X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/0b4e3aa066abc0728aacb4bbeb86f53f9737156e..4d15aeb193b2c68f1d38666c317f8d3734f5f083:/bsd/vfs/vfs_cluster.c?ds=inline

diff --git a/bsd/vfs/vfs_cluster.c b/bsd/vfs/vfs_cluster.c
index 763ecc533..70eecc5ff 100644
--- a/bsd/vfs/vfs_cluster.c
+++ b/bsd/vfs/vfs_cluster.c
@@ -1,23 +1,29 @@
 /*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
  *
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  * 
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License").  You may not use this file except in compliance with the
- * License.  Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
  * 
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ * 
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.  Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
  * 
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
 /*
@@ -56,2935 +62,6899 @@
  */
 
 #include <sys/param.h>
-#include <sys/proc.h>
-#include <sys/buf.h>
-#include <sys/vnode.h>
-#include <sys/mount.h>
+#include <sys/proc_internal.h>
+#include <sys/buf_internal.h>
+#include <sys/mount_internal.h>
+#include <sys/vnode_internal.h>
 #include <sys/trace.h>
 #include <sys/malloc.h>
+#include <sys/time.h>
+#include <sys/kernel.h>
 #include <sys/resourcevar.h>
+#include <miscfs/specfs/specdev.h>
+#include <sys/uio_internal.h>
 #include <libkern/libkern.h>
+#include <machine/machine_routines.h>
 
-#include <sys/ubc.h>
-#include <vm/vm_pageout.h>
-
-#include <sys/kdebug.h>
-
-#define CL_READ      0x01
-#define CL_ASYNC     0x02
-#define CL_COMMIT    0x04
-#define CL_NOMAP     0x08
-#define CL_PAGEOUT   0x10
-#define CL_AGE       0x20
-#define CL_DUMP      0x40
-#define CL_NOZERO    0x80
-#define CL_PAGEIN    0x100
-#define CL_DEV_MEMORY 0x200
-
-/*
- * throttle the number of async writes that
- * can be outstanding on a single vnode
- * before we issue a synchronous write 
- */
-#define ASYNC_THROTTLE  6
+#include <sys/ubc_internal.h>
+#include <vm/vnode_pager.h>
 
-static int
-cluster_iodone(bp)
-	struct buf *bp;
-{
-        int         b_flags;
-        int         error;
-	int         total_size;
-	int         total_resid;
-	int         upl_offset;
-	upl_t       upl;
-	struct buf *cbp;
-	struct buf *cbp_head;
-	struct buf *cbp_next;
-	struct buf *real_bp;
-	struct vnode *vp;
-	int         commit_size;
-	int         pg_offset;
-
-
-	cbp_head = (struct buf *)(bp->b_trans_head);
+#include <mach/mach_types.h>
+#include <mach/memory_object_types.h>
+#include <mach/vm_map.h>
+#include <mach/upl.h>
+#include <kern/task.h>
+#include <kern/policy_internal.h>
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
-		     cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
+#include <vm/vm_kern.h>
+#include <vm/vm_map.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_fault.h>
 
-	for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
-	        /*
-		 * all I/O requests that are part of this transaction
-		 * have to complete before we can process it
-		 */
-	        if ( !(cbp->b_flags & B_DONE)) {
+#include <sys/kdebug.h>
+#include <libkern/OSAtomic.h>  
 
-		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
-				     cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+#include <sys/sdt.h>
 
-		        return 0;
-		}
-	}
-	error       = 0;
-	total_size  = 0;
-	total_resid = 0;
+#include <stdbool.h>
 
-	cbp        = cbp_head;
-	upl_offset = cbp->b_uploffset;
-	upl        = cbp->b_pagelist;
-	b_flags    = cbp->b_flags;
-	real_bp    = cbp->b_real_bp;
-	vp         = cbp->b_vp;
+#if 0
+#undef KERNEL_DEBUG
+#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
+#endif
 
-	while (cbp) {
-		if (cbp->b_vectorcount > 1)
-		        _FREE(cbp->b_vectorlist, M_SEGMENT);
 
-		if ((cbp->b_flags & B_ERROR) && error == 0)
-		        error = cbp->b_error;
+#define CL_READ		0x01
+#define CL_WRITE	0x02
+#define CL_ASYNC	0x04
+#define CL_COMMIT	0x08
+#define CL_PAGEOUT	0x10
+#define CL_AGE		0x20
+#define CL_NOZERO	0x40
+#define CL_PAGEIN	0x80
+#define CL_DEV_MEMORY	0x100
+#define CL_PRESERVE	0x200
+#define CL_THROTTLE	0x400
+#define CL_KEEPCACHED	0x800
+#define CL_DIRECT_IO	0x1000
+#define CL_PASSIVE	0x2000
+#define CL_IOSTREAMING	0x4000
+#define CL_CLOSE	0x8000
+#define	CL_ENCRYPTED	0x10000
+#define CL_RAW_ENCRYPTED	0x20000
+#define CL_NOCACHE	0x40000
 
-		total_resid += cbp->b_resid;
-		total_size  += cbp->b_bcount;
+#define MAX_VECTOR_UPL_ELEMENTS	8
+#define MAX_VECTOR_UPL_SIZE	(2 * MAX_UPL_SIZE_BYTES)
 
-		cbp_next = cbp->b_trans_next;
+#define CLUSTER_IO_WAITING 		((buf_t)1)
 
-		free_io_buf(cbp);
+extern upl_t vector_upl_create(vm_offset_t);
+extern boolean_t vector_upl_is_valid(upl_t);
+extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
+extern void vector_upl_set_pagelist(upl_t);
+extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
 
-		cbp = cbp_next;
-	}
-	if ((vp->v_flag & VTHROTTLED) && (vp->v_numoutput <= (ASYNC_THROTTLE / 3))) {
-	        vp->v_flag &= ~VTHROTTLED;
-		wakeup((caddr_t)&vp->v_numoutput);
-	}
-	if ((b_flags & B_NEED_IODONE) && real_bp) {
-		if (error) {
-		        real_bp->b_flags |= B_ERROR;
-			real_bp->b_error = error;
-		}
-		real_bp->b_resid = total_resid;
+struct clios {
+	lck_mtx_t io_mtxp;
+        u_int  io_completed;       /* amount of io that has currently completed */
+        u_int  io_issued;          /* amount of io that was successfully issued */
+        int    io_error;           /* error code of first error encountered */
+        int    io_wanted;          /* someone is sleeping waiting for a change in state */
+};
 
-		biodone(real_bp);
-	}
-	if (error == 0 && total_resid)
-	        error = EIO;
+struct cl_direct_read_lock {
+	LIST_ENTRY(cl_direct_read_lock)		chain;
+	int32_t								ref_count;
+	vnode_t								vp;
+	lck_rw_t							rw_lock;
+};
 
-	if (b_flags & B_COMMIT_UPL) {
-		pg_offset   = upl_offset & PAGE_MASK;
-		commit_size = (((pg_offset + total_size) + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE;
+#define CL_DIRECT_READ_LOCK_BUCKETS 61
 
-		if (error || (b_flags & B_NOCACHE)) {
-		        int upl_abort_code;
+static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock)
+	cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS];
 
-			if (b_flags & B_PAGEOUT)
-			        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
-			else if (b_flags & B_PGIN)
-				upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
-			else
-			        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
+static lck_spin_t cl_direct_read_spin_lock;
 
-			ubc_upl_abort_range(upl, upl_offset - pg_offset, commit_size,
-					upl_abort_code);
-			
-		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
-				     upl, upl_offset - pg_offset, commit_size,
-				     0x80000000|upl_abort_code, 0);
+static lck_grp_t	*cl_mtx_grp;
+static lck_attr_t	*cl_mtx_attr;
+static lck_grp_attr_t   *cl_mtx_grp_attr;
+static lck_mtx_t	*cl_transaction_mtxp;
 
-		} else {
-		        int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY;
+#define	IO_UNKNOWN	0
+#define	IO_DIRECT	1
+#define IO_CONTIG	2
+#define IO_COPY		3
 
-			if ( !(b_flags & B_PAGEOUT))
-			        upl_commit_flags |= UPL_COMMIT_CLEAR_DIRTY;
-			if (b_flags & B_AGE)
-			        upl_commit_flags |= UPL_COMMIT_INACTIVATE;
+#define	PUSH_DELAY	0x01
+#define PUSH_ALL	0x02
+#define	PUSH_SYNC	0x04
 
-			ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size,
-					upl_commit_flags);
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
-				     upl, upl_offset - pg_offset, commit_size,
-				     upl_commit_flags, 0);
-		}
-	} else 
-	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
-			     upl, upl_offset, 0, error, 0);
+static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
+static void cluster_wait_IO(buf_t cbp_head, int async);
+static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
 
-	return (error);
-}
+static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
 
+static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
+		      int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_iodone(buf_t bp, void *callback_arg);
+static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
+static int cluster_is_throttled(vnode_t vp);
 
-static void
-cluster_zero(upl, upl_offset, size, flags, bp)
-	upl_t         upl;
-	vm_offset_t   upl_offset;
-	int           size;
-	int           flags;
-	struct buf   *bp;
-{
-        vm_offset_t   io_addr = 0;
-	kern_return_t kret;
-
-	if ( !(flags & CL_NOMAP)) {
-	        kret = ubc_upl_map(upl, &io_addr);
-		
-		if (kret != KERN_SUCCESS)
-		        panic("cluster_zero: ubc_upl_map() failed with (%d)", kret);
-		if (io_addr == 0) 
-		        panic("cluster_zero: ubc_upl_map() mapped 0");
-	} else
-	        io_addr = (vm_offset_t)bp->b_data;
-	bzero((caddr_t)(io_addr + upl_offset), size);
-	
-	if ( !(flags & CL_NOMAP)) {
-	        kret = ubc_upl_unmap(upl);
+static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
 
-		if (kret != KERN_SUCCESS)
-		        panic("cluster_zero: kernel_upl_unmap failed");
-	}
-}
+static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags);
 
-static int
-cluster_io(vp, upl, upl_offset, f_offset, size, flags, real_bp)
-	struct vnode *vp;
-	upl_t         upl;
-	vm_offset_t   upl_offset;
-	off_t         f_offset;
-	int           size;
-	int           flags;
-	struct buf   *real_bp;
-{
-	struct buf   *cbp;
-	struct iovec *iovp;
-	int           io_flags;
-	int           error = 0;
-	int           retval = 0;
-	struct buf   *cbp_head = 0;
-	struct buf   *cbp_tail = 0;
-	upl_page_info_t *pl;
-	int pg_count;
-	int pg_offset;
-	int max_iosize;
-	int max_vectors;
-	int priv;
+static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
+static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
 
-	if (flags & CL_READ) {
-	        io_flags = (B_VECTORLIST | B_READ);
+static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size,  off_t filesize, int flags,
+			     int (*)(buf_t, void *), void *callback_arg);
+static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
+			       int flags, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
+			       int (*)(buf_t, void *), void *callback_arg, int flags);
 
-		vfs_io_attributes(vp, B_READ, &max_iosize, &max_vectors);
-	} else {
-	        io_flags = (B_VECTORLIST | B_WRITEINPROG);
+static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
+			      off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
+				int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
+				int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
+
+static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
+
+static int 	cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
+static void	cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
 
-		vfs_io_attributes(vp, B_WRITE, &max_iosize, &max_vectors);
-	}
-	pl = ubc_upl_pageinfo(upl);
+static int	cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
 
-	if (flags & CL_ASYNC)
-	        io_flags |= (B_CALL | B_ASYNC);
-	if (flags & CL_AGE)
-	        io_flags |= B_AGE;
-	if (flags & CL_DUMP)
-	        io_flags |= B_NOCACHE;
-	if (flags & CL_PAGEIN)
-		io_flags |= B_PGIN;
+static int	cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg, int *err);
 
+static void	sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
+static int	sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
+static void	sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START,
-		     (int)f_offset, size, upl_offset, flags, 0);
+static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
+static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
+static kern_return_t vfs_drt_control(void **cmapp, int op_type);
 
-	if ((flags & CL_READ) && ((upl_offset + size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
-	        /*
-		 * then we are going to end up
-		 * with a page that we can't complete (the file size wasn't a multiple
-		 * of PAGE_SIZE and we're trying to read to the end of the file
-		 * so we'll go ahead and zero out the portion of the page we can't
-		 * read in from the file
-		 */
-	        cluster_zero(upl, upl_offset + size, PAGE_SIZE - ((upl_offset + size) & PAGE_MASK), flags, real_bp);
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
-			     upl_offset + size, PAGE_SIZE - ((upl_offset + size) & PAGE_MASK),
-			     flags, real_bp, 0);
-	}
-	while (size) {
-		size_t io_size;
-		int vsize;
-		int i;
-		int pl_index;
-		int pg_resid;
-		int num_contig;
-		daddr_t lblkno;
-		daddr_t blkno;
+/*
+ * For throttled IO to check whether
+ * a block is cached by the boot cache
+ * and thus it can avoid delaying the IO.
+ *
+ * bootcache_contains_block is initially
+ * NULL. The BootCache will set it while
+ * the cache is active and clear it when
+ * the cache is jettisoned.
+ *
+ * Returns 0 if the block is not
+ * contained in the cache, 1 if it is
+ * contained.
+ *
+ * The function pointer remains valid
+ * after the cache has been evicted even
+ * if bootcache_contains_block has been
+ * cleared.
+ *
+ * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
+ */
+int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
 
-		if (size > max_iosize)
-		        io_size = max_iosize;
-		else
-		        io_size = size;
 
-		if (error = VOP_CMAP(vp, f_offset, io_size, &blkno, &io_size, NULL)) {
-		        if (error == EOPNOTSUPP)
-			        panic("VOP_CMAP Unimplemented");
-			break;
-		}
+/*
+ * limit the internal I/O size so that we
+ * can represent it in a 32 bit int
+ */
+#define MAX_IO_REQUEST_SIZE	(1024 * 1024 * 512)
+#define MAX_IO_CONTIG_SIZE	MAX_UPL_SIZE_BYTES
+#define MAX_VECTS		16
+/*
+ * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
+ * allowing the caller to bypass the buffer cache.  For small I/Os (less than 16k), 
+ * we have not historically allowed the write to bypass the UBC. 
+ */
+#define MIN_DIRECT_WRITE_SIZE	(16384)
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
-			     (int)f_offset, (int)blkno, io_size, 0, 0);
+#define WRITE_THROTTLE		6
+#define WRITE_THROTTLE_SSD	2
+#define WRITE_BEHIND		1
+#define WRITE_BEHIND_SSD	1
 
-		if ( (!(flags & CL_READ) && (long)blkno == -1) || io_size == 0) {
-			if (flags & CL_PAGEOUT) {
-		        	error = EINVAL;
-				break;
-			};
-			
-			/* Try paging out the page individually before
-			   giving up entirely and dumping it (it could
-			   be mapped in a "hole" and require allocation
-			   before the I/O:
-			 */
-	        	 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE_64, UPL_ABORT_FREE_ON_EMPTY);
-			 if (ubc_pushdirty_range(vp, f_offset, PAGE_SIZE_64) == 0) {
-			 	error = EINVAL;
-			 	break;
-			 };
-			 
-			upl_offset += PAGE_SIZE_64;
-			f_offset   += PAGE_SIZE_64;
-			size       -= PAGE_SIZE_64;
-			continue;
-		}
-		lblkno = (daddr_t)(f_offset / PAGE_SIZE_64);
-		/*
-		 * we have now figured out how much I/O we can do - this is in 'io_size'
-		 * pl_index represents the first page in the 'upl' that the I/O will occur for
-		 * pg_offset is the starting point in the first page for the I/O
-		 * pg_count is the number of full and partial pages that 'io_size' encompasses
-		 */
-		pl_index  = upl_offset / PAGE_SIZE; 
-		pg_offset = upl_offset & PAGE_MASK;
-		pg_count  = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
+#define PREFETCH		3
+#define PREFETCH_SSD		2
+uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3);	/* maximum bytes in a specluative read-ahead */
+uint32_t speculative_prefetch_max_iosize = (512 * 1024);	/* maximum I/O size to use in a specluative read-ahead on SSDs*/
 
-		if (flags & CL_DEV_MEMORY) {
-		        /*
-			 * currently, can't deal with reading 'holes' in file
-			 */
-		        if ((long)blkno == -1) {
-			        error = EINVAL;
-				break;
-			}
-			/*
-			 * treat physical requests as one 'giant' page
-			 */
-			pg_count = 1;
-		}
-		if ((flags & CL_READ) && (long)blkno == -1) {
-		        /*
-			 * if we're reading and blkno == -1, then we've got a
-			 * 'hole' in the file that we need to deal with by zeroing
-			 * out the affected area in the upl
-			 */
-		        cluster_zero(upl, upl_offset, io_size, flags, real_bp);
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
-				     upl_offset, io_size, flags, real_bp, 0);
+#define IO_SCALE(vp, base)		(vp->v_mount->mnt_ioscale * (base))
+#define MAX_CLUSTER_SIZE(vp)		(cluster_max_io_size(vp->v_mount, CL_WRITE))
+#define MAX_PREFETCH(vp, size, is_ssd)	(size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
 
-			pg_count = (io_size - pg_offset) / PAGE_SIZE;
+int	ignore_is_ssd = 0;
+int	speculative_reads_disabled = 0;
 
-			if (io_size == size && ((upl_offset + io_size) & PAGE_MASK))
-			        pg_count++;
+/*
+ * throttle the number of async writes that
+ * can be outstanding on a single vnode
+ * before we issue a synchronous write 
+ */
+#define THROTTLE_MAXCNT	0
 
-			if (pg_count) {
-			        if (pg_offset)
-				        pg_resid = PAGE_SIZE - pg_offset;
-				else
-				        pg_resid = 0;
-				if (flags & CL_COMMIT)
-				        ubc_upl_commit_range(upl,
-							upl_offset + pg_resid, 
-							pg_count * PAGE_SIZE,
-							UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
-			}
-			upl_offset += io_size;
-			f_offset   += io_size;
-			size       -= io_size;
+uint32_t throttle_max_iosize = (128 * 1024);
 
-			if (cbp_head && pg_count)
-			        goto start_io;
-			continue;
-		} else if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) {
-		        real_bp->b_blkno = blkno;
-		}
+#define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
 
-		if (pg_count > 1) {
-			if (pg_count > max_vectors) {
-				io_size -= (pg_count - max_vectors) * PAGE_SIZE;
+SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
 
-				if (io_size < 0) {
-				        io_size = PAGE_SIZE - pg_offset;
-					pg_count = 1;
-				} else
-					pg_count = max_vectors;
-			}
-		        /* 
-			 * we need to allocate space for the vector list
-			 */
-			if (pg_count > 1) {
-			        iovp = (struct iovec *)_MALLOC(sizeof(struct iovec) * pg_count,
-							       M_SEGMENT, M_NOWAIT);
-			
-				if (iovp == (struct iovec *) 0) {
-				        /*
-					 * if the allocation fails, then throttle down to a single page
-					 */
-				        io_size = PAGE_SIZE - pg_offset;
-					pg_count = 1;
-				}
-			}
-		}
 
-		/* Throttle the speculative IO */
-		if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
-			priv = 0;
-		else
-			priv = 1;
+void
+cluster_init(void) {
+        /*
+	 * allocate lock group attribute and group
+	 */
+        cl_mtx_grp_attr = lck_grp_attr_alloc_init();
+	cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
+		
+	/*
+	 * allocate the lock attribute
+	 */
+	cl_mtx_attr = lck_attr_alloc_init();
 
-		cbp = alloc_io_buf(vp, priv);
+	cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
 
-		if (pg_count == 1)
-		        /*
-			 * we use the io vector that's reserved in the buffer header
-			 * this insures we can always issue an I/O even in a low memory
-			 * condition that prevents the _MALLOC from succeeding... this
-			 * is necessary to prevent deadlocks with the pager
-			 */
-			iovp = (struct iovec *)(&cbp->b_vects[0]);
+	if (cl_transaction_mtxp == NULL)
+	        panic("cluster_init: failed to allocate cl_transaction_mtxp");
 
-		cbp->b_vectorlist  = (void *)iovp;
-		cbp->b_vectorcount = pg_count;
+	lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr);
 
-		if (flags & CL_DEV_MEMORY) {
+	for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i)
+		LIST_INIT(&cl_direct_read_locks[i]);
+}
 
-			iovp->iov_len  = io_size;
-		        iovp->iov_base = (caddr_t)upl_phys_page(pl, 0);
 
-			if (iovp->iov_base == (caddr_t) 0) {
-			        free_io_buf(cbp);
-				error = EINVAL;
-			} else
-			        iovp->iov_base += upl_offset;
-		} else {
+uint32_t
+cluster_max_io_size(mount_t mp, int type)
+{
+	uint32_t	max_io_size;
+	uint32_t	segcnt;
+	uint32_t	maxcnt;
 
-		  for (i = 0, vsize = io_size; i < pg_count; i++, iovp++) {
-		        int     psize;
+	switch(type) {
 
-			psize = PAGE_SIZE - pg_offset;
+	case CL_READ:
+		segcnt = mp->mnt_segreadcnt;
+		maxcnt = mp->mnt_maxreadcnt;
+		break;
+	case CL_WRITE:
+		segcnt = mp->mnt_segwritecnt;
+		maxcnt = mp->mnt_maxwritecnt;
+		break;
+	default:
+		segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
+		maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
+		break;
+	}
+	if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) {
+	       /*
+		* don't allow a size beyond the max UPL size we can create
+		*/
+               segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
+       }
+       max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
+
+       if (max_io_size < MAX_UPL_TRANSFER_BYTES) {
+	       /*
+		* don't allow a size smaller than the old fixed limit
+		*/
+	       max_io_size = MAX_UPL_TRANSFER_BYTES;
+       } else {
+	       /*
+		* make sure the size specified is a multiple of PAGE_SIZE
+		*/
+	       max_io_size &= ~PAGE_MASK;
+       }
+       return (max_io_size);
+}
 
-			if (psize > vsize)
-			        psize = vsize;
 
-			iovp->iov_len  = psize;
-		        iovp->iov_base = (caddr_t)upl_phys_page(pl, pl_index + i);
 
-			if (iovp->iov_base == (caddr_t) 0) {
-				if (pg_count > 1)
-				        _FREE(cbp->b_vectorlist, M_SEGMENT);
-			        free_io_buf(cbp);
 
-				error = EINVAL;
-				break;
-			}
-			iovp->iov_base += pg_offset;
-			pg_offset = 0;
+#define CLW_ALLOCATE		0x01
+#define CLW_RETURNLOCKED	0x02
+#define CLW_IONOCACHE		0x04
+#define CLW_IOPASSIVE	0x08
 
-			if (flags & CL_PAGEOUT) {
-			        int         s;
-				struct buf *bp;
-
-			        s = splbio();
-				if (bp = incore(vp, lblkno + i)) {
-				        if (!ISSET(bp->b_flags, B_BUSY)) {
-					        bremfree(bp);
-						SET(bp->b_flags, (B_BUSY | B_INVAL));
-						splx(s);
-						brelse(bp);
-					} else
-					        panic("BUSY bp found in cluster_io");
-				}
-				splx(s);
-			}
-			vsize -= psize;
-		    }
-		}
-		if (error)
-		        break;
+/*
+ * if the read ahead context doesn't yet exist,
+ * allocate and initialize it...
+ * the vnode lock serializes multiple callers
+ * during the actual assignment... first one
+ * to grab the lock wins... the other callers
+ * will release the now unnecessary storage
+ * 
+ * once the context is present, try to grab (but don't block on)
+ * the lock associated with it... if someone
+ * else currently owns it, than the read
+ * will run without read-ahead.  this allows
+ * multiple readers to run in parallel and
+ * since there's only 1 read ahead context,
+ * there's no real loss in only allowing 1
+ * reader to have read-ahead enabled.
+ */
+static struct cl_readahead *
+cluster_get_rap(vnode_t vp)
+{
+        struct ubc_info		*ubc;
+	struct cl_readahead	*rap;
 
-		if (flags & CL_ASYNC)
-			cbp->b_iodone = (void *)cluster_iodone;
-		cbp->b_flags |= io_flags;
+	ubc = vp->v_ubcinfo;
 
-		cbp->b_lblkno = lblkno;
-		cbp->b_blkno  = blkno;
-		cbp->b_bcount = io_size;
-		cbp->b_pagelist  = upl;
-		cbp->b_uploffset = upl_offset;
-		cbp->b_trans_next = (struct buf *)0;
+        if ((rap = ubc->cl_rahead) == NULL) {
+	        MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
 
-		if (flags & CL_READ)
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
-				     cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0);
-		else
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
-				     cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0);
+		bzero(rap, sizeof *rap);
+		rap->cl_lastr = -1;
+		lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
 
-		if (cbp_head) {
-		        cbp_tail->b_trans_next = cbp;
-			cbp_tail = cbp;
-		} else {
-		        cbp_head = cbp;
-			cbp_tail = cbp;
+		vnode_lock(vp);
+		
+		if (ubc->cl_rahead == NULL)
+		        ubc->cl_rahead = rap;
+		else {
+		        lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
+		        FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
+			rap = ubc->cl_rahead;
 		}
-		(struct buf *)(cbp->b_trans_head) = cbp_head;
+		vnode_unlock(vp);
+	}
+	if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
+	        return(rap);
+	
+	return ((struct cl_readahead *)NULL);
+}
 
-		upl_offset += io_size;
-		f_offset   += io_size;
-		size       -= io_size;
 
-		if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY)) || size == 0) {
-		        /*
-			 * if we have no more I/O to issue or
-			 * the current I/O we've prepared fully
-			 * completes the last page in this request
-			 * or it's been completed via a zero-fill
-			 * due to a 'hole' in the file
-			 * then go ahead and issue the I/O
-			 */
-start_io:		
-		        if (flags & CL_COMMIT)
-			        cbp_head->b_flags |= B_COMMIT_UPL;
-			if (flags & CL_PAGEOUT)
-			        cbp_head->b_flags |= B_PAGEOUT;
-			if (flags & CL_PAGEIN)
-				cbp_head->b_flags |= B_PGIN;
+/*
+ * if the write behind context doesn't yet exist,
+ * and CLW_ALLOCATE is specified, allocate and initialize it...
+ * the vnode lock serializes multiple callers
+ * during the actual assignment... first one
+ * to grab the lock wins... the other callers
+ * will release the now unnecessary storage
+ * 
+ * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
+ * the lock associated with the write behind context before
+ * returning
+ */
 
-			if (real_bp) {
-			        cbp_head->b_flags |= B_NEED_IODONE;
-				cbp_head->b_real_bp = real_bp;
-			}
+static struct cl_writebehind *
+cluster_get_wbp(vnode_t vp, int flags)
+{
+        struct ubc_info *ubc;
+	struct cl_writebehind *wbp;
 
-		        for (cbp = cbp_head; cbp;) {
-				struct buf * cbp_next;
+	ubc = vp->v_ubcinfo;
 
-			        if (io_flags & B_WRITEINPROG)
-				        cbp->b_vp->v_numoutput++;
+        if ((wbp = ubc->cl_wbehind) == NULL) {
 
-				cbp_next = cbp->b_trans_next;
+	        if ( !(flags & CLW_ALLOCATE))
+		        return ((struct cl_writebehind *)NULL);
+	  
+	        MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
 
-				(void) VOP_STRATEGY(cbp);
-				cbp = cbp_next;
-			}
-			if ( !(flags & CL_ASYNC)) {
-			        for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
-				        biowait(cbp);
+		bzero(wbp, sizeof *wbp);
+		lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
 
-				if (error = cluster_iodone(cbp_head)) {
-					retval = error;
-					error  = 0;
-				}
-			}
-			cbp_head = (struct buf *)0;
-			cbp_tail = (struct buf *)0;
+		vnode_lock(vp);
+		
+		if (ubc->cl_wbehind == NULL)
+		        ubc->cl_wbehind = wbp;
+		else {
+		        lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
+		        FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
+			wbp = ubc->cl_wbehind;
 		}
+		vnode_unlock(vp);
 	}
-	if (error) {
-	        int abort_size;
-
-	        for (cbp = cbp_head; cbp;) {
-			struct buf * cbp_next;
- 
-		        if (cbp->b_vectorcount > 1)
-			        _FREE(cbp->b_vectorlist, M_SEGMENT);
-			upl_offset -= cbp->b_bcount;
-			size       += cbp->b_bcount;
+	if (flags & CLW_RETURNLOCKED)
+	        lck_mtx_lock(&wbp->cl_lockw);
 
-			cbp_next = cbp->b_trans_next;
-			free_io_buf(cbp);
-			cbp = cbp_next;
-		}
-		pg_offset  = upl_offset & PAGE_MASK;
-		abort_size = ((size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE;
+	return (wbp);
+}
 
-		if (flags & CL_COMMIT) {
-		        int upl_abort_code;
 
-			if (flags & CL_PAGEOUT)
-			        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
-			else if (flags & CL_PAGEIN)
-			    upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
-			else
-				upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
+static void
+cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags)
+{
+	struct cl_writebehind *wbp;
 
-		        ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size,
-						upl_abort_code);
+	if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
+	  
+	        if (wbp->cl_number) {
+		        lck_mtx_lock(&wbp->cl_lockw);
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
-				     upl, upl_offset - pg_offset, abort_size, error, 0);
-		}
-		if (real_bp) {
-		        real_bp->b_flags |= B_ERROR;
-			real_bp->b_error  = error;
+			cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL);
 
-			biodone(real_bp);
+			lck_mtx_unlock(&wbp->cl_lockw);
 		}
-		if (retval == 0)
-		        retval = error;
 	}
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END,
-		     (int)f_offset, size, upl_offset, retval, 0);
-
-	return (retval);
 }
 
 
 static int
-cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize)
-	struct vnode *vp;
-	off_t         f_offset;
-	u_int         size;
-	off_t         filesize;
-	int           devblocksize;
-{
-	upl_t         upl;
-	upl_page_info_t *pl;
-	int           pages_in_upl;
-	int           start_pg;
-	int           last_pg;
-	int           last_valid;
-	int           io_size;
-
+cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
+{
+	daddr64_t blkno;
+	size_t	  io_size;
+	int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
+	
+	if (bootcache_check_fn) {
+		if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
+			return(0);
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
-		     (int)f_offset, size, (int)filesize, 0, 0);
+		if (io_size == 0)
+			return (0);
 
-	if (f_offset >= filesize) {
-	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
-			     (int)f_offset, 0, 0, 0, 0);
-	        return(0);
-	}
-	if (ubc_page_op(vp, f_offset, 0, 0, 0) == KERN_SUCCESS) {
-	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
-			     (int)f_offset, 0, 0, 0, 0);
-	        return(0);
+		if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
+			return(1);
 	}
-	if (size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-	        size = MAX_UPL_TRANSFER * PAGE_SIZE;
-	else
-	        size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
+	return(0);
+}
 
-	if ((off_t)size > (filesize - f_offset))
-	        size = ((filesize - f_offset) + (devblocksize - 1)) & ~(devblocksize - 1);
-	
-	pages_in_upl = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
 
-	ubc_create_upl(vp,
-		       	f_offset,
-		       	pages_in_upl * PAGE_SIZE,
-				&upl, 
-				&pl,
-				UPL_FLAGS_NONE);
+static int 
+cluster_is_throttled(vnode_t vp)
+{
+	return (throttle_io_will_be_throttled(-1, vp->v_mount));
+}
 
-	if (upl == (upl_t) 0)
-	        return(0);
 
-	/*
-	 * scan from the beginning of the upl looking for the first
-	 * non-valid page.... this will become the first page in
-	 * the request we're going to make to 'cluster_io'... if all
-	 * of the pages are valid, we won't call through to 'cluster_io'
-	 */
-	for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
-	        if (!upl_valid_page(pl, start_pg))
-		        break;
-	}
+static void
+cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
+{
+
+	lck_mtx_lock(&iostate->io_mtxp);
+
+	while ((iostate->io_issued - iostate->io_completed) > target) {
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
+			     iostate->io_issued, iostate->io_completed, target, 0, 0);
+
+		iostate->io_wanted = 1;
+		msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
+			     iostate->io_issued, iostate->io_completed, target, 0, 0);
+	}	
+	lck_mtx_unlock(&iostate->io_mtxp);
+}
+
+static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl,
+										  upl_offset_t upl_offset, upl_size_t size)
+{
+	if (!size)
+		return;
+
+	upl_t associated_upl = upl_associated_upl(upl);
+
+	if (!associated_upl)
+		return;
+
+#if 0
+	printf("1: %d %d\n", upl_offset, upl_offset + size);
+#endif
 
 	/*
-	 * scan from the starting invalid page looking for a valid
-	 * page before the end of the upl is reached, if we 
-	 * find one, then it will be the last page of the request to
-	 * 'cluster_io'
+	 * The associated UPL is page aligned to file offsets whereas the
+	 * UPL it's attached to has different alignment requirements.  The
+	 * upl_offset that we have refers to @upl.  The code that follows
+	 * has to deal with the first and last pages in this transaction
+	 * which might straddle pages in the associated UPL.  To keep
+	 * track of these pages, we use the mark bits: if the mark bit is
+	 * set, we know another transaction has completed its part of that
+	 * page and so we can unlock that page here.
+	 *
+	 * The following illustrates what we have to deal with:
+	 *
+	 *    MEM u <------------ 1 PAGE ------------> e
+	 *        +-------------+----------------------+-----------------
+	 *        |             |######################|#################
+	 *        +-------------+----------------------+-----------------
+	 *   FILE | <--- a ---> o <------------ 1 PAGE ------------>
+	 *
+	 * So here we show a write to offset @o.  The data that is to be
+	 * written is in a buffer that is not page aligned; it has offset
+	 * @a in the page.  The upl that carries the data starts in memory
+	 * at @u.  The associated upl starts in the file at offset @o.  A
+	 * transaction will always end on a page boundary (like @e above)
+	 * except for the very last transaction in the group.  We cannot
+	 * unlock the page at @o in the associated upl until both the
+	 * transaction ending at @e and the following transaction (that
+	 * starts at @e) has completed.
 	 */
-	for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
-	        if (upl_valid_page(pl, last_pg))
-		        break;
-	}
 
 	/*
-	 * if we find any more free valid pages at the tail of the upl
-	 * than update maxra accordingly....
+	 * We record whether or not the two UPLs are aligned as the mark
+	 * bit in the first page of @upl.
 	 */
-	for (last_valid = last_pg; last_valid < pages_in_upl; last_valid++) {
-	        if (!upl_valid_page(pl, last_valid))
-		        break;
-	}
-	if (start_pg < last_pg) {		
-	        vm_offset_t   upl_offset;
+	upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+	bool is_unaligned = upl_page_get_mark(pl, 0);
 
-	        /*
-		 * we found a range of 'invalid' pages that must be filled
-		 * 'size' has already been clipped to the LEOF
-		 * make sure it's at least a multiple of the device block size
-		 */
-	        upl_offset = start_pg * PAGE_SIZE;
-		io_size    = (last_pg - start_pg) * PAGE_SIZE;
+	if (is_unaligned) {
+		upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl);
 
-		if ((upl_offset + io_size) > size) {
-		        io_size = size - upl_offset;
+		upl_offset_t upl_end = upl_offset + size;
+		assert(upl_end >= PAGE_SIZE);
 
-			KERNEL_DEBUG(0xd001000, upl_offset, size, io_size, 0, 0);
-		}
-		cluster_io(vp, upl, upl_offset, f_offset + upl_offset, io_size,
-			   CL_READ | CL_COMMIT | CL_ASYNC | CL_AGE, (struct buf *)0);
-	}
-	if (start_pg) {
-	        /*
-		 * start_pg of non-zero indicates we found some already valid pages
-		 * at the beginning of the upl.... we need to release these without
-		 * modifying there state
-		 */
-	        ubc_upl_abort_range(upl, 0, start_pg * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
+		upl_size_t assoc_upl_size = upl_get_size(associated_upl);
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 50)) | DBG_FUNC_NONE,
-			     upl, 0, start_pg * PAGE_SIZE, 0, 0);
-	}
-	if (last_pg < pages_in_upl) {
 		/*
-		 * the set of pages that we issued an I/O for did not extend all the
-		 * way to the end of the upl... so just release them without modifying
-		 * there state
+		 * In the very first transaction in the group, upl_offset will
+		 * not be page aligned, but after that it will be and in that
+		 * case we want the preceding page in the associated UPL hence
+		 * the minus one.
 		 */
-	        ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, (pages_in_upl - last_pg) * PAGE_SIZE,
-				UPL_ABORT_FREE_ON_EMPTY);
-
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 50)) | DBG_FUNC_NONE,
-			     upl, last_pg * PAGE_SIZE, (pages_in_upl - last_pg) * PAGE_SIZE, 0, 0);
-	}
-
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
-		     (int)f_offset + (last_valid * PAGE_SIZE), 0, 0, 0, 0);
+		assert(upl_offset);
+		if (upl_offset)
+			upl_offset = trunc_page_32(upl_offset - 1);
 
-	return(last_valid);
-}
+		lck_mtx_lock_spin(&iostate->io_mtxp);
 
+		// Look at the first page...
+		if (upl_offset
+			&& !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) {
+			/*
+			 * The first page isn't marked so let another transaction
+			 * completion handle it.
+			 */
+			upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true);
+			upl_offset += PAGE_SIZE;
+		}
 
+		// And now the last page...
 
-static void
-cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize)
-	struct vnode *vp;
-	daddr_t       b_lblkno;
-	daddr_t       e_lblkno;
-	off_t         filesize;
-	int           devblocksize;
-{
-	daddr_t       r_lblkno;
-	off_t         f_offset;
-	int           size_of_prefetch;
-	int           max_iosize;
-	int           max_pages;
+		/*
+		 * This needs to be > rather than >= because if it's equal, it
+		 * means there's another transaction that is sharing the last
+		 * page.
+		 */
+		if (upl_end > assoc_upl_size)
+			upl_end = assoc_upl_size;
+		else {
+			upl_end = trunc_page_32(upl_end);
+			const int last_pg = (upl_end >> PAGE_SHIFT) - 1;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
-		     b_lblkno, e_lblkno, vp->v_lastr, 0, 0);
+			if (!upl_page_get_mark(assoc_pl, last_pg)) {
+				/*
+				 * The last page isn't marked so mark the page and let another
+				 * transaction completion handle it.
+				 */
+				upl_page_set_mark(assoc_pl, last_pg, true);
+				upl_end -= PAGE_SIZE;
+			}
+		}
 
-	if (b_lblkno == vp->v_lastr && b_lblkno == e_lblkno) {
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
-			     vp->v_ralen, vp->v_maxra, vp->v_lastr, 0, 0);
-		return;
-	}
+		lck_mtx_unlock(&iostate->io_mtxp);
 
-	if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) && b_lblkno != (vp->v_maxra + 1))) {
-	        vp->v_ralen = 0;
-		vp->v_maxra = 0;
+#if 0
+		printf("2: %d %d\n", upl_offset, upl_end);
+#endif
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
-			     vp->v_ralen, vp->v_maxra, vp->v_lastr, 1, 0);
+		if (upl_end <= upl_offset)
+			return;
 
-		return;
+		size = upl_end - upl_offset;
+	} else {
+		assert(!(upl_offset & PAGE_MASK));
+		assert(!(size & PAGE_MASK));
 	}
-	vfs_io_attributes(vp, B_READ, &max_iosize, &max_pages);
-	
-	if ((max_iosize / PAGE_SIZE) < max_pages)
-	        max_pages = max_iosize / PAGE_SIZE;
-	if (max_pages > MAX_UPL_TRANSFER)
-	        max_pages = MAX_UPL_TRANSFER;
 
-	vp->v_ralen = vp->v_ralen ? min(max_pages, vp->v_ralen << 1) : 1;
+	boolean_t empty;
 
-	if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen)
-	        vp->v_ralen = min(max_pages, (e_lblkno + 1) - b_lblkno);
+	/*
+	 * We can unlock these pages now and as this is for a
+	 * direct/uncached write, we want to dump the pages too.
+	 */
+	kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size,
+									   UPL_ABORT_DUMP_PAGES, &empty);
 
-	if (e_lblkno < vp->v_maxra) {
-	        if ((vp->v_maxra - e_lblkno) > (max_pages / 4)) {
+	assert(!kr);
 
-		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
-				     vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0);
-			return;
-		}
+	if (!kr && empty) {
+		upl_set_associated_upl(upl, NULL);
+		upl_deallocate(associated_upl);
 	}
-	r_lblkno = max(e_lblkno, vp->v_maxra) + 1;
-	f_offset = (off_t)r_lblkno * PAGE_SIZE_64;
+}
 
-	size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize);
+static int
+cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
+{
+        int upl_abort_code = 0;
+	int page_in  = 0;
+	int page_out = 0;
 
-	if (size_of_prefetch)
-	        vp->v_maxra = r_lblkno + (size_of_prefetch - 1);
+	if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
+	        /*
+		 * direct write of any flavor, or a direct read that wasn't aligned
+		 */
+	        ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
+	else {
+	        if (io_flags & B_PAGEIO) {
+		        if (io_flags & B_READ)
+			        page_in  = 1;
+			else
+			        page_out = 1;
+		}
+		if (io_flags & B_CACHE)
+		        /*
+			 * leave pages in the cache unchanged on error
+			 */
+		        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
+		else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
+		        /*
+			 * transient error... leave pages unchanged
+			 */
+		        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
+		else if (page_in)
+		        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
+		else
+		        upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
-		     vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0);
+		ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
+	}
+	return (upl_abort_code);
 }
 
 
-cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags)
-	struct vnode *vp;
-	upl_t         upl;
-	vm_offset_t   upl_offset;
-	off_t         f_offset;
-	int           size;
-	off_t         filesize;
-	int           devblocksize;
-	int           flags;
+static int
+cluster_iodone(buf_t bp, void *callback_arg)
 {
-	int           io_size;
-	int           pg_size;
-        off_t         max_size;
-	int local_flags = CL_PAGEOUT;
+        int	b_flags;
+        int	error;
+	int	total_size;
+	int	total_resid;
+	int	upl_offset;
+	int	zero_offset;
+	int	pg_offset = 0;
+        int	commit_size = 0;
+        int	upl_flags = 0;
+	int	transaction_size = 0;
+	upl_t	upl;
+	buf_t	cbp;
+	buf_t	cbp_head;
+	buf_t	cbp_next;
+	buf_t	real_bp;
+	vnode_t	vp;
+	struct	clios *iostate;
+	boolean_t	transaction_complete = FALSE;
+
+	__IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head));
 
-	if ((flags & UPL_IOSYNC) == 0) 
-		local_flags |= CL_ASYNC;
-	if ((flags & UPL_NOCOMMIT) == 0) 
-		local_flags |= CL_COMMIT;
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
+		     cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
 
-	if (upl == (upl_t) 0)
-	        panic("cluster_pageout: can't handle NULL upl yet\n");
+	if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
+		lck_mtx_lock_spin(cl_transaction_mtxp);
 
+		bp->b_flags |= B_TDONE;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
-		     (int)f_offset, size, (int)filesize, local_flags, 0);
+		for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
+			/*
+			 * all I/O requests that are part of this transaction
+			 * have to complete before we can process it
+			 */
+			if ( !(cbp->b_flags & B_TDONE)) {
 
-	/*
-	 * If they didn't specify any I/O, then we are done...
-	 * we can't issue an abort because we don't know how
-	 * big the upl really is
-	 */
-	if (size <= 0)
-		return (EINVAL);
+				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+					     cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
 
-        if (vp->v_mount->mnt_flag & MNT_RDONLY) {
-		if (local_flags & CL_COMMIT)
-		        ubc_upl_abort_range(upl, upl_offset, size,
-						UPL_ABORT_FREE_ON_EMPTY);
-		return (EROFS);
-	}
-	/*
-	 * can't page-in from a negative offset
-	 * or if we're starting beyond the EOF
-	 * or if the file offset isn't page aligned
-	 * or the size requested isn't a multiple of PAGE_SIZE
-	 */
-	if (f_offset < 0 || f_offset >= filesize ||
-	   (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
-		if (local_flags & CL_COMMIT)
-			ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
-		return (EINVAL);
-	}
-	max_size = filesize - f_offset;
+				lck_mtx_unlock(cl_transaction_mtxp);
 
-	if (size < max_size)
-	        io_size = size;
-	else
-	        io_size = (max_size + (devblocksize - 1)) & ~(devblocksize - 1);
+				return 0;
+			}
 
-	pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+			if (cbp->b_trans_next == CLUSTER_IO_WAITING) {
+				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+							 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
 
-	if (size > pg_size) {
-		if (local_flags & CL_COMMIT)
-			ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size,
-					UPL_ABORT_FREE_ON_EMPTY);
-	}
-	while (vp->v_numoutput >= ASYNC_THROTTLE) {
-		vp->v_flag |= VTHROTTLED;
-		tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_pageout", 0);
+				lck_mtx_unlock(cl_transaction_mtxp);
+				wakeup(cbp);
+
+				return 0;
+			}
+
+			if (cbp->b_flags & B_EOT)
+				transaction_complete = TRUE;
+		}
+		lck_mtx_unlock(cl_transaction_mtxp);
+
+		if (transaction_complete == FALSE) {
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+				     cbp_head, 0, 0, 0, 0);
+			return 0;
+		}
 	}
+	error       = 0;
+	total_size  = 0;
+	total_resid = 0;
 
-	return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
-			   local_flags, (struct buf *)0));
-}
+	cbp        = cbp_head;
+	vp	   = cbp->b_vp;
+	upl_offset = cbp->b_uploffset;
+	upl        = cbp->b_upl;
+	b_flags    = cbp->b_flags;
+	real_bp    = cbp->b_real_bp;
+	zero_offset= cbp->b_validend;
+	iostate    = (struct clios *)cbp->b_iostate;
 
+	if (real_bp)
+	        real_bp->b_dev = cbp->b_dev;
 
-cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags)
-	struct vnode *vp;
-	upl_t         upl;
-	vm_offset_t   upl_offset;
-	off_t         f_offset;
-	int           size;
-	off_t         filesize;
-	int           devblocksize;
-	int           flags;
-{
-	u_int         io_size;
-	int           pg_size;
-        off_t         max_size;
-	int           retval;
-	int           local_flags = 0;
+	while (cbp) {
+		if ((cbp->b_flags & B_ERROR) && error == 0)
+		        error = cbp->b_error;
 
+		total_resid += cbp->b_resid;
+		total_size  += cbp->b_bcount;
 
-	/*
-	 * If they didn't ask for any data, then we are done...
-	 * we can't issue an abort because we don't know how
-	 * big the upl really is
-	 */
-	if (size <= 0)
-	        return (EINVAL);
+		cbp_next = cbp->b_trans_next;
 
-	if ((flags & UPL_NOCOMMIT) == 0) 
-		local_flags = CL_COMMIT;
+		if (cbp_next == NULL)
+		        /*
+			 * compute the overall size of the transaction
+			 * in case we created one that has 'holes' in it
+			 * 'total_size' represents the amount of I/O we
+			 * did, not the span of the transaction w/r to the UPL
+			 */
+			transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
-		     (int)f_offset, size, (int)filesize, local_flags, 0);
+		if (cbp != cbp_head)
+		        free_io_buf(cbp);
 
-	/*
-	 * can't page-in from a negative offset
-	 * or if we're starting beyond the EOF
-	 * or if the file offset isn't page aligned
-	 * or the size requested isn't a multiple of PAGE_SIZE
-	 */
-	if (f_offset < 0 || f_offset >= filesize ||
-	   (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
-		if (local_flags & CL_COMMIT)
-			ubc_upl_abort_range(upl, upl_offset, size, 
-					UPL_ABORT_ERROR | UPL_ABORT_FREE_ON_EMPTY);
-		return (EINVAL);
+		cbp = cbp_next;
 	}
-	max_size = filesize - f_offset;
 
-	if (size < max_size)
-	        io_size = size;
-	else
-	        io_size = (max_size + (devblocksize - 1)) & ~(devblocksize - 1);
+	if (ISSET(b_flags, B_COMMIT_UPL)) {
+		cluster_handle_associated_upl(iostate,
+									  cbp_head->b_upl,
+									  upl_offset,
+									  transaction_size);
+	}
 
-	pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+	if (error == 0 && total_resid)
+		error = EIO;
 
-	if (upl == (upl_t) 0) {
-		ubc_create_upl(	vp,
-						f_offset,
-						pg_size,
-						&upl,
-						NULL,
-						UPL_FLAGS_NONE);
+	if (error == 0) {
+	        int	(*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
 
-		if (upl == (upl_t) 0)
-		        return (EINVAL);
+		if (cliodone_func != NULL) {
+		        cbp_head->b_bcount = transaction_size;
 
-		upl_offset = (vm_offset_t)0;
-		size = pg_size;
-	}
-	if (size > pg_size) {
-		if (local_flags & CL_COMMIT)
-			ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size,
-					UPL_ABORT_FREE_ON_EMPTY);
+		        error = (*cliodone_func)(cbp_head, callback_arg);
+		}
 	}
+	if (zero_offset)
+	        cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
 
-	retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
-			    local_flags | CL_READ | CL_PAGEIN, (struct buf *)0);
+        free_io_buf(cbp_head);
 
-	if (retval == 0) {
-	        int b_lblkno;
-		int e_lblkno;
+	if (iostate) {
+	        int need_wakeup = 0;
 
-		b_lblkno = (int)(f_offset / PAGE_SIZE_64);
-		e_lblkno = (int)
-			((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64);
+	        /*
+		 * someone has issued multiple I/Os asynchrounsly
+		 * and is waiting for them to complete (streaming)
+		 */
+		lck_mtx_lock_spin(&iostate->io_mtxp);
+
+	        if (error && iostate->io_error == 0)
+		        iostate->io_error = error;
+
+		iostate->io_completed += total_size;
 
-		if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF)) {
+		if (iostate->io_wanted) {
 		        /*
-			 * we haven't read the last page in of the file yet
-			 * so let's try to read ahead if we're in 
-			 * a sequential access pattern
+		         * someone is waiting for the state of
+			 * this io stream to change
 			 */
-		        cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
+		        iostate->io_wanted = 0;
+			need_wakeup = 1;
 		}
-	        vp->v_lastr = e_lblkno;
+		lck_mtx_unlock(&iostate->io_mtxp);
+
+		if (need_wakeup)
+		        wakeup((caddr_t)&iostate->io_wanted);
 	}
-	return (retval);
-}
 
+	if (b_flags & B_COMMIT_UPL) {
+		pg_offset   = upl_offset & PAGE_MASK;
+		commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
 
-cluster_bp(bp)
-	struct buf *bp;
-{
-        off_t  f_offset;
-	int    flags;
+		if (error)
+			upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
+		else {
+			upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
 
-	if (bp->b_pagelist == (upl_t) 0)
-	        panic("cluster_bp: can't handle NULL upl yet\n");
-	if (bp->b_flags & B_READ)
-	        flags = CL_ASYNC | CL_NOMAP | CL_READ;
-	else
-	        flags = CL_ASYNC | CL_NOMAP;
+			if ((b_flags & B_PHYS) && (b_flags & B_READ)) 
+			        upl_flags |= UPL_COMMIT_SET_DIRTY;
 
-	f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
+			if (b_flags & B_AGE)
+			        upl_flags |= UPL_COMMIT_INACTIVATE;
+
+			ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
+		}
+	}
+	if (real_bp) {
+		if (error) {
+			real_bp->b_flags |= B_ERROR;
+			real_bp->b_error = error;
+		}
+		real_bp->b_resid = total_resid;
 
-        return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, flags, bp));
+		buf_biodone(real_bp);
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+		     upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
+
+	return (error);
 }
 
 
-cluster_write(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t         oldEOF;
-	off_t         newEOF;
-	off_t         headOff;
-	off_t         tailOff;
-	int           devblocksize;
-	int           flags;
+uint32_t
+cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
 {
-	int           prev_resid;
-	int           clip_size;
-	off_t         max_io_size;
-	struct iovec  *iov;
-	vm_offset_t   upl_offset;
-	int           upl_size;
-	int           pages_in_pl;
-	upl_page_info_t *pl;
-	int           upl_flags;
-	upl_t         upl;
-	int           retval = 0;
+	if (cluster_is_throttled(vp)) {
+		*limit = THROTTLE_MAX_IOSIZE;
+		return 1;
+	}
+	return 0;   
+}
 
 
-	if ((!uio) || (uio->uio_segflg != UIO_USERSPACE) || (!(vp->v_flag & VNOCACHE_DATA)))
-	  {
-	    retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
-	    return(retval);
-	  }
-	
-	while (uio->uio_resid && uio->uio_offset < newEOF && retval == 0)
-	  {
-	    /* we know we have a resid, so this is safe */
-	    iov = uio->uio_iov;
-	    while (iov->iov_len == 0) {
-	      uio->uio_iov++;
-	      uio->uio_iovcnt--;
-	      iov = uio->uio_iov;
-	    }
-
-            /*
-             * We check every vector target and if it is physically
-             * contiguous space, we skip the sanity checks.
-             */
-
-            upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK;
-            upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK;
-	    pages_in_pl = 0;
-            upl_flags = UPL_QUERY_OBJECT_TYPE;
-            if ((vm_map_get_upl(current_map(),
-                               (vm_offset_t)iov->iov_base & ~PAGE_MASK,
-                               &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS)
-              {
-		/*
-		 * the user app must have passed in an invalid address
-		 */
-		return (EFAULT);
-              }	      
+void
+cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
+{
 
-            if (upl_flags & UPL_PHYS_CONTIG)
-	      {
-		/*
-		 * since the interface to the IOKit below us uses physical block #'s and
-		 * block counts to specify the I/O, we can't handle anything that isn't
-		 * devblocksize aligned 
-		 */
-		if ((uio->uio_offset & (devblocksize - 1)) || (uio->uio_resid & (devblocksize - 1)))
-		    return(EINVAL);
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
+		     upl_offset, size, bp, 0, 0);
 
-		if (flags & IO_HEADZEROFILL)
-		  {
-		    flags &= ~IO_HEADZEROFILL;
+	if (bp == NULL || bp->b_datap == 0) {
+	        upl_page_info_t *pl;
+	        addr64_t	zero_addr;
 
-		    if (retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, devblocksize, IO_HEADZEROFILL))
-		        return(retval);
-		  }
-
-		retval = cluster_phys_write(vp, uio);
-
-		if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL))
-		  {
-		    retval = cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL);
-		    return(retval);
-		  }
-	      }
-	    else if ((uio->uio_resid < 4 * PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) 
-	      {
-		/*
-		 * We set a threshhold of 4 pages to decide if the nocopy
-		 * write loop is worth the trouble...
-		 * we also come here if we're trying to zero the head and/or tail
-		 * of a partially written page, and the user source is not a physically contiguous region
-		 */
-		retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
-		return(retval);
-	      }
-	    else if (uio->uio_offset & PAGE_MASK_64)
-	      {
-		/* Bring the file offset write up to a pagesize boundary */
-		clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64));
-		if (uio->uio_resid < clip_size)
-		  clip_size = uio->uio_resid;
-		/* 
-		 * Fake the resid going into the cluster_write_x call
-		 * and restore it on the way out.
-		 */
-		prev_resid = uio->uio_resid;
-		uio->uio_resid = clip_size;
-		retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
-		uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-	      }
-	    else if ((int)iov->iov_base & PAGE_MASK_64)
-	      {
-		clip_size = iov->iov_len;
-		prev_resid = uio->uio_resid;
-		uio->uio_resid = clip_size;
-		retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
-		uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-	      }
-	    else
-	      {
-		/* 
-		 * If we come in here, we know the offset into
-		 * the file is on a pagesize boundary
-		 */
-
-		max_io_size = newEOF - uio->uio_offset;
-		clip_size = uio->uio_resid;
-		if (iov->iov_len < clip_size)
-		  clip_size = iov->iov_len;
-		if (max_io_size < clip_size)
-		  clip_size = max_io_size;
-
-		if (clip_size < PAGE_SIZE)
-		  {
-		    /*
-		     * Take care of tail end of write in this vector
-		     */
-		    prev_resid = uio->uio_resid;
-		    uio->uio_resid = clip_size;
-		    retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
-		    uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-		  }
-		else
-		  {
-		    /* round clip_size down to a multiple of pagesize */
-		    clip_size = clip_size & ~(PAGE_MASK);
-		    prev_resid = uio->uio_resid;
-		    uio->uio_resid = clip_size;
-		    retval = cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags);
-		    if ((retval == 0) && uio->uio_resid)
-		      retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
-		    uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-		  }
-	      } /* end else */
-	  } /* end while */
-	return(retval);
-}
+	        pl = ubc_upl_pageinfo(upl);
 
-static
-cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t         newEOF;
-	int           devblocksize;
-	int           flags;
-{
-	upl_t            upl;
-	upl_page_info_t  *pl;
-	off_t 	         upl_f_offset;
-	vm_offset_t      upl_offset;
-	off_t            max_io_size;
-	int              io_size;
-	int              upl_size;
-	int              upl_needed_size;
-	int              pages_in_pl;
-	int              upl_flags;
-	kern_return_t    kret;
-	struct iovec     *iov;
-	int              i;
-	int              force_data_sync;
-	int              error  = 0;
+		if (upl_device_page(pl) == TRUE) {
+		        zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
-		     (int)uio->uio_offset, (int)uio->uio_resid, 
-		     (int)newEOF, devblocksize, 0);
+			bzero_phys_nc(zero_addr, size);
+		} else {
+		        while (size) {
+			        int	page_offset;
+				int	page_index;
+				int	zero_cnt;
 
-	/*
-	 * When we enter this routine, we know
-	 *  -- the offset into the file is on a pagesize boundary
-	 *  -- the resid is a page multiple
-	 *  -- the resid will not exceed iov_len
-	 */
+				page_index  = upl_offset / PAGE_SIZE;
+				page_offset = upl_offset & PAGE_MASK;
 
-	iov = uio->uio_iov;
+				zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset;
+				zero_cnt  = min(PAGE_SIZE - page_offset, size);
 
-	while (uio->uio_resid && uio->uio_offset < newEOF && error == 0) {
-	  io_size = uio->uio_resid;
+				bzero_phys(zero_addr, zero_cnt);
 
-          if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-            io_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+				size       -= zero_cnt;
+				upl_offset += zero_cnt;
+			}
+		}
+	} else
+		bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
 
-	  upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
-	  upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
+		     upl_offset, size, 0, 0, 0);
+}
 
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
-		       (int)upl_offset, upl_needed_size, iov->iov_base, io_size, 0);
 
-	  for (force_data_sync = 0; force_data_sync < 3; force_data_sync++)
-	    {
-	      pages_in_pl = 0;
-	      upl_size = upl_needed_size;
-	      upl_flags = UPL_COPYOUT_FROM | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+static void
+cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
+{
+        cbp_head->b_validend = zero_offset;
+        cbp_tail->b_flags |= B_EOT;
+}
 
-	      kret = vm_map_get_upl(current_map(),
-				    (vm_offset_t)iov->iov_base & ~PAGE_MASK,
-				    &upl_size,
-					&upl, 
-					NULL, 
-					&pages_in_pl,
-					&upl_flags,
-					force_data_sync);
+static void
+cluster_wait_IO(buf_t cbp_head, int async)
+{
+        buf_t	cbp;
 
-	      if (kret != KERN_SUCCESS)
-		{
-		  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
-			       0, 0, 0, kret, 0);
+	if (async) {
+		/*
+		 * Async callback completion will not normally generate a
+		 * wakeup upon I/O completion.  To get woken up, we set
+		 * b_trans_next (which is safe for us to modify) on the last
+		 * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows
+		 * to wake us up when all buffers as part of this transaction
+		 * are completed.  This is done under the umbrella of
+		 * cl_transaction_mtxp which is also taken in cluster_iodone.
+		 */
+		bool done = true;
+		buf_t last = NULL;
 
-		  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
-			       (int)uio->uio_offset, (int)uio->uio_resid, kret, 1, 0);
+		lck_mtx_lock_spin(cl_transaction_mtxp);
 
-		  /* cluster_nocopy_write: failed to get pagelist */
-		  /* do not return kret here */
-		  return(0);
+		for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) {
+			if (!ISSET(cbp->b_flags, B_TDONE))
+				done = false;
 		}
 
-	      pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
-	      pages_in_pl = upl_size / PAGE_SIZE;
-
-	      for(i=0; i < pages_in_pl; i++)
-		{
-		  if (!upl_valid_page(pl, i))
-		    break;		  
-		}
+		if (!done) {
+			last->b_trans_next = CLUSTER_IO_WAITING;
 
-	      if (i == pages_in_pl)
-		break;
+			DTRACE_IO1(wait__start, buf_t, last);
+			do {
+				msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL);
 
-		ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				UPL_ABORT_FREE_ON_EMPTY);
-	    }
-
-	  if (force_data_sync >= 3)
-	    {
-	      KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
-			   i, pages_in_pl, upl_size, kret, 0);
-
-	      KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
-			   (int)uio->uio_offset, (int)uio->uio_resid, kret, 2, 0);
-	      return(0);
-	    }
-
-	  /*
-	   * Consider the possibility that upl_size wasn't satisfied.
-	   */
-	  if (upl_size != upl_needed_size)
-	    io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK;
-
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
-		       (int)upl_offset, upl_size, iov->iov_base, io_size, 0);		       
-
-	  if (io_size == 0)
-	    {
-	      ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				   UPL_ABORT_FREE_ON_EMPTY);
-	      KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
-		     (int)uio->uio_offset, uio->uio_resid, 0, 3, 0);
-
-	      return(0);
-	    }
-
-	  /*
-	   * Now look for pages already in the cache
-	   * and throw them away.
-	   */
-
-	  upl_f_offset = uio->uio_offset;   /* this is page aligned in the file */
-	  max_io_size = io_size;
-
-	  while (max_io_size) {
-
-	    /*
-	     * Flag UPL_POP_DUMP says if the page is found
-	     * in the page cache it must be thrown away.
-	     */
-	    ubc_page_op(vp, 
-			upl_f_offset,
-			UPL_POP_SET | UPL_POP_BUSY | UPL_POP_DUMP,
-			0, 0);
-	    max_io_size  -= PAGE_SIZE;
-	    upl_f_offset += PAGE_SIZE;
-	  }
-
-	  /*
-	   * issue a synchronous write to cluster_io
-	   */
-
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
-		       (int)upl_offset, (int)uio->uio_offset, io_size, 0, 0);
-
-	  error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
-			     io_size, 0, (struct buf *)0);
-
-	  if (error == 0) {
-	    /*
-	     * The cluster_io write completed successfully,
-	     * update the uio structure and commit.
-	     */
-
-	    ubc_upl_commit_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				 UPL_COMMIT_FREE_ON_EMPTY);
-	    
-	    iov->iov_base += io_size;
-	    iov->iov_len -= io_size;
-	    uio->uio_resid -= io_size;
-	    uio->uio_offset += io_size;
-	  }
-	  else {
-	    ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				   UPL_ABORT_FREE_ON_EMPTY);
-	  }
-
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
-		       (int)upl_offset, (int)uio->uio_offset, (int)uio->uio_resid, error, 0);
+				/*
+				 * We should only have been woken up if all the
+				 * buffers are completed, but just in case...
+				 */
+				done = true;
+				for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) {
+					if (!ISSET(cbp->b_flags, B_TDONE)) {
+						done = false;
+						break;
+					}
+				}
+			} while (!done);
+			DTRACE_IO1(wait__done, buf_t, last);
 
-	} /* end while */
+			last->b_trans_next = NULL;
+		}
 
-
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
-		     (int)uio->uio_offset, (int)uio->uio_resid, error, 4, 0);
-
-	return (error);
+		lck_mtx_unlock(cl_transaction_mtxp);
+	} else { // !async
+		for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
+			buf_biowait(cbp);
+	}
 }
 
-static
-cluster_phys_write(vp, uio)
-	struct vnode *vp;
-	struct uio   *uio;
+static void
+cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
 {
- 	upl_t            upl;
-	vm_offset_t      upl_offset;
-	int              io_size;
-	int              upl_size;
-	int              upl_needed_size;
-	int              pages_in_pl;
-	int              upl_flags;
-	kern_return_t    kret;
-	struct iovec     *iov;
-	int              error  = 0;
+        buf_t	cbp;
+	int	error;
+	boolean_t isswapout = FALSE;
 
 	/*
-	 * When we enter this routine, we know
-	 *  -- the resid will not exceed iov_len
-	 *  -- the vector target address is physcially contiguous
+	 * cluster_complete_transaction will
+	 * only be called if we've issued a complete chain in synchronous mode
+	 * or, we've already done a cluster_wait_IO on an incomplete chain
+	 */
+        if (needwait) {
+	        for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
+		        buf_biowait(cbp);
+	}
+	/*
+	 * we've already waited on all of the I/Os in this transaction,
+	 * so mark all of the buf_t's in this transaction as B_TDONE
+	 * so that cluster_iodone sees the transaction as completed
 	 */
+	for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
+		cbp->b_flags |= B_TDONE;
+	cbp = *cbp_head;
 
-	iov = uio->uio_iov;
-	io_size = iov->iov_len;
-	upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
-	upl_needed_size = upl_offset + io_size;
+	if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
+		isswapout = TRUE;
 
-	pages_in_pl = 0;
-	upl_size = upl_needed_size;
-	upl_flags = UPL_COPYOUT_FROM | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+	error = cluster_iodone(cbp, callback_arg);
 
-	kret = vm_map_get_upl(current_map(),
-			      (vm_offset_t)iov->iov_base & ~PAGE_MASK,
-			      &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0);
+	if ( !(flags & CL_ASYNC) && error && *retval == 0) {
+		if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
+			*retval = error;
+		else if (isswapout == TRUE)
+			*retval = error;
+	}
+	*cbp_head = (buf_t)NULL;
+}
 
-	if (kret != KERN_SUCCESS)
-	  {
-	    /* cluster_phys_write: failed to get pagelist */
-	      /* note: return kret here */
-	      return(EINVAL);
-	  }
+
+static int
+cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
+	   int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	buf_t	cbp;
+	u_int	size;
+	u_int	io_size;
+	int	io_flags;
+	int	bmap_flags;
+	int	error = 0;
+	int	retval = 0;
+	buf_t	cbp_head = NULL;
+	buf_t	cbp_tail = NULL;
+	int	trans_count = 0;
+	int	max_trans_count;
+	u_int	pg_count;
+	int	pg_offset;
+	u_int	max_iosize;
+	u_int	max_vectors;
+	int	priv;
+	int	zero_offset = 0;
+	int	async_throttle = 0;
+	mount_t	mp;
+	vm_offset_t upl_end_offset;
+	boolean_t   need_EOT = FALSE;
 
 	/*
-	 * Consider the possibility that upl_size wasn't satisfied.
-	 * This is a failure in the physical memory case.
+	 * we currently don't support buffers larger than a page
 	 */
-	if (upl_size < upl_needed_size)
-	  {
-	    kernel_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
-	    return(EINVAL);
-	  }
+	if (real_bp && non_rounded_size > PAGE_SIZE)
+		panic("%s(): Called with real buffer of size %d bytes which "
+				"is greater than the maximum allowed size of "
+				"%d bytes (the system PAGE_SIZE).\n",
+				__FUNCTION__, non_rounded_size, PAGE_SIZE);
+
+	mp = vp->v_mount;
 
 	/*
-	 * issue a synchronous write to cluster_io
+	 * we don't want to do any funny rounding of the size for IO requests
+	 * coming through the DIRECT or CONTIGUOUS paths...  those pages don't
+	 * belong to us... we can't extend (nor do we need to) the I/O to fill
+	 * out a page
 	 */
+	if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
+	        /*
+		 * round the requested size up so that this I/O ends on a
+		 * page boundary in case this is a 'write'... if the filesystem
+		 * has blocks allocated to back the page beyond the EOF, we want to
+		 * make sure to write out the zero's that are sitting beyond the EOF
+		 * so that in case the filesystem doesn't explicitly zero this area
+		 * if a hole is created via a lseek/write beyond the current EOF,
+		 * it will return zeros when it's read back from the disk.  If the
+		 * physical allocation doesn't extend for the whole page, we'll
+		 * only write/read from the disk up to the end of this allocation
+		 * via the extent info returned from the VNOP_BLOCKMAP call.
+		 */
+	        pg_offset = upl_offset & PAGE_MASK;
 
-	error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
-			   io_size, CL_DEV_MEMORY, (struct buf *)0);
-
-	if (error == 0) {
-	  /*
-	   * The cluster_io write completed successfully,
-	   * update the uio structure and commit.
-	   */
-
-	  ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_FREE_ON_EMPTY);
-	    
-	  iov->iov_base += io_size;
-	  iov->iov_len -= io_size;
-	  uio->uio_resid -= io_size;
-	  uio->uio_offset += io_size;
+		size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
+	} else {
+	        /*
+		 * anyone advertising a blocksize of 1 byte probably
+		 * can't deal with us rounding up the request size
+		 * AFP is one such filesystem/device
+		 */
+	        size = non_rounded_size;
 	}
-	else
-	  ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+	upl_end_offset = upl_offset + size;
 
-	return (error);
-}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
 
-static
-cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t         oldEOF;
-	off_t         newEOF;
-	off_t         headOff;
-	off_t         tailOff;
-	int           devblocksize;
-	int           flags;
-{
-	upl_page_info_t *pl;
-	upl_t            upl;
-	vm_offset_t      upl_offset;
-	int              upl_size;
-	off_t 	         upl_f_offset;
-	int              pages_in_upl;
-	int		 start_offset;
-	int              xfer_resid;
-	int              io_size;
-	int              io_size_before_rounding;
-	int              io_flags;
-	vm_offset_t      io_address;
-	int              io_offset;
-	int              bytes_to_zero;
-	int              bytes_to_move;
-	kern_return_t    kret;
-	int              retval = 0;
-	int              uio_resid;
-	long long        total_size;
-	long long        zero_cnt;
-	off_t            zero_off;
-	long long        zero_cnt1;
-	off_t            zero_off1;
-	daddr_t          start_blkno;
-	daddr_t          last_blkno;
+	/*
+	 * Set the maximum transaction size to the maximum desired number of
+	 * buffers.
+	 */
+	max_trans_count = 8;
+	if (flags & CL_DEV_MEMORY)
+		max_trans_count = 16;
 
-	if (uio) {
-	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
-			     (int)uio->uio_offset, uio->uio_resid, (int)oldEOF, (int)newEOF, 0);
+	if (flags & CL_READ) {
+	        io_flags = B_READ;
+		bmap_flags = VNODE_READ;
 
-	        uio_resid = uio->uio_resid;
+		max_iosize  = mp->mnt_maxreadcnt;
+		max_vectors = mp->mnt_segreadcnt;
 	} else {
-	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
-			     0, 0, (int)oldEOF, (int)newEOF, 0);
+	        io_flags = B_WRITE;
+		bmap_flags = VNODE_WRITE;
 
-	        uio_resid = 0;
+		max_iosize  = mp->mnt_maxwritecnt;
+		max_vectors = mp->mnt_segwritecnt;
 	}
-	zero_cnt  = 0;
-	zero_cnt1 = 0;
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
 
-	if (flags & IO_HEADZEROFILL) {
-	        /*
-		 * some filesystems (HFS is one) don't support unallocated holes within a file...
-		 * so we zero fill the intervening space between the old EOF and the offset
-		 * where the next chunk of real data begins.... ftruncate will also use this
-		 * routine to zero fill to the new EOF when growing a file... in this case, the
-		 * uio structure will not be provided
-		 */
-	        if (uio) {
-		        if (headOff < uio->uio_offset) {
-			        zero_cnt = uio->uio_offset - headOff;
-				zero_off = headOff;
+	/*
+	 * make sure the maximum iosize is a
+	 * multiple of the page size
+	 */
+	max_iosize  &= ~PAGE_MASK;
+
+	/*
+	 * Ensure the maximum iosize is sensible.
+	 */
+	if (!max_iosize)
+		max_iosize = PAGE_SIZE;
+
+	if (flags & CL_THROTTLE) {
+	        if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
+		        if (max_iosize > THROTTLE_MAX_IOSIZE)
+			        max_iosize = THROTTLE_MAX_IOSIZE;
+			async_throttle = THROTTLE_MAXCNT;
+		} else {
+		        if ( (flags & CL_DEV_MEMORY) )
+			        async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
+			else {
+			        u_int max_cluster;
+				u_int max_cluster_size;
+				u_int scale;
+
+				if (vp->v_mount->mnt_minsaturationbytecount) {
+					max_cluster_size = vp->v_mount->mnt_minsaturationbytecount;
+
+					scale = 1;
+				} else {
+					max_cluster_size = MAX_CLUSTER_SIZE(vp);
+
+					if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
+						scale = WRITE_THROTTLE_SSD;
+					else
+						scale = WRITE_THROTTLE;
+				}
+				if (max_iosize > max_cluster_size)
+				        max_cluster = max_cluster_size;
+				else
+				        max_cluster = max_iosize;
+
+				if (size < max_cluster)
+				        max_cluster = size;
+				
+				if (flags & CL_CLOSE)
+					scale += MAX_CLUSTERS;
+				
+			        async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
 			}
-		} else if (headOff < newEOF) {	
-		        zero_cnt = newEOF - headOff;
-			zero_off = headOff;
 		}
 	}
-	if (flags & IO_TAILZEROFILL) {
-	        if (uio) {
-		        zero_off1 = uio->uio_offset + uio->uio_resid;
-
-			if (zero_off1 < tailOff)
-			        zero_cnt1 = tailOff - zero_off1;
-		}	
-	}
-	if (zero_cnt == 0 && uio == (struct uio *) 0)
-	  {
-	    KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
-			 retval, 0, 0, 0, 0);
-	    return (0);
-	  }
-
-	while ((total_size = (uio_resid + zero_cnt + zero_cnt1)) && retval == 0) {
+	if (flags & CL_AGE)
+	        io_flags |= B_AGE;
+	if (flags & (CL_PAGEIN | CL_PAGEOUT))
+		io_flags |= B_PAGEIO;
+	if (flags & (CL_IOSTREAMING))
+		io_flags |= B_IOSTREAMING;
+	if (flags & CL_COMMIT)
+	        io_flags |= B_COMMIT_UPL;
+	if (flags & CL_DIRECT_IO)
+	        io_flags |= B_PHYS;
+	if (flags & (CL_PRESERVE | CL_KEEPCACHED))
+		io_flags |= B_CACHE;
+	if (flags & CL_PASSIVE)
+	        io_flags |= B_PASSIVE;
+	if (flags & CL_ENCRYPTED)
+		io_flags |= B_ENCRYPTED_IO;	
+
+	if (vp->v_flag & VSYSTEM)
+	        io_flags |= B_META;
+
+	if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
 	        /*
-		 * for this iteration of the loop, figure out where our starting point is
+		 * then we are going to end up
+		 * with a page that we can't complete (the file size wasn't a multiple
+		 * of PAGE_SIZE and we're trying to read to the end of the file
+		 * so we'll go ahead and zero out the portion of the page we can't
+		 * read in from the file
 		 */
-	        if (zero_cnt) {
-		        start_offset = (int)(zero_off & PAGE_MASK_64);
-			upl_f_offset = zero_off - start_offset;
-		} else if (uio_resid) {
-		        start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
-			upl_f_offset = uio->uio_offset - start_offset;
-		} else {
-		        start_offset = (int)(zero_off1 & PAGE_MASK_64);
-			upl_f_offset = zero_off1 - start_offset;
-		}
-	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
-			     (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
+	        zero_offset = upl_offset + non_rounded_size;
+	} else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) {
+		assert(ISSET(flags, CL_COMMIT));
+
+		// For a direct/uncached write, we need to lock pages...
 
-	        if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-		        total_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+		upl_t cached_upl;
 
 		/*
-		 * compute the size of the upl needed to encompass
-		 * the requested write... limit each call to cluster_io
-		 * to the maximum UPL size... cluster_io will clip if
-		 * this exceeds the maximum io_size for the device,
-		 * make sure to account for 
-		 * a starting offset that's not page aligned
+		 * Create a UPL to lock the pages in the cache whilst the
+		 * write is in progress.
 		 */
-		upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+		ubc_create_upl(vp, f_offset, non_rounded_size, &cached_upl,
+					   NULL, UPL_SET_LITE);
 
-	        if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-		        upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+		/*
+		 * Attach this UPL to the other UPL so that we can find it
+		 * later.
+		 */
+		upl_set_associated_upl(upl, cached_upl);
 
-		pages_in_upl = upl_size / PAGE_SIZE;
-		io_size      = upl_size - start_offset;
-		
-		if ((long long)io_size > total_size)
-		        io_size = total_size;
+		if (upl_offset & PAGE_MASK) {
+			/*
+			 * The two UPLs are not aligned, so mark the first page in
+			 * @upl so that cluster_handle_associated_upl can handle
+			 * it accordingly.
+			 */
+			upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+			upl_page_set_mark(pl, 0, true);
+		}
+	}
 
-		start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64);
-		last_blkno  = start_blkno + pages_in_upl;
+	while (size) {
+		daddr64_t blkno;
+		daddr64_t lblkno;
+		u_int	io_size_wanted;
+		size_t	io_size_tmp;
 
-		kret = ubc_create_upl(vp, 
-							upl_f_offset,
-							upl_size,
-							&upl,
-							&pl,
-							UPL_FLAGS_NONE);
-		if (kret != KERN_SUCCESS)
-			panic("cluster_write: failed to get pagelist");
+		if (size > max_iosize)
+		        io_size = max_iosize;
+		else
+		        io_size = size;
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_NONE,
-			upl, (int)upl_f_offset, upl_size, start_offset, 0);
+		io_size_wanted = io_size;
+		io_size_tmp = (size_t)io_size;
+		
+		if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
+			break;
 
-		if (start_offset && !upl_valid_page(pl, 0)) {
-			int   read_size;
+		if (io_size_tmp > io_size_wanted)
+		        io_size = io_size_wanted;
+		else
+		        io_size = (u_int)io_size_tmp;
 
-			/*
-			 * we're starting in the middle of the first page of the upl
-			 * and the page isn't currently valid, so we're going to have
-			 * to read it in first... this is a synchronous operation
+		if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
+		        real_bp->b_blkno = blkno;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
+			     (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
+
+		if (io_size == 0) {
+		        /*
+			 * vnop_blockmap didn't return an error... however, it did
+			 * return an extent size of 0 which means we can't
+			 * make forward progress on this I/O... a hole in the
+			 * file would be returned as a blkno of -1 with a non-zero io_size
+			 * a real extent is returned with a blkno != -1 and a non-zero io_size
 			 */
-			read_size = PAGE_SIZE;
+	        	error = EINVAL;
+			break;
+		}
+		if ( !(flags & CL_READ) && blkno == -1) {
+		        off_t	e_offset;
+			int	pageout_flags;
 
-			if ((upl_f_offset + read_size) > newEOF) {
-			        read_size = newEOF - upl_f_offset;
-				read_size = (read_size + (devblocksize - 1)) & ~(devblocksize - 1);
-			}
-		        retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
-					    CL_READ, (struct buf *)0);
-			if (retval) {
-				/*
-				 * we had an error during the read which causes us to abort
-				 * the current cluster_write request... before we do, we need
-				 * to release the rest of the pages in the upl without modifying
-				 * there state and mark the failed page in error
+			if (upl_get_internal_vectorupl(upl))
+				panic("Vector UPLs should not take this code-path\n");
+		        /*
+			 * we're writing into a 'hole'
+			 */
+			if (flags & CL_PAGEOUT) {
+			        /*
+				 * if we got here via cluster_pageout 
+				 * then just error the request and return
+				 * the 'hole' should already have been covered
 				 */
-				ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES);
-				ubc_upl_abort(upl, 0);
-
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
-					     upl, 0, 0, retval, 0);
+		        	error = EINVAL;
 				break;
 			}
-		}
-		if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
-		        /* 
-			 * the last offset we're writing to in this upl does not end on a page
-			 * boundary... if it's not beyond the old EOF, then we'll also need to
-			 * pre-read this page in if it isn't already valid
+			/*
+			 * we can get here if the cluster code happens to 
+			 * pick up a page that was dirtied via mmap vs
+			 * a 'write' and the page targets a 'hole'...
+			 * i.e. the writes to the cluster were sparse
+			 * and the file was being written for the first time
+			 *
+			 * we can also get here if the filesystem supports
+			 * 'holes' that are less than PAGE_SIZE.... because
+			 * we can't know if the range in the page that covers
+			 * the 'hole' has been dirtied via an mmap or not,
+			 * we have to assume the worst and try to push the
+			 * entire page to storage.
+			 *
+			 * Try paging out the page individually before
+			 * giving up entirely and dumping it (the pageout
+			 * path will insure that the zero extent accounting
+			 * has been taken care of before we get back into cluster_io)
+			 *
+			 * go direct to vnode_pageout so that we don't have to
+			 * unbusy the page from the UPL... we used to do this
+			 * so that we could call ubc_msync, but that results
+			 * in a potential deadlock if someone else races us to acquire
+			 * that page and wins and in addition needs one of the pages
+			 * we're continuing to hold in the UPL
 			 */
-		        upl_offset = upl_size - PAGE_SIZE;
+			pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
 
-		        if ((upl_f_offset + start_offset + io_size) < oldEOF &&
-			    !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
-			        int   read_size;
+			if ( !(flags & CL_ASYNC))
+			        pageout_flags |= UPL_IOSYNC;
+			if ( !(flags & CL_COMMIT))
+			        pageout_flags |= UPL_NOCOMMIT;
 
-				read_size = PAGE_SIZE;
+			if (cbp_head) {
+				buf_t prev_cbp;
+				int   bytes_in_last_page;
 
-				if ((upl_f_offset + upl_offset + read_size) > newEOF) {
-				        read_size = newEOF - (upl_f_offset + upl_offset);
-					read_size = (read_size + (devblocksize - 1)) & ~(devblocksize - 1);
-				}
-			        retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
-						    CL_READ, (struct buf *)0);
-				if (retval) {
+				/*
+				 * first we have to wait for the the current outstanding I/Os
+				 * to complete... EOT hasn't been set yet on this transaction
+				 * so the pages won't be released
+				 */
+				cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
+
+				bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK;
+				for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
+					bytes_in_last_page += cbp->b_bcount;
+				bytes_in_last_page &= PAGE_MASK;
+				
+				while (bytes_in_last_page) {
 					/*
-					 * we had an error during the read which causes us to abort
-					 * the current cluster_write request... before we do, we
-					 * need to release the rest of the pages in the upl without
-					 * modifying there state and mark the failed page in error
+					 * we've got a transcation that
+					 * includes the page we're about to push out through vnode_pageout...
+					 * find the bp's in the list which intersect this page and either
+					 * remove them entirely from the transaction (there could be multiple bp's), or
+					 * round it's iosize down to the page boundary (there can only be one)...
+					 *
+					 * find the last bp in the list and act on it
 					 */
-					ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE,
-							UPL_ABORT_DUMP_PAGES);
-					ubc_upl_abort(upl, 0);
-
-					KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
-						     upl, 0, 0, retval, 0);
-					break;
-				}
-			}
-		}
-		if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
-		        panic("cluster_write: ubc_upl_map failed\n");
-		xfer_resid = io_size;
-		io_offset = start_offset;
-
-		while (zero_cnt && xfer_resid) {
+					for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
+						prev_cbp = cbp;
 
-		        if (zero_cnt < (long long)xfer_resid)
-			        bytes_to_zero = zero_cnt;
-			else
-			        bytes_to_zero = xfer_resid;
+					if (bytes_in_last_page >= cbp->b_bcount) {
+						/*
+						 * this buf no longer has any I/O associated with it
+						 */
+						bytes_in_last_page -= cbp->b_bcount;
+						cbp->b_bcount = 0;
 
-		        if ( !(flags & IO_NOZEROVALID)) {
-				bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
+						free_io_buf(cbp);
 
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
-					     (int)upl_f_offset + io_offset, bytes_to_zero,
-					     (int)zero_cnt, xfer_resid, 0);
-			} else {
-			        bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
+						if (cbp == cbp_head) {
+							assert(bytes_in_last_page == 0);
+							/*
+							 * the buf we just freed was the only buf in
+							 * this transaction... so there's no I/O to do
+							 */
+							cbp_head = NULL;
+							cbp_tail = NULL;
+						} else {
+							/*
+							 * remove the buf we just freed from
+							 * the transaction list
+							 */
+							prev_cbp->b_trans_next = NULL;
+							cbp_tail = prev_cbp;
+						}
+					} else {
+						/*
+						 * this is the last bp that has I/O
+						 * intersecting the page of interest
+						 * only some of the I/O is in the intersection
+						 * so clip the size but keep it in the transaction list
+						 */
+						cbp->b_bcount -= bytes_in_last_page;
+						cbp_tail = cbp;
+						bytes_in_last_page = 0;
+					}
+				}
+				if (cbp_head) {
+				        /*
+					 * there was more to the current transaction
+					 * than just the page we are pushing out via vnode_pageout...
+					 * mark it as finished and complete it... we've already
+					 * waited for the I/Os to complete above in the call to cluster_wait_IO
+					 */
+				        cluster_EOT(cbp_head, cbp_tail, 0);
 
-				if ( !upl_valid_page(pl, (int)(zero_off / PAGE_SIZE_64))) {
-				        bzero((caddr_t)(io_address + io_offset), bytes_to_zero); 
+					cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
 
-					KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
-						     (int)upl_f_offset + io_offset, bytes_to_zero,
-						     (int)zero_cnt, xfer_resid, 0);
+					trans_count = 0;
 				}
 			}
-			xfer_resid -= bytes_to_zero;
-			zero_cnt   -= bytes_to_zero;
-			zero_off   += bytes_to_zero;
-			io_offset  += bytes_to_zero;
-		}
-		if (xfer_resid && uio_resid) {
-			bytes_to_move = min(uio_resid, xfer_resid);
-
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 42)) | DBG_FUNC_NONE,
-				     (int)uio->uio_offset, bytes_to_move, uio_resid, xfer_resid, 0);
+			if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
+			        error = EINVAL;
+			}
+			e_offset = round_page_64(f_offset + 1);
+			io_size = e_offset - f_offset;
 
-			retval = uiomove((caddr_t)(io_address + io_offset), bytes_to_move, uio);
+			f_offset   += io_size;
+			upl_offset += io_size;
 
-			if (retval) {
-			        if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
-				        panic("cluster_write: kernel_upl_unmap failed\n");
-			        ubc_upl_abort(upl, UPL_ABORT_DUMP_PAGES);
+			if (size >= io_size)
+			        size -= io_size;
+			else
+			        size = 0;
+			/*
+			 * keep track of how much of the original request
+			 * that we've actually completed... non_rounded_size
+			 * may go negative due to us rounding the request
+			 * to a page size multiple (i.e.  size > non_rounded_size)
+			 */
+			non_rounded_size -= io_size;
 
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
-					     upl, 0, 0, retval, 0);
-			} else {
-			        uio_resid  -= bytes_to_move;
-				xfer_resid -= bytes_to_move;
-				io_offset  += bytes_to_move;
+			if (non_rounded_size <= 0) {
+			        /*
+				 * we've transferred all of the data in the original
+				 * request, but we were unable to complete the tail
+				 * of the last page because the file didn't have
+				 * an allocation to back that portion... this is ok.
+				 */
+			        size = 0;
 			}
-		}
-		while (xfer_resid && zero_cnt1 && retval == 0) {
-
-		        if (zero_cnt1 < (long long)xfer_resid)
-			        bytes_to_zero = zero_cnt1;
-			else
-			        bytes_to_zero = xfer_resid;
-
-		        if ( !(flags & IO_NOZEROVALID)) {
-			        bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
-					     (int)upl_f_offset + io_offset,
-					     bytes_to_zero, (int)zero_cnt1, xfer_resid, 0);
-			} else {
-			        bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off1 & PAGE_MASK_64));
-				if ( !upl_valid_page(pl, (int)(zero_off1 / PAGE_SIZE_64))) {
-				        bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
-					KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
-						     (int)upl_f_offset + io_offset,
-						     bytes_to_zero, (int)zero_cnt1, xfer_resid, 0);
-				}
+			if (error) {
+				if (size == 0)
+					flags &= ~CL_COMMIT;
+			 	break;
 			}
-			xfer_resid -= bytes_to_zero;
-			zero_cnt1  -= bytes_to_zero;
-			zero_off1  += bytes_to_zero;
-			io_offset  += bytes_to_zero;
+			continue;
 		}
+		lblkno = (daddr64_t)(f_offset / 0x1000);
+		/*
+		 * we have now figured out how much I/O we can do - this is in 'io_size'
+		 * pg_offset is the starting point in the first page for the I/O
+		 * pg_count is the number of full and partial pages that 'io_size' encompasses
+		 */
+		pg_offset = upl_offset & PAGE_MASK;
 
-		if (retval == 0) {
-		        int must_push;
-			int can_delay;
+		if (flags & CL_DEV_MEMORY) {
+			/*
+			 * treat physical requests as one 'giant' page
+			 */
+			pg_count = 1;
+		} else
+		        pg_count  = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
 
-		        io_size += start_offset;
+		if ((flags & CL_READ) && blkno == -1) {
+			vm_offset_t  commit_offset;
+		        int bytes_to_zero;
+			int complete_transaction_now = 0;
 
-			if ((upl_f_offset + io_size) == newEOF && io_size < upl_size) {
+		        /*
+			 * if we're reading and blkno == -1, then we've got a
+			 * 'hole' in the file that we need to deal with by zeroing
+			 * out the affected area in the upl
+			 */
+			if (io_size >= (u_int)non_rounded_size) {
 			        /*
-				 * if we're extending the file with this write
-				 * we'll zero fill the rest of the page so that
-				 * if the file gets extended again in such a way as to leave a
-				 * hole starting at this EOF, we'll have zero's in the correct spot
+				 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
+				 * than 'zero_offset' will be non-zero
+				 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
+				 * (indicated by the io_size finishing off the I/O request for this UPL)
+				 * than we're not going to issue an I/O for the
+				 * last page in this upl... we need to zero both the hole and the tail
+				 * of the page beyond the EOF, since the delayed zero-fill won't kick in 
 				 */
-			        bzero((caddr_t)(io_address + io_size), upl_size - io_size);
+				bytes_to_zero = non_rounded_size;
+				if (!(flags & CL_NOZERO))
+					bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
 
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
-					     (int)upl_f_offset + io_size,
-					     upl_size - io_size, 0, 0, 0);
-			}
-		        if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
-			        panic("cluster_write: kernel_upl_unmap failed\n");
-
-			io_size_before_rounding = io_size;
-
-			if (io_size & (devblocksize - 1))
-			        io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
+				zero_offset = 0;
+			} else
+			        bytes_to_zero = io_size;
 
-			must_push = 0;
-			can_delay = 0;
+			pg_count = 0;
 
-			if (vp->v_clen) {
-			        int newsize;
+			cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
+			  
+			if (cbp_head) {
+			        int	pg_resid;
 
 			        /*
-				 * we have an existing cluster... see if this write will extend it nicely
+				 * if there is a current I/O chain pending
+				 * then the first page of the group we just zero'd
+				 * will be handled by the I/O completion if the zero
+				 * fill started in the middle of the page
 				 */
-			        if (start_blkno >= vp->v_cstart) {
-				        if (last_blkno <= (vp->v_cstart + vp->v_clen)) {
-					        /*
-						 * we have a write that fits entirely
-						 * within the existing cluster limits
-						 */
-					        if (last_blkno >= vp->v_lastw) {
-						        /*
-							 * if we're extending the dirty region within the cluster
-							 * we need to update the cluster info... we check for blkno
-							 * equality because we may be extending the file with a 
-							 * partial write.... this in turn changes our idea of how
-							 * much data to write out (v_ciosiz) for the last page
-							 */
-						        vp->v_lastw = last_blkno;
-							newsize = io_size + ((start_blkno - vp->v_cstart) * PAGE_SIZE);
+			        commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
 
-							if (newsize > vp->v_ciosiz)
-							        vp->v_ciosiz = newsize;
-						}
-						can_delay = 1;
-						goto finish_io;
-					}
-					if (start_blkno < (vp->v_cstart + vp->v_clen)) {
-					        /*
-						 * we have a write that starts in the middle of the current cluster
-						 * but extends beyond the cluster's limit
-						 * we'll clip the current cluster if we actually
-						 * overlap with the new write and then push it out
-						 * and start a new cluster with the current write
-						 */
-						 if (vp->v_lastw > start_blkno) {
-						        vp->v_lastw = start_blkno;
-							vp->v_ciosiz = (vp->v_lastw - vp->v_cstart) * PAGE_SIZE;
-						 }
-					}
-					/*
-					 * we also get here for the case where the current write starts
-					 * beyond the limit of the existing cluster
+				pg_resid = commit_offset - upl_offset;
+					
+				if (bytes_to_zero >= pg_resid) {
+				        /*
+					 * the last page of the current I/O 
+					 * has been completed...
+					 * compute the number of fully zero'd 
+					 * pages that are beyond it
+					 * plus the last page if its partial
+					 * and we have no more I/O to issue...
+					 * otherwise a partial page is left
+					 * to begin the next I/O
 					 */
-					must_push = 1;
-					goto check_delay;
+				        if ((int)io_size >= non_rounded_size)
+					        pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
+					else
+					        pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
+					
+					complete_transaction_now = 1;
 				}
-				/*
-				 * the current write starts in front of the current cluster
+			} else {
+			        /*
+				 * no pending I/O to deal with
+				 * so, commit all of the fully zero'd pages
+				 * plus the last page if its partial
+				 * and we have no more I/O to issue...
+				 * otherwise a partial page is left
+				 * to begin the next I/O
 				 */
-				if (last_blkno > vp->v_cstart) {
-				        /*
-					 * the current write extends into the existing cluster
-					 */
-				        if ((vp->v_lastw - start_blkno) > vp->v_clen) {
-					        /*
-						 * if we were to combine this write with the current cluster
-						 * we would exceed the cluster size limit....
-						 * clip the current cluster by moving the start position
-						 * to where the current write ends, and then push it
-						 */
-					        vp->v_ciosiz -= (last_blkno - vp->v_cstart) * PAGE_SIZE;
-					        vp->v_cstart = last_blkno;
+			        if ((int)io_size >= non_rounded_size)
+				        pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
+				else
+				        pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
 
-						/*
-						 * round up the io_size to the nearest page size
-						 * since we've coalesced with at least 1 pre-existing
-						 * page in the current cluster... this write may have ended in the
-						 * middle of the page which would cause io_size to give us an
-						 * inaccurate view of how much I/O we actually need to do
-						 */
-						io_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+				commit_offset = upl_offset & ~PAGE_MASK;
+			}
 
-						must_push = 1;
-						goto check_delay;
-					}
-					/*
-					 * we can coalesce the current write with the existing cluster
-					 * adjust the cluster info to reflect this
-					 */
-					if (last_blkno > vp->v_lastw) {
-					        /*
-						 * the current write completey overlaps
-						 * the existing cluster
-						 */
-					        vp->v_lastw = last_blkno;
-						vp->v_ciosiz = io_size;
-					} else {
-					        vp->v_ciosiz += (vp->v_cstart - start_blkno) * PAGE_SIZE;
+			// Associated UPL is currently only used in the direct write path
+			assert(!upl_associated_upl(upl));
 
-						if (io_size > vp->v_ciosiz)
-						        vp->v_ciosiz = io_size;
-					}
-					vp->v_cstart = start_blkno;
-					can_delay = 1;
-					goto finish_io;
-				}
-				/*
-				 * this I/O range is entirely in front of the current cluster
-				 * so we need to push the current cluster out before beginning
-				 * a new one
+			if ( (flags & CL_COMMIT) && pg_count) {
+			        ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
+						     UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
+			}
+			upl_offset += io_size;
+			f_offset   += io_size;
+			size       -= io_size;
+
+			/*
+			 * keep track of how much of the original request
+			 * that we've actually completed... non_rounded_size
+			 * may go negative due to us rounding the request
+			 * to a page size multiple (i.e.  size > non_rounded_size)
+			 */
+			non_rounded_size -= io_size;
+
+			if (non_rounded_size <= 0) {
+			        /*
+				 * we've transferred all of the data in the original
+				 * request, but we were unable to complete the tail
+				 * of the last page because the file didn't have
+				 * an allocation to back that portion... this is ok.
 				 */
-				must_push = 1;
+			        size = 0;
 			}
-check_delay:
-			if (must_push)
-			        cluster_push(vp);
+			if (cbp_head && (complete_transaction_now || size == 0))  {
+			        cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
 
-			if (io_size_before_rounding < (MAX_UPL_TRANSFER * PAGE_SIZE) && !(flags & IO_SYNC)) {
-			        vp->v_clen = MAX_UPL_TRANSFER;
-				vp->v_cstart = start_blkno;
-				vp->v_lastw  = last_blkno;
-				vp->v_ciosiz = io_size;
-				
-			        can_delay = 1;
+				cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
+
+				cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
+
+				trans_count = 0;
 			}
-finish_io:
-			if (can_delay) {
-			        ubc_upl_commit_range(upl, 0, upl_size,
-						     UPL_COMMIT_SET_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
-				continue;
+			continue;
+		}
+		if (pg_count > max_vectors) {
+		        if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
+			        io_size = PAGE_SIZE - pg_offset;
+				pg_count = 1;
+			} else {
+			        io_size -= (pg_count - max_vectors) * PAGE_SIZE;
+			        pg_count = max_vectors;
 			}
-			if (flags & IO_SYNC)
-			        io_flags = CL_COMMIT | CL_AGE;
-			else
-			        io_flags = CL_COMMIT | CL_AGE | CL_ASYNC;
+		}
+		/*
+		 * If the transaction is going to reach the maximum number of
+		 * desired elements, truncate the i/o to the nearest page so
+		 * that the actual i/o is initiated after this buffer is
+		 * created and added to the i/o chain.
+		 *
+		 * I/O directed to physically contiguous memory 
+		 * doesn't have a requirement to make sure we 'fill' a page
+		 */
+		if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
+				((upl_offset + io_size) & PAGE_MASK)) {
+			vm_offset_t aligned_ofs;
+
+			aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
+			/*
+			 * If the io_size does not actually finish off even a
+			 * single page we have to keep adding buffers to the
+			 * transaction despite having reached the desired limit.
+			 *
+			 * Eventually we get here with the page being finished
+			 * off (and exceeded) and then we truncate the size of
+			 * this i/o request so that it is page aligned so that
+			 * we can finally issue the i/o on the transaction.
+			 */
+			if (aligned_ofs > upl_offset) {
+				io_size = aligned_ofs - upl_offset;
+				pg_count--;
+			}
+		}
+
+		if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
+		        /*
+			 * if we're not targeting a virtual device i.e. a disk image
+			 * it's safe to dip into the reserve pool since real devices
+			 * can complete this I/O request without requiring additional
+			 * bufs from the alloc_io_buf pool
+			 */
+			priv = 1;
+		else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
+		        /*
+			 * Throttle the speculative IO
+			 */
+			priv = 0;
+		else
+			priv = 1;
+
+		cbp = alloc_io_buf(vp, priv);
 
-			if (vp->v_flag & VNOCACHE_DATA)
-			        io_flags |= CL_DUMP;
+		if (flags & CL_PAGEOUT) {
+		        u_int i;
 
-			while (vp->v_numoutput >= ASYNC_THROTTLE) {
-			        vp->v_flag |= VTHROTTLED;
-				tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_write", 0);
-			}	
-			retval = cluster_io(vp, upl, 0, upl_f_offset, io_size,
-					    io_flags, (struct buf *)0);
+			/*
+			 * since blocks are in offsets of 0x1000, scale
+			 * iteration to (PAGE_SIZE * pg_count) of blks.
+			 */
+			for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) {
+				if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
+					panic("BUSY bp found in cluster_io");
+			}
 		}
-	}
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
-		     retval, 0, 0, 0, 0);
+		if (flags & CL_ASYNC) {
+		        if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
+			        panic("buf_setcallback failed\n");
+		}
+		cbp->b_cliodone = (void *)callback;
+		cbp->b_flags |= io_flags;
+		if (flags & CL_NOCACHE)
+			cbp->b_attr.ba_flags |= BA_NOCACHE;
 
-	return (retval);
-}
+		cbp->b_lblkno = lblkno;
+		cbp->b_blkno  = blkno;
+		cbp->b_bcount = io_size;
 
-cluster_read(vp, uio, filesize, devblocksize, flags)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t         filesize;
-	int           devblocksize;
-	int           flags;
-{
-	int           prev_resid;
-	int           clip_size;
-	off_t         max_io_size;
-	struct iovec  *iov;
-	vm_offset_t   upl_offset;
-	int           upl_size;
-	int           pages_in_pl;
-	upl_page_info_t *pl;
-	int           upl_flags;
-	upl_t         upl;
-	int           retval = 0;
+		if (buf_setupl(cbp, upl, upl_offset))
+		        panic("buf_setupl failed\n");
+#if CONFIG_IOSCHED
+		upl_set_blkno(upl, upl_offset, io_size, blkno);
+#endif
+		cbp->b_trans_next = (buf_t)NULL;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
-		     (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
+		if ((cbp->b_iostate = (void *)iostate))
+		        /*
+			 * caller wants to track the state of this
+			 * io... bump the amount issued against this stream
+			 */
+		        iostate->io_issued += io_size;
 
-	/*
-	 * We set a threshhold of 4 pages to decide if the nocopy
-	 * read loop is worth the trouble...
-	 */
+		if (flags & CL_READ) {
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
+				     (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
+		}
+		else {
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
+				     (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
+		}
 
-	if (!((vp->v_flag & VNOCACHE_DATA) && (uio->uio_segflg == UIO_USERSPACE)))
-	  {
-	    retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
-	    KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
-			 (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
-	    return(retval);
-	  }
-
-	while (uio->uio_resid && uio->uio_offset < filesize && retval == 0)
-	  {
-	    /* we know we have a resid, so this is safe */
-	    iov = uio->uio_iov;
-	    while (iov->iov_len == 0) {
-	      uio->uio_iov++;
-	      uio->uio_iovcnt--;
-	      iov = uio->uio_iov;
-	    }
-
-	    /*
-	     * We check every vector target and if it is physically 
-	     * contiguous space, we skip the sanity checks.
-	     */
-
-            upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK;
-            upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK;
-            pages_in_pl = 0;
-            upl_flags = UPL_QUERY_OBJECT_TYPE;
-            if((vm_map_get_upl(current_map(),
-			       (vm_offset_t)iov->iov_base & ~PAGE_MASK,
-                               &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS)
-              {
-		/*
-		 * the user app must have passed in an invalid address
-		 */
-		return (EFAULT);
-              }
+		if (cbp_head) {
+		        cbp_tail->b_trans_next = cbp;
+			cbp_tail = cbp;
+		} else {
+		        cbp_head = cbp;
+			cbp_tail = cbp;
+
+			if ( (cbp_head->b_real_bp = real_bp) )
+				real_bp = (buf_t)NULL;
+		}
+		*(buf_t *)(&cbp->b_trans_head) = cbp_head;
+
+		trans_count++;
 
-	    if (upl_flags & UPL_PHYS_CONTIG)
-	      {
-		retval = cluster_phys_read(vp, uio, filesize);
-	      }
-	    else if (uio->uio_resid < 4 * PAGE_SIZE)
-	      {
+		upl_offset += io_size;
+		f_offset   += io_size;
+		size       -= io_size;
 		/*
-		 * We set a threshhold of 4 pages to decide if the nocopy
-		 * read loop is worth the trouble...
+		 * keep track of how much of the original request
+		 * that we've actually completed... non_rounded_size
+		 * may go negative due to us rounding the request
+		 * to a page size multiple (i.e.  size > non_rounded_size)
 		 */
-		retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
-			     (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
-		return(retval);
-	      }
-	    else if (uio->uio_offset & PAGE_MASK_64)
-	      {
-		/* Bring the file offset read up to a pagesize boundary */
-		clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64));
-		if (uio->uio_resid < clip_size)
-		  clip_size = uio->uio_resid;
-		/* 
-		 * Fake the resid going into the cluster_read_x call
-		 * and restore it on the way out.
-		 */
-		prev_resid = uio->uio_resid;
-		uio->uio_resid = clip_size;
-		retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
-		uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-	      }
-	    else if ((int)iov->iov_base & PAGE_MASK_64)
-	      {
-		clip_size = iov->iov_len;
-		prev_resid = uio->uio_resid;
-		uio->uio_resid = clip_size;
-		retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
-		uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-	      }
-	    else
-	      {
-		/* 
-		 * If we come in here, we know the offset into
-		 * the file is on a pagesize boundary
-		 */
-
-		max_io_size = filesize - uio->uio_offset;
-		clip_size = uio->uio_resid;
-		if (iov->iov_len < clip_size)
-		  clip_size = iov->iov_len;
-		if (max_io_size < clip_size)
-		  clip_size = (int)max_io_size;
-
-		if (clip_size < PAGE_SIZE)
-		  {
-		    /*
-		     * Take care of the tail end of the read in this vector.
-		     */
-		    prev_resid = uio->uio_resid;
-		    uio->uio_resid = clip_size;
-		    retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
-		    uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-		  }
-		else
-		  {
-		    /* round clip_size down to a multiple of pagesize */
-		    clip_size = clip_size & ~(PAGE_MASK);
-		    prev_resid = uio->uio_resid;
-		    uio->uio_resid = clip_size;
-		    retval = cluster_nocopy_read(vp, uio, filesize, devblocksize, flags);
-		    if ((retval==0) && uio->uio_resid)
-		      retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
-		    uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
-		  }
-	      } /* end else */
-	  } /* end while */
-
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
-		     (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
+		non_rounded_size -= io_size;
 
-	return(retval);
-}
+		if (non_rounded_size <= 0) {
+		        /*
+			 * we've transferred all of the data in the original
+			 * request, but we were unable to complete the tail
+			 * of the last page because the file didn't have
+			 * an allocation to back that portion... this is ok.
+			 */
+		        size = 0;
+		}
+		if (size == 0) {
+		        /*
+			 * we have no more I/O to issue, so go
+			 * finish the final transaction
+			 */
+		        need_EOT = TRUE;
+		} else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
+			    ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
+		        /*
+			 * I/O directed to physically contiguous memory...
+			 * which doesn't have a requirement to make sure we 'fill' a page
+			 * or... 
+			 * the current I/O we've prepared fully
+			 * completes the last page in this request
+			 * and ...
+			 * it's either an ASYNC request or 
+			 * we've already accumulated more than 8 I/O's into
+			 * this transaction so mark it as complete so that
+			 * it can finish asynchronously or via the cluster_complete_transaction
+			 * below if the request is synchronous
+			 */
+		        need_EOT = TRUE;
+		}
+		if (need_EOT == TRUE)
+		        cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
 
-static
-cluster_read_x(vp, uio, filesize, devblocksize, flags)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t         filesize;
-	int           devblocksize;
-	int           flags;
-{
-	upl_page_info_t *pl;
-	upl_t            upl;
-	vm_offset_t      upl_offset;
-	int              upl_size;
-	off_t 	         upl_f_offset;
-	int		 start_offset;
-	int	         start_pg;
-	int		 last_pg;
-	int              uio_last;
-	int              pages_in_upl;
-	off_t            max_size;
-	int              io_size;
-	vm_offset_t      io_address;
-	kern_return_t    kret;
-	int              segflg;
-	int              error  = 0;
-	int              retval = 0;
-	int              b_lblkno;
-	int              e_lblkno;
+		if (flags & CL_THROTTLE)
+		        (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
 
-	b_lblkno = (int)(uio->uio_offset / PAGE_SIZE_64);
+		if ( !(io_flags & B_READ))
+		        vnode_startwrite(vp);
+				
+		if (flags & CL_RAW_ENCRYPTED) {
+			/* 
+			 * User requested raw encrypted bytes.
+			 * Twiddle the bit in the ba_flags for the buffer
+			 */
+			cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
+		}
+		
+		(void) VNOP_STRATEGY(cbp);
 
-	while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) {
-		/*
-		 * compute the size of the upl needed to encompass
-		 * the requested read... limit each call to cluster_io
-		 * to the maximum UPL size... cluster_io will clip if
-		 * this exceeds the maximum io_size for the device,
-		 * make sure to account for 
-		 * a starting offset that's not page aligned
-		 */
-		start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
-		upl_f_offset = uio->uio_offset - (off_t)start_offset;
-		max_size     = filesize - uio->uio_offset;
+		if (need_EOT == TRUE) {
+		        if ( !(flags & CL_ASYNC))
+			        cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
 
-		if ((off_t)((unsigned int)uio->uio_resid) < max_size)
-		        io_size = uio->uio_resid;
-		else
-		        io_size = max_size;
-#ifdef ppc
-		if (uio->uio_segflg == UIO_USERSPACE && !(vp->v_flag & VNOCACHE_DATA)) {
-		        segflg = uio->uio_segflg;
+			need_EOT = FALSE;
+			trans_count = 0;
+			cbp_head = NULL;
+		}
+        }
+	if (error) {
+		int abort_size;
 
-			uio->uio_segflg = UIO_PHYS_USERSPACE;
+		io_size = 0;
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
-				     (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
+		if (cbp_head) {
+			/*
+			 * Wait until all of the outstanding I/O
+			 * for this partial transaction has completed
+			 */
+			cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
 
-			while (io_size && retval == 0) {
-			        int         xsize;
-				vm_offset_t paddr;
+			/*
+			 * Rewind the upl offset to the beginning of the
+			 * transaction.
+			 */
+			upl_offset = cbp_head->b_uploffset;
+		}
 
-				if (ubc_page_op(vp,
-						upl_f_offset,
-						UPL_POP_SET | UPL_POP_BUSY,
-						&paddr, 0) != KERN_SUCCESS)
-				        break;
+		if (ISSET(flags, CL_COMMIT)) {
+			cluster_handle_associated_upl(iostate, upl, upl_offset,
+										  upl_end_offset - upl_offset);
+		}
 
-				xsize = PAGE_SIZE - start_offset;
- 			
-				if (xsize > io_size)
-				        xsize = io_size;
+		// Free all the IO buffers in this transaction
+		for (cbp = cbp_head; cbp;) {
+			buf_t	cbp_next;
+ 
+			size       += cbp->b_bcount;
+			io_size    += cbp->b_bcount;
 
-				retval = uiomove((caddr_t)(paddr + start_offset), xsize, uio);
+			cbp_next = cbp->b_trans_next;
+			free_io_buf(cbp);
+			cbp = cbp_next;
+		}
 
-				ubc_page_op(vp, upl_f_offset,
-					    UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
+		if (iostate) {
+		        int need_wakeup = 0;
 
-				io_size     -= xsize;
-				start_offset = (int)
-					(uio->uio_offset & PAGE_MASK_64);
-				upl_f_offset = uio->uio_offset - start_offset;
-			}
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
-				     (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
+		        /*
+			 * update the error condition for this stream
+			 * since we never really issued the io
+			 * just go ahead and adjust it back
+			 */
+		        lck_mtx_lock_spin(&iostate->io_mtxp);
 
-			uio->uio_segflg = segflg;
-			
-			if (retval)
-			        break;
+		        if (iostate->io_error == 0)
+			        iostate->io_error = error;
+			iostate->io_issued -= io_size;
 
-			if (io_size == 0) {
+			if (iostate->io_wanted) {
 			        /*
-				 * we're already finished with this read request
-				 * let's see if we should do a read-ahead
+				 * someone is waiting for the state of
+				 * this io stream to change
 				 */
-			        e_lblkno = (int)
-					((uio->uio_offset - 1) / PAGE_SIZE_64);
-
-			        if (!(vp->v_flag & VRAOFF))
-				        /*
-					 * let's try to read ahead if we're in 
-					 * a sequential access pattern
-					 */
-				        cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
-				vp->v_lastr = e_lblkno;
-
-			        break;
+			        iostate->io_wanted = 0;
+				need_wakeup = 1;
 			}
-			max_size = filesize - uio->uio_offset;
+		        lck_mtx_unlock(&iostate->io_mtxp);
+
+			if (need_wakeup)
+			        wakeup((caddr_t)&iostate->io_wanted);
 		}
-#endif
-		upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
-	        if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-		        upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
-		pages_in_upl = upl_size / PAGE_SIZE;
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
-			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+		if (flags & CL_COMMIT) {
+		        int	upl_flags;
 
-		kret = ubc_create_upl(vp, 
-						upl_f_offset,
-						upl_size,
-						&upl,
-						&pl,
-						UPL_FLAGS_NONE);
-		if (kret != KERN_SUCCESS)
-			panic("cluster_read: failed to get pagelist");
+			pg_offset  = upl_offset & PAGE_MASK;
+			abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
-			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+			upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
+			
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
+				     upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
+		}
+		if (retval == 0)
+		        retval = error;
+	} else if (cbp_head)
+			panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
 
-		/*
-		 * scan from the beginning of the upl looking for the first
-		 * non-valid page.... this will become the first page in
-		 * the request we're going to make to 'cluster_io'... if all
-		 * of the pages are valid, we won't call through to 'cluster_io'
+	if (real_bp) {
+	        /*
+		 * can get here if we either encountered an error
+		 * or we completely zero-filled the request and
+		 * no I/O was issued
 		 */
-		for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
-			if (!upl_valid_page(pl, start_pg))
-				break;
+		if (error) {
+			real_bp->b_flags |= B_ERROR;
+			real_bp->b_error = error;
 		}
+		buf_biodone(real_bp);
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
 
-		/*
-		 * scan from the starting invalid page looking for a valid
-		 * page before the end of the upl is reached, if we 
-		 * find one, then it will be the last page of the request to
-		 * 'cluster_io'
-		 */
-		for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
-			if (upl_valid_page(pl, last_pg))
-				break;
-		}
+	return (retval);
+}
 
-		if (start_pg < last_pg) {		
-		        /*
-			 * we found a range of 'invalid' pages that must be filled
-			 * if the last page in this range is the last page of the file
-			 * we may have to clip the size of it to keep from reading past
-			 * the end of the last physical block associated with the file
-			 */
-			upl_offset = start_pg * PAGE_SIZE;
-			io_size    = (last_pg - start_pg) * PAGE_SIZE;
+#define reset_vector_run_state()										\
+	issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;	
 
-			if ((upl_f_offset + upl_offset + io_size) > filesize) {
-			        io_size = filesize - (upl_f_offset + upl_offset);
-				io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
-			}
-			/*
-			 * issue a synchronous read to cluster_io
-			 */
+static int
+vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
+	   int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	vector_upl_set_pagelist(vector_upl);
 
-			error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
-					   io_size, CL_READ, (struct buf *)0);
-		}
-		if (error == 0) {
-		        /*
-			 * if the read completed successfully, or there was no I/O request
-			 * issued, than map the upl into kernel address space and
-			 * move the data into user land.... we'll first add on any 'valid'
-			 * pages that were present in the upl when we acquired it.
-			 */
-			u_int  val_size;
-			u_int  size_of_prefetch;
+	if(io_flag & CL_READ) {	
+		if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
+       			io_flag &= ~CL_PRESERVE; /*don't zero fill*/
+		else
+       			io_flag |= CL_PRESERVE; /*zero fill*/
+	}	
+	return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
 
-		        for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
-			        if (!upl_valid_page(pl, uio_last))
-				        break;
-			}
-			/*
-			 * compute size to transfer this round,  if uio->uio_resid is
-			 * still non-zero after this uiomove, we'll loop around and
-			 * set up for another I/O.
-			 */
-			val_size = (uio_last * PAGE_SIZE) - start_offset;
-		
-			if (max_size < val_size)
-			        val_size = max_size;
+}
 
-			if (uio->uio_resid < val_size)
-			        val_size = uio->uio_resid;
+static int
+cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
+{
+	int           pages_in_prefetch;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
+		     (int)f_offset, size, (int)filesize, 0, 0);
 
-			e_lblkno = (int)((uio->uio_offset + ((off_t)val_size - 1)) / PAGE_SIZE_64);
+	if (f_offset >= filesize) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
+			     (int)f_offset, 0, 0, 0, 0);
+	        return(0);
+	}
+        if ((off_t)size > (filesize - f_offset))
+                size = filesize - f_offset;
+	pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
 
-			if (size_of_prefetch = (uio->uio_resid - val_size)) {
-			        /*
-				 * if there's still I/O left to do for this request, then issue a
-				 * pre-fetch I/O... the I/O wait time will overlap
-				 * with the copying of the data
-				 */
-     				cluster_rd_prefetch(vp, uio->uio_offset + val_size, size_of_prefetch, filesize, devblocksize);
-			} else {
-			        if (!(vp->v_flag & VRAOFF) && !(vp->v_flag & VNOCACHE_DATA))
-				        /*
-					 * let's try to read ahead if we're in 
-					 * a sequential access pattern
-					 */
-				        cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
-				vp->v_lastr = e_lblkno;
-			}
-#ifdef ppc
-			if (uio->uio_segflg == UIO_USERSPACE) {
-				int       offset;
+	advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
 
-			        segflg = uio->uio_segflg;
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
+		     (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
 
-				uio->uio_segflg = UIO_PHYS_USERSPACE;
+	return (pages_in_prefetch);
+}
 
 
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
-					     (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
 
-				offset = start_offset;
+static void
+cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
+		   int bflag)
+{
+	daddr64_t	r_addr;
+	off_t		f_offset;
+	int		size_of_prefetch;
+	u_int		max_prefetch;
 
-				while (val_size && retval == 0) {
-	 				int   	  csize;
-					int       i;
-					caddr_t   paddr;
 
-					i = offset / PAGE_SIZE;
-					csize = min(PAGE_SIZE - start_offset, val_size);
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
+		     (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
 
-				        paddr = (caddr_t)upl_phys_page(pl, i) + start_offset;
+	if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+			     rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
+		return;
+	}
+	if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
+	        rap->cl_ralen = 0;
+		rap->cl_maxra = 0;
 
-					retval = uiomove(paddr, csize, uio);
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+			     rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
 
-					val_size    -= csize;
-					offset      += csize;
-					start_offset = offset & PAGE_MASK;
-				}
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
-					     (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
+		return;
+	}
+	max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
 
-				uio->uio_segflg = segflg;
-			} else
-#endif
-			{
-			        if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
-				        panic("cluster_read: ubc_upl_map() failed\n");
+	if (max_prefetch > speculative_prefetch_max)
+		max_prefetch = speculative_prefetch_max;
 
-				retval = uiomove((caddr_t)(io_address + start_offset), val_size, uio);
+	if (max_prefetch <= PAGE_SIZE) {
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+			     rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
+		return;
+	}
+	if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) {
+	        if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) {
 
-			        if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
-				        panic("cluster_read: ubc_upl_unmap() failed\n");
-			}
+		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+				     rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
+			return;
 		}
-		if (start_pg < last_pg) {
-		        /*
-			 * compute the range of pages that we actually issued an I/O for
-			 * and either commit them as valid if the I/O succeeded
-			 * or abort them if the I/O failed
-			 */
-		        io_size = (last_pg - start_pg) * PAGE_SIZE;
+	}
+	r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
+	f_offset = (off_t)(r_addr * PAGE_SIZE_64);
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
-				     upl, start_pg * PAGE_SIZE, io_size, error, 0);
+        size_of_prefetch = 0;
 
-			if (error || (vp->v_flag & VNOCACHE_DATA))
-			        ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
-						UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
-			else
-			        ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, 
-						UPL_COMMIT_CLEAR_DIRTY
-						| UPL_COMMIT_FREE_ON_EMPTY 
-						| UPL_COMMIT_INACTIVATE);
+	ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END,
-				     upl, start_pg * PAGE_SIZE, io_size, error, 0);
-		}
-		if ((last_pg - start_pg) < pages_in_upl) {
-		        int cur_pg;
-			int commit_flags;
+	if (size_of_prefetch) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+			     rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
+		return;
+	}
+	if (f_offset < filesize) {
+	        daddr64_t read_size;
 
-		        /*
-			 * the set of pages that we issued an I/O for did not encompass
-			 * the entire upl... so just release these without modifying
-			 * there state
-			 */
-			if (error)
-				ubc_upl_abort(upl, 0);
-			else {
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
-					     upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
+	        rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
 
-				if (start_pg) {
-					/*
-					 * we found some already valid pages at the beginning of
-					 * the upl commit these back to the inactive list with
-					 * reference cleared
-					 */
-					for (cur_pg = 0; cur_pg < start_pg; cur_pg++) {
-						commit_flags = UPL_COMMIT_FREE_ON_EMPTY 
-							           | UPL_COMMIT_INACTIVATE;
-						
-						if (upl_dirty_page(pl, cur_pg))
-							commit_flags |= UPL_COMMIT_SET_DIRTY;
-						
-						if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA))
-							ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE,
-								UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
-						else
-							ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, 
-								PAGE_SIZE, commit_flags);
-					}
-				}
-				if (last_pg < uio_last) {
-					/*
-					 * we found some already valid pages immediately after the
-					 * pages we issued I/O for, commit these back to the
-					 * inactive list with reference cleared
-					 */
-					for (cur_pg = last_pg; cur_pg < uio_last; cur_pg++) {
-						commit_flags =  UPL_COMMIT_FREE_ON_EMPTY 
-										| UPL_COMMIT_INACTIVATE;
-
-						if (upl_dirty_page(pl, cur_pg))
-							commit_flags |= UPL_COMMIT_SET_DIRTY;
-						
-						if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA))
-							ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE,
-								UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
-						else
-							ubc_upl_commit_range(upl, cur_pg * PAGE_SIZE, 
-								PAGE_SIZE, commit_flags);
-					}
-				}
-				if (uio_last < pages_in_upl) {
-					/*
-					 * there were some invalid pages beyond the valid pages
-					 * that we didn't issue an I/O for, just release them
-					 * unchanged
-					 */
-					ubc_upl_abort(upl, 0);
-				}
+		read_size = (extent->e_addr + 1) - extent->b_addr;
 
-				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END,
-					upl, -1, -1, 0, 0);
-			}
+		if (read_size > rap->cl_ralen) {
+		        if (read_size > max_prefetch / PAGE_SIZE)
+			        rap->cl_ralen = max_prefetch / PAGE_SIZE;
+			else
+			        rap->cl_ralen = read_size;
 		}
-		if (retval == 0)
-		        retval = error;
-	}
+		size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
 
-	return (retval);
+		if (size_of_prefetch)
+		        rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+		     rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
 }
 
-static
-cluster_nocopy_read(vp, uio, filesize, devblocksize, flags)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t         filesize;
-	int           devblocksize;
-	int           flags;
-{
-	upl_t            upl;
-	upl_page_info_t  *pl;
-	off_t 	         upl_f_offset;
-	vm_offset_t      upl_offset;
-	off_t            start_upl_f_offset;
-	off_t            max_io_size;
-	int              io_size;
-	int              upl_size;
-	int              upl_needed_size;
-	int              pages_in_pl;
-	vm_offset_t      paddr;
-	int              upl_flags;
-	kern_return_t    kret;
-	int              segflg;
-	struct iovec     *iov;
-	int              i;
-	int              force_data_sync;
-	int              error  = 0;
-	int              retval = 0;
-
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
-		     (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
-
-	/*
-	 * When we enter this routine, we know
-	 *  -- the offset into the file is on a pagesize boundary
-	 *  -- the resid is a page multiple
-	 *  -- the resid will not exceed iov_len
-	 */
 
-	iov = uio->uio_iov;
-	while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) {
+int
+cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
+		int size, off_t filesize, int flags)
+{
+        return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
 
-	  max_io_size = filesize - uio->uio_offset;
+}
 
-	  if (max_io_size < (off_t)((unsigned int)uio->uio_resid))
-	      io_size = max_io_size;
-	  else
-	      io_size = uio->uio_resid;
 
-	  /*
-	   * We don't come into this routine unless
-	   * UIO_USERSPACE is set.
-	   */
-	  segflg = uio->uio_segflg;
+int
+cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
+		int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	int           io_size;
+	int           rounded_size;
+        off_t         max_size;
+	int           local_flags;
 
-	  uio->uio_segflg = UIO_PHYS_USERSPACE;
+	local_flags = CL_PAGEOUT | CL_THROTTLE;
 
-	  /*
-	   * First look for pages already in the cache
-	   * and move them to user space.
-	   */
-	  while (io_size && (retval == 0)) {
-	    upl_f_offset = uio->uio_offset;
+	if ((flags & UPL_IOSYNC) == 0) 
+		local_flags |= CL_ASYNC;
+	if ((flags & UPL_NOCOMMIT) == 0) 
+		local_flags |= CL_COMMIT;
+	if ((flags & UPL_KEEPCACHED))
+	        local_flags |= CL_KEEPCACHED;
+	if (flags & UPL_PAGING_ENCRYPTED)
+		local_flags |= CL_ENCRYPTED;
 
-	    /*
-	     * If this call fails, it means the page is not
-	     * in the page cache.
-	     */
-	    if (ubc_page_op(vp, upl_f_offset,
-			    UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) != KERN_SUCCESS)
-	      break;
 
-	    retval = uiomove((caddr_t)(paddr), PAGE_SIZE, uio);
-				
-	    ubc_page_op(vp, upl_f_offset, 
-			UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
-		  
-	    io_size     -= PAGE_SIZE;
-	    KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 71)) | DBG_FUNC_NONE,
-			   (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
-	  }
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
+		     (int)f_offset, size, (int)filesize, local_flags, 0);
 
-	  uio->uio_segflg = segflg;
-			
-	  if (retval)
-	    {
-	      KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
-			   (int)uio->uio_offset, uio->uio_resid, 2, retval, 0);	      
-	      return(retval);
-	    }
-
-	  /* If we are already finished with this read, then return */
-	  if (io_size == 0)
-	    {
-
-	      KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
-			   (int)uio->uio_offset, uio->uio_resid, 3, io_size, 0);
-	      return(0);
-	    }
-
-	  max_io_size = io_size;
-	  if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-	    max_io_size = MAX_UPL_TRANSFER * PAGE_SIZE;
-
-	  start_upl_f_offset = uio->uio_offset;   /* this is page aligned in the file */
-	  upl_f_offset = start_upl_f_offset;
-	  io_size = 0;
-
-	  while(io_size < max_io_size)
-	    {
-
-	      if(ubc_page_op(vp, upl_f_offset,
-				UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) == KERN_SUCCESS)
-	      {
-			ubc_page_op(vp, upl_f_offset,
-			    UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
-			break;
-	      }
+	/*
+	 * If they didn't specify any I/O, then we are done...
+	 * we can't issue an abort because we don't know how
+	 * big the upl really is
+	 */
+	if (size <= 0)
+		return (EINVAL);
 
-		  /*
-		   * Build up the io request parameters.
-		   */
+        if (vp->v_mount->mnt_flag & MNT_RDONLY) {
+		if (local_flags & CL_COMMIT)
+		        ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
+		return (EROFS);
+	}
+	/*
+	 * can't page-in from a negative offset
+	 * or if we're starting beyond the EOF
+	 * or if the file offset isn't page aligned
+	 * or the size requested isn't a multiple of PAGE_SIZE
+	 */
+	if (f_offset < 0 || f_offset >= filesize ||
+	   (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
+		if (local_flags & CL_COMMIT)
+			ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
+		return (EINVAL);
+	}
+	max_size = filesize - f_offset;
 
-		  io_size += PAGE_SIZE;
-		  upl_f_offset += PAGE_SIZE;
-		}
+	if (size < max_size)
+	        io_size = size;
+	else
+	        io_size = max_size;
 
-	      if (io_size == 0)
-		return(retval);
+	rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
 
-	  upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
-	  upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
+	if (size > rounded_size) {
+		if (local_flags & CL_COMMIT)
+			ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
+					UPL_ABORT_FREE_ON_EMPTY);
+	}
+	return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
+			   local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
+}
 
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
-		       (int)upl_offset, upl_needed_size, iov->iov_base, io_size, 0);
 
-	  for (force_data_sync = 0; force_data_sync < 3; force_data_sync++)
-	    {
-	      pages_in_pl = 0;
-	      upl_size = upl_needed_size;
-	      upl_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+int
+cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
+	       int size, off_t filesize, int flags)
+{
+        return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
+}
 
-	      kret = vm_map_get_upl(current_map(),
-				    (vm_offset_t)iov->iov_base & ~PAGE_MASK,
-				    &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, force_data_sync);
 
-	      if (kret != KERN_SUCCESS)
-		{
-		  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
-			       (int)upl_offset, upl_size, io_size, kret, 0);
-		  
-		  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
-			       (int)uio->uio_offset, uio->uio_resid, 4, retval, 0);
+int
+cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
+	       int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	u_int         io_size;
+	int           rounded_size;
+        off_t         max_size;
+	int           retval;
+	int           local_flags = 0;
 
-		  /* cluster_nocopy_read: failed to get pagelist */
-		  /* do not return kret here */
-		  return(retval);
-		}
+	if (upl == NULL || size < 0)
+	        panic("cluster_pagein: NULL upl passed in");
 
-	      pages_in_pl = upl_size / PAGE_SIZE;
-	      pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+	if ((flags & UPL_IOSYNC) == 0)
+	        local_flags |= CL_ASYNC;
+	if ((flags & UPL_NOCOMMIT) == 0) 
+		local_flags |= CL_COMMIT;
+	if (flags & UPL_IOSTREAMING)
+		local_flags |= CL_IOSTREAMING;
+	if (flags & UPL_PAGING_ENCRYPTED)
+		local_flags |= CL_ENCRYPTED;
 
-	      for(i=0; i < pages_in_pl; i++)
-		{
-		  if (!upl_valid_page(pl, i))
-		    break;		  
-		}
-	      if (i == pages_in_pl)
-		break;
 
-	      ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				  UPL_ABORT_FREE_ON_EMPTY);
-	    }
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
+		     (int)f_offset, size, (int)filesize, local_flags, 0);
 
-	  if (force_data_sync >= 3)
-	    {
-		  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
-			       (int)upl_offset, upl_size, io_size, kret, 0);
-		  
-		  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
-			       (int)uio->uio_offset, uio->uio_resid, 5, retval, 0);
-	      return(retval);
-	    }
-	  /*
-	   * Consider the possibility that upl_size wasn't satisfied.
-	   */
-	  if (upl_size != upl_needed_size)
-	    io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK;
-
-	  if (io_size == 0)
-	    {
-	      ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				   UPL_ABORT_FREE_ON_EMPTY);
-	      return(retval);
-	    }
-
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
-		       (int)upl_offset, upl_size, io_size, kret, 0);
-
-	  /*
-	   * issue a synchronous read to cluster_io
-	   */
-
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
-		       upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0);
-
-	  error = cluster_io(vp, upl, upl_offset, start_upl_f_offset,
-			     io_size, CL_READ| CL_NOZERO, (struct buf *)0);
-
-	  if (error == 0) {
-	    /*
-	     * The cluster_io read completed successfully,
-	     * update the uio structure and commit.
-	     */
-
-	    ubc_upl_commit_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-					UPL_COMMIT_SET_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
-	    
-	    iov->iov_base += io_size;
-	    iov->iov_len -= io_size;
-	    uio->uio_resid -= io_size;
-	    uio->uio_offset += io_size;
-	  }
-	  else {
-	    ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, 
-				   UPL_ABORT_FREE_ON_EMPTY);
-	  }
-
-	  KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
-		       upl, (int)uio->uio_offset, (int)uio->uio_resid, error, 0);
-
-	  if (retval == 0)
-	    retval = error;
+	/*
+	 * can't page-in from a negative offset
+	 * or if we're starting beyond the EOF
+	 * or if the file offset isn't page aligned
+	 * or the size requested isn't a multiple of PAGE_SIZE
+	 */
+	if (f_offset < 0 || f_offset >= filesize ||
+	   (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
+	        if (local_flags & CL_COMMIT)
+		        ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
+		return (EINVAL);
+	}
+	max_size = filesize - f_offset;
 
-	} /* end while */
+	if (size < max_size)
+	        io_size = size;
+	else
+	        io_size = max_size;
 
+	rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
-		     (int)uio->uio_offset, (int)uio->uio_resid, 6, retval, 0);
+	if (size > rounded_size && (local_flags & CL_COMMIT))
+		ubc_upl_abort_range(upl, upl_offset + rounded_size,
+				    size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
+	
+	retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
+			    local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
 
 	return (retval);
 }
 
 
-static
-cluster_phys_read(vp, uio, filesize)
-	struct vnode *vp;
-	struct uio   *uio;
-	off_t        filesize;
+int
+cluster_bp(buf_t bp)
 {
-	upl_t            upl;
-	vm_offset_t      upl_offset;
-	off_t            max_size;
-	int              io_size;
-	int              upl_size;
-	int              upl_needed_size;
-	int              pages_in_pl;
-	int              upl_flags;
-	kern_return_t    kret;
-	struct iovec     *iov;
-	int              error;
+       return cluster_bp_ext(bp, NULL, NULL);
+}
 
-	/*
-	 * When we enter this routine, we know
-	 *  -- the resid will not exceed iov_len
-	 *  -- the target address is physically contiguous
-	 */
 
-	iov = uio->uio_iov;
+int
+cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
+{
+        off_t  f_offset;
+	int    flags;
 
-	max_size = filesize - uio->uio_offset;
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
+		     bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
 
-	if (max_size < (off_t)((unsigned int)iov->iov_len))
-	    io_size = max_size;
+	if (bp->b_flags & B_READ)
+	        flags = CL_ASYNC | CL_READ;
 	else
-	    io_size = iov->iov_len;
+	        flags = CL_ASYNC;
+	if (bp->b_flags & B_PASSIVE) 
+		flags |= CL_PASSIVE;
 
-	upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
-	upl_needed_size = upl_offset + io_size;
+	f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
 
-	pages_in_pl = 0;
-	upl_size = upl_needed_size;
-	upl_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+        return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
+}
 
-	kret = vm_map_get_upl(current_map(),
-			      (vm_offset_t)iov->iov_base & ~PAGE_MASK,
-			      &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0);
 
-	if (kret != KERN_SUCCESS)
-	  {
-	    /* cluster_phys_read: failed to get pagelist */
-	    return(EINVAL);
-	  }
 
-	/*
-	 * Consider the possibility that upl_size wasn't satisfied.
-	 */
-	if (upl_size < upl_needed_size)
-	  {
-	    ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
-	    return(EINVAL);
-	  }
+int
+cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
+{
+        return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
+}
 
-	/*
-	 * issue a synchronous read to cluster_io
-	 */
 
-	error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
-			   io_size,  CL_READ| CL_NOZERO | CL_DEV_MEMORY, (struct buf *)0);
-
-	if (error == 0)
-	  {
-	    /*
-	     * The cluster_io read completed successfully,
-	     * update the uio structure and commit.
-	     */
-
-	    ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_FREE_ON_EMPTY);
-	    
-	    iov->iov_base += io_size;
-	    iov->iov_len -= io_size;
-	    uio->uio_resid -= io_size;
-	    uio->uio_offset += io_size;
-	  }
+int
+cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
+		  int xflags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+        user_ssize_t	cur_resid;
+	int		retval = 0;
+	int		flags;
+        int		zflags;
+	int             bflag;
+	int		write_type = IO_COPY;
+	u_int32_t	write_length;
+
+	flags = xflags;
+
+	if (flags & IO_PASSIVE)
+		bflag = CL_PASSIVE;
 	else
-	    ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
-	
-	return (error);
-}
+		bflag = 0;
 
-/*
- * generate advisory I/O's in the largest chunks possible
- * the completed pages will be released into the VM cache
- */
-advisory_read(vp, filesize, f_offset, resid, devblocksize)
-	struct vnode *vp;
-	off_t         filesize;
-	off_t         f_offset;
-	int           resid;
-	int           devblocksize;
+	if (vp->v_flag & VNOCACHE_DATA){
+	        flags |= IO_NOCACHE;
+		bflag |= CL_NOCACHE;
+	}
+        if (uio == NULL) {
+	        /*
+		 * no user data...
+		 * this call is being made to zero-fill some range in the file
+		 */
+	        retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
+
+		return(retval);
+	}
+        /*
+         * do a write through the cache if one of the following is true....
+         *   NOCACHE is not true or NODIRECT is true
+         *   the uio request doesn't target USERSPACE
+         * otherwise, find out if we want the direct or contig variant for
+         * the first vector in the uio request
+         */
+	if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
+	        retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
+
+        if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
+	        /*
+		 * must go through the cached variant in this case
+		 */
+	        write_type = IO_COPY;
+
+	while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
+	  
+	        switch (write_type) {
+
+		case IO_COPY:
+		        /*
+			 * make sure the uio_resid isn't too big...
+			 * internally, we want to handle all of the I/O in
+			 * chunk sizes that fit in a 32 bit int
+			 */
+		        if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
+			        /*
+				 * we're going to have to call cluster_write_copy
+				 * more than once...
+				 *
+				 * only want the last call to cluster_write_copy to
+				 * have the IO_TAILZEROFILL flag set and only the
+				 * first call should have IO_HEADZEROFILL
+				 */
+			        zflags = flags & ~IO_TAILZEROFILL;
+				flags &= ~IO_HEADZEROFILL;
+
+				write_length = MAX_IO_REQUEST_SIZE;
+			} else {
+		                /*
+				 * last call to cluster_write_copy
+				 */
+			        zflags = flags;
+			  
+				write_length = (u_int32_t)cur_resid;
+			}
+			retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
+			break;
+
+		case IO_CONTIG:
+		        zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
+
+			if (flags & IO_HEADZEROFILL) {
+		                /*
+				 * only do this once per request
+				 */
+		                flags &= ~IO_HEADZEROFILL;
+
+				retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
+							    headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
+				if (retval)
+			                break;
+			}
+			retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
+
+			if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
+		                /*
+				 * we're done with the data from the user specified buffer(s)
+				 * and we've been requested to zero fill at the tail
+				 * treat this as an IO_HEADZEROFILL which doesn't require a uio
+				 * by rearranging the args and passing in IO_HEADZEROFILL
+				 */
+		                retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
+							    (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
+			}
+			break;
+
+		case IO_DIRECT:
+			/*
+			 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
+			 */
+			retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
+			break;
+
+		case IO_UNKNOWN:
+		        retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
+			break;
+		}
+		/*
+		 * in case we end up calling cluster_write_copy (from cluster_write_direct)
+		 * multiple times to service a multi-vector request that is not aligned properly
+		 * we need to update the oldEOF so that we
+		 * don't zero-fill the head of a page if we've successfully written
+		 * data to that area... 'cluster_write_copy' will zero-fill the head of a
+		 * page that is beyond the oldEOF if the write is unaligned... we only
+		 * want that to happen for the very first page of the cluster_write, 
+		 * NOT the first page of each vector making up a multi-vector write.
+		 */
+		if (uio->uio_offset > oldEOF)
+			oldEOF = uio->uio_offset;
+	}
+	return (retval);
+}
+
+
+static int
+cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
+		     int flags, int (*callback)(buf_t, void *), void *callback_arg)
 {
-	upl_page_info_t *pl;
 	upl_t            upl;
+	upl_page_info_t  *pl;
 	vm_offset_t      upl_offset;
-	int              upl_size;
-	off_t 	         upl_f_offset;
-	int		 start_offset;
-	int	         start_pg;
-	int		 last_pg;
-	int              pages_in_upl;
-	off_t            max_size;
-	int              io_size;
+	vm_offset_t	 vector_upl_offset = 0;
+	u_int32_t	 io_req_size;
+	u_int32_t	 offset_in_file;
+	u_int32_t	 offset_in_iovbase;
+	u_int32_t        io_size;
+	int              io_flag = 0;
+	upl_size_t	 upl_size, vector_upl_size = 0;
+	vm_size_t	 upl_needed_size;
+	mach_msg_type_number_t	pages_in_pl;
+	upl_control_flags_t upl_flags;
 	kern_return_t    kret;
+	mach_msg_type_number_t	i;
+	int              force_data_sync;
 	int              retval = 0;
+	int		 first_IO = 1;
+	struct clios     iostate;
+	user_addr_t	 iov_base;
+	u_int32_t	 mem_alignment_mask;
+	u_int32_t	 devblocksize;
+	u_int32_t	 max_io_size;
+	u_int32_t	 max_upl_size;
+	u_int32_t        max_vector_size;
+	u_int32_t	 bytes_outstanding_limit;
+	boolean_t	 io_throttled = FALSE;
+
+	u_int32_t	 vector_upl_iosize = 0;
+ 	int		 issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
+ 	off_t		 v_upl_uio_offset = 0;
+ 	int		 vector_upl_index=0;
+ 	upl_t		 vector_upl = NULL;
 
 
-	if (!UBCINFOEXISTS(vp))
-		return(EINVAL);
+	/*
+	 * When we enter this routine, we know
+	 *  -- the resid will not exceed iov_len
+	 */
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
+		     (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
 
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
-		     (int)f_offset, resid, (int)filesize, devblocksize, 0);
+	max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
 
-	while (resid && f_offset < filesize && retval == 0) {
-		/*
-		 * compute the size of the upl needed to encompass
-		 * the requested read... limit each call to cluster_io
-		 * to the maximum UPL size... cluster_io will clip if
-		 * this exceeds the maximum io_size for the device,
-		 * make sure to account for 
-		 * a starting offset that's not page aligned
-		 */
-		start_offset = (int)(f_offset & PAGE_MASK_64);
-		upl_f_offset = f_offset - (off_t)start_offset;
-		max_size     = filesize - f_offset;
+	io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
 
-		if (resid < max_size)
-		        io_size = resid;
-		else
-		        io_size = max_size;
+	if (flags & IO_PASSIVE)
+		io_flag |= CL_PASSIVE;
+	
+	if (flags & IO_NOCACHE)
+		io_flag |= CL_NOCACHE;
+	
+	if (flags & IO_SKIP_ENCRYPTION)
+		io_flag |= CL_ENCRYPTED;
+
+	iostate.io_completed = 0;
+	iostate.io_issued = 0;
+	iostate.io_error = 0;
+	iostate.io_wanted = 0;
+
+	lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
+	mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
+	devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
+
+	if (devblocksize == 1) {
+               /*
+                * the AFP client advertises a devblocksize of 1
+                * however, its BLOCKMAP routine maps to physical
+                * blocks that are PAGE_SIZE in size...
+                * therefore we can't ask for I/Os that aren't page aligned
+                * or aren't multiples of PAGE_SIZE in size
+                * by setting devblocksize to PAGE_SIZE, we re-instate
+                * the old behavior we had before the mem_alignment_mask
+                * changes went in...
+                */
+               devblocksize = PAGE_SIZE;
+	}
 
-		upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
-	        if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
-		        upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
-		pages_in_upl = upl_size / PAGE_SIZE;
+next_dwrite:
+	io_req_size = *write_length;
+	iov_base = uio_curriovbase(uio);
 
-		kret = ubc_create_upl(vp, 
-						upl_f_offset,
-						upl_size,
-						&upl,
-						&pl,
-						UPL_FLAGS_NONE);
-		if (kret != KERN_SUCCESS)
-			panic("advisory_read: failed to get pagelist");
+	offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
+	offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
 
+	if (offset_in_file || offset_in_iovbase) {
+	        /*
+		 * one of the 2 important offsets is misaligned
+		 * so fire an I/O through the cache for this entire vector
+		 */
+	        goto wait_for_dwrites;
+	}
+	if (iov_base & (devblocksize - 1)) {
+	        /*
+		 * the offset in memory must be on a device block boundary
+		 * so that we can guarantee that we can generate an
+		 * I/O that ends on a page boundary in cluster_io
+		 */
+	        goto wait_for_dwrites;
+        }
 
-		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE,
-			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+	task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp);
+	while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
+		int	throttle_type;
 
-		/*
-		 * scan from the beginning of the upl looking for the first
-		 * non-valid page.... this will become the first page in
-		 * the request we're going to make to 'cluster_io'... if all
-		 * of the pages are valid, we won't call through to 'cluster_io'
-		 */
-		for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
-			if (!upl_valid_page(pl, start_pg))
-				break;
+		if ( (throttle_type = cluster_is_throttled(vp)) ) {
+			/*
+			 * we're in the throttle window, at the very least
+			 * we want to limit the size of the I/O we're about
+			 * to issue
+			 */
+			if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
+				/*
+				 * we're in the throttle window and at least 1 I/O
+				 * has already been issued by a throttleable thread
+				 * in this window, so return with EAGAIN to indicate
+				 * to the FS issuing the cluster_write call that it
+				 * should now throttle after dropping any locks
+				 */
+				throttle_info_update_by_mount(vp->v_mount);
+
+				io_throttled = TRUE;
+				goto wait_for_dwrites;
+			}
+			max_vector_size = THROTTLE_MAX_IOSIZE;
+			max_io_size = THROTTLE_MAX_IOSIZE;
+		} else {
+			max_vector_size = MAX_VECTOR_UPL_SIZE;
+			max_io_size = max_upl_size;
 		}
 
-		/*
-		 * scan from the starting invalid page looking for a valid
-		 * page before the end of the upl is reached, if we 
-		 * find one, then it will be the last page of the request to
-		 * 'cluster_io'
-		 */
-		for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
-			if (upl_valid_page(pl, last_pg))
-				break;
+	        if (first_IO) {
+		        cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
+			first_IO = 0;
 		}
+	        io_size  = io_req_size & ~PAGE_MASK;
+		iov_base = uio_curriovbase(uio);
 
-		if (start_pg < last_pg) {		
-		        /*
-			 * we found a range of 'invalid' pages that must be filled
-			 * if the last page in this range is the last page of the file
-			 * we may have to clip the size of it to keep from reading past
-			 * the end of the last physical block associated with the file
+		if (io_size > max_io_size)
+		        io_size = max_io_size;
+
+		if(useVectorUPL && (iov_base & PAGE_MASK)) {
+			/*
+			 * We have an iov_base that's not page-aligned.
+			 * Issue all I/O's that have been collected within 
+			 * this Vectored UPL.
 			 */
-			upl_offset = start_pg * PAGE_SIZE;
-			io_size    = (last_pg - start_pg) * PAGE_SIZE;
+			if(vector_upl_index) {
+				retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+				reset_vector_run_state();
+			}
+			
+		       /*
+			* After this point, if we are using the Vector UPL path and the base is
+			* not page-aligned then the UPL with that base will be the first in the vector UPL.
+			*/
+		}
 
-			if ((upl_f_offset + upl_offset + io_size) > filesize) {
-			        io_size = filesize - (upl_f_offset + upl_offset);
-				io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
+		upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
+		upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
+			     (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
+
+		vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+		for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
+		        pages_in_pl = 0;
+			upl_size = upl_needed_size;
+			upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
+		                    UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+				    | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
+
+			kret = vm_map_get_upl(map,
+					      (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+					      &upl_size,
+					      &upl, 
+					      NULL, 
+					      &pages_in_pl,
+					      &upl_flags,
+					      force_data_sync);
+
+			if (kret != KERN_SUCCESS) {
+			        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
+					     0, 0, 0, kret, 0);
+				/*
+				 * failed to get pagelist
+				 *
+				 * we may have already spun some portion of this request
+				 * off as async requests... we need to wait for the I/O
+				 * to complete before returning
+				 */
+				goto wait_for_dwrites;
+			}
+			pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+			pages_in_pl = upl_size / PAGE_SIZE;
+
+			for (i = 0; i < pages_in_pl; i++) {
+			        if (!upl_valid_page(pl, i))
+				        break;		  
 			}
+			if (i == pages_in_pl)
+			        break;
+
 			/*
-			 * issue an asynchronous read to cluster_io
+			 * didn't get all the pages back that we
+			 * needed... release this upl and try again
 			 */
-			retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
-					  CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0);
+			ubc_upl_abort(upl, 0);
 		}
-		if (start_pg) {
+		if (force_data_sync >= 3) {
+		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
+				     i, pages_in_pl, upl_size, kret, 0);
 			/*
-			 * start_pg of non-zero indicates we found some already valid pages
-			 * at the beginning of the upl.... we need to release these without
-			 * modifying there state
+			 * for some reason, we couldn't acquire a hold on all
+			 * the pages needed in the user's address space
+			 *
+			 * we may have already spun some portion of this request
+			 * off as async requests... we need to wait for the I/O
+			 * to complete before returning
 			 */
-			ubc_upl_abort_range(upl, 0, start_pg * PAGE_SIZE,
-					UPL_ABORT_FREE_ON_EMPTY);
+			goto wait_for_dwrites;
+		}
 
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 62)) | DBG_FUNC_NONE,
-				    upl, 0, start_pg * PAGE_SIZE, 0, 0);
+		/*
+		 * Consider the possibility that upl_size wasn't satisfied.
+		 */
+		if (upl_size < upl_needed_size) {
+		        if (upl_size && upl_offset == 0)
+			        io_size = upl_size;
+			else
+			        io_size = 0;
 		}
-		if (last_pg < pages_in_upl) {
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
+			     (int)upl_offset, upl_size, (int)iov_base, io_size, 0);		       
+
+		if (io_size == 0) {
+		        ubc_upl_abort(upl, 0);
 			/*
-			 * the set of pages that we issued an I/O for did not extend all the
-			 * way to the end of the upl..so just release them without modifying
-			 * there state
+			 * we may have already spun some portion of this request
+			 * off as async requests... we need to wait for the I/O
+			 * to complete before returning
 			 */
-			ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, (pages_in_upl - last_pg) * PAGE_SIZE,
-					UPL_ABORT_FREE_ON_EMPTY);
-
-			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 63)) | DBG_FUNC_NONE,
-				     upl, last_pg * PAGE_SIZE,
-				     (pages_in_upl - last_pg) * PAGE_SIZE, 0, 0);
+			goto wait_for_dwrites;
 		}
-		io_size = (last_pg * PAGE_SIZE) - start_offset;
 		
-		if (io_size > resid)
-		        io_size = resid;
-		f_offset += io_size;
-		resid    -= io_size;
+		if(useVectorUPL) {
+			vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
+			if(end_off)
+				issueVectorUPL = 1;
+			/*
+			 * After this point, if we are using a vector UPL, then
+			 * either all the UPL elements end on a page boundary OR
+			 * this UPL is the last element because it does not end
+			 * on a page boundary.
+			 */
+		}
+
+		/*
+		 * we want push out these writes asynchronously so that we can overlap
+		 * the preparation of the next I/O
+		 * if there are already too many outstanding writes
+		 * wait until some complete before issuing the next
+		 */
+		if (vp->v_mount->mnt_minsaturationbytecount)
+			bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount;
+		else
+			bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2);
+
+		cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct");
+
+		if (iostate.io_error) {
+		        /*
+			 * one of the earlier writes we issued ran into a hard error
+			 * don't issue any more writes, cleanup the UPL
+			 * that was just created but not used, then
+			 * go wait for all writes that are part of this stream
+			 * to complete before returning the error to the caller
+			 */
+		        ubc_upl_abort(upl, 0);
+
+		        goto wait_for_dwrites;
+	        }
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
+			     (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
+
+		if(!useVectorUPL)
+			retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
+				   io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+
+		else {
+			if(!vector_upl_index) {
+				vector_upl = vector_upl_create(upl_offset);
+				v_upl_uio_offset = uio->uio_offset;
+				vector_upl_offset = upl_offset;
+			}
+
+			vector_upl_set_subupl(vector_upl,upl,upl_size);
+			vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
+			vector_upl_index++;
+			vector_upl_iosize += io_size;
+			vector_upl_size += upl_size;
+
+			if(issueVectorUPL || vector_upl_index ==  MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
+				retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+				reset_vector_run_state();
+			}
+		}	
+
+		/*
+		 * update the uio structure to
+		 * reflect the I/O that we just issued
+		 */
+		uio_update(uio, (user_size_t)io_size);
+
+		/*
+		 * in case we end up calling through to cluster_write_copy to finish
+		 * the tail of this request, we need to update the oldEOF so that we
+		 * don't zero-fill the head of a page if we've successfully written
+		 * data to that area... 'cluster_write_copy' will zero-fill the head of a
+		 * page that is beyond the oldEOF if the write is unaligned... we only
+		 * want that to happen for the very first page of the cluster_write, 
+		 * NOT the first page of each vector making up a multi-vector write.
+		 */
+		if (uio->uio_offset > oldEOF)
+			oldEOF = uio->uio_offset;
+
+		io_req_size -= io_size;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
+			     (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
+
+	} /* end while */
+
+        if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
+
+	        retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
+
+		if (retval == 0 && *write_type == IO_DIRECT) {
+
+		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
+				     (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
+
+		        goto next_dwrite;
+		}
+        }
+
+wait_for_dwrites:
+
+	if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
+		retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+		reset_vector_run_state();	
 	}
-	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
-		     (int)f_offset, resid, retval, 0, 0);
+	/*
+	 * make sure all async writes issued as part of this stream
+	 * have completed before we return
+	 */
+	cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
 
-	return(retval);
+	if (iostate.io_error)
+	        retval = iostate.io_error;
+
+	lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+	if (io_throttled == TRUE && retval == 0)
+		retval = EAGAIN;
+
+	if (io_req_size && retval == 0) {
+	        /*
+		 * we couldn't handle the tail of this request in DIRECT mode
+		 * so fire it through the copy path
+		 *
+		 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
+		 * so we can just pass 0 in for the headOff and tailOff
+		 */
+		if (uio->uio_offset > oldEOF)
+			oldEOF = uio->uio_offset;
+
+	        retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
+
+		*write_type = IO_UNKNOWN;
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
+		     (int)uio->uio_offset, io_req_size, retval, 4, 0);
+
+	return (retval);
 }
 
 
-cluster_push(vp)
-        struct vnode *vp;
+static int
+cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
+		     int (*callback)(buf_t, void *), void *callback_arg, int bflag)
 {
 	upl_page_info_t *pl;
-	upl_t            upl;
+	addr64_t	 src_paddr = 0;
+ 	upl_t            upl[MAX_VECTS];
 	vm_offset_t      upl_offset;
-	int              upl_size;
-	off_t 	         upl_f_offset;
-        int              pages_in_upl;
-	int              start_pg;
-	int              last_pg;
-	int              io_size;
-	int              io_flags;
-	int              size;
+	u_int32_t        tail_size = 0;
+	u_int32_t	 io_size;
+	u_int32_t	 xsize;
+	upl_size_t	 upl_size;
+	vm_size_t	 upl_needed_size;
+	mach_msg_type_number_t	pages_in_pl;
+	upl_control_flags_t upl_flags;
 	kern_return_t    kret;
+        struct clios     iostate;
+	int              error  = 0;
+	int		 cur_upl = 0;
+	int		 num_upl = 0;
+	int		 n;
+	user_addr_t	 iov_base;
+	u_int32_t	 devblocksize;
+	u_int32_t	 mem_alignment_mask;
 
+	/*
+	 * When we enter this routine, we know
+	 *  -- the io_req_size will not exceed iov_len
+	 *  -- the target address is physically contiguous
+	 */
+	cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
 
-	if (!UBCINFOEXISTS(vp))
-		return(0);
+	devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
+	mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
 
-        if (vp->v_clen == 0 || (pages_in_upl = vp->v_lastw - vp->v_cstart) == 0)
-	        return (0);
-	upl_size = pages_in_upl * PAGE_SIZE;
-	upl_f_offset = ((off_t)vp->v_cstart) * PAGE_SIZE_64;
-	size = vp->v_ciosiz;
-	vp->v_clen = 0;
+        iostate.io_completed = 0;
+        iostate.io_issued = 0;
+        iostate.io_error = 0;
+        iostate.io_wanted = 0;
 
-	if (size > upl_size || (upl_size - size) > PAGE_SIZE)
-	        panic("cluster_push: v_ciosiz doesn't match size of cluster\n");
+	lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
 
-	kret = ubc_create_upl(vp, 
-			      	upl_f_offset,
-			      	upl_size,
-			      	&upl,
-					&pl,
-					UPL_FLAGS_NONE);
-	if (kret != KERN_SUCCESS)
-	        panic("cluster_push: failed to get pagelist");
+next_cwrite:
+	io_size = *write_length;
 
-	last_pg = 0;
+	iov_base = uio_curriovbase(uio);
 
-	while (size) {
+	upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
+	upl_needed_size = upl_offset + io_size;
 
-		for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
-			if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg))
-				break;
-		}
-		if (start_pg > last_pg) {
-			io_size = (start_pg - last_pg) * PAGE_SIZE;
+	pages_in_pl = 0;
+	upl_size = upl_needed_size;
+	upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | 
+	            UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+		    | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
 
-			ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, io_size,
-					UPL_ABORT_FREE_ON_EMPTY);
+	vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+	kret = vm_map_get_upl(map,
+			      (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+			      &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
 
-			if (io_size < size)
-			        size -= io_size;
-			else
-			        break;
-		}
-		for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
-			if (!upl_valid_page(pl, last_pg) || !upl_dirty_page(pl, last_pg))
-				break;
-		}
-		upl_offset = start_pg * PAGE_SIZE;
+	if (kret != KERN_SUCCESS) {
+	        /*
+		 * failed to get pagelist
+		 */
+	        error = EINVAL;
+		goto wait_for_cwrites;
+	}
+	num_upl++;
 
-		io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
+	/*
+	 * Consider the possibility that upl_size wasn't satisfied.
+	 */
+	if (upl_size < upl_needed_size) {
+		/*
+		 * This is a failure in the physical memory case.
+		 */
+		error = EINVAL;
+		goto wait_for_cwrites;
+	}
+	pl = ubc_upl_pageinfo(upl[cur_upl]);
 
-		if (vp->v_flag & VNOCACHE_DATA)
-		        io_flags = CL_COMMIT | CL_AGE | CL_ASYNC | CL_DUMP;
-		else
-		        io_flags = CL_COMMIT | CL_AGE | CL_ASYNC;
+	src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
 
-		while (vp->v_numoutput >= ASYNC_THROTTLE) {
-		        vp->v_flag |= VTHROTTLED;
-			tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_push", 0);
+	while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
+	        u_int32_t   head_size;
+
+		head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
+
+		if (head_size > io_size)
+		        head_size = io_size;
+
+		error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
+
+		if (error)
+		        goto wait_for_cwrites;
+
+		upl_offset += head_size;
+		src_paddr  += head_size;
+		io_size    -= head_size;
+
+		iov_base   += head_size;
+	}
+	if ((u_int32_t)iov_base & mem_alignment_mask) {
+	        /*
+		 * request doesn't set up on a memory boundary
+		 * the underlying DMA engine can handle...
+		 * return an error instead of going through
+		 * the slow copy path since the intent of this
+		 * path is direct I/O from device memory
+		 */
+	        error = EINVAL;
+		goto wait_for_cwrites;
+	}
+
+	tail_size = io_size & (devblocksize - 1);
+	io_size  -= tail_size;
+
+	while (io_size && error == 0) {
+
+	        if (io_size > MAX_IO_CONTIG_SIZE)
+		        xsize = MAX_IO_CONTIG_SIZE;
+		else
+		        xsize = io_size;
+		/*
+		 * request asynchronously so that we can overlap
+		 * the preparation of the next I/O... we'll do
+		 * the commit after all the I/O has completed
+		 * since its all issued against the same UPL
+		 * if there are already too many outstanding writes
+		 * wait until some have completed before issuing the next
+		 */
+		cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
+
+                if (iostate.io_error) {
+                        /*
+                         * one of the earlier writes we issued ran into a hard error
+                         * don't issue any more writes...
+                         * go wait for all writes that are part of this stream
+                         * to complete before returning the error to the caller
+                         */
+		        goto wait_for_cwrites;
+		}
+	        /*
+		 * issue an asynchronous write to cluster_io
+		 */
+	        error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
+				   xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
+
+		if (error == 0) {
+		        /*
+			 * The cluster_io write completed successfully,
+			 * update the uio structure
+			 */
+		        uio_update(uio, (user_size_t)xsize);
+
+			upl_offset += xsize;
+			src_paddr  += xsize;
+			io_size    -= xsize;
+		}
+	}
+        if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
+
+	        error = cluster_io_type(uio, write_type, write_length, 0);
+
+		if (error == 0 && *write_type == IO_CONTIG) {
+		        cur_upl++;
+                        goto next_cwrite;
+		}
+	} else
+	        *write_type = IO_UNKNOWN;
+
+wait_for_cwrites:
+	/*
+         * make sure all async writes that are part of this stream
+         * have completed before we proceed
+         */
+	cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
+
+        if (iostate.io_error)
+	        error = iostate.io_error;
+
+	lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+	if (error == 0 && tail_size)
+	        error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
+
+        for (n = 0; n < num_upl; n++)
+	        /*
+		 * just release our hold on each physically contiguous
+		 * region without changing any state
+		 */
+	        ubc_upl_abort(upl[n], 0);
+
+	return (error);
+}
+
+
+/*
+ * need to avoid a race between an msync of a range of pages dirtied via mmap
+ * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
+ * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
+ *
+ * we should never force-zero-fill pages that are already valid in the cache...
+ * the entire page contains valid data (either from disk, zero-filled or dirtied
+ * via an mmap) so we can only do damage by trying to zero-fill
+ *
+ */
+static int
+cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
+{
+	int zero_pg_index;
+	boolean_t need_cluster_zero = TRUE;
+
+        if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
+
+	        bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
+		zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
+
+		if (upl_valid_page(pl, zero_pg_index)) {
+			/*
+			 * never force zero valid pages - dirty or clean
+			 * we'll leave these in the UPL for cluster_write_copy to deal with
+			 */
+			need_cluster_zero = FALSE;
+		} 
+	}
+	if (need_cluster_zero == TRUE)
+		cluster_zero(upl, io_offset, bytes_to_zero, NULL);
+
+	return (bytes_to_zero);
+}
+
+
+static int
+cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
+		   off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	upl_page_info_t *pl;
+	upl_t            upl;
+	vm_offset_t      upl_offset = 0;
+	vm_size_t	 upl_size;
+	off_t 	         upl_f_offset;
+	int              pages_in_upl;
+	int		 start_offset;
+	int              xfer_resid;
+	int              io_size;
+	int              io_offset;
+	int              bytes_to_zero;
+	int              bytes_to_move;
+	kern_return_t    kret;
+	int              retval = 0;
+	int              io_resid;
+	long long        total_size;
+	long long        zero_cnt;
+	off_t            zero_off;
+	long long        zero_cnt1;
+	off_t            zero_off1;
+	off_t		 write_off = 0;
+	int		 write_cnt = 0;
+	boolean_t	 first_pass = FALSE;
+	struct cl_extent cl;
+	struct cl_writebehind *wbp;
+	int              bflag;
+	u_int		 max_cluster_pgcount;
+	u_int		 max_io_size;
+
+	if (uio) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
+			     (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
+
+	        io_resid = io_req_size;
+	} else {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
+			     0, 0, (int)oldEOF, (int)newEOF, 0);
+
+	        io_resid = 0;
+	}
+	if (flags & IO_PASSIVE)
+		bflag = CL_PASSIVE;
+	else
+		bflag = 0;
+	if (flags & IO_NOCACHE)
+		bflag |= CL_NOCACHE;
+	
+	if (flags & IO_SKIP_ENCRYPTION)
+		bflag |= CL_ENCRYPTED;
+
+	zero_cnt  = 0;
+	zero_cnt1 = 0;
+	zero_off  = 0;
+	zero_off1 = 0;
+
+	max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
+	max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
+
+	if (flags & IO_HEADZEROFILL) {
+	        /*
+		 * some filesystems (HFS is one) don't support unallocated holes within a file...
+		 * so we zero fill the intervening space between the old EOF and the offset
+		 * where the next chunk of real data begins.... ftruncate will also use this
+		 * routine to zero fill to the new EOF when growing a file... in this case, the
+		 * uio structure will not be provided
+		 */
+	        if (uio) {
+		        if (headOff < uio->uio_offset) {
+			        zero_cnt = uio->uio_offset - headOff;
+				zero_off = headOff;
+			}
+		} else if (headOff < newEOF) {	
+		        zero_cnt = newEOF - headOff;
+			zero_off = headOff;
+		}
+	} else {
+		if (uio && uio->uio_offset > oldEOF) {
+			zero_off = uio->uio_offset & ~PAGE_MASK_64;
+
+			if (zero_off >= oldEOF) {
+				zero_cnt = uio->uio_offset - zero_off;
+
+				flags |= IO_HEADZEROFILL;
+			}
+		}
+	}
+	if (flags & IO_TAILZEROFILL) {
+	        if (uio) {
+		        zero_off1 = uio->uio_offset + io_req_size;
+
+			if (zero_off1 < tailOff)
+			        zero_cnt1 = tailOff - zero_off1;
+		}	
+	} else {
+		if (uio && newEOF > oldEOF) {
+		        zero_off1 = uio->uio_offset + io_req_size;
+
+			if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
+				zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
+
+				flags |= IO_TAILZEROFILL;
+			}
+		}
+	}
+	if (zero_cnt == 0 && uio == (struct uio *) 0) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
+			     retval, 0, 0, 0, 0);
+		return (0);
+	}
+	if (uio) {
+		write_off = uio->uio_offset;
+		write_cnt = uio_resid(uio);
+		/*
+		 * delay updating the sequential write info
+		 * in the control block until we've obtained
+		 * the lock for it
+		 */
+		first_pass = TRUE;
+	}
+	while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
+	        /*
+		 * for this iteration of the loop, figure out where our starting point is
+		 */
+	        if (zero_cnt) {
+		        start_offset = (int)(zero_off & PAGE_MASK_64);
+			upl_f_offset = zero_off - start_offset;
+		} else if (io_resid) {
+		        start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+			upl_f_offset = uio->uio_offset - start_offset;
+		} else {
+		        start_offset = (int)(zero_off1 & PAGE_MASK_64);
+			upl_f_offset = zero_off1 - start_offset;
+		}
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
+			     (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
+
+	        if (total_size > max_io_size)
+		        total_size = max_io_size;
+
+		cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
+		
+		if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
+		        /*
+			 * assumption... total_size <= io_resid
+			 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
+			 */
+		        if ((start_offset + total_size) > max_io_size)
+			        total_size = max_io_size - start_offset;
+		        xfer_resid = total_size;
+
+		        retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
+
+			if (retval)
+			        break;
+
+			io_resid    -= (total_size - xfer_resid);
+			total_size   = xfer_resid;
+			start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+			upl_f_offset = uio->uio_offset - start_offset;
+
+			if (total_size == 0) {
+			        if (start_offset) {
+				        /*
+					 * the write did not finish on a page boundary
+					 * which will leave upl_f_offset pointing to the
+					 * beginning of the last page written instead of
+					 * the page beyond it... bump it in this case
+					 * so that the cluster code records the last page
+					 * written as dirty
+					 */
+				        upl_f_offset += PAGE_SIZE_64;
+				}
+			        upl_size = 0;
+				
+			        goto check_cluster;
+			}
+		}
+		/*
+		 * compute the size of the upl needed to encompass
+		 * the requested write... limit each call to cluster_io
+		 * to the maximum UPL size... cluster_io will clip if
+		 * this exceeds the maximum io_size for the device,
+		 * make sure to account for 
+		 * a starting offset that's not page aligned
+		 */
+		upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+
+	        if (upl_size > max_io_size)
+		        upl_size = max_io_size;
+
+		pages_in_upl = upl_size / PAGE_SIZE;
+		io_size      = upl_size - start_offset;
+		
+		if ((long long)io_size > total_size)
+		        io_size = total_size;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
+			
+
+		/*
+		 * Gather the pages from the buffer cache.
+		 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
+		 * that we intend to modify these pages.
+		 */
+		kret = ubc_create_upl(vp, 
+				      upl_f_offset,
+				      upl_size,
+				      &upl,
+				      &pl,
+				      UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
+		if (kret != KERN_SUCCESS)
+			panic("cluster_write_copy: failed to get pagelist");
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
+			upl, (int)upl_f_offset, start_offset, 0, 0);
+
+		if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
+			int   read_size;
+
+			/*
+			 * we're starting in the middle of the first page of the upl
+			 * and the page isn't currently valid, so we're going to have
+			 * to read it in first... this is a synchronous operation
+			 */
+			read_size = PAGE_SIZE;
+
+			if ((upl_f_offset + read_size) > oldEOF)
+			        read_size = oldEOF - upl_f_offset;
+
+		        retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
+					    CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
+			if (retval) {
+				/*
+				 * we had an error during the read which causes us to abort
+				 * the current cluster_write request... before we do, we need
+				 * to release the rest of the pages in the upl without modifying
+				 * there state and mark the failed page in error
+				 */
+				ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
+
+				if (upl_size > PAGE_SIZE)
+				        ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+
+				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
+					     upl, 0, 0, retval, 0);
+				break;
+			}
+		}
+		if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
+		        /* 
+			 * the last offset we're writing to in this upl does not end on a page
+			 * boundary... if it's not beyond the old EOF, then we'll also need to
+			 * pre-read this page in if it isn't already valid
+			 */
+		        upl_offset = upl_size - PAGE_SIZE;
+
+		        if ((upl_f_offset + start_offset + io_size) < oldEOF &&
+			    !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
+			        int   read_size;
+
+				read_size = PAGE_SIZE;
+
+				if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
+				        read_size = oldEOF - (upl_f_offset + upl_offset);
+
+			        retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
+						    CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
+				if (retval) {
+					/*
+					 * we had an error during the read which causes us to abort
+					 * the current cluster_write request... before we do, we
+					 * need to release the rest of the pages in the upl without
+					 * modifying there state and mark the failed page in error
+					 */
+					ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
+
+					if (upl_size > PAGE_SIZE)
+					        ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+
+					KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
+						     upl, 0, 0, retval, 0);
+					break;
+				}
+			}
+		}
+		xfer_resid = io_size;
+		io_offset = start_offset;
+
+		while (zero_cnt && xfer_resid) {
+
+		        if (zero_cnt < (long long)xfer_resid)
+			        bytes_to_zero = zero_cnt;
+			else
+			        bytes_to_zero = xfer_resid;
+
+			bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
+
+			xfer_resid -= bytes_to_zero;
+			zero_cnt   -= bytes_to_zero;
+			zero_off   += bytes_to_zero;
+			io_offset  += bytes_to_zero;
+		}
+		if (xfer_resid && io_resid) {
+		        u_int32_t  io_requested;
+
+			bytes_to_move = min(io_resid, xfer_resid);
+			io_requested = bytes_to_move;
+
+			retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
+
+			if (retval) {
+				ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+
+				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
+					     upl, 0, 0, retval, 0);
+			} else {
+			        io_resid   -= bytes_to_move;
+				xfer_resid -= bytes_to_move;
+				io_offset  += bytes_to_move;
+			}
+		}
+		while (xfer_resid && zero_cnt1 && retval == 0) {
+
+		        if (zero_cnt1 < (long long)xfer_resid)
+			        bytes_to_zero = zero_cnt1;
+			else
+			        bytes_to_zero = xfer_resid;
+
+			bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
+
+			xfer_resid -= bytes_to_zero;
+			zero_cnt1  -= bytes_to_zero;
+			zero_off1  += bytes_to_zero;
+			io_offset  += bytes_to_zero;
+		}
+		if (retval == 0) {
+			int cl_index;
+			int ret_cluster_try_push;
+
+		        io_size += start_offset;
+
+			if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
+			        /*
+				 * if we're extending the file with this write
+				 * we'll zero fill the rest of the page so that
+				 * if the file gets extended again in such a way as to leave a
+				 * hole starting at this EOF, we'll have zero's in the correct spot
+				 */
+			        cluster_zero(upl, io_size, upl_size - io_size, NULL); 
+			}
+			/*
+			 * release the upl now if we hold one since...
+			 * 1) pages in it may be present in the sparse cluster map
+			 *    and may span 2 separate buckets there... if they do and 
+			 *    we happen to have to flush a bucket to make room and it intersects
+			 *    this upl, a deadlock may result on page BUSY
+			 * 2) we're delaying the I/O... from this point forward we're just updating
+			 *    the cluster state... no need to hold the pages, so commit them
+			 * 3) IO_SYNC is set...
+			 *    because we had to ask for a UPL that provides currenty non-present pages, the
+			 *    UPL has been automatically set to clear the dirty flags (both software and hardware)
+			 *    upon committing it... this is not the behavior we want since it's possible for
+			 *    pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
+			 *    we'll pick these pages back up later with the correct behavior specified.
+			 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
+			 *    of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
+			 *    we hold since the flushing context is holding the cluster lock.
+			 */
+			ubc_upl_commit_range(upl, 0, upl_size,
+					     UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+check_cluster:
+			/*
+			 * calculate the last logical block number 
+			 * that this delayed I/O encompassed
+			 */
+			cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
+
+			if (flags & IO_SYNC) {
+			        /*
+				 * if the IO_SYNC flag is set than we need to 
+				 * bypass any clusters and immediately issue
+				 * the I/O
+				 */
+			        goto issue_io;
+			}
+			/*
+			 * take the lock to protect our accesses
+			 * of the writebehind and sparse cluster state
+			 */
+			wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
+
+			if (wbp->cl_scmap) {
+
+			        if ( !(flags & IO_NOCACHE)) {
+				        /*
+					 * we've fallen into the sparse
+					 * cluster method of delaying dirty pages
+					 */
+					sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
+
+					lck_mtx_unlock(&wbp->cl_lockw);
+
+					continue;
+				}
+				/*
+				 * must have done cached writes that fell into
+				 * the sparse cluster mechanism... we've switched
+				 * to uncached writes on the file, so go ahead
+				 * and push whatever's in the sparse map
+				 * and switch back to normal clustering
+				 */
+				wbp->cl_number = 0;
+
+				sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
+				/*
+				 * no clusters of either type present at this point
+				 * so just go directly to start_new_cluster since
+				 * we know we need to delay this I/O since we've
+				 * already released the pages back into the cache
+				 * to avoid the deadlock with sparse_cluster_push
+				 */
+				goto start_new_cluster;
+			}
+			if (first_pass) {
+				if (write_off == wbp->cl_last_write)
+					wbp->cl_seq_written += write_cnt;
+				else
+					wbp->cl_seq_written = write_cnt;
+
+				wbp->cl_last_write = write_off + write_cnt;
+
+				first_pass = FALSE;
+			}
+			if (wbp->cl_number == 0)
+			        /*
+				 * no clusters currently present
+				 */
+			        goto start_new_cluster;
+
+			for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
+			        /*
+				 * check each cluster that we currently hold
+				 * try to merge some or all of this write into
+				 * one or more of the existing clusters... if
+				 * any portion of the write remains, start a
+				 * new cluster
+				 */
+			        if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
+				        /*
+					 * the current write starts at or after the current cluster
+					 */
+				        if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
+					        /*
+						 * we have a write that fits entirely
+						 * within the existing cluster limits
+						 */
+					        if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
+						        /*
+							 * update our idea of where the cluster ends
+							 */
+						        wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
+						break;
+					}
+					if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
+					        /*
+						 * we have a write that starts in the middle of the current cluster
+						 * but extends beyond the cluster's limit... we know this because
+						 * of the previous checks
+						 * we'll extend the current cluster to the max
+						 * and update the b_addr for the current write to reflect that
+						 * the head of it was absorbed into this cluster...
+						 * note that we'll always have a leftover tail in this case since
+						 * full absorbtion would have occurred in the clause above
+						 */
+					        wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
+
+						cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
+					}
+					/*
+					 * we come here for the case where the current write starts
+					 * beyond the limit of the existing cluster or we have a leftover
+					 * tail after a partial absorbtion
+					 *
+					 * in either case, we'll check the remaining clusters before 
+					 * starting a new one
+					 */
+				} else {
+				        /*
+					 * the current write starts in front of the cluster we're currently considering
+					 */
+				        if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
+					        /*
+						 * we can just merge the new request into
+						 * this cluster and leave it in the cache
+						 * since the resulting cluster is still 
+						 * less than the maximum allowable size
+						 */
+					        wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
+
+						if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
+						        /*
+							 * the current write completely
+							 * envelops the existing cluster and since
+							 * each write is limited to at most max_cluster_pgcount pages
+							 * we can just use the start and last blocknos of the write
+							 * to generate the cluster limits
+							 */
+						        wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
+						}
+						break;
+					}
+
+					/*
+					 * if we were to combine this write with the current cluster
+					 * we would exceed the cluster size limit.... so,
+					 * let's see if there's any overlap of the new I/O with
+					 * the cluster we're currently considering... in fact, we'll
+					 * stretch the cluster out to it's full limit and see if we
+					 * get an intersection with the current write
+					 * 
+					 */
+					if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
+					        /*
+						 * the current write extends into the proposed cluster
+						 * clip the length of the current write after first combining it's
+						 * tail with the newly shaped cluster
+						 */
+					        wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
+
+						cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
+					}
+					/*
+					 * if we get here, there was no way to merge
+					 * any portion of this write with this cluster 
+					 * or we could only merge part of it which 
+					 * will leave a tail...
+					 * we'll check the remaining clusters before starting a new one
+					 */
+				}
+			}
+			if (cl_index < wbp->cl_number)
+			        /*
+				 * we found an existing cluster(s) that we
+				 * could entirely merge this I/O into
+				 */
+			        goto delay_io;
+
+			if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
+			    wbp->cl_number == MAX_CLUSTERS &&
+			    wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
+				uint32_t	n;
+
+				if (vp->v_mount->mnt_minsaturationbytecount) {
+					n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp);
+					
+					if (n > MAX_CLUSTERS)
+						n = MAX_CLUSTERS;
+				} else
+					n = 0;
+
+				if (n == 0) {
+					if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
+						n = WRITE_BEHIND_SSD;
+					else
+						n = WRITE_BEHIND;
+				}
+				while (n--)
+					cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL);
+			}
+			if (wbp->cl_number < MAX_CLUSTERS) {
+			        /*
+				 * we didn't find an existing cluster to
+				 * merge into, but there's room to start
+				 * a new one
+				 */
+			        goto start_new_cluster;
+			}
+			/*
+			 * no exisitng cluster to merge with and no
+			 * room to start a new one... we'll try 
+			 * pushing one of the existing ones... if none of
+			 * them are able to be pushed, we'll switch
+			 * to the sparse cluster mechanism
+			 * cluster_try_push updates cl_number to the
+			 * number of remaining clusters... and
+			 * returns the number of currently unused clusters
+			 */
+			ret_cluster_try_push = 0;
+
+			/*
+			 * if writes are not deferred, call cluster push immediately
+			 */
+			if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
+				
+				ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL);
+			}
+
+			/*
+			 * execute following regardless of writes being deferred or not
+			 */
+			if (ret_cluster_try_push == 0) {
+			        /*
+				 * no more room in the normal cluster mechanism
+				 * so let's switch to the more expansive but expensive
+				 * sparse mechanism....
+				 */
+			        sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
+				sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
+
+				lck_mtx_unlock(&wbp->cl_lockw);
+
+				continue;
+			}
+start_new_cluster:
+			wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
+			wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
+
+			wbp->cl_clusters[wbp->cl_number].io_flags = 0;
+
+			if (flags & IO_NOCACHE)
+			        wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
+
+			if (bflag & CL_PASSIVE)
+			        wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
+
+			wbp->cl_number++;
+delay_io:
+			lck_mtx_unlock(&wbp->cl_lockw);
+
+			continue;
+issue_io:
+			/*
+			 * we don't hold the lock at this point
+			 *
+			 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
+			 * so that we correctly deal with a change in state of the hardware modify bit...
+			 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
+			 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
+			 * responsible for generating the correct sized I/O(s)
+			 */
+			retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
+		}
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
+
+	return (retval);
+}
+
+
+
+int
+cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
+{
+        return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
+}
+
+
+int
+cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	int		retval = 0;
+	int		flags;
+	user_ssize_t	cur_resid;
+        u_int32_t	io_size;
+	u_int32_t	read_length = 0;
+	int		read_type = IO_COPY;
+
+	flags = xflags;
+
+	if (vp->v_flag & VNOCACHE_DATA)
+	        flags |= IO_NOCACHE;
+	if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
+	        flags |= IO_RAOFF;
+
+	if (flags & IO_SKIP_ENCRYPTION)
+		flags |= IO_ENCRYPTED;
+
+	/*
+	 * do a read through the cache if one of the following is true....
+	 *   NOCACHE is not true
+	 *   the uio request doesn't target USERSPACE
+	 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
+	 * Reading encrypted data from a CP filesystem should never result in the data touching
+	 * the UBC.
+	 *
+	 * otherwise, find out if we want the direct or contig variant for
+	 * the first vector in the uio request
+	 */
+	if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) {
+
+		retval = cluster_io_type(uio, &read_type, &read_length, 0);
+	}
+
+	while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
+
+		switch (read_type) {
+		
+		case IO_COPY:
+		        /*
+			 * make sure the uio_resid isn't too big...
+			 * internally, we want to handle all of the I/O in
+			 * chunk sizes that fit in a 32 bit int
+			 */
+		        if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
+		                io_size = MAX_IO_REQUEST_SIZE;
+			else
+		                io_size = (u_int32_t)cur_resid;
+
+			retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
+			break;
+
+		case IO_DIRECT:
+		        retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
+			break;
+
+		case IO_CONTIG:
+		        retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
+			break;
+		  
+		case IO_UNKNOWN:
+		        retval = cluster_io_type(uio, &read_type, &read_length, 0);
+			break;
+		}
+	}
+	return (retval);
+}
+
+
+
+static void
+cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
+{
+	int range;
+	int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
+
+	if ((range = last_pg - start_pg)) {
+		if (take_reference)
+			abort_flags |= UPL_ABORT_REFERENCE;
+
+		ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
+	}
+}
+
+
+static int
+cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	upl_page_info_t *pl;
+	upl_t            upl;
+	vm_offset_t      upl_offset;
+	u_int32_t	 upl_size;
+	off_t 	         upl_f_offset;
+	int		 start_offset;
+	int	         start_pg;
+	int		 last_pg;
+	int              uio_last = 0;
+	int              pages_in_upl;
+	off_t            max_size;
+	off_t            last_ioread_offset;
+	off_t            last_request_offset;
+	kern_return_t    kret;
+	int              error  = 0;
+	int              retval = 0;
+	u_int32_t        size_of_prefetch;
+	u_int32_t        xsize;
+	u_int32_t        io_size;
+	u_int32_t        max_rd_size;
+	u_int32_t        max_io_size;
+	u_int32_t        max_prefetch;
+	u_int            rd_ahead_enabled = 1;
+	u_int            prefetch_enabled = 1;
+	struct cl_readahead *	rap;
+	struct clios		iostate;
+	struct cl_extent	extent;
+	int              bflag;
+	int		 take_reference = 1;
+	int		 policy = IOPOL_DEFAULT;
+	boolean_t	 iolock_inited = FALSE;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
+		     (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
+	
+	if (flags & IO_ENCRYPTED) {
+		panic ("encrypted blocks will hit UBC!");
+	}
+			 
+	policy = throttle_get_io_policy(NULL);
+
+	if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
+		take_reference = 0;
+
+	if (flags & IO_PASSIVE)
+		bflag = CL_PASSIVE;
+	else
+		bflag = 0;
+
+	if (flags & IO_NOCACHE)
+		bflag |= CL_NOCACHE;
+
+	if (flags & IO_SKIP_ENCRYPTION)
+		bflag |= CL_ENCRYPTED;
+
+	max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
+	max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
+	max_rd_size = max_prefetch;
+
+	last_request_offset = uio->uio_offset + io_req_size;
+
+	if (last_request_offset > filesize)
+	        last_request_offset = filesize;
+
+	if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
+	        rd_ahead_enabled = 0;
+		rap = NULL;
+	} else {
+	        if (cluster_is_throttled(vp)) {
+			/*
+			 * we're in the throttle window, at the very least
+			 * we want to limit the size of the I/O we're about
+			 * to issue
+			 */
+		        rd_ahead_enabled = 0;
+			prefetch_enabled = 0;
+
+			max_rd_size = THROTTLE_MAX_IOSIZE;
+		}
+	        if ((rap = cluster_get_rap(vp)) == NULL)
+		        rd_ahead_enabled = 0;
+		else {
+			extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
+			extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
+		}
+	}
+	if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
+	        /*
+		 * determine if we already have a read-ahead in the pipe courtesy of the
+		 * last read systemcall that was issued...
+		 * if so, pick up it's extent to determine where we should start
+		 * with respect to any read-ahead that might be necessary to 
+		 * garner all the data needed to complete this read systemcall
+		 */
+	        last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
+
+		if (last_ioread_offset < uio->uio_offset)
+		        last_ioread_offset = (off_t)0;
+		else if (last_ioread_offset > last_request_offset)
+		        last_ioread_offset = last_request_offset;
+	} else
+	        last_ioread_offset = (off_t)0;
+
+	while (io_req_size && uio->uio_offset < filesize && retval == 0) {
+
+		max_size = filesize - uio->uio_offset;
+
+		if ((off_t)(io_req_size) < max_size)
+		        io_size = io_req_size;
+		else
+		        io_size = max_size;
+
+		if (!(flags & IO_NOCACHE)) {
+
+		        while (io_size) {
+			        u_int32_t io_resid;
+				u_int32_t io_requested;
+
+				/*
+				 * if we keep finding the pages we need already in the cache, then
+				 * don't bother to call cluster_read_prefetch since it costs CPU cycles
+				 * to determine that we have all the pages we need... once we miss in
+				 * the cache and have issued an I/O, than we'll assume that we're likely
+				 * to continue to miss in the cache and it's to our advantage to try and prefetch
+				 */
+				if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
+				        if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
+					        /*
+						 * we've already issued I/O for this request and
+						 * there's still work to do and
+						 * our prefetch stream is running dry, so issue a
+						 * pre-fetch I/O... the I/O latency will overlap
+						 * with the copying of the data
+						 */
+					        if (size_of_prefetch > max_rd_size)
+						        size_of_prefetch = max_rd_size;
+
+					        size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
+
+						last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
+				
+						if (last_ioread_offset > last_request_offset)
+						        last_ioread_offset = last_request_offset;
+					}
+				}
+				/*
+				 * limit the size of the copy we're about to do so that 
+				 * we can notice that our I/O pipe is running dry and 
+				 * get the next I/O issued before it does go dry
+				 */
+				if (last_ioread_offset && io_size > (max_io_size / 4))
+				        io_resid = (max_io_size / 4);
+				else
+				        io_resid = io_size;
+
+				io_requested = io_resid;
+
+			        retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
+
+				xsize = io_requested - io_resid;
+
+				io_size -= xsize;
+				io_req_size -= xsize;
+
+				if (retval || io_resid)
+				        /*
+					 * if we run into a real error or
+					 * a page that is not in the cache
+					 * we need to leave streaming mode
+					 */
+				        break;
+				
+				if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
+				        /*
+					 * we're already finished the I/O for this read request
+					 * let's see if we should do a read-ahead
+					 */
+				        cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
+				}
+			}
+			if (retval)
+			        break;
+			if (io_size == 0) {
+				if (rap != NULL) {
+				        if (extent.e_addr < rap->cl_lastr)
+					        rap->cl_maxra = 0;
+					rap->cl_lastr = extent.e_addr;
+				}
+			        break;
+			}
+			/*
+			 * recompute max_size since cluster_copy_ubc_data_internal
+			 * may have advanced uio->uio_offset
+			 */
+			max_size = filesize - uio->uio_offset;
+		}
+
+		iostate.io_completed = 0;
+		iostate.io_issued = 0;
+		iostate.io_error = 0;
+		iostate.io_wanted = 0;
+
+		if ( (flags & IO_RETURN_ON_THROTTLE) ) {
+			if (cluster_is_throttled(vp) == THROTTLE_NOW) {
+				if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
+					/*
+					 * we're in the throttle window and at least 1 I/O
+					 * has already been issued by a throttleable thread
+					 * in this window, so return with EAGAIN to indicate
+					 * to the FS issuing the cluster_read call that it
+					 * should now throttle after dropping any locks
+					 */
+					throttle_info_update_by_mount(vp->v_mount);
+
+					retval = EAGAIN;
+					break;
+				}
+			}
+		}
+
+		/*
+		 * compute the size of the upl needed to encompass
+		 * the requested read... limit each call to cluster_io
+		 * to the maximum UPL size... cluster_io will clip if
+		 * this exceeds the maximum io_size for the device,
+		 * make sure to account for 
+		 * a starting offset that's not page aligned
+		 */
+		start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+		upl_f_offset = uio->uio_offset - (off_t)start_offset;
+
+	        if (io_size > max_rd_size)
+		        io_size = max_rd_size;
+
+		upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+
+		if (flags & IO_NOCACHE) {
+		        if (upl_size > max_io_size)
+			        upl_size = max_io_size;
+		} else {
+		        if (upl_size > max_io_size / 4) {
+			        upl_size = max_io_size / 4;
+				upl_size &= ~PAGE_MASK;
+				
+				if (upl_size == 0)
+					upl_size = PAGE_SIZE;
+			}
+		}
+		pages_in_upl = upl_size / PAGE_SIZE;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
+			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
+		kret = ubc_create_upl(vp, 
+				      upl_f_offset,
+				      upl_size,
+				      &upl,
+				      &pl,
+				      UPL_FILE_IO | UPL_SET_LITE);
+		if (kret != KERN_SUCCESS)
+			panic("cluster_read_copy: failed to get pagelist");
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
+			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
+		/*
+		 * scan from the beginning of the upl looking for the first
+		 * non-valid page.... this will become the first page in
+		 * the request we're going to make to 'cluster_io'... if all
+		 * of the pages are valid, we won't call through to 'cluster_io'
+		 */
+		for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
+			if (!upl_valid_page(pl, start_pg))
+				break;
+		}
+
+		/*
+		 * scan from the starting invalid page looking for a valid
+		 * page before the end of the upl is reached, if we 
+		 * find one, then it will be the last page of the request to
+		 * 'cluster_io'
+		 */
+		for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
+			if (upl_valid_page(pl, last_pg))
+				break;
+		}
+
+		if (start_pg < last_pg) {		
+		        /*
+			 * we found a range of 'invalid' pages that must be filled
+			 * if the last page in this range is the last page of the file
+			 * we may have to clip the size of it to keep from reading past
+			 * the end of the last physical block associated with the file
+			 */
+			if (iolock_inited == FALSE) {
+				lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
+				iolock_inited = TRUE;
+			}
+			upl_offset = start_pg * PAGE_SIZE;
+			io_size    = (last_pg - start_pg) * PAGE_SIZE;
+
+			if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
+			        io_size = filesize - (upl_f_offset + upl_offset);
+
+			/*
+			 * issue an asynchronous read to cluster_io
+			 */
+
+			error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
+					   io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
+
+			if (rap) {
+                                if (extent.e_addr < rap->cl_maxra) {
+                                       /*
+                                        * we've just issued a read for a block that should have been
+                                        * in the cache courtesy of the read-ahead engine... something
+                                        * has gone wrong with the pipeline, so reset the read-ahead
+                                        * logic which will cause us to restart from scratch
+                                        */
+                                        rap->cl_maxra = 0;
+                               }
+                        }
+		}
+		if (error == 0) {
+		        /*
+			 * if the read completed successfully, or there was no I/O request
+			 * issued, than copy the data into user land via 'cluster_upl_copy_data'
+			 * we'll first add on any 'valid'
+			 * pages that were present in the upl when we acquired it.
+			 */
+			u_int  val_size;
+
+		        for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
+			        if (!upl_valid_page(pl, uio_last))
+				        break;
+			}
+			if (uio_last < pages_in_upl) {
+			        /*
+				 * there were some invalid pages beyond the valid pages
+				 * that we didn't issue an I/O for, just release them
+				 * unchanged now, so that any prefetch/readahed can
+				 * include them
+				 */
+			        ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
+						    (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
+			}
+
+			/*
+			 * compute size to transfer this round,  if io_req_size is
+			 * still non-zero after this attempt, we'll loop around and
+			 * set up for another I/O.
+			 */
+			val_size = (uio_last * PAGE_SIZE) - start_offset;
+		
+			if (val_size > max_size)
+			        val_size = max_size;
+
+			if (val_size > io_req_size)
+			        val_size = io_req_size;
+
+			if ((uio->uio_offset + val_size) > last_ioread_offset)
+			        last_ioread_offset = uio->uio_offset + val_size;
+
+			if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
+
+			        if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
+				        /*
+					 * if there's still I/O left to do for this request, and...
+					 * we're not in hard throttle mode, and...
+					 * we're close to using up the previous prefetch, then issue a
+					 * new pre-fetch I/O... the I/O latency will overlap
+					 * with the copying of the data
+					 */
+				        if (size_of_prefetch > max_rd_size)
+					        size_of_prefetch = max_rd_size;
+
+					size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
+
+					last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
+				
+					if (last_ioread_offset > last_request_offset)
+					        last_ioread_offset = last_request_offset;
+				}
+
+			} else if ((uio->uio_offset + val_size) == last_request_offset) {
+			        /*
+				 * this transfer will finish this request, so...
+				 * let's try to read ahead if we're in 
+				 * a sequential access pattern and we haven't
+				 * explicitly disabled it
+				 */
+			        if (rd_ahead_enabled)
+					cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
+					
+				if (rap != NULL) {
+				        if (extent.e_addr < rap->cl_lastr)
+					        rap->cl_maxra = 0;
+					rap->cl_lastr = extent.e_addr;
+				}
+			}
+			if (iolock_inited == TRUE)
+				cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
+
+			if (iostate.io_error)
+			        error = iostate.io_error;
+			else {
+			        u_int32_t io_requested;
+
+			        io_requested = val_size;
+
+			        retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
+				
+				io_req_size -= (val_size - io_requested);
+			}
+		} else {
+			if (iolock_inited == TRUE)
+				cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
+		}
+		if (start_pg < last_pg) {
+		        /*
+			 * compute the range of pages that we actually issued an I/O for
+			 * and either commit them as valid if the I/O succeeded
+			 * or abort them if the I/O failed or we're not supposed to 
+			 * keep them in the cache
+			 */
+		        io_size = (last_pg - start_pg) * PAGE_SIZE;
+
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
+
+			if (error || (flags & IO_NOCACHE))
+			        ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
+						    UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+			else {
+				int	commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
+
+				if (take_reference)
+					commit_flags |= UPL_COMMIT_INACTIVATE;
+				else
+					commit_flags |= UPL_COMMIT_SPECULATE;
+
+			        ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
+			}
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
+		}
+		if ((last_pg - start_pg) < pages_in_upl) {
+		        /*
+			 * the set of pages that we issued an I/O for did not encompass
+			 * the entire upl... so just release these without modifying
+			 * their state
+			 */
+			if (error)
+				ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+			else {
+
+				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
+					     upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
+
+				/*
+				 * handle any valid pages at the beginning of
+				 * the upl... release these appropriately
+				 */
+				cluster_read_upl_release(upl, 0, start_pg, take_reference);
+
+				/*
+				 * handle any valid pages immediately after the
+				 * pages we issued I/O for... ... release these appropriately
+				 */
+				cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
+
+				KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
+			}
+		}
+		if (retval == 0)
+		        retval = error;
+
+		if (io_req_size) {
+		        if (cluster_is_throttled(vp)) {
+				/*
+				 * we're in the throttle window, at the very least
+				 * we want to limit the size of the I/O we're about
+				 * to issue
+				 */
+			        rd_ahead_enabled = 0;
+				prefetch_enabled = 0;
+				max_rd_size = THROTTLE_MAX_IOSIZE;
+			} else {
+			        if (max_rd_size == THROTTLE_MAX_IOSIZE) {
+				        /*
+					 * coming out of throttled state
+					 */
+					if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
+						if (rap != NULL)
+							rd_ahead_enabled = 1;
+						prefetch_enabled = 1;
+					}
+					max_rd_size = max_prefetch;
+					last_ioread_offset = 0;
+				}
+			}
+		}
+	}
+	if (iolock_inited == TRUE) {
+		/*
+		 * cluster_io returned an error after it
+		 * had already issued some I/O.  we need
+		 * to wait for that I/O to complete before
+		 * we can destroy the iostate mutex...
+		 * 'retval' already contains the early error
+		 * so no need to pick it up from iostate.io_error
+		 */
+		cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
+
+		lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+	}
+	if (rap != NULL) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
+			     (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
+
+	        lck_mtx_unlock(&rap->cl_lockr);
+	} else {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
+			     (int)uio->uio_offset, io_req_size, 0, retval, 0);
+	}
+
+	return (retval);
+}
+
+/*
+ * We don't want another read/write lock for every vnode in the system
+ * so we keep a hash of them here.  There should never be very many of
+ * these around at any point in time.
+ */
+cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type)
+{
+	struct cl_direct_read_locks *head
+		= &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp)
+								% CL_DIRECT_READ_LOCK_BUCKETS];
+
+	struct cl_direct_read_lock *lck, *new_lck = NULL;
+
+	for (;;) {
+		lck_spin_lock(&cl_direct_read_spin_lock);
+
+		LIST_FOREACH(lck, head, chain) {
+			if (lck->vp == vp) {
+				++lck->ref_count;
+				lck_spin_unlock(&cl_direct_read_spin_lock);
+				if (new_lck) {
+					// Someone beat us to it, ditch the allocation
+					lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp);
+					FREE(new_lck, M_TEMP);
+				}
+				lck_rw_lock(&lck->rw_lock, type);
+				return lck;
+			}
+		}
+
+		if (new_lck) {
+			// Use the lock we allocated
+			LIST_INSERT_HEAD(head, new_lck, chain);
+			lck_spin_unlock(&cl_direct_read_spin_lock);
+			lck_rw_lock(&new_lck->rw_lock, type);
+			return new_lck;
+		}
+
+		lck_spin_unlock(&cl_direct_read_spin_lock);
+
+		// Allocate a new lock
+		MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck),
+			   M_TEMP, M_WAITOK);
+		lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr);
+		new_lck->vp = vp;
+		new_lck->ref_count = 1;
+
+		// Got to go round again
+	}
+}
+
+void cluster_unlock_direct_read(cl_direct_read_lock_t *lck)
+{
+	lck_rw_done(&lck->rw_lock);
+
+	lck_spin_lock(&cl_direct_read_spin_lock);
+	if (lck->ref_count == 1) {
+		LIST_REMOVE(lck, chain);
+		lck_spin_unlock(&cl_direct_read_spin_lock);
+		lck_rw_destroy(&lck->rw_lock, cl_mtx_grp);
+		FREE(lck, M_TEMP);
+	} else {
+		--lck->ref_count;
+		lck_spin_unlock(&cl_direct_read_spin_lock);
+	}
+}
+
+static int
+cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
+		    int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	upl_t            upl;
+	upl_page_info_t  *pl;
+        off_t		 max_io_size;
+	vm_offset_t      upl_offset, vector_upl_offset = 0;
+	upl_size_t	 upl_size, vector_upl_size = 0;
+	vm_size_t	 upl_needed_size;
+	unsigned int	 pages_in_pl;
+	upl_control_flags_t upl_flags;
+	kern_return_t    kret;
+	unsigned int     i;
+	int              force_data_sync;
+	int              retval = 0;
+	int		 no_zero_fill = 0;
+	int              io_flag = 0;
+	int		 misaligned = 0;
+	struct clios     iostate;
+	user_addr_t	 iov_base;
+	u_int32_t	 io_req_size;
+	u_int32_t	 offset_in_file;
+	u_int32_t	 offset_in_iovbase;
+	u_int32_t	 io_size;
+	u_int32_t	 io_min;
+        u_int32_t	 xsize;
+	u_int32_t	 devblocksize;
+	u_int32_t	 mem_alignment_mask;
+	u_int32_t	 max_upl_size;
+	u_int32_t        max_rd_size;
+	u_int32_t        max_rd_ahead;
+	u_int32_t        max_vector_size;
+	boolean_t	 strict_uncached_IO = FALSE;
+	boolean_t	 io_throttled = FALSE;
+
+	u_int32_t	 vector_upl_iosize = 0;
+	int		 issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
+	off_t		 v_upl_uio_offset = 0;
+	int		 vector_upl_index=0;
+	upl_t		 vector_upl = NULL;
+	cl_direct_read_lock_t *lock = NULL;
+
+	user_addr_t	 orig_iov_base = 0;
+	user_addr_t	 last_iov_base = 0;
+	user_addr_t	 next_iov_base = 0;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
+		     (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
+
+	max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
+
+	max_rd_size = max_upl_size;
+	max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
+
+	io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
+
+	if (flags & IO_PASSIVE)
+		io_flag |= CL_PASSIVE;
+
+	if (flags & IO_ENCRYPTED) {
+		io_flag |= CL_RAW_ENCRYPTED;
+	}
+
+	if (flags & IO_NOCACHE) {
+		io_flag |= CL_NOCACHE;
+	}
+
+	if (flags & IO_SKIP_ENCRYPTION)
+		io_flag |= CL_ENCRYPTED;
+
+	iostate.io_completed = 0;
+	iostate.io_issued = 0;
+	iostate.io_error = 0;
+	iostate.io_wanted = 0;
+
+	lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
+	devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
+	mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
+		     (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
+
+	if (devblocksize == 1) {
+               /*
+                * the AFP client advertises a devblocksize of 1
+                * however, its BLOCKMAP routine maps to physical
+                * blocks that are PAGE_SIZE in size...
+                * therefore we can't ask for I/Os that aren't page aligned
+                * or aren't multiples of PAGE_SIZE in size
+                * by setting devblocksize to PAGE_SIZE, we re-instate
+                * the old behavior we had before the mem_alignment_mask
+                * changes went in...
+                */
+               devblocksize = PAGE_SIZE;
+	}
+
+	strict_uncached_IO = ubc_strict_uncached_IO(vp);
+
+	orig_iov_base = uio_curriovbase(uio);
+	last_iov_base = orig_iov_base;
+
+next_dread:
+	io_req_size = *read_length;
+	iov_base = uio_curriovbase(uio);
+
+	offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
+	offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
+
+	if (offset_in_file || offset_in_iovbase) {
+	        /*
+		 * one of the 2 important offsets is misaligned
+		 * so fire an I/O through the cache for this entire vector
+		 */
+		misaligned = 1;
+	}
+	if (iov_base & (devblocksize - 1)) {
+	        /*
+		 * the offset in memory must be on a device block boundary
+		 * so that we can guarantee that we can generate an
+		 * I/O that ends on a page boundary in cluster_io
+		 */
+		misaligned = 1;
+    }
+
+	max_io_size = filesize - uio->uio_offset;
+
+	/* 
+	 * The user must request IO in aligned chunks.  If the 
+	 * offset into the file is bad, or the userland pointer 
+	 * is non-aligned, then we cannot service the encrypted IO request.
+	 */
+	if (flags & IO_ENCRYPTED) {
+		if (misaligned || (io_req_size & (devblocksize - 1)))
+			retval = EINVAL;
+
+		max_io_size = roundup(max_io_size, devblocksize);
+	}
+
+	if ((off_t)io_req_size > max_io_size)
+	        io_req_size = max_io_size;
+
+	/*
+	 * When we get to this point, we know...
+	 *  -- the offset into the file is on a devblocksize boundary
+	 */
+
+	while (io_req_size && retval == 0) {
+	        u_int32_t io_start;
+
+	        if (cluster_is_throttled(vp)) {
+			/*
+			 * we're in the throttle window, at the very least
+			 * we want to limit the size of the I/O we're about
+			 * to issue
+			 */
+		        max_rd_size  = THROTTLE_MAX_IOSIZE;
+			max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
+			max_vector_size = THROTTLE_MAX_IOSIZE;
+		} else {
+		        max_rd_size  = max_upl_size;
+			max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
+			max_vector_size = MAX_VECTOR_UPL_SIZE;
+		}
+		io_start = io_size = io_req_size;
+
+		/*
+		 * First look for pages already in the cache
+		 * and move them to user space.  But only do this
+		 * check if we are not retrieving encrypted data directly
+		 * from the filesystem;  those blocks should never
+		 * be in the UBC. 
+		 *
+		 * cluster_copy_ubc_data returns the resid
+		 * in io_size
+		 */
+		if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
+			retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
+		}
+		/*
+		 * calculate the number of bytes actually copied
+		 * starting size - residual
+		 */
+		xsize = io_start - io_size;
+
+		io_req_size -= xsize;
+
+		if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
+			/*
+			 * We found something in the cache or we have an iov_base that's not
+			 * page-aligned.
+			 * 
+			 * Issue all I/O's that have been collected within this Vectored UPL.
+			 */
+			if(vector_upl_index) {
+				retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+				reset_vector_run_state();
+			}
+			
+			if(xsize)
+				useVectorUPL = 0;
+
+		       /*
+			* After this point, if we are using the Vector UPL path and the base is
+			* not page-aligned then the UPL with that base will be the first in the vector UPL.
+			*/
+		}
+
+		/*
+		 * check to see if we are finished with this request.
+		 *
+		 * If we satisfied this IO already, then io_req_size will be 0.
+		 * Otherwise, see if the IO was mis-aligned and needs to go through 
+		 * the UBC to deal with the 'tail'.
+		 *
+		 */
+		if (io_req_size == 0 || (misaligned)) {
+		        /*
+			 * see if there's another uio vector to
+			 * process that's of type IO_DIRECT
+			 *
+			 * break out of while loop to get there
+			 */
+		        break;
+		}
+		/*
+		 * assume the request ends on a device block boundary
+		 */
+		io_min = devblocksize;
+
+		/*
+		 * we can handle I/O's in multiples of the device block size
+		 * however, if io_size isn't a multiple of devblocksize we
+		 * want to clip it back to the nearest page boundary since
+		 * we are going to have to go through cluster_read_copy to
+		 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
+		 * multiple, we avoid asking the drive for the same physical
+		 * blocks twice.. once for the partial page at the end of the
+		 * request and a 2nd time for the page we read into the cache
+		 * (which overlaps the end of the direct read) in order to 
+		 * get at the overhang bytes
+		 */
+		if (io_size & (devblocksize - 1)) {
+			assert(!(flags & IO_ENCRYPTED));
+			/*
+			 * Clip the request to the previous page size boundary
+			 * since request does NOT end on a device block boundary
+			 */
+			io_size &= ~PAGE_MASK;
+			io_min = PAGE_SIZE;
+		}
+		if (retval || io_size < io_min) {
+		        /*
+			 * either an error or we only have the tail left to
+			 * complete via the copy path...
+			 * we may have already spun some portion of this request
+			 * off as async requests... we need to wait for the I/O
+			 * to complete before returning
+			 */
+		        goto wait_for_dreads;
+		}
+
+		/*
+		 * Don't re-check the UBC data if we are looking for uncached IO
+		 * or asking for encrypted blocks.
+		 */
+		if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
+
+			if ((xsize = io_size) > max_rd_size)
+				xsize = max_rd_size;
+
+			io_size = 0;
+
+			if (!lock) {
+				/*
+				 * We hold a lock here between the time we check the
+				 * cache and the time we issue I/O.  This saves us
+				 * from having to lock the pages in the cache.  Not
+				 * all clients will care about this lock but some
+				 * clients may want to guarantee stability between
+				 * here and when the I/O is issued in which case they
+				 * will take the lock exclusively.
+				 */
+				lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED);
+			}
+
+			ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
+
+			if (io_size == 0) {
+				/*
+				 * a page must have just come into the cache
+				 * since the first page in this range is no
+				 * longer absent, go back and re-evaluate
+				 */
+				continue;
+			}
+		}
+		if ( (flags & IO_RETURN_ON_THROTTLE) ) {
+			if (cluster_is_throttled(vp) == THROTTLE_NOW) {
+				if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
+					/*
+					 * we're in the throttle window and at least 1 I/O
+					 * has already been issued by a throttleable thread
+					 * in this window, so return with EAGAIN to indicate
+					 * to the FS issuing the cluster_read call that it
+					 * should now throttle after dropping any locks
+					 */
+					throttle_info_update_by_mount(vp->v_mount);
+
+					io_throttled = TRUE;
+					goto wait_for_dreads;
+				}
+			}
+		}
+		if (io_size > max_rd_size)
+			io_size = max_rd_size;
+
+		iov_base = uio_curriovbase(uio);
+
+		upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
+		upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
+			     (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
+
+		if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
+		        no_zero_fill = 1;
+		else
+		        no_zero_fill = 0;
+
+		vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+		for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
+		        pages_in_pl = 0;
+			upl_size = upl_needed_size;
+			upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+				  | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
+			if (no_zero_fill)
+			        upl_flags |= UPL_NOZEROFILL;
+			if (force_data_sync)
+			        upl_flags |= UPL_FORCE_DATA_SYNC;
+
+			kret = vm_map_create_upl(map,
+						 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+						 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
+
+			if (kret != KERN_SUCCESS) {
+			        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
+					     (int)upl_offset, upl_size, io_size, kret, 0);
+				/*
+				 * failed to get pagelist
+				 *
+				 * we may have already spun some portion of this request
+				 * off as async requests... we need to wait for the I/O
+				 * to complete before returning
+				 */
+				goto wait_for_dreads;
+			}
+			pages_in_pl = upl_size / PAGE_SIZE;
+			pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+
+			for (i = 0; i < pages_in_pl; i++) {
+			        if (!upl_page_present(pl, i))
+				        break;		  
+			}
+			if (i == pages_in_pl)
+			        break;
+
+			ubc_upl_abort(upl, 0);
+		}
+		if (force_data_sync >= 3) {
+		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
+				     (int)upl_offset, upl_size, io_size, kret, 0);
+		  
+			goto wait_for_dreads;
+		}
+		/*
+		 * Consider the possibility that upl_size wasn't satisfied.
+		 */
+		if (upl_size < upl_needed_size) {
+		        if (upl_size && upl_offset == 0)
+			        io_size = upl_size;
+			else
+			        io_size = 0;
+		}
+		if (io_size == 0) {
+			ubc_upl_abort(upl, 0);
+			goto wait_for_dreads;
+		}
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
+			     (int)upl_offset, upl_size, io_size, kret, 0);
+
+		if(useVectorUPL) {
+			vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
+			if(end_off) 
+				issueVectorUPL = 1;
+			/*
+			 * After this point, if we are using a vector UPL, then
+			 * either all the UPL elements end on a page boundary OR
+			 * this UPL is the last element because it does not end
+			 * on a page boundary.
+			 */
+		}
+
+		/*
+		 * request asynchronously so that we can overlap
+		 * the preparation of the next I/O
+		 * if there are already too many outstanding reads
+		 * wait until some have completed before issuing the next read
+		 */
+		cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
+
+		if (iostate.io_error) {
+		        /*
+			 * one of the earlier reads we issued ran into a hard error
+			 * don't issue any more reads, cleanup the UPL
+			 * that was just created but not used, then
+			 * go wait for any other reads to complete before
+			 * returning the error to the caller
+			 */
+			ubc_upl_abort(upl, 0);
+
+		        goto wait_for_dreads;
+	        }
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
+			     upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
+
+		if(!useVectorUPL) {
+			if (no_zero_fill)
+		        	io_flag &= ~CL_PRESERVE;
+			else
+		        	io_flag |= CL_PRESERVE;
+		
+			retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+
+		} else {
+
+			if(!vector_upl_index) {
+				vector_upl = vector_upl_create(upl_offset);
+				v_upl_uio_offset = uio->uio_offset;
+				vector_upl_offset = upl_offset;
+			}
+
+			vector_upl_set_subupl(vector_upl,upl, upl_size);
+			vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
+			vector_upl_index++;
+			vector_upl_size += upl_size;
+			vector_upl_iosize += io_size;
+			
+			if(issueVectorUPL || vector_upl_index ==  MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
+				retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize,  io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+				reset_vector_run_state();	
+			}
+		}
+		last_iov_base = iov_base + io_size;
+
+		if (lock) {
+			// We don't need to wait for the I/O to complete
+			cluster_unlock_direct_read(lock);
+			lock = NULL;
+		}
+
+		/*
+		 * update the uio structure
+		 */
+		if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
+			uio_update(uio, (user_size_t)max_io_size);
+		}
+		else {
+			uio_update(uio, (user_size_t)io_size);
+		}
+
+		io_req_size -= io_size;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
+			     upl, (int)uio->uio_offset, io_req_size, retval, 0);
+
+	} /* end while */
+
+	if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
+
+	        retval = cluster_io_type(uio, read_type, read_length, 0);
+	  
+		if (retval == 0 && *read_type == IO_DIRECT) {
+
+		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
+				     (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
+
+			goto next_dread;
+		}
+	}
+
+wait_for_dreads:
+
+	if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
+		retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize,  io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
+		reset_vector_run_state();
+	}
+
+	// We don't need to wait for the I/O to complete
+	if (lock)
+		cluster_unlock_direct_read(lock);
+
+	/*
+	 * make sure all async reads that are part of this stream
+	 * have completed before we return
+	 */
+	cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
+
+	if (iostate.io_error)
+	        retval = iostate.io_error;
+
+	lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+	if (io_throttled == TRUE && retval == 0)
+		retval = EAGAIN;
+
+	for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) {
+		/*
+		 * This is specifically done for pmap accounting purposes.
+		 * vm_pre_fault() will call vm_fault() to enter the page into
+		 * the pmap if there isn't _a_ physical page for that VA already.
+		 */
+		vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK));
+	}
+
+	if (io_req_size && retval == 0) {
+	        /*
+		 * we couldn't handle the tail of this request in DIRECT mode
+		 * so fire it through the copy path
+		 */
+	        retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
+
+		*read_type = IO_UNKNOWN;
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
+		     (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
+
+	return (retval);
+}
+
+
+static int
+cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
+		    int (*callback)(buf_t, void *), void *callback_arg, int flags)
+{
+	upl_page_info_t *pl;
+	upl_t            upl[MAX_VECTS];
+	vm_offset_t      upl_offset;
+	addr64_t	 dst_paddr = 0;
+	user_addr_t	 iov_base;
+	off_t            max_size;
+	upl_size_t	 upl_size;
+	vm_size_t	 upl_needed_size;
+	mach_msg_type_number_t	pages_in_pl;
+	upl_control_flags_t upl_flags;
+	kern_return_t    kret;
+	struct clios     iostate;
+	int              error= 0;
+	int		 cur_upl = 0;
+	int		 num_upl = 0;
+	int		 n;
+        u_int32_t	 xsize;
+	u_int32_t	 io_size;
+	u_int32_t	 devblocksize;
+	u_int32_t	 mem_alignment_mask;
+	u_int32_t	 tail_size = 0;
+	int              bflag;
+
+	if (flags & IO_PASSIVE)
+		bflag = CL_PASSIVE;
+	else
+		bflag = 0;
+	
+	if (flags & IO_NOCACHE)
+		bflag |= CL_NOCACHE;
+	
+	/*
+	 * When we enter this routine, we know
+	 *  -- the read_length will not exceed the current iov_len
+	 *  -- the target address is physically contiguous for read_length
+	 */
+	cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC);
+
+	devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
+	mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
+
+	iostate.io_completed = 0;
+	iostate.io_issued = 0;
+	iostate.io_error = 0;
+	iostate.io_wanted = 0;
+
+	lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
+next_cread:
+	io_size = *read_length;
+
+	max_size = filesize - uio->uio_offset;
+
+	if (io_size > max_size)
+	        io_size = max_size;
+
+	iov_base = uio_curriovbase(uio);
+
+	upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
+	upl_needed_size = upl_offset + io_size;
+
+	pages_in_pl = 0;
+	upl_size = upl_needed_size;
+	upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+		   | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
+
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
+		     (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
+
+	vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+	kret = vm_map_get_upl(map,
+			      (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+			      &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
+		     (int)upl_offset, upl_size, io_size, kret, 0);
+
+	if (kret != KERN_SUCCESS) {
+	        /*
+		 * failed to get pagelist
+		 */
+	        error = EINVAL;
+		goto wait_for_creads;
+	}
+	num_upl++;
+
+	if (upl_size < upl_needed_size) {
+	        /*
+		 * The upl_size wasn't satisfied.
+		 */
+	        error = EINVAL;
+		goto wait_for_creads;
+	}
+	pl = ubc_upl_pageinfo(upl[cur_upl]);
+
+	dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
+
+	while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
+	        u_int32_t   head_size;
+
+		head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
+
+		if (head_size > io_size)
+		        head_size = io_size;
+
+		error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
+
+		if (error)
+			goto wait_for_creads;
+
+		upl_offset += head_size;
+		dst_paddr  += head_size;
+		io_size    -= head_size;
+
+		iov_base   += head_size;
+	}
+	if ((u_int32_t)iov_base & mem_alignment_mask) {
+	        /*
+		 * request doesn't set up on a memory boundary
+		 * the underlying DMA engine can handle...
+		 * return an error instead of going through
+		 * the slow copy path since the intent of this
+		 * path is direct I/O to device memory
+		 */
+	        error = EINVAL;
+		goto wait_for_creads;
+	}
+
+	tail_size = io_size & (devblocksize - 1);
+
+	io_size  -= tail_size;
+
+	while (io_size && error == 0) {
+
+		if (io_size > MAX_IO_CONTIG_SIZE)
+		        xsize = MAX_IO_CONTIG_SIZE;
+		else
+		        xsize = io_size;
+		/*
+		 * request asynchronously so that we can overlap
+		 * the preparation of the next I/O... we'll do
+		 * the commit after all the I/O has completed
+		 * since its all issued against the same UPL
+		 * if there are already too many outstanding reads
+		 * wait until some have completed before issuing the next
+		 */
+		cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
+
+		if (iostate.io_error) {
+		        /*
+			 * one of the earlier reads we issued ran into a hard error
+			 * don't issue any more reads...
+			 * go wait for any other reads to complete before
+			 * returning the error to the caller
+			 */
+		        goto wait_for_creads;
+		}
+	        error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, 
+				   CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
+				   (buf_t)NULL, &iostate, callback, callback_arg);
+	        /*
+		 * The cluster_io read was issued successfully,
+		 * update the uio structure
+		 */
+		if (error == 0) {
+		        uio_update(uio, (user_size_t)xsize);
+
+			dst_paddr  += xsize;
+			upl_offset += xsize;
+			io_size    -= xsize;
+		}
+	}
+	if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
+
+	        error = cluster_io_type(uio, read_type, read_length, 0);
+	  
+		if (error == 0 && *read_type == IO_CONTIG) {
+		        cur_upl++;
+			goto next_cread;
+		}
+	} else
+	        *read_type = IO_UNKNOWN;
+
+wait_for_creads:
+	/*
+	 * make sure all async reads that are part of this stream
+	 * have completed before we proceed
+	 */
+	cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
+
+	if (iostate.io_error)
+	        error = iostate.io_error;
+
+	lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+	if (error == 0 && tail_size)
+	        error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
+
+	for (n = 0; n < num_upl; n++)
+	        /*
+		 * just release our hold on each physically contiguous
+		 * region without changing any state
+		 */
+	        ubc_upl_abort(upl[n], 0);
+	
+	return (error);
+}
+
+
+static int
+cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
+{
+        user_size_t	 iov_len;
+  	user_addr_t	 iov_base = 0;
+	upl_t            upl;
+	upl_size_t       upl_size;
+	upl_control_flags_t upl_flags;
+	int		 retval = 0;
+
+        /*
+	 * skip over any emtpy vectors
+	 */
+        uio_update(uio, (user_size_t)0);
+
+	iov_len = uio_curriovlen(uio);
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
+
+	if (iov_len) {
+	        iov_base = uio_curriovbase(uio);
+	        /*
+		 * make sure the size of the vector isn't too big...
+		 * internally, we want to handle all of the I/O in
+		 * chunk sizes that fit in a 32 bit int
+		 */
+	        if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
+		        upl_size = MAX_IO_REQUEST_SIZE;
+		else
+		        upl_size = (u_int32_t)iov_len;
+
+		upl_flags = UPL_QUERY_OBJECT_TYPE | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
+
+		vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+		if ((vm_map_get_upl(map,
+				    (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+				    &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
+		        /*
+			 * the user app must have passed in an invalid address
+			 */
+		        retval = EFAULT;
+		}
+		if (upl_size == 0)
+		        retval = EFAULT;
+
+		*io_length = upl_size;
+
+		if (upl_flags & UPL_PHYS_CONTIG)
+		        *io_type = IO_CONTIG;
+		else if (iov_len >= min_length)
+		        *io_type = IO_DIRECT;
+		else
+		        *io_type = IO_COPY;
+	} else {
+	        /*
+		 * nothing left to do for this uio
+		 */
+	        *io_length = 0;
+		*io_type   = IO_UNKNOWN;
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
+
+	return (retval);
+}
+
+
+/*
+ * generate advisory I/O's in the largest chunks possible
+ * the completed pages will be released into the VM cache
+ */
+int
+advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
+{
+        return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
+}
+
+int
+advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
+{
+	upl_page_info_t *pl;
+	upl_t            upl;
+	vm_offset_t      upl_offset;
+	int	         upl_size;
+	off_t 	         upl_f_offset;
+	int		 start_offset;
+	int	         start_pg;
+	int		 last_pg;
+	int              pages_in_upl;
+	off_t            max_size;
+	int              io_size;
+	kern_return_t    kret;
+	int              retval = 0;
+	int              issued_io;
+	int              skip_range;
+	uint32_t	 max_io_size;
+
+
+	if ( !UBCINFOEXISTS(vp))
+		return(EINVAL);
+
+	if (resid < 0)
+		return(EINVAL);
+
+	max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
+
+	if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
+		if (max_io_size > speculative_prefetch_max_iosize)
+			max_io_size = speculative_prefetch_max_iosize;
+	}
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
+		     (int)f_offset, resid, (int)filesize, 0, 0);
+
+	while (resid && f_offset < filesize && retval == 0) {
+		/*
+		 * compute the size of the upl needed to encompass
+		 * the requested read... limit each call to cluster_io
+		 * to the maximum UPL size... cluster_io will clip if
+		 * this exceeds the maximum io_size for the device,
+		 * make sure to account for 
+		 * a starting offset that's not page aligned
+		 */
+		start_offset = (int)(f_offset & PAGE_MASK_64);
+		upl_f_offset = f_offset - (off_t)start_offset;
+		max_size     = filesize - f_offset;
+
+		if (resid < max_size)
+		        io_size = resid;
+		else
+		        io_size = max_size;
+
+		upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+	        if ((uint32_t)upl_size > max_io_size)
+		        upl_size = max_io_size;
+
+		skip_range = 0;
+		/*
+		 * return the number of contiguously present pages in the cache
+		 * starting at upl_f_offset within the file
+		 */
+		ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
+
+		if (skip_range) {
+		        /*
+			 * skip over pages already present in the cache
+			 */
+		        io_size = skip_range - start_offset;
+
+		        f_offset += io_size;
+			resid    -= io_size;
+
+			if (skip_range == upl_size)
+			        continue;
+			/*
+			 * have to issue some real I/O
+			 * at this point, we know it's starting on a page boundary
+			 * because we've skipped over at least the first page in the request
+			 */
+			start_offset = 0;
+			upl_f_offset += skip_range;
+			upl_size     -= skip_range;
+		}
+		pages_in_upl = upl_size / PAGE_SIZE;
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
+			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
+		kret = ubc_create_upl(vp, 
+				      upl_f_offset,
+				      upl_size,
+				      &upl,
+				      &pl,
+				      UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
+		if (kret != KERN_SUCCESS)
+		        return(retval);
+		issued_io = 0;
+
+		/*
+		 * before we start marching forward, we must make sure we end on 
+		 * a present page, otherwise we will be working with a freed
+		 * upl
+		 */
+		for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
+		        if (upl_page_present(pl, last_pg))
+			        break;
+		}
+		pages_in_upl = last_pg + 1;
+
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
+			     upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
+
+		for (last_pg = 0; last_pg < pages_in_upl; ) {
+		        /*
+			 * scan from the beginning of the upl looking for the first
+			 * page that is present.... this will become the first page in
+			 * the request we're going to make to 'cluster_io'... if all
+			 * of the pages are absent, we won't call through to 'cluster_io'
+			 */
+		        for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
+			        if (upl_page_present(pl, start_pg))
+				        break;
+			}
+
+			/*
+			 * scan from the starting present page looking for an absent
+			 * page before the end of the upl is reached, if we 
+			 * find one, then it will terminate the range of pages being
+			 * presented to 'cluster_io'
+			 */
+			for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
+			        if (!upl_page_present(pl, last_pg))
+				        break;
+			}
+
+			if (last_pg > start_pg) {		
+			        /*
+				 * we found a range of pages that must be filled
+				 * if the last page in this range is the last page of the file
+				 * we may have to clip the size of it to keep from reading past
+				 * the end of the last physical block associated with the file
+				 */
+			        upl_offset = start_pg * PAGE_SIZE;
+				io_size    = (last_pg - start_pg) * PAGE_SIZE;
+
+				if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
+				        io_size = filesize - (upl_f_offset + upl_offset);
+
+				/*
+				 * issue an asynchronous read to cluster_io
+				 */
+				retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
+						    CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
+
+				issued_io = 1;
+			}
+		}
+		if (issued_io == 0)
+		        ubc_upl_abort(upl, 0);
+
+		io_size = upl_size - start_offset;
+		
+		if (io_size > resid)
+		        io_size = resid;
+		f_offset += io_size;
+		resid    -= io_size;
+	}
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
+		     (int)f_offset, resid, retval, 0, 0);
+
+	return(retval);
+}
+
+
+int
+cluster_push(vnode_t vp, int flags)
+{
+        return cluster_push_ext(vp, flags, NULL, NULL);
+}
+
+
+int
+cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	return cluster_push_err(vp, flags, callback, callback_arg, NULL);
+}
+
+/* write errors via err, but return the number of clusters written */
+int
+cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
+{
+        int	retval;
+	int	my_sparse_wait = 0;
+	struct	cl_writebehind *wbp;
+
+	if (err)
+		*err = 0;
+
+	if ( !UBCINFOEXISTS(vp)) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0);
+	        return (0);
+	}
+	/* return if deferred write is set */
+	if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
+		return (0);
+	}
+	if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0);
+	        return (0);
+	}
+	if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
+	        lck_mtx_unlock(&wbp->cl_lockw);
+
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0);
+		return(0);
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
+		     wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
+
+	/*
+	 * if we have an fsync in progress, we don't want to allow any additional
+	 * sync/fsync/close(s) to occur until it finishes.
+	 * note that its possible for writes to continue to occur to this file
+	 * while we're waiting and also once the fsync starts to clean if we're
+	 * in the sparse map case
+	 */
+	while (wbp->cl_sparse_wait) {
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
+
+		msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
+	}
+	if (flags & IO_SYNC) {
+		my_sparse_wait = 1;
+		wbp->cl_sparse_wait = 1;
+
+		/*
+		 * this is an fsync (or equivalent)... we must wait for any existing async
+		 * cleaning operations to complete before we evaulate the current state
+		 * and finish cleaning... this insures that all writes issued before this
+		 * fsync actually get cleaned to the disk before this fsync returns
+		 */
+		while (wbp->cl_sparse_pushes) {
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
+
+			msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
+
+			KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
+		}
+	}
+	if (wbp->cl_scmap) {
+		void	*scmap;
+
+		if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
+
+			scmap = wbp->cl_scmap;
+			wbp->cl_scmap = NULL;
+
+			wbp->cl_sparse_pushes++;
+
+			lck_mtx_unlock(&wbp->cl_lockw);
+
+			retval = sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
+
+			lck_mtx_lock(&wbp->cl_lockw);
+
+			wbp->cl_sparse_pushes--;
+			
+			if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
+				wakeup((caddr_t)&wbp->cl_sparse_pushes);
+		} else {
+			retval = sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
+		}
+		if (err)
+			*err = retval;
+		retval = 1;
+	} else {
+		retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, err);
+	}
+	lck_mtx_unlock(&wbp->cl_lockw);
+
+	if (flags & IO_SYNC)
+	        (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
+
+	if (my_sparse_wait) {
+		/*
+		 * I'm the owner of the serialization token
+		 * clear it and wakeup anyone that is waiting
+		 * for me to finish
+		 */
+		lck_mtx_lock(&wbp->cl_lockw);
+
+		wbp->cl_sparse_wait = 0;
+		wakeup((caddr_t)&wbp->cl_sparse_wait);
+
+		lck_mtx_unlock(&wbp->cl_lockw);
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
+		     wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
+
+	return (retval);
+}
+
+
+__private_extern__ void
+cluster_release(struct ubc_info *ubc)
+{
+        struct cl_writebehind *wbp;
+	struct cl_readahead   *rap;
+
+	if ((wbp = ubc->cl_wbehind)) {
+
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
+
+		if (wbp->cl_scmap)
+		        vfs_drt_control(&(wbp->cl_scmap), 0);
+	} else {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
+	}
+
+	rap = ubc->cl_rahead;
+
+	if (wbp != NULL) {
+	        lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
+	        FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
+	}
+	if ((rap = ubc->cl_rahead)) {
+	        lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
+	        FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
+	}
+	ubc->cl_rahead  = NULL;
+	ubc->cl_wbehind = NULL;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
+}
+
+
+static int
+cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
+{
+        int cl_index;
+	int cl_index1;
+	int min_index;
+        int cl_len;
+	int cl_pushed = 0;
+	struct cl_wextent l_clusters[MAX_CLUSTERS];
+	u_int  max_cluster_pgcount;
+	int error = 0;
+
+	max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
+	/*
+	 * the write behind context exists and has
+	 * already been locked...
+	 */
+	if (wbp->cl_number == 0)
+	        /*
+		 * no clusters to push
+		 * return number of empty slots
+		 */
+	        return (MAX_CLUSTERS);
+	 
+	/*
+	 * make a local 'sorted' copy of the clusters
+	 * and clear wbp->cl_number so that new clusters can
+	 * be developed
+	 */
+	for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
+	        for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
+		        if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
+			        continue;
+			if (min_index == -1)
+			        min_index = cl_index1;
+			else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
+			        min_index = cl_index1;
+		}
+		if (min_index == -1)
+		        break;
+
+	        l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
+		l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
+		l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
+
+	        wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
+	}
+	wbp->cl_number = 0;
+
+	cl_len = cl_index;
+
+	/* skip switching to the sparse cluster mechanism if on diskimage */
+	if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) &&
+	    !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) {
+		int   i;
+		
+		/*
+		 * determine if we appear to be writing the file sequentially
+		 * if not, by returning without having pushed any clusters
+		 * we will cause this vnode to be pushed into the sparse cluster mechanism
+		 * used for managing more random I/O patterns
+		 *
+		 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
+		 * that's why we're in try_push with PUSH_DELAY...
+		 *
+		 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
+		 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
+		 * so we can just make a simple pass through, up to, but not including the last one...
+		 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
+		 * are sequential
+		 * 
+		 * we let the last one be partial as long as it was adjacent to the previous one...
+		 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
+		 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
+		 */
+		for (i = 0; i < MAX_CLUSTERS - 1; i++) {
+		        if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
+			        goto dont_try;
+			if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
+		                goto dont_try;
+		}
+	}
+	for (cl_index = 0; cl_index < cl_len; cl_index++) {
+	        int	flags;
+		struct	cl_extent cl;
+		int retval;
+
+		flags = io_flags & (IO_PASSIVE|IO_CLOSE);
+
+	        /*
+		 * try to push each cluster in turn...
+		 */
+		if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
+		        flags |= IO_NOCACHE;
+
+		if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
+		        flags |= IO_PASSIVE;
+
+		if (push_flag & PUSH_SYNC)
+		        flags |= IO_SYNC;
+
+		cl.b_addr = l_clusters[cl_index].b_addr;
+		cl.e_addr = l_clusters[cl_index].e_addr;
+
+		retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
+
+		if (error == 0 && retval)
+			error = retval;
+
+		l_clusters[cl_index].b_addr = 0;
+		l_clusters[cl_index].e_addr = 0;
+
+		cl_pushed++;
+
+		if ( !(push_flag & PUSH_ALL) )
+		        break;
+	}
+	if (err)
+		*err = error;
+
+dont_try:
+	if (cl_len > cl_pushed) {
+	       /*
+		* we didn't push all of the clusters, so
+		* lets try to merge them back in to the vnode
+		*/
+	        if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
+		        /*
+			 * we picked up some new clusters while we were trying to
+			 * push the old ones... this can happen because I've dropped
+			 * the vnode lock... the sum of the
+			 * leftovers plus the new cluster count exceeds our ability
+			 * to represent them, so switch to the sparse cluster mechanism
+			 *
+			 * collect the active public clusters...
+			 */
+		        sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
+
+		        for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
+			        if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
+				        continue;
+			        wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
+				wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
+				wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
+
+				cl_index1++;
+			}
+			/*
+			 * update the cluster count
+			 */
+			wbp->cl_number = cl_index1;
+
+		        /*
+			 * and collect the original clusters that were moved into the 
+			 * local storage for sorting purposes
+			 */
+		        sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
+
+		} else {
+		        /*
+			 * we've got room to merge the leftovers back in
+			 * just append them starting at the next 'hole'
+			 * represented by wbp->cl_number
+			 */
+		        for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
+			        if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
+				        continue;
+
+			        wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
+				wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
+				wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
+
+				cl_index1++;
+			}
+			/*
+			 * update the cluster count
+			 */
+			wbp->cl_number = cl_index1;
+		}
+	}
+	return (MAX_CLUSTERS - wbp->cl_number);
+}
+
+
+
+static int
+cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+	upl_page_info_t *pl;
+	upl_t            upl;
+	vm_offset_t      upl_offset;
+	int              upl_size;
+	off_t 	         upl_f_offset;
+        int              pages_in_upl;
+	int              start_pg;
+	int              last_pg;
+	int              io_size;
+	int              io_flags;
+	int              upl_flags;
+	int              bflag;
+	int              size;
+	int              error = 0;
+	int              retval;
+	kern_return_t    kret;
+
+	if (flags & IO_PASSIVE)
+		bflag = CL_PASSIVE;
+	else
+		bflag = 0;
+
+	if (flags & IO_SKIP_ENCRYPTION)
+		bflag |= CL_ENCRYPTED;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
+		     (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
+
+	if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
+	        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
+
+	        return (0);
+	}
+	upl_size = pages_in_upl * PAGE_SIZE;
+	upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
+
+	if (upl_f_offset + upl_size >= EOF) {
+
+	        if (upl_f_offset >= EOF) {
+		        /*
+			 * must have truncated the file and missed 
+			 * clearing a dangling cluster (i.e. it's completely
+			 * beyond the new EOF
+			 */
+		        KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
+
+		        return(0);
+		}
+		size = EOF - upl_f_offset;
+
+		upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+		pages_in_upl = upl_size / PAGE_SIZE;
+	} else
+	        size = upl_size;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
+
+	/*
+	 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
+	 * 
+	 * - only pages that are currently dirty are returned... these are the ones we need to clean
+	 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
+	 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
+	 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if 
+	 *   someone dirties this page while the I/O is in progress, we don't lose track of the new state
+	 *
+	 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
+	 */
+
+	if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
+	        upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
+	else
+	        upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
+
+	kret = ubc_create_upl(vp, 
+			      	upl_f_offset,
+			      	upl_size,
+			      	&upl,
+			        &pl,
+			        upl_flags);
+	if (kret != KERN_SUCCESS)
+	        panic("cluster_push: failed to get pagelist");
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
+
+	/*
+	 * since we only asked for the dirty pages back
+	 * it's possible that we may only get a few or even none, so...
+	 * before we start marching forward, we must make sure we know
+	 * where the last present page is in the UPL, otherwise we could
+	 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
+	 * employed by commit_range and abort_range.
+	 */
+	for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
+	        if (upl_page_present(pl, last_pg))
+		        break;
+	}
+	pages_in_upl = last_pg + 1;
+
+	if (pages_in_upl == 0) {
+	        ubc_upl_abort(upl, 0);
+
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
+		return(0);
+	}	  
+
+	for (last_pg = 0; last_pg < pages_in_upl; ) {
+	        /*
+		 * find the next dirty page in the UPL
+		 * this will become the first page in the 
+		 * next I/O to generate
+		 */
+		for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
+			if (upl_dirty_page(pl, start_pg))
+				break;
+			if (upl_page_present(pl, start_pg))
+			        /*
+				 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
+				 * just release these unchanged since we're not going
+				 * to steal them or change their state
+				 */
+			        ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
+		}
+		if (start_pg >= pages_in_upl)
+		        /*
+			 * done... no more dirty pages to push
+			 */
+		        break;
+		if (start_pg > last_pg)
+		        /*
+			 * skipped over some non-dirty pages
+			 */
+			size -= ((start_pg - last_pg) * PAGE_SIZE);
+
+		/*
+		 * find a range of dirty pages to write
+		 */
+		for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
+			if (!upl_dirty_page(pl, last_pg))
+				break;
+		}
+		upl_offset = start_pg * PAGE_SIZE;
+
+		io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
+
+		io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
+
+		if ( !(flags & IO_SYNC))
+		        io_flags |= CL_ASYNC;
+
+		if (flags & IO_CLOSE)
+		        io_flags |= CL_CLOSE;
+
+		if (flags & IO_NOCACHE)
+			io_flags |= CL_NOCACHE;
+
+		retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
+				    io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
+
+		if (error == 0 && retval)
+		        error = retval;
+
+		size -= io_size;
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
+
+	return(error);
+}
+
+
+/*
+ * sparse_cluster_switch is called with the write behind lock held
+ */
+static void
+sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
+{
+        int	cl_index;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
+
+	for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
+	        int	  flags;
+		struct cl_extent cl;
+
+	        for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
+
+		        if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
+			        if (flags & UPL_POP_DIRTY) {
+				        cl.e_addr = cl.b_addr + 1;
+
+				        sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
+				}
+			}
+		}
+	}
+	wbp->cl_number = 0;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
+}
+
+
+/*
+ * sparse_cluster_push must be called with the write-behind lock held if the scmap is
+ * still associated with the write-behind context... however, if the scmap has been disassociated
+ * from the write-behind context (the cluster_push case), the wb lock is not held
+ */
+static int
+sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+        struct cl_extent cl;
+        off_t		offset;
+	u_int		length;
+	int error = 0;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0);
+
+	if (push_flag & PUSH_ALL)
+	        vfs_drt_control(scmap, 1);
+
+	for (;;) {
+		int retval;
+	        if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
+			break;
+
+		cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
+		cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
+
+		retval = cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
+		if (error == 0 && retval)
+			error = retval;
+
+		if ( !(push_flag & PUSH_ALL) )
+		        break;
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
+
+	return error;
+}
+
+
+/*
+ * sparse_cluster_add is called with the write behind lock held
+ */
+static void
+sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
+{
+        u_int	new_dirty;
+	u_int	length;
+	off_t	offset;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
+
+	offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
+	length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
+
+	while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
+	        /*
+		 * no room left in the map
+		 * only a partial update was done
+		 * push out some pages and try again
+		 */
+	        sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
+
+		offset += (new_dirty * PAGE_SIZE_64);
+		length -= (new_dirty * PAGE_SIZE);
+	}
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
+}
+
+
+static int
+cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+        upl_page_info_t  *pl;
+        upl_t            upl;
+        addr64_t	 ubc_paddr;
+        kern_return_t    kret;
+        int              error = 0;
+	int		 did_read = 0;
+	int		 abort_flags;
+	int		 upl_flags;
+	int              bflag;
+
+	if (flags & IO_PASSIVE)
+		bflag = CL_PASSIVE;
+	else
+		bflag = 0;
+
+	if (flags & IO_NOCACHE)
+		bflag |= CL_NOCACHE;
+
+	upl_flags = UPL_SET_LITE;
+
+	if ( !(flags & CL_READ) ) {
+		/*
+		 * "write" operation:  let the UPL subsystem know
+		 * that we intend to modify the buffer cache pages
+		 * we're gathering.
+		 */
+		upl_flags |= UPL_WILL_MODIFY;
+	} else {
+	        /*
+		 * indicate that there is no need to pull the
+		 * mapping for this page... we're only going
+		 * to read from it, not modify it.
+		 */
+		upl_flags |= UPL_FILE_IO;
+	}
+        kret = ubc_create_upl(vp,
+                              uio->uio_offset & ~PAGE_MASK_64,
+                              PAGE_SIZE,
+                              &upl,
+                              &pl,
+                              upl_flags);
+
+        if (kret != KERN_SUCCESS)
+                return(EINVAL);
+
+        if (!upl_valid_page(pl, 0)) {
+                /*
+                 * issue a synchronous read to cluster_io
+                 */
+                error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
+				   CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
+                if (error) {
+                          ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+
+                          return(error);
+                }
+		did_read = 1;
+        }
+        ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
+
+/*
+ *	NOTE:  There is no prototype for the following in BSD. It, and the definitions
+ *	of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
+ *	osfmk/ppc/mappings.h.  They are not included here because there appears to be no
+ *	way to do so without exporting them to kexts as well.
+ */
+	if (flags & CL_READ)
+//		copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk);	/* Copy physical to physical and flush the destination */
+		copypv(ubc_paddr, usr_paddr, xsize,        2 |        1 |        4);	/* Copy physical to physical and flush the destination */
+	else
+//		copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc);	/* Copy physical to physical and flush the source */
+		copypv(usr_paddr, ubc_paddr, xsize,        2 |        1 |        8);	/* Copy physical to physical and flush the source */
+	
+	if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
+	        /*
+		 * issue a synchronous write to cluster_io
+		 */
+		error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
+				   bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
+	}
+	if (error == 0) 
+	        uio_update(uio, (user_size_t)xsize);
+
+	if (did_read)
+	        abort_flags = UPL_ABORT_FREE_ON_EMPTY;
+	else
+	        abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
+
+	ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
+	
+	return (error);
+}
+
+int
+cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
+{
+        int       pg_offset;
+	int       pg_index;
+        int   	  csize;
+	int       segflg;
+	int       retval = 0;
+	int	  xsize;
+	upl_page_info_t *pl;
+	int 	  dirty_count;
+
+	xsize = *io_resid;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
+		     (int)uio->uio_offset, upl_offset, xsize, 0, 0);
+
+	segflg = uio->uio_segflg;
+
+	switch(segflg) {
+
+	  case UIO_USERSPACE32:
+	  case UIO_USERISPACE32:
+		uio->uio_segflg = UIO_PHYS_USERSPACE32;
+		break;
+
+	  case UIO_USERSPACE:
+	  case UIO_USERISPACE:
+		uio->uio_segflg = UIO_PHYS_USERSPACE;
+		break;
+
+	  case UIO_USERSPACE64:
+	  case UIO_USERISPACE64:
+		uio->uio_segflg = UIO_PHYS_USERSPACE64;
+		break;
+
+	  case UIO_SYSSPACE:
+		uio->uio_segflg = UIO_PHYS_SYSSPACE;
+		break;
+
+	}
+	pl = ubc_upl_pageinfo(upl);
+
+	pg_index  = upl_offset / PAGE_SIZE;
+	pg_offset = upl_offset & PAGE_MASK;
+	csize     = min(PAGE_SIZE - pg_offset, xsize);
+
+	dirty_count = 0;
+	while (xsize && retval == 0) {
+	        addr64_t  paddr;
+
+		paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
+		if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE)) 
+			dirty_count++;
+
+		retval = uiomove64(paddr, csize, uio);
+
+		pg_index += 1;
+		pg_offset = 0;
+		xsize    -= csize;
+		csize     = min(PAGE_SIZE, xsize);
+	}
+	*io_resid = xsize;
+
+	uio->uio_segflg = segflg;
+
+	task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl));
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+		     (int)uio->uio_offset, xsize, retval, segflg, 0);
+	
+	return (retval);
+}
+
+
+int
+cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
+{
+
+	return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
+}
+
+
+static int
+cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
+{
+	int       segflg;
+	int       io_size;
+	int       xsize;
+	int       start_offset;
+	int       retval = 0;
+	memory_object_control_t	 control;
+
+	io_size = *io_resid;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
+		     (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
+
+	control = ubc_getobject(vp, UBC_FLAGS_NONE);
+
+	if (control == MEMORY_OBJECT_CONTROL_NULL) {
+		KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+			     (int)uio->uio_offset, io_size, retval, 3, 0);
+
+		return(0);
+	}
+	segflg = uio->uio_segflg;
+
+	switch(segflg) {
+
+	  case UIO_USERSPACE32:
+	  case UIO_USERISPACE32:
+		uio->uio_segflg = UIO_PHYS_USERSPACE32;
+		break;
+
+	  case UIO_USERSPACE64:
+	  case UIO_USERISPACE64:
+		uio->uio_segflg = UIO_PHYS_USERSPACE64;
+		break;
+
+	  case UIO_USERSPACE:
+	  case UIO_USERISPACE:
+		uio->uio_segflg = UIO_PHYS_USERSPACE;
+		break;
+
+	  case UIO_SYSSPACE:
+		uio->uio_segflg = UIO_PHYS_SYSSPACE;
+		break;
+	}
+
+	if ( (io_size = *io_resid) ) {
+	        start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+		xsize = uio_resid(uio);
+
+		retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
+						       start_offset, io_size, mark_dirty, take_reference);
+		xsize -= uio_resid(uio);
+		io_size -= xsize;
+	}
+	uio->uio_segflg = segflg;
+	*io_resid       = io_size;
+
+	KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+		     (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
+
+	return(retval);
+}
+
+
+int
+is_file_clean(vnode_t vp, off_t filesize)
+{
+        off_t f_offset;
+	int   flags;
+	int   total_dirty = 0;
+
+	for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
+	        if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
+		        if (flags & UPL_POP_DIRTY) {
+			        total_dirty++;
+			}
 		}
-		cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, io_flags, (struct buf *)0);
+	}
+	if (total_dirty)
+	        return(EINVAL);
 
-		size -= io_size;
+	return (0);
+}
+
+
+
+/*
+ * Dirty region tracking/clustering mechanism.
+ *
+ * This code (vfs_drt_*) provides a mechanism for tracking and clustering
+ * dirty regions within a larger space (file).  It is primarily intended to
+ * support clustering in large files with many dirty areas.
+ *
+ * The implementation assumes that the dirty regions are pages.
+ *
+ * To represent dirty pages within the file, we store bit vectors in a
+ * variable-size circular hash.
+ */
+
+/*
+ * Bitvector size.  This determines the number of pages we group in a
+ * single hashtable entry.  Each hashtable entry is aligned to this
+ * size within the file.
+ */
+#define DRT_BITVECTOR_PAGES		((1024 * 1024) / PAGE_SIZE)
+
+/*
+ * File offset handling.
+ *
+  * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
+ * the correct formula is  (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
+ */
+#define DRT_ADDRESS_MASK		(~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
+#define DRT_ALIGN_ADDRESS(addr)		((addr) & DRT_ADDRESS_MASK)
+
+/*
+ * Hashtable address field handling.
+ *
+ * The low-order bits of the hashtable address are used to conserve
+ * space.
+ *
+ * DRT_HASH_COUNT_MASK must be large enough to store the range
+ * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
+ * to indicate that the bucket is actually unoccupied.
+ */
+#define DRT_HASH_GET_ADDRESS(scm, i)	((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
+#define DRT_HASH_SET_ADDRESS(scm, i, a)									\
+	do {												\
+		(scm)->scm_hashtable[(i)].dhe_control =							\
+		    ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a);	\
+	} while (0)
+#define DRT_HASH_COUNT_MASK		0x1ff
+#define DRT_HASH_GET_COUNT(scm, i)	((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
+#define DRT_HASH_SET_COUNT(scm, i, c)											\
+	do {														\
+		(scm)->scm_hashtable[(i)].dhe_control =									\
+		    ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK);	\
+	} while (0)
+#define DRT_HASH_CLEAR(scm, i)                                                                                          \
+	do {														\
+		(scm)->scm_hashtable[(i)].dhe_control =	0;								\
+	} while (0)
+#define DRT_HASH_VACATE(scm, i)		DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
+#define DRT_HASH_VACANT(scm, i)		(DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
+#define DRT_HASH_COPY(oscm, oi, scm, i)									\
+	do {												\
+		(scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control;	\
+		DRT_BITVECTOR_COPY(oscm, oi, scm, i);							\
+	} while(0);
+
+
+/*
+ * Hash table moduli.
+ *
+ * Since the hashtable entry's size is dependent on the size of
+ * the bitvector, and since the hashtable size is constrained to
+ * both being prime and fitting within the desired allocation
+ * size, these values need to be manually determined.
+ *
+ * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
+ *
+ * The small hashtable allocation is 1024 bytes, so the modulus is 23.
+ * The large hashtable allocation is 16384 bytes, so the modulus is 401.
+ */
+#define DRT_HASH_SMALL_MODULUS	23
+#define DRT_HASH_LARGE_MODULUS	401
+
+/*
+ * Physical memory required before the large hash modulus is permitted.
+ *
+ * On small memory systems, the large hash modulus can lead to phsyical
+ * memory starvation, so we avoid using it there.
+ */
+#define DRT_HASH_LARGE_MEMORY_REQUIRED	(1024LL * 1024LL * 1024LL)	/* 1GiB */
+
+#define DRT_SMALL_ALLOCATION	1024	/* 104 bytes spare */
+#define DRT_LARGE_ALLOCATION	16384	/* 344 bytes spare */
+
+/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
+
+/*
+ * Hashtable bitvector handling.
+ *
+ * Bitvector fields are 32 bits long.
+ */
+
+#define DRT_HASH_SET_BIT(scm, i, bit)				\
+	(scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
+
+#define DRT_HASH_CLEAR_BIT(scm, i, bit)				\
+	(scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
+    
+#define DRT_HASH_TEST_BIT(scm, i, bit) 				\
+	((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
+    
+#define DRT_BITVECTOR_CLEAR(scm, i) 				\
+	bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+
+#define DRT_BITVECTOR_COPY(oscm, oi, scm, i)			\
+	bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0],	\
+	    &(scm)->scm_hashtable[(i)].dhe_bitvector[0],	\
+	    (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+
+
+ 
+/*
+ * Hashtable entry.
+ */
+struct vfs_drt_hashentry {
+	u_int64_t	dhe_control;
+/*
+* dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
+* DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE)
+* Since PAGE_SIZE is only known at boot time, 
+*	-define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) 
+*	-declare dhe_bitvector array for largest possible length
+*/
+#define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024)
+	u_int32_t	dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32];
+};
+
+/*
+ * Dirty Region Tracking structure.
+ *
+ * The hashtable is allocated entirely inside the DRT structure.
+ *
+ * The hash is a simple circular prime modulus arrangement, the structure
+ * is resized from small to large if it overflows.
+ */
+
+struct vfs_drt_clustermap {
+	u_int32_t		scm_magic;	/* sanity/detection */
+#define DRT_SCM_MAGIC		0x12020003
+	u_int32_t		scm_modulus;	/* current ring size */
+	u_int32_t		scm_buckets;	/* number of occupied buckets */
+	u_int32_t		scm_lastclean;	/* last entry we cleaned */
+	u_int32_t		scm_iskips;	/* number of slot skips */
+
+	struct vfs_drt_hashentry scm_hashtable[0];
+};
+
+
+#define DRT_HASH(scm, addr)		((addr) % (scm)->scm_modulus)
+#define DRT_HASH_NEXT(scm, addr)	(((addr) + 1) % (scm)->scm_modulus)
+
+/*
+ * Debugging codes and arguments.
+ */
+#define DRT_DEBUG_EMPTYFREE	(FSDBG_CODE(DBG_FSRW, 82)) /* nil */
+#define DRT_DEBUG_RETCLUSTER	(FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
+#define DRT_DEBUG_ALLOC		(FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
+#define DRT_DEBUG_INSERT	(FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
+#define DRT_DEBUG_MARK		(FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
+							    * dirty */
+							   /* 0, setcount */
+							   /* 1 (clean, no map) */
+							   /* 2 (map alloc fail) */
+							   /* 3, resid (partial) */
+#define DRT_DEBUG_6		(FSDBG_CODE(DBG_FSRW, 87))
+#define DRT_DEBUG_SCMDATA	(FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
+							    * lastclean, iskips */
+
+
+static kern_return_t	vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
+static kern_return_t	vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
+static kern_return_t	vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
+	u_int64_t offset, int *indexp);
+static kern_return_t	vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
+	u_int64_t offset,
+	int *indexp,
+	int recursed);
+static kern_return_t	vfs_drt_do_mark_pages(
+	void		**cmapp,
+	u_int64_t	offset,
+	u_int    	length,
+	u_int		*setcountp,
+	int		dirty);
+static void		vfs_drt_trace(
+	struct vfs_drt_clustermap *cmap,
+	int code,
+	int arg1,
+	int arg2,
+	int arg3,
+	int arg4);
+
+
+/*
+ * Allocate and initialise a sparse cluster map.
+ *
+ * Will allocate a new map, resize or compact an existing map.
+ *
+ * XXX we should probably have at least one intermediate map size,
+ * as the 1:16 ratio seems a bit drastic.
+ */
+static kern_return_t
+vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
+{
+	struct vfs_drt_clustermap *cmap, *ocmap;
+	kern_return_t	kret;
+	u_int64_t	offset;
+	u_int32_t	i;
+	int		nsize, active_buckets, index, copycount;
+
+	ocmap = NULL;
+	if (cmapp != NULL)
+		ocmap = *cmapp;
+	
+	/*
+	 * Decide on the size of the new map.
+	 */
+	if (ocmap == NULL) {
+		nsize = DRT_HASH_SMALL_MODULUS;
+	} else {
+		/* count the number of active buckets in the old map */
+		active_buckets = 0;
+		for (i = 0; i < ocmap->scm_modulus; i++) {
+			if (!DRT_HASH_VACANT(ocmap, i) &&
+			    (DRT_HASH_GET_COUNT(ocmap, i) != 0))
+				active_buckets++;
+		}
+		/*
+		 * If we're currently using the small allocation, check to
+		 * see whether we should grow to the large one.
+		 */
+		if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
+			/* 
+			 * If the ring is nearly full and we are allowed to
+			 * use the large modulus, upgrade.
+			 */
+			if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
+			    (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
+				nsize = DRT_HASH_LARGE_MODULUS;
+			} else {
+				nsize = DRT_HASH_SMALL_MODULUS;
+			}
+		} else {
+			/* already using the large modulus */
+			nsize = DRT_HASH_LARGE_MODULUS;
+			/*
+			 * If the ring is completely full, there's
+			 * nothing useful for us to do.  Behave as
+			 * though we had compacted into the new
+			 * array and return.
+			 */
+			if (active_buckets >= DRT_HASH_LARGE_MODULUS)
+				return(KERN_SUCCESS);
+		}
+	}
+
+	/*
+	 * Allocate and initialise the new map.
+	 */
+
+	kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
+	    (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE);
+	if (kret != KERN_SUCCESS)
+		return(kret);
+	cmap->scm_magic = DRT_SCM_MAGIC;
+	cmap->scm_modulus = nsize;
+	cmap->scm_buckets = 0;
+	cmap->scm_lastclean = 0;
+	cmap->scm_iskips = 0;
+	for (i = 0; i < cmap->scm_modulus; i++) {
+	        DRT_HASH_CLEAR(cmap, i);
+		DRT_HASH_VACATE(cmap, i);
+		DRT_BITVECTOR_CLEAR(cmap, i);
+	}
+
+	/*
+	 * If there's an old map, re-hash entries from it into the new map.
+	 */
+	copycount = 0;
+	if (ocmap != NULL) {
+		for (i = 0; i < ocmap->scm_modulus; i++) {
+			/* skip empty buckets */
+			if (DRT_HASH_VACANT(ocmap, i) ||
+			    (DRT_HASH_GET_COUNT(ocmap, i) == 0))
+				continue;
+			/* get new index */
+			offset = DRT_HASH_GET_ADDRESS(ocmap, i);
+			kret = vfs_drt_get_index(&cmap, offset, &index, 1);
+			if (kret != KERN_SUCCESS) {
+				/* XXX need to bail out gracefully here */
+				panic("vfs_drt: new cluster map mysteriously too small");
+				index = 0;
+			}
+			/* copy */
+			DRT_HASH_COPY(ocmap, i, cmap, index);
+			copycount++;
+		}
+	}
+
+	/* log what we've done */
+	vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
+	
+	/*
+	 * It's important to ensure that *cmapp always points to 
+	 * a valid map, so we must overwrite it before freeing
+	 * the old map.
+	 */
+	*cmapp = cmap;
+	if (ocmap != NULL) {
+		/* emit stats into trace buffer */
+		vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
+			      ocmap->scm_modulus,
+			      ocmap->scm_buckets,
+			      ocmap->scm_lastclean,
+			      ocmap->scm_iskips);
+
+		vfs_drt_free_map(ocmap);
+	}
+	return(KERN_SUCCESS);
+}
+
+
+/*
+ * Free a sparse cluster map.
+ */
+static kern_return_t
+vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
+{
+	kmem_free(kernel_map, (vm_offset_t)cmap, 
+		  (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+	return(KERN_SUCCESS);
+}
+
+
+/*
+ * Find the hashtable slot currently occupied by an entry for the supplied offset.
+ */
+static kern_return_t
+vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
+{
+	int		index;
+	u_int32_t	i;
+
+	offset = DRT_ALIGN_ADDRESS(offset);
+	index = DRT_HASH(cmap, offset);
+
+	/* traverse the hashtable */
+	for (i = 0; i < cmap->scm_modulus; i++) {
+
+		/*
+		 * If the slot is vacant, we can stop.
+		 */
+		if (DRT_HASH_VACANT(cmap, index))
+			break;
+
+		/*
+		 * If the address matches our offset, we have success.
+		 */
+		if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
+			*indexp = index;
+			return(KERN_SUCCESS);
+		}
+
+		/*
+		 * Move to the next slot, try again.
+		 */
+		index = DRT_HASH_NEXT(cmap, index);
+	}
+	/*
+	 * It's not there.
+	 */
+	return(KERN_FAILURE);
+}
+
+/*
+ * Find the hashtable slot for the supplied offset.  If we haven't allocated
+ * one yet, allocate one and populate the address field.  Note that it will
+ * not have a nonzero page count and thus will still technically be free, so
+ * in the case where we are called to clean pages, the slot will remain free.
+ */
+static kern_return_t
+vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
+{
+	struct vfs_drt_clustermap *cmap;
+	kern_return_t	kret;
+	u_int32_t	index;
+	u_int32_t	i;
+
+	cmap = *cmapp;
+
+	/* look for an existing entry */
+	kret = vfs_drt_search_index(cmap, offset, indexp);
+	if (kret == KERN_SUCCESS)
+		return(kret);
+
+	/* need to allocate an entry */
+	offset = DRT_ALIGN_ADDRESS(offset);
+	index = DRT_HASH(cmap, offset);
+
+	/* scan from the index forwards looking for a vacant slot */
+	for (i = 0; i < cmap->scm_modulus; i++) {
+		/* slot vacant? */
+		if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
+			cmap->scm_buckets++;
+			if (index < cmap->scm_lastclean)
+				cmap->scm_lastclean = index;
+			DRT_HASH_SET_ADDRESS(cmap, index, offset);
+			DRT_HASH_SET_COUNT(cmap, index, 0);
+			DRT_BITVECTOR_CLEAR(cmap, index);
+			*indexp = index;
+			vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
+			return(KERN_SUCCESS);
+		}
+		cmap->scm_iskips += i;
+		index = DRT_HASH_NEXT(cmap, index);
+	}
+
+	/*
+	 * We haven't found a vacant slot, so the map is full.  If we're not
+	 * already recursed, try reallocating/compacting it.
+	 */
+	if (recursed)
+		return(KERN_FAILURE);
+	kret = vfs_drt_alloc_map(cmapp);
+	if (kret == KERN_SUCCESS) {
+		/* now try to insert again */
+		kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
+	}
+	return(kret);
+}
+
+/*
+ * Implementation of set dirty/clean.
+ *
+ * In the 'clean' case, not finding a map is OK.
+ */
+static kern_return_t
+vfs_drt_do_mark_pages(
+	void		**private,
+	u_int64_t	offset,
+	u_int    	length,
+	u_int		*setcountp,
+	int		dirty)
+{
+	struct vfs_drt_clustermap *cmap, **cmapp;
+	kern_return_t	kret;
+	int		i, index, pgoff, pgcount, setcount, ecount;
+
+	cmapp = (struct vfs_drt_clustermap **)private;
+	cmap = *cmapp;
+
+	vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
+
+	if (setcountp != NULL)
+	        *setcountp = 0;
+	
+	/* allocate a cluster map if we don't already have one */
+	if (cmap == NULL) {
+		/* no cluster map, nothing to clean */
+		if (!dirty) {
+			vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
+			return(KERN_SUCCESS);
+		}
+		kret = vfs_drt_alloc_map(cmapp);
+		if (kret != KERN_SUCCESS) {
+			vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
+			return(kret);
+		}
+	}
+	setcount = 0;
+
+	/*
+	 * Iterate over the length of the region.
+	 */
+	while (length > 0) {
+		/*
+		 * Get the hashtable index for this offset.
+		 *
+		 * XXX this will add blank entries if we are clearing a range
+		 * that hasn't been dirtied.
+		 */
+		kret = vfs_drt_get_index(cmapp, offset, &index, 0);
+		cmap = *cmapp;	/* may have changed! */
+		/* this may be a partial-success return */
+		if (kret != KERN_SUCCESS) {
+		        if (setcountp != NULL)
+			        *setcountp = setcount;
+			vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
+
+			return(kret);
+		}
+
+		/*
+		 * Work out how many pages we're modifying in this
+		 * hashtable entry.
+		 */
+		pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
+		pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
+
+		/*
+		 * Iterate over pages, dirty/clearing as we go.
+		 */
+		ecount = DRT_HASH_GET_COUNT(cmap, index);
+		for (i = 0; i < pgcount; i++) {
+			if (dirty) {
+				if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+					DRT_HASH_SET_BIT(cmap, index, pgoff + i);
+					ecount++;
+					setcount++;
+				}
+			} else {
+				if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+					DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
+					ecount--;
+					setcount++;
+				}
+			}
+		}
+		DRT_HASH_SET_COUNT(cmap, index, ecount);
+
+		offset += pgcount * PAGE_SIZE;
+		length -= pgcount * PAGE_SIZE;
+	}
+	if (setcountp != NULL)
+		*setcountp = setcount;
+
+	vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
+
+	return(KERN_SUCCESS);
+}
+
+/*
+ * Mark a set of pages as dirty/clean.
+ *
+ * This is a public interface.
+ *
+ * cmapp
+ *	Pointer to storage suitable for holding a pointer.  Note that
+ *	this must either be NULL or a value set by this function.
+ *
+ * size
+ *	Current file size in bytes.
+ *
+ * offset
+ *	Offset of the first page to be marked as dirty, in bytes.  Must be
+ *	page-aligned.
+ *
+ * length
+ *	Length of dirty region, in bytes.  Must be a multiple of PAGE_SIZE.
+ *
+ * setcountp
+ *	Number of pages newly marked dirty by this call (optional).
+ *
+ * Returns KERN_SUCCESS if all the pages were successfully marked.
+ */
+static kern_return_t
+vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
+{
+	/* XXX size unused, drop from interface */
+	return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
+}
+
+#if 0
+static kern_return_t
+vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
+{
+	return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
+}
+#endif
+
+/*
+ * Get a cluster of dirty pages.
+ *
+ * This is a public interface.
+ *
+ * cmapp
+ *	Pointer to storage managed by drt_mark_pages.  Note that this must
+ *	be NULL or a value set by drt_mark_pages.
+ *
+ * offsetp
+ *	Returns the byte offset into the file of the first page in the cluster.
+ *
+ * lengthp
+ *	Returns the length in bytes of the cluster of dirty pages.
+ *
+ * Returns success if a cluster was found.  If KERN_FAILURE is returned, there
+ * are no dirty pages meeting the minmum size criteria.  Private storage will
+ * be released if there are no more dirty pages left in the map
+ *
+ */
+static kern_return_t
+vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
+{
+	struct vfs_drt_clustermap *cmap;
+	u_int64_t	offset;
+	u_int		length;
+	u_int32_t	j;
+	int		index, i, fs, ls;
+
+	/* sanity */
+	if ((cmapp == NULL) || (*cmapp == NULL))
+		return(KERN_FAILURE);
+	cmap = *cmapp;
+
+	/* walk the hashtable */
+	for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
+	        index = DRT_HASH(cmap, offset);
+
+	        if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
+			continue;
+
+		/* scan the bitfield for a string of bits */
+		fs = -1;
+
+		for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
+		        if (DRT_HASH_TEST_BIT(cmap, index, i)) {
+			        fs = i;
+				break;
+			}
+		}
+		if (fs == -1) {
+		        /*  didn't find any bits set */
+		        panic("vfs_drt: entry summary count > 0 but no bits set in map");
+		}
+		for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
+			if (!DRT_HASH_TEST_BIT(cmap, index, i))
+			        break;
+		}
+		
+		/* compute offset and length, mark pages clean */
+		offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
+		length = ls * PAGE_SIZE;
+		vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
+		cmap->scm_lastclean = index;
+
+		/* return successful */
+		*offsetp = (off_t)offset;
+		*lengthp = length;
+
+		vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
+		return(KERN_SUCCESS);
+	}
+	/*
+	 * We didn't find anything... hashtable is empty
+	 * emit stats into trace buffer and
+	 * then free it
+	 */
+	vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
+		      cmap->scm_modulus,
+		      cmap->scm_buckets,
+		      cmap->scm_lastclean,
+		      cmap->scm_iskips);
+	
+	vfs_drt_free_map(cmap);
+	*cmapp = NULL;
+
+	return(KERN_FAILURE);
+}
+
+
+static kern_return_t
+vfs_drt_control(void **cmapp, int op_type)
+{
+	struct vfs_drt_clustermap *cmap;
+
+	/* sanity */
+	if ((cmapp == NULL) || (*cmapp == NULL))
+		return(KERN_FAILURE);
+	cmap = *cmapp;
+
+	switch (op_type) {
+	case 0:
+		/* emit stats into trace buffer */
+		vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
+			      cmap->scm_modulus,
+			      cmap->scm_buckets,
+			      cmap->scm_lastclean,
+			      cmap->scm_iskips);
+
+		vfs_drt_free_map(cmap);
+		*cmapp = NULL;
+	        break;
+
+	case 1:
+	        cmap->scm_lastclean = 0;
+	        break;
 	}
-	return(1);
+	return(KERN_SUCCESS);
+}
+
+
+
+/*
+ * Emit a summary of the state of the clustermap into the trace buffer
+ * along with some caller-provided data.
+ */
+#if KDEBUG
+static void
+vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
+{
+	KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
+}
+#else
+static void
+vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, 
+			  __unused int arg1, __unused int arg2, __unused int arg3, 
+			  __unused int arg4)
+{
+}
+#endif 
+
+#if 0
+/*
+ * Perform basic sanity check on the hash entry summary count
+ * vs. the actual bits set in the entry.
+ */
+static void
+vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
+{
+        int index, i;
+	int bits_on;
+	
+	for (index = 0; index < cmap->scm_modulus; index++) {
+	        if (DRT_HASH_VACANT(cmap, index))
+		        continue;
+
+		for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
+			if (DRT_HASH_TEST_BIT(cmap, index, i))
+			        bits_on++;
+		}
+		if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
+		        panic("bits_on = %d,  index = %d\n", bits_on, index);
+	}		
 }
+#endif