#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
+#include <miscfs/specfs/specdev.h>
#include <sys/uio_internal.h>
#include <libkern/libkern.h>
#include <machine/machine_routines.h>
#include <mach/memory_object_types.h>
#include <mach/vm_map.h>
#include <mach/upl.h>
+#include <kern/task.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <sys/kdebug.h>
#include <libkern/OSAtomic.h>
+#include <sys/sdt.h>
+
#if 0
#undef KERNEL_DEBUG
#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
#define CL_DIRECT_IO 0x1000
#define CL_PASSIVE 0x2000
#define CL_IOSTREAMING 0x4000
+#define CL_CLOSE 0x8000
+#define CL_ENCRYPTED 0x10000
+#define CL_RAW_ENCRYPTED 0x20000
+#define CL_NOCACHE 0x40000
#define MAX_VECTOR_UPL_ELEMENTS 8
#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE
extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
struct clios {
+ lck_mtx_t io_mtxp;
u_int io_completed; /* amount of io that has currently completed */
u_int io_issued; /* amount of io that was successfully issued */
int io_error; /* error code of first error encountered */
static lck_grp_t *cl_mtx_grp;
static lck_attr_t *cl_mtx_attr;
static lck_grp_attr_t *cl_mtx_grp_attr;
-static lck_mtx_t *cl_mtxp;
+static lck_mtx_t *cl_transaction_mtxp;
#define IO_UNKNOWN 0
static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags);
static int cluster_hard_throttle_on(vnode_t vp, uint32_t);
+static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
+
static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg);
static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
-static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg);
static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
-static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int (*)(buf_t, void *), void *callback_arg);
+static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
static kern_return_t vfs_drt_control(void **cmapp, int op_type);
+/*
+ * For throttled IO to check whether
+ * a block is cached by the boot cache
+ * and thus it can avoid delaying the IO.
+ *
+ * bootcache_contains_block is initially
+ * NULL. The BootCache will set it while
+ * the cache is active and clear it when
+ * the cache is jettisoned.
+ *
+ * Returns 0 if the block is not
+ * contained in the cache, 1 if it is
+ * contained.
+ *
+ * The function pointer remains valid
+ * after the cache has been evicted even
+ * if bootcache_contains_block has been
+ * cleared.
+ *
+ * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
+ */
+int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
+
+
/*
* limit the internal I/O size so that we
* can represent it in a 32 bit int
#define MAX_VECTS 16
#define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
-#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * base)
-#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
-#define MAX_PREFETCH(vp, io_size) (io_size * IO_SCALE(vp, 3))
+#define WRITE_THROTTLE 6
+#define WRITE_THROTTLE_SSD 2
+#define WRITE_BEHIND 1
+#define WRITE_BEHIND_SSD 1
+#if CONFIG_EMBEDDED
+#define PREFETCH 1
+#define PREFETCH_SSD 1
+uint32_t speculative_prefetch_max = 512; /* maximum number of pages to use for a specluative read-ahead */
+uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use for a specluative read-ahead */
+#else
+#define PREFETCH 3
+#define PREFETCH_SSD 1
+uint32_t speculative_prefetch_max = (MAX_UPL_SIZE * 3);
+uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use for a specluative read-ahead on SSDs*/
+#endif
+
+
+#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
+#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
+#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
-int speculative_reads_disabled = 0;
+int ignore_is_ssd = 0;
+int speculative_reads_disabled = 0;
/*
* throttle the number of async writes that
* before we issue a synchronous write
*/
#define HARD_THROTTLE_MAXCNT 0
-#define HARD_THROTTLE_MAXSIZE (32 * 1024)
+#define HARD_THROTTLE_MAX_IOSIZE (128 * 1024)
+#define LEGACY_HARD_THROTTLE_MAX_IOSIZE (512 * 1024)
+extern int32_t throttle_legacy_process_count;
int hard_throttle_on_root = 0;
+uint32_t hard_throttle_max_iosize = HARD_THROTTLE_MAX_IOSIZE;
+uint32_t legacy_hard_throttle_max_iosize = LEGACY_HARD_THROTTLE_MAX_IOSIZE;
struct timeval priority_IO_timestamp_for_root;
+#if CONFIG_EMBEDDED
+#define THROTTLE_MAX_IOSIZE (hard_throttle_max_iosize)
+#else
+#define THROTTLE_MAX_IOSIZE (throttle_legacy_process_count == 0 ? hard_throttle_max_iosize : legacy_hard_throttle_max_iosize)
+#endif
+
+
+SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &hard_throttle_max_iosize, 0, "");
+SYSCTL_INT(_debug, OID_AUTO, lowpri_legacy_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &legacy_hard_throttle_max_iosize, 0, "");
+
void
cluster_init(void) {
*/
cl_mtx_attr = lck_attr_alloc_init();
- /*
- * allocate and initialize mutex's used to protect updates and waits
- * on the cluster_io context
- */
- cl_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
+ cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
- if (cl_mtxp == NULL)
- panic("cluster_init: failed to allocate cl_mtxp");
+ if (cl_transaction_mtxp == NULL)
+ panic("cluster_init: failed to allocate cl_transaction_mtxp");
}
if (wbp->cl_number) {
lck_mtx_lock(&wbp->cl_lockw);
- cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, callback, callback_arg);
+ cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, 0, callback, callback_arg);
lck_mtx_unlock(&wbp->cl_lockw);
}
}
+static int
+cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
+{
+ daddr64_t blkno;
+ size_t io_size;
+ int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
+
+ if (bootcache_check_fn) {
+ if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
+ return(0);
+
+ if (io_size == 0)
+ return (0);
+
+ if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
+ return(1);
+ }
+ return(0);
+}
+
+
static int
cluster_hard_throttle_on(vnode_t vp, uint32_t hard_throttle)
{
- struct uthread *ut;
+ int throttle_type = 0;
- if (hard_throttle) {
- static struct timeval hard_throttle_maxelapsed = { 0, 200000 };
+ if ( (throttle_type = throttle_io_will_be_throttled(-1, vp->v_mount)) )
+ return(throttle_type);
- if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) {
- struct timeval elapsed;
+ if (hard_throttle && (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV)) {
+ static struct timeval hard_throttle_maxelapsed = { 0, 100000 };
+ struct timeval elapsed;
- if (hard_throttle_on_root)
- return(1);
+ if (hard_throttle_on_root)
+ return(1);
- microuptime(&elapsed);
- timevalsub(&elapsed, &priority_IO_timestamp_for_root);
+ microuptime(&elapsed);
+ timevalsub(&elapsed, &priority_IO_timestamp_for_root);
- if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
- return(1);
- }
- }
- if (throttle_get_io_policy(&ut) == IOPOL_THROTTLE) {
- if (throttle_io_will_be_throttled(-1, vp->v_mount)) {
+ if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
return(1);
- }
}
return(0);
}
+static void
+cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
+{
+
+ lck_mtx_lock(&iostate->io_mtxp);
+
+ while ((iostate->io_issued - iostate->io_completed) > target) {
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
+ iostate->io_issued, iostate->io_completed, target, 0, 0);
+
+ iostate->io_wanted = 1;
+ msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
+ iostate->io_issued, iostate->io_completed, target, 0, 0);
+ }
+ lck_mtx_unlock(&iostate->io_mtxp);
+}
+
+
static int
cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags)
{
int page_in = 0;
int page_out = 0;
- if (io_flags & B_PHYS)
+ if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
/*
* direct write of any flavor, or a direct read that wasn't aligned
*/
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
- for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
- /*
- * all I/O requests that are part of this transaction
- * have to complete before we can process it
- */
- if ( !(cbp->b_flags & B_DONE)) {
+ if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
+ boolean_t need_wakeup = FALSE;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+ lck_mtx_lock_spin(cl_transaction_mtxp);
- return 0;
+ bp->b_flags |= B_TDONE;
+
+ if (bp->b_flags & B_TWANTED) {
+ CLR(bp->b_flags, B_TWANTED);
+ need_wakeup = TRUE;
}
- if (cbp->b_flags & B_EOT)
- transaction_complete = TRUE;
- }
- if (transaction_complete == FALSE) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- cbp_head, 0, 0, 0, 0);
+ for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
+ /*
+ * all I/O requests that are part of this transaction
+ * have to complete before we can process it
+ */
+ if ( !(cbp->b_flags & B_TDONE)) {
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+ cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+
+ lck_mtx_unlock(cl_transaction_mtxp);
+
+ if (need_wakeup == TRUE)
+ wakeup(bp);
+
+ return 0;
+ }
+ if (cbp->b_flags & B_EOT)
+ transaction_complete = TRUE;
+ }
+ lck_mtx_unlock(cl_transaction_mtxp);
- return 0;
+ if (need_wakeup == TRUE)
+ wakeup(bp);
+
+ if (transaction_complete == FALSE) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+ cbp_head, 0, 0, 0, 0);
+ return 0;
+ }
}
error = 0;
total_size = 0;
* someone has issued multiple I/Os asynchrounsly
* and is waiting for them to complete (streaming)
*/
- lck_mtx_lock_spin(cl_mtxp);
+ lck_mtx_lock_spin(&iostate->io_mtxp);
if (error && iostate->io_error == 0)
iostate->io_error = error;
iostate->io_wanted = 0;
need_wakeup = 1;
}
- lck_mtx_unlock(cl_mtxp);
+ lck_mtx_unlock(&iostate->io_mtxp);
if (need_wakeup)
wakeup((caddr_t)&iostate->io_wanted);
ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
}
}
- if ((b_flags & B_NEED_IODONE) && real_bp) {
+ if (real_bp) {
if (error) {
real_bp->b_flags |= B_ERROR;
real_bp->b_error = error;
cluster_hard_throttle_limit(vnode_t vp, uint32_t *limit, uint32_t hard_throttle)
{
if (cluster_hard_throttle_on(vp, hard_throttle)) {
- *limit = HARD_THROTTLE_MAXSIZE;
+ *limit = THROTTLE_MAX_IOSIZE;
return 1;
}
return 0;
/*
* async callback completion will not normally
* generate a wakeup upon I/O completion...
- * by setting BL_WANTED, we will force a wakeup
+ * by setting B_TWANTED, we will force a wakeup
* to occur as any outstanding I/Os complete...
- * I/Os already completed will have BL_CALLDONE already
- * set and we won't block in buf_biowait_callback..
+ * I/Os already completed will have B_TDONE already
+ * set and we won't cause us to block
* note that we're actually waiting for the bp to have
* completed the callback function... only then
* can we safely take back ownership of the bp
- * need the main buf mutex in order to safely
- * update b_lflags
*/
- buf_list_lock();
+ lck_mtx_lock_spin(cl_transaction_mtxp);
for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
- cbp->b_lflags |= BL_WANTED;
+ cbp->b_flags |= B_TWANTED;
- buf_list_unlock();
+ lck_mtx_unlock(cl_transaction_mtxp);
}
for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
- if (async)
- buf_biowait_callback(cbp);
- else
+
+ if (async) {
+ while (!ISSET(cbp->b_flags, B_TDONE)) {
+
+ lck_mtx_lock_spin(cl_transaction_mtxp);
+
+ if (!ISSET(cbp->b_flags, B_TDONE)) {
+ DTRACE_IO1(wait__start, buf_t, cbp);
+ (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL);
+ DTRACE_IO1(wait__done, buf_t, cbp);
+ } else
+ lck_mtx_unlock(cl_transaction_mtxp);
+ }
+ } else
buf_biowait(cbp);
}
}
for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
buf_biowait(cbp);
}
+ /*
+ * we've already waited on all of the I/Os in this transaction,
+ * so mark all of the buf_t's in this transaction as B_TDONE
+ * so that cluster_iodone sees the transaction as completed
+ */
+ for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
+ cbp->b_flags |= B_TDONE;
+
error = cluster_iodone(*cbp_head, callback_arg);
if ( !(flags & CL_ASYNC) && error && *retval == 0) {
if (flags & CL_THROTTLE) {
if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp, 1)) {
- if (max_iosize > HARD_THROTTLE_MAXSIZE)
- max_iosize = HARD_THROTTLE_MAXSIZE;
+ if (max_iosize > THROTTLE_MAX_IOSIZE)
+ max_iosize = THROTTLE_MAX_IOSIZE;
async_throttle = HARD_THROTTLE_MAXCNT;
} else {
if ( (flags & CL_DEV_MEMORY) )
else {
u_int max_cluster;
u_int max_cluster_size;
- u_int max_prefetch;
-
+ u_int scale;
+
max_cluster_size = MAX_CLUSTER_SIZE(vp);
- max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ));
if (max_iosize > max_cluster_size)
max_cluster = max_cluster_size;
if (size < max_cluster)
max_cluster = size;
+
+ if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
+ scale = WRITE_THROTTLE_SSD;
+ else
+ scale = WRITE_THROTTLE;
+
+ if (flags & CL_CLOSE)
+ scale += MAX_CLUSTERS;
- async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), (max_prefetch / max_cluster) - 1);
+ async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
}
}
}
io_flags |= B_IOSTREAMING;
if (flags & CL_COMMIT)
io_flags |= B_COMMIT_UPL;
- if (flags & CL_PRESERVE)
+ if (flags & CL_DIRECT_IO)
io_flags |= B_PHYS;
- if (flags & CL_KEEPCACHED)
- io_flags |= B_CACHE;
+ if (flags & (CL_PRESERVE | CL_KEEPCACHED))
+ io_flags |= B_CACHE;
if (flags & CL_PASSIVE)
io_flags |= B_PASSIVE;
+ if (flags & CL_ENCRYPTED)
+ io_flags |= B_ENCRYPTED_IO;
if (vp->v_flag & VSYSTEM)
io_flags |= B_META;
off_t e_offset;
int pageout_flags;
- if(upl_get_internal_vectorupl(upl))
+ if (upl_get_internal_vectorupl(upl))
panic("Vector UPLs should not take this code-path\n");
/*
* we're writing into a 'hole'
}
if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
error = EINVAL;
- break;
}
e_offset = round_page_64(f_offset + 1);
io_size = e_offset - f_offset;
*/
size = 0;
}
+ if (error) {
+ if (size == 0)
+ flags &= ~CL_COMMIT;
+ break;
+ }
continue;
}
lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64);
}
cbp->b_cliodone = (void *)callback;
cbp->b_flags |= io_flags;
+ if (flags & CL_NOCACHE)
+ cbp->b_attr.ba_flags |= BA_NOCACHE;
cbp->b_lblkno = lblkno;
cbp->b_blkno = blkno;
cbp_head = cbp;
cbp_tail = cbp;
- if ( (cbp_head->b_real_bp = real_bp) ) {
- cbp_head->b_flags |= B_NEED_IODONE;
+ if ( (cbp_head->b_real_bp = real_bp) )
real_bp = (buf_t)NULL;
- }
}
*(buf_t *)(&cbp->b_trans_head) = cbp_head;
if ( !(io_flags & B_READ))
vnode_startwrite(vp);
+ if (flags & CL_RAW_ENCRYPTED) {
+ /*
+ * User requested raw encrypted bytes.
+ * Twiddle the bit in the ba_flags for the buffer
+ */
+ cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
+ }
+
(void) VNOP_STRATEGY(cbp);
if (need_EOT == TRUE) {
* since we never really issued the io
* just go ahead and adjust it back
*/
- lck_mtx_lock_spin(cl_mtxp);
+ lck_mtx_lock_spin(&iostate->io_mtxp);
if (iostate->io_error == 0)
iostate->io_error = error;
iostate->io_wanted = 0;
need_wakeup = 1;
}
- lck_mtx_unlock(cl_mtxp);
+ lck_mtx_unlock(&iostate->io_mtxp);
if (need_wakeup)
wakeup((caddr_t)&iostate->io_wanted);
return;
}
- max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ));
+ max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
+
+ if ((max_prefetch / PAGE_SIZE) > speculative_prefetch_max)
+ max_prefetch = (speculative_prefetch_max * PAGE_SIZE);
+ if (max_prefetch <= PAGE_SIZE) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
+ return;
+ }
if (extent->e_addr < rap->cl_maxra) {
if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) {
off_t max_size;
int local_flags;
- if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)
- /*
- * if we know we're issuing this I/O to a virtual device (i.e. disk image)
- * then we don't want to enforce this throttle... if we do, we can
- * potentially deadlock since we're stalling the pageout thread at a time
- * when the disk image might need additional memory (which won't be available
- * if the pageout thread can't run)... instead we'll just depend on the throttle
- * that the pageout thread now has in place to deal with external files
- */
- local_flags = CL_PAGEOUT;
- else
- local_flags = CL_PAGEOUT | CL_THROTTLE;
+ local_flags = CL_PAGEOUT | CL_THROTTLE;
if ((flags & UPL_IOSYNC) == 0)
local_flags |= CL_ASYNC;
local_flags |= CL_COMMIT;
if ((flags & UPL_KEEPCACHED))
local_flags |= CL_KEEPCACHED;
+ if (flags & UPL_PAGING_ENCRYPTED)
+ local_flags |= CL_ENCRYPTED;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
local_flags |= CL_COMMIT;
if (flags & UPL_IOSTREAMING)
local_flags |= CL_IOSTREAMING;
+ if (flags & UPL_PAGING_ENCRYPTED)
+ local_flags |= CL_ENCRYPTED;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
else
bflag = 0;
- if (vp->v_flag & VNOCACHE_DATA)
+ if (vp->v_flag & VNOCACHE_DATA){
flags |= IO_NOCACHE;
-
+ bflag |= CL_NOCACHE;
+ }
if (uio == NULL) {
/*
* no user data...
}
/*
* do a write through the cache if one of the following is true....
- * NOCACHE is not true and
+ * NOCACHE is not true or NODIRECT is true
* the uio request doesn't target USERSPACE
* otherwise, find out if we want the direct or contig variant for
* the first vector in the uio request
*/
- if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
+ if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
user_addr_t iov_base;
u_int32_t mem_alignment_mask;
u_int32_t devblocksize;
+ u_int32_t max_io_size;
u_int32_t max_upl_size;
+ u_int32_t max_vector_size;
+ boolean_t io_throttled = FALSE;
u_int32_t vector_upl_iosize = 0;
int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
if (flags & IO_PASSIVE)
io_flag |= CL_PASSIVE;
-
+
+ if (flags & IO_NOCACHE)
+ io_flag |= CL_NOCACHE;
+
iostate.io_completed = 0;
iostate.io_issued = 0;
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
}
while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
+ int throttle_type;
+
+ if ( (throttle_type = cluster_hard_throttle_on(vp, 1)) ) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
+ if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == 2) {
+ /*
+ * we're in the throttle window and at least 1 I/O
+ * has already been issued by a throttleable thread
+ * in this window, so return with EAGAIN to indicate
+ * to the FS issuing the cluster_write call that it
+ * should now throttle after dropping any locks
+ */
+ throttle_info_update_by_mount(vp->v_mount);
+
+ io_throttled = TRUE;
+ goto wait_for_dwrites;
+ }
+ max_vector_size = THROTTLE_MAX_IOSIZE;
+ max_io_size = THROTTLE_MAX_IOSIZE;
+ } else {
+ max_vector_size = MAX_VECTOR_UPL_SIZE;
+ max_io_size = max_upl_size;
+ }
if (first_IO) {
cluster_syncup(vp, newEOF, callback, callback_arg);
io_size = io_req_size & ~PAGE_MASK;
iov_base = uio_curriovbase(uio);
- if (io_size > max_upl_size)
- io_size = max_upl_size;
+ if (io_size > max_io_size)
+ io_size = max_io_size;
if(useVectorUPL && (iov_base & PAGE_MASK)) {
/*
* if there are already too many outstanding writes
* wait until some complete before issuing the next
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct");
- while ((iostate.io_issued - iostate.io_completed) > (max_upl_size * IO_SCALE(vp, 2))) {
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, max_upl_size * IO_SCALE(vp, 2), 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_direct", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, max_upl_size * IO_SCALE(vp, 2), 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier writes we issued ran into a hard error
vector_upl_iosize += io_size;
vector_upl_size += upl_size;
- if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) {
+ if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
wait_for_dwrites:
- if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
+ if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
* make sure all async writes issued as part of this stream
* have completed before we return
*/
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_direct", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
+ cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
}
if (iostate.io_error)
retval = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+ if (io_throttled == TRUE && retval == 0)
+ retval = EAGAIN;
+
if (io_req_size && retval == 0) {
/*
* we couldn't handle the tail of this request in DIRECT mode
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
next_cwrite:
io_size = *write_length;
* if there are already too many outstanding writes
* wait until some have completed before issuing the next
*/
- if (iostate.io_issued > iostate.io_completed) {
- lck_mtx_lock(cl_mtxp);
-
- while ((iostate.io_issued - iostate.io_completed) > (MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2))) {
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_contig", NULL);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier writes we issued ran into a hard error
* make sure all async writes that are part of this stream
* have completed before we proceed
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_contig", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
error = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
if (error == 0 && tail_size)
error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
off_t zero_off;
long long zero_cnt1;
off_t zero_off1;
+ off_t write_off = 0;
+ int write_cnt = 0;
+ boolean_t first_pass = FALSE;
struct cl_extent cl;
struct cl_writebehind *wbp;
int bflag;
bflag = CL_PASSIVE;
else
bflag = 0;
-
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
+
zero_cnt = 0;
zero_cnt1 = 0;
zero_off = 0;
retval, 0, 0, 0, 0);
return (0);
}
-
+ if (uio) {
+ write_off = uio->uio_offset;
+ write_cnt = uio_resid(uio);
+ /*
+ * delay updating the sequential write info
+ * in the control block until we've obtained
+ * the lock for it
+ */
+ first_pass = TRUE;
+ }
while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
/*
* for this iteration of the loop, figure out where our starting point is
* because IO_HEADZEROFILL and IO_TAILZEROFILL not set
*/
if ((start_offset + total_size) > max_io_size)
- total_size -= start_offset;
+ total_size = max_io_size - start_offset;
xfer_resid = total_size;
retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
*/
wbp->cl_number = 0;
- sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, callback, callback_arg);
+ sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
/*
* no clusters of either type present at this point
* so just go directly to start_new_cluster since
* to avoid the deadlock with sparse_cluster_push
*/
goto start_new_cluster;
- }
+ }
+ if (first_pass) {
+ if (write_off == wbp->cl_last_write)
+ wbp->cl_seq_written += write_cnt;
+ else
+ wbp->cl_seq_written = write_cnt;
+
+ wbp->cl_last_write = write_off + write_cnt;
+
+ first_pass = FALSE;
+ }
if (wbp->cl_number == 0)
/*
* no clusters currently present
*/
goto delay_io;
- if (wbp->cl_number < MAX_CLUSTERS)
+ if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
+ wbp->cl_number == MAX_CLUSTERS &&
+ wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
+ uint32_t n;
+
+ if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
+ n = WRITE_BEHIND_SSD;
+ else
+ n = WRITE_BEHIND;
+
+ while (n--)
+ cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg);
+ }
+ if (wbp->cl_number < MAX_CLUSTERS) {
/*
* we didn't find an existing cluster to
* merge into, but there's room to start
* a new one
*/
goto start_new_cluster;
-
+ }
/*
* no exisitng cluster to merge with and no
* room to start a new one... we'll try
*/
if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
- ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, callback, callback_arg);
+ ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg);
}
/*
continue;
}
- /*
- * we pushed one cluster successfully, so we must be sequentially writing this file
- * otherwise, we would have failed and fallen into the sparse cluster support
- * so let's take the opportunity to push out additional clusters...
- * this will give us better I/O locality if we're in a copy loop
- * (i.e. we won't jump back and forth between the read and write points
- */
- if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
- while (wbp->cl_number)
- cluster_try_push(wbp, vp, newEOF, 0, callback, callback_arg);
- }
-
start_new_cluster:
wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
flags |= IO_NOCACHE;
if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
flags |= IO_RAOFF;
+
+ /*
+ * If we're doing an encrypted IO, then first check to see
+ * if the IO requested was page aligned. If not, then bail
+ * out immediately.
+ */
+ if (flags & IO_ENCRYPTED) {
+ if (read_length & PAGE_MASK) {
+ retval = EINVAL;
+ return retval;
+ }
+ }
- /*
+ /*
* do a read through the cache if one of the following is true....
* NOCACHE is not true
* the uio request doesn't target USERSPACE
+ * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
+ * Reading encrypted data from a CP filesystem should never result in the data touching
+ * the UBC.
+ *
* otherwise, find out if we want the direct or contig variant for
* the first vector in the uio request
*/
- if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
- retval = cluster_io_type(uio, &read_type, &read_length, 0);
-
+ if (((flags & IO_NOCACHE) || (flags & IO_ENCRYPTED)) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
+ retval = cluster_io_type(uio, &read_type, &read_length, 0);
+ }
+
while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
switch (read_type) {
struct cl_extent extent;
int bflag;
int take_reference = 1;
- struct uthread *ut;
int policy = IOPOL_DEFAULT;
-
+ boolean_t iolock_inited = FALSE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
(int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
+
+ if (flags & IO_ENCRYPTED) {
+ panic ("encrypted blocks will hit UBC!");
+ }
- policy = current_proc()->p_iopol_disk;
-
- ut = get_bsdthread_info(current_thread());
+ policy = proc_get_task_selfdiskacc();
- if (ut->uu_iopol_disk != IOPOL_DEFAULT)
- policy = ut->uu_iopol_disk;
-
- if (policy == IOPOL_THROTTLE || (flags & IO_NOCACHE))
+ if (policy == IOPOL_THROTTLE || policy == IOPOL_UTILITY || (flags & IO_NOCACHE))
take_reference = 0;
if (flags & IO_PASSIVE)
else
bflag = 0;
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
+
max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
- max_prefetch = MAX_PREFETCH(vp, max_io_size);
+ max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
max_rd_size = max_prefetch;
last_request_offset = uio->uio_offset + io_req_size;
rap = NULL;
} else {
if (cluster_hard_throttle_on(vp, 1)) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
rd_ahead_enabled = 0;
prefetch_enabled = 0;
- max_rd_size = HARD_THROTTLE_MAXSIZE;
- } else if (policy == IOPOL_THROTTLE) {
- rd_ahead_enabled = 0;
- prefetch_enabled = 0;
+ max_rd_size = THROTTLE_MAX_IOSIZE;
}
if ((rap = cluster_get_rap(vp)) == NULL)
rd_ahead_enabled = 0;
io_requested = io_resid;
- retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, last_ioread_offset == 0 ? take_reference : 0);
+ retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
xsize = io_requested - io_resid;
*/
max_size = filesize - uio->uio_offset;
}
+
+ iostate.io_completed = 0;
+ iostate.io_issued = 0;
+ iostate.io_error = 0;
+ iostate.io_wanted = 0;
+
+ if ( (flags & IO_RETURN_ON_THROTTLE) ) {
+ if (cluster_hard_throttle_on(vp, 0) == 2) {
+ if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
+ /*
+ * we're in the throttle window and at least 1 I/O
+ * has already been issued by a throttleable thread
+ * in this window, so return with EAGAIN to indicate
+ * to the FS issuing the cluster_read call that it
+ * should now throttle after dropping any locks
+ */
+ throttle_info_update_by_mount(vp->v_mount);
+
+ retval = EAGAIN;
+ break;
+ }
+ }
+ }
+
/*
* compute the size of the upl needed to encompass
* the requested read... limit each call to cluster_io
if (upl_valid_page(pl, last_pg))
break;
}
- iostate.io_completed = 0;
- iostate.io_issued = 0;
- iostate.io_error = 0;
- iostate.io_wanted = 0;
if (start_pg < last_pg) {
/*
* we may have to clip the size of it to keep from reading past
* the end of the last physical block associated with the file
*/
+ if (iolock_inited == FALSE) {
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
+ iolock_inited = TRUE;
+ }
upl_offset = start_pg * PAGE_SIZE;
io_size = (last_pg - start_pg) * PAGE_SIZE;
error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
+
+ if (rap) {
+ if (extent.e_addr < rap->cl_maxra) {
+ /*
+ * we've just issued a read for a block that should have been
+ * in the cache courtesy of the read-ahead engine... something
+ * has gone wrong with the pipeline, so reset the read-ahead
+ * logic which will cause us to restart from scratch
+ */
+ rap->cl_maxra = 0;
+ }
+ }
}
if (error == 0) {
/*
rap->cl_lastr = extent.e_addr;
}
}
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_copy", NULL);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
error = iostate.io_error;
else {
io_req_size -= (val_size - io_requested);
}
+ } else {
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
}
if (start_pg < last_pg) {
/*
if (io_req_size) {
if (cluster_hard_throttle_on(vp, 1)) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
rd_ahead_enabled = 0;
prefetch_enabled = 0;
-
- max_rd_size = HARD_THROTTLE_MAXSIZE;
+ max_rd_size = THROTTLE_MAX_IOSIZE;
} else {
- if (max_rd_size == HARD_THROTTLE_MAXSIZE) {
+ if (max_rd_size == THROTTLE_MAX_IOSIZE) {
/*
* coming out of throttled state
*/
- if (policy != IOPOL_THROTTLE) {
+ if (policy != IOPOL_THROTTLE && policy != IOPOL_UTILITY) {
if (rap != NULL)
rd_ahead_enabled = 1;
prefetch_enabled = 1;
}
}
}
+ if (iolock_inited == TRUE) {
+ if (iostate.io_issued > iostate.io_completed) {
+ /*
+ * cluster_io returned an error after it
+ * had already issued some I/O. we need
+ * to wait for that I/O to complete before
+ * we can destroy the iostate mutex...
+ * 'retval' already contains the early error
+ * so no need to pick it up from iostate.io_error
+ */
+ cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
+ }
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+ }
if (rap != NULL) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
(int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
int force_data_sync;
int retval = 0;
int no_zero_fill = 0;
- int abort_flag = 0;
int io_flag = 0;
int misaligned = 0;
struct clios iostate;
u_int32_t max_upl_size;
u_int32_t max_rd_size;
u_int32_t max_rd_ahead;
+ u_int32_t max_vector_size;
+ boolean_t strict_uncached_IO = FALSE;
+ boolean_t io_throttled = FALSE;
u_int32_t vector_upl_iosize = 0;
int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
+
if (flags & IO_PASSIVE)
io_flag |= CL_PASSIVE;
+ if (flags & IO_ENCRYPTED) {
+ io_flag |= CL_RAW_ENCRYPTED;
+ }
+
+ if (flags & IO_NOCACHE) {
+ io_flag |= CL_NOCACHE;
+ }
+
iostate.io_completed = 0;
iostate.io_issued = 0;
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
*/
devblocksize = PAGE_SIZE;
}
+
+ strict_uncached_IO = ubc_strict_uncached_IO(vp);
+
next_dread:
io_req_size = *read_length;
iov_base = uio_curriovbase(uio);
* I/O that ends on a page boundary in cluster_io
*/
misaligned = 1;
- }
+ }
+
+ /*
+ * The user must request IO in aligned chunks. If the
+ * offset into the file is bad, or the userland pointer
+ * is non-aligned, then we cannot service the encrypted IO request.
+ */
+ if ((flags & IO_ENCRYPTED) && (misaligned)) {
+ retval = EINVAL;
+ }
+
/*
* When we get to this point, we know...
* -- the offset into the file is on a devblocksize boundary
u_int32_t io_start;
if (cluster_hard_throttle_on(vp, 1)) {
- max_rd_size = HARD_THROTTLE_MAXSIZE;
- max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1;
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
+ max_rd_size = THROTTLE_MAX_IOSIZE;
+ max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
+ max_vector_size = THROTTLE_MAX_IOSIZE;
} else {
max_rd_size = max_upl_size;
max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
+ max_vector_size = MAX_VECTOR_UPL_SIZE;
}
io_start = io_size = io_req_size;
/*
* First look for pages already in the cache
- * and move them to user space.
+ * and move them to user space. But only do this
+ * check if we are not retrieving encrypted data directly
+ * from the filesystem; those blocks should never
+ * be in the UBC.
*
* cluster_copy_ubc_data returns the resid
* in io_size
*/
- retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
-
+ if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
+ retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
+ }
/*
* calculate the number of bytes actually copied
* starting size - residual
}
/*
- * check to see if we are finished with this request...
+ * check to see if we are finished with this request.
+ *
+ * If we satisfied this IO already, then io_req_size will be 0.
+ * Otherwise, see if the IO was mis-aligned and needs to go through
+ * the UBC to deal with the 'tail'.
+ *
*/
- if (io_req_size == 0 || misaligned) {
+ if (io_req_size == 0 || (misaligned)) {
/*
* see if there's another uio vector to
* process that's of type IO_DIRECT
* (which overlaps the end of the direct read) in order to
* get at the overhang bytes
*/
- if (io_size & (devblocksize - 1)) {
- /*
- * request does NOT end on a device block boundary
- * so clip it back to a PAGE_SIZE boundary
- */
- io_size &= ~PAGE_MASK;
- io_min = PAGE_SIZE;
+ if (io_size & (devblocksize - 1)) {
+ if (flags & IO_ENCRYPTED) {
+ /*
+ * Normally, we'd round down to the previous page boundary to
+ * let the UBC manage the zero-filling of the file past the EOF.
+ * But if we're doing encrypted IO, we can't let any of
+ * the data hit the UBC. This means we have to do the full
+ * IO to the upper block boundary of the device block that
+ * contains the EOF. The user will be responsible for not
+ * interpreting data PAST the EOF in its buffer.
+ *
+ * So just bump the IO back up to a multiple of devblocksize
+ */
+ io_size = ((io_size + devblocksize) & ~(devblocksize - 1));
+ io_min = io_size;
+ }
+ else {
+ /*
+ * Clip the request to the previous page size boundary
+ * since request does NOT end on a device block boundary
+ */
+ io_size &= ~PAGE_MASK;
+ io_min = PAGE_SIZE;
+ }
+
}
if (retval || io_size < io_min) {
/*
*/
goto wait_for_dreads;
}
- if ((xsize = io_size) > max_rd_size)
- xsize = max_rd_size;
- io_size = 0;
+ /*
+ * Don't re-check the UBC data if we are looking for uncached IO
+ * or asking for encrypted blocks.
+ */
+ if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
- ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
+ if ((xsize = io_size) > max_rd_size)
+ xsize = max_rd_size;
- if (io_size == 0) {
- /*
- * a page must have just come into the cache
- * since the first page in this range is no
- * longer absent, go back and re-evaluate
- */
- continue;
+ io_size = 0;
+
+ ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
+
+ if (io_size == 0) {
+ /*
+ * a page must have just come into the cache
+ * since the first page in this range is no
+ * longer absent, go back and re-evaluate
+ */
+ continue;
+ }
}
+ if ( (flags & IO_RETURN_ON_THROTTLE) ) {
+ if (cluster_hard_throttle_on(vp, 0) == 2) {
+ if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
+ /*
+ * we're in the throttle window and at least 1 I/O
+ * has already been issued by a throttleable thread
+ * in this window, so return with EAGAIN to indicate
+ * to the FS issuing the cluster_read call that it
+ * should now throttle after dropping any locks
+ */
+ throttle_info_update_by_mount(vp->v_mount);
+
+ io_throttled = TRUE;
+ goto wait_for_dreads;
+ }
+ }
+ }
+ if (io_size > max_rd_size)
+ io_size = max_rd_size;
+
iov_base = uio_curriovbase(uio);
upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
(int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
- if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) {
+ if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
no_zero_fill = 1;
- abort_flag = UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY;
- } else {
+ else
no_zero_fill = 0;
- abort_flag = UPL_ABORT_FREE_ON_EMPTY;
- }
+
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
for (i = 0; i < pages_in_pl; i++) {
- if (!upl_valid_page(pl, i))
+ if (!upl_page_present(pl, i))
break;
}
if (i == pages_in_pl)
break;
- ubc_upl_abort(upl, abort_flag);
+ ubc_upl_abort(upl, 0);
}
if (force_data_sync >= 3) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
io_size = 0;
}
if (io_size == 0) {
- ubc_upl_abort(upl, abort_flag);
+ ubc_upl_abort(upl, 0);
goto wait_for_dreads;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
* if there are already too many outstanding reads
* wait until some have completed before issuing the next read
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
- while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, max_rd_ahead, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_direct", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, max_rd_ahead, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier reads we issued ran into a hard error
* go wait for any other reads to complete before
* returning the error to the caller
*/
- ubc_upl_abort(upl, abort_flag);
+ ubc_upl_abort(upl, 0);
goto wait_for_dreads;
}
vector_upl_size += upl_size;
vector_upl_iosize += io_size;
- if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) {
+ if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
/*
* update the uio structure
*/
- uio_update(uio, (user_size_t)io_size);
-
- io_req_size -= io_size;
+ if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
+ uio_update(uio, (user_size_t)max_io_size);
+ }
+ else {
+ uio_update(uio, (user_size_t)io_size);
+ }
+ /*
+ * Under normal circumstances, the io_size should not be
+ * bigger than the io_req_size, but we may have had to round up
+ * to the end of the page in the encrypted IO case. In that case only,
+ * ensure that we only decrement io_req_size to 0.
+ */
+ if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) {
+ io_req_size = 0;
+ }
+ else {
+ io_req_size -= io_size;
+ }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
upl, (int)uio->uio_offset, io_req_size, retval, 0);
* make sure all async reads that are part of this stream
* have completed before we return
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_direct", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
retval = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+ if (io_throttled == TRUE && retval == 0)
+ retval = EAGAIN;
+
if (io_req_size && retval == 0) {
/*
* we couldn't handle the tail of this request in DIRECT mode
bflag = CL_PASSIVE;
else
bflag = 0;
-
+
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
+
/*
* When we enter this routine, we know
* -- the read_length will not exceed the current iov_len
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
next_cread:
io_size = *read_length;
* if there are already too many outstanding reads
* wait until some have completed before issuing the next
*/
- if (iostate.io_issued > iostate.io_completed) {
- lck_mtx_lock(cl_mtxp);
-
- while ((iostate.io_issued - iostate.io_completed) > (MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2))) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_contig", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier reads we issued ran into a hard error
* make sure all async reads that are part of this stream
* have completed before we proceed
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
+ if (iostate.io_issued > iostate.io_completed)
+ cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_contig", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
error = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
if (error == 0 && tail_size)
error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
+#if CONFIG_EMBEDDED
+ if (max_io_size > speculative_prefetch_max_iosize)
+ max_io_size = speculative_prefetch_max_iosize;
+#else
+ if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
+ if (max_io_size > speculative_prefetch_max_iosize)
+ max_io_size = speculative_prefetch_max_iosize;
+ }
+#endif
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
(int)f_offset, resid, (int)filesize, 0, 0);
lck_mtx_unlock(&wbp->cl_lockw);
- sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
+ sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg);
lck_mtx_lock(&wbp->cl_lockw);
if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
wakeup((caddr_t)&wbp->cl_sparse_pushes);
} else {
- sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
+ sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg);
}
retval = 1;
} else {
- retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
+ retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg);
}
lck_mtx_unlock(&wbp->cl_lockw);
static int
-cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int (*callback)(buf_t, void *), void *callback_arg)
+cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
{
int cl_index;
int cl_index1;
int flags;
struct cl_extent cl;
+ flags = io_flags & (IO_PASSIVE|IO_CLOSE);
+
/*
* try to push each cluster in turn...
*/
if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
- flags = IO_NOCACHE;
- else
- flags = 0;
+ flags |= IO_NOCACHE;
- if ((l_clusters[cl_index].io_flags & CLW_IOPASSIVE) || (push_flag & IO_PASSIVE))
+ if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
flags |= IO_PASSIVE;
if (push_flag & PUSH_SYNC)
kern_return_t kret;
if (flags & IO_PASSIVE)
- bflag = CL_PASSIVE;
+ bflag = CL_PASSIVE;
else
- bflag = 0;
+ bflag = 0;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
(int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
if ( !(flags & IO_SYNC))
io_flags |= CL_ASYNC;
+ if (flags & IO_CLOSE)
+ io_flags |= CL_CLOSE;
+
+ if (flags & IO_NOCACHE)
+ io_flags |= CL_NOCACHE;
+
retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
* from the write-behind context (the cluster_push case), the wb lock is not held
*/
static void
-sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int (*callback)(buf_t, void *), void *callback_arg)
+sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
{
struct cl_extent cl;
off_t offset;
cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
- cluster_push_now(vp, &cl, EOF, push_flag & IO_PASSIVE, callback, callback_arg);
+ cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
if ( !(push_flag & PUSH_ALL) )
break;
* only a partial update was done
* push out some pages and try again
*/
- sparse_cluster_push(scmap, vp, EOF, 0, callback, callback_arg);
+ sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
offset += (new_dirty * PAGE_SIZE_64);
length -= (new_dirty * PAGE_SIZE);
int bflag;
if (flags & IO_PASSIVE)
- bflag = CL_PASSIVE;
+ bflag = CL_PASSIVE;
else
- bflag = 0;
+ bflag = 0;
+
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
upl_flags = UPL_SET_LITE;
io_size = *io_resid;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
- (int)uio->uio_offset, 0, io_size, 0, 0);
+ (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
control = ubc_getobject(vp, UBC_FLAGS_NONE);
#define DRT_HASH_SMALL_MODULUS 23
#define DRT_HASH_LARGE_MODULUS 401
+/*
+ * Physical memory required before the large hash modulus is permitted.
+ *
+ * On small memory systems, the large hash modulus can lead to phsyical
+ * memory starvation, so we avoid using it there.
+ */
+#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
+
#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
* see whether we should grow to the large one.
*/
if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
- /* if the ring is nearly full */
- if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) {
+ /*
+ * If the ring is nearly full and we are allowed to
+ * use the large modulus, upgrade.
+ */
+ if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
+ (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
nsize = DRT_HASH_LARGE_MODULUS;
} else {
nsize = DRT_HASH_SMALL_MODULUS;