fs.w_q; + p->fs.max_th = user_pipe_64.fs.max_th; + p->fs.min_th = user_pipe_64.fs.min_th; + p->fs.max_p = user_pipe_64.fs.max_p; + p->fs.c_1 = user_pipe_64.fs.c_1; + p->fs.c_2 = user_pipe_64.fs.c_2; + p->fs.c_3 = user_pipe_64.fs.c_3; + p->fs.c_4 = user_pipe_64.fs.c_4; + p->fs.lookup_depth = user_pipe_64.fs.lookup_depth; + p->fs.lookup_step = user_pipe_64.fs.lookup_step; + p->fs.lookup_weight = user_pipe_64.fs.lookup_weight; + p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size; + p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size; + } + return error; } static void -rt_unref(struct rtentry *rt) +cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp) { - if (rt == NULL) - return ; - if (rt->rt_refcnt <= 0) - printf("-- warning, refcnt now %d, decreasing\n", rt->rt_refcnt); - RTFREE(rt); + fs_bp->fs_nr = set->fs_nr; + fs_bp->flags_fs = set->flags_fs ; + fs_bp->parent_nr = set->parent_nr ; + fs_bp->weight = set->weight ; + fs_bp->qsize = set->qsize ; + fs_bp->plr = set->plr ; + fs_bp->flow_mask = set->flow_mask ; + fs_bp->rq_size = set->rq_size ; + fs_bp->rq_elements = set->rq_elements ; + fs_bp->last_expired = set->last_expired ; + fs_bp->backlogged = set->backlogged ; + fs_bp->w_q = set->w_q ; + fs_bp->max_th = set->max_th ; + fs_bp->min_th = set->min_th ; + fs_bp->max_p = set->max_p ; + fs_bp->c_1 = set->c_1 ; + fs_bp->c_2 = set->c_2 ; + fs_bp->c_3 = set->c_3 ; + fs_bp->c_4 = set->c_4 ; + fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ; + fs_bp->lookup_depth = set->lookup_depth ; + fs_bp->lookup_step = set->lookup_step ; + fs_bp->lookup_weight = set->lookup_weight ; + fs_bp->avg_pkt_size = set->avg_pkt_size ; + fs_bp->max_pkt_size = set->max_pkt_size ; } -/* - * move packets from R-queue to P-queue - */ static void -dn_move(struct dn_pipe *pipe, int immediate) +cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp) { - struct dn_pkt *pkt; - - /* - * consistency check, should catch new pipes which are - * not initialized properly. - */ - if ( pipe->p.head == NULL && - pipe->ticks_from_last_insert != pipe->delay) { - printf("Warning, empty pipe and delay %d (should be %d)\n", - pipe->ticks_from_last_insert, pipe->delay); - pipe->ticks_from_last_insert = pipe->delay; - } - /* this ought to go in dn_dequeue() */ - if (!immediate && pipe->ticks_from_last_insert < pipe->delay) - pipe->ticks_from_last_insert++; - if ( pkt = pipe->r.head ) { - /* - * Move at most numbytes bytes from src and move to dst. - * delay is set to ticks_from_last_insert, which - * is reset after the first insertion; - */ - while ( pkt ) { - struct ip *ip=mtod(pkt->dn_m, struct ip *); + fs_bp->fs_nr = set->fs_nr; + fs_bp->flags_fs = set->flags_fs ; + fs_bp->parent_nr = set->parent_nr ; + fs_bp->weight = set->weight ; + fs_bp->qsize = set->qsize ; + fs_bp->plr = set->plr ; + fs_bp->flow_mask = set->flow_mask ; + fs_bp->rq_size = set->rq_size ; + fs_bp->rq_elements = set->rq_elements ; + fs_bp->last_expired = set->last_expired ; + fs_bp->backlogged = set->backlogged ; + fs_bp->w_q = set->w_q ; + fs_bp->max_th = set->max_th ; + fs_bp->min_th = set->min_th ; + fs_bp->max_p = set->max_p ; + fs_bp->c_1 = set->c_1 ; + fs_bp->c_2 = set->c_2 ; + fs_bp->c_3 = set->c_3 ; + fs_bp->c_4 = set->c_4 ; + fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ; + fs_bp->lookup_depth = set->lookup_depth ; + fs_bp->lookup_step = set->lookup_step ; + fs_bp->lookup_weight = set->lookup_weight ; + fs_bp->avg_pkt_size = set->avg_pkt_size ; + fs_bp->max_pkt_size = set->max_pkt_size ; +} - /* - * queue limitation: pass packets down if the len is - * such that the pkt would go out before the next tick. - */ - if (pipe->bandwidth) { - if (pipe->numbytes < ip->ip_len) - break; - pipe->numbytes -= ip->ip_len; - } - pipe->r_len--; /* elements in queue */ - pipe->r_len_bytes -= ip->ip_len ; +static +void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp) +{ + qp->id = q->id; + qp->len = q->len; + qp->len_bytes = q->len_bytes; + qp->numbytes = q->numbytes; + qp->tot_pkts = q->tot_pkts; + qp->tot_bytes = q->tot_bytes; + qp->drops = q->drops; + qp->hash_slot = q->hash_slot; + qp->avg = q->avg; + qp->count = q->count; + qp->random = q->random; + qp->q_time = q->q_time; + qp->heap_pos = q->heap_pos; + qp->sched_time = q->sched_time; + qp->S = q->S; + qp->F = q->F; +} - /* - * to add delay jitter, must act here. A lower value - * (bounded to 0) means lower delay. - */ - pkt->delay = pipe->ticks_from_last_insert; - pipe->ticks_from_last_insert = 0; - /* compensate the decrement done next in dn_dequeue */ - if (!immediate && pkt->delay >0 && pipe->p.head==NULL) - pkt->delay++; - if (pipe->p.head == NULL) - pipe->p.head = pkt; - else - (struct dn_pkt *)pipe->p.tail->dn_next = pkt; - pipe->p.tail = pkt; - pkt = (struct dn_pkt *)pkt->dn_next; - pipe->p.tail->dn_next = NULL; - } - pipe->r.head = pkt; - - /*** XXX just a sanity check */ - if ( ( pkt == NULL && pipe->r_len != 0) || - ( pkt != NULL && pipe->r_len == 0) ) - printf("-- Warning, pipe head %p len %d\n", - (void *)pkt, pipe->r_len); - } - - /* - * deliver packets downstream after the delay in the P-queue. - */ +static +void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp) +{ + qp->id = q->id; + qp->len = q->len; + qp->len_bytes = q->len_bytes; + qp->numbytes = q->numbytes; + qp->tot_pkts = q->tot_pkts; + qp->tot_bytes = q->tot_bytes; + qp->drops = q->drops; + qp->hash_slot = q->hash_slot; + qp->avg = q->avg; + qp->count = q->count; + qp->random = q->random; + qp->q_time = q->q_time; + qp->heap_pos = q->heap_pos; + qp->sched_time = q->sched_time; + qp->S = q->S; + qp->F = q->F; +} - if (pipe->p.head == NULL) - return; - if (!immediate) - pipe->p.head->delay--; - while ( (pkt = pipe->p.head) && pkt->delay < 1) { - /* - * first unlink, then call procedures since ip_input() - * can result in a call to ip_output cnd viceversa, - * thus causing nested calls - */ - pipe->p.head = (struct dn_pkt *) pkt->dn_next ; +static +char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp) +{ + char *bp; + pipe_bp->pipe_nr = p->pipe_nr; + pipe_bp->bandwidth = p->bandwidth; + pipe_bp->delay = p->delay; + bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32)); + pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p); + bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32)); + pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p); + bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32)); + pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p); + pipe_bp->V = p->V; + pipe_bp->sum = p->sum; + pipe_bp->numbytes = p->numbytes; + pipe_bp->sched_time = p->sched_time; + bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ); + pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp); + pipe_bp->ready = p->ready; + + cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs)); + + pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ; /* - * the trick to avoid flow-id settings here is to prepend a - * vestigial mbuf to the packet, with the following values: - * m_type = MT_DUMMYNET - * m_next = the actual mbuf to be processed by ip_input/output - * m_data = the matching rule - * The vestigial element is the same memory area used by - * the dn_pkt, and IS FREED IN ip_input/ip_output. IT IS - * NOT A REAL MBUF, just a block of memory acquired with malloc(). + * XXX the following is a hack based on ->next being the + * first field in dn_pipe and dn_flow_set. The correct + * solution would be to move the dn_flow_set to the beginning + * of struct dn_pipe. */ - switch (pkt->dn_dir) { - case DN_TO_IP_OUT: { - struct rtentry *tmp_rt = pkt->ro.ro_rt ; - - (void)ip_output((struct mbuf *)pkt, (struct mbuf *)pkt->ifp, - &(pkt->ro), pkt->dn_hlen, NULL); - rt_unref (tmp_rt) ; - } - break ; - case DN_TO_IP_IN : - ip_input((struct mbuf *)pkt) ; - break ; -#if BRIDGE - case DN_TO_BDG_FWD : - bdg_forward((struct mbuf **)&pkt, pkt->ifp); - break ; -#endif - default: - printf("dummynet: bad switch %d!\n", pkt->dn_dir); - m_freem(pkt->dn_m); - FREE(pkt, M_IPFW); - break ; - } - } + pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE ); + /* clean pointers */ + pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ; + pipe_bp->fs.next = (user32_addr_t)0 ; + pipe_bp->fs.pipe = (user32_addr_t)0 ; + pipe_bp->fs.rq = (user32_addr_t)0 ; + bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32); + return( dn_copy_set_32( &(p->fs), bp) ); } -/* - * this is the periodic task that moves packets between the R- - * and the P- queue - */ -/*ARGSUSED*/ -void -dummynet(void * __unused unused) + +static +char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp) { - struct dn_pipe *p ; - int s ; - boolean_t funnel_state; + char *bp; + + pipe_bp->pipe_nr = p->pipe_nr; + pipe_bp->bandwidth = p->bandwidth; + pipe_bp->delay = p->delay; + bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64)); + pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p); + bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64)); + pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p); + bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64)); + pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p); + pipe_bp->V = p->V; + pipe_bp->sum = p->sum; + pipe_bp->numbytes = p->numbytes; + pipe_bp->sched_time = p->sched_time; + bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ); + pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp); + pipe_bp->ready = p->ready; - funnel_state = thread_funnel_set(network_flock, TRUE); - dn_calls++ ; - for (p = all_pipes ; p ; p = p->next ) { + cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs)); + + pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ; /* - * Increment the amount of data that can be sent. However, - * don't do that if the channel is idle - * (r.head == NULL && numbytes >= bandwidth). - * This bug fix is from tim shepard (shep@bbn.com) + * XXX the following is a hack based on ->next being the + * first field in dn_pipe and dn_flow_set. The correct + * solution would be to move the dn_flow_set to the beginning + * of struct dn_pipe. */ - s = splimp(); - if (p->r.head != NULL || p->numbytes < p->bandwidth ) - p->numbytes += p->bandwidth ; - dn_move(p, 0); /* is it really 0 (also below) ? */ - splx(s); - } - - /* - * finally, if some queue has data, restart the timer. - */ - dn_idle = 1; - dn_restart(); - (void) thread_funnel_set(network_flock, funnel_state); + pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE ); + /* clean pointers */ + pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ; + pipe_bp->fs.next = USER_ADDR_NULL ; + pipe_bp->fs.pipe = USER_ADDR_NULL ; + pipe_bp->fs.rq = USER_ADDR_NULL ; + bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64); + return( dn_copy_set_64( &(p->fs), bp) ); +} + +static int +heap_init(struct dn_heap *h, int new_size) +{ + struct dn_heap_entry *p; + if (h->size >= new_size ) { + printf("dummynet: heap_init, Bogus call, have %d want %d\n", + h->size, new_size); + return 0 ; + } + new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ; + p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT ); + if (p == NULL) { + printf("dummynet: heap_init, resize %d failed\n", new_size ); + return 1 ; /* error */ + } + if (h->size > 0) { + bcopy(h->p, p, h->size * sizeof(*p) ); + FREE(h->p, M_DUMMYNET); + } + h->p = p ; + h->size = new_size ; + return 0 ; } /* - * dummynet hook for packets. - * input and output use the same code, so i use bit 16 in the pipe - * number to chose the direction: 1 for output packets, 0 for input. - * for input, only m is significant. For output, also the others. + * Insert element in heap. Normally, p != NULL, we insert p in + * a new position and bubble up. If p == NULL, then the element is + * already in place, and key is the position where to start the + * bubble-up. + * Returns 1 on failure (cannot allocate new heap entry) + * + * If offset > 0 the position (index, int) of the element in the heap is + * also stored in the element itself at the given offset in bytes. + */ +#define SET_OFFSET(heap, node) \ + if (heap->offset > 0) \ + *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ; +/* + * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value. */ -int -dummynet_io(int pipe_nr, int dir, - struct mbuf *m, struct ifnet *ifp, struct route *ro, int hlen, - struct ip_fw_chain *rule) +#define RESET_OFFSET(heap, node) \ + if (heap->offset > 0) \ + *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ; +static int +heap_insert(struct dn_heap *h, dn_key key1, void *p) { - struct dn_pkt *pkt; - struct dn_pipe *pipe; - struct ip *ip=mtod(m, struct ip *); - - int s=splimp(); - - pipe_nr &= 0xffff ; - /* - * locate pipe. First time is expensive, next have direct access. - */ - - if ( (pipe = rule->rule->pipe_ptr) == NULL ) { - for (pipe=all_pipes; pipe && pipe->pipe_nr !=pipe_nr; pipe=pipe->next) - ; - if (pipe == NULL) { - splx(s); - if (dn_debug) - printf("warning, pkt for no pipe %d\n", pipe_nr); - m_freem(m); - return 0 ; - } else - rule->rule->pipe_ptr = pipe ; - } - - /* - * should i drop ? - * This section implements random packet drop. - */ - if ( (pipe->plr && random() < pipe->plr) || - (pipe->queue_size && pipe->r_len >= pipe->queue_size) || - (pipe->queue_size_bytes && - ip->ip_len + pipe->r_len_bytes > pipe->queue_size_bytes) || - (pkt = (struct dn_pkt *) _MALLOC(sizeof (*pkt), - M_IPFW, M_WAITOK) ) == NULL ) { - splx(s); - if (dn_debug) - printf("-- dummynet: drop from pipe %d, have %d pks, %d bytes\n", - pipe_nr, pipe->r_len, pipe->r_len_bytes); - pipe->r_drops++ ; - m_freem(m); - return 0 ; /* XXX error */ - } - bzero(pkt, sizeof(*pkt) ); - /* build and enqueue packet */ - pkt->hdr.mh_type = MT_DUMMYNET ; - (struct ip_fw_chain *)pkt->hdr.mh_data = rule ; - pkt->dn_next = NULL; - pkt->dn_m = m; - pkt->dn_dir = dir ; - pkt->delay = 0; + int son = h->elements ; - pkt->ifp = ifp; - if (dir == DN_TO_IP_OUT) { - pkt->ro = *ro; /* XXX copied! */ - if (ro->ro_rt) - ro->ro_rt->rt_refcnt++ ; /* XXX */ + if (p == NULL) /* data already there, set starting point */ + son = key1 ; + else { /* insert new element at the end, possibly resize */ + son = h->elements ; + if (son == h->size) /* need resize... */ + if (heap_init(h, h->elements+1) ) + return 1 ; /* failure... */ + h->p[son].object = p ; + h->p[son].key = key1 ; + h->elements++ ; } - pkt->dn_hlen = hlen; - if (pipe->r.head == NULL) - pipe->r.head = pkt; - else - (struct dn_pkt *)pipe->r.tail->dn_next = pkt; - pipe->r.tail = pkt; - pipe->r_len++; - pipe->r_len_bytes += ip->ip_len ; - - /* - * here we could implement RED if we like to - */ + while (son > 0) { /* bubble up */ + int father = HEAP_FATHER(son) ; + struct dn_heap_entry tmp ; - if (pipe->r.head == pkt) { /* process immediately */ - dn_move(pipe, 1); + if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) + break ; /* found right position */ + /* son smaller than father, swap and repeat */ + HEAP_SWAP(h->p[son], h->p[father], tmp) ; + SET_OFFSET(h, son); + son = father ; } - splx(s); - if (dn_idle) - dn_restart(); - return 0; + SET_OFFSET(h, son); + return 0 ; } /* - * dispose all packets queued on a pipe + * remove top element from heap, or obj if obj != NULL */ static void -purge_pipe(struct dn_pipe *pipe) +heap_extract(struct dn_heap *h, void *obj) { - struct dn_pkt *pkt, *n ; - struct rtentry *tmp_rt ; + int child, father, maxelt = h->elements - 1 ; - for (pkt = pipe->r.head ; pkt ; ) { - rt_unref (tmp_rt = pkt->ro.ro_rt ) ; - m_freem(pkt->dn_m); - n = pkt ; - pkt = (struct dn_pkt *)pkt->dn_next ; - FREE(n, M_IPFW) ; + if (maxelt < 0) { + printf("dummynet: warning, extract from empty heap 0x%llx\n", + (uint64_t)VM_KERNEL_ADDRPERM(h)); + return ; + } + father = 0 ; /* default: move up smallest child */ + if (obj != NULL) { /* extract specific element, index is at offset */ + if (h->offset <= 0) + panic("dummynet: heap_extract from middle not supported on this heap!!!\n"); + father = *((int *)((char *)obj + h->offset)) ; + if (father < 0 || father >= h->elements) { + printf("dummynet: heap_extract, father %d out of bound 0..%d\n", + father, h->elements); + panic("dummynet: heap_extract"); + } + } + RESET_OFFSET(h, father); + child = HEAP_LEFT(father) ; /* left child */ + while (child <= maxelt) { /* valid entry */ + if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) + child = child+1 ; /* take right child, otherwise left */ + h->p[father] = h->p[child] ; + SET_OFFSET(h, father); + father = child ; + child = HEAP_LEFT(child) ; /* left child for next loop */ } - for (pkt = pipe->p.head ; pkt ; ) { - rt_unref (tmp_rt = pkt->ro.ro_rt ) ; - m_freem(pkt->dn_m); - n = pkt ; - pkt = (struct dn_pkt *)pkt->dn_next ; - FREE(n, M_IPFW) ; + h->elements-- ; + if (father != maxelt) { + /* + * Fill hole with last entry and bubble up, reusing the insert code + */ + h->p[father] = h->p[maxelt] ; + heap_insert(h, father, NULL); /* this one cannot fail */ } } /* - * delete all pipes returning memory + * heapify() will reorganize data inside an array to maintain the + * heap property. It is needed when we delete a bunch of entries. */ static void -dummynet_flush() +heapify(struct dn_heap *h) { - struct dn_pipe *q, *p = all_pipes ; - int s = splnet() ; + int i ; - all_pipes = NULL ; - splx(s) ; - /* - * purge all queued pkts and delete all pipes - */ - for ( ; p ; ) { - purge_pipe(p); - q = p ; - p = p->next ; - FREE(q, M_IPFW); - } + for (i = 0 ; i < h->elements ; i++ ) + heap_insert(h, i , NULL) ; } -extern struct ip_fw_chain *ip_fw_default_rule ; /* - * when a firewall rule is deleted, scan all pipes and remove the flow-id - * from packets matching this rule. + * cleanup the heap and free data structure */ -void -dn_rule_delete(void *r) +static void +heap_free(struct dn_heap *h) { - struct dn_pipe *p ; - int matches = 0 ; - - for ( p = all_pipes ; p ; p = p->next ) { - struct dn_pkt *x ; - for (x = p->r.head ; x ; x = (struct dn_pkt *)x->dn_next ) - if (x->hdr.mh_data == r) { - matches++ ; - x->hdr.mh_data = (void *)ip_fw_default_rule ; - } - for (x = p->p.head ; x ; x = (struct dn_pkt *)x->dn_next ) - if (x->hdr.mh_data == r) { - matches++ ; - x->hdr.mh_data = (void *)ip_fw_default_rule ; - } - } - printf("dn_rule_delete, r %p, default %p%s, %d matches\n", - (void *)r, (void *)ip_fw_default_rule, - r == ip_fw_default_rule ? " AARGH!":"", matches); + if (h->size >0 ) + FREE(h->p, M_DUMMYNET); + bzero(h, sizeof(*h)); } /* - * handler for the various dummynet socket options - * (get, flush, config, del) + * --- end of heap management functions --- */ -static int -ip_dn_ctl(struct sockopt *sopt) + +/* + * Return the mbuf tag holding the dummynet state. As an optimization + * this is assumed to be the first tag on the list. If this turns out + * wrong we'll need to search the list. + */ +static struct dn_pkt_tag * +dn_tag_get(struct mbuf *m) { - int error = 0 ; - size_t size ; - char *buf, *bp ; - struct dn_pipe *p, tmp_pipe ; + struct m_tag *mtag = m_tag_first(m); - struct dn_pipe *x, *a, *b ; + if (!(mtag != NULL && + mtag->m_tag_id == KERNEL_MODULE_TAG_ID && + mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET)) + panic("packet on dummynet queue w/o dummynet tag: 0x%llx", + (uint64_t)VM_KERNEL_ADDRPERM(m)); - /* Disallow sets in really-really secure mode. */ - if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) - return (EPERM); + return (struct dn_pkt_tag *)(mtag+1); +} - switch (sopt->sopt_name) { - default : - panic("ip_dn_ctl -- unknown option"); +/* + * Scheduler functions: + * + * transmit_event() is called when the delay-line needs to enter + * the scheduler, either because of existing pkts getting ready, + * or new packets entering the queue. The event handled is the delivery + * time of the packet. + * + * ready_event() does something similar with fixed-rate queues, and the + * event handled is the finish time of the head pkt. + * + * wfq_ready_event() does something similar with WF2Q queues, and the + * event handled is the start time of the head pkt. + * + * In all cases, we make sure that the data structures are consistent + * before passing pkts out, because this might trigger recursive + * invocations of the procedures. + */ +static void +transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail) +{ + struct mbuf *m ; + struct dn_pkt_tag *pkt = NULL; + u_int64_t schedule_time; - case IP_DUMMYNET_GET : - for (p = all_pipes, size = 0 ; p ; p = p->next ) - size += sizeof( *p ) ; - buf = _MALLOC(size, M_TEMP, M_WAITOK); - if (buf == 0) { - error = ENOBUFS ; - break ; - } - for (p = all_pipes, bp = buf ; p ; p = p->next ) { - struct dn_pipe *q = (struct dn_pipe *)bp ; + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + ASSERT(serialize >= 0); + if (serialize == 0) { + while ((m = pipe->head) != NULL) { + pkt = dn_tag_get(m); + if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time)) + break; - bcopy(p, bp, sizeof( *p ) ); - /* - * return bw and delay in bits/s and ms, respectively - */ - q->bandwidth *= (8*hz) ; - q->delay = (q->delay * 1000) / hz ; - bp += sizeof( *p ) ; - } - error = sooptcopyout(sopt, buf, size); - FREE(buf, M_TEMP); - break ; - case IP_DUMMYNET_FLUSH : - dummynet_flush() ; - break ; - case IP_DUMMYNET_CONFIGURE : - p = &tmp_pipe ; - error = sooptcopyin(sopt, p, sizeof *p, sizeof *p); - if (error) - break ; - /* - * The config program passes parameters as follows: - * bandwidth = bits/second (0 = no limits); - * must be translated in bytes/tick. - * delay = ms - * must be translated in ticks. - * queue_size = slots (0 = no limit) - * queue_size_bytes = bytes (0 = no limit) - * only one can be set, must be bound-checked - */ - if ( p->bandwidth > 0 ) { - p->bandwidth = p->bandwidth / 8 / hz ; - if (p->bandwidth == 0) /* too little does not make sense! */ - p->bandwidth = 10 ; - } - p->delay = ( p->delay * hz ) / 1000 ; - if (p->queue_size == 0 && p->queue_size_bytes == 0) - p->queue_size = 100 ; - if (p->queue_size != 0 ) /* buffers are prevailing */ - p->queue_size_bytes = 0 ; - if (p->queue_size > 100) - p->queue_size = 100 ; - if (p->queue_size_bytes > 1024*1024) - p->queue_size_bytes = 1024*1024 ; -#if 0 - printf("ip_dn: config pipe %d %d bit/s %d ms %d bufs\n", - p->pipe_nr, - p->bandwidth * 8 * hz , - p->delay * 1000 / hz , p->queue_size); -#endif - for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ; - a = b , b = b->next) ; - if (b && b->pipe_nr == p->pipe_nr) { - /* XXX should spl and flush old pipe... */ - b->bandwidth = p->bandwidth ; - b->delay = p->delay ; - b->ticks_from_last_insert = p->delay ; - b->queue_size = p->queue_size ; - b->queue_size_bytes = p->queue_size_bytes ; - b->plr = p->plr ; - } else { - int s ; - x = _MALLOC(sizeof(struct dn_pipe), M_IPFW, M_NOWAIT) ; - if (x == NULL) { - printf("ip_dummynet.c: sorry no memory\n"); - error = ENOSPC ; - break ; + pipe->head = m->m_nextpkt; + if (*tail != NULL) + (*tail)->m_nextpkt = m; + else + *head = m; + *tail = m; } - bzero(x, sizeof(*x) ); - x->bandwidth = p->bandwidth ; - x->delay = p->delay ; - x->ticks_from_last_insert = p->delay ; - x->pipe_nr = p->pipe_nr ; - x->queue_size = p->queue_size ; - x->queue_size_bytes = p->queue_size_bytes ; - x->plr = p->plr ; - - s = splnet() ; - x->next = b ; - if (a == NULL) - all_pipes = x ; - else - a->next = x ; - splx(s); - } - break ; - case IP_DUMMYNET_DEL : - p = &tmp_pipe ; - error = sooptcopyin(sopt, p, sizeof *p, sizeof *p); - if (error) - break ; + if (*tail != NULL) + (*tail)->m_nextpkt = NULL; + } - for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ; - a = b , b = b->next) ; - if (b && b->pipe_nr == p->pipe_nr) { /* found pipe */ - int s = splnet() ; - struct ip_fw_chain *chain = ip_fw_chain.lh_first; + schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ? + curr_time + 1 : pkt->dn_output_time; - if (a == NULL) - all_pipes = b->next ; - else - a->next = b->next ; - /* - * remove references to this pipe from the ip_fw rules. + /* if there are leftover packets, put the pipe into the heap for next ready event */ + if ((m = pipe->head) != NULL) { + pkt = dn_tag_get(m); + /* XXX should check errors on heap_insert, by draining the + * whole pipe p and hoping in the future we are more successful */ - for (; chain; chain = chain->chain.le_next) { - register struct ip_fw *const f = chain->rule; - if (f->pipe_ptr == b) - f->pipe_ptr = NULL ; - } - splx(s); - purge_pipe(b); /* remove pkts from here */ - FREE(b, M_IPFW); - } - break ; + heap_insert(&extract_heap, schedule_time, pipe); } - return error ; } -void -ip_dn_init(void) -{ - printf("DUMMYNET initialized (980901) -- size dn_pkt %d\n", - sizeof(struct dn_pkt)); - all_pipes = NULL ; - ip_dn_ctl_ptr = ip_dn_ctl; -} +/* + * the following macro computes how many ticks we have to wait + * before being able to transmit a packet. The credit is taken from + * either a pipe (WF2Q) or a flow_queue (per-flow queueing) + */ -#if DUMMYNET_MODULE +/* hz is 100, which gives a granularity of 10ms in the old timer. + * The timer has been changed to fire every 1ms, so the use of + * hz has been modified here. All instances of hz have been left + * in place but adjusted by a factor of 10 so that hz is functionally + * equal to 1000. + */ +#define SET_TICKS(_m, q, p) \ + ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \ + p->bandwidth ; -#include -#include -#include +/* + * extract pkt from queue, compute output time (could be now) + * and put into delay line (p_queue) + */ +static void +move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, + struct dn_pipe *p, int len) +{ + struct dn_pkt_tag *dt = dn_tag_get(pkt); -MOD_MISC(dummynet); + q->head = pkt->m_nextpkt ; + q->len-- ; + q->len_bytes -= len ; -static ip_dn_ctl_t *old_dn_ctl_ptr ; + dt->dn_output_time = curr_time + p->delay ; -static int -dummynet_load(struct lkm_table *lkmtp, int cmd) -{ - int s=splnet(); - old_dn_ctl_ptr = ip_dn_ctl_ptr; - ip_dn_init(); - splx(s); - return 0; + if (p->head == NULL) + p->head = pkt; + else + p->tail->m_nextpkt = pkt; + p->tail = pkt; + p->tail->m_nextpkt = NULL; } -static int -dummynet_unload(struct lkm_table *lkmtp, int cmd) +/* + * ready_event() is invoked every time the queue must enter the + * scheduler, either because the first packet arrives, or because + * a previously scheduled event fired. + * On invokation, drain as many pkts as possible (could be 0) and then + * if there are leftover packets reinsert the pkt in the scheduler. + */ +static void +ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail) { - int s=splnet(); - ip_dn_ctl_ptr = old_dn_ctl_ptr; - splx(s); - dummynet_flush(); - printf("DUMMYNET unloaded\n"); - return 0; + struct mbuf *pkt; + struct dn_pipe *p = q->fs->pipe ; + int p_was_empty ; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + if (p == NULL) { + printf("dummynet: ready_event pipe is gone\n"); + return ; + } + p_was_empty = (p->head == NULL) ; + + /* + * schedule fixed-rate queues linked to this pipe: + * Account for the bw accumulated since last scheduling, then + * drain as many pkts as allowed by q->numbytes and move to + * the delay line (in p) computing output time. + * bandwidth==0 (no limit) means we can drain the whole queue, + * setting len_scaled = 0 does the job. + */ + q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth; + while ( (pkt = q->head) != NULL ) { + int len = pkt->m_pkthdr.len; + int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ; + if (len_scaled > q->numbytes ) + break ; + q->numbytes -= len_scaled ; + move_pkt(pkt, q, p, len); + } + /* + * If we have more packets queued, schedule next ready event + * (can only occur when bandwidth != 0, otherwise we would have + * flushed the whole queue in the previous loop). + * To this purpose we record the current time and compute how many + * ticks to go for the finish time of the packet. + */ + if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */ + dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */ + q->sched_time = curr_time ; + heap_insert(&ready_heap, curr_time + t, (void *)q ); + /* XXX should check errors on heap_insert, and drain the whole + * queue on error hoping next time we are luckier. + */ + } else { /* RED needs to know when the queue becomes empty */ + q->q_time = curr_time; + q->numbytes = 0; + } + /* + * If the delay line was empty call transmit_event(p) now. + * Otherwise, the scheduler will take care of it. + */ + if (p_was_empty) + transmit_event(p, head, tail); } -int -dummynet_mod(struct lkm_table *lkmtp, int cmd, int ver) +/* + * Called when we can transmit packets on WF2Q queues. Take pkts out of + * the queues at their start time, and enqueue into the delay line. + * Packets are drained until p->numbytes < 0. As long as + * len_scaled >= p->numbytes, the packet goes into the delay line + * with a deadline p->delay. For the last packet, if p->numbytes<0, + * there is an additional delay. + */ +static void +ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail) { - DISPATCH(lkmtp, cmd, ver, dummynet_load, dummynet_unload, lkm_nullcmd); -} -#endif + int p_was_empty = (p->head == NULL) ; + struct dn_heap *sch = &(p->scheduler_heap); + struct dn_heap *neh = &(p->not_eligible_heap) ; + int64_t p_numbytes = p->numbytes; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + if (p->if_name[0] == 0) /* tx clock is simulated */ + p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth; + else { /* tx clock is for real, the ifq must be empty or this is a NOP */ + if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd)) + return ; + else { + DPRINTF(("dummynet: pipe %d ready from %s --\n", + p->pipe_nr, p->if_name)); + } + } + + /* + * While we have backlogged traffic AND credit, we need to do + * something on the queue. + */ + while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) { + if (sch->elements > 0) { /* have some eligible pkts to send out */ + struct dn_flow_queue *q = sch->p[0].object ; + struct mbuf *pkt = q->head; + struct dn_flow_set *fs = q->fs; + u_int64_t len = pkt->m_pkthdr.len; + int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ; + + heap_extract(sch, NULL); /* remove queue from heap */ + p_numbytes -= len_scaled ; + move_pkt(pkt, q, p, len); + + p->V += (len<sum ; /* update V */ + q->S = q->F ; /* update start time */ + if (q->len == 0) { /* Flow not backlogged any more */ + fs->backlogged-- ; + heap_insert(&(p->idle_heap), q->F, q); + } else { /* still backlogged */ + /* + * update F and position in backlogged queue, then + * put flow in not_eligible_heap (we will fix this later). + */ + len = (q->head)->m_pkthdr.len; + q->F += (len<weight ; + if (DN_KEY_LEQ(q->S, p->V)) + heap_insert(neh, q->S, q); + else + heap_insert(sch, q->F, q); + } + } + /* + * now compute V = max(V, min(S_i)). Remember that all elements in sch + * have by definition S_i <= V so if sch is not empty, V is surely + * the max and we must not update it. Conversely, if sch is empty + * we only need to look at neh. + */ + if (sch->elements == 0 && neh->elements > 0) + p->V = MAX64 ( p->V, neh->p[0].key ); + /* move from neh to sch any packets that have become eligible */ + while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) { + struct dn_flow_queue *q = neh->p[0].object ; + heap_extract(neh, NULL); + heap_insert(sch, q->F, q); + } + + if (p->if_name[0] != '\0') {/* tx clock is from a real thing */ + p_numbytes = -1 ; /* mark not ready for I/O */ + break ; + } + } + if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0 + && p->idle_heap.elements > 0) { + /* + * no traffic and no events scheduled. We can get rid of idle-heap. + */ + int i ; + + for (i = 0 ; i < p->idle_heap.elements ; i++) { + struct dn_flow_queue *q = p->idle_heap.p[i].object ; + + q->F = 0 ; + q->S = q->F + 1 ; + } + p->sum = 0 ; + p->V = 0 ; + p->idle_heap.elements = 0 ; + } + /* + * If we are getting clocks from dummynet (not a real interface) and + * If we are under credit, schedule the next ready event. + * Also fix the delivery time of the last packet. + */ + if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */ + dn_key t=0 ; /* number of ticks i have to wait */ + + if (p->bandwidth > 0) + t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ; + dn_tag_get(p->tail)->dn_output_time += t ; + p->sched_time = curr_time ; + heap_insert(&wfq_ready_heap, curr_time + t, (void *)p); + /* XXX should check errors on heap_insert, and drain the whole + * queue on error hoping next time we are luckier. + */ + } + + /* Fit (adjust if necessary) 64bit result into 32bit variable. */ + if (p_numbytes > INT_MAX) + p->numbytes = INT_MAX; + else if (p_numbytes < INT_MIN) + p->numbytes = INT_MIN; + else + p->numbytes = p_numbytes; + + /* + * If the delay line was empty call transmit_event(p) now. + * Otherwise, the scheduler will take care of it. + */ + if (p_was_empty) + transmit_event(p, head, tail); + +} + +/* + * This is called every 1ms. It is used to + * increment the current tick counter and schedule expired events. + */ +static void +dummynet(__unused void * unused) +{ + void *p ; /* generic parameter to handler */ + struct dn_heap *h ; + struct dn_heap *heaps[3]; + struct mbuf *head = NULL, *tail = NULL; + int i; + struct dn_pipe *pe ; + struct timespec ts; + struct timeval tv; + + heaps[0] = &ready_heap ; /* fixed-rate queues */ + heaps[1] = &wfq_ready_heap ; /* wfq queues */ + heaps[2] = &extract_heap ; /* delay line */ + + lck_mtx_lock(dn_mutex); + + /* make all time measurements in milliseconds (ms) - + * here we convert secs and usecs to msecs (just divide the + * usecs and take the closest whole number). + */ + microuptime(&tv); + curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); + + for (i=0; i < 3 ; i++) { + h = heaps[i]; + while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) { + if (h->p[0].key > curr_time) + printf("dummynet: warning, heap %d is %d ticks late\n", + i, (int)(curr_time - h->p[0].key)); + p = h->p[0].object ; /* store a copy before heap_extract */ + heap_extract(h, NULL); /* need to extract before processing */ + if (i == 0) + ready_event(p, &head, &tail) ; + else if (i == 1) { + struct dn_pipe *pipe = p; + if (pipe->if_name[0] != '\0') + printf("dummynet: bad ready_event_wfq for pipe %s\n", + pipe->if_name); + else + ready_event_wfq(p, &head, &tail) ; + } else { + transmit_event(p, &head, &tail); + } + } + } + /* sweep pipes trying to expire idle flow_queues */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(pe, &pipehash[i], next) + if (pe->idle_heap.elements > 0 && + DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) { + struct dn_flow_queue *q = pe->idle_heap.p[0].object ; + + heap_extract(&(pe->idle_heap), NULL); + q->S = q->F + 1 ; /* mark timestamp as invalid */ + pe->sum -= q->fs->weight ; + } + + /* check the heaps to see if there's still stuff in there, and + * only set the timer if there are packets to process + */ + timer_enabled = 0; + for (i=0; i < 3 ; i++) { + h = heaps[i]; + if (h->elements > 0) { // set the timer + ts.tv_sec = 0; + ts.tv_nsec = 1 * 1000000; // 1ms + timer_enabled = 1; + bsd_timeout(dummynet, NULL, &ts); + break; + } + } + + if (head != NULL) + serialize++; + + lck_mtx_unlock(dn_mutex); + + /* Send out the de-queued list of ready-to-send packets */ + if (head != NULL) { + dummynet_send(head); + lck_mtx_lock(dn_mutex); + serialize--; + lck_mtx_unlock(dn_mutex); + } +} + + +static void +dummynet_send(struct mbuf *m) +{ + struct dn_pkt_tag *pkt; + struct mbuf *n; + + for (; m != NULL; m = n) { + n = m->m_nextpkt; + m->m_nextpkt = NULL; + pkt = dn_tag_get(m); + + DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n", + (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir, + pkt->dn_flags)); + + switch (pkt->dn_dir) { + case DN_TO_IP_OUT: { + struct route tmp_rt; + + /* route is already in the packet's dn_ro */ + bzero(&tmp_rt, sizeof (tmp_rt)); + + /* Force IP_RAWOUTPUT as the IP header is fully formed */ + pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING; + (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL); + ROUTE_RELEASE(&tmp_rt); + break ; + } + case DN_TO_IP_IN : + proto_inject(PF_INET, m); + break ; +#ifdef INET6 + case DN_TO_IP6_OUT: { + /* routes already in the packet's dn_{ro6,pmtu} */ + ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); + break; + } + case DN_TO_IP6_IN: + proto_inject(PF_INET6, m); + break; +#endif /* INET6 */ + default: + printf("dummynet: bad switch %d!\n", pkt->dn_dir); + m_freem(m); + break ; + } + } +} + +/* + * Unconditionally expire empty queues in case of shortage. + * Returns the number of queues freed. + */ +static int +expire_queues(struct dn_flow_set *fs) +{ + struct dn_flow_queue *q, *prev ; + int i, initial_elements = fs->rq_elements ; + struct timeval timenow; + + /* reviewed for getmicrotime usage */ + getmicrotime(&timenow); + + if (fs->last_expired == timenow.tv_sec) + return 0 ; + fs->last_expired = timenow.tv_sec ; + for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */ + for (prev=NULL, q = fs->rq[i] ; q != NULL ; ) + if (q->head != NULL || q->S != q->F+1) { + prev = q ; + q = q->next ; + } else { /* entry is idle, expire it */ + struct dn_flow_queue *old_q = q ; + + if (prev != NULL) + prev->next = q = q->next ; + else + fs->rq[i] = q = q->next ; + fs->rq_elements-- ; + FREE(old_q, M_DUMMYNET); + } + return initial_elements - fs->rq_elements ; +} + +/* + * If room, create a new queue and put at head of slot i; + * otherwise, create or use the default queue. + */ +static struct dn_flow_queue * +create_queue(struct dn_flow_set *fs, int i) +{ + struct dn_flow_queue *q ; + + if (fs->rq_elements > fs->rq_size * dn_max_ratio && + expire_queues(fs) == 0) { + /* + * No way to get room, use or create overflow queue. + */ + i = fs->rq_size ; + if ( fs->rq[i] != NULL ) + return fs->rq[i] ; + } + q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (q == NULL) { + printf("dummynet: sorry, cannot allocate queue for new flow\n"); + return NULL ; + } + q->fs = fs ; + q->hash_slot = i ; + q->next = fs->rq[i] ; + q->S = q->F + 1; /* hack - mark timestamp as invalid */ + fs->rq[i] = q ; + fs->rq_elements++ ; + return q ; +} + +/* + * Given a flow_set and a pkt in last_pkt, find a matching queue + * after appropriate masking. The queue is moved to front + * so that further searches take less time. + */ +static struct dn_flow_queue * +find_queue(struct dn_flow_set *fs, struct ip_flow_id *id) +{ + int i = 0 ; /* we need i and q for new allocations */ + struct dn_flow_queue *q, *prev; + int is_v6 = IS_IP6_FLOW_ID(id); + + if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) ) + q = fs->rq[0] ; + else { + /* first, do the masking, then hash */ + id->dst_port &= fs->flow_mask.dst_port ; + id->src_port &= fs->flow_mask.src_port ; + id->proto &= fs->flow_mask.proto ; + id->flags = 0 ; /* we don't care about this one */ + if (is_v6) { + APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6); + APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6); + id->flow_id6 &= fs->flow_mask.flow_id6; + + i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^ + + ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^ + + ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^ + + ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff)^ + + (id->dst_port << 1) ^ (id->src_port) ^ + (id->proto ) ^ + (id->flow_id6); + } else { + id->dst_ip &= fs->flow_mask.dst_ip ; + id->src_ip &= fs->flow_mask.src_ip ; + + i = ( (id->dst_ip) & 0xffff ) ^ + ( (id->dst_ip >> 15) & 0xffff ) ^ + ( (id->src_ip << 1) & 0xffff ) ^ + ( (id->src_ip >> 16 ) & 0xffff ) ^ + (id->dst_port << 1) ^ (id->src_port) ^ + (id->proto ); + } + i = i % fs->rq_size ; + /* finally, scan the current list for a match */ + searches++ ; + for (prev=NULL, q = fs->rq[i] ; q ; ) { + search_steps++; + if (is_v6 && + IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) && + IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) && + id->dst_port == q->id.dst_port && + id->src_port == q->id.src_port && + id->proto == q->id.proto && + id->flags == q->id.flags && + id->flow_id6 == q->id.flow_id6) + break ; /* found */ + + if (!is_v6 && id->dst_ip == q->id.dst_ip && + id->src_ip == q->id.src_ip && + id->dst_port == q->id.dst_port && + id->src_port == q->id.src_port && + id->proto == q->id.proto && + id->flags == q->id.flags) + break ; /* found */ + + /* No match. Check if we can expire the entry */ + if (pipe_expire && q->head == NULL && q->S == q->F+1 ) { + /* entry is idle and not in any heap, expire it */ + struct dn_flow_queue *old_q = q ; + + if (prev != NULL) + prev->next = q = q->next ; + else + fs->rq[i] = q = q->next ; + fs->rq_elements-- ; + FREE(old_q, M_DUMMYNET); + continue ; + } + prev = q ; + q = q->next ; + } + if (q && prev != NULL) { /* found and not in front */ + prev->next = q->next ; + q->next = fs->rq[i] ; + fs->rq[i] = q ; + } + } + if (q == NULL) { /* no match, need to allocate a new entry */ + q = create_queue(fs, i); + if (q != NULL) + q->id = *id ; + } + return q ; +} + +static int +red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len) +{ + /* + * RED algorithm + * + * RED calculates the average queue size (avg) using a low-pass filter + * with an exponential weighted (w_q) moving average: + * avg <- (1-w_q) * avg + w_q * q_size + * where q_size is the queue length (measured in bytes or * packets). + * + * If q_size == 0, we compute the idle time for the link, and set + * avg = (1 - w_q)^(idle/s) + * where s is the time needed for transmitting a medium-sized packet. + * + * Now, if avg < min_th the packet is enqueued. + * If avg > max_th the packet is dropped. Otherwise, the packet is + * dropped with probability P function of avg. + * + */ + + int64_t p_b = 0; + /* queue in bytes or packets ? */ + u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len; + + DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size)); + + /* average queue size estimation */ + if (q_size != 0) { + /* + * queue is not empty, avg <- avg + (q_size - avg) * w_q + */ + int diff = SCALE(q_size) - q->avg; + int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q); + + q->avg += (int) v; + } else { + /* + * queue is empty, find for how long the queue has been + * empty and use a lookup table for computing + * (1 - * w_q)^(idle_time/s) where s is the time to send a + * (small) packet. + * XXX check wraps... + */ + if (q->avg) { + u_int t = (curr_time - q->q_time) / fs->lookup_step; + + q->avg = (t < fs->lookup_depth) ? + SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; + } + } + DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg))); + + /* should i drop ? */ + + if (q->avg < fs->min_th) { + q->count = -1; + return 0; /* accept packet ; */ + } + if (q->avg >= fs->max_th) { /* average queue >= max threshold */ + if (fs->flags_fs & DN_IS_GENTLE_RED) { + /* + * According to Gentle-RED, if avg is greater than max_th the + * packet is dropped with a probability + * p_b = c_3 * avg - c_4 + * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p + */ + p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4; + } else { + q->count = -1; + DPRINTF(("dummynet: - drop")); + return 1 ; + } + } else if (q->avg > fs->min_th) { + /* + * we compute p_b using the linear dropping function p_b = c_1 * + * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 = + * max_p * min_th / (max_th - min_th) + */ + p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2; + } + if (fs->flags_fs & DN_QSIZE_IS_BYTES) + p_b = (p_b * len) / fs->max_pkt_size; + if (++q->count == 0) + q->random = (my_random() & 0xffff); + else { + /* + * q->count counts packets arrived since last drop, so a greater + * value of q->count means a greater packet drop probability. + */ + if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) { + q->count = 0; + DPRINTF(("dummynet: - red drop")); + /* after a drop we calculate a new random value */ + q->random = (my_random() & 0xffff); + return 1; /* drop */ + } + } + /* end of RED algorithm */ + return 0 ; /* accept */ +} + +static __inline +struct dn_flow_set * +locate_flowset(int fs_nr) +{ + struct dn_flow_set *fs; + SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) + if (fs->fs_nr == fs_nr) + return fs ; + + return (NULL); +} + +static __inline struct dn_pipe * +locate_pipe(int pipe_nr) +{ + struct dn_pipe *pipe; + + SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) + if (pipe->pipe_nr == pipe_nr) + return (pipe); + + return (NULL); +} + + + +/* + * dummynet hook for packets. Below 'pipe' is a pipe or a queue + * depending on whether WF2Q or fixed bw is used. + * + * pipe_nr pipe or queue the packet is destined for. + * dir where shall we send the packet after dummynet. + * m the mbuf with the packet + * ifp the 'ifp' parameter from the caller. + * NULL in ip_input, destination interface in ip_output, + * real_dst in bdg_forward + * ro route parameter (only used in ip_output, NULL otherwise) + * dst destination address, only used by ip_output + * rule matching rule, in case of multiple passes + * flags flags from the caller, only used in ip_output + * + */ +static int +dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa, int client) +{ + struct mbuf *head = NULL, *tail = NULL; + struct dn_pkt_tag *pkt; + struct m_tag *mtag; + struct dn_flow_set *fs = NULL; + struct dn_pipe *pipe ; + u_int64_t len = m->m_pkthdr.len ; + struct dn_flow_queue *q = NULL ; + int is_pipe = 0; + struct timespec ts; + struct timeval tv; + + DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d client: %d\n", + (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir, client)); + +#if IPFIREWALL +#if IPFW2 + if (client == DN_CLIENT_IPFW) { + ipfw_insn *cmd = fwa->fwa_ipfw_rule->cmd + fwa->fwa_ipfw_rule->act_ofs; + + if (cmd->opcode == O_LOG) + cmd += F_LEN(cmd); + is_pipe = (cmd->opcode == O_PIPE); + } +#else + if (client == DN_CLIENT_IPFW) + is_pipe = (fwa->fwa_ipfw_rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE; +#endif +#endif /* IPFIREWALL */ + +#if DUMMYNET + if (client == DN_CLIENT_PF) + is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0; +#endif /* DUMMYNET */ + + pipe_nr &= 0xffff ; + + lck_mtx_lock(dn_mutex); + + /* make all time measurements in milliseconds (ms) - + * here we convert secs and usecs to msecs (just divide the + * usecs and take the closest whole number). + */ + microuptime(&tv); + curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); + + /* + * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule. + */ + if (is_pipe) { + pipe = locate_pipe(pipe_nr); + if (pipe != NULL) + fs = &(pipe->fs); + } else + fs = locate_flowset(pipe_nr); + + + if (fs == NULL){ + goto dropit ; /* this queue/pipe does not exist! */ + } + pipe = fs->pipe ; + if (pipe == NULL) { /* must be a queue, try find a matching pipe */ + pipe = locate_pipe(fs->parent_nr); + + if (pipe != NULL) + fs->pipe = pipe ; + else { + printf("dummynet: no pipe %d for queue %d, drop pkt\n", + fs->parent_nr, fs->fs_nr); + goto dropit ; + } + } + q = find_queue(fs, &(fwa->fwa_id)); + if ( q == NULL ) + goto dropit ; /* cannot allocate queue */ + /* + * update statistics, then check reasons to drop pkt + */ + q->tot_bytes += len ; + q->tot_pkts++ ; + if ( fs->plr && (my_random() < fs->plr)) + goto dropit ; /* random pkt drop */ + if ( fs->flags_fs & DN_QSIZE_IS_BYTES) { + if (q->len_bytes > fs->qsize) + goto dropit ; /* queue size overflow */ + } else { + if (q->len >= fs->qsize) + goto dropit ; /* queue count overflow */ + } + if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) ) + goto dropit ; + + /* XXX expensive to zero, see if we can remove it*/ + mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, + sizeof(struct dn_pkt_tag), M_NOWAIT, m); + if ( mtag == NULL ) + goto dropit ; /* cannot allocate packet header */ + m_tag_prepend(m, mtag); /* attach to mbuf chain */ + + pkt = (struct dn_pkt_tag *)(mtag+1); + bzero(pkt, sizeof(struct dn_pkt_tag)); + /* ok, i can handle the pkt now... */ + /* build and enqueue packet + parameters */ + /* + * PF is checked before ipfw so remember ipfw rule only when + * the caller is ipfw. When the caller is PF, fwa_ipfw_rule + * is a fake rule just used for convenience + */ + if (client == DN_CLIENT_IPFW) + pkt->dn_ipfw_rule = fwa->fwa_ipfw_rule; + pkt->dn_pf_rule = fwa->fwa_pf_rule; + pkt->dn_dir = dir ; + pkt->dn_client = client; + + pkt->dn_ifp = fwa->fwa_oif; + if (dir == DN_TO_IP_OUT) { + /* + * We need to copy *ro because for ICMP pkts (and maybe others) + * the caller passed a pointer into the stack; dst might also be + * a pointer into *ro so it needs to be updated. + */ + if (fwa->fwa_ro) { + route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof (pkt->dn_ro)); + } + if (fwa->fwa_dst) { + if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) /* dst points into ro */ + fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst) ; + + bcopy (fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst)); + } + } else if (dir == DN_TO_IP6_OUT) { + if (fwa->fwa_ro6) { + route_copyout((struct route *)&pkt->dn_ro6, + (struct route *)fwa->fwa_ro6, sizeof (pkt->dn_ro6)); + } + if (fwa->fwa_ro6_pmtu) { + route_copyout((struct route *)&pkt->dn_ro6_pmtu, + (struct route *)fwa->fwa_ro6_pmtu, sizeof (pkt->dn_ro6_pmtu)); + } + if (fwa->fwa_dst6) { + if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) /* dst points into ro */ + fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst) ; + + bcopy (fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6)); + } + pkt->dn_origifp = fwa->fwa_origifp; + pkt->dn_mtu = fwa->fwa_mtu; + pkt->dn_alwaysfrag = fwa->fwa_alwaysfrag; + pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen; + if (fwa->fwa_exthdrs) { + bcopy (fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs)); + /* + * Need to zero out the source structure so the mbufs + * won't be freed by ip6_output() + */ + bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs)); + } + } + if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) { + pkt->dn_flags = fwa->fwa_oflags; + if (fwa->fwa_ipoa != NULL) + pkt->dn_ipoa = *(fwa->fwa_ipoa); + } + if (q->head == NULL) + q->head = m; + else + q->tail->m_nextpkt = m; + q->tail = m; + q->len++; + q->len_bytes += len ; + + if ( q->head != m ) /* flow was not idle, we are done */ + goto done; + /* + * If we reach this point the flow was previously idle, so we need + * to schedule it. This involves different actions for fixed-rate or + * WF2Q queues. + */ + if (is_pipe) { + /* + * Fixed-rate queue: just insert into the ready_heap. + */ + dn_key t = 0 ; + if (pipe->bandwidth) + t = SET_TICKS(m, q, pipe); + q->sched_time = curr_time ; + if (t == 0) /* must process it now */ + ready_event( q , &head, &tail ); + else + heap_insert(&ready_heap, curr_time + t , q ); + } else { + /* + * WF2Q. First, compute start time S: if the flow was idle (S=F+1) + * set S to the virtual time V for the controlling pipe, and update + * the sum of weights for the pipe; otherwise, remove flow from + * idle_heap and set S to max(F,V). + * Second, compute finish time F = S + len/weight. + * Third, if pipe was idle, update V=max(S, V). + * Fourth, count one more backlogged flow. + */ + if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */ + q->S = pipe->V ; + pipe->sum += fs->weight ; /* add weight of new queue */ + } else { + heap_extract(&(pipe->idle_heap), q); + q->S = MAX64(q->F, pipe->V ) ; + } + q->F = q->S + ( len<weight; + + if (pipe->not_eligible_heap.elements == 0 && + pipe->scheduler_heap.elements == 0) + pipe->V = MAX64 ( q->S, pipe->V ); + fs->backlogged++ ; + /* + * Look at eligibility. A flow is not eligibile if S>V (when + * this happens, it means that there is some other flow already + * scheduled for the same pipe, so the scheduler_heap cannot be + * empty). If the flow is not eligible we just store it in the + * not_eligible_heap. Otherwise, we store in the scheduler_heap + * and possibly invoke ready_event_wfq() right now if there is + * leftover credit. + * Note that for all flows in scheduler_heap (SCH), S_i <= V, + * and for all flows in not_eligible_heap (NEH), S_i > V . + * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH, + * we only need to look into NEH. + */ + if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */ + if (pipe->scheduler_heap.elements == 0) + printf("dummynet: ++ ouch! not eligible but empty scheduler!\n"); + heap_insert(&(pipe->not_eligible_heap), q->S, q); + } else { + heap_insert(&(pipe->scheduler_heap), q->F, q); + if (pipe->numbytes >= 0) { /* pipe is idle */ + if (pipe->scheduler_heap.elements != 1) + printf("dummynet: OUCH! pipe should have been idle!\n"); + DPRINTF(("dummynet: waking up pipe %d at %d\n", + pipe->pipe_nr, (int)(q->F >> MY_M))); + pipe->sched_time = curr_time ; + ready_event_wfq(pipe, &head, &tail); + } + } + } +done: + /* start the timer and set global if not already set */ + if (!timer_enabled) { + ts.tv_sec = 0; + ts.tv_nsec = 1 * 1000000; // 1ms + timer_enabled = 1; + bsd_timeout(dummynet, NULL, &ts); + } + + lck_mtx_unlock(dn_mutex); + + if (head != NULL) { + dummynet_send(head); + } + + return 0; + +dropit: + if (q) + q->drops++ ; + lck_mtx_unlock(dn_mutex); + m_freem(m); + return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS); +} + +/* + * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT) + * Doing this would probably save us the initial bzero of dn_pkt + */ +#define DN_FREE_PKT(_m) do { \ + struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \ + if (tag) { \ + struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \ + ROUTE_RELEASE(&n->dn_ro); \ + } \ + m_tag_delete(_m, tag); \ + m_freem(_m); \ +} while (0) + +/* + * Dispose all packets and flow_queues on a flow_set. + * If all=1, also remove red lookup table and other storage, + * including the descriptor itself. + * For the one in dn_pipe MUST also cleanup ready_heap... + */ +static void +purge_flow_set(struct dn_flow_set *fs, int all) +{ + struct dn_flow_queue *q, *qn ; + int i ; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + for (i = 0 ; i <= fs->rq_size ; i++ ) { + for (q = fs->rq[i] ; q ; q = qn ) { + struct mbuf *m, *mnext; + + mnext = q->head; + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + DN_FREE_PKT(m); + } + qn = q->next ; + FREE(q, M_DUMMYNET); + } + fs->rq[i] = NULL ; + } + fs->rq_elements = 0 ; + if (all) { + /* RED - free lookup table */ + if (fs->w_q_lookup) + FREE(fs->w_q_lookup, M_DUMMYNET); + if (fs->rq) + FREE(fs->rq, M_DUMMYNET); + /* if this fs is not part of a pipe, free it */ + if (fs->pipe && fs != &(fs->pipe->fs) ) + FREE(fs, M_DUMMYNET); + } +} + +/* + * Dispose all packets queued on a pipe (not a flow_set). + * Also free all resources associated to a pipe, which is about + * to be deleted. + */ +static void +purge_pipe(struct dn_pipe *pipe) +{ + struct mbuf *m, *mnext; + + purge_flow_set( &(pipe->fs), 1 ); + + mnext = pipe->head; + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + DN_FREE_PKT(m); + } + + heap_free( &(pipe->scheduler_heap) ); + heap_free( &(pipe->not_eligible_heap) ); + heap_free( &(pipe->idle_heap) ); +} + +/* + * Delete all pipes and heaps returning memory. Must also + * remove references from all ipfw rules to all pipes. + */ +static void +dummynet_flush(void) +{ + struct dn_pipe *pipe, *pipe1; + struct dn_flow_set *fs, *fs1; + int i; + + lck_mtx_lock(dn_mutex); + +#if IPFW2 + /* remove all references to pipes ...*/ + flush_pipe_ptrs(NULL); +#endif /* IPFW2 */ + + /* Free heaps so we don't have unwanted events. */ + heap_free(&ready_heap); + heap_free(&wfq_ready_heap); + heap_free(&extract_heap); + + /* + * Now purge all queued pkts and delete all pipes. + * + * XXXGL: can we merge the for(;;) cycles into one or not? + */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) { + SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next); + purge_flow_set(fs, 1); + } + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) { + SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next); + purge_pipe(pipe); + FREE(pipe, M_DUMMYNET); + } + lck_mtx_unlock(dn_mutex); +} + + +static void +dn_ipfw_rule_delete_fs(struct dn_flow_set *fs, void *r) +{ + int i ; + struct dn_flow_queue *q ; + struct mbuf *m ; + + for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */ + for (q = fs->rq[i] ; q ; q = q->next ) + for (m = q->head ; m ; m = m->m_nextpkt ) { + struct dn_pkt_tag *pkt = dn_tag_get(m) ; + if (pkt->dn_ipfw_rule == r) + pkt->dn_ipfw_rule = &default_rule ; + } +} +/* + * when a firewall rule is deleted, scan all queues and remove the flow-id + * from packets matching this rule. + */ +void +dn_ipfw_rule_delete(void *r) +{ + struct dn_pipe *p ; + struct dn_flow_set *fs ; + struct dn_pkt_tag *pkt ; + struct mbuf *m ; + int i; + + lck_mtx_lock(dn_mutex); + + /* + * If the rule references a queue (dn_flow_set), then scan + * the flow set, otherwise scan pipes. Should do either, but doing + * both does not harm. + */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(fs, &flowsethash[i], next) + dn_ipfw_rule_delete_fs(fs, r); + + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(p, &pipehash[i], next) { + fs = &(p->fs); + dn_ipfw_rule_delete_fs(fs, r); + for (m = p->head ; m ; m = m->m_nextpkt ) { + pkt = dn_tag_get(m); + if (pkt->dn_ipfw_rule == r) + pkt->dn_ipfw_rule = &default_rule; + } + } + lck_mtx_unlock(dn_mutex); +} + +/* + * setup RED parameters + */ +static int +config_red(struct dn_flow_set *p, struct dn_flow_set * x) +{ + int i; + + x->w_q = p->w_q; + x->min_th = SCALE(p->min_th); + x->max_th = SCALE(p->max_th); + x->max_p = p->max_p; + + x->c_1 = p->max_p / (p->max_th - p->min_th); + x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); + if (x->flags_fs & DN_IS_GENTLE_RED) { + x->c_3 = (SCALE(1) - p->max_p) / p->max_th; + x->c_4 = (SCALE(1) - 2 * p->max_p); + } + + /* if the lookup table already exist, free and create it again */ + if (x->w_q_lookup) { + FREE(x->w_q_lookup, M_DUMMYNET); + x->w_q_lookup = NULL ; + } + if (red_lookup_depth == 0) { + printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n"); + FREE(x, M_DUMMYNET); + return EINVAL; + } + x->lookup_depth = red_lookup_depth; + x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int), + M_DUMMYNET, M_DONTWAIT); + if (x->w_q_lookup == NULL) { + printf("dummynet: sorry, cannot allocate red lookup table\n"); + FREE(x, M_DUMMYNET); + return ENOSPC; + } + + /* fill the lookup table with (1 - w_q)^x */ + x->lookup_step = p->lookup_step ; + x->lookup_weight = p->lookup_weight ; + x->w_q_lookup[0] = SCALE(1) - x->w_q; + for (i = 1; i < x->lookup_depth; i++) + x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); + if (red_avg_pkt_size < 1) + red_avg_pkt_size = 512 ; + x->avg_pkt_size = red_avg_pkt_size ; + if (red_max_pkt_size < 1) + red_max_pkt_size = 1500 ; + x->max_pkt_size = red_max_pkt_size ; + return 0 ; +} + +static int +alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs) +{ + if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ + int l = pfs->rq_size; + + if (l == 0) + l = dn_hash_size; + if (l < 4) + l = 4; + else if (l > DN_MAX_HASH_SIZE) + l = DN_MAX_HASH_SIZE; + x->rq_size = l; + } else /* one is enough for null mask */ + x->rq_size = 1; + x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *), + M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (x->rq == NULL) { + printf("dummynet: sorry, cannot allocate queue\n"); + return ENOSPC; + } + x->rq_elements = 0; + return 0 ; +} + +static void +set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src) +{ + x->flags_fs = src->flags_fs; + x->qsize = src->qsize; + x->plr = src->plr; + x->flow_mask = src->flow_mask; + if (x->flags_fs & DN_QSIZE_IS_BYTES) { + if (x->qsize > 1024*1024) + x->qsize = 1024*1024 ; + } else { + if (x->qsize == 0) + x->qsize = 50 ; + if (x->qsize > 100) + x->qsize = 50 ; + } + /* configuring RED */ + if ( x->flags_fs & DN_IS_RED ) + config_red(src, x) ; /* XXX should check errors */ +} + +/* + * setup pipe or queue parameters. + */ +static int +config_pipe(struct dn_pipe *p) +{ + int i, r; + struct dn_flow_set *pfs = &(p->fs); + struct dn_flow_queue *q; + + /* + * The config program passes parameters as follows: + * bw = bits/second (0 means no limits), + * delay = ms, must be translated into ticks. + * qsize = slots/bytes + */ + p->delay = ( p->delay * (hz*10) ) / 1000 ; + /* We need either a pipe number or a flow_set number */ + if (p->pipe_nr == 0 && pfs->fs_nr == 0) + return EINVAL ; + if (p->pipe_nr != 0 && pfs->fs_nr != 0) + return EINVAL ; + if (p->pipe_nr != 0) { /* this is a pipe */ + struct dn_pipe *x, *b; + struct dummynet_event dn_event; + lck_mtx_lock(dn_mutex); + + /* locate pipe */ + b = locate_pipe(p->pipe_nr); + + if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */ + x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ; + if (x == NULL) { + lck_mtx_unlock(dn_mutex); + printf("dummynet: no memory for new pipe\n"); + return ENOSPC; + } + x->pipe_nr = p->pipe_nr; + x->fs.pipe = x ; + /* idle_heap is the only one from which we extract from the middle. + */ + x->idle_heap.size = x->idle_heap.elements = 0 ; + x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos); + } else { + x = b; + /* Flush accumulated credit for all queues */ + for (i = 0; i <= x->fs.rq_size; i++) + for (q = x->fs.rq[i]; q; q = q->next) + q->numbytes = 0; + } + + x->bandwidth = p->bandwidth ; + x->numbytes = 0; /* just in case... */ + bcopy(p->if_name, x->if_name, sizeof(p->if_name) ); + x->ifp = NULL ; /* reset interface ptr */ + x->delay = p->delay ; + set_fs_parms(&(x->fs), pfs); + + + if ( x->fs.rq == NULL ) { /* a new pipe */ + r = alloc_hash(&(x->fs), pfs) ; + if (r) { + lck_mtx_unlock(dn_mutex); + FREE(x, M_DUMMYNET); + return r ; + } + SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)], + x, next); + } + lck_mtx_unlock(dn_mutex); + + bzero(&dn_event, sizeof(dn_event)); + dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG; + dn_event.dn_event_pipe_config.bandwidth = p->bandwidth; + dn_event.dn_event_pipe_config.delay = p->delay; + dn_event.dn_event_pipe_config.plr = pfs->plr; + + dummynet_event_enqueue_nwk_wq_entry(&dn_event); + } else { /* config queue */ + struct dn_flow_set *x, *b ; + + lck_mtx_lock(dn_mutex); + /* locate flow_set */ + b = locate_flowset(pfs->fs_nr); + + if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */ + if (pfs->parent_nr == 0) { /* need link to a pipe */ + lck_mtx_unlock(dn_mutex); + return EINVAL ; + } + x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO); + if (x == NULL) { + lck_mtx_unlock(dn_mutex); + printf("dummynet: no memory for new flow_set\n"); + return ENOSPC; + } + x->fs_nr = pfs->fs_nr; + x->parent_nr = pfs->parent_nr; + x->weight = pfs->weight ; + if (x->weight == 0) + x->weight = 1 ; + else if (x->weight > 100) + x->weight = 100 ; + } else { + /* Change parent pipe not allowed; must delete and recreate */ + if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) { + lck_mtx_unlock(dn_mutex); + return EINVAL ; + } + x = b; + } + set_fs_parms(x, pfs); + + if ( x->rq == NULL ) { /* a new flow_set */ + r = alloc_hash(x, pfs) ; + if (r) { + lck_mtx_unlock(dn_mutex); + FREE(x, M_DUMMYNET); + return r ; + } + SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)], + x, next); + } + lck_mtx_unlock(dn_mutex); + } + return 0 ; +} + +/* + * Helper function to remove from a heap queues which are linked to + * a flow_set about to be deleted. + */ +static void +fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) +{ + int i = 0, found = 0 ; + for (; i < h->elements ;) + if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) { + h->elements-- ; + h->p[i] = h->p[h->elements] ; + found++ ; + } else + i++ ; + if (found) + heapify(h); +} + +/* + * helper function to remove a pipe from a heap (can be there at most once) + */ +static void +pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p) +{ + if (h->elements > 0) { + int i = 0 ; + for (i=0; i < h->elements ; i++ ) { + if (h->p[i].object == p) { /* found it */ + h->elements-- ; + h->p[i] = h->p[h->elements] ; + heapify(h); + break ; + } + } + } +} + +/* + * drain all queues. Called in case of severe mbuf shortage. + */ +void +dummynet_drain(void) +{ + struct dn_flow_set *fs; + struct dn_pipe *p; + struct mbuf *m, *mnext; + int i; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + heap_free(&ready_heap); + heap_free(&wfq_ready_heap); + heap_free(&extract_heap); + /* remove all references to this pipe from flow_sets */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(fs, &flowsethash[i], next) + purge_flow_set(fs, 0); + + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(p, &pipehash[i], next) { + purge_flow_set(&(p->fs), 0); + + mnext = p->head; + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + DN_FREE_PKT(m); + } + p->head = p->tail = NULL ; + } +} + +/* + * Fully delete a pipe or a queue, cleaning up associated info. + */ +static int +delete_pipe(struct dn_pipe *p) +{ + if (p->pipe_nr == 0 && p->fs.fs_nr == 0) + return EINVAL ; + if (p->pipe_nr != 0 && p->fs.fs_nr != 0) + return EINVAL ; + if (p->pipe_nr != 0) { /* this is an old-style pipe */ + struct dn_pipe *b; + struct dn_flow_set *fs; + int i; + + lck_mtx_lock(dn_mutex); + /* locate pipe */ + b = locate_pipe(p->pipe_nr); + if(b == NULL){ + lck_mtx_unlock(dn_mutex); + return EINVAL ; /* not found */ + } + + /* Unlink from list of pipes. */ + SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next); + +#if IPFW2 + /* remove references to this pipe from the ip_fw rules. */ + flush_pipe_ptrs(&(b->fs)); +#endif /* IPFW2 */ + + /* Remove all references to this pipe from flow_sets. */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(fs, &flowsethash[i], next) + if (fs->pipe == b) { + printf("dummynet: ++ ref to pipe %d from fs %d\n", + p->pipe_nr, fs->fs_nr); + fs->pipe = NULL ; + purge_flow_set(fs, 0); + } + fs_remove_from_heap(&ready_heap, &(b->fs)); + + purge_pipe(b); /* remove all data associated to this pipe */ + /* remove reference to here from extract_heap and wfq_ready_heap */ + pipe_remove_from_heap(&extract_heap, b); + pipe_remove_from_heap(&wfq_ready_heap, b); + lck_mtx_unlock(dn_mutex); + + FREE(b, M_DUMMYNET); + } else { /* this is a WF2Q queue (dn_flow_set) */ + struct dn_flow_set *b; + + lck_mtx_lock(dn_mutex); + /* locate set */ + b = locate_flowset(p->fs.fs_nr); + if (b == NULL) { + lck_mtx_unlock(dn_mutex); + return EINVAL ; /* not found */ + } + +#if IPFW2 + /* remove references to this flow_set from the ip_fw rules. */ + flush_pipe_ptrs(b); +#endif /* IPFW2 */ + + /* Unlink from list of flowsets. */ + SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next); + + if (b->pipe != NULL) { + /* Update total weight on parent pipe and cleanup parent heaps */ + b->pipe->sum -= b->weight * b->backlogged ; + fs_remove_from_heap(&(b->pipe->not_eligible_heap), b); + fs_remove_from_heap(&(b->pipe->scheduler_heap), b); +#if 1 /* XXX should i remove from idle_heap as well ? */ + fs_remove_from_heap(&(b->pipe->idle_heap), b); +#endif + } + purge_flow_set(b, 1); + lck_mtx_unlock(dn_mutex); + } + return 0 ; +} + +/* + * helper function used to copy data from kernel in DUMMYNET_GET + */ +static +char* dn_copy_set_32(struct dn_flow_set *set, char *bp) +{ + int i, copied = 0 ; + struct dn_flow_queue *q; + struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + for (i = 0 ; i <= set->rq_size ; i++) + for (q = set->rq[i] ; q ; q = q->next, qp++ ) { + if (q->hash_slot != i) + printf("dummynet: ++ at %d: wrong slot (have %d, " + "should be %d)\n", copied, q->hash_slot, i); + if (q->fs != set) + printf("dummynet: ++ at %d: wrong fs ptr " + "(have 0x%llx, should be 0x%llx)\n", i, + (uint64_t)VM_KERNEL_ADDRPERM(q->fs), + (uint64_t)VM_KERNEL_ADDRPERM(set)); + copied++ ; + cp_queue_to_32_user( q, qp ); + /* cleanup pointers */ + qp->next = (user32_addr_t)0 ; + qp->head = qp->tail = (user32_addr_t)0 ; + qp->fs = (user32_addr_t)0 ; + } + if (copied != set->rq_elements) + printf("dummynet: ++ wrong count, have %d should be %d\n", + copied, set->rq_elements); + return (char *)qp ; +} + +static +char* dn_copy_set_64(struct dn_flow_set *set, char *bp) +{ + int i, copied = 0 ; + struct dn_flow_queue *q; + struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + + for (i = 0 ; i <= set->rq_size ; i++) + for (q = set->rq[i] ; q ; q = q->next, qp++ ) { + if (q->hash_slot != i) + printf("dummynet: ++ at %d: wrong slot (have %d, " + "should be %d)\n", copied, q->hash_slot, i); + if (q->fs != set) + printf("dummynet: ++ at %d: wrong fs ptr " + "(have 0x%llx, should be 0x%llx)\n", i, + (uint64_t)VM_KERNEL_ADDRPERM(q->fs), + (uint64_t)VM_KERNEL_ADDRPERM(set)); + copied++ ; + //bcopy(q, qp, sizeof(*q)); + cp_queue_to_64_user( q, qp ); + /* cleanup pointers */ + qp->next = USER_ADDR_NULL ; + qp->head = qp->tail = USER_ADDR_NULL ; + qp->fs = USER_ADDR_NULL ; + } + if (copied != set->rq_elements) + printf("dummynet: ++ wrong count, have %d should be %d\n", + copied, set->rq_elements); + return (char *)qp ; +} + +static size_t +dn_calc_size(int is64user) +{ + struct dn_flow_set *set ; + struct dn_pipe *p ; + size_t size = 0 ; + size_t pipesize; + size_t queuesize; + size_t setsize; + int i; + + LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED); + if ( is64user ){ + pipesize = sizeof(struct dn_pipe_64); + queuesize = sizeof(struct dn_flow_queue_64); + setsize = sizeof(struct dn_flow_set_64); + } + else { + pipesize = sizeof(struct dn_pipe_32); + queuesize = sizeof( struct dn_flow_queue_32 ); + setsize = sizeof(struct dn_flow_set_32); + } + /* + * compute size of data structures: list of pipes and flow_sets. + */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(p, &pipehash[i], next) + size += sizeof(*p) + + p->fs.rq_elements * sizeof(struct dn_flow_queue); + SLIST_FOREACH(set, &flowsethash[i], next) + size += sizeof (*set) + + set->rq_elements * sizeof(struct dn_flow_queue); + } + return size; +} + +static int +dummynet_get(struct sockopt *sopt) +{ + char *buf = NULL, *bp = NULL; /* bp is the "copy-pointer" */ + size_t size = 0; + struct dn_flow_set *set; + struct dn_pipe *p; + int error = 0, i; + int is64user = 0; + + /* XXX lock held too long */ + lck_mtx_lock(dn_mutex); + /* + * XXX: Ugly, but we need to allocate memory with M_WAITOK flag + * and we cannot use this flag while holding a mutex. + */ + if (proc_is64bit(sopt->sopt_p)) + is64user = 1; + for (i = 0; i < 10; i++) { + size = dn_calc_size(is64user); + lck_mtx_unlock(dn_mutex); + buf = _MALLOC(size, M_TEMP, M_WAITOK | M_ZERO); + if (buf == NULL) + return(ENOBUFS); + lck_mtx_lock(dn_mutex); + if (size == dn_calc_size(is64user)) + break; + FREE(buf, M_TEMP); + buf = NULL; + } + if (buf == NULL) { + lck_mtx_unlock(dn_mutex); + return(ENOBUFS); + } + + bp = buf; + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(p, &pipehash[i], next) { + /* + * copy pipe descriptor into *bp, convert delay + * back to ms, then copy the flow_set descriptor(s) + * one at a time. After each flow_set, copy the + * queue descriptor it owns. + */ + if ( is64user ) { + bp = cp_pipe_to_64_user(p, + (struct dn_pipe_64 *)bp); + } else { + bp = cp_pipe_to_32_user(p, + (struct dn_pipe_32 *)bp); + } + } + } + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(set, &flowsethash[i], next) { + struct dn_flow_set_64 *fs_bp = + (struct dn_flow_set_64 *)bp ; + cp_flow_set_to_64_user(set, fs_bp); + /* XXX same hack as above */ + fs_bp->next = CAST_DOWN(user64_addr_t, + DN_IS_QUEUE); + fs_bp->pipe = USER_ADDR_NULL; + fs_bp->rq = USER_ADDR_NULL ; + bp += sizeof(struct dn_flow_set_64); + bp = dn_copy_set_64( set, bp ); + } + } + lck_mtx_unlock(dn_mutex); + error = sooptcopyout(sopt, buf, size); + FREE(buf, M_TEMP); + return(error); +} + +/* + * Handler for the various dummynet socket options (get, flush, config, del) + */ +static int +ip_dn_ctl(struct sockopt *sopt) +{ + int error = 0 ; + struct dn_pipe *p, tmp_pipe; + + /* Disallow sets in really-really secure mode. */ + if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) + return (EPERM); + + switch (sopt->sopt_name) { + default : + printf("dummynet: -- unknown option %d", sopt->sopt_name); + return EINVAL ; + + case IP_DUMMYNET_GET : + error = dummynet_get(sopt); + break ; + + case IP_DUMMYNET_FLUSH : + dummynet_flush() ; + break ; + + case IP_DUMMYNET_CONFIGURE : + p = &tmp_pipe ; + if (proc_is64bit(sopt->sopt_p)) + error = cp_pipe_from_user_64( sopt, p ); + else + error = cp_pipe_from_user_32( sopt, p ); + + if (error) + break ; + error = config_pipe(p); + break ; + + case IP_DUMMYNET_DEL : /* remove a pipe or queue */ + p = &tmp_pipe ; + if (proc_is64bit(sopt->sopt_p)) + error = cp_pipe_from_user_64( sopt, p ); + else + error = cp_pipe_from_user_32( sopt, p ); + if (error) + break ; + + error = delete_pipe(p); + break ; + } + return error ; +} + +void +dummynet_init(void) +{ + eventhandler_lists_ctxt_init(&dummynet_evhdlr_ctxt); +} + +void +ip_dn_init(void) +{ + /* setup locks */ + dn_mutex_grp_attr = lck_grp_attr_alloc_init(); + dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr); + dn_mutex_attr = lck_attr_alloc_init(); + lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr); + + ready_heap.size = ready_heap.elements = 0 ; + ready_heap.offset = 0 ; + + wfq_ready_heap.size = wfq_ready_heap.elements = 0 ; + wfq_ready_heap.offset = 0 ; + + extract_heap.size = extract_heap.elements = 0 ; + extract_heap.offset = 0 ; + ip_dn_ctl_ptr = ip_dn_ctl; + ip_dn_io_ptr = dummynet_io; + + bzero(&default_rule, sizeof default_rule); +#if IPFIREWALL + default_rule.act_ofs = 0; + default_rule.rulenum = IPFW_DEFAULT_RULE; + default_rule.cmd_len = 1; + default_rule.set = RESVD_SET; + + default_rule.cmd[0].len = 1; + default_rule.cmd[0].opcode = +#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT + (1) ? O_ACCEPT : +#endif + O_DENY; +#endif +} + +struct dn_event_nwk_wq_entry +{ + struct nwk_wq_entry nwk_wqe; + struct dummynet_event dn_ev_arg; +}; + +static void +dummynet_event_callback(void *arg) +{ + struct dummynet_event *p_dn_ev = (struct dummynet_event *)arg; + + EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt, dummynet_event, p_dn_ev); + return; +} + +void +dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *p_dn_event) +{ + struct dn_event_nwk_wq_entry *p_dn_ev = NULL; + + MALLOC(p_dn_ev, struct dn_event_nwk_wq_entry *, + sizeof(struct dn_event_nwk_wq_entry), + M_NWKWQ, M_WAITOK | M_ZERO); + + p_dn_ev->nwk_wqe.func = dummynet_event_callback; + p_dn_ev->nwk_wqe.is_arg_managed = TRUE; + p_dn_ev->nwk_wqe.arg = &p_dn_ev->dn_ev_arg; + + bcopy(p_dn_event, &(p_dn_ev->dn_ev_arg), + sizeof(struct dummynet_event)); + nwk_wq_enqueue((struct nwk_wq_entry*)p_dn_ev); +}