/*
- * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#if CONFIG_MTRR
#include <i386/mtrr.h>
#endif
+#if HYPERVISOR
+#include <kern/hv_support.h>
+#endif
#if CONFIG_VMX
#include <i386/vmx/vmx_cpu.h>
#endif
#include <i386/tsc.h>
+#define UINT64 uint64_t
+#define UINT32 uint32_t
+#define UINT16 uint16_t
+#define UINT8 uint8_t
+#define RSDP_VERSION_ACPI10 0
+#define RSDP_VERSION_ACPI20 2
+#include <acpi/Acpi.h>
+#include <acpi/Acpi_v1.h>
+#include <pexpert/i386/efi.h>
+
#include <kern/cpu_data.h>
#include <kern/machine.h>
#include <kern/timer_queue.h>
#include <IOKit/IOPlatformExpert.h>
#include <sys/kdebug.h>
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+
#if CONFIG_SLEEP
-extern void acpi_sleep_cpu(acpi_sleep_callback, void * refcon);
-extern void acpi_wake_prot(void);
+extern void acpi_sleep_cpu(acpi_sleep_callback, void * refcon);
+extern void acpi_wake_prot(void);
#endif
extern kern_return_t IOCPURunPlatformQuiesceActions(void);
extern kern_return_t IOCPURunPlatformActiveActions(void);
extern kern_return_t IOCPURunPlatformHaltRestartActions(uint32_t message);
-extern void fpinit(void);
+extern void fpinit(void);
+
+#if DEVELOPMENT || DEBUG
+#define DBG(x...) kprintf(x)
+#else
+#define DBG(x...)
+#endif
vm_offset_t
acpi_install_wake_handler(void)
#endif
}
+#if CONFIG_SLEEP
+
+unsigned int save_kdebug_enable = 0;
+static uint64_t acpi_sleep_abstime;
+static uint64_t acpi_idle_abstime;
+static uint64_t acpi_wake_abstime, acpi_wake_postrebase_abstime;
+boolean_t deep_idle_rebase = TRUE;
+
#if HIBERNATION
struct acpi_hibernate_callback_data {
acpi_sleep_callback func;
};
typedef struct acpi_hibernate_callback_data acpi_hibernate_callback_data_t;
-unsigned int save_kdebug_enable = 0;
-static uint64_t acpi_sleep_abstime;
-static uint64_t acpi_idle_abstime;
-static uint64_t acpi_wake_abstime, acpi_wake_postrebase_abstime;
-boolean_t deep_idle_rebase = TRUE;
-
-#if CONFIG_SLEEP
static void
acpi_hibernate(void *refcon)
{
uint32_t mode;
acpi_hibernate_callback_data_t *data =
- (acpi_hibernate_callback_data_t *)refcon;
+ (acpi_hibernate_callback_data_t *)refcon;
- if (current_cpu_datap()->cpu_hibernate)
- {
+ if (current_cpu_datap()->cpu_hibernate) {
mode = hibernate_write_image();
- if( mode == kIOHibernatePostWriteHalt )
- {
+ if (mode == kIOHibernatePostWriteHalt) {
// off
HIBLOG("power off\n");
IOCPURunPlatformHaltRestartActions(kPEHaltCPU);
- if (PE_halt_restart) (*PE_halt_restart)(kPEHaltCPU);
- }
- else if( mode == kIOHibernatePostWriteRestart )
- {
+ if (PE_halt_restart) {
+ (*PE_halt_restart)(kPEHaltCPU);
+ }
+ } else if (mode == kIOHibernatePostWriteRestart) {
// restart
HIBLOG("restart\n");
IOCPURunPlatformHaltRestartActions(kPERestartCPU);
- if (PE_halt_restart) (*PE_halt_restart)(kPERestartCPU);
- }
- else
- {
+ if (PE_halt_restart) {
+ (*PE_halt_restart)(kPERestartCPU);
+ }
+ } else {
// sleep
HIBLOG("sleep\n");
-
+
// should we come back via regular wake, set the state in memory.
- cpu_datap(0)->cpu_hibernate = 0;
+ cpu_datap(0)->cpu_hibernate = 0;
}
-
}
+
+#if CONFIG_VMX
+ vmx_suspend();
+#endif
kdebug_enable = 0;
IOCPURunPlatformQuiesceActions();
/* should never get here! */
}
-#endif /* CONFIG_SLEEP */
#endif /* HIBERNATION */
+#endif /* CONFIG_SLEEP */
-extern void slave_pstart(void);
-extern void hibernate_rebuild_vm_structs(void);
-
-extern unsigned int wake_nkdbufs;
+extern void slave_pstart(void);
void
acpi_sleep_kernel(acpi_sleep_callback func, void *refcon)
acpi_hibernate_callback_data_t data;
#endif
boolean_t did_hibernate;
- unsigned int cpu;
- kern_return_t rc;
- unsigned int my_cpu;
- uint64_t start;
- uint64_t elapsed = 0;
- uint64_t elapsed_trace_start = 0;
-
- kprintf("acpi_sleep_kernel hib=%d, cpu=%d\n",
- current_cpu_datap()->cpu_hibernate, cpu_number());
-
- /* Get all CPUs to be in the "off" state */
- my_cpu = cpu_number();
+ cpu_data_t *cdp = current_cpu_datap();
+ unsigned int cpu;
+ kern_return_t rc;
+ unsigned int my_cpu;
+ uint64_t start;
+ uint64_t elapsed = 0;
+ uint64_t elapsed_trace_start = 0;
+
+ my_cpu = cpu_number();
+ kprintf("acpi_sleep_kernel hib=%d, cpu=%d\n", cdp->cpu_hibernate,
+ my_cpu);
+
+ /* Get all CPUs to be in the "off" state */
for (cpu = 0; cpu < real_ncpus; cpu += 1) {
- if (cpu == my_cpu)
+ if (cpu == my_cpu) {
continue;
+ }
rc = pmCPUExitHaltToOff(cpu);
- if (rc != KERN_SUCCESS)
+ if (rc != KERN_SUCCESS) {
panic("Error %d trying to transition CPU %d to OFF",
- rc, cpu);
+ rc, cpu);
+ }
}
/* shutdown local APIC before passing control to firmware */
- lapic_shutdown();
+ lapic_shutdown(true);
#if HIBERNATION
data.func = func;
data.refcon = refcon;
#endif
+#if MONOTONIC
+ mt_cpu_down(cdp);
+#endif /* MONOTONIC */
+
/* Save power management timer state */
pmTimerSave();
-#if CONFIG_VMX
- /*
- * Turn off VT, otherwise switching to legacy mode will fail
- */
- vmx_suspend();
+#if HYPERVISOR
+ /* Notify hypervisor that we are about to sleep */
+ hv_suspend();
#endif
/*
* Enable FPU/SIMD unit for potential hibernate acceleration
*/
- clear_ts();
+ clear_ts();
- KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_START, 0, 0, 0, 0, 0);
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_START);
save_kdebug_enable = kdebug_enable;
kdebug_enable = 0;
#if HIBERNATION
acpi_sleep_cpu(acpi_hibernate, &data);
#else
+#if CONFIG_VMX
+ vmx_suspend();
+#endif
acpi_sleep_cpu(func, refcon);
#endif
- start = mach_absolute_time();
+ acpi_wake_abstime = mach_absolute_time();
+ /* Rebase TSC->absolute time conversion, using timestamp
+ * recorded before sleep.
+ */
+ rtc_nanotime_init(acpi_sleep_abstime);
+ acpi_wake_postrebase_abstime = start = mach_absolute_time();
+ assert(start >= acpi_sleep_abstime);
x86_64_post_sleep(old_cr3);
* for compatibility with firewire kprintf.
*/
- if (FALSE == disable_serial_output)
+ if (FALSE == disable_serial_output) {
pal_serial_init();
+ }
#if HIBERNATION
if (current_cpu_datap()->cpu_hibernate) {
did_hibernate = TRUE;
-
} else
-#endif
+#endif
{
did_hibernate = FALSE;
}
- /* Re-enable mode (including 64-bit if applicable) */
- cpu_mode_init(current_cpu_datap());
+ /* Re-enable fast syscall */
+ cpu_syscall_init(current_cpu_datap());
#if CONFIG_MCA
/* Re-enable machine check handling */
mtrr_update_cpu();
#endif
- /* update CPU microcode */
- ucode_update_wake();
-
-#if CONFIG_VMX
- /*
- * Restore VT mode
- */
- vmx_resume();
-#endif
+ /* update CPU microcode and apply CPU workarounds */
+ ucode_update_wake_and_apply_cpu_was();
#if CONFIG_MTRR
/* set up PAT following boot processor power up */
pat_init();
#endif
+#if CONFIG_VMX
+ /*
+ * Restore VT mode
+ */
+ vmx_resume(did_hibernate);
+#endif
+
/*
* Go through all of the CPUs and mark them as requiring
* a full restart.
/* re-enable and re-init local apic (prior to starting timers) */
- if (lapic_probe())
- lapic_configure();
+ if (lapic_probe()) {
+ lapic_configure(true);
+ }
- hibernate_rebuild_vm_structs();
+#if KASAN
+ /*
+ * The sleep implementation uses indirect noreturn calls, so we miss stack
+ * unpoisoning. Do it explicitly.
+ */
+ kasan_unpoison_curstack(true);
+#endif
elapsed += mach_absolute_time() - start;
- acpi_wake_abstime = mach_absolute_time();
-
- /* let the realtime clock reset */
- rtc_sleep_wakeup(acpi_sleep_abstime);
- acpi_wake_postrebase_abstime = mach_absolute_time();
- assert(mach_absolute_time() >= acpi_sleep_abstime);
+ rtc_decrementer_configure();
kdebug_enable = save_kdebug_enable;
if (kdebug_enable == 0) {
- if (wake_nkdbufs) {
- start = mach_absolute_time();
- start_kern_tracing(wake_nkdbufs, TRUE);
- elapsed_trace_start += mach_absolute_time() - start;
- }
+ elapsed_trace_start += kdebug_wake();
}
start = mach_absolute_time();
init_fpu();
clear_ts();
- IOCPURunPlatformActiveActions();
- if (did_hibernate) {
- elapsed += mach_absolute_time() - start;
-
- KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 2) | DBG_FUNC_START, elapsed, elapsed_trace_start, 0, 0, 0);
- hibernate_machine_init();
- KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 2) | DBG_FUNC_END, 0, 0, 0, 0, 0);
+#if HYPERVISOR
+ /* Notify hypervisor that we are about to resume */
+ hv_resume();
+#endif
- current_cpu_datap()->cpu_hibernate = 0;
+ IOCPURunPlatformActiveActions();
- KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_END, 0, 0, 0, 0, 0);
- } else
- KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_END, 0, 0, 0, 0, 0);
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_END, start, elapsed,
+ elapsed_trace_start, acpi_wake_abstime);
/* Restore power management register state */
pmCPUMarkRunning(current_cpu_datap());
/* Restart timer interrupts */
rtc_timer_start();
-#if HIBERNATION
+#if MONOTONIC
+ mt_cpu_up(cdp);
+#endif /* MONOTONIC */
+#if HIBERNATION
kprintf("ret from acpi_sleep_cpu hib=%d\n", did_hibernate);
-#endif
+#endif /* HIBERNATION */
#if CONFIG_SLEEP
/* Becase we don't save the bootstrap page, and we share it
- * between sleep and mp slave init, we need to recreate it
+ * between sleep and mp slave init, we need to recreate it
* after coming back from sleep or hibernate */
install_real_mode_bootstrap(slave_pstart);
-#endif
+#endif /* CONFIG_SLEEP */
+}
+
+void
+ml_hibernate_active_pre(void)
+{
+#if HIBERNATION
+ hibernate_rebuild_vm_structs();
+#endif /* HIBERNATION */
+}
+
+void
+ml_hibernate_active_post(void)
+{
+#if HIBERNATION
+ if (current_cpu_datap()->cpu_hibernate) {
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 2) | DBG_FUNC_START);
+ hibernate_machine_init();
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 2) | DBG_FUNC_END);
+ current_cpu_datap()->cpu_hibernate = 0;
+ }
+#endif /* HIBERNATION */
}
/*
void
acpi_idle_kernel(acpi_sleep_callback func, void *refcon)
{
- boolean_t istate = ml_get_interrupts_enabled();
-
+ boolean_t istate = ml_get_interrupts_enabled();
+
kprintf("acpi_idle_kernel, cpu=%d, interrupts %s\n",
- cpu_number(), istate ? "enabled" : "disabled");
+ cpu_number(), istate ? "enabled" : "disabled");
assert(cpu_number() == master_cpu);
- /*
- * Effectively set the boot cpu offline.
- * This will stop further deadlines being set.
- */
- cpu_datap(master_cpu)->cpu_running = FALSE;
+#if MONOTONIC
+ mt_cpu_down(cpu_datap(0));
+#endif /* MONOTONIC */
/* Cancel any pending deadline */
setPop(0);
- while (lapic_is_interrupting(LAPIC_TIMER_VECTOR)) {
+ while (lapic_is_interrupting(LAPIC_TIMER_VECTOR)
+#if MONOTONIC
+ || lapic_is_interrupting(LAPIC_VECTOR(PERFCNT))
+#endif /* MONOTONIC */
+ ) {
(void) ml_set_interrupts_enabled(TRUE);
setPop(0);
ml_set_interrupts_enabled(FALSE);
}
+ if (current_cpu_datap()->cpu_hibernate) {
+ /* Call hibernate_write_image() to put disk to low power state */
+ hibernate_write_image();
+ cpu_datap(0)->cpu_hibernate = 0;
+ }
+
/*
* Call back to caller to indicate that interrupts will remain
* disabled while we deep idle, wake and return.
- */
+ */
+ IOCPURunPlatformQuiesceActions();
+
func(refcon);
acpi_idle_abstime = mach_absolute_time();
* Get wakeup time relative to the TSC which has progressed.
* Then rebase nanotime to reflect time not progressing over sleep
* - unless overriden so that tracing can occur during deep_idle.
- */
+ */
acpi_wake_abstime = mach_absolute_time();
if (deep_idle_rebase) {
rtc_sleep_wakeup(acpi_idle_abstime);
}
acpi_wake_postrebase_abstime = mach_absolute_time();
assert(mach_absolute_time() >= acpi_idle_abstime);
- cpu_datap(master_cpu)->cpu_running = TRUE;
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED, MACH_DEEP_IDLE) | DBG_FUNC_END,
acpi_wake_abstime, acpi_wake_abstime - acpi_idle_abstime, 0, 0, 0);
-
- /* Like S3 sleep, turn on tracing if trace_wake boot-arg is present */
+
+#if MONOTONIC
+ mt_cpu_up(cpu_datap(0));
+#endif /* MONOTONIC */
+
+ /* Like S3 sleep, turn on tracing if trace_wake boot-arg is present */
if (kdebug_enable == 0) {
- if (wake_nkdbufs)
- start_kern_tracing(wake_nkdbufs, TRUE);
+ kdebug_wake();
}
IOCPURunPlatformActiveActions();
* mode and then jumping to the common startup, _start().
*/
bcopy_phys(kvtophys((vm_offset_t) real_mode_bootstrap_base),
- (addr64_t) REAL_MODE_BOOTSTRAP_OFFSET,
- real_mode_bootstrap_end-real_mode_bootstrap_base);
+ (addr64_t) REAL_MODE_BOOTSTRAP_OFFSET,
+ real_mode_bootstrap_end - real_mode_bootstrap_base);
/*
* Set the location at the base of the stack to point to the
* common startup entry.
*/
ml_phys_write_word(
- PROT_MODE_START+REAL_MODE_BOOTSTRAP_OFFSET,
+ PROT_MODE_START + REAL_MODE_BOOTSTRAP_OFFSET,
(unsigned int)kvtophys((vm_offset_t)prot_entry));
-
+
/* Flush caches */
__asm__("wbinvd");
}
boolean_t
-ml_recent_wake(void) {
+ml_recent_wake(void)
+{
uint64_t ctime = mach_absolute_time();
assert(ctime > acpi_wake_postrebase_abstime);
- return ((ctime - acpi_wake_postrebase_abstime) < 5 * NSEC_PER_SEC);
+ return (ctime - acpi_wake_postrebase_abstime) < 5 * NSEC_PER_SEC;
+}
+
+static uint8_t
+cksum8(uint8_t *ptr, uint32_t size)
+{
+ uint8_t sum = 0;
+ uint32_t i;
+
+ for (i = 0; i < size; i++) {
+ sum += ptr[i];
+ }
+
+ return sum;
+}
+
+/*
+ * Parameterized search for a specified table given an sdtp (either RSDT or XSDT).
+ * Note that efiboot does not modify the addresses of tables in the RSDT or XSDT
+ * TableOffsetEntry array, so we do not need to "convert" from efiboot virtual to
+ * physical.
+ */
+#define SEARCH_FOR_ACPI_TABLE(sdtp, signature, entry_type) \
+{ \
+ uint32_t i, pointer_count; \
+ \
+ /* Walk the list of tables in the *SDT, looking for the signature passed in */ \
+ pointer_count = ((sdtp)->Length - sizeof(ACPI_TABLE_HEADER)) / sizeof(entry_type); \
+ \
+ for (i = 0; i < pointer_count; i++) { \
+ ACPI_TABLE_HEADER *next_table = \
+ (ACPI_TABLE_HEADER *)PHYSMAP_PTOV( \
+ (uintptr_t)(sdtp)->TableOffsetEntry[i]); \
+ if (strncmp(&next_table->Signature[0], (signature), 4) == 0) { \
+ /* \
+ * Checksum the table first, then return it if the checksum \
+ * is valid. \
+ */ \
+ if (cksum8((uint8_t *)next_table, next_table->Length) == 0) { \
+ return next_table; \
+ } else { \
+ DBG("Invalid checksum for table [%s]@0x%lx!\n", (signature), \
+ (unsigned long)(sdtp)->TableOffsetEntry[i]); \
+ return NULL; \
+ } \
+ } \
+ } \
+ \
+ return NULL; \
+}
+
+static ACPI_TABLE_HEADER *
+acpi_find_table_via_xsdt(XSDT_DESCRIPTOR *xsdtp, const char *signature)
+{
+ SEARCH_FOR_ACPI_TABLE(xsdtp, signature, UINT64);
+}
+
+static ACPI_TABLE_HEADER *
+acpi_find_table_via_rsdt(RSDT_DESCRIPTOR *rsdtp, const char *signature)
+{
+ SEARCH_FOR_ACPI_TABLE(rsdtp, signature, UINT32);
+}
+
+/*
+ * Returns a pointer to an ACPI table header corresponding to the table
+ * whose signature is passed in, or NULL if no such table could be found.
+ */
+static ACPI_TABLE_HEADER *
+acpi_find_table(uintptr_t rsdp_physaddr, const char *signature)
+{
+ static RSDP_DESCRIPTOR *rsdp = NULL;
+ static XSDT_DESCRIPTOR *xsdtp = NULL;
+ static RSDT_DESCRIPTOR *rsdtp = NULL;
+
+ if (signature == NULL) {
+ DBG("Invalid NULL signature passed to acpi_find_table\n");
+ return NULL;
+ }
+
+ /*
+ * RSDT or XSDT is required; without it, we cannot locate other tables.
+ */
+ if (__improbable(rsdp == NULL || (rsdtp == NULL && xsdtp == NULL))) {
+ rsdp = PHYSMAP_PTOV(rsdp_physaddr);
+
+ /* Verify RSDP signature */
+ if (__improbable(strncmp((void *)rsdp, "RSD PTR ", 8) != 0)) {
+ DBG("RSDP signature mismatch: Aborting acpi_find_table\n");
+ rsdp = NULL;
+ return NULL;
+ }
+
+ /* Verify RSDP checksum */
+ if (__improbable(cksum8((uint8_t *)rsdp, sizeof(RSDP_DESCRIPTOR)) != 0)) {
+ DBG("RSDP@0x%lx signature mismatch: Aborting acpi_find_table\n",
+ (unsigned long)rsdp_physaddr);
+ rsdp = NULL;
+ return NULL;
+ }
+
+ /* Ensure the revision of the RSDP indicates the presence of an RSDT or XSDT */
+ if (__improbable(rsdp->Revision >= RSDP_VERSION_ACPI20 && rsdp->XsdtPhysicalAddress == 0ULL)) {
+ DBG("RSDP XSDT Physical Address is 0!: Aborting acpi_find_table\n");
+ rsdp = NULL;
+ return NULL;
+ } else if (__probable(rsdp->Revision >= RSDP_VERSION_ACPI20)) {
+ /* XSDT (with 64-bit pointers to tables) */
+ rsdtp = NULL;
+ xsdtp = PHYSMAP_PTOV(rsdp->XsdtPhysicalAddress);
+ if (cksum8((uint8_t *)xsdtp, xsdtp->Length) != 0) {
+ DBG("ERROR: XSDT@0x%lx checksum is non-zero; not using this XSDT\n",
+ (unsigned long)rsdp->XsdtPhysicalAddress);
+ xsdtp = NULL;
+ return NULL;
+ }
+ } else if (__improbable(rsdp->Revision == RSDP_VERSION_ACPI10 && rsdp->RsdtPhysicalAddress == 0)) {
+ DBG("RSDP RSDT Physical Address is 0!: Aborting acpi_find_table\n");
+ rsdp = NULL;
+ return NULL;
+ } else if (__improbable(rsdp->Revision == RSDP_VERSION_ACPI10)) {
+ /* RSDT (with 32-bit pointers to tables) */
+ xsdtp = NULL;
+ rsdtp = PHYSMAP_PTOV((uintptr_t)rsdp->RsdtPhysicalAddress);
+ if (cksum8((uint8_t *)rsdtp, rsdtp->Length) != 0) {
+ DBG("ERROR: RSDT@0x%lx checksum is non-zero; not using this RSDT\n",
+ (unsigned long)rsdp->RsdtPhysicalAddress);
+ rsdtp = NULL;
+ return NULL;
+ }
+ } else {
+ DBG("Unrecognized RSDP Revision (0x%x): Aborting acpi_find_table\n",
+ rsdp->Revision);
+ rsdp = NULL;
+ return NULL;
+ }
+ }
+
+ assert(xsdtp != NULL || rsdtp != NULL);
+
+ if (__probable(xsdtp != NULL)) {
+ return acpi_find_table_via_xsdt(xsdtp, signature);
+ } else if (rsdtp != NULL) {
+ return acpi_find_table_via_rsdt(rsdtp, signature);
+ }
+
+ return NULL;
+}
+
+/*
+ * Returns the count of enabled logical processors present in the ACPI
+ * MADT, or 0 if the MADT could not be located.
+ */
+uint32_t
+acpi_count_enabled_logical_processors(void)
+{
+ MULTIPLE_APIC_TABLE *madtp;
+ void *end_ptr;
+ APIC_HEADER *next_apic_entryp;
+ uint32_t enabled_cpu_count = 0;
+ uint64_t rsdp_physaddr;
+
+ rsdp_physaddr = efi_get_rsdp_physaddr();
+ if (__improbable(rsdp_physaddr == 0)) {
+ DBG("acpi_count_enabled_logical_processors: Could not get RSDP physaddr from EFI.\n");
+ return 0;
+ }
+
+ madtp = (MULTIPLE_APIC_TABLE *)acpi_find_table(rsdp_physaddr, ACPI_SIG_MADT);
+
+ if (__improbable(madtp == NULL)) {
+ DBG("acpi_count_enabled_logical_processors: Could not find the MADT.\n");
+ return 0;
+ }
+
+ end_ptr = (void *)((uintptr_t)madtp + madtp->Length);
+ next_apic_entryp = (APIC_HEADER *)((uintptr_t)madtp + sizeof(MULTIPLE_APIC_TABLE));
+
+ while ((void *)next_apic_entryp < end_ptr) {
+ switch (next_apic_entryp->Type) {
+ case APIC_PROCESSOR:
+ {
+ MADT_PROCESSOR_APIC *madt_procp = (MADT_PROCESSOR_APIC *)next_apic_entryp;
+ if (madt_procp->ProcessorEnabled) {
+ enabled_cpu_count++;
+ }
+
+ break;
+ }
+
+ default:
+ DBG("Ignoring MADT entry type 0x%x length 0x%x\n", next_apic_entryp->Type,
+ next_apic_entryp->Length);
+ break;
+ }
+
+ next_apic_entryp = (APIC_HEADER *)((uintptr_t)next_apic_entryp + next_apic_entryp->Length);
+ }
+
+ return enabled_cpu_count;
}