]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/kern/timer_call.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / kern / timer_call.c
index 1052deff1fd059573e2e3eef67c05e48cd96d65c..4fa1d24127bbf2fc0462df68417ac819f55f90bb 100644 (file)
@@ -1,16 +1,20 @@
 /*
- * Copyright (c) 1993-1995, 1999-2004 Apple Computer, Inc.
- * All rights reserved.
+ * Copyright (c) 1993-2008 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  *
- * @APPLE_LICENSE_HEADER_START@
- * 
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- * 
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
- * @APPLE_LICENSE_HEADER_END@
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
  * Timer interrupt callout module.
- *
- * HISTORY
- *
- * 20 December 2000 (debo)
- *     Created.
  */
 
 #include <mach/mach_types.h>
 
 #include <kern/clock.h>
+#include <kern/smp.h>
 #include <kern/processor.h>
-
 #include <kern/timer_call.h>
-#include <kern/call_entry.h>
+#include <kern/timer_queue.h>
+#include <kern/thread.h>
+#include <kern/policy_internal.h>
 
-decl_simple_lock_data(static,timer_call_lock)
+#include <sys/kdebug.h>
 
-static struct {
-       int             delayed_num,
-                       delayed_hiwat;
-} timer_call_vars;
+#if CONFIG_DTRACE
+#include <mach/sdt.h>
+#endif
 
-static void
-timer_call_interrupt(
-       uint64_t                        timestamp);
 
-#define qe(x)          ((queue_entry_t)(x))
-#define TC(x)          ((timer_call_t)(x))
+#if DEBUG
+#define TIMER_ASSERT    1
+#endif
 
-void
-timer_call_initialize(void)
+//#define TIMER_ASSERT 1
+//#define TIMER_DBG    1
+
+#if TIMER_DBG
+#define DBG(x...) kprintf("DBG: " x);
+#else
+#define DBG(x...)
+#endif
+
+#if TIMER_TRACE
+#define TIMER_KDEBUG_TRACE      KERNEL_DEBUG_CONSTANT_IST
+#else
+#define TIMER_KDEBUG_TRACE(x...)
+#endif
+
+LCK_GRP_DECLARE(timer_call_lck_grp, "timer_call");
+LCK_GRP_DECLARE(timer_longterm_lck_grp, "timer_longterm");
+
+/* Timer queue lock must be acquired with interrupts disabled (under splclock()) */
+#define timer_queue_lock_spin(queue)                                    \
+       lck_mtx_lock_spin_always(&queue->lock_data)
+
+#define timer_queue_unlock(queue)               \
+       lck_mtx_unlock_always(&queue->lock_data)
+
+/*
+ * The longterm timer object is a global structure holding all timers
+ * beyond the short-term, local timer queue threshold. The boot processor
+ * is responsible for moving each timer to its local timer queue
+ * if and when that timer becomes due within the threshold.
+ */
+
+/* Sentinel for "no time set": */
+#define TIMER_LONGTERM_NONE             EndOfAllTime
+/* The default threadhold is the delta above which a timer is "long-term" */
+#if defined(__x86_64__)
+#define TIMER_LONGTERM_THRESHOLD        (1ULL * NSEC_PER_SEC)   /* 1 sec */
+#else
+#define TIMER_LONGTERM_THRESHOLD        TIMER_LONGTERM_NONE     /* disabled */
+#endif
+
+/*
+ * The scan_limit throttles processing of the longterm queue.
+ * If the scan time exceeds this limit, we terminate, unlock
+ * and defer for scan_interval. This prevents unbounded holding of
+ * timer queue locks with interrupts masked.
+ */
+#define TIMER_LONGTERM_SCAN_LIMIT       (100ULL * NSEC_PER_USEC)        /* 100 us */
+#define TIMER_LONGTERM_SCAN_INTERVAL    (100ULL * NSEC_PER_USEC)        /* 100 us */
+/* Sentinel for "scan limit exceeded": */
+#define TIMER_LONGTERM_SCAN_AGAIN       0
+
+typedef struct {
+       uint64_t        interval;       /* longterm timer interval */
+       uint64_t        margin;         /* fudge factor (10% of interval */
+       uint64_t        deadline;       /* first/soonest longterm deadline */
+       uint64_t        preempted;      /* sooner timer has pre-empted */
+       timer_call_t    call;           /* first/soonest longterm timer call */
+       uint64_t        deadline_set;   /* next timer set */
+       timer_call_data_t timer;        /* timer used by threshold management */
+                                       /* Stats: */
+       uint64_t        scans;          /*   num threshold timer scans */
+       uint64_t        preempts;       /*   num threshold reductions */
+       uint64_t        latency;        /*   average threshold latency */
+       uint64_t        latency_min;    /*   minimum threshold latency */
+       uint64_t        latency_max;    /*   maximum threshold latency */
+} threshold_t;
+
+typedef struct {
+       mpqueue_head_t  queue;          /* longterm timer list */
+       uint64_t        enqueues;       /* num timers queued */
+       uint64_t        dequeues;       /* num timers dequeued */
+       uint64_t        escalates;      /* num timers becoming shortterm */
+       uint64_t        scan_time;      /* last time the list was scanned */
+       threshold_t     threshold;      /* longterm timer threshold */
+       uint64_t        scan_limit;     /* maximum scan time */
+       uint64_t        scan_interval;  /* interval between LT "escalation" scans */
+       uint64_t        scan_pauses;    /* num scans exceeding time limit */
+} timer_longterm_t;
+
+timer_longterm_t                timer_longterm = {
+       .scan_limit = TIMER_LONGTERM_SCAN_LIMIT,
+       .scan_interval = TIMER_LONGTERM_SCAN_INTERVAL,
+};
+
+static mpqueue_head_t           *timer_longterm_queue = NULL;
+
+static void                     timer_longterm_init(void);
+static void                     timer_longterm_callout(
+       timer_call_param_t      p0,
+       timer_call_param_t      p1);
+extern void                     timer_longterm_scan(
+       timer_longterm_t        *tlp,
+       uint64_t                now);
+static void                     timer_longterm_update(
+       timer_longterm_t *tlp);
+static void                     timer_longterm_update_locked(
+       timer_longterm_t *tlp);
+static mpqueue_head_t *         timer_longterm_enqueue_unlocked(
+       timer_call_t            call,
+       uint64_t                now,
+       uint64_t                deadline,
+       mpqueue_head_t **       old_queue,
+       uint64_t                soft_deadline,
+       uint64_t                ttd,
+       timer_call_param_t      param1,
+       uint32_t                callout_flags);
+static void                     timer_longterm_dequeued_locked(
+       timer_call_t            call);
+
+uint64_t past_deadline_timers;
+uint64_t past_deadline_deltas;
+uint64_t past_deadline_longest;
+uint64_t past_deadline_shortest = ~0ULL;
+enum {PAST_DEADLINE_TIMER_ADJUSTMENT_NS = 10 * 1000};
+
+uint64_t past_deadline_timer_adjustment;
+
+static boolean_t timer_call_enter_internal(timer_call_t call, timer_call_param_t param1, uint64_t deadline, uint64_t leeway, uint32_t flags, boolean_t ratelimited);
+boolean_t       mach_timer_coalescing_enabled = TRUE;
+
+mpqueue_head_t  *timer_call_enqueue_deadline_unlocked(
+       timer_call_t            call,
+       mpqueue_head_t          *queue,
+       uint64_t                deadline,
+       uint64_t                soft_deadline,
+       uint64_t                ttd,
+       timer_call_param_t      param1,
+       uint32_t                flags);
+
+mpqueue_head_t  *timer_call_dequeue_unlocked(
+       timer_call_t            call);
+
+timer_coalescing_priority_params_t tcoal_prio_params;
+
+#if TCOAL_PRIO_STATS
+int32_t nc_tcl, rt_tcl, bg_tcl, kt_tcl, fp_tcl, ts_tcl, qos_tcl;
+#define TCOAL_PRIO_STAT(x) (x++)
+#else
+#define TCOAL_PRIO_STAT(x)
+#endif
+
+static void
+timer_call_init_abstime(void)
 {
-       spl_t                           s;
+       int i;
+       uint64_t result;
+       timer_coalescing_priority_params_ns_t * tcoal_prio_params_init = timer_call_get_priority_params();
+       nanoseconds_to_absolutetime(PAST_DEADLINE_TIMER_ADJUSTMENT_NS, &past_deadline_timer_adjustment);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->idle_entry_timer_processing_hdeadline_threshold_ns, &result);
+       tcoal_prio_params.idle_entry_timer_processing_hdeadline_threshold_abstime = (uint32_t)result;
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->interrupt_timer_coalescing_ilat_threshold_ns, &result);
+       tcoal_prio_params.interrupt_timer_coalescing_ilat_threshold_abstime = (uint32_t)result;
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_resort_threshold_ns, &result);
+       tcoal_prio_params.timer_resort_threshold_abstime = (uint32_t)result;
+       tcoal_prio_params.timer_coalesce_rt_shift = tcoal_prio_params_init->timer_coalesce_rt_shift;
+       tcoal_prio_params.timer_coalesce_bg_shift = tcoal_prio_params_init->timer_coalesce_bg_shift;
+       tcoal_prio_params.timer_coalesce_kt_shift = tcoal_prio_params_init->timer_coalesce_kt_shift;
+       tcoal_prio_params.timer_coalesce_fp_shift = tcoal_prio_params_init->timer_coalesce_fp_shift;
+       tcoal_prio_params.timer_coalesce_ts_shift = tcoal_prio_params_init->timer_coalesce_ts_shift;
+
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_rt_ns_max,
+           &tcoal_prio_params.timer_coalesce_rt_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_bg_ns_max,
+           &tcoal_prio_params.timer_coalesce_bg_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_kt_ns_max,
+           &tcoal_prio_params.timer_coalesce_kt_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_fp_ns_max,
+           &tcoal_prio_params.timer_coalesce_fp_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_ts_ns_max,
+           &tcoal_prio_params.timer_coalesce_ts_abstime_max);
+
+       for (i = 0; i < NUM_LATENCY_QOS_TIERS; i++) {
+               tcoal_prio_params.latency_qos_scale[i] = tcoal_prio_params_init->latency_qos_scale[i];
+               nanoseconds_to_absolutetime(tcoal_prio_params_init->latency_qos_ns_max[i],
+                   &tcoal_prio_params.latency_qos_abstime_max[i]);
+               tcoal_prio_params.latency_tier_rate_limited[i] = tcoal_prio_params_init->latency_tier_rate_limited[i];
+       }
+}
 
-       simple_lock_init(&timer_call_lock, 0);
 
-       s = splclock();
-       simple_lock(&timer_call_lock);
+void
+timer_call_init(void)
+{
+       timer_longterm_init();
+       timer_call_init_abstime();
+}
 
-       clock_set_timer_func((clock_timer_func_t)timer_call_interrupt);
 
-       simple_unlock(&timer_call_lock);
-       splx(s);
+void
+timer_call_queue_init(mpqueue_head_t *queue)
+{
+       DBG("timer_call_queue_init(%p)\n", queue);
+       mpqueue_init(queue, &timer_call_lck_grp, LCK_ATTR_NULL);
 }
 
+
 void
 timer_call_setup(
-       timer_call_t                    call,
-       timer_call_func_t               func,
-       timer_call_param_t              param0)
+       timer_call_t                    call,
+       timer_call_func_t               func,
+       timer_call_param_t              param0)
 {
-       call_entry_setup(call, func, param0);
+       DBG("timer_call_setup(%p,%p,%p)\n", call, func, param0);
+
+       *call = (struct timer_call) {
+               .tc_func = func,
+               .tc_param0 = param0,
+               .tc_async_dequeue = false,
+       };
+
+       simple_lock_init(&(call)->tc_lock, 0);
 }
 
-static __inline__
-void
-_delayed_call_enqueue(
-       queue_t                                 queue,
-       timer_call_t                    call)
+static mpqueue_head_t*
+mpqueue_for_timer_call(timer_call_t entry)
 {
-       timer_call_t    current;
+       queue_t queue_entry_is_on = entry->tc_queue;
+       /* 'cast' the queue back to the orignal mpqueue */
+       return __container_of(queue_entry_is_on, struct mpqueue_head, head);
+}
 
-       current = TC(queue_first(queue));
 
-       while (TRUE) {
-               if (    queue_end(queue, qe(current))                   ||
-                               call->deadline < current->deadline              ) {
-                       current = TC(queue_prev(qe(current)));
-                       break;
+static __inline__ mpqueue_head_t *
+timer_call_entry_dequeue(
+       timer_call_t            entry)
+{
+       mpqueue_head_t  *old_mpqueue = mpqueue_for_timer_call(entry);
+
+       /* The entry was always on a queue */
+       assert(old_mpqueue != NULL);
+
+#if TIMER_ASSERT
+       if (!hw_lock_held((hw_lock_t)&entry->tc_lock)) {
+               panic("_call_entry_dequeue() "
+                   "entry %p is not locked\n", entry);
+       }
+
+       /*
+        * XXX The queue lock is actually a mutex in spin mode
+        *     but there's no way to test for it being held
+        *     so we pretend it's a spinlock!
+        */
+       if (!hw_lock_held((hw_lock_t)&old_mpqueue->lock_data)) {
+               panic("_call_entry_dequeue() "
+                   "queue %p is not locked\n", old_mpqueue);
+       }
+#endif /* TIMER_ASSERT */
+
+       if (old_mpqueue != timer_longterm_queue) {
+               priority_queue_remove(&old_mpqueue->mpq_pqhead,
+                   &entry->tc_pqlink);
+       }
+
+       remqueue(&entry->tc_qlink);
+
+       entry->tc_queue = NULL;
+
+       old_mpqueue->count--;
+
+       return old_mpqueue;
+}
+
+static __inline__ mpqueue_head_t *
+timer_call_entry_enqueue_deadline(
+       timer_call_t                    entry,
+       mpqueue_head_t                  *new_mpqueue,
+       uint64_t                        deadline)
+{
+       mpqueue_head_t  *old_mpqueue = mpqueue_for_timer_call(entry);
+
+#if TIMER_ASSERT
+       if (!hw_lock_held((hw_lock_t)&entry->tc_lock)) {
+               panic("_call_entry_enqueue_deadline() "
+                   "entry %p is not locked\n", entry);
+       }
+
+       /* XXX More lock pretense:  */
+       if (!hw_lock_held((hw_lock_t)&new_mpqueue->lock_data)) {
+               panic("_call_entry_enqueue_deadline() "
+                   "queue %p is not locked\n", new_mpqueue);
+       }
+
+       if (old_mpqueue != NULL && old_mpqueue != new_mpqueue) {
+               panic("_call_entry_enqueue_deadline() "
+                   "old_mpqueue %p != new_mpqueue", old_mpqueue);
+       }
+#endif /* TIMER_ASSERT */
+
+       /* no longterm queue involved */
+       assert(new_mpqueue != timer_longterm_queue);
+       assert(old_mpqueue != timer_longterm_queue);
+
+       if (old_mpqueue == new_mpqueue) {
+               /* optimize the same-queue case to avoid a full re-insert */
+               uint64_t old_deadline = entry->tc_pqlink.deadline;
+               entry->tc_pqlink.deadline = deadline;
+
+               if (old_deadline < deadline) {
+                       priority_queue_entry_increased(&new_mpqueue->mpq_pqhead,
+                           &entry->tc_pqlink);
+               } else {
+                       priority_queue_entry_decreased(&new_mpqueue->mpq_pqhead,
+                           &entry->tc_pqlink);
+               }
+       } else {
+               if (old_mpqueue != NULL) {
+                       priority_queue_remove(&old_mpqueue->mpq_pqhead,
+                           &entry->tc_pqlink);
+
+                       re_queue_tail(&new_mpqueue->head, &entry->tc_qlink);
+               } else {
+                       enqueue_tail(&new_mpqueue->head, &entry->tc_qlink);
                }
 
-               current = TC(queue_next(qe(current)));
+               entry->tc_queue = &new_mpqueue->head;
+               entry->tc_pqlink.deadline = deadline;
+
+               priority_queue_insert(&new_mpqueue->mpq_pqhead, &entry->tc_pqlink);
        }
 
-       insque(qe(call), qe(current));
-       if (++timer_call_vars.delayed_num > timer_call_vars.delayed_hiwat)
-               timer_call_vars.delayed_hiwat = timer_call_vars.delayed_num;
 
-       call->state = DELAYED;
+       /* For efficiency, track the earliest soft deadline on the queue,
+        * so that fuzzy decisions can be made without lock acquisitions.
+        */
+
+       timer_call_t thead = priority_queue_min(&new_mpqueue->mpq_pqhead, struct timer_call, tc_pqlink);
+
+       new_mpqueue->earliest_soft_deadline = thead->tc_flags & TIMER_CALL_RATELIMITED ? thead->tc_pqlink.deadline : thead->tc_soft_deadline;
+
+       if (old_mpqueue) {
+               old_mpqueue->count--;
+       }
+       new_mpqueue->count++;
+
+       return old_mpqueue;
 }
 
-static __inline__
-void
-_delayed_call_dequeue(
-       timer_call_t                    call)
+static __inline__ void
+timer_call_entry_enqueue_tail(
+       timer_call_t                    entry,
+       mpqueue_head_t                  *queue)
 {
-       (void)remque(qe(call));
-       timer_call_vars.delayed_num--;
+       /* entry is always dequeued before this call */
+       assert(entry->tc_queue == NULL);
+
+       /*
+        * this is only used for timer_longterm_queue, which is unordered
+        * and thus needs no priority queueing
+        */
+       assert(queue == timer_longterm_queue);
+
+       enqueue_tail(&queue->head, &entry->tc_qlink);
+
+       entry->tc_queue = &queue->head;
 
-       call->state = IDLE;
+       queue->count++;
+       return;
 }
 
-static __inline__
-void
-_set_delayed_call_timer(
-       timer_call_t                    call)
+/*
+ * Remove timer entry from its queue but don't change the queue pointer
+ * and set the async_dequeue flag. This is locking case 2b.
+ */
+static __inline__ void
+timer_call_entry_dequeue_async(
+       timer_call_t            entry)
 {
-       clock_set_timer_deadline(call->deadline);
+       mpqueue_head_t  *old_mpqueue = mpqueue_for_timer_call(entry);
+       if (old_mpqueue) {
+               old_mpqueue->count--;
+
+               if (old_mpqueue != timer_longterm_queue) {
+                       priority_queue_remove(&old_mpqueue->mpq_pqhead,
+                           &entry->tc_pqlink);
+               }
+
+               remqueue(&entry->tc_qlink);
+               entry->tc_async_dequeue = true;
+       }
+       return;
 }
 
-boolean_t
-timer_call_enter(
-       timer_call_t                    call,
-       uint64_t                                deadline)
+#if TIMER_ASSERT
+unsigned timer_call_enqueue_deadline_unlocked_async1;
+unsigned timer_call_enqueue_deadline_unlocked_async2;
+#endif
+/*
+ * Assumes call_entry and queues unlocked, interrupts disabled.
+ */
+__inline__ mpqueue_head_t *
+timer_call_enqueue_deadline_unlocked(
+       timer_call_t                    call,
+       mpqueue_head_t                  *queue,
+       uint64_t                        deadline,
+       uint64_t                        soft_deadline,
+       uint64_t                        ttd,
+       timer_call_param_t              param1,
+       uint32_t                        callout_flags)
 {
-       boolean_t               result = TRUE;
-       queue_t                 queue;
-       spl_t                   s;
+       DBG("timer_call_enqueue_deadline_unlocked(%p,%p,)\n", call, queue);
+
+       simple_lock(&call->tc_lock, LCK_GRP_NULL);
+
+       mpqueue_head_t  *old_queue = mpqueue_for_timer_call(call);
+
+       if (old_queue != NULL) {
+               timer_queue_lock_spin(old_queue);
+               if (call->tc_async_dequeue) {
+                       /* collision (1c): timer already dequeued, clear flag */
+#if TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           call->tc_async_dequeue,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue),
+                           0x1c, 0);
+                       timer_call_enqueue_deadline_unlocked_async1++;
+#endif
+                       call->tc_async_dequeue = false;
+                       call->tc_queue = NULL;
+               } else if (old_queue != queue) {
+                       timer_call_entry_dequeue(call);
+#if TIMER_ASSERT
+                       timer_call_enqueue_deadline_unlocked_async2++;
+#endif
+               }
+               if (old_queue == timer_longterm_queue) {
+                       timer_longterm_dequeued_locked(call);
+               }
+               if (old_queue != queue) {
+                       timer_queue_unlock(old_queue);
+                       timer_queue_lock_spin(queue);
+               }
+       } else {
+               timer_queue_lock_spin(queue);
+       }
+
+       call->tc_soft_deadline = soft_deadline;
+       call->tc_flags = callout_flags;
+       call->tc_param1 = param1;
+       call->tc_ttd = ttd;
+
+       timer_call_entry_enqueue_deadline(call, queue, deadline);
+       timer_queue_unlock(queue);
+       simple_unlock(&call->tc_lock);
+
+       return old_queue;
+}
+
+#if TIMER_ASSERT
+unsigned timer_call_dequeue_unlocked_async1;
+unsigned timer_call_dequeue_unlocked_async2;
+#endif
+mpqueue_head_t *
+timer_call_dequeue_unlocked(
+       timer_call_t            call)
+{
+       DBG("timer_call_dequeue_unlocked(%p)\n", call);
+
+       simple_lock(&call->tc_lock, LCK_GRP_NULL);
+
+       mpqueue_head_t  *old_queue = mpqueue_for_timer_call(call);
+
+#if TIMER_ASSERT
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           call->tc_async_dequeue,
+           VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue),
+           0, 0);
+#endif
+       if (old_queue != NULL) {
+               timer_queue_lock_spin(old_queue);
+               if (call->tc_async_dequeue) {
+                       /* collision (1c): timer already dequeued, clear flag */
+#if TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           call->tc_async_dequeue,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue),
+                           0x1c, 0);
+                       timer_call_dequeue_unlocked_async1++;
+#endif
+                       call->tc_async_dequeue = false;
+                       call->tc_queue = NULL;
+               } else {
+                       timer_call_entry_dequeue(call);
+               }
+               if (old_queue == timer_longterm_queue) {
+                       timer_longterm_dequeued_locked(call);
+               }
+               timer_queue_unlock(old_queue);
+       }
+       simple_unlock(&call->tc_lock);
+       return old_queue;
+}
+
+uint64_t
+timer_call_past_deadline_timer_handle(uint64_t deadline, uint64_t ctime)
+{
+       uint64_t delta = (ctime - deadline);
+
+       past_deadline_timers++;
+       past_deadline_deltas += delta;
+       if (delta > past_deadline_longest) {
+               past_deadline_longest = deadline;
+       }
+       if (delta < past_deadline_shortest) {
+               past_deadline_shortest = delta;
+       }
+
+       return ctime + past_deadline_timer_adjustment;
+}
 
+/*
+ * Timer call entry locking model
+ * ==============================
+ *
+ * Timer call entries are linked on per-cpu timer queues which are protected
+ * by the queue lock and the call entry lock. The locking protocol is:
+ *
+ *  0) The canonical locking order is timer call entry followed by queue.
+ *
+ *  1) With only the entry lock held, entry.queue is valid:
+ *    1a) NULL: the entry is not queued, or
+ *    1b) non-NULL: this queue must be locked before the entry is modified.
+ *        After locking the queue, the call.async_dequeue flag must be checked:
+ *    1c) TRUE: the entry was removed from the queue by another thread
+ *             and we must NULL the entry.queue and reset this flag, or
+ *    1d) FALSE: (ie. queued), the entry can be manipulated.
+ *
+ *  2) If a queue lock is obtained first, the queue is stable:
+ *    2a) If a try-lock of a queued entry succeeds, the call can be operated on
+ *       and dequeued.
+ *    2b) If a try-lock fails, it indicates that another thread is attempting
+ *        to change the entry and move it to a different position in this queue
+ *        or to different queue. The entry can be dequeued but it should not be
+ *        operated upon since it is being changed. Furthermore, we don't null
+ *       the entry.queue pointer (protected by the entry lock we don't own).
+ *       Instead, we set the async_dequeue flag -- see (1c).
+ *    2c) Same as 2b but occurring when a longterm timer is matured.
+ *  3) A callout's parameters (deadline, flags, parameters, soft deadline &c.)
+ *     should be manipulated with the appropriate timer queue lock held,
+ *     to prevent queue traversal observations from observing inconsistent
+ *     updates to an in-flight callout.
+ */
+
+/*
+ * In the debug case, we assert that the timer call locking protocol
+ * is being obeyed.
+ */
+
+static boolean_t
+timer_call_enter_internal(
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint64_t                leeway,
+       uint32_t                flags,
+       boolean_t               ratelimited)
+{
+       mpqueue_head_t          *queue = NULL;
+       mpqueue_head_t          *old_queue;
+       spl_t                   s;
+       uint64_t                slop;
+       uint32_t                urgency;
+       uint64_t                sdeadline, ttd;
+
+       assert(call->tc_func != NULL);
        s = splclock();
-       simple_lock(&timer_call_lock);
 
-       if (call->state == DELAYED)
-               _delayed_call_dequeue(call);
-       else
-               result = FALSE;
+       sdeadline = deadline;
+       uint64_t ctime = mach_absolute_time();
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_ENTER | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           VM_KERNEL_ADDRHIDE(param1), deadline, flags, 0);
 
-       call->param1    = 0;
-       call->deadline  = deadline;
+       urgency = (flags & TIMER_CALL_URGENCY_MASK);
 
-       queue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       boolean_t slop_ratelimited = FALSE;
+       slop = timer_call_slop(deadline, ctime, urgency, current_thread(), &slop_ratelimited);
 
-       _delayed_call_enqueue(queue, call);
+       if ((flags & TIMER_CALL_LEEWAY) != 0 && leeway > slop) {
+               slop = leeway;
+       }
+
+       if (UINT64_MAX - deadline <= slop) {
+               deadline = UINT64_MAX;
+       } else {
+               deadline += slop;
+       }
 
-       if (queue_first(queue) == qe(call))
-               _set_delayed_call_timer(call);
+       if (__improbable(deadline < ctime)) {
+               deadline = timer_call_past_deadline_timer_handle(deadline, ctime);
+               sdeadline = deadline;
+       }
+
+       if (ratelimited || slop_ratelimited) {
+               flags |= TIMER_CALL_RATELIMITED;
+       } else {
+               flags &= ~TIMER_CALL_RATELIMITED;
+       }
+
+       ttd =  sdeadline - ctime;
+#if CONFIG_DTRACE
+       DTRACE_TMR7(callout__create, timer_call_func_t, call->tc_func,
+           timer_call_param_t, call->tc_param0, uint32_t, flags,
+           (deadline - sdeadline),
+           (ttd >> 32), (unsigned) (ttd & 0xFFFFFFFF), call);
+#endif
+
+       /* Program timer callout parameters under the appropriate per-CPU or
+        * longterm queue lock. The callout may have been previously enqueued
+        * and in-flight on this or another timer queue.
+        */
+       if (!ratelimited && !slop_ratelimited) {
+               queue = timer_longterm_enqueue_unlocked(call, ctime, deadline, &old_queue, sdeadline, ttd, param1, flags);
+       }
+
+       if (queue == NULL) {
+               queue = timer_queue_assign(deadline);
+               old_queue = timer_call_enqueue_deadline_unlocked(call, queue, deadline, sdeadline, ttd, param1, flags);
+       }
+
+#if TIMER_TRACE
+       call->tc_entry_time = ctime;
+#endif
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_ENTER | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           (old_queue != NULL), deadline, queue->count, 0);
 
-       simple_unlock(&timer_call_lock);
        splx(s);
 
-       return (result);
+       return old_queue != NULL;
+}
+
+/*
+ * timer_call_*()
+ *     return boolean indicating whether the call was previously queued.
+ */
+boolean_t
+timer_call_enter(
+       timer_call_t            call,
+       uint64_t                deadline,
+       uint32_t                flags)
+{
+       return timer_call_enter_internal(call, NULL, deadline, 0, flags, FALSE);
 }
 
 boolean_t
 timer_call_enter1(
-       timer_call_t                    call,
-       timer_call_param_t              param1,
-       uint64_t                                deadline)
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint32_t                flags)
 {
-       boolean_t               result = TRUE;
-       queue_t                 queue;
-       spl_t                   s;
+       return timer_call_enter_internal(call, param1, deadline, 0, flags, FALSE);
+}
+
+boolean_t
+timer_call_enter_with_leeway(
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint64_t                leeway,
+       uint32_t                flags,
+       boolean_t               ratelimited)
+{
+       return timer_call_enter_internal(call, param1, deadline, leeway, flags, ratelimited);
+}
+
+boolean_t
+timer_call_cancel(
+       timer_call_t            call)
+{
+       mpqueue_head_t          *old_queue;
+       spl_t                   s;
 
        s = splclock();
-       simple_lock(&timer_call_lock);
 
-       if (call->state == DELAYED)
-               _delayed_call_dequeue(call);
-       else
-               result = FALSE;
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_CANCEL | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           call->tc_pqlink.deadline, call->tc_soft_deadline, call->tc_flags, 0);
 
-       call->param1    = param1;
-       call->deadline  = deadline;
+       old_queue = timer_call_dequeue_unlocked(call);
 
-       queue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       if (old_queue != NULL) {
+               timer_queue_lock_spin(old_queue);
 
-       _delayed_call_enqueue(queue, call);
+               timer_call_t new_head = priority_queue_min(&old_queue->mpq_pqhead, struct timer_call, tc_pqlink);
 
-       if (queue_first(queue) == qe(call))
-               _set_delayed_call_timer(call);
+               if (new_head) {
+                       timer_queue_cancel(old_queue, call->tc_pqlink.deadline, new_head->tc_pqlink.deadline);
+                       old_queue->earliest_soft_deadline = new_head->tc_flags & TIMER_CALL_RATELIMITED ? new_head->tc_pqlink.deadline : new_head->tc_soft_deadline;
+               } else {
+                       timer_queue_cancel(old_queue, call->tc_pqlink.deadline, UINT64_MAX);
+                       old_queue->earliest_soft_deadline = UINT64_MAX;
+               }
 
-       simple_unlock(&timer_call_lock);
+               timer_queue_unlock(old_queue);
+       }
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_CANCEL | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           VM_KERNEL_UNSLIDE_OR_PERM(old_queue),
+           call->tc_pqlink.deadline - mach_absolute_time(),
+           call->tc_pqlink.deadline - call->tc_entry_time, 0);
        splx(s);
 
-       return (result);
+#if CONFIG_DTRACE
+       DTRACE_TMR6(callout__cancel, timer_call_func_t, call->tc_func,
+           timer_call_param_t, call->tc_param0, uint32_t, call->tc_flags, 0,
+           (call->tc_ttd >> 32), (unsigned) (call->tc_ttd & 0xFFFFFFFF));
+#endif /* CONFIG_DTRACE */
+
+       return old_queue != NULL;
 }
 
-boolean_t
-timer_call_cancel(
-       timer_call_t                    call)
+static uint32_t timer_queue_shutdown_lock_skips;
+static uint32_t timer_queue_shutdown_discarded;
+
+void
+timer_queue_shutdown(
+       mpqueue_head_t          *queue)
 {
-       boolean_t               result = TRUE;
-       spl_t                   s;
+       timer_call_t            call;
+       mpqueue_head_t          *new_queue;
+       spl_t                   s;
+
+
+       DBG("timer_queue_shutdown(%p)\n", queue);
 
        s = splclock();
-       simple_lock(&timer_call_lock);
 
-       if (call->state == DELAYED)
-               _delayed_call_dequeue(call);
-       else
-               result = FALSE;
+       while (TRUE) {
+               timer_queue_lock_spin(queue);
+
+               call = qe_queue_first(&queue->head, struct timer_call, tc_qlink);
+
+               if (call == NULL) {
+                       break;
+               }
 
-       simple_unlock(&timer_call_lock);
+               if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) {
+                       /*
+                        * case (2b) lock order inversion, dequeue and skip
+                        * Don't change the call_entry queue back-pointer
+                        * but set the async_dequeue field.
+                        */
+                       timer_queue_shutdown_lock_skips++;
+                       timer_call_entry_dequeue_async(call);
+#if TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           call->tc_async_dequeue,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue),
+                           0x2b, 0);
+#endif
+                       timer_queue_unlock(queue);
+                       continue;
+               }
+
+               boolean_t call_local = ((call->tc_flags & TIMER_CALL_LOCAL) != 0);
+
+               /* remove entry from old queue */
+               timer_call_entry_dequeue(call);
+               timer_queue_unlock(queue);
+
+               if (call_local == FALSE) {
+                       /* and queue it on new, discarding LOCAL timers */
+                       new_queue = timer_queue_assign(call->tc_pqlink.deadline);
+                       timer_queue_lock_spin(new_queue);
+                       timer_call_entry_enqueue_deadline(
+                               call, new_queue, call->tc_pqlink.deadline);
+                       timer_queue_unlock(new_queue);
+               } else {
+                       timer_queue_shutdown_discarded++;
+               }
+
+               assert(call_local == FALSE);
+               simple_unlock(&call->tc_lock);
+       }
+
+       timer_queue_unlock(queue);
        splx(s);
+}
+
+
+static uint32_t timer_queue_expire_lock_skips;
+uint64_t
+timer_queue_expire_with_options(
+       mpqueue_head_t          *queue,
+       uint64_t                deadline,
+       boolean_t               rescan)
+{
+       timer_call_t    call = NULL;
+       uint32_t tc_iterations = 0;
+       DBG("timer_queue_expire(%p,)\n", queue);
+
+       /* 'rescan' means look at every timer in the list, instead of
+        * early-exiting when the head of the list expires in the future.
+        * when 'rescan' is true, iterate by linked list instead of priority queue.
+        *
+        * TODO: if we keep a deadline ordered and soft-deadline ordered
+        * priority queue, then it's no longer necessary to do that
+        */
+
+       uint64_t cur_deadline = deadline;
+       timer_queue_lock_spin(queue);
+
+       while (!queue_empty(&queue->head)) {
+               /* Upon processing one or more timer calls, refresh the
+                * deadline to account for time elapsed in the callout
+                */
+               if (++tc_iterations > 1) {
+                       cur_deadline = mach_absolute_time();
+               }
+
+               if (call == NULL) {
+                       if (rescan == FALSE) {
+                               call = priority_queue_min(&queue->mpq_pqhead, struct timer_call, tc_pqlink);
+                       } else {
+                               call = qe_queue_first(&queue->head, struct timer_call, tc_qlink);
+                       }
+               }
 
-       return (result);
+               if (call->tc_soft_deadline <= cur_deadline) {
+                       timer_call_func_t               func;
+                       timer_call_param_t              param0, param1;
+
+                       TCOAL_DEBUG(0xDDDD0000, queue->earliest_soft_deadline, call->tc_soft_deadline, 0, 0, 0);
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_EXPIRE | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           call->tc_soft_deadline,
+                           call->tc_pqlink.deadline,
+                           call->tc_entry_time, 0);
+
+                       if ((call->tc_flags & TIMER_CALL_RATELIMITED) &&
+                           (call->tc_pqlink.deadline > cur_deadline)) {
+                               if (rescan == FALSE) {
+                                       break;
+                               }
+                       }
+
+                       if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) {
+                               /* case (2b) lock inversion, dequeue and skip */
+                               timer_queue_expire_lock_skips++;
+                               timer_call_entry_dequeue_async(call);
+                               call = NULL;
+                               continue;
+                       }
+
+                       timer_call_entry_dequeue(call);
+
+                       func = call->tc_func;
+                       param0 = call->tc_param0;
+                       param1 = call->tc_param1;
+
+                       simple_unlock(&call->tc_lock);
+                       timer_queue_unlock(queue);
+
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_CALLOUT | DBG_FUNC_START,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func),
+                           VM_KERNEL_ADDRHIDE(param0),
+                           VM_KERNEL_ADDRHIDE(param1),
+                           0);
+
+#if CONFIG_DTRACE
+                       DTRACE_TMR7(callout__start, timer_call_func_t, func,
+                           timer_call_param_t, param0, unsigned, call->tc_flags,
+                           0, (call->tc_ttd >> 32),
+                           (unsigned) (call->tc_ttd & 0xFFFFFFFF), call);
+#endif
+                       /* Maintain time-to-deadline in per-processor data
+                        * structure for thread wakeup deadline statistics.
+                        */
+                       uint64_t *ttdp = &current_processor()->timer_call_ttd;
+                       *ttdp = call->tc_ttd;
+                       (*func)(param0, param1);
+                       *ttdp = 0;
+#if CONFIG_DTRACE
+                       DTRACE_TMR4(callout__end, timer_call_func_t, func,
+                           param0, param1, call);
+#endif
+
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_CALLOUT | DBG_FUNC_END,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func),
+                           VM_KERNEL_ADDRHIDE(param0),
+                           VM_KERNEL_ADDRHIDE(param1),
+                           0);
+                       call = NULL;
+                       timer_queue_lock_spin(queue);
+               } else {
+                       if (__probable(rescan == FALSE)) {
+                               break;
+                       } else {
+                               int64_t skew = call->tc_pqlink.deadline - call->tc_soft_deadline;
+                               assert(call->tc_pqlink.deadline >= call->tc_soft_deadline);
+
+                               /* DRK: On a latency quality-of-service level change,
+                                * re-sort potentially rate-limited timers. The platform
+                                * layer determines which timers require
+                                * this. In the absence of the per-callout
+                                * synchronization requirement, a global resort could
+                                * be more efficient. The re-sort effectively
+                                * annuls all timer adjustments, i.e. the "soft
+                                * deadline" is the sort key.
+                                */
+
+                               if (timer_resort_threshold(skew)) {
+                                       if (__probable(simple_lock_try(&call->tc_lock, LCK_GRP_NULL))) {
+                                               /* TODO: don't need to dequeue before enqueue */
+                                               timer_call_entry_dequeue(call);
+                                               timer_call_entry_enqueue_deadline(call, queue, call->tc_soft_deadline);
+                                               simple_unlock(&call->tc_lock);
+                                               call = NULL;
+                                       }
+                               }
+                               if (call) {
+                                       call = qe_queue_next(&queue->head, call, struct timer_call, tc_qlink);
+
+                                       if (call == NULL) {
+                                               break;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       call = priority_queue_min(&queue->mpq_pqhead, struct timer_call, tc_pqlink);
+
+       if (call) {
+               cur_deadline = call->tc_pqlink.deadline;
+               queue->earliest_soft_deadline = (call->tc_flags & TIMER_CALL_RATELIMITED) ? call->tc_pqlink.deadline: call->tc_soft_deadline;
+       } else {
+               queue->earliest_soft_deadline = cur_deadline = UINT64_MAX;
+       }
+
+       timer_queue_unlock(queue);
+
+       return cur_deadline;
 }
 
-boolean_t
-timer_call_is_delayed(
-       timer_call_t                    call,
-       uint64_t                                *deadline)
+uint64_t
+timer_queue_expire(
+       mpqueue_head_t          *queue,
+       uint64_t                deadline)
 {
-       boolean_t               result = FALSE;
-       spl_t                   s;
+       return timer_queue_expire_with_options(queue, deadline, FALSE);
+}
 
-       s = splclock();
-       simple_lock(&timer_call_lock);
+extern int serverperfmode;
+static uint32_t timer_queue_migrate_lock_skips;
+/*
+ * timer_queue_migrate() is called by timer_queue_migrate_cpu()
+ * to move timer requests from the local processor (queue_from)
+ * to a target processor's (queue_to).
+ */
+int
+timer_queue_migrate(mpqueue_head_t *queue_from, mpqueue_head_t *queue_to)
+{
+       timer_call_t    call;
+       timer_call_t    head_to;
+       int             timers_migrated = 0;
+
+       DBG("timer_queue_migrate(%p,%p)\n", queue_from, queue_to);
+
+       assert(!ml_get_interrupts_enabled());
+       assert(queue_from != queue_to);
+
+       if (serverperfmode) {
+               /*
+                * if we're running a high end server
+                * avoid migrations... they add latency
+                * and don't save us power under typical
+                * server workloads
+                */
+               return -4;
+       }
 
-       if (call->state == DELAYED) {
-               if (deadline != NULL)
-                       *deadline = call->deadline;
-               result = TRUE;
+       /*
+        * Take both local (from) and target (to) timer queue locks while
+        * moving the timers from the local queue to the target processor.
+        * We assume that the target is always the boot processor.
+        * But only move if all of the following is true:
+        *  - the target queue is non-empty
+        *  - the local queue is non-empty
+        *  - the local queue's first deadline is later than the target's
+        *  - the local queue contains no non-migrateable "local" call
+        * so that we need not have the target resync.
+        */
+
+       timer_queue_lock_spin(queue_to);
+
+       head_to = priority_queue_min(&queue_to->mpq_pqhead, struct timer_call, tc_pqlink);
+
+       if (head_to == NULL) {
+               timers_migrated = -1;
+               goto abort1;
        }
 
-       simple_unlock(&timer_call_lock);
+       timer_queue_lock_spin(queue_from);
+
+       call = priority_queue_min(&queue_from->mpq_pqhead, struct timer_call, tc_pqlink);
+
+       if (call == NULL) {
+               timers_migrated = -2;
+               goto abort2;
+       }
+
+       if (call->tc_pqlink.deadline < head_to->tc_pqlink.deadline) {
+               timers_migrated = 0;
+               goto abort2;
+       }
+
+       /* perform scan for non-migratable timers */
+       qe_foreach_element(call, &queue_from->head, tc_qlink) {
+               if (call->tc_flags & TIMER_CALL_LOCAL) {
+                       timers_migrated = -3;
+                       goto abort2;
+               }
+       }
+
+       /* migration loop itself -- both queues are locked */
+       qe_foreach_element_safe(call, &queue_from->head, tc_qlink) {
+               if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) {
+                       /* case (2b) lock order inversion, dequeue only */
+#ifdef TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue),
+                           0,
+                           0x2b, 0);
+#endif
+                       timer_queue_migrate_lock_skips++;
+                       timer_call_entry_dequeue_async(call);
+                       continue;
+               }
+               timer_call_entry_dequeue(call);
+               timer_call_entry_enqueue_deadline(
+                       call, queue_to, call->tc_pqlink.deadline);
+               timers_migrated++;
+               simple_unlock(&call->tc_lock);
+       }
+       queue_from->earliest_soft_deadline = UINT64_MAX;
+abort2:
+       timer_queue_unlock(queue_from);
+abort1:
+       timer_queue_unlock(queue_to);
+
+       return timers_migrated;
+}
+
+void
+timer_queue_trace_cpu(int ncpu)
+{
+       timer_call_nosync_cpu(
+               ncpu,
+               (void (*)(void *))timer_queue_trace,
+               (void*) timer_queue_cpu(ncpu));
+}
+
+void
+timer_queue_trace(
+       mpqueue_head_t                  *queue)
+{
+       timer_call_t    call;
+       spl_t           s;
+
+       if (!kdebug_enable) {
+               return;
+       }
+
+       s = splclock();
+       timer_queue_lock_spin(queue);
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_QUEUE | DBG_FUNC_START,
+           queue->count, mach_absolute_time(), 0, 0, 0);
+
+       qe_foreach_element(call, &queue->head, tc_qlink) {
+               TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                   DECR_TIMER_QUEUE | DBG_FUNC_NONE,
+                   call->tc_soft_deadline,
+                   call->tc_pqlink.deadline,
+                   call->tc_entry_time,
+                   VM_KERNEL_UNSLIDE(call->tc_func),
+                   0);
+       }
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_QUEUE | DBG_FUNC_END,
+           queue->count, mach_absolute_time(), 0, 0, 0);
+
+       timer_queue_unlock(queue);
        splx(s);
+}
+
+void
+timer_longterm_dequeued_locked(timer_call_t call)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
 
-       return (result);
+       tlp->dequeues++;
+       if (call == tlp->threshold.call) {
+               tlp->threshold.call = NULL;
+       }
 }
 
 /*
- * Called at splclock.
+ * Place a timer call in the longterm list
+ * and adjust the next timer callout deadline if the new timer is first.
  */
+mpqueue_head_t *
+timer_longterm_enqueue_unlocked(timer_call_t    call,
+    uint64_t        now,
+    uint64_t        deadline,
+    mpqueue_head_t  **old_queue,
+    uint64_t        soft_deadline,
+    uint64_t        ttd,
+    timer_call_param_t      param1,
+    uint32_t        callout_flags)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
+       boolean_t               update_required = FALSE;
+       uint64_t                longterm_threshold;
+
+       longterm_threshold = now + tlp->threshold.interval;
+
+       /*
+        * Return NULL without doing anything if:
+        *  - this timer is local, or
+        *  - the longterm mechanism is disabled, or
+        *  - this deadline is too short.
+        */
+       if ((callout_flags & TIMER_CALL_LOCAL) != 0 ||
+           (tlp->threshold.interval == TIMER_LONGTERM_NONE) ||
+           (deadline <= longterm_threshold)) {
+               return NULL;
+       }
+
+       /*
+        * Remove timer from its current queue, if any.
+        */
+       *old_queue = timer_call_dequeue_unlocked(call);
+
+       /*
+        * Lock the longterm queue, queue timer and determine
+        * whether an update is necessary.
+        */
+       assert(!ml_get_interrupts_enabled());
+       simple_lock(&call->tc_lock, LCK_GRP_NULL);
+       timer_queue_lock_spin(timer_longterm_queue);
+       call->tc_pqlink.deadline = deadline;
+       call->tc_param1 = param1;
+       call->tc_ttd = ttd;
+       call->tc_soft_deadline = soft_deadline;
+       call->tc_flags = callout_flags;
+       timer_call_entry_enqueue_tail(call, timer_longterm_queue);
+
+       tlp->enqueues++;
+
+       /*
+        * We'll need to update the currently set threshold timer
+        * if the new deadline is sooner and no sooner update is in flight.
+        */
+       if (deadline < tlp->threshold.deadline &&
+           deadline < tlp->threshold.preempted) {
+               tlp->threshold.preempted = deadline;
+               tlp->threshold.call = call;
+               update_required = TRUE;
+       }
+       timer_queue_unlock(timer_longterm_queue);
+       simple_unlock(&call->tc_lock);
+
+       if (update_required) {
+               /*
+                * Note: this call expects that calling the master cpu
+                * alone does not involve locking the topo lock.
+                */
+               timer_call_nosync_cpu(
+                       master_cpu,
+                       (void (*)(void *))timer_longterm_update,
+                       (void *)tlp);
+       }
+
+       return timer_longterm_queue;
+}
 
+/*
+ * Scan for timers below the longterm threshold.
+ * Move these to the local timer queue (of the boot processor on which the
+ * calling thread is running).
+ * Both the local (boot) queue and the longterm queue are locked.
+ * The scan is similar to the timer migrate sequence but is performed by
+ * successively examining each timer on the longterm queue:
+ *  - if within the short-term threshold
+ *    - enter on the local queue (unless being deleted),
+ *  - otherwise:
+ *    - if sooner, deadline becomes the next threshold deadline.
+ * The total scan time is limited to TIMER_LONGTERM_SCAN_LIMIT. Should this be
+ * exceeded, we abort and reschedule again so that we don't shut others from
+ * the timer queues. Longterm timers firing late is not critical.
+ */
 void
-timer_call_shutdown(
-       processor_t                     processor)
+timer_longterm_scan(timer_longterm_t    *tlp,
+    uint64_t            time_start)
 {
-       timer_call_t            call;
-       queue_t                         queue, myqueue;
+       timer_call_t    call;
+       uint64_t        threshold;
+       uint64_t        deadline;
+       uint64_t        time_limit = time_start + tlp->scan_limit;
+       mpqueue_head_t  *timer_master_queue;
 
-       assert(processor != current_processor());
+       assert(!ml_get_interrupts_enabled());
+       assert(cpu_number() == master_cpu);
 
-       queue = &PROCESSOR_DATA(processor, timer_call_queue);
-       myqueue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       if (tlp->threshold.interval != TIMER_LONGTERM_NONE) {
+               threshold = time_start + tlp->threshold.interval;
+       }
 
-       simple_lock(&timer_call_lock);
+       tlp->threshold.deadline = TIMER_LONGTERM_NONE;
+       tlp->threshold.call = NULL;
 
-       call = TC(queue_first(queue));
+       if (queue_empty(&timer_longterm_queue->head)) {
+               return;
+       }
 
-       while (!queue_end(queue, qe(call))) {
-               _delayed_call_dequeue(call);
+       timer_master_queue = timer_queue_cpu(master_cpu);
+       timer_queue_lock_spin(timer_master_queue);
+
+       qe_foreach_element_safe(call, &timer_longterm_queue->head, tc_qlink) {
+               deadline = call->tc_soft_deadline;
+               if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) {
+                       /* case (2c) lock order inversion, dequeue only */
+#ifdef TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue),
+                           0,
+                           0x2c, 0);
+#endif
+                       timer_call_entry_dequeue_async(call);
+                       continue;
+               }
+               if (deadline < threshold) {
+                       /*
+                        * This timer needs moving (escalating)
+                        * to the local (boot) processor's queue.
+                        */
+#ifdef TIMER_ASSERT
+                       if (deadline < time_start) {
+                               TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                                   DECR_TIMER_OVERDUE | DBG_FUNC_NONE,
+                                   VM_KERNEL_UNSLIDE_OR_PERM(call),
+                                   deadline,
+                                   time_start,
+                                   threshold,
+                                   0);
+                       }
+#endif
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                           DECR_TIMER_ESCALATE | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                           call->tc_pqlink.deadline,
+                           call->tc_entry_time,
+                           VM_KERNEL_UNSLIDE(call->tc_func),
+                           0);
+                       tlp->escalates++;
+                       timer_call_entry_dequeue(call);
+                       timer_call_entry_enqueue_deadline(
+                               call, timer_master_queue, call->tc_pqlink.deadline);
+                       /*
+                        * A side-effect of the following call is to update
+                        * the actual hardware deadline if required.
+                        */
+                       (void) timer_queue_assign(deadline);
+               } else {
+                       if (deadline < tlp->threshold.deadline) {
+                               tlp->threshold.deadline = deadline;
+                               tlp->threshold.call = call;
+                       }
+               }
+               simple_unlock(&call->tc_lock);
+
+               /* Abort scan if we're taking too long. */
+               if (mach_absolute_time() > time_limit) {
+                       tlp->threshold.deadline = TIMER_LONGTERM_SCAN_AGAIN;
+                       tlp->scan_pauses++;
+                       DBG("timer_longterm_scan() paused %llu, qlen: %llu\n",
+                           time_limit, tlp->queue.count);
+                       break;
+               }
+       }
 
-               _delayed_call_enqueue(myqueue, call);
+       timer_queue_unlock(timer_master_queue);
+}
+
+void
+timer_longterm_callout(timer_call_param_t p0, __unused timer_call_param_t p1)
+{
+       timer_longterm_t        *tlp = (timer_longterm_t *) p0;
 
-               call = TC(queue_first(queue));
+       timer_longterm_update(tlp);
+}
+
+void
+timer_longterm_update_locked(timer_longterm_t *tlp)
+{
+       uint64_t        latency;
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_UPDATE | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(&tlp->queue),
+           tlp->threshold.deadline,
+           tlp->threshold.preempted,
+           tlp->queue.count, 0);
+
+       tlp->scan_time = mach_absolute_time();
+       if (tlp->threshold.preempted != TIMER_LONGTERM_NONE) {
+               tlp->threshold.preempts++;
+               tlp->threshold.deadline = tlp->threshold.preempted;
+               tlp->threshold.preempted = TIMER_LONGTERM_NONE;
+               /*
+                * Note: in the unlikely event that a pre-empted timer has
+                * itself been cancelled, we'll simply re-scan later at the
+                * time of the preempted/cancelled timer.
+                */
+       } else {
+               tlp->threshold.scans++;
+
+               /*
+                * Maintain a moving average of our wakeup latency.
+                * Clamp latency to 0 and ignore above threshold interval.
+                */
+               if (tlp->scan_time > tlp->threshold.deadline_set) {
+                       latency = tlp->scan_time - tlp->threshold.deadline_set;
+               } else {
+                       latency = 0;
+               }
+               if (latency < tlp->threshold.interval) {
+                       tlp->threshold.latency_min =
+                           MIN(tlp->threshold.latency_min, latency);
+                       tlp->threshold.latency_max =
+                           MAX(tlp->threshold.latency_max, latency);
+                       tlp->threshold.latency =
+                           (tlp->threshold.latency * 99 + latency) / 100;
+               }
+
+               timer_longterm_scan(tlp, tlp->scan_time);
        }
 
-       call = TC(queue_first(myqueue));
+       tlp->threshold.deadline_set = tlp->threshold.deadline;
+       /* The next deadline timer to be set is adjusted */
+       if (tlp->threshold.deadline != TIMER_LONGTERM_NONE &&
+           tlp->threshold.deadline != TIMER_LONGTERM_SCAN_AGAIN) {
+               tlp->threshold.deadline_set -= tlp->threshold.margin;
+               tlp->threshold.deadline_set -= tlp->threshold.latency;
+       }
 
-       if (!queue_end(myqueue, qe(call)))
-               _set_delayed_call_timer(call);
+       /* Throttle next scan time */
+       uint64_t scan_clamp = mach_absolute_time() + tlp->scan_interval;
+       if (tlp->threshold.deadline_set < scan_clamp) {
+               tlp->threshold.deadline_set = scan_clamp;
+       }
 
-       simple_unlock(&timer_call_lock);
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+           DECR_TIMER_UPDATE | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(&tlp->queue),
+           tlp->threshold.deadline,
+           tlp->threshold.scans,
+           tlp->queue.count, 0);
 }
 
-static
 void
-timer_call_interrupt(
-       uint64_t                                timestamp)
+timer_longterm_update(timer_longterm_t *tlp)
 {
-       timer_call_t            call;
-       queue_t                         queue;
+       spl_t   s = splclock();
 
-       simple_lock(&timer_call_lock);
+       timer_queue_lock_spin(timer_longterm_queue);
 
-       queue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       if (cpu_number() != master_cpu) {
+               panic("timer_longterm_update_master() on non-boot cpu");
+       }
 
-       call = TC(queue_first(queue));
+       timer_longterm_update_locked(tlp);
 
-       while (!queue_end(queue, qe(call))) {
-               if (call->deadline <= timestamp) {
-                       timer_call_func_t               func;
-                       timer_call_param_t              param0, param1;
+       if (tlp->threshold.deadline != TIMER_LONGTERM_NONE) {
+               timer_call_enter(
+                       &tlp->threshold.timer,
+                       tlp->threshold.deadline_set,
+                       TIMER_CALL_LOCAL | TIMER_CALL_SYS_CRITICAL);
+       }
 
-                       _delayed_call_dequeue(call);
+       timer_queue_unlock(timer_longterm_queue);
+       splx(s);
+}
 
-                       func = call->func;
-                       param0 = call->param0;
-                       param1 = call->param1;
+void
+timer_longterm_init(void)
+{
+       uint32_t                longterm;
+       timer_longterm_t        *tlp = &timer_longterm;
+
+       DBG("timer_longterm_init() tlp: %p, queue: %p\n", tlp, &tlp->queue);
+
+       /*
+        * Set the longterm timer threshold. Defaults to TIMER_LONGTERM_THRESHOLD
+        * or TIMER_LONGTERM_NONE (disabled) for server;
+        * overridden longterm boot-arg
+        */
+       tlp->threshold.interval = serverperfmode ? TIMER_LONGTERM_NONE
+           : TIMER_LONGTERM_THRESHOLD;
+       if (PE_parse_boot_argn("longterm", &longterm, sizeof(longterm))) {
+               tlp->threshold.interval = (longterm == 0) ?
+                   TIMER_LONGTERM_NONE :
+                   longterm * NSEC_PER_MSEC;
+       }
+       if (tlp->threshold.interval != TIMER_LONGTERM_NONE) {
+               printf("Longterm timer threshold: %llu ms\n",
+                   tlp->threshold.interval / NSEC_PER_MSEC);
+               kprintf("Longterm timer threshold: %llu ms\n",
+                   tlp->threshold.interval / NSEC_PER_MSEC);
+               nanoseconds_to_absolutetime(tlp->threshold.interval,
+                   &tlp->threshold.interval);
+               tlp->threshold.margin = tlp->threshold.interval / 10;
+               tlp->threshold.latency_min = EndOfAllTime;
+               tlp->threshold.latency_max = 0;
+       }
 
-                       simple_unlock(&timer_call_lock);
+       tlp->threshold.preempted = TIMER_LONGTERM_NONE;
+       tlp->threshold.deadline = TIMER_LONGTERM_NONE;
 
-                       (*func)(param0, param1);
+       mpqueue_init(&tlp->queue, &timer_longterm_lck_grp, LCK_ATTR_NULL);
 
-                       simple_lock(&timer_call_lock);
+       timer_call_setup(&tlp->threshold.timer,
+           timer_longterm_callout, (timer_call_param_t) tlp);
+
+       timer_longterm_queue = &tlp->queue;
+}
+
+enum {
+       THRESHOLD, QCOUNT,
+       ENQUEUES, DEQUEUES, ESCALATES, SCANS, PREEMPTS,
+       LATENCY, LATENCY_MIN, LATENCY_MAX, SCAN_LIMIT, SCAN_INTERVAL, PAUSES
+};
+uint64_t
+timer_sysctl_get(int oid)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
+
+       switch (oid) {
+       case THRESHOLD:
+               return (tlp->threshold.interval == TIMER_LONGTERM_NONE) ?
+                      0 : tlp->threshold.interval / NSEC_PER_MSEC;
+       case QCOUNT:
+               return tlp->queue.count;
+       case ENQUEUES:
+               return tlp->enqueues;
+       case DEQUEUES:
+               return tlp->dequeues;
+       case ESCALATES:
+               return tlp->escalates;
+       case SCANS:
+               return tlp->threshold.scans;
+       case PREEMPTS:
+               return tlp->threshold.preempts;
+       case LATENCY:
+               return tlp->threshold.latency;
+       case LATENCY_MIN:
+               return tlp->threshold.latency_min;
+       case LATENCY_MAX:
+               return tlp->threshold.latency_max;
+       case SCAN_LIMIT:
+               return tlp->scan_limit;
+       case SCAN_INTERVAL:
+               return tlp->scan_interval;
+       case PAUSES:
+               return tlp->scan_pauses;
+       default:
+               return 0;
+       }
+}
+
+/*
+ * timer_master_scan() is the inverse of timer_longterm_scan()
+ * since it un-escalates timers to the longterm queue.
+ */
+static void
+timer_master_scan(timer_longterm_t      *tlp,
+    uint64_t              now)
+{
+       timer_call_t    call;
+       uint64_t        threshold;
+       uint64_t        deadline;
+       mpqueue_head_t  *timer_master_queue;
+
+       if (tlp->threshold.interval != TIMER_LONGTERM_NONE) {
+               threshold = now + tlp->threshold.interval;
+       } else {
+               threshold = TIMER_LONGTERM_NONE;
+       }
+
+       timer_master_queue = timer_queue_cpu(master_cpu);
+       timer_queue_lock_spin(timer_master_queue);
+
+       qe_foreach_element_safe(call, &timer_master_queue->head, tc_qlink) {
+               deadline = call->tc_pqlink.deadline;
+               if ((call->tc_flags & TIMER_CALL_LOCAL) != 0) {
+                       continue;
                }
-               else
-                       break;
+               if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) {
+                       /* case (2c) lock order inversion, dequeue only */
+                       timer_call_entry_dequeue_async(call);
+                       continue;
+               }
+               if (deadline > threshold) {
+                       /* move from master to longterm */
+                       timer_call_entry_dequeue(call);
+                       timer_call_entry_enqueue_tail(call, timer_longterm_queue);
+                       if (deadline < tlp->threshold.deadline) {
+                               tlp->threshold.deadline = deadline;
+                               tlp->threshold.call = call;
+                       }
+               }
+               simple_unlock(&call->tc_lock);
+       }
+       timer_queue_unlock(timer_master_queue);
+}
+
+static void
+timer_sysctl_set_threshold(uint64_t value)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
+       spl_t                   s = splclock();
+       boolean_t               threshold_increase;
+
+       timer_queue_lock_spin(timer_longterm_queue);
+
+       timer_call_cancel(&tlp->threshold.timer);
+
+       /*
+        * Set the new threshold and note whther it's increasing.
+        */
+       if (value == 0) {
+               tlp->threshold.interval = TIMER_LONGTERM_NONE;
+               threshold_increase = TRUE;
+               timer_call_cancel(&tlp->threshold.timer);
+       } else {
+               uint64_t        old_interval = tlp->threshold.interval;
+               tlp->threshold.interval = value * NSEC_PER_MSEC;
+               nanoseconds_to_absolutetime(tlp->threshold.interval,
+                   &tlp->threshold.interval);
+               tlp->threshold.margin = tlp->threshold.interval / 10;
+               if (old_interval == TIMER_LONGTERM_NONE) {
+                       threshold_increase = FALSE;
+               } else {
+                       threshold_increase = (tlp->threshold.interval > old_interval);
+               }
+       }
+
+       if (threshold_increase /* or removal */) {
+               /* Escalate timers from the longterm queue */
+               timer_longterm_scan(tlp, mach_absolute_time());
+       } else { /* decrease or addition  */
+               /*
+                * We scan the local/master queue for timers now longterm.
+                * To be strictly correct, we should scan all processor queues
+                * but timer migration results in most timers gravitating to the
+                * master processor in any case.
+                */
+               timer_master_scan(tlp, mach_absolute_time());
+       }
 
-               call = TC(queue_first(queue));
+       /* Set new timer accordingly */
+       tlp->threshold.deadline_set = tlp->threshold.deadline;
+       if (tlp->threshold.deadline != TIMER_LONGTERM_NONE) {
+               tlp->threshold.deadline_set -= tlp->threshold.margin;
+               tlp->threshold.deadline_set -= tlp->threshold.latency;
+               timer_call_enter(
+                       &tlp->threshold.timer,
+                       tlp->threshold.deadline_set,
+                       TIMER_CALL_LOCAL | TIMER_CALL_SYS_CRITICAL);
        }
 
-       if (!queue_end(queue, qe(call)))
-               _set_delayed_call_timer(call);
+       /* Reset stats */
+       tlp->enqueues = 0;
+       tlp->dequeues = 0;
+       tlp->escalates = 0;
+       tlp->scan_pauses = 0;
+       tlp->threshold.scans = 0;
+       tlp->threshold.preempts = 0;
+       tlp->threshold.latency = 0;
+       tlp->threshold.latency_min = EndOfAllTime;
+       tlp->threshold.latency_max = 0;
+
+       timer_queue_unlock(timer_longterm_queue);
+       splx(s);
+}
+
+int
+timer_sysctl_set(int oid, uint64_t value)
+{
+       switch (oid) {
+       case THRESHOLD:
+               timer_call_cpu(
+                       master_cpu,
+                       (void (*)(void *))timer_sysctl_set_threshold,
+                       (void *) value);
+               return KERN_SUCCESS;
+       case SCAN_LIMIT:
+               timer_longterm.scan_limit = value;
+               return KERN_SUCCESS;
+       case SCAN_INTERVAL:
+               timer_longterm.scan_interval = value;
+               return KERN_SUCCESS;
+       default:
+               return KERN_INVALID_ARGUMENT;
+       }
+}
+
+
+/* Select timer coalescing window based on per-task quality-of-service hints */
+static boolean_t
+tcoal_qos_adjust(thread_t t, int32_t *tshift, uint64_t *tmax_abstime, boolean_t *pratelimited)
+{
+       uint32_t latency_qos;
+       boolean_t adjusted = FALSE;
+       task_t ctask = t->task;
+
+       if (ctask) {
+               latency_qos = proc_get_effective_thread_policy(t, TASK_POLICY_LATENCY_QOS);
+
+               assert(latency_qos <= NUM_LATENCY_QOS_TIERS);
+
+               if (latency_qos) {
+                       *tshift = tcoal_prio_params.latency_qos_scale[latency_qos - 1];
+                       *tmax_abstime = tcoal_prio_params.latency_qos_abstime_max[latency_qos - 1];
+                       *pratelimited = tcoal_prio_params.latency_tier_rate_limited[latency_qos - 1];
+                       adjusted = TRUE;
+               }
+       }
+       return adjusted;
+}
+
+
+/* Adjust timer deadlines based on priority of the thread and the
+ * urgency value provided at timeout establishment. With this mechanism,
+ * timers are no longer necessarily sorted in order of soft deadline
+ * on a given timer queue, i.e. they may be differentially skewed.
+ * In the current scheme, this could lead to fewer pending timers
+ * processed than is technically possible when the HW deadline arrives.
+ */
+static void
+timer_compute_leeway(thread_t cthread, int32_t urgency, int32_t *tshift, uint64_t *tmax_abstime, boolean_t *pratelimited)
+{
+       int16_t tpri = cthread->sched_pri;
+       if ((urgency & TIMER_CALL_USER_MASK) != 0) {
+               if (tpri >= BASEPRI_RTQUEUES ||
+                   urgency == TIMER_CALL_USER_CRITICAL) {
+                       *tshift = tcoal_prio_params.timer_coalesce_rt_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_rt_abstime_max;
+                       TCOAL_PRIO_STAT(rt_tcl);
+               } else if (proc_get_effective_thread_policy(cthread, TASK_POLICY_DARWIN_BG) ||
+                   (urgency == TIMER_CALL_USER_BACKGROUND)) {
+                       /* Determine if timer should be subjected to a lower QoS */
+                       if (tcoal_qos_adjust(cthread, tshift, tmax_abstime, pratelimited)) {
+                               if (*tmax_abstime > tcoal_prio_params.timer_coalesce_bg_abstime_max) {
+                                       return;
+                               } else {
+                                       *pratelimited = FALSE;
+                               }
+                       }
+                       *tshift = tcoal_prio_params.timer_coalesce_bg_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_bg_abstime_max;
+                       TCOAL_PRIO_STAT(bg_tcl);
+               } else if (tpri >= MINPRI_KERNEL) {
+                       *tshift = tcoal_prio_params.timer_coalesce_kt_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_kt_abstime_max;
+                       TCOAL_PRIO_STAT(kt_tcl);
+               } else if (cthread->sched_mode == TH_MODE_FIXED) {
+                       *tshift = tcoal_prio_params.timer_coalesce_fp_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_fp_abstime_max;
+                       TCOAL_PRIO_STAT(fp_tcl);
+               } else if (tcoal_qos_adjust(cthread, tshift, tmax_abstime, pratelimited)) {
+                       TCOAL_PRIO_STAT(qos_tcl);
+               } else if (cthread->sched_mode == TH_MODE_TIMESHARE) {
+                       *tshift = tcoal_prio_params.timer_coalesce_ts_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_ts_abstime_max;
+                       TCOAL_PRIO_STAT(ts_tcl);
+               } else {
+                       TCOAL_PRIO_STAT(nc_tcl);
+               }
+       } else if (urgency == TIMER_CALL_SYS_BACKGROUND) {
+               *tshift = tcoal_prio_params.timer_coalesce_bg_shift;
+               *tmax_abstime = tcoal_prio_params.timer_coalesce_bg_abstime_max;
+               TCOAL_PRIO_STAT(bg_tcl);
+       } else {
+               *tshift = tcoal_prio_params.timer_coalesce_kt_shift;
+               *tmax_abstime = tcoal_prio_params.timer_coalesce_kt_abstime_max;
+               TCOAL_PRIO_STAT(kt_tcl);
+       }
+}
+
+
+int timer_user_idle_level;
 
-       simple_unlock(&timer_call_lock);
+uint64_t
+timer_call_slop(uint64_t deadline, uint64_t now, uint32_t flags, thread_t cthread, boolean_t *pratelimited)
+{
+       int32_t tcs_shift = 0;
+       uint64_t tcs_max_abstime = 0;
+       uint64_t adjval;
+       uint32_t urgency = (flags & TIMER_CALL_URGENCY_MASK);
+
+       if (mach_timer_coalescing_enabled &&
+           (deadline > now) && (urgency != TIMER_CALL_SYS_CRITICAL)) {
+               timer_compute_leeway(cthread, urgency, &tcs_shift, &tcs_max_abstime, pratelimited);
+
+               if (tcs_shift >= 0) {
+                       adjval =  MIN((deadline - now) >> tcs_shift, tcs_max_abstime);
+               } else {
+                       adjval =  MIN((deadline - now) << (-tcs_shift), tcs_max_abstime);
+               }
+               /* Apply adjustments derived from "user idle level" heuristic */
+               adjval += (adjval * timer_user_idle_level) >> 7;
+               return adjval;
+       } else {
+               return 0;
+       }
+}
+
+int
+timer_get_user_idle_level(void)
+{
+       return timer_user_idle_level;
+}
+
+kern_return_t
+timer_set_user_idle_level(int ilevel)
+{
+       boolean_t do_reeval = FALSE;
+
+       if ((ilevel < 0) || (ilevel > 128)) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       if (ilevel < timer_user_idle_level) {
+               do_reeval = TRUE;
+       }
+
+       timer_user_idle_level = ilevel;
+
+       if (do_reeval) {
+               ml_timer_evaluate();
+       }
+
+       return KERN_SUCCESS;
+}
+
+#pragma mark - running timers
+
+#define RUNNING_TIMER_FAKE_FLAGS (TIMER_CALL_SYS_CRITICAL | \
+    TIMER_CALL_LOCAL)
+
+/*
+ * timer_call_trace_* functions mimic the tracing behavior from the normal
+ * timer_call subsystem, so tools continue to function.
+ */
+
+static void
+timer_call_trace_enter_before(struct timer_call *call, uint64_t deadline,
+    uint32_t flags, uint64_t now)
+{
+#pragma unused(call, deadline, flags, now)
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_ADDRHIDE(call->tc_param1),
+           deadline, flags, 0);
+#if CONFIG_DTRACE
+       uint64_t ttd = deadline - now;
+       DTRACE_TMR7(callout__create, timer_call_func_t, call->tc_func,
+           timer_call_param_t, call->tc_param0, uint32_t, flags, 0,
+           (ttd >> 32), (unsigned int)(ttd & 0xFFFFFFFF), NULL);
+#endif /* CONFIG_DTRACE */
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(call), 0, deadline, 0, 0);
+}
+
+static void
+timer_call_trace_enter_after(struct timer_call *call, uint64_t deadline)
+{
+#pragma unused(call, deadline)
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(call), 0, deadline, 0, 0);
+}
+
+static void
+timer_call_trace_cancel(struct timer_call *call)
+{
+#pragma unused(call)
+       __unused uint64_t deadline = call->tc_pqlink.deadline;
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CANCEL | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(call), deadline, 0,
+           call->tc_flags, 0);
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CANCEL | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(call), 0, deadline - mach_absolute_time(),
+           deadline - call->tc_entry_time, 0);
+#if CONFIG_DTRACE
+#if TIMER_TRACE
+       uint64_t ttd = deadline - call->tc_entry_time;
+#else
+       uint64_t ttd = UINT64_MAX;
+#endif /* TIMER_TRACE */
+       DTRACE_TMR6(callout__cancel, timer_call_func_t, call->tc_func,
+           timer_call_param_t, call->tc_param0, uint32_t, call->tc_flags, 0,
+           (ttd >> 32), (unsigned int)(ttd & 0xFFFFFFFF));
+#endif /* CONFIG_DTRACE */
+}
+
+static void
+timer_call_trace_expire_entry(struct timer_call *call)
+{
+#pragma unused(call)
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CALLOUT | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(call->tc_func),
+           VM_KERNEL_ADDRHIDE(call->tc_param0),
+           VM_KERNEL_ADDRHIDE(call->tc_param1),
+           0);
+#if CONFIG_DTRACE
+#if TIMER_TRACE
+       uint64_t ttd = call->tc_pqlink.deadline - call->tc_entry_time;
+#else /* TIMER_TRACE */
+       uint64_t ttd = UINT64_MAX;
+#endif /* TIMER_TRACE */
+       DTRACE_TMR7(callout__start, timer_call_func_t, call->tc_func,
+           timer_call_param_t, call->tc_param0, unsigned, call->tc_flags,
+           0, (ttd >> 32), (unsigned int)(ttd & 0xFFFFFFFF), NULL);
+#endif /* CONFIG_DTRACE */
+}
+
+static void
+timer_call_trace_expire_return(struct timer_call *call)
+{
+#pragma unused(call)
+#if CONFIG_DTRACE
+       DTRACE_TMR4(callout__end, timer_call_func_t, call->tc_func,
+           call->tc_param0, call->tc_param1, NULL);
+#endif /* CONFIG_DTRACE */
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CALLOUT | DBG_FUNC_END,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           VM_KERNEL_UNSLIDE(call->tc_func),
+           VM_KERNEL_ADDRHIDE(call->tc_param0),
+           VM_KERNEL_ADDRHIDE(call->tc_param1),
+           0);
+}
+
+/*
+ * Set a new deadline for a running timer on this processor.
+ */
+void
+running_timer_setup(processor_t processor, enum running_timer timer,
+    void *param, uint64_t deadline, uint64_t now)
+{
+       assert(timer < RUNNING_TIMER_MAX);
+       assert(ml_get_interrupts_enabled() == FALSE);
+
+       struct timer_call *call = &processor->running_timers[timer];
+
+       timer_call_trace_enter_before(call, deadline, RUNNING_TIMER_FAKE_FLAGS,
+           now);
+
+       if (__improbable(deadline < now)) {
+               deadline = timer_call_past_deadline_timer_handle(deadline, now);
+       }
+
+       call->tc_pqlink.deadline = deadline;
+#if TIMER_TRACE
+       call->tc_entry_time = now;
+#endif /* TIMER_TRACE */
+       call->tc_param1 = param;
+
+       timer_call_trace_enter_after(call, deadline);
+}
+
+void
+running_timers_sync(void)
+{
+       timer_resync_deadlines();
+}
+
+void
+running_timer_enter(processor_t processor, unsigned int timer,
+    void *param, uint64_t deadline, uint64_t now)
+{
+       running_timer_setup(processor, timer, param, deadline, now);
+       running_timers_sync();
+}
+
+/*
+ * Call the callback for any running timers that fired for this processor.
+ * Returns true if any timers were past their deadline.
+ */
+bool
+running_timers_expire(processor_t processor, uint64_t now)
+{
+       bool expired = false;
+
+       if (!processor->running_timers_active) {
+               return expired;
+       }
+
+       for (int i = 0; i < RUNNING_TIMER_MAX; i++) {
+               struct timer_call *call = &processor->running_timers[i];
+
+               uint64_t deadline = call->tc_pqlink.deadline;
+               if (deadline > now) {
+                       continue;
+               }
+
+               expired = true;
+               timer_call_trace_expire_entry(call);
+               call->tc_func(call->tc_param0, call->tc_param1);
+               timer_call_trace_expire_return(call);
+       }
+
+       return expired;
+}
+
+void
+running_timer_clear(processor_t processor, enum running_timer timer)
+{
+       struct timer_call *call = &processor->running_timers[timer];
+       uint64_t deadline = call->tc_pqlink.deadline;
+       if (deadline == EndOfAllTime) {
+               return;
+       }
+
+       call->tc_pqlink.deadline = EndOfAllTime;
+#if TIMER_TRACE
+       call->tc_entry_time = 0;
+#endif /* TIMER_TRACE */
+       timer_call_trace_cancel(call);
+}
+
+void
+running_timer_cancel(processor_t processor, unsigned int timer)
+{
+       running_timer_clear(processor, timer);
+       running_timers_sync();
+}
+
+uint64_t
+running_timers_deadline(processor_t processor)
+{
+       if (!processor->running_timers_active) {
+               return EndOfAllTime;
+       }
+
+       uint64_t deadline = EndOfAllTime;
+       for (int i = 0; i < RUNNING_TIMER_MAX; i++) {
+               uint64_t candidate =
+                   processor->running_timers[i].tc_pqlink.deadline;
+               if (candidate != 0 && candidate < deadline) {
+                       deadline = candidate;
+               }
+       }
+
+       return deadline;
+}
+
+void
+running_timers_activate(processor_t processor)
+{
+       processor->running_timers_active = true;
+       running_timers_sync();
+}
+
+void
+running_timers_deactivate(processor_t processor)
+{
+       assert(processor->running_timers_active == true);
+       processor->running_timers_active = false;
+       running_timers_sync();
 }