+ IOMemoryDescriptorMapAllocRef * ref = (typeof(ref))_ref;
+ IOReturn err;
+ vm_map_offset_t addr;
+
+ addr = ref->mapped;
+
+ err = vm_map_enter_mem_object(map, &addr, ref->size,
+ (vm_map_offset_t) 0,
+ (((ref->options & kIOMapAnywhere)
+ ? VM_FLAGS_ANYWHERE
+ : VM_FLAGS_FIXED)
+ | VM_MAKE_TAG(ref->tag)),
+ IPC_PORT_NULL,
+ (memory_object_offset_t) 0,
+ false, /* copy */
+ ref->prot,
+ ref->prot,
+ VM_INHERIT_NONE);
+ if (KERN_SUCCESS == err)
+ {
+ ref->mapped = (mach_vm_address_t) addr;
+ ref->map = map;
+ }
+
+ return( err );
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceMap(
+ IOMemoryReference * ref,
+ vm_map_t map,
+ mach_vm_size_t inoffset,
+ mach_vm_size_t size,
+ IOOptionBits options,
+ mach_vm_address_t * inaddr)
+{
+ IOReturn err;
+ int64_t offset = inoffset;
+ uint32_t rangeIdx, entryIdx;
+ vm_map_offset_t addr, mapAddr;
+ vm_map_offset_t pageOffset, entryOffset, remain, chunk;
+
+ mach_vm_address_t nextAddr;
+ mach_vm_size_t nextLen;
+ IOByteCount physLen;
+ IOMemoryEntry * entry;
+ vm_prot_t prot, memEntryCacheMode;
+ IOOptionBits type;
+ IOOptionBits cacheMode;
+ vm_tag_t tag;
+ // for the kIOMapPrefault option.
+ upl_page_info_t * pageList = NULL;
+ UInt currentPageIndex = 0;
+ bool didAlloc;
+
+ if (ref->mapRef)
+ {
+ err = memoryReferenceMap(ref->mapRef, map, inoffset, size, options, inaddr);
+ return (err);
+ }
+
+ type = _flags & kIOMemoryTypeMask;
+
+ prot = VM_PROT_READ;
+ if (!(kIOMapReadOnly & options)) prot |= VM_PROT_WRITE;
+ prot &= ref->prot;
+
+ cacheMode = ((options & kIOMapCacheMask) >> kIOMapCacheShift);
+ if (kIODefaultCache != cacheMode)
+ {
+ // VM system requires write access to update named entry cache mode
+ memEntryCacheMode = (MAP_MEM_ONLY | VM_PROT_WRITE | prot | vmProtForCacheMode(cacheMode));
+ }
+
+ tag = getVMTag(map);
+
+ if (_task)
+ {
+ // Find first range for offset
+ if (!_rangesCount) return (kIOReturnBadArgument);
+ for (remain = offset, rangeIdx = 0; rangeIdx < _rangesCount; rangeIdx++)
+ {
+ getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
+ if (remain < nextLen) break;
+ remain -= nextLen;
+ }
+ }
+ else
+ {
+ rangeIdx = 0;
+ remain = 0;
+ nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
+ nextLen = size;
+ }
+
+ assert(remain < nextLen);
+ if (remain >= nextLen) return (kIOReturnBadArgument);
+
+ nextAddr += remain;
+ nextLen -= remain;
+ pageOffset = (page_mask & nextAddr);
+ addr = 0;
+ didAlloc = false;
+
+ if (!(options & kIOMapAnywhere))
+ {
+ addr = *inaddr;
+ if (pageOffset != (page_mask & addr)) return (kIOReturnNotAligned);
+ addr -= pageOffset;
+ }
+
+ // find first entry for offset
+ for (entryIdx = 0;
+ (entryIdx < ref->count) && (offset >= ref->entries[entryIdx].offset);
+ entryIdx++) {}
+ entryIdx--;
+ entry = &ref->entries[entryIdx];
+
+ // allocate VM
+ size = round_page_64(size + pageOffset);
+ if (kIOMapOverwrite & options)
+ {
+ if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags))
+ {
+ map = IOPageableMapForAddress(addr);
+ }
+ err = KERN_SUCCESS;
+ }
+ else
+ {
+ IOMemoryDescriptorMapAllocRef ref;
+ ref.map = map;
+ ref.tag = tag;
+ ref.options = options;
+ ref.size = size;
+ ref.prot = prot;
+ if (options & kIOMapAnywhere)
+ // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
+ ref.mapped = 0;
+ else
+ ref.mapped = addr;
+ if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags))
+ err = IOIteratePageableMaps( ref.size, &IOMemoryDescriptorMapAlloc, &ref );
+ else
+ err = IOMemoryDescriptorMapAlloc(ref.map, &ref);
+ if (KERN_SUCCESS == err)
+ {
+ addr = ref.mapped;
+ map = ref.map;
+ didAlloc = true;
+ }
+ }
+
+ /*
+ * Prefaulting is only possible if we wired the memory earlier. Check the
+ * memory type, and the underlying data.
+ */
+ if (options & kIOMapPrefault)
+ {
+ /*
+ * The memory must have been wired by calling ::prepare(), otherwise
+ * we don't have the UPL. Without UPLs, pages cannot be pre-faulted
+ */
+ assert(map != kernel_map);
+ assert(_wireCount != 0);
+ assert(_memoryEntries != NULL);
+ if ((map == kernel_map) ||
+ (_wireCount == 0) ||
+ (_memoryEntries == NULL))
+ {
+ return kIOReturnBadArgument;
+ }
+
+ // Get the page list.
+ ioGMDData* dataP = getDataP(_memoryEntries);
+ ioPLBlock const* ioplList = getIOPLList(dataP);
+ pageList = getPageList(dataP);
+
+ // Get the number of IOPLs.
+ UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
+
+ /*
+ * Scan through the IOPL Info Blocks, looking for the first block containing
+ * the offset. The research will go past it, so we'll need to go back to the
+ * right range at the end.
+ */
+ UInt ioplIndex = 0;
+ while (ioplIndex < numIOPLs && offset >= ioplList[ioplIndex].fIOMDOffset)
+ ioplIndex++;
+ ioplIndex--;
+
+ // Retrieve the IOPL info block.
+ ioPLBlock ioplInfo = ioplList[ioplIndex];
+
+ /*
+ * For external UPLs, the fPageInfo points directly to the UPL's page_info_t
+ * array.
+ */
+ if (ioplInfo.fFlags & kIOPLExternUPL)
+ pageList = (upl_page_info_t*) ioplInfo.fPageInfo;
+ else
+ pageList = &pageList[ioplInfo.fPageInfo];
+
+ // Rebase [offset] into the IOPL in order to looks for the first page index.
+ mach_vm_size_t offsetInIOPL = offset - ioplInfo.fIOMDOffset + ioplInfo.fPageOffset;
+
+ // Retrieve the index of the first page corresponding to the offset.
+ currentPageIndex = atop_32(offsetInIOPL);
+ }
+
+ // enter mappings
+ remain = size;
+ mapAddr = addr;
+ addr += pageOffset;
+
+ while (remain && (KERN_SUCCESS == err))
+ {
+ entryOffset = offset - entry->offset;
+ if ((page_mask & entryOffset) != pageOffset)
+ {
+ err = kIOReturnNotAligned;
+ break;
+ }
+
+ if (kIODefaultCache != cacheMode)
+ {
+ vm_size_t unused = 0;
+ err = mach_make_memory_entry(NULL /*unused*/, &unused, 0 /*unused*/,
+ memEntryCacheMode, NULL, entry->entry);
+ assert (KERN_SUCCESS == err);
+ }
+
+ entryOffset -= pageOffset;
+ if (entryOffset >= entry->size) panic("entryOffset");
+ chunk = entry->size - entryOffset;
+ if (chunk)
+ {
+ if (chunk > remain) chunk = remain;
+ if (options & kIOMapPrefault)
+ {
+ UInt nb_pages = round_page(chunk) / PAGE_SIZE;
+ err = vm_map_enter_mem_object_prefault(map,
+ &mapAddr,
+ chunk, 0 /* mask */,
+ (VM_FLAGS_FIXED
+ | VM_FLAGS_OVERWRITE
+ | VM_MAKE_TAG(tag)
+ | VM_FLAGS_IOKIT_ACCT), /* iokit accounting */
+ entry->entry,
+ entryOffset,
+ prot, // cur
+ prot, // max
+ &pageList[currentPageIndex],
+ nb_pages);
+
+ // Compute the next index in the page list.
+ currentPageIndex += nb_pages;
+ assert(currentPageIndex <= _pages);
+ }
+ else
+ {
+ err = vm_map_enter_mem_object(map,
+ &mapAddr,
+ chunk, 0 /* mask */,
+ (VM_FLAGS_FIXED
+ | VM_FLAGS_OVERWRITE
+ | VM_MAKE_TAG(tag)
+ | VM_FLAGS_IOKIT_ACCT), /* iokit accounting */
+ entry->entry,
+ entryOffset,
+ false, // copy
+ prot, // cur
+ prot, // max
+ VM_INHERIT_NONE);
+ }
+ if (KERN_SUCCESS != err) break;
+ remain -= chunk;
+ if (!remain) break;
+ mapAddr += chunk;
+ offset += chunk - pageOffset;
+ }
+ pageOffset = 0;
+ entry++;
+ entryIdx++;
+ if (entryIdx >= ref->count)
+ {
+ err = kIOReturnOverrun;
+ break;
+ }
+ }
+
+ if ((KERN_SUCCESS != err) && didAlloc)
+ {
+ (void) mach_vm_deallocate(map, trunc_page_64(addr), size);
+ addr = 0;
+ }
+ *inaddr = addr;
+
+ return (err);
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(
+ IOMemoryReference * ref,
+ IOByteCount * residentPageCount,
+ IOByteCount * dirtyPageCount)
+{
+ IOReturn err;
+ IOMemoryEntry * entries;
+ unsigned int resident, dirty;
+ unsigned int totalResident, totalDirty;
+
+ totalResident = totalDirty = 0;
+ err = kIOReturnSuccess;
+ entries = ref->entries + ref->count;
+ while (entries > &ref->entries[0])
+ {
+ entries--;
+ err = mach_memory_entry_get_page_counts(entries->entry, &resident, &dirty);
+ if (KERN_SUCCESS != err) break;
+ totalResident += resident;
+ totalDirty += dirty;
+ }
+
+ if (residentPageCount) *residentPageCount = totalResident;
+ if (dirtyPageCount) *dirtyPageCount = totalDirty;
+ return (err);
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(
+ IOMemoryReference * ref,
+ IOOptionBits newState,
+ IOOptionBits * oldState)
+{
+ IOReturn err;
+ IOMemoryEntry * entries;
+ vm_purgable_t control;
+ int totalState, state;
+
+ totalState = kIOMemoryPurgeableNonVolatile;
+ err = kIOReturnSuccess;
+ entries = ref->entries + ref->count;
+ while (entries > &ref->entries[0])
+ {
+ entries--;
+
+ err = purgeableControlBits(newState, &control, &state);
+ if (KERN_SUCCESS != err) break;
+ err = mach_memory_entry_purgable_control(entries->entry, control, &state);
+ if (KERN_SUCCESS != err) break;
+ err = purgeableStateBits(&state);
+ if (KERN_SUCCESS != err) break;
+
+ if (kIOMemoryPurgeableEmpty == state) totalState = kIOMemoryPurgeableEmpty;
+ else if (kIOMemoryPurgeableEmpty == totalState) continue;
+ else if (kIOMemoryPurgeableVolatile == totalState) continue;
+ else if (kIOMemoryPurgeableVolatile == state) totalState = kIOMemoryPurgeableVolatile;
+ else totalState = kIOMemoryPurgeableNonVolatile;
+ }
+
+ if (oldState) *oldState = totalState;
+ return (err);
+}
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddress(void * address,
+ IOByteCount length,
+ IODirection direction)
+{
+ return IOMemoryDescriptor::
+ withAddressRange((IOVirtualAddress) address, length, direction | kIOMemoryAutoPrepare, kernel_task);
+}
+
+#ifndef __LP64__
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddress(IOVirtualAddress address,
+ IOByteCount length,
+ IODirection direction,
+ task_t task)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that)
+ {
+ if (that->initWithAddress(address, length, direction, task))
+ return that;
+
+ that->release();
+ }
+ return 0;
+}
+#endif /* !__LP64__ */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withPhysicalAddress(
+ IOPhysicalAddress address,
+ IOByteCount length,
+ IODirection direction )
+{
+ return (IOMemoryDescriptor::withAddressRange(address, length, direction, TASK_NULL));
+}
+
+#ifndef __LP64__
+IOMemoryDescriptor *
+IOMemoryDescriptor::withRanges( IOVirtualRange * ranges,
+ UInt32 withCount,
+ IODirection direction,
+ task_t task,
+ bool asReference)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that)
+ {
+ if (that->initWithRanges(ranges, withCount, direction, task, asReference))
+ return that;
+
+ that->release();
+ }
+ return 0;
+}
+#endif /* !__LP64__ */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddressRange(mach_vm_address_t address,
+ mach_vm_size_t length,
+ IOOptionBits options,
+ task_t task)
+{
+ IOAddressRange range = { address, length };
+ return (IOMemoryDescriptor::withAddressRanges(&range, 1, options, task));
+}
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddressRanges(IOAddressRange * ranges,
+ UInt32 rangeCount,
+ IOOptionBits options,
+ task_t task)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that)
+ {
+ if (task)
+ options |= kIOMemoryTypeVirtual64;
+ else
+ options |= kIOMemoryTypePhysical64;
+
+ if (that->initWithOptions(ranges, rangeCount, 0, task, options, /* mapper */ 0))
+ return that;
+
+ that->release();
+ }
+
+ return 0;
+}
+
+
+/*
+ * withOptions:
+ *
+ * Create a new IOMemoryDescriptor. The buffer is made up of several
+ * virtual address ranges, from a given task.
+ *
+ * Passing the ranges as a reference will avoid an extra allocation.
+ */
+IOMemoryDescriptor *
+IOMemoryDescriptor::withOptions(void * buffers,
+ UInt32 count,
+ UInt32 offset,
+ task_t task,
+ IOOptionBits opts,
+ IOMapper * mapper)
+{
+ IOGeneralMemoryDescriptor *self = new IOGeneralMemoryDescriptor;
+
+ if (self
+ && !self->initWithOptions(buffers, count, offset, task, opts, mapper))
+ {
+ self->release();
+ return 0;
+ }
+
+ return self;
+}
+
+bool IOMemoryDescriptor::initWithOptions(void * buffers,
+ UInt32 count,
+ UInt32 offset,
+ task_t task,
+ IOOptionBits options,
+ IOMapper * mapper)
+{
+ return( false );
+}
+
+#ifndef __LP64__
+IOMemoryDescriptor *
+IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges,
+ UInt32 withCount,
+ IODirection direction,
+ bool asReference)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that)
+ {
+ if (that->initWithPhysicalRanges(ranges, withCount, direction, asReference))
+ return that;
+
+ that->release();
+ }
+ return 0;
+}
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of,
+ IOByteCount offset,
+ IOByteCount length,
+ IODirection direction)
+{
+ return (IOSubMemoryDescriptor::withSubRange(of, offset, length, direction));
+}
+#endif /* !__LP64__ */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD)
+{
+ IOGeneralMemoryDescriptor *origGenMD =
+ OSDynamicCast(IOGeneralMemoryDescriptor, originalMD);
+
+ if (origGenMD)
+ return IOGeneralMemoryDescriptor::
+ withPersistentMemoryDescriptor(origGenMD);
+ else
+ return 0;
+}
+
+IOMemoryDescriptor *
+IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD)
+{
+ IOMemoryReference * memRef;
+
+ if (kIOReturnSuccess != originalMD->memoryReferenceCreate(kIOMemoryReferenceReuse, &memRef)) return (0);
+
+ if (memRef == originalMD->_memRef)
+ {
+ originalMD->retain(); // Add a new reference to ourselves
+ originalMD->memoryReferenceRelease(memRef);
+ return originalMD;
+ }
+
+ IOGeneralMemoryDescriptor * self = new IOGeneralMemoryDescriptor;
+ IOMDPersistentInitData initData = { originalMD, memRef };
+
+ if (self
+ && !self->initWithOptions(&initData, 1, 0, 0, kIOMemoryTypePersistentMD, 0)) {
+ self->release();
+ self = 0;
+ }
+ return self;
+}
+
+#ifndef __LP64__
+bool
+IOGeneralMemoryDescriptor::initWithAddress(void * address,
+ IOByteCount withLength,
+ IODirection withDirection)
+{
+ _singleRange.v.address = (vm_offset_t) address;
+ _singleRange.v.length = withLength;
+
+ return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithAddress(IOVirtualAddress address,
+ IOByteCount withLength,
+ IODirection withDirection,
+ task_t withTask)
+{
+ _singleRange.v.address = address;
+ _singleRange.v.length = withLength;
+
+ return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithPhysicalAddress(
+ IOPhysicalAddress address,
+ IOByteCount withLength,
+ IODirection withDirection )
+{
+ _singleRange.p.address = address;
+ _singleRange.p.length = withLength;
+
+ return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithPhysicalRanges(
+ IOPhysicalRange * ranges,
+ UInt32 count,
+ IODirection direction,
+ bool reference)
+{
+ IOOptionBits mdOpts = direction | kIOMemoryTypePhysical;
+
+ if (reference)
+ mdOpts |= kIOMemoryAsReference;
+
+ return initWithOptions(ranges, count, 0, 0, mdOpts, /* mapper */ 0);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithRanges(
+ IOVirtualRange * ranges,
+ UInt32 count,
+ IODirection direction,
+ task_t task,
+ bool reference)
+{
+ IOOptionBits mdOpts = direction;
+
+ if (reference)
+ mdOpts |= kIOMemoryAsReference;
+
+ if (task) {
+ mdOpts |= kIOMemoryTypeVirtual;
+
+ // Auto-prepare if this is a kernel memory descriptor as very few
+ // clients bother to prepare() kernel memory.
+ // But it was not enforced so what are you going to do?
+ if (task == kernel_task)
+ mdOpts |= kIOMemoryAutoPrepare;
+ }
+ else
+ mdOpts |= kIOMemoryTypePhysical;
+
+ return initWithOptions(ranges, count, 0, task, mdOpts, /* mapper */ 0);
+}
+#endif /* !__LP64__ */
+
+/*
+ * initWithOptions:
+ *
+ * IOMemoryDescriptor. The buffer is made up of several virtual address ranges,
+ * from a given task, several physical ranges, an UPL from the ubc
+ * system or a uio (may be 64bit) from the BSD subsystem.
+ *
+ * Passing the ranges as a reference will avoid an extra allocation.
+ *
+ * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an
+ * existing instance -- note this behavior is not commonly supported in other
+ * I/O Kit classes, although it is supported here.
+ */
+
+bool
+IOGeneralMemoryDescriptor::initWithOptions(void * buffers,
+ UInt32 count,
+ UInt32 offset,
+ task_t task,
+ IOOptionBits options,
+ IOMapper * mapper)
+{
+ IOOptionBits type = options & kIOMemoryTypeMask;
+
+#ifndef __LP64__
+ if (task
+ && (kIOMemoryTypeVirtual == type)
+ && vm_map_is_64bit(get_task_map(task))
+ && ((IOVirtualRange *) buffers)->address)
+ {
+ OSReportWithBacktrace("IOMemoryDescriptor: attempt to create 32b virtual in 64b task, use ::withAddressRange()");
+ return false;
+ }
+#endif /* !__LP64__ */
+
+ // Grab the original MD's configuation data to initialse the
+ // arguments to this function.
+ if (kIOMemoryTypePersistentMD == type) {
+
+ IOMDPersistentInitData *initData = (typeof(initData)) buffers;
+ const IOGeneralMemoryDescriptor *orig = initData->fMD;
+ ioGMDData *dataP = getDataP(orig->_memoryEntries);
+
+ // Only accept persistent memory descriptors with valid dataP data.
+ assert(orig->_rangesCount == 1);
+ if ( !(orig->_flags & kIOMemoryPersistent) || !dataP)
+ return false;
+
+ _memRef = initData->fMemRef; // Grab the new named entry
+ options = orig->_flags & ~kIOMemoryAsReference;
+ type = options & kIOMemoryTypeMask;
+ buffers = orig->_ranges.v;
+ count = orig->_rangesCount;
+
+ // Now grab the original task and whatever mapper was previously used
+ task = orig->_task;
+ mapper = dataP->fMapper;
+
+ // We are ready to go through the original initialisation now
+ }
+
+ switch (type) {
+ case kIOMemoryTypeUIO:
+ case kIOMemoryTypeVirtual:
+#ifndef __LP64__
+ case kIOMemoryTypeVirtual64:
+#endif /* !__LP64__ */
+ assert(task);
+ if (!task)
+ return false;
+ break;
+
+ case kIOMemoryTypePhysical: // Neither Physical nor UPL should have a task
+#ifndef __LP64__
+ case kIOMemoryTypePhysical64:
+#endif /* !__LP64__ */
+ case kIOMemoryTypeUPL:
+ assert(!task);
+ break;
+ default:
+ return false; /* bad argument */
+ }
+
+ assert(buffers);
+ assert(count);
+
+ /*
+ * We can check the _initialized instance variable before having ever set
+ * it to an initial value because I/O Kit guarantees that all our instance
+ * variables are zeroed on an object's allocation.
+ */
+
+ if (_initialized) {
+ /*
+ * An existing memory descriptor is being retargeted to point to
+ * somewhere else. Clean up our present state.
+ */
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+ if ((kIOMemoryTypePhysical != type) && (kIOMemoryTypePhysical64 != type))
+ {
+ while (_wireCount)
+ complete();
+ }
+ if (_ranges.v && !(kIOMemoryAsReference & _flags))
+ {
+ if (kIOMemoryTypeUIO == type)
+ uio_free((uio_t) _ranges.v);
+#ifndef __LP64__
+ else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type))
+ IODelete(_ranges.v64, IOAddressRange, _rangesCount);
+#endif /* !__LP64__ */
+ else
+ IODelete(_ranges.v, IOVirtualRange, _rangesCount);
+ }
+
+ options |= (kIOMemoryRedirected & _flags);
+ if (!(kIOMemoryRedirected & options))
+ {
+ if (_memRef)
+ {
+ memoryReferenceRelease(_memRef);
+ _memRef = 0;
+ }
+ if (_mappings)
+ _mappings->flushCollection();
+ }
+ }
+ else {
+ if (!super::init())
+ return false;
+ _initialized = true;
+ }
+
+ // Grab the appropriate mapper
+ if (kIOMemoryHostOnly & options) options |= kIOMemoryMapperNone;
+ if (kIOMemoryMapperNone & options)
+ mapper = 0; // No Mapper
+ else if (mapper == kIOMapperSystem) {
+ IOMapper::checkForSystemMapper();
+ gIOSystemMapper = mapper = IOMapper::gSystem;
+ }
+
+ // Remove the dynamic internal use flags from the initial setting
+ options &= ~(kIOMemoryPreparedReadOnly);
+ _flags = options;
+ _task = task;
+
+#ifndef __LP64__
+ _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
+#endif /* !__LP64__ */
+
+ __iomd_reservedA = 0;
+ __iomd_reservedB = 0;
+ _highestPage = 0;
+
+ if (kIOMemoryThreadSafe & options)
+ {
+ if (!_prepareLock)
+ _prepareLock = IOLockAlloc();
+ }
+ else if (_prepareLock)
+ {
+ IOLockFree(_prepareLock);
+ _prepareLock = NULL;
+ }
+
+ if (kIOMemoryTypeUPL == type) {
+
+ ioGMDData *dataP;
+ unsigned int dataSize = computeDataSize(/* pages */ 0, /* upls */ 1);
+
+ if (!initMemoryEntries(dataSize, mapper)) return (false);
+ dataP = getDataP(_memoryEntries);
+ dataP->fPageCnt = 0;
+
+ // _wireCount++; // UPLs start out life wired
+
+ _length = count;
+ _pages += atop_32(offset + count + PAGE_MASK) - atop_32(offset);
+
+ ioPLBlock iopl;
+ iopl.fIOPL = (upl_t) buffers;
+ upl_set_referenced(iopl.fIOPL, true);
+ upl_page_info_t *pageList = UPL_GET_INTERNAL_PAGE_LIST(iopl.fIOPL);
+
+ if (upl_get_size(iopl.fIOPL) < (count + offset))
+ panic("short external upl");
+
+ _highestPage = upl_get_highest_page(iopl.fIOPL);
+
+ // Set the flag kIOPLOnDevice convieniently equal to 1
+ iopl.fFlags = pageList->device | kIOPLExternUPL;
+ if (!pageList->device) {
+ // Pre-compute the offset into the UPL's page list
+ pageList = &pageList[atop_32(offset)];
+ offset &= PAGE_MASK;
+ }
+ iopl.fIOMDOffset = 0;
+ iopl.fMappedPage = 0;
+ iopl.fPageInfo = (vm_address_t) pageList;
+ iopl.fPageOffset = offset;
+ _memoryEntries->appendBytes(&iopl, sizeof(iopl));
+ }
+ else {
+ // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO
+ // kIOMemoryTypePhysical | kIOMemoryTypePhysical64
+
+ // Initialize the memory descriptor
+ if (options & kIOMemoryAsReference) {
+#ifndef __LP64__
+ _rangesIsAllocated = false;
+#endif /* !__LP64__ */
+
+ // Hack assignment to get the buffer arg into _ranges.
+ // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't
+ // work, C++ sigh.
+ // This also initialises the uio & physical ranges.
+ _ranges.v = (IOVirtualRange *) buffers;
+ }
+ else {
+#ifndef __LP64__
+ _rangesIsAllocated = true;
+#endif /* !__LP64__ */
+ switch (type)
+ {
+ case kIOMemoryTypeUIO:
+ _ranges.v = (IOVirtualRange *) uio_duplicate((uio_t) buffers);
+ break;
+
+#ifndef __LP64__
+ case kIOMemoryTypeVirtual64:
+ case kIOMemoryTypePhysical64:
+ if (count == 1
+ && (((IOAddressRange *) buffers)->address + ((IOAddressRange *) buffers)->length) <= 0x100000000ULL
+ ) {
+ if (kIOMemoryTypeVirtual64 == type)
+ type = kIOMemoryTypeVirtual;
+ else
+ type = kIOMemoryTypePhysical;
+ _flags = (_flags & ~kIOMemoryTypeMask) | type | kIOMemoryAsReference;
+ _rangesIsAllocated = false;
+ _ranges.v = &_singleRange.v;
+ _singleRange.v.address = ((IOAddressRange *) buffers)->address;
+ _singleRange.v.length = ((IOAddressRange *) buffers)->length;
+ break;
+ }
+ _ranges.v64 = IONew(IOAddressRange, count);
+ if (!_ranges.v64)
+ return false;
+ bcopy(buffers, _ranges.v, count * sizeof(IOAddressRange));
+ break;
+#endif /* !__LP64__ */
+ case kIOMemoryTypeVirtual:
+ case kIOMemoryTypePhysical:
+ if (count == 1) {
+ _flags |= kIOMemoryAsReference;
+#ifndef __LP64__
+ _rangesIsAllocated = false;
+#endif /* !__LP64__ */
+ _ranges.v = &_singleRange.v;
+ } else {
+ _ranges.v = IONew(IOVirtualRange, count);
+ if (!_ranges.v)
+ return false;
+ }
+ bcopy(buffers, _ranges.v, count * sizeof(IOVirtualRange));
+ break;
+ }
+ }
+
+ // Find starting address within the vector of ranges
+ Ranges vec = _ranges;
+ mach_vm_size_t totalLength = 0;
+ unsigned int ind, pages = 0;
+ for (ind = 0; ind < count; ind++) {
+ mach_vm_address_t addr;
+ mach_vm_address_t endAddr;
+ mach_vm_size_t len;
+
+ // addr & len are returned by this function
+ getAddrLenForInd(addr, len, type, vec, ind);
+ if (os_add3_overflow(addr, len, PAGE_MASK, &endAddr)) break;
+ if (os_add_overflow(pages, (atop_64(endAddr) - atop_64(addr)), &pages)) break;
+ if (os_add_overflow(totalLength, len, &totalLength)) break;
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
+ {
+ ppnum_t highPage = atop_64(addr + len - 1);
+ if (highPage > _highestPage)
+ _highestPage = highPage;
+ }
+ }
+ if ((ind < count)
+ || (totalLength != ((IOByteCount) totalLength))) return (false); /* overflow */
+
+ _length = totalLength;
+ _pages = pages;
+ _rangesCount = count;
+
+ // Auto-prepare memory at creation time.
+ // Implied completion when descriptor is free-ed
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
+ _wireCount++; // Physical MDs are, by definition, wired
+ else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */
+ ioGMDData *dataP;
+ unsigned dataSize;
+
+ if (_pages > atop_64(max_mem)) return false;
+
+ dataSize = computeDataSize(_pages, /* upls */ count * 2);
+ if (!initMemoryEntries(dataSize, mapper)) return false;
+ dataP = getDataP(_memoryEntries);
+ dataP->fPageCnt = _pages;
+
+ if ( (kIOMemoryPersistent & _flags) && !_memRef)
+ {
+ IOReturn
+ err = memoryReferenceCreate(0, &_memRef);
+ if (kIOReturnSuccess != err) return false;
+ }
+
+ if ((_flags & kIOMemoryAutoPrepare)
+ && prepare() != kIOReturnSuccess)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/*
+ * free
+ *
+ * Free resources.
+ */
+void IOGeneralMemoryDescriptor::free()
+{
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+
+ if( reserved)
+ {
+ LOCK;
+ reserved->dp.memory = 0;
+ UNLOCK;
+ }
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
+ {
+ ioGMDData * dataP;
+ if (_memoryEntries && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBase)
+ {
+ dataP->fMapper->iovmUnmapMemory(this, NULL, dataP->fMappedBase, dataP->fMappedLength);
+ dataP->fMappedBase = 0;
+ }
+ }
+ else
+ {
+ while (_wireCount) complete();
+ }
+
+ if (_memoryEntries) _memoryEntries->release();
+
+ if (_ranges.v && !(kIOMemoryAsReference & _flags))
+ {
+ if (kIOMemoryTypeUIO == type)
+ uio_free((uio_t) _ranges.v);
+#ifndef __LP64__
+ else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type))
+ IODelete(_ranges.v64, IOAddressRange, _rangesCount);
+#endif /* !__LP64__ */
+ else
+ IODelete(_ranges.v, IOVirtualRange, _rangesCount);
+
+ _ranges.v = NULL;
+ }
+
+ if (reserved)
+ {
+ if (reserved->dp.devicePager)
+ {
+ // memEntry holds a ref on the device pager which owns reserved
+ // (IOMemoryDescriptorReserved) so no reserved access after this point
+ device_pager_deallocate( (memory_object_t) reserved->dp.devicePager );
+ }
+ else
+ IODelete(reserved, IOMemoryDescriptorReserved, 1);
+ reserved = NULL;
+ }
+
+ if (_memRef) memoryReferenceRelease(_memRef);
+ if (_prepareLock) IOLockFree(_prepareLock);
+
+ super::free();
+}
+
+#ifndef __LP64__
+void IOGeneralMemoryDescriptor::unmapFromKernel()
+{
+ panic("IOGMD::unmapFromKernel deprecated");
+}
+
+void IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex)
+{
+ panic("IOGMD::mapIntoKernel deprecated");
+}
+#endif /* !__LP64__ */
+
+/*
+ * getDirection:
+ *
+ * Get the direction of the transfer.
+ */
+IODirection IOMemoryDescriptor::getDirection() const
+{
+#ifndef __LP64__
+ if (_direction)
+ return _direction;
+#endif /* !__LP64__ */
+ return (IODirection) (_flags & kIOMemoryDirectionMask);
+}
+
+/*
+ * getLength:
+ *
+ * Get the length of the transfer (over all ranges).
+ */
+IOByteCount IOMemoryDescriptor::getLength() const
+{
+ return _length;
+}
+
+void IOMemoryDescriptor::setTag( IOOptionBits tag )
+{
+ _tag = tag;
+}
+
+IOOptionBits IOMemoryDescriptor::getTag( void )
+{
+ return( _tag);
+}
+
+#ifndef __LP64__
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wdeprecated-declarations"
+
+// @@@ gvdl: who is using this API? Seems like a wierd thing to implement.
+IOPhysicalAddress
+IOMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length )
+{
+ addr64_t physAddr = 0;
+
+ if( prepare() == kIOReturnSuccess) {
+ physAddr = getPhysicalSegment64( offset, length );
+ complete();
+ }
+
+ return( (IOPhysicalAddress) physAddr ); // truncated but only page offset is used
+}
+
+#pragma clang diagnostic pop
+
+#endif /* !__LP64__ */
+
+IOByteCount IOMemoryDescriptor::readBytes
+ (IOByteCount offset, void *bytes, IOByteCount length)
+{
+ addr64_t dstAddr = CAST_DOWN(addr64_t, bytes);
+ IOByteCount remaining;
+
+ // Assert that this entire I/O is withing the available range
+ assert(offset <= _length);
+ assert(offset + length <= _length);
+ if ((offset >= _length)
+ || ((offset + length) > _length)) {
+ return 0;
+ }
+
+ if (kIOMemoryThreadSafe & _flags)
+ LOCK;
+
+ remaining = length = min(length, _length - offset);
+ while (remaining) { // (process another target segment?)
+ addr64_t srcAddr64;
+ IOByteCount srcLen;
+
+ srcAddr64 = getPhysicalSegment(offset, &srcLen, kIOMemoryMapperNone);
+ if (!srcAddr64)
+ break;
+
+ // Clip segment length to remaining
+ if (srcLen > remaining)
+ srcLen = remaining;
+
+ copypv(srcAddr64, dstAddr, srcLen,
+ cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap);
+
+ dstAddr += srcLen;
+ offset += srcLen;
+ remaining -= srcLen;
+ }
+
+ if (kIOMemoryThreadSafe & _flags)
+ UNLOCK;
+
+ assert(!remaining);
+
+ return length - remaining;
+}
+
+IOByteCount IOMemoryDescriptor::writeBytes
+ (IOByteCount inoffset, const void *bytes, IOByteCount length)
+{
+ addr64_t srcAddr = CAST_DOWN(addr64_t, bytes);
+ IOByteCount remaining;
+ IOByteCount offset = inoffset;
+
+ // Assert that this entire I/O is withing the available range
+ assert(offset <= _length);
+ assert(offset + length <= _length);
+
+ assert( !(kIOMemoryPreparedReadOnly & _flags) );
+
+ if ( (kIOMemoryPreparedReadOnly & _flags)
+ || (offset >= _length)
+ || ((offset + length) > _length)) {
+ return 0;
+ }
+
+ if (kIOMemoryThreadSafe & _flags)
+ LOCK;
+
+ remaining = length = min(length, _length - offset);
+ while (remaining) { // (process another target segment?)
+ addr64_t dstAddr64;
+ IOByteCount dstLen;
+
+ dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone);
+ if (!dstAddr64)
+ break;
+
+ // Clip segment length to remaining
+ if (dstLen > remaining)
+ dstLen = remaining;
+
+ if (!srcAddr) bzero_phys(dstAddr64, dstLen);
+ else
+ {
+ copypv(srcAddr, (addr64_t) dstAddr64, dstLen,
+ cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap);
+ srcAddr += dstLen;
+ }
+ offset += dstLen;
+ remaining -= dstLen;
+ }
+
+ if (kIOMemoryThreadSafe & _flags)
+ UNLOCK;
+
+ assert(!remaining);
+
+ if (!srcAddr) performOperation(kIOMemoryIncoherentIOFlush, inoffset, length);
+
+ return length - remaining;
+}
+
+#ifndef __LP64__
+void IOGeneralMemoryDescriptor::setPosition(IOByteCount position)
+{
+ panic("IOGMD::setPosition deprecated");
+}
+#endif /* !__LP64__ */
+
+static volatile SInt64 gIOMDPreparationID __attribute__((aligned(8))) = (1ULL << 32);
+
+uint64_t
+IOGeneralMemoryDescriptor::getPreparationID( void )
+{
+ ioGMDData *dataP;
+
+ if (!_wireCount)
+ return (kIOPreparationIDUnprepared);
+
+ if (((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical)
+ || ((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical64))
+ {
+ IOMemoryDescriptor::setPreparationID();
+ return (IOMemoryDescriptor::getPreparationID());
+ }
+
+ if (!_memoryEntries || !(dataP = getDataP(_memoryEntries)))
+ return (kIOPreparationIDUnprepared);
+
+ if (kIOPreparationIDUnprepared == dataP->fPreparationID)
+ {
+ dataP->fPreparationID = OSIncrementAtomic64(&gIOMDPreparationID);
+ }
+ return (dataP->fPreparationID);
+}
+
+IOMemoryDescriptorReserved * IOMemoryDescriptor::getKernelReserved( void )
+{
+ if (!reserved)
+ {
+ reserved = IONew(IOMemoryDescriptorReserved, 1);
+ if (reserved)
+ bzero(reserved, sizeof(IOMemoryDescriptorReserved));
+ }
+ return (reserved);
+}
+
+void IOMemoryDescriptor::setPreparationID( void )
+{
+ if (getKernelReserved() && (kIOPreparationIDUnprepared == reserved->preparationID))
+ {
+ reserved->preparationID = OSIncrementAtomic64(&gIOMDPreparationID);
+ }
+}
+
+uint64_t IOMemoryDescriptor::getPreparationID( void )
+{
+ if (reserved)
+ return (reserved->preparationID);
+ else
+ return (kIOPreparationIDUnsupported);
+}
+
+void IOMemoryDescriptor::setVMTags(vm_tag_t kernelTag, vm_tag_t userTag)
+{
+ if (!getKernelReserved()) return;
+ reserved->kernelTag = kernelTag;
+ reserved->userTag = userTag;
+}
+
+vm_tag_t IOMemoryDescriptor::getVMTag(vm_map_t map)
+{
+ if (!reserved
+ || (VM_KERN_MEMORY_NONE == reserved->kernelTag)
+ || (VM_KERN_MEMORY_NONE == reserved->userTag))
+ {
+ return (IOMemoryTag(map));
+ }
+
+ if (vm_kernel_map_is_kernel(map)) return (reserved->kernelTag);
+ return (reserved->userTag);
+}
+
+IOReturn IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
+{
+ IOReturn err = kIOReturnSuccess;
+ DMACommandOps params;
+ IOGeneralMemoryDescriptor * md = const_cast<IOGeneralMemoryDescriptor *>(this);
+ ioGMDData *dataP;
+
+ params = (op & ~kIOMDDMACommandOperationMask & op);
+ op &= kIOMDDMACommandOperationMask;
+
+ if (kIOMDDMAMap == op)
+ {
+ if (dataSize < sizeof(IOMDDMAMapArgs))
+ return kIOReturnUnderrun;
+
+ IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
+
+ if (!_memoryEntries
+ && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory);
+
+ if (_memoryEntries && data->fMapper)
+ {
+ bool remap, keepMap;
+ dataP = getDataP(_memoryEntries);
+
+ if (data->fMapSpec.numAddressBits < dataP->fDMAMapNumAddressBits) dataP->fDMAMapNumAddressBits = data->fMapSpec.numAddressBits;
+ if (data->fMapSpec.alignment > dataP->fDMAMapAlignment) dataP->fDMAMapAlignment = data->fMapSpec.alignment;
+
+ keepMap = (data->fMapper == gIOSystemMapper);
+ keepMap &= ((data->fOffset == 0) && (data->fLength == _length));
+
+ remap = (!keepMap);
+ remap |= (dataP->fDMAMapNumAddressBits < 64)
+ && ((dataP->fMappedBase + _length) > (1ULL << dataP->fDMAMapNumAddressBits));
+ remap |= (dataP->fDMAMapAlignment > page_size);
+
+ if (remap || !dataP->fMappedBase)
+ {
+// if (dataP->fMappedBase) OSReportWithBacktrace("kIOMDDMAMap whole %d remap %d params %d\n", whole, remap, params);
+ err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength);
+ if (keepMap && (kIOReturnSuccess == err) && !dataP->fMappedBase)
+ {
+ dataP->fMappedBase = data->fAlloc;
+ dataP->fMappedLength = data->fAllocLength;
+ data->fAllocLength = 0; // IOMD owns the alloc now
+ }
+ }
+ else
+ {
+ data->fAlloc = dataP->fMappedBase;
+ data->fAllocLength = 0; // give out IOMD map
+ }
+ data->fMapContig = !dataP->fDiscontig;
+ }
+
+ return (err);
+ }
+
+ if (kIOMDAddDMAMapSpec == op)
+ {
+ if (dataSize < sizeof(IODMAMapSpecification))
+ return kIOReturnUnderrun;
+
+ IODMAMapSpecification * data = (IODMAMapSpecification *) vData;
+
+ if (!_memoryEntries
+ && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory);
+
+ if (_memoryEntries)
+ {
+ dataP = getDataP(_memoryEntries);
+ if (data->numAddressBits < dataP->fDMAMapNumAddressBits)
+ dataP->fDMAMapNumAddressBits = data->numAddressBits;
+ if (data->alignment > dataP->fDMAMapAlignment)
+ dataP->fDMAMapAlignment = data->alignment;
+ }
+ return kIOReturnSuccess;
+ }
+
+ if (kIOMDGetCharacteristics == op) {
+
+ if (dataSize < sizeof(IOMDDMACharacteristics))
+ return kIOReturnUnderrun;
+
+ IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
+ data->fLength = _length;
+ data->fSGCount = _rangesCount;
+ data->fPages = _pages;
+ data->fDirection = getDirection();
+ if (!_wireCount)
+ data->fIsPrepared = false;
+ else {
+ data->fIsPrepared = true;
+ data->fHighestPage = _highestPage;
+ if (_memoryEntries)
+ {
+ dataP = getDataP(_memoryEntries);
+ ioPLBlock *ioplList = getIOPLList(dataP);
+ UInt count = getNumIOPL(_memoryEntries, dataP);
+ if (count == 1)
+ data->fPageAlign = (ioplList[0].fPageOffset & PAGE_MASK) | ~PAGE_MASK;
+ }
+ }
+
+ return kIOReturnSuccess;
+
+ } else if (kIOMDWalkSegments != op)
+ return kIOReturnBadArgument;
+
+ // Get the next segment
+ struct InternalState {
+ IOMDDMAWalkSegmentArgs fIO;
+ UInt fOffset2Index;
+ UInt fIndex;
+ UInt fNextOffset;
+ } *isP;
+
+ // Find the next segment
+ if (dataSize < sizeof(*isP))
+ return kIOReturnUnderrun;
+
+ isP = (InternalState *) vData;
+ UInt offset = isP->fIO.fOffset;
+ bool mapped = isP->fIO.fMapped;
+
+ if (IOMapper::gSystem && mapped
+ && (!(kIOMemoryHostOnly & _flags))
+ && (!_memoryEntries || !getDataP(_memoryEntries)->fMappedBase))
+// && (_memoryEntries && !getDataP(_memoryEntries)->fMappedBase))
+ {
+ if (!_memoryEntries
+ && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory);
+
+ dataP = getDataP(_memoryEntries);
+ if (dataP->fMapper)
+ {
+ IODMAMapSpecification mapSpec;
+ bzero(&mapSpec, sizeof(mapSpec));
+ mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits;
+ mapSpec.alignment = dataP->fDMAMapAlignment;
+ err = md->dmaMap(dataP->fMapper, NULL, &mapSpec, 0, _length, &dataP->fMappedBase, &dataP->fMappedLength);
+ if (kIOReturnSuccess != err) return (err);
+ }
+ }
+
+ if (offset >= _length)
+ return (offset == _length)? kIOReturnOverrun : kIOReturnInternalError;
+
+ // Validate the previous offset
+ UInt ind, off2Ind = isP->fOffset2Index;
+ if (!params
+ && offset
+ && (offset == isP->fNextOffset || off2Ind <= offset))
+ ind = isP->fIndex;
+ else
+ ind = off2Ind = 0; // Start from beginning
+
+ UInt length;
+ UInt64 address;
+
+
+ if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) {
+
+ // Physical address based memory descriptor
+ const IOPhysicalRange *physP = (IOPhysicalRange *) &_ranges.p[0];
+
+ // Find the range after the one that contains the offset
+ mach_vm_size_t len;
+ for (len = 0; off2Ind <= offset; ind++) {
+ len = physP[ind].length;
+ off2Ind += len;
+ }
+
+ // Calculate length within range and starting address
+ length = off2Ind - offset;
+ address = physP[ind - 1].address + len - length;
+
+ if (true && mapped && _memoryEntries
+ && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBase)
+ {
+ address = dataP->fMappedBase + offset;
+ }
+ else
+ {
+ // see how far we can coalesce ranges
+ while (ind < _rangesCount && address + length == physP[ind].address) {
+ len = physP[ind].length;
+ length += len;
+ off2Ind += len;
+ ind++;
+ }
+ }
+
+ // correct contiguous check overshoot
+ ind--;
+ off2Ind -= len;
+ }
+#ifndef __LP64__
+ else if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64) {
+
+ // Physical address based memory descriptor
+ const IOAddressRange *physP = (IOAddressRange *) &_ranges.v64[0];
+
+ // Find the range after the one that contains the offset
+ mach_vm_size_t len;
+ for (len = 0; off2Ind <= offset; ind++) {
+ len = physP[ind].length;
+ off2Ind += len;
+ }
+
+ // Calculate length within range and starting address
+ length = off2Ind - offset;
+ address = physP[ind - 1].address + len - length;
+
+ if (true && mapped && _memoryEntries
+ && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBase)
+ {
+ address = dataP->fMappedBase + offset;
+ }
+ else
+ {
+ // see how far we can coalesce ranges
+ while (ind < _rangesCount && address + length == physP[ind].address) {
+ len = physP[ind].length;
+ length += len;
+ off2Ind += len;
+ ind++;
+ }
+ }
+ // correct contiguous check overshoot
+ ind--;
+ off2Ind -= len;
+ }
+#endif /* !__LP64__ */
+ else do {
+ if (!_wireCount)
+ panic("IOGMD: not wired for the IODMACommand");
+
+ assert(_memoryEntries);
+
+ dataP = getDataP(_memoryEntries);
+ const ioPLBlock *ioplList = getIOPLList(dataP);
+ UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
+ upl_page_info_t *pageList = getPageList(dataP);
+
+ assert(numIOPLs > 0);
+
+ // Scan through iopl info blocks looking for block containing offset
+ while (ind < numIOPLs && offset >= ioplList[ind].fIOMDOffset)
+ ind++;
+
+ // Go back to actual range as search goes past it
+ ioPLBlock ioplInfo = ioplList[ind - 1];
+ off2Ind = ioplInfo.fIOMDOffset;
+
+ if (ind < numIOPLs)
+ length = ioplList[ind].fIOMDOffset;
+ else
+ length = _length;
+ length -= offset; // Remainder within iopl
+
+ // Subtract offset till this iopl in total list
+ offset -= off2Ind;
+
+ // If a mapped address is requested and this is a pre-mapped IOPL
+ // then just need to compute an offset relative to the mapped base.
+ if (mapped && dataP->fMappedBase) {
+ offset += (ioplInfo.fPageOffset & PAGE_MASK);
+ address = trunc_page_64(dataP->fMappedBase) + ptoa_64(ioplInfo.fMappedPage) + offset;
+ continue; // Done leave do/while(false) now
+ }
+
+ // The offset is rebased into the current iopl.
+ // Now add the iopl 1st page offset.
+ offset += ioplInfo.fPageOffset;
+
+ // For external UPLs the fPageInfo field points directly to
+ // the upl's upl_page_info_t array.
+ if (ioplInfo.fFlags & kIOPLExternUPL)
+ pageList = (upl_page_info_t *) ioplInfo.fPageInfo;
+ else
+ pageList = &pageList[ioplInfo.fPageInfo];
+
+ // Check for direct device non-paged memory
+ if ( ioplInfo.fFlags & kIOPLOnDevice ) {
+ address = ptoa_64(pageList->phys_addr) + offset;
+ continue; // Done leave do/while(false) now
+ }
+
+ // Now we need compute the index into the pageList
+ UInt pageInd = atop_32(offset);
+ offset &= PAGE_MASK;
+
+ // Compute the starting address of this segment
+ IOPhysicalAddress pageAddr = pageList[pageInd].phys_addr;
+ if (!pageAddr) {
+ panic("!pageList phys_addr");
+ }
+
+ address = ptoa_64(pageAddr) + offset;
+
+ // length is currently set to the length of the remainider of the iopl.
+ // We need to check that the remainder of the iopl is contiguous.
+ // This is indicated by pageList[ind].phys_addr being sequential.
+ IOByteCount contigLength = PAGE_SIZE - offset;
+ while (contigLength < length
+ && ++pageAddr == pageList[++pageInd].phys_addr)
+ {
+ contigLength += PAGE_SIZE;
+ }