/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-#include <cpus.h>
#include <mach_rt.h>
#include <mach_kdb.h>
#include <mach_kdp.h>
#include <mach_ldebug.h>
+#include <gprof.h>
+
+#include <mach/mach_types.h>
+#include <mach/kern_return.h>
+
+#include <kern/kern_types.h>
+#include <kern/startup.h>
+#include <kern/processor.h>
+#include <kern/cpu_number.h>
+#include <kern/cpu_data.h>
+#include <kern/assert.h>
+#include <kern/machine.h>
+#include <kern/pms.h>
+
+#include <vm/vm_map.h>
+#include <vm/vm_kern.h>
+
+#include <profiling/profile-mk.h>
#include <i386/mp.h>
#include <i386/mp_events.h>
#include <i386/apic.h>
#include <i386/ipl.h>
#include <i386/fpu.h>
-#include <i386/pio.h>
#include <i386/cpuid.h>
#include <i386/proc_reg.h>
#include <i386/machine_cpu.h>
#include <i386/misc_protos.h>
-#include <vm/vm_kern.h>
-#include <mach/mach_types.h>
-#include <mach/kern_return.h>
-#include <kern/startup.h>
-#include <kern/processor.h>
-#include <kern/cpu_number.h>
-#include <kern/cpu_data.h>
-#include <kern/assert.h>
+#include <i386/mtrr.h>
+#include <i386/vmx/vmx_cpu.h>
+#include <i386/postcode.h>
+#include <i386/perfmon.h>
+#include <i386/cpu_threads.h>
+#include <i386/mp_desc.h>
+#include <i386/trap.h>
+#include <i386/machine_routines.h>
+#include <i386/pmCPU.h>
+#include <i386/hpet.h>
+#include <i386/machine_check.h>
+
+#include <chud/chud_xnu.h>
+#include <chud/chud_xnu_private.h>
+
+#include <sys/kdebug.h>
+#if MACH_KDB
+#include <i386/db_machdep.h>
+#include <ddb/db_aout.h>
+#include <ddb/db_access.h>
+#include <ddb/db_sym.h>
+#include <ddb/db_variables.h>
+#include <ddb/db_command.h>
+#include <ddb/db_output.h>
+#include <ddb/db_expr.h>
+#endif
#if MP_DEBUG
#define PAUSE delay(1000000)
/* Initialize lapic_id so cpu_number() works on non SMP systems */
unsigned long lapic_id_initdata = 0;
unsigned long lapic_id = (unsigned long)&lapic_id_initdata;
-vm_offset_t lapic_start;
+vm_offset_t lapic_start;
+
+static i386_intr_func_t lapic_timer_func;
+static i386_intr_func_t lapic_pmi_func;
+static i386_intr_func_t lapic_thermal_func;
+
+/* TRUE if local APIC was enabled by the OS not by the BIOS */
+static boolean_t lapic_os_enabled = FALSE;
+
+/* Base vector for local APIC interrupt sources */
+int lapic_interrupt_base = LAPIC_DEFAULT_INTERRUPT_BASE;
-void lapic_init(void);
void slave_boot_init(void);
-static void mp_kdp_wait(void);
+#if MACH_KDB
+static void mp_kdb_wait(void);
+volatile boolean_t mp_kdb_trap = FALSE;
+volatile long mp_kdb_ncpus = 0;
+#endif
+
+static void mp_kdp_wait(boolean_t flush);
static void mp_rendezvous_action(void);
+static void mp_broadcast_action(void);
+
+static int NMIInterruptHandler(x86_saved_state_t *regs);
+static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
+static void cpu_NMI_interrupt(int cpu);
boolean_t smp_initialized = FALSE;
+boolean_t force_immediate_debugger_NMI = FALSE;
decl_simple_lock_data(,mp_kdp_lock);
-decl_simple_lock_data(,mp_putc_lock);
+
+decl_mutex_data(static, mp_cpu_boot_lock);
/* Variables needed for MP rendezvous. */
+decl_simple_lock_data(,mp_rv_lock);
static void (*mp_rv_setup_func)(void *arg);
static void (*mp_rv_action_func)(void *arg);
static void (*mp_rv_teardown_func)(void *arg);
static void *mp_rv_func_arg;
static int mp_rv_ncpus;
-static volatile long mp_rv_waiters[2];
-decl_simple_lock_data(,mp_rv_lock);
+ /* Cache-aligned barriers: */
+static volatile long mp_rv_entry __attribute__((aligned(64)));
+static volatile long mp_rv_exit __attribute__((aligned(64)));
+static volatile long mp_rv_complete __attribute__((aligned(64)));
-int lapic_to_cpu[LAPIC_ID_MAX+1];
-int cpu_to_lapic[NCPUS];
+/* Variables needed for MP broadcast. */
+static void (*mp_bc_action_func)(void *arg);
+static void *mp_bc_func_arg;
+static int mp_bc_ncpus;
+static volatile long mp_bc_count;
+decl_mutex_data(static, mp_bc_lock);
+
+static void mp_cpus_call_action(void);
+
+int lapic_to_cpu[MAX_CPUS];
+int cpu_to_lapic[MAX_CPUS];
static void
lapic_cpu_map_init(void)
{
int i;
- for (i = 0; i < NCPUS; i++)
- cpu_to_lapic[i] = -1;
- for (i = 0; i <= LAPIC_ID_MAX; i++)
+ for (i = 0; i < MAX_CPUS; i++) {
lapic_to_cpu[i] = -1;
+ cpu_to_lapic[i] = -1;
+ }
}
void
-lapic_cpu_map(int apic_id, int cpu_number)
+lapic_cpu_map(int apic_id, int cpu)
{
- cpu_to_lapic[cpu_number] = apic_id;
- lapic_to_cpu[apic_id] = cpu_number;
+ cpu_to_lapic[cpu] = apic_id;
+ lapic_to_cpu[apic_id] = cpu;
+}
+
+/*
+ * Retrieve the local apic ID a cpu.
+ *
+ * Returns the local apic ID for the given processor.
+ * If the processor does not exist or apic not configured, returns -1.
+ */
+
+uint32_t
+ml_get_apicid(uint32_t cpu)
+{
+ if(cpu >= (uint32_t)MAX_CPUS)
+ return 0xFFFFFFFF; /* Return -1 if cpu too big */
+
+ /* Return the apic ID (or -1 if not configured) */
+ return (uint32_t)cpu_to_lapic[cpu];
+
}
#ifdef MP_DEBUG
{
int i;
- for (i = 0; i < NCPUS; i++) {
+ for (i = 0; i < MAX_CPUS; i++) {
if (cpu_to_lapic[i] == -1)
continue;
kprintf("cpu_to_lapic[%d]: %d\n",
i, cpu_to_lapic[i]);
}
- for (i = 0; i <= LAPIC_ID_MAX; i++) {
+ for (i = 0; i < MAX_CPUS; i++) {
if (lapic_to_cpu[i] == -1)
continue;
kprintf("lapic_to_cpu[%d]: %d\n",
i, lapic_to_cpu[i]);
}
}
+#define LAPIC_CPU_MAP_DUMP() lapic_cpu_map_dump()
+#define LAPIC_DUMP() lapic_dump()
+#else
+#define LAPIC_CPU_MAP_DUMP()
+#define LAPIC_DUMP()
#endif /* MP_DEBUG */
-#define LAPIC_REG(reg) \
- (*((volatile int *)(lapic_start + LAPIC_##reg)))
-#define LAPIC_REG_OFFSET(reg,off) \
- (*((volatile int *)(lapic_start + LAPIC_##reg + (off))))
-
+#if GPROF
+/*
+ * Initialize dummy structs for profiling. These aren't used but
+ * allows hertz_tick() to be built with GPROF defined.
+ */
+struct profile_vars _profile_vars;
+struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars };
+#define GPROF_INIT() \
+{ \
+ int i; \
+ \
+ /* Hack to initialize pointers to unused profiling structs */ \
+ for (i = 1; i < MAX_CPUS; i++) \
+ _profile_vars_cpus[i] = &_profile_vars; \
+}
+#else
+#define GPROF_INIT()
+#endif /* GPROF */
void
smp_init(void)
-
{
int result;
vm_map_entry_t entry;
uint32_t hi;
boolean_t is_boot_processor;
boolean_t is_lapic_enabled;
+ vm_offset_t lapic_base;
+
+ simple_lock_init(&mp_kdp_lock, 0);
+ simple_lock_init(&mp_rv_lock, 0);
+ mutex_init(&mp_cpu_boot_lock, 0);
+ mutex_init(&mp_bc_lock, 0);
+ console_init();
/* Local APIC? */
- if ((cpuid_features() & CPUID_FEATURE_APIC) == 0)
+ if (!lapic_probe())
return;
- simple_lock_init(&mp_kdp_lock, ETAP_MISC_PRINTF);
- simple_lock_init(&mp_rv_lock, ETAP_MISC_PRINTF);
- simple_lock_init(&mp_putc_lock, ETAP_MISC_PRINTF);
-
/* Examine the local APIC state */
rdmsr(MSR_IA32_APIC_BASE, lo, hi);
is_boot_processor = (lo & MSR_IA32_APIC_BASE_BSP) != 0;
is_lapic_enabled = (lo & MSR_IA32_APIC_BASE_ENABLE) != 0;
- DBG("MSR_IA32_APIC_BASE 0x%x:0x%x %s %s\n", hi, lo,
+ lapic_base = (lo & MSR_IA32_APIC_BASE_BASE);
+ kprintf("MSR_IA32_APIC_BASE 0x%x %s %s\n", lapic_base,
is_lapic_enabled ? "enabled" : "disabled",
is_boot_processor ? "BSP" : "AP");
- assert(is_boot_processor);
- assert(is_lapic_enabled);
+ if (!is_boot_processor || !is_lapic_enabled)
+ panic("Unexpected local APIC state\n");
/* Establish a map to the local apic */
lapic_start = vm_map_min(kernel_map);
- result = vm_map_find_space(kernel_map, &lapic_start,
- round_page(LAPIC_SIZE), 0, &entry);
+ result = vm_map_find_space(kernel_map,
+ (vm_map_address_t *) &lapic_start,
+ round_page(LAPIC_SIZE), 0,
+ VM_MAKE_TAG(VM_MEMORY_IOKIT), &entry);
if (result != KERN_SUCCESS) {
- printf("smp_init: vm_map_find_entry FAILED (err=%d). "
- "Only supporting ONE cpu.\n", result);
- return;
+ panic("smp_init: vm_map_find_entry FAILED (err=%d)", result);
}
vm_map_unlock(kernel_map);
+/* Map in the local APIC non-cacheable, as recommended by Intel
+ * in section 8.4.1 of the "System Programming Guide".
+ */
pmap_enter(pmap_kernel(),
lapic_start,
- (ppnum_t) i386_btop(i386_trunc_page(LAPIC_START)),
- VM_PROT_READ|VM_PROT_WRITE,
- VM_WIMG_USE_DEFAULT,
+ (ppnum_t) i386_btop(lapic_base),
+ VM_PROT_READ|VM_PROT_WRITE,
+ VM_WIMG_IO,
TRUE);
lapic_id = (unsigned long)(lapic_start + LAPIC_ID);
+ if ((LAPIC_REG(VERSION)&LAPIC_VERSION_MASK) != 0x14) {
+ printf("Local APIC version not 0x14 as expected\n");
+ }
+
/* Set up the lapic_id <-> cpu_number map and add this boot processor */
lapic_cpu_map_init();
lapic_cpu_map((LAPIC_REG(ID)>>LAPIC_ID_SHIFT)&LAPIC_ID_MASK, 0);
+ kprintf("Boot cpu local APIC id 0x%x\n", cpu_to_lapic[0]);
lapic_init();
+ cpu_thread_init();
+
+ GPROF_INIT();
+ DBGLOG_CPU_INIT(master_cpu);
+
slave_boot_init();
- master_up();
smp_initialized = TRUE;
}
-int
+static int
lapic_esr_read(void)
{
/* write-read register */
return LAPIC_REG(ERROR_STATUS);
}
-void
+static void
lapic_esr_clear(void)
{
LAPIC_REG(ERROR_STATUS) = 0;
LAPIC_REG(ERROR_STATUS) = 0;
}
-static char *DM[8] = {
+static const char *DM[8] = {
"Fixed",
"Lowest Priority",
"Invalid",
lapic_dump(void)
{
int i;
- char buf[128];
#define BOOL(a) ((a)?' ':'!')
(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
BOOL(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_MASKED),
(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_PERIODIC)?"Periodic":"OneShot");
- kprintf("LVT_PERFCNT: Vector 0x%02x [%s][%s][%s] %s %cmasked\n",
+ kprintf(" Initial Count: 0x%08x \n", LAPIC_REG(TIMER_INITIAL_COUNT));
+ kprintf(" Current Count: 0x%08x \n", LAPIC_REG(TIMER_CURRENT_COUNT));
+ kprintf(" Divide Config: 0x%08x \n", LAPIC_REG(TIMER_DIVIDE_CONFIG));
+ kprintf("LVT_PERFCNT: Vector 0x%02x [%s] %s %cmasked\n",
LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_VECTOR_MASK,
DM[(LAPIC_REG(LVT_PERFCNT)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
- (LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_TM_LEVEL)?"Level":"Edge ",
- (LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_IP_PLRITY_LOW)?"Low ":"High",
(LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
BOOL(LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_MASKED));
+ kprintf("LVT_THERMAL: Vector 0x%02x [%s] %s %cmasked\n",
+ LAPIC_REG(LVT_THERMAL)&LAPIC_LVT_VECTOR_MASK,
+ DM[(LAPIC_REG(LVT_THERMAL)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
+ (LAPIC_REG(LVT_THERMAL)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
+ BOOL(LAPIC_REG(LVT_THERMAL)&LAPIC_LVT_MASKED));
kprintf("LVT_LINT0: Vector 0x%02x [%s][%s][%s] %s %cmasked\n",
LAPIC_REG(LVT_LINT0)&LAPIC_LVT_VECTOR_MASK,
DM[(LAPIC_REG(LVT_LINT0)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
kprintf("\n");
}
+#if MACH_KDB
+/*
+ * Displays apic junk
+ *
+ * da
+ */
+void
+db_apic(__unused db_expr_t addr,
+ __unused int have_addr,
+ __unused db_expr_t count,
+ __unused char *modif)
+{
+
+ lapic_dump();
+
+ return;
+}
+
+#endif
+
+boolean_t
+lapic_probe(void)
+{
+ uint32_t lo;
+ uint32_t hi;
+
+ if (cpuid_features() & CPUID_FEATURE_APIC)
+ return TRUE;
+
+ if (cpuid_family() == 6 || cpuid_family() == 15) {
+ /*
+ * Mobile Pentiums:
+ * There may be a local APIC which wasn't enabled by BIOS.
+ * So we try to enable it explicitly.
+ */
+ rdmsr(MSR_IA32_APIC_BASE, lo, hi);
+ lo &= ~MSR_IA32_APIC_BASE_BASE;
+ lo |= MSR_IA32_APIC_BASE_ENABLE | LAPIC_START;
+ lo |= MSR_IA32_APIC_BASE_ENABLE;
+ wrmsr(MSR_IA32_APIC_BASE, lo, hi);
+
+ /*
+ * Re-initialize cpu features info and re-check.
+ */
+ cpuid_set_info();
+ if (cpuid_features() & CPUID_FEATURE_APIC) {
+ printf("Local APIC discovered and enabled\n");
+ lapic_os_enabled = TRUE;
+ lapic_interrupt_base = LAPIC_REDUCED_INTERRUPT_BASE;
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
void
-lapic_init(void)
+lapic_shutdown(void)
{
- int value;
+ uint32_t lo;
+ uint32_t hi;
+ uint32_t value;
+
+ /* Shutdown if local APIC was enabled by OS */
+ if (lapic_os_enabled == FALSE)
+ return;
mp_disable_preemption();
+ /* ExtINT: masked */
+ if (get_cpu_number() == master_cpu) {
+ value = LAPIC_REG(LVT_LINT0);
+ value |= LAPIC_LVT_MASKED;
+ LAPIC_REG(LVT_LINT0) = value;
+ }
+
+ /* Timer: masked */
+ LAPIC_REG(LVT_TIMER) |= LAPIC_LVT_MASKED;
+
+ /* Perfmon: masked */
+ LAPIC_REG(LVT_PERFCNT) |= LAPIC_LVT_MASKED;
+
+ /* Error: masked */
+ LAPIC_REG(LVT_ERROR) |= LAPIC_LVT_MASKED;
+
+ /* APIC software disabled */
+ LAPIC_REG(SVR) &= ~LAPIC_SVR_ENABLE;
+
+ /* Bypass the APIC completely and update cpu features */
+ rdmsr(MSR_IA32_APIC_BASE, lo, hi);
+ lo &= ~MSR_IA32_APIC_BASE_ENABLE;
+ wrmsr(MSR_IA32_APIC_BASE, lo, hi);
+ cpuid_set_info();
+
+ mp_enable_preemption();
+}
+
+void
+lapic_init(void)
+{
+ int value;
+
/* Set flat delivery model, logical processor id */
LAPIC_REG(DFR) = LAPIC_DFR_FLAT;
LAPIC_REG(LDR) = (get_cpu_number()) << LAPIC_LDR_SHIFT;
/* Accept all */
LAPIC_REG(TPR) = 0;
- LAPIC_REG(SVR) = SPURIOUS_INTERRUPT | LAPIC_SVR_ENABLE;
+ LAPIC_REG(SVR) = LAPIC_VECTOR(SPURIOUS) | LAPIC_SVR_ENABLE;
/* ExtINT */
if (get_cpu_number() == master_cpu) {
value = LAPIC_REG(LVT_LINT0);
+ value &= ~LAPIC_LVT_MASKED;
value |= LAPIC_LVT_DM_EXTINT;
LAPIC_REG(LVT_LINT0) = value;
}
+ /* Timer: unmasked, one-shot */
+ LAPIC_REG(LVT_TIMER) = LAPIC_VECTOR(TIMER);
+
+ /* Perfmon: unmasked */
+ LAPIC_REG(LVT_PERFCNT) = LAPIC_VECTOR(PERFCNT);
+
+ /* Thermal: unmasked */
+ LAPIC_REG(LVT_THERMAL) = LAPIC_VECTOR(THERMAL);
+
lapic_esr_clear();
- LAPIC_REG(LVT_ERROR) = APIC_ERROR_INTERRUPT;
+ LAPIC_REG(LVT_ERROR) = LAPIC_VECTOR(ERROR);
+}
- mp_enable_preemption();
+void
+lapic_set_timer_func(i386_intr_func_t func)
+{
+ lapic_timer_func = func;
}
+void
+lapic_set_timer(
+ boolean_t interrupt,
+ lapic_timer_mode_t mode,
+ lapic_timer_divide_t divisor,
+ lapic_timer_count_t initial_count)
+{
+ boolean_t state;
+ uint32_t timer_vector;
+
+ state = ml_set_interrupts_enabled(FALSE);
+ timer_vector = LAPIC_REG(LVT_TIMER);
+ timer_vector &= ~(LAPIC_LVT_MASKED|LAPIC_LVT_PERIODIC);;
+ timer_vector |= interrupt ? 0 : LAPIC_LVT_MASKED;
+ timer_vector |= (mode == periodic) ? LAPIC_LVT_PERIODIC : 0;
+ LAPIC_REG(LVT_TIMER) = timer_vector;
+ LAPIC_REG(TIMER_DIVIDE_CONFIG) = divisor;
+ LAPIC_REG(TIMER_INITIAL_COUNT) = initial_count;
+ ml_set_interrupts_enabled(state);
+}
void
-lapic_end_of_interrupt(void)
+lapic_get_timer(
+ lapic_timer_mode_t *mode,
+ lapic_timer_divide_t *divisor,
+ lapic_timer_count_t *initial_count,
+ lapic_timer_count_t *current_count)
+{
+ boolean_t state;
+
+ state = ml_set_interrupts_enabled(FALSE);
+ if (mode)
+ *mode = (LAPIC_REG(LVT_TIMER) & LAPIC_LVT_PERIODIC) ?
+ periodic : one_shot;
+ if (divisor)
+ *divisor = LAPIC_REG(TIMER_DIVIDE_CONFIG) & LAPIC_TIMER_DIVIDE_MASK;
+ if (initial_count)
+ *initial_count = LAPIC_REG(TIMER_INITIAL_COUNT);
+ if (current_count)
+ *current_count = LAPIC_REG(TIMER_CURRENT_COUNT);
+ ml_set_interrupts_enabled(state);
+}
+
+void
+lapic_set_pmi_func(i386_intr_func_t func)
+{
+ lapic_pmi_func = func;
+}
+
+void
+lapic_set_thermal_func(i386_intr_func_t func)
+{
+ lapic_thermal_func = func;
+}
+
+static inline void
+_lapic_end_of_interrupt(void)
{
LAPIC_REG(EOI) = 0;
}
void
-lapic_interrupt(int interrupt, void *state)
+lapic_end_of_interrupt(void)
+{
+ _lapic_end_of_interrupt();
+}
+
+int
+lapic_interrupt(int interrupt, x86_saved_state_t *state)
{
+ int retval = 0;
+
+ /* Did we just field an interruption for the HPET comparator? */
+ if(x86_core()->HpetVec == ((uint32_t)interrupt - 0x40)) {
+ /* Yes, go handle it... */
+ retval = HPETInterrupt();
+ /* Was it really handled? */
+ if(retval) {
+ /* If so, EOI the 'rupt */
+ _lapic_end_of_interrupt();
+ /*
+ * and then leave,
+ * indicating that this has been handled
+ */
+ return 1;
+ }
+ }
+
+ interrupt -= lapic_interrupt_base;
+ if (interrupt < 0) {
+ if (interrupt == (LAPIC_NMI_INTERRUPT - lapic_interrupt_base)) {
+ retval = NMIInterruptHandler(state);
+ _lapic_end_of_interrupt();
+ return retval;
+ }
+ else
+ return 0;
+ }
switch(interrupt) {
- case APIC_ERROR_INTERRUPT:
+ case LAPIC_PERFCNT_INTERRUPT:
+ if (lapic_pmi_func != NULL)
+ (*lapic_pmi_func)(NULL);
+ /* Clear interrupt masked */
+ LAPIC_REG(LVT_PERFCNT) = LAPIC_VECTOR(PERFCNT);
+ _lapic_end_of_interrupt();
+ retval = 1;
+ break;
+ case LAPIC_TIMER_INTERRUPT:
+ _lapic_end_of_interrupt();
+ if (lapic_timer_func != NULL)
+ (*lapic_timer_func)(state);
+ retval = 1;
+ break;
+ case LAPIC_THERMAL_INTERRUPT:
+ if (lapic_thermal_func != NULL)
+ (*lapic_thermal_func)(NULL);
+ _lapic_end_of_interrupt();
+ retval = 1;
+ break;
+ case LAPIC_ERROR_INTERRUPT:
+ lapic_dump();
panic("Local APIC error\n");
+ _lapic_end_of_interrupt();
+ retval = 1;
break;
- case SPURIOUS_INTERRUPT:
+ case LAPIC_SPURIOUS_INTERRUPT:
kprintf("SPIV\n");
+ /* No EOI required here */
+ retval = 1;
break;
- case INTERPROCESS_INTERRUPT:
- cpu_signal_handler((struct i386_interrupt_state *) state);
+ case LAPIC_INTERPROCESSOR_INTERRUPT:
+ _lapic_end_of_interrupt();
+ cpu_signal_handler(state);
+ retval = 1;
break;
}
- lapic_end_of_interrupt();
+
+ return retval;
+}
+
+void
+lapic_smm_restore(void)
+{
+ boolean_t state;
+
+ if (lapic_os_enabled == FALSE)
+ return;
+
+ state = ml_set_interrupts_enabled(FALSE);
+
+ if (LAPIC_ISR_IS_SET(LAPIC_REDUCED_INTERRUPT_BASE, TIMER)) {
+ /*
+ * Bogus SMI handler enables interrupts but does not know about
+ * local APIC interrupt sources. When APIC timer counts down to
+ * zero while in SMM, local APIC will end up waiting for an EOI
+ * but no interrupt was delivered to the OS.
+ */
+ _lapic_end_of_interrupt();
+
+ /*
+ * timer is one-shot, trigger another quick countdown to trigger
+ * another timer interrupt.
+ */
+ if (LAPIC_REG(TIMER_CURRENT_COUNT) == 0) {
+ LAPIC_REG(TIMER_INITIAL_COUNT) = 1;
+ }
+
+ kprintf("lapic_smm_restore\n");
+ }
+
+ ml_set_interrupts_enabled(state);
}
kern_return_t
{
int i = 1000;
- int lapic_id = cpu_to_lapic[slot_num];
+ int lapic = cpu_to_lapic[slot_num];
- if (slot_num == get_cpu_number())
- return KERN_SUCCESS;
+ assert(lapic != -1);
+
+ DBGLOG_CPU_INIT(slot_num);
- assert(lapic_id != -1);
+ DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
+ DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) IdlePTD);
+
+ /*
+ * Initialize (or re-initialize) the descriptor tables for this cpu.
+ * Propagate processor mode to slave.
+ */
+ if (cpu_mode_is64bit())
+ cpu_desc_init64(cpu_datap(slot_num), FALSE);
+ else
+ cpu_desc_init(cpu_datap(slot_num), FALSE);
- DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic_id);
+ /* Serialize use of the slave boot stack. */
+ mutex_lock(&mp_cpu_boot_lock);
mp_disable_preemption();
+ if (slot_num == get_cpu_number()) {
+ mp_enable_preemption();
+ mutex_unlock(&mp_cpu_boot_lock);
+ return KERN_SUCCESS;
+ }
- LAPIC_REG(ICRD) = lapic_id << LAPIC_ICRD_DEST_SHIFT;
+ LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
LAPIC_REG(ICR) = LAPIC_ICR_DM_INIT;
delay(10000);
- LAPIC_REG(ICRD) = lapic_id << LAPIC_ICRD_DEST_SHIFT;
+ LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
LAPIC_REG(ICR) = LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12);
delay(200);
+ LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
+ LAPIC_REG(ICR) = LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12);
+ delay(200);
+
+#ifdef POSTCODE_DELAY
+ /* Wait much longer if postcodes are displayed for a delay period. */
+ i *= 10000;
+#endif
while(i-- > 0) {
- delay(10000);
- if (machine_slot[slot_num].running)
+ if (cpu_datap(slot_num)->cpu_running)
break;
+ delay(10000);
}
mp_enable_preemption();
+ mutex_unlock(&mp_cpu_boot_lock);
- if (!machine_slot[slot_num].running) {
- DBG("Failed to start CPU %02d\n", slot_num);
- printf("Failed to start CPU %02d\n", slot_num);
+ if (!cpu_datap(slot_num)->cpu_running) {
+ kprintf("Failed to start CPU %02d\n", slot_num);
+ printf("Failed to start CPU %02d, rebooting...\n", slot_num);
+ delay(1000000);
+ cpu_shutdown();
return KERN_SUCCESS;
} else {
- DBG("Started CPU %02d\n", slot_num);
- printf("Started CPU %02d\n", slot_num);
+ kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
return KERN_SUCCESS;
}
}
+extern char slave_boot_base[];
+extern char slave_boot_end[];
+extern void slave_pstart(void);
+
void
slave_boot_init(void)
{
- extern char slave_boot_base[];
- extern char slave_boot_end[];
- extern void pstart(void);
-
- DBG("slave_base=%p slave_end=%p MP_BOOT P=%p V=%p\n",
- slave_boot_base, slave_boot_end, MP_BOOT, phystokv(MP_BOOT));
+ DBG("V(slave_boot_base)=%p P(slave_boot_base)=%p MP_BOOT=%p sz=0x%x\n",
+ slave_boot_base,
+ kvtophys((vm_offset_t) slave_boot_base),
+ MP_BOOT,
+ slave_boot_end-slave_boot_base);
/*
* Copy the boot entry code to the real-mode vector area MP_BOOT.
* This is in page 1 which has been reserved for this purpose by
* machine_startup() from the boot processor.
* The slave boot code is responsible for switching to protected
- * mode and then jumping to the common startup, pstart().
+ * mode and then jumping to the common startup, _start().
*/
- bcopy(slave_boot_base,
- (char *)phystokv(MP_BOOT),
- slave_boot_end-slave_boot_base);
+ bcopy_phys(kvtophys((vm_offset_t) slave_boot_base),
+ (addr64_t) MP_BOOT,
+ slave_boot_end-slave_boot_base);
/*
* Zero a stack area above the boot code.
*/
- bzero((char *)(phystokv(MP_BOOTSTACK+MP_BOOT)-0x400), 0x400);
+ DBG("bzero_phys 0x%x sz 0x%x\n",MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
+ bzero_phys((addr64_t)MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
/*
* Set the location at the base of the stack to point to the
* common startup entry.
*/
- *((vm_offset_t *) phystokv(MP_MACH_START+MP_BOOT)) =
- kvtophys((vm_offset_t)&pstart);
+ DBG("writing 0x%x at phys 0x%x\n",
+ kvtophys((vm_offset_t) &slave_pstart), MP_MACH_START+MP_BOOT);
+ ml_phys_write_word(MP_MACH_START+MP_BOOT,
+ (unsigned int)kvtophys((vm_offset_t) &slave_pstart));
/* Flush caches */
__asm__("wbinvd");
}
#if MP_DEBUG
-cpu_signal_event_log_t cpu_signal[NCPUS] = { 0, 0, 0 };
-cpu_signal_event_log_t cpu_handle[NCPUS] = { 0, 0, 0 };
+cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
+cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
MP_EVENT_NAME_DECL();
-void
-cpu_signal_dump_last(int cpu)
-{
- cpu_signal_event_log_t *logp = &cpu_signal[cpu];
- int last;
- cpu_signal_event_t *eventp;
-
- last = (logp->next_entry == 0) ?
- LOG_NENTRIES - 1 : logp->next_entry - 1;
-
- eventp = &logp->entry[last];
-
- kprintf("cpu%d: tsc=%lld cpu_signal(%d,%s)\n",
- cpu, eventp->time, eventp->cpu, mp_event_name[eventp->event]);
-}
-
-void
-cpu_handle_dump_last(int cpu)
-{
- cpu_signal_event_log_t *logp = &cpu_handle[cpu];
- int last;
- cpu_signal_event_t *eventp;
-
- last = (logp->next_entry == 0) ?
- LOG_NENTRIES - 1 : logp->next_entry - 1;
-
- eventp = &logp->entry[last];
-
- kprintf("cpu%d: tsc=%lld cpu_signal_handle%s\n",
- cpu, eventp->time, mp_event_name[eventp->event]);
-}
#endif /* MP_DEBUG */
void
-cpu_signal_handler(struct i386_interrupt_state *regs)
+cpu_signal_handler(x86_saved_state_t *regs)
{
- register my_cpu;
+ int my_cpu;
volatile int *my_word;
#if MACH_KDB && MACH_ASSERT
int i=100;
mp_disable_preemption();
my_cpu = cpu_number();
- my_word = &cpu_data[my_cpu].cpu_signals;
+ my_word = ¤t_cpu_datap()->cpu_signals;
do {
#if MACH_KDB && MACH_ASSERT
if (i-- <= 0)
- Debugger("cpu_signal_handler");
+ Debugger("cpu_signal_handler: signals did not clear");
#endif /* MACH_KDB && MACH_ASSERT */
#if MACH_KDP
if (i_bit(MP_KDP, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_KDP);
i_bit_clear(MP_KDP, my_word);
- mp_kdp_wait();
+/* Ensure that the i386_kernel_state at the base of the
+ * current thread's stack (if any) is synchronized with the
+ * context at the moment of the interrupt, to facilitate
+ * access through the debugger.
+ * XXX 64-bit state?
+ */
+ sync_iss_to_iks(saved_state32(regs));
+ mp_kdp_wait(TRUE);
} else
#endif /* MACH_KDP */
- if (i_bit(MP_CLOCK, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_CLOCK);
- i_bit_clear(MP_CLOCK, my_word);
- hardclock(regs);
- } else if (i_bit(MP_TLB_FLUSH, my_word)) {
+ if (i_bit(MP_TLB_FLUSH, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH);
i_bit_clear(MP_TLB_FLUSH, my_word);
pmap_update_interrupt();
ast_check(cpu_to_processor(my_cpu));
#if MACH_KDB
} else if (i_bit(MP_KDB, my_word)) {
- extern kdb_is_slave[];
i_bit_clear(MP_KDB, my_word);
- kdb_is_slave[my_cpu]++;
- kdb_kintr();
+ current_cpu_datap()->cpu_kdb_is_slave++;
+ mp_kdb_wait();
+ current_cpu_datap()->cpu_kdb_is_slave--;
#endif /* MACH_KDB */
} else if (i_bit(MP_RENDEZVOUS, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
i_bit_clear(MP_RENDEZVOUS, my_word);
mp_rendezvous_action();
+ } else if (i_bit(MP_BROADCAST, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_BROADCAST);
+ i_bit_clear(MP_BROADCAST, my_word);
+ mp_broadcast_action();
+ } else if (i_bit(MP_CHUD, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CHUD);
+ i_bit_clear(MP_CHUD, my_word);
+ chudxnu_cpu_signal_handler();
+ } else if (i_bit(MP_CALL, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CALL);
+ i_bit_clear(MP_CALL, my_word);
+ mp_cpus_call_action();
}
} while (*my_word);
}
-void
-cpu_interrupt(int cpu)
+/* We want this to show up in backtraces, hence marked noinline.
+ */
+static int __attribute__((noinline))
+NMIInterruptHandler(x86_saved_state_t *regs)
{
- boolean_t state;
+ boolean_t state = ml_set_interrupts_enabled(FALSE);
+ sync_iss_to_iks_unconditionally(regs);
+ mp_kdp_wait(FALSE);
+ (void) ml_set_interrupts_enabled(state);
+ return 1;
+}
- if (smp_initialized) {
+#ifdef MP_DEBUG
+extern int max_lock_loops;
+int trappedalready = 0; /* (BRINGUP */
+#endif /* MP_DEBUG */
- /* Wait for previous interrupt to be delivered... */
- while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING)
- cpu_pause();
+static void
+i386_cpu_IPI(int cpu)
+{
+ boolean_t state;
+
+#ifdef MP_DEBUG
+ if(cpu_datap(cpu)->cpu_signals & 6) { /* (BRINGUP) */
+ kprintf("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
+ }
+#endif /* MP_DEBUG */
- state = ml_set_interrupts_enabled(FALSE);
- LAPIC_REG(ICRD) =
- cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
- LAPIC_REG(ICR) =
- INTERPROCESS_INTERRUPT | LAPIC_ICR_DM_FIXED;
- (void) ml_set_interrupts_enabled(state);
+#if MACH_KDB
+#ifdef MP_DEBUG
+ if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) { /* (BRINGUP) */
+ if(kdb_cpu != cpu_number()) {
+ trappedalready = 1;
+ panic("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n",
+ cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
+ }
+ }
+#endif /* MP_DEBUG */
+#endif
+
+ /* Wait for previous interrupt to be delivered... */
+#ifdef MP_DEBUG
+ int pending_busy_count = 0;
+ while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
+ if (++pending_busy_count > max_lock_loops)
+ panic("i386_cpu_IPI() deadlock\n");
+#else
+ while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
+#endif /* MP_DEBUG */
+ cpu_pause();
}
+ state = ml_set_interrupts_enabled(FALSE);
+ LAPIC_REG(ICRD) =
+ cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
+ LAPIC_REG(ICR) =
+ LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED;
+ (void) ml_set_interrupts_enabled(state);
}
+/*
+ * cpu_interrupt is really just to be used by the scheduler to
+ * get a CPU's attention it may not always issue an IPI. If an
+ * IPI is always needed then use i386_cpu_IPI.
+ */
void
-slave_clock(void)
+cpu_interrupt(int cpu)
{
- int cpu;
+ if (smp_initialized
+ && pmCPUExitIdle(cpu_datap(cpu))) {
+ i386_cpu_IPI(cpu);
+ }
+}
- /*
- * Clock interrupts are chained from the boot processor
- * to the next logical processor that is running and from
- * there on to any further running processor etc.
- */
- mp_disable_preemption();
- for (cpu=cpu_number()+1; cpu<NCPUS; cpu++)
- if (machine_slot[cpu].running) {
- i386_signal_cpu(cpu, MP_CLOCK, ASYNC);
- mp_enable_preemption();
- return;
- }
- mp_enable_preemption();
+/*
+ * Send a true NMI via the local APIC to the specified CPU.
+ */
+static void
+cpu_NMI_interrupt(int cpu)
+{
+ boolean_t state;
+ if (smp_initialized) {
+ state = ml_set_interrupts_enabled(FALSE);
+/* Program the interrupt command register */
+ LAPIC_REG(ICRD) =
+ cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
+/* The vector is ignored in this case--the target CPU will enter on the
+ * NMI vector.
+ */
+ LAPIC_REG(ICR) =
+ LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_NMI;
+ (void) ml_set_interrupts_enabled(state);
+ }
}
void
i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode)
{
- volatile int *signals = &cpu_data[cpu].cpu_signals;
- uint64_t timeout;
-
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ uint64_t tsc_timeout;
- if (!cpu_data[cpu].cpu_status)
+
+ if (!cpu_datap(cpu)->cpu_running)
return;
- DBGLOG(cpu_signal, cpu, event);
+ if (event == MP_TLB_FLUSH)
+ KERNEL_DEBUG(0xef800020 | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ DBGLOG(cpu_signal, cpu, event);
+
i_bit_set(event, signals);
- cpu_interrupt(cpu);
+ i386_cpu_IPI(cpu);
if (mode == SYNC) {
again:
- timeout = rdtsc64() + (1000*1000*1000);
- while (i_bit(event, signals) && rdtsc64() < timeout) {
+ tsc_timeout = rdtsc64() + (1000*1000*1000);
+ while (i_bit(event, signals) && rdtsc64() < tsc_timeout) {
cpu_pause();
}
if (i_bit(event, signals)) {
goto again;
}
}
+ if (event == MP_TLB_FLUSH)
+ KERNEL_DEBUG(0xef800020 | DBG_FUNC_END, cpu, 0, 0, 0, 0);
}
+/*
+ * Send event to all running cpus.
+ * Called with the topology locked.
+ */
void
i386_signal_cpus(mp_event_t event, mp_sync_t mode)
{
- int cpu;
- int my_cpu = cpu_number();
+ unsigned int cpu;
+ unsigned int my_cpu = cpu_number();
- for (cpu = 0; cpu < NCPUS; cpu++) {
- if (cpu == my_cpu || !machine_slot[cpu].running)
+ assert(hw_lock_held(&x86_topo_lock));
+
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
i386_signal_cpu(cpu, event, mode);
}
}
+/*
+ * Return the number of running cpus.
+ * Called with the topology locked.
+ */
int
i386_active_cpus(void)
{
- int cpu;
- int ncpus = 0;
+ unsigned int cpu;
+ unsigned int ncpus = 0;
+
+ assert(hw_lock_held(&x86_topo_lock));
- for (cpu = 0; cpu < NCPUS; cpu++) {
- if (machine_slot[cpu].running)
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu_datap(cpu)->cpu_running)
ncpus++;
}
return(ncpus);
static void
mp_rendezvous_action(void)
{
+ boolean_t intrs_enabled;
/* setup function */
if (mp_rv_setup_func != NULL)
mp_rv_setup_func(mp_rv_func_arg);
+
+ intrs_enabled = ml_get_interrupts_enabled();
+
/* spin on entry rendezvous */
- atomic_incl(&mp_rv_waiters[0], 1);
- while (mp_rv_waiters[0] < mp_rv_ncpus)
+ atomic_incl(&mp_rv_entry, 1);
+ while (mp_rv_entry < mp_rv_ncpus) {
+ /* poll for pesky tlb flushes if interrupts disabled */
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
cpu_pause();
+ }
/* action function */
if (mp_rv_action_func != NULL)
mp_rv_action_func(mp_rv_func_arg);
/* spin on exit rendezvous */
- atomic_incl(&mp_rv_waiters[1], 1);
- while (mp_rv_waiters[1] < mp_rv_ncpus)
+ atomic_incl(&mp_rv_exit, 1);
+ while (mp_rv_exit < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
cpu_pause();
+ }
+
/* teardown function */
if (mp_rv_teardown_func != NULL)
mp_rv_teardown_func(mp_rv_func_arg);
+
+ /* Bump completion count */
+ atomic_incl(&mp_rv_complete, 1);
}
void
mp_rv_teardown_func = teardown_func;
mp_rv_func_arg = arg;
- mp_rv_waiters[0] = 0; /* entry rendezvous count */
- mp_rv_waiters[1] = 0; /* exit rendezvous count */
- mp_rv_ncpus = i386_active_cpus();
+ mp_rv_entry = 0;
+ mp_rv_exit = 0;
+ mp_rv_complete = 0;
/*
* signal other processors, which will call mp_rendezvous_action()
* with interrupts disabled
*/
+ simple_lock(&x86_topo_lock);
+ mp_rv_ncpus = i386_active_cpus();
i386_signal_cpus(MP_RENDEZVOUS, ASYNC);
+ simple_unlock(&x86_topo_lock);
/* call executor function on this cpu */
mp_rendezvous_action();
+ /*
+ * Spin for everyone to complete.
+ * This is necessary to ensure that all processors have proceeded
+ * from the exit barrier before we release the rendezvous structure.
+ */
+ while (mp_rv_complete < mp_rv_ncpus) {
+ cpu_pause();
+ }
+
+ /* Tidy up */
+ mp_rv_setup_func = NULL;
+ mp_rv_action_func = NULL;
+ mp_rv_teardown_func = NULL;
+ mp_rv_func_arg = NULL;
+
/* release lock */
simple_unlock(&mp_rv_lock);
}
+void
+mp_rendezvous_break_lock(void)
+{
+ simple_lock_init(&mp_rv_lock, 0);
+}
+
+static void
+setup_disable_intrs(__unused void * param_not_used)
+{
+ /* disable interrupts before the first barrier */
+ boolean_t intr = ml_set_interrupts_enabled(FALSE);
+
+ current_cpu_datap()->cpu_iflag = intr;
+ DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
+}
+
+static void
+teardown_restore_intrs(__unused void * param_not_used)
+{
+ /* restore interrupt flag following MTRR changes */
+ ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag);
+ DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
+}
+
+/*
+ * A wrapper to mp_rendezvous() to call action_func() with interrupts disabled.
+ * This is exported for use by kexts.
+ */
+void
+mp_rendezvous_no_intrs(
+ void (*action_func)(void *),
+ void *arg)
+{
+ mp_rendezvous(setup_disable_intrs,
+ action_func,
+ teardown_restore_intrs,
+ arg);
+}
+
+void
+handle_pending_TLB_flushes(void)
+{
+ volatile int *my_word = ¤t_cpu_datap()->cpu_signals;
+
+ if (i_bit(MP_TLB_FLUSH, my_word)) {
+ DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
+ i_bit_clear(MP_TLB_FLUSH, my_word);
+ pmap_update_interrupt();
+ }
+}
+
+/*
+ * This is called from cpu_signal_handler() to process an MP_CALL signal.
+ */
+static void
+mp_cpus_call_action(void)
+{
+ if (mp_rv_action_func != NULL)
+ mp_rv_action_func(mp_rv_func_arg);
+ atomic_incl(&mp_rv_complete, 1);
+}
+
+/*
+ * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
+ * If the mode is SYNC, the function is called serially on the target cpus
+ * in logical cpu order. If the mode is ASYNC, the function is called in
+ * parallel over the specified cpus.
+ * The action function may be NULL.
+ * The cpu mask may include the local cpu. Offline cpus are ignored.
+ * Return does not occur until the function has completed on all cpus.
+ * The return value is the number of cpus on which the function was called.
+ */
+cpu_t
+mp_cpus_call(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *),
+ void *arg)
+{
+ cpu_t cpu;
+ boolean_t intrs_enabled = ml_get_interrupts_enabled();
+ boolean_t call_self = FALSE;
+
+ if (!smp_initialized) {
+ if ((cpus & CPUMASK_SELF) == 0)
+ return 0;
+ if (action_func != NULL) {
+ (void) ml_set_interrupts_enabled(FALSE);
+ action_func(arg);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ return 1;
+ }
+
+ /* obtain rendezvous lock */
+ simple_lock(&mp_rv_lock);
+
+ /* Use the rendezvous data structures for this call */
+ mp_rv_action_func = action_func;
+ mp_rv_func_arg = arg;
+ mp_rv_ncpus = 0;
+ mp_rv_complete = 0;
+
+ simple_lock(&x86_topo_lock);
+ for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
+ if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
+ !cpu_datap(cpu)->cpu_running)
+ continue;
+ if (cpu == (cpu_t) cpu_number()) {
+ /*
+ * We don't IPI ourself and if calling asynchronously,
+ * we defer our call until we have signalled all others.
+ */
+ call_self = TRUE;
+ if (mode == SYNC && action_func != NULL) {
+ (void) ml_set_interrupts_enabled(FALSE);
+ action_func(arg);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ } else {
+ /*
+ * Bump count of other cpus called and signal this cpu.
+ * Note: we signal asynchronously regardless of mode
+ * because we wait on mp_rv_complete either here
+ * (if mode == SYNC) or later (if mode == ASYNC).
+ * While spinning, poll for TLB flushes if interrupts
+ * are disabled.
+ */
+ mp_rv_ncpus++;
+ i386_signal_cpu(cpu, MP_CALL, ASYNC);
+ if (mode == SYNC) {
+ simple_unlock(&x86_topo_lock);
+ while (mp_rv_complete < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ simple_lock(&x86_topo_lock);
+ }
+ }
+ }
+ simple_unlock(&x86_topo_lock);
+
+ /*
+ * If calls are being made asynchronously,
+ * make the local call now if needed, and then
+ * wait for all other cpus to finish their calls.
+ */
+ if (mode == ASYNC) {
+ if (call_self && action_func != NULL) {
+ (void) ml_set_interrupts_enabled(FALSE);
+ action_func(arg);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ while (mp_rv_complete < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ }
+
+ /* Determine the number of cpus called */
+ cpu = mp_rv_ncpus + (call_self ? 1 : 0);
+
+ simple_unlock(&mp_rv_lock);
+
+ return cpu;
+}
+
+static void
+mp_broadcast_action(void)
+{
+ /* call action function */
+ if (mp_bc_action_func != NULL)
+ mp_bc_action_func(mp_bc_func_arg);
+
+ /* if we're the last one through, wake up the instigator */
+ if (atomic_decl_and_test((volatile long *)&mp_bc_count, 1))
+ thread_wakeup(((event_t)(unsigned int *) &mp_bc_count));
+}
+
+/*
+ * mp_broadcast() runs a given function on all active cpus.
+ * The caller blocks until the functions has run on all cpus.
+ * The caller will also block if there is another pending braodcast.
+ */
+void
+mp_broadcast(
+ void (*action_func)(void *),
+ void *arg)
+{
+ if (!smp_initialized) {
+ if (action_func != NULL)
+ action_func(arg);
+ return;
+ }
+
+ /* obtain broadcast lock */
+ mutex_lock(&mp_bc_lock);
+
+ /* set static function pointers */
+ mp_bc_action_func = action_func;
+ mp_bc_func_arg = arg;
+
+ assert_wait(&mp_bc_count, THREAD_UNINT);
+
+ /*
+ * signal other processors, which will call mp_broadcast_action()
+ */
+ simple_lock(&x86_topo_lock);
+ mp_bc_ncpus = i386_active_cpus(); /* total including this cpu */
+ mp_bc_count = mp_bc_ncpus;
+ i386_signal_cpus(MP_BROADCAST, ASYNC);
+
+ /* call executor function on this cpu */
+ mp_broadcast_action();
+ simple_unlock(&x86_topo_lock);
+
+ /* block for all cpus to have run action_func */
+ if (mp_bc_ncpus > 1)
+ thread_block(THREAD_CONTINUE_NULL);
+ else
+ clear_wait(current_thread(), THREAD_AWAKENED);
+
+ /* release lock */
+ mutex_unlock(&mp_bc_lock);
+}
+
+void
+i386_activate_cpu(void)
+{
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(!ml_get_interrupts_enabled());
+
+ if (!smp_initialized) {
+ cdp->cpu_running = TRUE;
+ return;
+ }
+
+ simple_lock(&x86_topo_lock);
+ cdp->cpu_running = TRUE;
+ simple_unlock(&x86_topo_lock);
+}
+
+void
+i386_deactivate_cpu(void)
+{
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(!ml_get_interrupts_enabled());
+
+ simple_lock(&x86_topo_lock);
+ cdp->cpu_running = FALSE;
+ simple_unlock(&x86_topo_lock);
+
+ /*
+ * In case a rendezvous/braodcast/call was initiated to this cpu
+ * before we cleared cpu_running, we must perform any actions due.
+ */
+ if (i_bit(MP_RENDEZVOUS, &cdp->cpu_signals))
+ mp_rendezvous_action();
+ if (i_bit(MP_BROADCAST, &cdp->cpu_signals))
+ mp_broadcast_action();
+ if (i_bit(MP_CALL, &cdp->cpu_signals))
+ mp_cpus_call_action();
+ cdp->cpu_signals = 0; /* all clear */
+}
+
+int pmsafe_debug = 1;
+
#if MACH_KDP
volatile boolean_t mp_kdp_trap = FALSE;
-long mp_kdp_ncpus;
+volatile unsigned long mp_kdp_ncpus;
+boolean_t mp_kdp_state;
+
void
mp_kdp_enter(void)
{
- int cpu;
- int ncpus;
- int my_cpu = cpu_number();
- boolean_t state;
- uint64_t timeout;
+ unsigned int cpu;
+ unsigned int ncpus;
+ unsigned int my_cpu = cpu_number();
+ uint64_t tsc_timeout;
DBG("mp_kdp_enter()\n");
* In case of races, only one cpu is allowed to enter kdp after
* stopping others.
*/
- state = ml_set_interrupts_enabled(FALSE);
+ mp_kdp_state = ml_set_interrupts_enabled(FALSE);
simple_lock(&mp_kdp_lock);
+
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+
while (mp_kdp_trap) {
simple_unlock(&mp_kdp_lock);
DBG("mp_kdp_enter() race lost\n");
- mp_kdp_wait();
+ mp_kdp_wait(TRUE);
simple_lock(&mp_kdp_lock);
}
mp_kdp_ncpus = 1; /* self */
mp_kdp_trap = TRUE;
simple_unlock(&mp_kdp_lock);
- (void) ml_set_interrupts_enabled(state);
- /* Deliver a nudge to other cpus, counting how many */
+ /*
+ * Deliver a nudge to other cpus, counting how many
+ */
DBG("mp_kdp_enter() signaling other processors\n");
- for (ncpus = 1, cpu = 0; cpu < NCPUS; cpu++) {
- if (cpu == my_cpu || !machine_slot[cpu].running)
- continue;
- ncpus++;
- i386_signal_cpu(cpu, MP_KDP, ASYNC);
+ if (force_immediate_debugger_NMI == FALSE) {
+ for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ ncpus++;
+ i386_signal_cpu(cpu, MP_KDP, ASYNC);
+ }
+ /*
+ * Wait other processors to synchronize
+ */
+ DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
+
+ /*
+ * This timeout is rather arbitrary; we don't want to NMI
+ * processors that are executing at potentially
+ * "unsafe-to-interrupt" points such as the trampolines,
+ * but neither do we want to lose state by waiting too long.
+ */
+ tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000);
+
+ while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
+ /*
+ * A TLB shootdown request may be pending--this would
+ * result in the requesting processor waiting in
+ * PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ /* If we've timed out, and some processor(s) are still unresponsive,
+ * interrupt them with an NMI via the local APIC.
+ */
+ if (mp_kdp_ncpus != ncpus) {
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ if (cpu_signal_pending(cpu, MP_KDP))
+ cpu_NMI_interrupt(cpu);
+ }
+ }
}
+ else
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ cpu_NMI_interrupt(cpu);
+ }
- /* Wait other processors to spin. */
- DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
- timeout = rdtsc64() + (1000*1000*1000);
- while (*((volatile long *) &mp_kdp_ncpus) != ncpus
- && rdtsc64() < timeout) {
- cpu_pause();
- }
- DBG("mp_kdp_enter() %d processors done %s\n",
- mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+ DBG("mp_kdp_enter() %u processors done %s\n",
+ mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+
+ postcode(MP_KDP_ENTER);
}
+static boolean_t
+cpu_signal_pending(int cpu, mp_event_t event)
+{
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ boolean_t retval = FALSE;
+
+ if (i_bit(event, signals))
+ retval = TRUE;
+ return retval;
+}
+
+
static void
-mp_kdp_wait(void)
+mp_kdp_wait(boolean_t flush)
{
DBG("mp_kdp_wait()\n");
- atomic_incl(&mp_kdp_ncpus, 1);
+ /* If an I/O port has been specified as a debugging aid, issue a read */
+ panic_io_port_read();
+
+ /* If we've trapped due to a machine-check, save MCA registers */
+ mca_check_save();
+
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+
+ atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
while (mp_kdp_trap) {
+ /*
+ * A TLB shootdown request may be pending--this would result
+ * in the requesting processor waiting in PMAP_UPDATE_TLBS()
+ * until this processor handles it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ if (flush)
+ handle_pending_TLB_flushes();
cpu_pause();
}
- atomic_decl(&mp_kdp_ncpus, 1);
+
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+
+ atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
DBG("mp_kdp_wait() done\n");
}
mp_kdp_exit(void)
{
DBG("mp_kdp_exit()\n");
- atomic_decl(&mp_kdp_ncpus, 1);
+ atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
mp_kdp_trap = FALSE;
+ __asm__ volatile("mfence");
/* Wait other processors to stop spinning. XXX needs timeout */
DBG("mp_kdp_exit() waiting for processors to resume\n");
- while (*((volatile long *) &mp_kdp_ncpus) > 0) {
+ while (mp_kdp_ncpus > 0) {
+ /*
+ * a TLB shootdown request may be pending... this would result in the requesting
+ * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+
cpu_pause();
}
- DBG("mp_kdp_exit() done\n");
-}
-#endif /* MACH_KDP */
-void
-lapic_test(void)
-{
- int cpu = 1;
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
- lapic_dump();
- i_bit_set(0, &cpu_data[cpu].cpu_signals);
- cpu_interrupt(1);
+ DBG("mp_kdp_exit() done\n");
+ (void) ml_set_interrupts_enabled(mp_kdp_state);
+ postcode(0);
}
+#endif /* MACH_KDP */
/*ARGSUSED*/
void
init_ast_check(
- processor_t processor)
+ __unused processor_t processor)
{
}
cause_ast_check(
processor_t processor)
{
- int cpu = processor->slot_num;
+ int cpu = PROCESSOR_DATA(processor, slot_num);
if (cpu != cpu_number()) {
i386_signal_cpu(cpu, MP_AST, ASYNC);
}
}
+#if MACH_KDB
/*
* invoke kdb on slave processors
*/
void
remote_kdb(void)
{
- int my_cpu = cpu_number();
- int cpu;
+ unsigned int my_cpu = cpu_number();
+ unsigned int cpu;
+ int kdb_ncpus;
+ uint64_t tsc_timeout = 0;
- mp_disable_preemption();
- for (cpu = 0; cpu < NCPUS; cpu++) {
- if (cpu == my_cpu || !machine_slot[cpu].running)
+ mp_kdb_trap = TRUE;
+ mp_kdb_ncpus = 1;
+ for (kdb_ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
- i386_signal_cpu(cpu, MP_KDB, SYNC);
+ kdb_ncpus++;
+ i386_signal_cpu(cpu, MP_KDB, ASYNC);
}
- mp_enable_preemption();
+ DBG("remote_kdb() waiting for (%d) processors to suspend\n",kdb_ncpus);
+
+ tsc_timeout = rdtsc64() + (kdb_ncpus * 100 * 1000 * 1000);
+
+ while (mp_kdb_ncpus != kdb_ncpus && rdtsc64() < tsc_timeout) {
+ /*
+ * a TLB shootdown request may be pending... this would result in the requesting
+ * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+
+ cpu_pause();
+ }
+ DBG("mp_kdp_enter() %d processors done %s\n",
+ mp_kdb_ncpus, (mp_kdb_ncpus == kdb_ncpus) ? "OK" : "timed out");
+}
+
+static void
+mp_kdb_wait(void)
+{
+ DBG("mp_kdb_wait()\n");
+
+ /* If an I/O port has been specified as a debugging aid, issue a read */
+ panic_io_port_read();
+
+ atomic_incl(&mp_kdb_ncpus, 1);
+ while (mp_kdb_trap) {
+ /*
+ * a TLB shootdown request may be pending... this would result in the requesting
+ * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+
+ cpu_pause();
+ }
+ atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
+ DBG("mp_kdb_wait() done\n");
}
/*
clear_kdb_intr(void)
{
mp_disable_preemption();
- i_bit_clear(MP_KDB, &cpu_data[cpu_number()].cpu_signals);
+ i_bit_clear(MP_KDB, ¤t_cpu_datap()->cpu_signals);
mp_enable_preemption();
}
void
-slave_machine_init(void)
+mp_kdb_exit(void)
{
- int my_cpu;
+ DBG("mp_kdb_exit()\n");
+ atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
+ mp_kdb_trap = FALSE;
+ __asm__ volatile("mfence");
+
+ while (mp_kdb_ncpus > 0) {
+ /*
+ * a TLB shootdown request may be pending... this would result in the requesting
+ * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+
+ cpu_pause();
+ }
+
+ DBG("mp_kdb_exit() done\n");
+}
+
+#endif /* MACH_KDB */
+
+/*
+ * i386_init_slave() is called from pstart.
+ * We're in the cpu's interrupt stack with interrupts disabled.
+ * At this point we are in legacy mode. We need to switch on IA32e
+ * if the mode is set to 64-bits.
+ */
+void
+i386_init_slave(void)
+{
+ postcode(I386_INIT_SLAVE);
/* Ensure that caching and write-through are enabled */
set_cr0(get_cr0() & ~(CR0_NW|CR0_CD));
- mp_disable_preemption();
- my_cpu = get_cpu_number();
+ DBG("i386_init_slave() CPU%d: phys (%d) active.\n",
+ get_cpu_number(), get_cpu_phys_number());
+
+ assert(!ml_get_interrupts_enabled());
- DBG("slave_machine_init() CPU%d: phys (%d) active.\n",
- my_cpu, get_cpu_phys_number());
+ cpu_mode_init(current_cpu_datap());
+
+ mca_cpu_init();
lapic_init();
+ LAPIC_DUMP();
+ LAPIC_CPU_MAP_DUMP();
init_fpu();
- cpu_machine_init();
+ mtrr_update_cpu();
- mp_enable_preemption();
+ /* resume VT operation */
+ vmx_resume();
-#ifdef MP_DEBUG
- lapic_dump();
- lapic_cpu_map_dump();
-#endif /* MP_DEBUG */
+ pat_init();
+
+ cpu_thread_init(); /* not strictly necessary */
+
+ cpu_init(); /* Sets cpu_running which starter cpu waits for */
+
+ slave_main();
+ panic("i386_init_slave() returned from slave_main()");
+}
+
+void
+slave_machine_init(void)
+{
+ /*
+ * Here in process context, but with interrupts disabled.
+ */
+ DBG("slave_machine_init() CPU%d\n", get_cpu_number());
+
+ clock_init();
+
+ cpu_machine_init(); /* Interrupts enabled hereafter */
}
#undef cpu_number()
}
#endif /* TRAP_DEBUG */
-
-void db_lapic(int cpu);
-unsigned int db_remote_read(int cpu, int reg);
-void db_ioapic(unsigned int);
-void kdb_console(void);
-
-void
-kdb_console(void)
-{
-}
-
-#define BOOLP(a) ((a)?' ':'!')
-
-static char *DM[8] = {
- "Fixed",
- "Lowest Priority",
- "Invalid",
- "Invalid",
- "NMI",
- "Reset",
- "Invalid",
- "ExtINT"};
-
-unsigned int
-db_remote_read(int cpu, int reg)
-{
- return -1;
-}
-
-void
-db_lapic(int cpu)
-{
-}
-
-void
-db_ioapic(unsigned int ind)
-{
-}
-
#endif /* MACH_KDB */